1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to setting various queue properties from drivers
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17
18 #include "blk.h"
19 #include "blk-rq-qos.h"
20 #include "blk-wbt.h"
21
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 {
24 WRITE_ONCE(q->rq_timeout, timeout);
25 }
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27
28 /**
29 * blk_set_stacking_limits - set default limits for stacking devices
30 * @lim: the queue_limits structure to reset
31 *
32 * Prepare queue limits for applying limits from underlying devices using
33 * blk_stack_limits().
34 */
blk_set_stacking_limits(struct queue_limits * lim)35 void blk_set_stacking_limits(struct queue_limits *lim)
36 {
37 memset(lim, 0, sizeof(*lim));
38 lim->logical_block_size = SECTOR_SIZE;
39 lim->physical_block_size = SECTOR_SIZE;
40 lim->io_min = SECTOR_SIZE;
41 lim->discard_granularity = SECTOR_SIZE;
42 lim->dma_alignment = SECTOR_SIZE - 1;
43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44
45 /* Inherit limits from component devices */
46 lim->max_segments = USHRT_MAX;
47 lim->max_discard_segments = USHRT_MAX;
48 lim->max_hw_sectors = UINT_MAX;
49 lim->max_segment_size = UINT_MAX;
50 lim->max_sectors = UINT_MAX;
51 lim->max_dev_sectors = UINT_MAX;
52 lim->max_write_zeroes_sectors = UINT_MAX;
53 lim->max_hw_zone_append_sectors = UINT_MAX;
54 lim->max_user_discard_sectors = UINT_MAX;
55 }
56 EXPORT_SYMBOL(blk_set_stacking_limits);
57
blk_apply_bdi_limits(struct backing_dev_info * bdi,struct queue_limits * lim)58 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 struct queue_limits *lim)
60 {
61 /*
62 * For read-ahead of large files to be effective, we need to read ahead
63 * at least twice the optimal I/O size.
64 */
65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67 }
68
blk_validate_zoned_limits(struct queue_limits * lim)69 static int blk_validate_zoned_limits(struct queue_limits *lim)
70 {
71 if (!(lim->features & BLK_FEAT_ZONED)) {
72 if (WARN_ON_ONCE(lim->max_open_zones) ||
73 WARN_ON_ONCE(lim->max_active_zones) ||
74 WARN_ON_ONCE(lim->zone_write_granularity) ||
75 WARN_ON_ONCE(lim->max_zone_append_sectors))
76 return -EINVAL;
77 return 0;
78 }
79
80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 return -EINVAL;
82
83 /*
84 * Given that active zones include open zones, the maximum number of
85 * open zones cannot be larger than the maximum number of active zones.
86 */
87 if (lim->max_active_zones &&
88 lim->max_open_zones > lim->max_active_zones)
89 return -EINVAL;
90
91 if (lim->zone_write_granularity < lim->logical_block_size)
92 lim->zone_write_granularity = lim->logical_block_size;
93
94 /*
95 * The Zone Append size is limited by the maximum I/O size and the zone
96 * size given that it can't span zones.
97 *
98 * If no max_hw_zone_append_sectors limit is provided, the block layer
99 * will emulated it, else we're also bound by the hardware limit.
100 */
101 lim->max_zone_append_sectors =
102 min_not_zero(lim->max_hw_zone_append_sectors,
103 min(lim->chunk_sectors, lim->max_hw_sectors));
104 return 0;
105 }
106
blk_validate_integrity_limits(struct queue_limits * lim)107 static int blk_validate_integrity_limits(struct queue_limits *lim)
108 {
109 struct blk_integrity *bi = &lim->integrity;
110
111 if (!bi->tuple_size) {
112 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
113 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
114 pr_warn("invalid PI settings.\n");
115 return -EINVAL;
116 }
117 bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY;
118 return 0;
119 }
120
121 if (lim->features & BLK_FEAT_BOUNCE_HIGH) {
122 pr_warn("no bounce buffer support for integrity metadata\n");
123 return -EINVAL;
124 }
125
126 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
127 pr_warn("integrity support disabled.\n");
128 return -EINVAL;
129 }
130
131 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
132 (bi->flags & BLK_INTEGRITY_REF_TAG)) {
133 pr_warn("ref tag not support without checksum.\n");
134 return -EINVAL;
135 }
136
137 if (!bi->interval_exp)
138 bi->interval_exp = ilog2(lim->logical_block_size);
139
140 return 0;
141 }
142
143 /*
144 * Returns max guaranteed bytes which we can fit in a bio.
145 *
146 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
147 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
148 * the first and last segments.
149 */
blk_queue_max_guaranteed_bio(struct queue_limits * lim)150 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
151 {
152 unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
153 unsigned int length;
154
155 length = min(max_segments, 2) * lim->logical_block_size;
156 if (max_segments > 2)
157 length += (max_segments - 2) * PAGE_SIZE;
158
159 return length;
160 }
161
blk_atomic_writes_update_limits(struct queue_limits * lim)162 static void blk_atomic_writes_update_limits(struct queue_limits *lim)
163 {
164 unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
165 blk_queue_max_guaranteed_bio(lim));
166
167 unit_limit = rounddown_pow_of_two(unit_limit);
168
169 lim->atomic_write_max_sectors =
170 min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
171 lim->max_hw_sectors);
172 lim->atomic_write_unit_min =
173 min(lim->atomic_write_hw_unit_min, unit_limit);
174 lim->atomic_write_unit_max =
175 min(lim->atomic_write_hw_unit_max, unit_limit);
176 lim->atomic_write_boundary_sectors =
177 lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
178 }
179
blk_validate_atomic_write_limits(struct queue_limits * lim)180 static void blk_validate_atomic_write_limits(struct queue_limits *lim)
181 {
182 unsigned int boundary_sectors;
183
184 if (!(lim->features & BLK_FEAT_ATOMIC_WRITES))
185 goto unsupported;
186
187 if (!lim->atomic_write_hw_max)
188 goto unsupported;
189
190 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
191 goto unsupported;
192
193 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
194 goto unsupported;
195
196 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
197 lim->atomic_write_hw_unit_max))
198 goto unsupported;
199
200 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
201 lim->atomic_write_hw_max))
202 goto unsupported;
203
204 boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
205
206 if (boundary_sectors) {
207 if (WARN_ON_ONCE(lim->atomic_write_hw_max >
208 lim->atomic_write_hw_boundary))
209 goto unsupported;
210 /*
211 * A feature of boundary support is that it disallows bios to
212 * be merged which would result in a merged request which
213 * crosses either a chunk sector or atomic write HW boundary,
214 * even though chunk sectors may be just set for performance.
215 * For simplicity, disallow atomic writes for a chunk sector
216 * which is non-zero and smaller than atomic write HW boundary.
217 * Furthermore, chunk sectors must be a multiple of atomic
218 * write HW boundary. Otherwise boundary support becomes
219 * complicated.
220 * Devices which do not conform to these rules can be dealt
221 * with if and when they show up.
222 */
223 if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors))
224 goto unsupported;
225
226 /*
227 * The boundary size just needs to be a multiple of unit_max
228 * (and not necessarily a power-of-2), so this following check
229 * could be relaxed in future.
230 * Furthermore, if needed, unit_max could even be reduced so
231 * that it is compliant with a !power-of-2 boundary.
232 */
233 if (!is_power_of_2(boundary_sectors))
234 goto unsupported;
235 }
236
237 blk_atomic_writes_update_limits(lim);
238 return;
239
240 unsupported:
241 lim->atomic_write_max_sectors = 0;
242 lim->atomic_write_boundary_sectors = 0;
243 lim->atomic_write_unit_min = 0;
244 lim->atomic_write_unit_max = 0;
245 }
246
247 /*
248 * Check that the limits in lim are valid, initialize defaults for unset
249 * values, and cap values based on others where needed.
250 */
blk_validate_limits(struct queue_limits * lim)251 int blk_validate_limits(struct queue_limits *lim)
252 {
253 unsigned int max_hw_sectors;
254 unsigned int logical_block_sectors;
255 unsigned long seg_size;
256 int err;
257
258 /*
259 * Unless otherwise specified, default to 512 byte logical blocks and a
260 * physical block size equal to the logical block size.
261 */
262 if (!lim->logical_block_size)
263 lim->logical_block_size = SECTOR_SIZE;
264 else if (blk_validate_block_size(lim->logical_block_size)) {
265 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
266 return -EINVAL;
267 }
268 if (lim->physical_block_size < lim->logical_block_size)
269 lim->physical_block_size = lim->logical_block_size;
270
271 /*
272 * The minimum I/O size defaults to the physical block size unless
273 * explicitly overridden.
274 */
275 if (lim->io_min < lim->physical_block_size)
276 lim->io_min = lim->physical_block_size;
277
278 /*
279 * The optimal I/O size may not be aligned to physical block size
280 * (because it may be limited by dma engines which have no clue about
281 * block size of the disks attached to them), so we round it down here.
282 */
283 lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
284
285 /*
286 * max_hw_sectors has a somewhat weird default for historical reason,
287 * but driver really should set their own instead of relying on this
288 * value.
289 *
290 * The block layer relies on the fact that every driver can
291 * handle at lest a page worth of data per I/O, and needs the value
292 * aligned to the logical block size.
293 */
294 if (!lim->max_hw_sectors)
295 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
296 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
297 return -EINVAL;
298 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
299 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
300 return -EINVAL;
301 lim->max_hw_sectors = round_down(lim->max_hw_sectors,
302 logical_block_sectors);
303
304 /*
305 * The actual max_sectors value is a complex beast and also takes the
306 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
307 * value into account. The ->max_sectors value is always calculated
308 * from these, so directly setting it won't have any effect.
309 */
310 max_hw_sectors = min_not_zero(lim->max_hw_sectors,
311 lim->max_dev_sectors);
312 if (lim->max_user_sectors) {
313 if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE)
314 return -EINVAL;
315 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
316 } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
317 lim->max_sectors =
318 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
319 } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
320 lim->max_sectors =
321 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
322 } else {
323 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
324 }
325 lim->max_sectors = round_down(lim->max_sectors,
326 logical_block_sectors);
327
328 /*
329 * Random default for the maximum number of segments. Driver should not
330 * rely on this and set their own.
331 */
332 if (!lim->max_segments)
333 lim->max_segments = BLK_MAX_SEGMENTS;
334
335 lim->max_discard_sectors =
336 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
337
338 if (!lim->max_discard_segments)
339 lim->max_discard_segments = 1;
340
341 if (lim->discard_granularity < lim->physical_block_size)
342 lim->discard_granularity = lim->physical_block_size;
343
344 /*
345 * By default there is no limit on the segment boundary alignment,
346 * but if there is one it can't be smaller than the page size as
347 * that would break all the normal I/O patterns.
348 */
349 if (!lim->seg_boundary_mask)
350 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
351 if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1))
352 return -EINVAL;
353
354 /*
355 * Stacking device may have both virtual boundary and max segment
356 * size limit, so allow this setting now, and long-term the two
357 * might need to move out of stacking limits since we have immutable
358 * bvec and lower layer bio splitting is supposed to handle the two
359 * correctly.
360 */
361 if (lim->virt_boundary_mask) {
362 if (!lim->max_segment_size)
363 lim->max_segment_size = UINT_MAX;
364 } else {
365 /*
366 * The maximum segment size has an odd historic 64k default that
367 * drivers probably should override. Just like the I/O size we
368 * require drivers to at least handle a full page per segment.
369 */
370 if (!lim->max_segment_size)
371 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
372 if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE))
373 return -EINVAL;
374 }
375
376 /* setup min segment size for building new segment in fast path */
377 if (lim->seg_boundary_mask > lim->max_segment_size - 1)
378 seg_size = lim->max_segment_size;
379 else
380 seg_size = lim->seg_boundary_mask + 1;
381 lim->min_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE);
382
383 /*
384 * We require drivers to at least do logical block aligned I/O, but
385 * historically could not check for that due to the separate calls
386 * to set the limits. Once the transition is finished the check
387 * below should be narrowed down to check the logical block size.
388 */
389 if (!lim->dma_alignment)
390 lim->dma_alignment = SECTOR_SIZE - 1;
391 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
392 return -EINVAL;
393
394 if (lim->alignment_offset) {
395 lim->alignment_offset &= (lim->physical_block_size - 1);
396 lim->flags &= ~BLK_FLAG_MISALIGNED;
397 }
398
399 if (!(lim->features & BLK_FEAT_WRITE_CACHE))
400 lim->features &= ~BLK_FEAT_FUA;
401
402 blk_validate_atomic_write_limits(lim);
403
404 err = blk_validate_integrity_limits(lim);
405 if (err)
406 return err;
407 return blk_validate_zoned_limits(lim);
408 }
409 EXPORT_SYMBOL_GPL(blk_validate_limits);
410
411 /*
412 * Set the default limits for a newly allocated queue. @lim contains the
413 * initial limits set by the driver, which could be no limit in which case
414 * all fields are cleared to zero.
415 */
blk_set_default_limits(struct queue_limits * lim)416 int blk_set_default_limits(struct queue_limits *lim)
417 {
418 /*
419 * Most defaults are set by capping the bounds in blk_validate_limits,
420 * but max_user_discard_sectors is special and needs an explicit
421 * initialization to the max value here.
422 */
423 lim->max_user_discard_sectors = UINT_MAX;
424 return blk_validate_limits(lim);
425 }
426
427 /**
428 * queue_limits_commit_update - commit an atomic update of queue limits
429 * @q: queue to update
430 * @lim: limits to apply
431 *
432 * Apply the limits in @lim that were obtained from queue_limits_start_update()
433 * and updated by the caller to @q. The caller must have frozen the queue or
434 * ensure that there are no outstanding I/Os by other means.
435 *
436 * Returns 0 if successful, else a negative error code.
437 */
queue_limits_commit_update(struct request_queue * q,struct queue_limits * lim)438 int queue_limits_commit_update(struct request_queue *q,
439 struct queue_limits *lim)
440 {
441 int error;
442
443 error = blk_validate_limits(lim);
444 if (error)
445 goto out_unlock;
446
447 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
448 if (q->crypto_profile && lim->integrity.tag_size) {
449 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
450 error = -EINVAL;
451 goto out_unlock;
452 }
453 #endif
454
455 q->limits = *lim;
456 if (q->disk)
457 blk_apply_bdi_limits(q->disk->bdi, lim);
458 out_unlock:
459 mutex_unlock(&q->limits_lock);
460 return error;
461 }
462 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
463
464 /**
465 * queue_limits_commit_update_frozen - commit an atomic update of queue limits
466 * @q: queue to update
467 * @lim: limits to apply
468 *
469 * Apply the limits in @lim that were obtained from queue_limits_start_update()
470 * and updated with the new values by the caller to @q. Freezes the queue
471 * before the update and unfreezes it after.
472 *
473 * Returns 0 if successful, else a negative error code.
474 */
queue_limits_commit_update_frozen(struct request_queue * q,struct queue_limits * lim)475 int queue_limits_commit_update_frozen(struct request_queue *q,
476 struct queue_limits *lim)
477 {
478 unsigned int memflags;
479 int ret;
480
481 memflags = blk_mq_freeze_queue(q);
482 ret = queue_limits_commit_update(q, lim);
483 blk_mq_unfreeze_queue(q, memflags);
484
485 return ret;
486 }
487 EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen);
488
489 /**
490 * queue_limits_set - apply queue limits to queue
491 * @q: queue to update
492 * @lim: limits to apply
493 *
494 * Apply the limits in @lim that were freshly initialized to @q.
495 * To update existing limits use queue_limits_start_update() and
496 * queue_limits_commit_update() instead.
497 *
498 * Returns 0 if successful, else a negative error code.
499 */
queue_limits_set(struct request_queue * q,struct queue_limits * lim)500 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
501 {
502 mutex_lock(&q->limits_lock);
503 return queue_limits_commit_update(q, lim);
504 }
505 EXPORT_SYMBOL_GPL(queue_limits_set);
506
queue_limit_alignment_offset(const struct queue_limits * lim,sector_t sector)507 static int queue_limit_alignment_offset(const struct queue_limits *lim,
508 sector_t sector)
509 {
510 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
511 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
512 << SECTOR_SHIFT;
513
514 return (granularity + lim->alignment_offset - alignment) % granularity;
515 }
516
queue_limit_discard_alignment(const struct queue_limits * lim,sector_t sector)517 static unsigned int queue_limit_discard_alignment(
518 const struct queue_limits *lim, sector_t sector)
519 {
520 unsigned int alignment, granularity, offset;
521
522 if (!lim->max_discard_sectors)
523 return 0;
524
525 /* Why are these in bytes, not sectors? */
526 alignment = lim->discard_alignment >> SECTOR_SHIFT;
527 granularity = lim->discard_granularity >> SECTOR_SHIFT;
528
529 /* Offset of the partition start in 'granularity' sectors */
530 offset = sector_div(sector, granularity);
531
532 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
533 offset = (granularity + alignment - offset) % granularity;
534
535 /* Turn it back into bytes, gaah */
536 return offset << SECTOR_SHIFT;
537 }
538
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)539 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
540 {
541 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
542 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
543 sectors = PAGE_SIZE >> SECTOR_SHIFT;
544 return sectors;
545 }
546
547 /* Check if second and later bottom devices are compliant */
blk_stack_atomic_writes_tail(struct queue_limits * t,struct queue_limits * b)548 static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
549 struct queue_limits *b)
550 {
551 /* We're not going to support different boundary sizes.. yet */
552 if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
553 return false;
554
555 /* Can't support this */
556 if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
557 return false;
558
559 /* Or this */
560 if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
561 return false;
562
563 t->atomic_write_hw_max = min(t->atomic_write_hw_max,
564 b->atomic_write_hw_max);
565 t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
566 b->atomic_write_hw_unit_min);
567 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
568 b->atomic_write_hw_unit_max);
569 return true;
570 }
571
572 /* Check for valid boundary of first bottom device */
blk_stack_atomic_writes_boundary_head(struct queue_limits * t,struct queue_limits * b)573 static bool blk_stack_atomic_writes_boundary_head(struct queue_limits *t,
574 struct queue_limits *b)
575 {
576 /*
577 * Ensure atomic write boundary is aligned with chunk sectors. Stacked
578 * devices store chunk sectors in t->io_min.
579 */
580 if (b->atomic_write_hw_boundary > t->io_min &&
581 b->atomic_write_hw_boundary % t->io_min)
582 return false;
583 if (t->io_min > b->atomic_write_hw_boundary &&
584 t->io_min % b->atomic_write_hw_boundary)
585 return false;
586
587 t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
588 return true;
589 }
590
591
592 /* Check stacking of first bottom device */
blk_stack_atomic_writes_head(struct queue_limits * t,struct queue_limits * b)593 static bool blk_stack_atomic_writes_head(struct queue_limits *t,
594 struct queue_limits *b)
595 {
596 if (b->atomic_write_hw_boundary &&
597 !blk_stack_atomic_writes_boundary_head(t, b))
598 return false;
599
600 if (t->io_min <= SECTOR_SIZE) {
601 /* No chunk sectors, so use bottom device values directly */
602 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
603 t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
604 t->atomic_write_hw_max = b->atomic_write_hw_max;
605 return true;
606 }
607
608 /*
609 * Find values for limits which work for chunk size.
610 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
611 * size (t->io_min), as chunk size is not restricted to a power-of-2.
612 * So we need to find highest power-of-2 which works for the chunk
613 * size.
614 * As an example scenario, we could have b->unit_max = 16K and
615 * t->io_min = 24K. For this case, reduce t->unit_max to a value
616 * aligned with both limits, i.e. 8K in this example.
617 */
618 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
619 while (t->io_min % t->atomic_write_hw_unit_max)
620 t->atomic_write_hw_unit_max /= 2;
621
622 t->atomic_write_hw_unit_min = min(b->atomic_write_hw_unit_min,
623 t->atomic_write_hw_unit_max);
624 t->atomic_write_hw_max = min(b->atomic_write_hw_max, t->io_min);
625
626 return true;
627 }
628
blk_stack_atomic_writes_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)629 static void blk_stack_atomic_writes_limits(struct queue_limits *t,
630 struct queue_limits *b, sector_t start)
631 {
632 if (!(b->features & BLK_FEAT_ATOMIC_WRITES))
633 goto unsupported;
634
635 if (!b->atomic_write_hw_unit_min)
636 goto unsupported;
637
638 if (!blk_atomic_write_start_sect_aligned(start, b))
639 goto unsupported;
640
641 /*
642 * If atomic_write_hw_max is set, we have already stacked 1x bottom
643 * device, so check for compliance.
644 */
645 if (t->atomic_write_hw_max) {
646 if (!blk_stack_atomic_writes_tail(t, b))
647 goto unsupported;
648 return;
649 }
650
651 if (!blk_stack_atomic_writes_head(t, b))
652 goto unsupported;
653 return;
654
655 unsupported:
656 t->atomic_write_hw_max = 0;
657 t->atomic_write_hw_unit_max = 0;
658 t->atomic_write_hw_unit_min = 0;
659 t->atomic_write_hw_boundary = 0;
660 }
661
662 /**
663 * blk_stack_limits - adjust queue_limits for stacked devices
664 * @t: the stacking driver limits (top device)
665 * @b: the underlying queue limits (bottom, component device)
666 * @start: first data sector within component device
667 *
668 * Description:
669 * This function is used by stacking drivers like MD and DM to ensure
670 * that all component devices have compatible block sizes and
671 * alignments. The stacking driver must provide a queue_limits
672 * struct (top) and then iteratively call the stacking function for
673 * all component (bottom) devices. The stacking function will
674 * attempt to combine the values and ensure proper alignment.
675 *
676 * Returns 0 if the top and bottom queue_limits are compatible. The
677 * top device's block sizes and alignment offsets may be adjusted to
678 * ensure alignment with the bottom device. If no compatible sizes
679 * and alignments exist, -1 is returned and the resulting top
680 * queue_limits will have the misaligned flag set to indicate that
681 * the alignment_offset is undefined.
682 */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)683 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
684 sector_t start)
685 {
686 unsigned int top, bottom, alignment, ret = 0;
687
688 t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
689
690 /*
691 * Some feaures need to be supported both by the stacking driver and all
692 * underlying devices. The stacking driver sets these flags before
693 * stacking the limits, and this will clear the flags if any of the
694 * underlying devices does not support it.
695 */
696 if (!(b->features & BLK_FEAT_NOWAIT))
697 t->features &= ~BLK_FEAT_NOWAIT;
698 if (!(b->features & BLK_FEAT_POLL))
699 t->features &= ~BLK_FEAT_POLL;
700
701 t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
702
703 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
704 t->max_user_sectors = min_not_zero(t->max_user_sectors,
705 b->max_user_sectors);
706 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
707 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
708 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
709 b->max_write_zeroes_sectors);
710 t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
711 b->max_hw_zone_append_sectors);
712
713 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
714 b->seg_boundary_mask);
715 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
716 b->virt_boundary_mask);
717
718 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
719 t->max_discard_segments = min_not_zero(t->max_discard_segments,
720 b->max_discard_segments);
721 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
722 b->max_integrity_segments);
723
724 t->max_segment_size = min_not_zero(t->max_segment_size,
725 b->max_segment_size);
726
727 alignment = queue_limit_alignment_offset(b, start);
728
729 /* Bottom device has different alignment. Check that it is
730 * compatible with the current top alignment.
731 */
732 if (t->alignment_offset != alignment) {
733
734 top = max(t->physical_block_size, t->io_min)
735 + t->alignment_offset;
736 bottom = max(b->physical_block_size, b->io_min) + alignment;
737
738 /* Verify that top and bottom intervals line up */
739 if (max(top, bottom) % min(top, bottom)) {
740 t->flags |= BLK_FLAG_MISALIGNED;
741 ret = -1;
742 }
743 }
744
745 t->logical_block_size = max(t->logical_block_size,
746 b->logical_block_size);
747
748 t->physical_block_size = max(t->physical_block_size,
749 b->physical_block_size);
750
751 t->io_min = max(t->io_min, b->io_min);
752 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
753 t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
754
755 /* Set non-power-of-2 compatible chunk_sectors boundary */
756 if (b->chunk_sectors)
757 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
758
759 /* Physical block size a multiple of the logical block size? */
760 if (t->physical_block_size & (t->logical_block_size - 1)) {
761 t->physical_block_size = t->logical_block_size;
762 t->flags |= BLK_FLAG_MISALIGNED;
763 ret = -1;
764 }
765
766 /* Minimum I/O a multiple of the physical block size? */
767 if (t->io_min & (t->physical_block_size - 1)) {
768 t->io_min = t->physical_block_size;
769 t->flags |= BLK_FLAG_MISALIGNED;
770 ret = -1;
771 }
772
773 /* Optimal I/O a multiple of the physical block size? */
774 if (t->io_opt & (t->physical_block_size - 1)) {
775 t->io_opt = 0;
776 t->flags |= BLK_FLAG_MISALIGNED;
777 ret = -1;
778 }
779
780 /* chunk_sectors a multiple of the physical block size? */
781 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
782 t->chunk_sectors = 0;
783 t->flags |= BLK_FLAG_MISALIGNED;
784 ret = -1;
785 }
786
787 /* Find lowest common alignment_offset */
788 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
789 % max(t->physical_block_size, t->io_min);
790
791 /* Verify that new alignment_offset is on a logical block boundary */
792 if (t->alignment_offset & (t->logical_block_size - 1)) {
793 t->flags |= BLK_FLAG_MISALIGNED;
794 ret = -1;
795 }
796
797 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
798 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
799 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
800
801 /* Discard alignment and granularity */
802 if (b->discard_granularity) {
803 alignment = queue_limit_discard_alignment(b, start);
804
805 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
806 b->max_discard_sectors);
807 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
808 b->max_hw_discard_sectors);
809 t->discard_granularity = max(t->discard_granularity,
810 b->discard_granularity);
811 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
812 t->discard_granularity;
813 }
814 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
815 b->max_secure_erase_sectors);
816 t->zone_write_granularity = max(t->zone_write_granularity,
817 b->zone_write_granularity);
818 if (!(t->features & BLK_FEAT_ZONED)) {
819 t->zone_write_granularity = 0;
820 t->max_zone_append_sectors = 0;
821 }
822 blk_stack_atomic_writes_limits(t, b, start);
823
824 return ret;
825 }
826 EXPORT_SYMBOL(blk_stack_limits);
827
828 /**
829 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
830 * @t: the stacking driver limits (top device)
831 * @bdev: the underlying block device (bottom)
832 * @offset: offset to beginning of data within component device
833 * @pfx: prefix to use for warnings logged
834 *
835 * Description:
836 * This function is used by stacking drivers like MD and DM to ensure
837 * that all component devices have compatible block sizes and
838 * alignments. The stacking driver must provide a queue_limits
839 * struct (top) and then iteratively call the stacking function for
840 * all component (bottom) devices. The stacking function will
841 * attempt to combine the values and ensure proper alignment.
842 */
queue_limits_stack_bdev(struct queue_limits * t,struct block_device * bdev,sector_t offset,const char * pfx)843 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
844 sector_t offset, const char *pfx)
845 {
846 if (blk_stack_limits(t, bdev_limits(bdev),
847 get_start_sect(bdev) + offset))
848 pr_notice("%s: Warning: Device %pg is misaligned\n",
849 pfx, bdev);
850 }
851 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
852
853 /**
854 * queue_limits_stack_integrity - stack integrity profile
855 * @t: target queue limits
856 * @b: base queue limits
857 *
858 * Check if the integrity profile in the @b can be stacked into the
859 * target @t. Stacking is possible if either:
860 *
861 * a) does not have any integrity information stacked into it yet
862 * b) the integrity profile in @b is identical to the one in @t
863 *
864 * If @b can be stacked into @t, return %true. Else return %false and clear the
865 * integrity information in @t.
866 */
queue_limits_stack_integrity(struct queue_limits * t,struct queue_limits * b)867 bool queue_limits_stack_integrity(struct queue_limits *t,
868 struct queue_limits *b)
869 {
870 struct blk_integrity *ti = &t->integrity;
871 struct blk_integrity *bi = &b->integrity;
872
873 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
874 return true;
875
876 if (ti->flags & BLK_INTEGRITY_STACKED) {
877 if (ti->tuple_size != bi->tuple_size)
878 goto incompatible;
879 if (ti->interval_exp != bi->interval_exp)
880 goto incompatible;
881 if (ti->tag_size != bi->tag_size)
882 goto incompatible;
883 if (ti->csum_type != bi->csum_type)
884 goto incompatible;
885 if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
886 (bi->flags & BLK_INTEGRITY_REF_TAG))
887 goto incompatible;
888 } else {
889 ti->flags = BLK_INTEGRITY_STACKED;
890 ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) |
891 (bi->flags & BLK_INTEGRITY_REF_TAG);
892 ti->csum_type = bi->csum_type;
893 ti->tuple_size = bi->tuple_size;
894 ti->pi_offset = bi->pi_offset;
895 ti->interval_exp = bi->interval_exp;
896 ti->tag_size = bi->tag_size;
897 }
898 return true;
899
900 incompatible:
901 memset(ti, 0, sizeof(*ti));
902 return false;
903 }
904 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
905
906 /**
907 * blk_set_queue_depth - tell the block layer about the device queue depth
908 * @q: the request queue for the device
909 * @depth: queue depth
910 *
911 */
blk_set_queue_depth(struct request_queue * q,unsigned int depth)912 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
913 {
914 q->queue_depth = depth;
915 rq_qos_queue_depth_changed(q);
916 }
917 EXPORT_SYMBOL(blk_set_queue_depth);
918
bdev_alignment_offset(struct block_device * bdev)919 int bdev_alignment_offset(struct block_device *bdev)
920 {
921 struct request_queue *q = bdev_get_queue(bdev);
922
923 if (q->limits.flags & BLK_FLAG_MISALIGNED)
924 return -1;
925 if (bdev_is_partition(bdev))
926 return queue_limit_alignment_offset(&q->limits,
927 bdev->bd_start_sect);
928 return q->limits.alignment_offset;
929 }
930 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
931
bdev_discard_alignment(struct block_device * bdev)932 unsigned int bdev_discard_alignment(struct block_device *bdev)
933 {
934 struct request_queue *q = bdev_get_queue(bdev);
935
936 if (bdev_is_partition(bdev))
937 return queue_limit_discard_alignment(&q->limits,
938 bdev->bd_start_sect);
939 return q->limits.discard_alignment;
940 }
941 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
942