1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-prison-v2.h"
10 #include "dm-bio-record.h"
11 #include "dm-cache-metadata.h"
12 #include "dm-io-tracker.h"
13 #include "dm-cache-background-tracker.h"
14
15 #include <linux/dm-io.h>
16 #include <linux/dm-kcopyd.h>
17 #include <linux/jiffies.h>
18 #include <linux/init.h>
19 #include <linux/mempool.h>
20 #include <linux/module.h>
21 #include <linux/rwsem.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24
25 #define DM_MSG_PREFIX "cache"
26
27 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
28 "A percentage of time allocated for copying to and/or from cache");
29
30 /*----------------------------------------------------------------*/
31
32 /*
33 * Glossary:
34 *
35 * oblock: index of an origin block
36 * cblock: index of a cache block
37 * promotion: movement of a block from origin to cache
38 * demotion: movement of a block from cache to origin
39 * migration: movement of a block between the origin and cache device,
40 * either direction
41 */
42
43 /*----------------------------------------------------------------*/
44
45 /*
46 * Represents a chunk of future work. 'input' allows continuations to pass
47 * values between themselves, typically error values.
48 */
49 struct continuation {
50 struct work_struct ws;
51 blk_status_t input;
52 };
53
init_continuation(struct continuation * k,void (* fn)(struct work_struct *))54 static inline void init_continuation(struct continuation *k,
55 void (*fn)(struct work_struct *))
56 {
57 INIT_WORK(&k->ws, fn);
58 k->input = 0;
59 }
60
queue_continuation(struct workqueue_struct * wq,struct continuation * k)61 static inline void queue_continuation(struct workqueue_struct *wq,
62 struct continuation *k)
63 {
64 queue_work(wq, &k->ws);
65 }
66
67 /*----------------------------------------------------------------*/
68
69 /*
70 * The batcher collects together pieces of work that need a particular
71 * operation to occur before they can proceed (typically a commit).
72 */
73 struct batcher {
74 /*
75 * The operation that everyone is waiting for.
76 */
77 blk_status_t (*commit_op)(void *context);
78 void *commit_context;
79
80 /*
81 * This is how bios should be issued once the commit op is complete
82 * (accounted_request).
83 */
84 void (*issue_op)(struct bio *bio, void *context);
85 void *issue_context;
86
87 /*
88 * Queued work gets put on here after commit.
89 */
90 struct workqueue_struct *wq;
91
92 spinlock_t lock;
93 struct list_head work_items;
94 struct bio_list bios;
95 struct work_struct commit_work;
96
97 bool commit_scheduled;
98 };
99
__commit(struct work_struct * _ws)100 static void __commit(struct work_struct *_ws)
101 {
102 struct batcher *b = container_of(_ws, struct batcher, commit_work);
103 blk_status_t r;
104 struct list_head work_items;
105 struct work_struct *ws, *tmp;
106 struct continuation *k;
107 struct bio *bio;
108 struct bio_list bios;
109
110 INIT_LIST_HEAD(&work_items);
111 bio_list_init(&bios);
112
113 /*
114 * We have to grab these before the commit_op to avoid a race
115 * condition.
116 */
117 spin_lock_irq(&b->lock);
118 list_splice_init(&b->work_items, &work_items);
119 bio_list_merge_init(&bios, &b->bios);
120 b->commit_scheduled = false;
121 spin_unlock_irq(&b->lock);
122
123 r = b->commit_op(b->commit_context);
124
125 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
126 k = container_of(ws, struct continuation, ws);
127 k->input = r;
128 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
129 queue_work(b->wq, ws);
130 }
131
132 while ((bio = bio_list_pop(&bios))) {
133 if (r) {
134 bio->bi_status = r;
135 bio_endio(bio);
136 } else
137 b->issue_op(bio, b->issue_context);
138 }
139 }
140
batcher_init(struct batcher * b,blk_status_t (* commit_op)(void *),void * commit_context,void (* issue_op)(struct bio * bio,void *),void * issue_context,struct workqueue_struct * wq)141 static void batcher_init(struct batcher *b,
142 blk_status_t (*commit_op)(void *),
143 void *commit_context,
144 void (*issue_op)(struct bio *bio, void *),
145 void *issue_context,
146 struct workqueue_struct *wq)
147 {
148 b->commit_op = commit_op;
149 b->commit_context = commit_context;
150 b->issue_op = issue_op;
151 b->issue_context = issue_context;
152 b->wq = wq;
153
154 spin_lock_init(&b->lock);
155 INIT_LIST_HEAD(&b->work_items);
156 bio_list_init(&b->bios);
157 INIT_WORK(&b->commit_work, __commit);
158 b->commit_scheduled = false;
159 }
160
async_commit(struct batcher * b)161 static void async_commit(struct batcher *b)
162 {
163 queue_work(b->wq, &b->commit_work);
164 }
165
continue_after_commit(struct batcher * b,struct continuation * k)166 static void continue_after_commit(struct batcher *b, struct continuation *k)
167 {
168 bool commit_scheduled;
169
170 spin_lock_irq(&b->lock);
171 commit_scheduled = b->commit_scheduled;
172 list_add_tail(&k->ws.entry, &b->work_items);
173 spin_unlock_irq(&b->lock);
174
175 if (commit_scheduled)
176 async_commit(b);
177 }
178
179 /*
180 * Bios are errored if commit failed.
181 */
issue_after_commit(struct batcher * b,struct bio * bio)182 static void issue_after_commit(struct batcher *b, struct bio *bio)
183 {
184 bool commit_scheduled;
185
186 spin_lock_irq(&b->lock);
187 commit_scheduled = b->commit_scheduled;
188 bio_list_add(&b->bios, bio);
189 spin_unlock_irq(&b->lock);
190
191 if (commit_scheduled)
192 async_commit(b);
193 }
194
195 /*
196 * Call this if some urgent work is waiting for the commit to complete.
197 */
schedule_commit(struct batcher * b)198 static void schedule_commit(struct batcher *b)
199 {
200 bool immediate;
201
202 spin_lock_irq(&b->lock);
203 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
204 b->commit_scheduled = true;
205 spin_unlock_irq(&b->lock);
206
207 if (immediate)
208 async_commit(b);
209 }
210
211 /*
212 * There are a couple of places where we let a bio run, but want to do some
213 * work before calling its endio function. We do this by temporarily
214 * changing the endio fn.
215 */
216 struct dm_hook_info {
217 bio_end_io_t *bi_end_io;
218 };
219
dm_hook_bio(struct dm_hook_info * h,struct bio * bio,bio_end_io_t * bi_end_io,void * bi_private)220 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
221 bio_end_io_t *bi_end_io, void *bi_private)
222 {
223 h->bi_end_io = bio->bi_end_io;
224
225 bio->bi_end_io = bi_end_io;
226 bio->bi_private = bi_private;
227 }
228
dm_unhook_bio(struct dm_hook_info * h,struct bio * bio)229 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
230 {
231 bio->bi_end_io = h->bi_end_io;
232 }
233
234 /*----------------------------------------------------------------*/
235
236 #define MIGRATION_POOL_SIZE 128
237 #define COMMIT_PERIOD HZ
238 #define MIGRATION_COUNT_WINDOW 10
239
240 /*
241 * The block size of the device holding cache data must be
242 * between 32KB and 1GB.
243 */
244 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
245 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
246
247 enum cache_metadata_mode {
248 CM_WRITE, /* metadata may be changed */
249 CM_READ_ONLY, /* metadata may not be changed */
250 CM_FAIL
251 };
252
253 enum cache_io_mode {
254 /*
255 * Data is written to cached blocks only. These blocks are marked
256 * dirty. If you lose the cache device you will lose data.
257 * Potential performance increase for both reads and writes.
258 */
259 CM_IO_WRITEBACK,
260
261 /*
262 * Data is written to both cache and origin. Blocks are never
263 * dirty. Potential performance benfit for reads only.
264 */
265 CM_IO_WRITETHROUGH,
266
267 /*
268 * A degraded mode useful for various cache coherency situations
269 * (eg, rolling back snapshots). Reads and writes always go to the
270 * origin. If a write goes to a cached oblock, then the cache
271 * block is invalidated.
272 */
273 CM_IO_PASSTHROUGH
274 };
275
276 struct cache_features {
277 enum cache_metadata_mode mode;
278 enum cache_io_mode io_mode;
279 unsigned int metadata_version;
280 bool discard_passdown:1;
281 };
282
283 struct cache_stats {
284 atomic_t read_hit;
285 atomic_t read_miss;
286 atomic_t write_hit;
287 atomic_t write_miss;
288 atomic_t demotion;
289 atomic_t promotion;
290 atomic_t writeback;
291 atomic_t copies_avoided;
292 atomic_t cache_cell_clash;
293 atomic_t commit_count;
294 atomic_t discard_count;
295 };
296
297 struct cache {
298 struct dm_target *ti;
299 spinlock_t lock;
300
301 /*
302 * Fields for converting from sectors to blocks.
303 */
304 int sectors_per_block_shift;
305 sector_t sectors_per_block;
306
307 struct dm_cache_metadata *cmd;
308
309 /*
310 * Metadata is written to this device.
311 */
312 struct dm_dev *metadata_dev;
313
314 /*
315 * The slower of the two data devices. Typically a spindle.
316 */
317 struct dm_dev *origin_dev;
318
319 /*
320 * The faster of the two data devices. Typically an SSD.
321 */
322 struct dm_dev *cache_dev;
323
324 /*
325 * Size of the origin device in _complete_ blocks and native sectors.
326 */
327 dm_oblock_t origin_blocks;
328 sector_t origin_sectors;
329
330 /*
331 * Size of the cache device in blocks.
332 */
333 dm_cblock_t cache_size;
334
335 /*
336 * Invalidation fields.
337 */
338 spinlock_t invalidation_lock;
339 struct list_head invalidation_requests;
340
341 sector_t migration_threshold;
342 wait_queue_head_t migration_wait;
343 atomic_t nr_allocated_migrations;
344
345 /*
346 * The number of in flight migrations that are performing
347 * background io. eg, promotion, writeback.
348 */
349 atomic_t nr_io_migrations;
350
351 struct bio_list deferred_bios;
352
353 struct rw_semaphore quiesce_lock;
354
355 /*
356 * origin_blocks entries, discarded if set.
357 */
358 dm_dblock_t discard_nr_blocks;
359 unsigned long *discard_bitset;
360 uint32_t discard_block_size; /* a power of 2 times sectors per block */
361
362 /*
363 * Rather than reconstructing the table line for the status we just
364 * save it and regurgitate.
365 */
366 unsigned int nr_ctr_args;
367 const char **ctr_args;
368
369 struct dm_kcopyd_client *copier;
370 struct work_struct deferred_bio_worker;
371 struct work_struct migration_worker;
372 struct workqueue_struct *wq;
373 struct delayed_work waker;
374 struct dm_bio_prison_v2 *prison;
375
376 /*
377 * cache_size entries, dirty if set
378 */
379 unsigned long *dirty_bitset;
380 atomic_t nr_dirty;
381
382 unsigned int policy_nr_args;
383 struct dm_cache_policy *policy;
384
385 /*
386 * Cache features such as write-through.
387 */
388 struct cache_features features;
389
390 struct cache_stats stats;
391
392 bool need_tick_bio:1;
393 bool sized:1;
394 bool invalidate:1;
395 bool commit_requested:1;
396 bool loaded_mappings:1;
397 bool loaded_discards:1;
398
399 struct rw_semaphore background_work_lock;
400
401 struct batcher committer;
402 struct work_struct commit_ws;
403
404 struct dm_io_tracker tracker;
405
406 mempool_t migration_pool;
407
408 struct bio_set bs;
409
410 /*
411 * Cache_size entries. Set bits indicate blocks mapped beyond the
412 * target length, which are marked for invalidation.
413 */
414 unsigned long *invalid_bitset;
415 };
416
417 struct per_bio_data {
418 bool tick:1;
419 unsigned int req_nr:2;
420 struct dm_bio_prison_cell_v2 *cell;
421 struct dm_hook_info hook_info;
422 sector_t len;
423 };
424
425 struct dm_cache_migration {
426 struct continuation k;
427 struct cache *cache;
428
429 struct policy_work *op;
430 struct bio *overwrite_bio;
431 struct dm_bio_prison_cell_v2 *cell;
432
433 dm_cblock_t invalidate_cblock;
434 dm_oblock_t invalidate_oblock;
435 };
436
437 /*----------------------------------------------------------------*/
438
writethrough_mode(struct cache * cache)439 static bool writethrough_mode(struct cache *cache)
440 {
441 return cache->features.io_mode == CM_IO_WRITETHROUGH;
442 }
443
writeback_mode(struct cache * cache)444 static bool writeback_mode(struct cache *cache)
445 {
446 return cache->features.io_mode == CM_IO_WRITEBACK;
447 }
448
passthrough_mode(struct cache * cache)449 static inline bool passthrough_mode(struct cache *cache)
450 {
451 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
452 }
453
454 /*----------------------------------------------------------------*/
455
wake_deferred_bio_worker(struct cache * cache)456 static void wake_deferred_bio_worker(struct cache *cache)
457 {
458 queue_work(cache->wq, &cache->deferred_bio_worker);
459 }
460
wake_migration_worker(struct cache * cache)461 static void wake_migration_worker(struct cache *cache)
462 {
463 if (passthrough_mode(cache))
464 return;
465
466 queue_work(cache->wq, &cache->migration_worker);
467 }
468
469 /*----------------------------------------------------------------*/
470
alloc_prison_cell(struct cache * cache)471 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
472 {
473 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
474 }
475
free_prison_cell(struct cache * cache,struct dm_bio_prison_cell_v2 * cell)476 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
477 {
478 dm_bio_prison_free_cell_v2(cache->prison, cell);
479 }
480
alloc_migration(struct cache * cache)481 static struct dm_cache_migration *alloc_migration(struct cache *cache)
482 {
483 struct dm_cache_migration *mg;
484
485 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
486
487 memset(mg, 0, sizeof(*mg));
488
489 mg->cache = cache;
490 atomic_inc(&cache->nr_allocated_migrations);
491
492 return mg;
493 }
494
free_migration(struct dm_cache_migration * mg)495 static void free_migration(struct dm_cache_migration *mg)
496 {
497 struct cache *cache = mg->cache;
498
499 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
500 wake_up(&cache->migration_wait);
501
502 mempool_free(mg, &cache->migration_pool);
503 }
504
505 /*----------------------------------------------------------------*/
506
oblock_succ(dm_oblock_t b)507 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
508 {
509 return to_oblock(from_oblock(b) + 1ull);
510 }
511
build_key(dm_oblock_t begin,dm_oblock_t end,struct dm_cell_key_v2 * key)512 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
513 {
514 key->virtual = 0;
515 key->dev = 0;
516 key->block_begin = from_oblock(begin);
517 key->block_end = from_oblock(end);
518 }
519
520 /*
521 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
522 * level 1 which prevents *both* READs and WRITEs.
523 */
524 #define WRITE_LOCK_LEVEL 0
525 #define READ_WRITE_LOCK_LEVEL 1
526
lock_level(struct bio * bio)527 static unsigned int lock_level(struct bio *bio)
528 {
529 return bio_data_dir(bio) == WRITE ?
530 WRITE_LOCK_LEVEL :
531 READ_WRITE_LOCK_LEVEL;
532 }
533
534 /*
535 *--------------------------------------------------------------
536 * Per bio data
537 *--------------------------------------------------------------
538 */
539
get_per_bio_data(struct bio * bio)540 static struct per_bio_data *get_per_bio_data(struct bio *bio)
541 {
542 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
543
544 BUG_ON(!pb);
545 return pb;
546 }
547
init_per_bio_data(struct bio * bio)548 static struct per_bio_data *init_per_bio_data(struct bio *bio)
549 {
550 struct per_bio_data *pb = get_per_bio_data(bio);
551
552 pb->tick = false;
553 pb->req_nr = dm_bio_get_target_bio_nr(bio);
554 pb->cell = NULL;
555 pb->len = 0;
556
557 return pb;
558 }
559
560 /*----------------------------------------------------------------*/
561
defer_bio(struct cache * cache,struct bio * bio)562 static void defer_bio(struct cache *cache, struct bio *bio)
563 {
564 spin_lock_irq(&cache->lock);
565 bio_list_add(&cache->deferred_bios, bio);
566 spin_unlock_irq(&cache->lock);
567
568 wake_deferred_bio_worker(cache);
569 }
570
defer_bios(struct cache * cache,struct bio_list * bios)571 static void defer_bios(struct cache *cache, struct bio_list *bios)
572 {
573 spin_lock_irq(&cache->lock);
574 bio_list_merge_init(&cache->deferred_bios, bios);
575 spin_unlock_irq(&cache->lock);
576
577 wake_deferred_bio_worker(cache);
578 }
579
580 /*----------------------------------------------------------------*/
581
bio_detain_shared(struct cache * cache,dm_oblock_t oblock,struct bio * bio)582 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
583 {
584 bool r;
585 struct per_bio_data *pb;
586 struct dm_cell_key_v2 key;
587 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
588 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
589
590 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
591
592 build_key(oblock, end, &key);
593 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
594 if (!r) {
595 /*
596 * Failed to get the lock.
597 */
598 free_prison_cell(cache, cell_prealloc);
599 return r;
600 }
601
602 if (cell != cell_prealloc)
603 free_prison_cell(cache, cell_prealloc);
604
605 pb = get_per_bio_data(bio);
606 pb->cell = cell;
607
608 return r;
609 }
610
611 /*----------------------------------------------------------------*/
612
is_dirty(struct cache * cache,dm_cblock_t b)613 static bool is_dirty(struct cache *cache, dm_cblock_t b)
614 {
615 return test_bit(from_cblock(b), cache->dirty_bitset);
616 }
617
set_dirty(struct cache * cache,dm_cblock_t cblock)618 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
619 {
620 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
621 atomic_inc(&cache->nr_dirty);
622 policy_set_dirty(cache->policy, cblock);
623 }
624 }
625
626 /*
627 * These two are called when setting after migrations to force the policy
628 * and dirty bitset to be in sync.
629 */
force_set_dirty(struct cache * cache,dm_cblock_t cblock)630 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
631 {
632 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
633 atomic_inc(&cache->nr_dirty);
634 policy_set_dirty(cache->policy, cblock);
635 }
636
force_clear_dirty(struct cache * cache,dm_cblock_t cblock)637 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
638 {
639 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
640 if (atomic_dec_return(&cache->nr_dirty) == 0)
641 dm_table_event(cache->ti->table);
642 }
643
644 policy_clear_dirty(cache->policy, cblock);
645 }
646
647 /*----------------------------------------------------------------*/
648
block_size_is_power_of_two(struct cache * cache)649 static bool block_size_is_power_of_two(struct cache *cache)
650 {
651 return cache->sectors_per_block_shift >= 0;
652 }
653
block_div(dm_block_t b,uint32_t n)654 static dm_block_t block_div(dm_block_t b, uint32_t n)
655 {
656 do_div(b, n);
657
658 return b;
659 }
660
oblocks_per_dblock(struct cache * cache)661 static dm_block_t oblocks_per_dblock(struct cache *cache)
662 {
663 dm_block_t oblocks = cache->discard_block_size;
664
665 if (block_size_is_power_of_two(cache))
666 oblocks >>= cache->sectors_per_block_shift;
667 else
668 oblocks = block_div(oblocks, cache->sectors_per_block);
669
670 return oblocks;
671 }
672
oblock_to_dblock(struct cache * cache,dm_oblock_t oblock)673 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
674 {
675 return to_dblock(block_div(from_oblock(oblock),
676 oblocks_per_dblock(cache)));
677 }
678
set_discard(struct cache * cache,dm_dblock_t b)679 static void set_discard(struct cache *cache, dm_dblock_t b)
680 {
681 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
682 atomic_inc(&cache->stats.discard_count);
683
684 spin_lock_irq(&cache->lock);
685 set_bit(from_dblock(b), cache->discard_bitset);
686 spin_unlock_irq(&cache->lock);
687 }
688
clear_discard(struct cache * cache,dm_dblock_t b)689 static void clear_discard(struct cache *cache, dm_dblock_t b)
690 {
691 spin_lock_irq(&cache->lock);
692 clear_bit(from_dblock(b), cache->discard_bitset);
693 spin_unlock_irq(&cache->lock);
694 }
695
is_discarded(struct cache * cache,dm_dblock_t b)696 static bool is_discarded(struct cache *cache, dm_dblock_t b)
697 {
698 int r;
699
700 spin_lock_irq(&cache->lock);
701 r = test_bit(from_dblock(b), cache->discard_bitset);
702 spin_unlock_irq(&cache->lock);
703
704 return r;
705 }
706
is_discarded_oblock(struct cache * cache,dm_oblock_t b)707 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
708 {
709 int r;
710
711 spin_lock_irq(&cache->lock);
712 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
713 cache->discard_bitset);
714 spin_unlock_irq(&cache->lock);
715
716 return r;
717 }
718
719 /*
720 * -------------------------------------------------------------
721 * Remapping
722 *--------------------------------------------------------------
723 */
remap_to_origin(struct cache * cache,struct bio * bio)724 static void remap_to_origin(struct cache *cache, struct bio *bio)
725 {
726 bio_set_dev(bio, cache->origin_dev->bdev);
727 }
728
remap_to_cache(struct cache * cache,struct bio * bio,dm_cblock_t cblock)729 static void remap_to_cache(struct cache *cache, struct bio *bio,
730 dm_cblock_t cblock)
731 {
732 sector_t bi_sector = bio->bi_iter.bi_sector;
733 sector_t block = from_cblock(cblock);
734
735 bio_set_dev(bio, cache->cache_dev->bdev);
736 if (!block_size_is_power_of_two(cache))
737 bio->bi_iter.bi_sector =
738 (block * cache->sectors_per_block) +
739 sector_div(bi_sector, cache->sectors_per_block);
740 else
741 bio->bi_iter.bi_sector =
742 (block << cache->sectors_per_block_shift) |
743 (bi_sector & (cache->sectors_per_block - 1));
744 }
745
check_if_tick_bio_needed(struct cache * cache,struct bio * bio)746 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
747 {
748 struct per_bio_data *pb;
749
750 spin_lock_irq(&cache->lock);
751 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
752 bio_op(bio) != REQ_OP_DISCARD) {
753 pb = get_per_bio_data(bio);
754 pb->tick = true;
755 cache->need_tick_bio = false;
756 }
757 spin_unlock_irq(&cache->lock);
758 }
759
remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock)760 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
761 dm_oblock_t oblock)
762 {
763 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
764 check_if_tick_bio_needed(cache, bio);
765 remap_to_origin(cache, bio);
766 if (bio_data_dir(bio) == WRITE)
767 clear_discard(cache, oblock_to_dblock(cache, oblock));
768 }
769
remap_to_cache_dirty(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)770 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
771 dm_oblock_t oblock, dm_cblock_t cblock)
772 {
773 check_if_tick_bio_needed(cache, bio);
774 remap_to_cache(cache, bio, cblock);
775 if (bio_data_dir(bio) == WRITE) {
776 set_dirty(cache, cblock);
777 clear_discard(cache, oblock_to_dblock(cache, oblock));
778 }
779 }
780
get_bio_block(struct cache * cache,struct bio * bio)781 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
782 {
783 sector_t block_nr = bio->bi_iter.bi_sector;
784
785 if (!block_size_is_power_of_two(cache))
786 (void) sector_div(block_nr, cache->sectors_per_block);
787 else
788 block_nr >>= cache->sectors_per_block_shift;
789
790 return to_oblock(block_nr);
791 }
792
accountable_bio(struct cache * cache,struct bio * bio)793 static bool accountable_bio(struct cache *cache, struct bio *bio)
794 {
795 return bio_op(bio) != REQ_OP_DISCARD;
796 }
797
accounted_begin(struct cache * cache,struct bio * bio)798 static void accounted_begin(struct cache *cache, struct bio *bio)
799 {
800 struct per_bio_data *pb;
801
802 if (accountable_bio(cache, bio)) {
803 pb = get_per_bio_data(bio);
804 pb->len = bio_sectors(bio);
805 dm_iot_io_begin(&cache->tracker, pb->len);
806 }
807 }
808
accounted_complete(struct cache * cache,struct bio * bio)809 static void accounted_complete(struct cache *cache, struct bio *bio)
810 {
811 struct per_bio_data *pb = get_per_bio_data(bio);
812
813 dm_iot_io_end(&cache->tracker, pb->len);
814 }
815
accounted_request(struct cache * cache,struct bio * bio)816 static void accounted_request(struct cache *cache, struct bio *bio)
817 {
818 accounted_begin(cache, bio);
819 dm_submit_bio_remap(bio, NULL);
820 }
821
issue_op(struct bio * bio,void * context)822 static void issue_op(struct bio *bio, void *context)
823 {
824 struct cache *cache = context;
825
826 accounted_request(cache, bio);
827 }
828
829 /*
830 * When running in writethrough mode we need to send writes to clean blocks
831 * to both the cache and origin devices. Clone the bio and send them in parallel.
832 */
remap_to_origin_and_cache(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)833 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
834 dm_oblock_t oblock, dm_cblock_t cblock)
835 {
836 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
837 GFP_NOIO, &cache->bs);
838
839 BUG_ON(!origin_bio);
840
841 bio_chain(origin_bio, bio);
842
843 if (bio_data_dir(origin_bio) == WRITE)
844 clear_discard(cache, oblock_to_dblock(cache, oblock));
845 submit_bio(origin_bio);
846
847 remap_to_cache(cache, bio, cblock);
848 }
849
850 /*
851 *--------------------------------------------------------------
852 * Failure modes
853 *--------------------------------------------------------------
854 */
get_cache_mode(struct cache * cache)855 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
856 {
857 return cache->features.mode;
858 }
859
cache_device_name(struct cache * cache)860 static const char *cache_device_name(struct cache *cache)
861 {
862 return dm_table_device_name(cache->ti->table);
863 }
864
notify_mode_switch(struct cache * cache,enum cache_metadata_mode mode)865 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
866 {
867 static const char *descs[] = {
868 "write",
869 "read-only",
870 "fail"
871 };
872
873 dm_table_event(cache->ti->table);
874 DMINFO("%s: switching cache to %s mode",
875 cache_device_name(cache), descs[(int)mode]);
876 }
877
set_cache_mode(struct cache * cache,enum cache_metadata_mode new_mode)878 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
879 {
880 bool needs_check;
881 enum cache_metadata_mode old_mode = get_cache_mode(cache);
882
883 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
884 DMERR("%s: unable to read needs_check flag, setting failure mode.",
885 cache_device_name(cache));
886 new_mode = CM_FAIL;
887 }
888
889 if (new_mode == CM_WRITE && needs_check) {
890 DMERR("%s: unable to switch cache to write mode until repaired.",
891 cache_device_name(cache));
892 if (old_mode != new_mode)
893 new_mode = old_mode;
894 else
895 new_mode = CM_READ_ONLY;
896 }
897
898 /* Never move out of fail mode */
899 if (old_mode == CM_FAIL)
900 new_mode = CM_FAIL;
901
902 switch (new_mode) {
903 case CM_FAIL:
904 case CM_READ_ONLY:
905 dm_cache_metadata_set_read_only(cache->cmd);
906 break;
907
908 case CM_WRITE:
909 dm_cache_metadata_set_read_write(cache->cmd);
910 break;
911 }
912
913 cache->features.mode = new_mode;
914
915 if (new_mode != old_mode)
916 notify_mode_switch(cache, new_mode);
917 }
918
abort_transaction(struct cache * cache)919 static void abort_transaction(struct cache *cache)
920 {
921 const char *dev_name = cache_device_name(cache);
922
923 if (get_cache_mode(cache) >= CM_READ_ONLY)
924 return;
925
926 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
927 if (dm_cache_metadata_abort(cache->cmd)) {
928 DMERR("%s: failed to abort metadata transaction", dev_name);
929 set_cache_mode(cache, CM_FAIL);
930 }
931
932 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
933 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
934 set_cache_mode(cache, CM_FAIL);
935 }
936 }
937
metadata_operation_failed(struct cache * cache,const char * op,int r)938 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
939 {
940 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
941 cache_device_name(cache), op, r);
942 abort_transaction(cache);
943 set_cache_mode(cache, CM_READ_ONLY);
944 }
945
946 /*----------------------------------------------------------------*/
947
load_stats(struct cache * cache)948 static void load_stats(struct cache *cache)
949 {
950 struct dm_cache_statistics stats;
951
952 dm_cache_metadata_get_stats(cache->cmd, &stats);
953 atomic_set(&cache->stats.read_hit, stats.read_hits);
954 atomic_set(&cache->stats.read_miss, stats.read_misses);
955 atomic_set(&cache->stats.write_hit, stats.write_hits);
956 atomic_set(&cache->stats.write_miss, stats.write_misses);
957 }
958
save_stats(struct cache * cache)959 static void save_stats(struct cache *cache)
960 {
961 struct dm_cache_statistics stats;
962
963 if (get_cache_mode(cache) >= CM_READ_ONLY)
964 return;
965
966 stats.read_hits = atomic_read(&cache->stats.read_hit);
967 stats.read_misses = atomic_read(&cache->stats.read_miss);
968 stats.write_hits = atomic_read(&cache->stats.write_hit);
969 stats.write_misses = atomic_read(&cache->stats.write_miss);
970
971 dm_cache_metadata_set_stats(cache->cmd, &stats);
972 }
973
update_stats(struct cache_stats * stats,enum policy_operation op)974 static void update_stats(struct cache_stats *stats, enum policy_operation op)
975 {
976 switch (op) {
977 case POLICY_PROMOTE:
978 atomic_inc(&stats->promotion);
979 break;
980
981 case POLICY_DEMOTE:
982 atomic_inc(&stats->demotion);
983 break;
984
985 case POLICY_WRITEBACK:
986 atomic_inc(&stats->writeback);
987 break;
988 }
989 }
990
991 /*
992 *---------------------------------------------------------------------
993 * Migration processing
994 *
995 * Migration covers moving data from the origin device to the cache, or
996 * vice versa.
997 *---------------------------------------------------------------------
998 */
inc_io_migrations(struct cache * cache)999 static void inc_io_migrations(struct cache *cache)
1000 {
1001 atomic_inc(&cache->nr_io_migrations);
1002 }
1003
dec_io_migrations(struct cache * cache)1004 static void dec_io_migrations(struct cache *cache)
1005 {
1006 atomic_dec(&cache->nr_io_migrations);
1007 }
1008
discard_or_flush(struct bio * bio)1009 static bool discard_or_flush(struct bio *bio)
1010 {
1011 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1012 }
1013
calc_discard_block_range(struct cache * cache,struct bio * bio,dm_dblock_t * b,dm_dblock_t * e)1014 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1015 dm_dblock_t *b, dm_dblock_t *e)
1016 {
1017 sector_t sb = bio->bi_iter.bi_sector;
1018 sector_t se = bio_end_sector(bio);
1019
1020 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1021
1022 if (se - sb < cache->discard_block_size)
1023 *e = *b;
1024 else
1025 *e = to_dblock(block_div(se, cache->discard_block_size));
1026 }
1027
1028 /*----------------------------------------------------------------*/
1029
prevent_background_work(struct cache * cache)1030 static void prevent_background_work(struct cache *cache)
1031 {
1032 lockdep_off();
1033 down_write(&cache->background_work_lock);
1034 lockdep_on();
1035 }
1036
allow_background_work(struct cache * cache)1037 static void allow_background_work(struct cache *cache)
1038 {
1039 lockdep_off();
1040 up_write(&cache->background_work_lock);
1041 lockdep_on();
1042 }
1043
background_work_begin(struct cache * cache)1044 static bool background_work_begin(struct cache *cache)
1045 {
1046 bool r;
1047
1048 lockdep_off();
1049 r = down_read_trylock(&cache->background_work_lock);
1050 lockdep_on();
1051
1052 return r;
1053 }
1054
background_work_end(struct cache * cache)1055 static void background_work_end(struct cache *cache)
1056 {
1057 lockdep_off();
1058 up_read(&cache->background_work_lock);
1059 lockdep_on();
1060 }
1061
1062 /*----------------------------------------------------------------*/
1063
bio_writes_complete_block(struct cache * cache,struct bio * bio)1064 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1065 {
1066 return (bio_data_dir(bio) == WRITE) &&
1067 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1068 }
1069
optimisable_bio(struct cache * cache,struct bio * bio,dm_oblock_t block)1070 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1071 {
1072 return writeback_mode(cache) &&
1073 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1074 }
1075
quiesce(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1076 static void quiesce(struct dm_cache_migration *mg,
1077 void (*continuation)(struct work_struct *))
1078 {
1079 init_continuation(&mg->k, continuation);
1080 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1081 }
1082
ws_to_mg(struct work_struct * ws)1083 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1084 {
1085 struct continuation *k = container_of(ws, struct continuation, ws);
1086
1087 return container_of(k, struct dm_cache_migration, k);
1088 }
1089
copy_complete(int read_err,unsigned long write_err,void * context)1090 static void copy_complete(int read_err, unsigned long write_err, void *context)
1091 {
1092 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1093
1094 if (read_err || write_err)
1095 mg->k.input = BLK_STS_IOERR;
1096
1097 queue_continuation(mg->cache->wq, &mg->k);
1098 }
1099
copy(struct dm_cache_migration * mg,bool promote)1100 static void copy(struct dm_cache_migration *mg, bool promote)
1101 {
1102 struct dm_io_region o_region, c_region;
1103 struct cache *cache = mg->cache;
1104
1105 o_region.bdev = cache->origin_dev->bdev;
1106 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1107 o_region.count = cache->sectors_per_block;
1108
1109 c_region.bdev = cache->cache_dev->bdev;
1110 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1111 c_region.count = cache->sectors_per_block;
1112
1113 if (promote)
1114 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1115 else
1116 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1117 }
1118
bio_drop_shared_lock(struct cache * cache,struct bio * bio)1119 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1120 {
1121 struct per_bio_data *pb = get_per_bio_data(bio);
1122
1123 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1124 free_prison_cell(cache, pb->cell);
1125 pb->cell = NULL;
1126 }
1127
overwrite_endio(struct bio * bio)1128 static void overwrite_endio(struct bio *bio)
1129 {
1130 struct dm_cache_migration *mg = bio->bi_private;
1131 struct cache *cache = mg->cache;
1132 struct per_bio_data *pb = get_per_bio_data(bio);
1133
1134 dm_unhook_bio(&pb->hook_info, bio);
1135
1136 if (bio->bi_status)
1137 mg->k.input = bio->bi_status;
1138
1139 queue_continuation(cache->wq, &mg->k);
1140 }
1141
overwrite(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1142 static void overwrite(struct dm_cache_migration *mg,
1143 void (*continuation)(struct work_struct *))
1144 {
1145 struct bio *bio = mg->overwrite_bio;
1146 struct per_bio_data *pb = get_per_bio_data(bio);
1147
1148 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1149
1150 /*
1151 * The overwrite bio is part of the copy operation, as such it does
1152 * not set/clear discard or dirty flags.
1153 */
1154 if (mg->op->op == POLICY_PROMOTE)
1155 remap_to_cache(mg->cache, bio, mg->op->cblock);
1156 else
1157 remap_to_origin(mg->cache, bio);
1158
1159 init_continuation(&mg->k, continuation);
1160 accounted_request(mg->cache, bio);
1161 }
1162
1163 /*
1164 * Migration steps:
1165 *
1166 * 1) exclusive lock preventing WRITEs
1167 * 2) quiesce
1168 * 3) copy or issue overwrite bio
1169 * 4) upgrade to exclusive lock preventing READs and WRITEs
1170 * 5) quiesce
1171 * 6) update metadata and commit
1172 * 7) unlock
1173 */
mg_complete(struct dm_cache_migration * mg,bool success)1174 static void mg_complete(struct dm_cache_migration *mg, bool success)
1175 {
1176 struct bio_list bios;
1177 struct cache *cache = mg->cache;
1178 struct policy_work *op = mg->op;
1179 dm_cblock_t cblock = op->cblock;
1180
1181 if (success)
1182 update_stats(&cache->stats, op->op);
1183
1184 switch (op->op) {
1185 case POLICY_PROMOTE:
1186 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1187 policy_complete_background_work(cache->policy, op, success);
1188
1189 if (mg->overwrite_bio) {
1190 if (success)
1191 force_set_dirty(cache, cblock);
1192 else if (mg->k.input)
1193 mg->overwrite_bio->bi_status = mg->k.input;
1194 else
1195 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1196 bio_endio(mg->overwrite_bio);
1197 } else {
1198 if (success)
1199 force_clear_dirty(cache, cblock);
1200 dec_io_migrations(cache);
1201 }
1202 break;
1203
1204 case POLICY_DEMOTE:
1205 /*
1206 * We clear dirty here to update the nr_dirty counter.
1207 */
1208 if (success)
1209 force_clear_dirty(cache, cblock);
1210 policy_complete_background_work(cache->policy, op, success);
1211 dec_io_migrations(cache);
1212 break;
1213
1214 case POLICY_WRITEBACK:
1215 if (success)
1216 force_clear_dirty(cache, cblock);
1217 policy_complete_background_work(cache->policy, op, success);
1218 dec_io_migrations(cache);
1219 break;
1220 }
1221
1222 bio_list_init(&bios);
1223 if (mg->cell) {
1224 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1225 free_prison_cell(cache, mg->cell);
1226 }
1227
1228 free_migration(mg);
1229 defer_bios(cache, &bios);
1230 wake_migration_worker(cache);
1231
1232 background_work_end(cache);
1233 }
1234
mg_success(struct work_struct * ws)1235 static void mg_success(struct work_struct *ws)
1236 {
1237 struct dm_cache_migration *mg = ws_to_mg(ws);
1238
1239 mg_complete(mg, mg->k.input == 0);
1240 }
1241
mg_update_metadata(struct work_struct * ws)1242 static void mg_update_metadata(struct work_struct *ws)
1243 {
1244 int r;
1245 struct dm_cache_migration *mg = ws_to_mg(ws);
1246 struct cache *cache = mg->cache;
1247 struct policy_work *op = mg->op;
1248
1249 switch (op->op) {
1250 case POLICY_PROMOTE:
1251 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1252 if (r) {
1253 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1254 cache_device_name(cache));
1255 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1256
1257 mg_complete(mg, false);
1258 return;
1259 }
1260 mg_complete(mg, true);
1261 break;
1262
1263 case POLICY_DEMOTE:
1264 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1265 if (r) {
1266 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1267 cache_device_name(cache));
1268 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1269
1270 mg_complete(mg, false);
1271 return;
1272 }
1273
1274 /*
1275 * It would be nice if we only had to commit when a REQ_FLUSH
1276 * comes through. But there's one scenario that we have to
1277 * look out for:
1278 *
1279 * - vblock x in a cache block
1280 * - domotion occurs
1281 * - cache block gets reallocated and over written
1282 * - crash
1283 *
1284 * When we recover, because there was no commit the cache will
1285 * rollback to having the data for vblock x in the cache block.
1286 * But the cache block has since been overwritten, so it'll end
1287 * up pointing to data that was never in 'x' during the history
1288 * of the device.
1289 *
1290 * To avoid this issue we require a commit as part of the
1291 * demotion operation.
1292 */
1293 init_continuation(&mg->k, mg_success);
1294 continue_after_commit(&cache->committer, &mg->k);
1295 schedule_commit(&cache->committer);
1296 break;
1297
1298 case POLICY_WRITEBACK:
1299 mg_complete(mg, true);
1300 break;
1301 }
1302 }
1303
mg_update_metadata_after_copy(struct work_struct * ws)1304 static void mg_update_metadata_after_copy(struct work_struct *ws)
1305 {
1306 struct dm_cache_migration *mg = ws_to_mg(ws);
1307
1308 /*
1309 * Did the copy succeed?
1310 */
1311 if (mg->k.input)
1312 mg_complete(mg, false);
1313 else
1314 mg_update_metadata(ws);
1315 }
1316
mg_upgrade_lock(struct work_struct * ws)1317 static void mg_upgrade_lock(struct work_struct *ws)
1318 {
1319 int r;
1320 struct dm_cache_migration *mg = ws_to_mg(ws);
1321
1322 /*
1323 * Did the copy succeed?
1324 */
1325 if (mg->k.input)
1326 mg_complete(mg, false);
1327
1328 else {
1329 /*
1330 * Now we want the lock to prevent both reads and writes.
1331 */
1332 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1333 READ_WRITE_LOCK_LEVEL);
1334 if (r < 0)
1335 mg_complete(mg, false);
1336
1337 else if (r)
1338 quiesce(mg, mg_update_metadata);
1339
1340 else
1341 mg_update_metadata(ws);
1342 }
1343 }
1344
mg_full_copy(struct work_struct * ws)1345 static void mg_full_copy(struct work_struct *ws)
1346 {
1347 struct dm_cache_migration *mg = ws_to_mg(ws);
1348 struct cache *cache = mg->cache;
1349 struct policy_work *op = mg->op;
1350 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1351
1352 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1353 is_discarded_oblock(cache, op->oblock)) {
1354 mg_upgrade_lock(ws);
1355 return;
1356 }
1357
1358 init_continuation(&mg->k, mg_upgrade_lock);
1359 copy(mg, is_policy_promote);
1360 }
1361
mg_copy(struct work_struct * ws)1362 static void mg_copy(struct work_struct *ws)
1363 {
1364 struct dm_cache_migration *mg = ws_to_mg(ws);
1365
1366 if (mg->overwrite_bio) {
1367 /*
1368 * No exclusive lock was held when we last checked if the bio
1369 * was optimisable. So we have to check again in case things
1370 * have changed (eg, the block may no longer be discarded).
1371 */
1372 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1373 /*
1374 * Fallback to a real full copy after doing some tidying up.
1375 */
1376 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1377
1378 BUG_ON(rb); /* An exclusive lock must _not_ be held for this block */
1379 mg->overwrite_bio = NULL;
1380 inc_io_migrations(mg->cache);
1381 mg_full_copy(ws);
1382 return;
1383 }
1384
1385 /*
1386 * It's safe to do this here, even though it's new data
1387 * because all IO has been locked out of the block.
1388 *
1389 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1390 * so _not_ using mg_upgrade_lock() as continutation.
1391 */
1392 overwrite(mg, mg_update_metadata_after_copy);
1393
1394 } else
1395 mg_full_copy(ws);
1396 }
1397
mg_lock_writes(struct dm_cache_migration * mg)1398 static int mg_lock_writes(struct dm_cache_migration *mg)
1399 {
1400 int r;
1401 struct dm_cell_key_v2 key;
1402 struct cache *cache = mg->cache;
1403 struct dm_bio_prison_cell_v2 *prealloc;
1404
1405 prealloc = alloc_prison_cell(cache);
1406
1407 /*
1408 * Prevent writes to the block, but allow reads to continue.
1409 * Unless we're using an overwrite bio, in which case we lock
1410 * everything.
1411 */
1412 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1413 r = dm_cell_lock_v2(cache->prison, &key,
1414 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1415 prealloc, &mg->cell);
1416 if (r < 0) {
1417 free_prison_cell(cache, prealloc);
1418 mg_complete(mg, false);
1419 return r;
1420 }
1421
1422 if (mg->cell != prealloc)
1423 free_prison_cell(cache, prealloc);
1424
1425 if (r == 0)
1426 mg_copy(&mg->k.ws);
1427 else
1428 quiesce(mg, mg_copy);
1429
1430 return 0;
1431 }
1432
mg_start(struct cache * cache,struct policy_work * op,struct bio * bio)1433 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1434 {
1435 struct dm_cache_migration *mg;
1436
1437 if (!background_work_begin(cache)) {
1438 policy_complete_background_work(cache->policy, op, false);
1439 return -EPERM;
1440 }
1441
1442 mg = alloc_migration(cache);
1443
1444 mg->op = op;
1445 mg->overwrite_bio = bio;
1446
1447 if (!bio)
1448 inc_io_migrations(cache);
1449
1450 return mg_lock_writes(mg);
1451 }
1452
1453 /*
1454 *--------------------------------------------------------------
1455 * invalidation processing
1456 *--------------------------------------------------------------
1457 */
1458
invalidate_complete(struct dm_cache_migration * mg,bool success)1459 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1460 {
1461 struct bio_list bios;
1462 struct cache *cache = mg->cache;
1463
1464 bio_list_init(&bios);
1465 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1466 free_prison_cell(cache, mg->cell);
1467
1468 if (!success && mg->overwrite_bio)
1469 bio_io_error(mg->overwrite_bio);
1470
1471 free_migration(mg);
1472 defer_bios(cache, &bios);
1473
1474 background_work_end(cache);
1475 }
1476
invalidate_completed(struct work_struct * ws)1477 static void invalidate_completed(struct work_struct *ws)
1478 {
1479 struct dm_cache_migration *mg = ws_to_mg(ws);
1480
1481 invalidate_complete(mg, !mg->k.input);
1482 }
1483
invalidate_cblock(struct cache * cache,dm_cblock_t cblock)1484 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1485 {
1486 int r;
1487
1488 r = policy_invalidate_mapping(cache->policy, cblock);
1489 if (!r) {
1490 r = dm_cache_remove_mapping(cache->cmd, cblock);
1491 if (r) {
1492 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1493 cache_device_name(cache));
1494 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1495 }
1496
1497 } else if (r == -ENODATA) {
1498 /*
1499 * Harmless, already unmapped.
1500 */
1501 r = 0;
1502
1503 } else
1504 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1505
1506 return r;
1507 }
1508
invalidate_remove(struct work_struct * ws)1509 static void invalidate_remove(struct work_struct *ws)
1510 {
1511 int r;
1512 struct dm_cache_migration *mg = ws_to_mg(ws);
1513 struct cache *cache = mg->cache;
1514
1515 r = invalidate_cblock(cache, mg->invalidate_cblock);
1516 if (r) {
1517 invalidate_complete(mg, false);
1518 return;
1519 }
1520
1521 init_continuation(&mg->k, invalidate_completed);
1522 continue_after_commit(&cache->committer, &mg->k);
1523 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1524 mg->overwrite_bio = NULL;
1525 schedule_commit(&cache->committer);
1526 }
1527
invalidate_lock(struct dm_cache_migration * mg)1528 static int invalidate_lock(struct dm_cache_migration *mg)
1529 {
1530 int r;
1531 struct dm_cell_key_v2 key;
1532 struct cache *cache = mg->cache;
1533 struct dm_bio_prison_cell_v2 *prealloc;
1534
1535 prealloc = alloc_prison_cell(cache);
1536
1537 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1538 r = dm_cell_lock_v2(cache->prison, &key,
1539 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1540 if (r < 0) {
1541 free_prison_cell(cache, prealloc);
1542 invalidate_complete(mg, false);
1543 return r;
1544 }
1545
1546 if (mg->cell != prealloc)
1547 free_prison_cell(cache, prealloc);
1548
1549 if (r)
1550 quiesce(mg, invalidate_remove);
1551
1552 else {
1553 /*
1554 * We can't call invalidate_remove() directly here because we
1555 * might still be in request context.
1556 */
1557 init_continuation(&mg->k, invalidate_remove);
1558 queue_work(cache->wq, &mg->k.ws);
1559 }
1560
1561 return 0;
1562 }
1563
invalidate_start(struct cache * cache,dm_cblock_t cblock,dm_oblock_t oblock,struct bio * bio)1564 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1565 dm_oblock_t oblock, struct bio *bio)
1566 {
1567 struct dm_cache_migration *mg;
1568
1569 if (!background_work_begin(cache))
1570 return -EPERM;
1571
1572 mg = alloc_migration(cache);
1573
1574 mg->overwrite_bio = bio;
1575 mg->invalidate_cblock = cblock;
1576 mg->invalidate_oblock = oblock;
1577
1578 return invalidate_lock(mg);
1579 }
1580
1581 /*
1582 *--------------------------------------------------------------
1583 * bio processing
1584 *--------------------------------------------------------------
1585 */
1586
1587 enum busy {
1588 IDLE,
1589 BUSY
1590 };
1591
spare_migration_bandwidth(struct cache * cache)1592 static enum busy spare_migration_bandwidth(struct cache *cache)
1593 {
1594 bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1595 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1596 cache->sectors_per_block;
1597
1598 if (idle && current_volume <= cache->migration_threshold)
1599 return IDLE;
1600 else
1601 return BUSY;
1602 }
1603
inc_hit_counter(struct cache * cache,struct bio * bio)1604 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1605 {
1606 atomic_inc(bio_data_dir(bio) == READ ?
1607 &cache->stats.read_hit : &cache->stats.write_hit);
1608 }
1609
inc_miss_counter(struct cache * cache,struct bio * bio)1610 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1611 {
1612 atomic_inc(bio_data_dir(bio) == READ ?
1613 &cache->stats.read_miss : &cache->stats.write_miss);
1614 }
1615
1616 /*----------------------------------------------------------------*/
1617
map_bio(struct cache * cache,struct bio * bio,dm_oblock_t block,bool * commit_needed)1618 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1619 bool *commit_needed)
1620 {
1621 int r, data_dir;
1622 bool rb, background_queued;
1623 dm_cblock_t cblock;
1624
1625 *commit_needed = false;
1626
1627 rb = bio_detain_shared(cache, block, bio);
1628 if (!rb) {
1629 /*
1630 * An exclusive lock is held for this block, so we have to
1631 * wait. We set the commit_needed flag so the current
1632 * transaction will be committed asap, allowing this lock
1633 * to be dropped.
1634 */
1635 *commit_needed = true;
1636 return DM_MAPIO_SUBMITTED;
1637 }
1638
1639 data_dir = bio_data_dir(bio);
1640
1641 if (optimisable_bio(cache, bio, block)) {
1642 struct policy_work *op = NULL;
1643
1644 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1645 if (unlikely(r && r != -ENOENT)) {
1646 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1647 cache_device_name(cache), r);
1648 bio_io_error(bio);
1649 return DM_MAPIO_SUBMITTED;
1650 }
1651
1652 if (r == -ENOENT && op) {
1653 bio_drop_shared_lock(cache, bio);
1654 BUG_ON(op->op != POLICY_PROMOTE);
1655 mg_start(cache, op, bio);
1656 return DM_MAPIO_SUBMITTED;
1657 }
1658 } else {
1659 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1660 if (unlikely(r && r != -ENOENT)) {
1661 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1662 cache_device_name(cache), r);
1663 bio_io_error(bio);
1664 return DM_MAPIO_SUBMITTED;
1665 }
1666
1667 if (background_queued)
1668 wake_migration_worker(cache);
1669 }
1670
1671 if (r == -ENOENT) {
1672 struct per_bio_data *pb = get_per_bio_data(bio);
1673
1674 /*
1675 * Miss.
1676 */
1677 inc_miss_counter(cache, bio);
1678 if (pb->req_nr == 0) {
1679 accounted_begin(cache, bio);
1680 remap_to_origin_clear_discard(cache, bio, block);
1681 } else {
1682 /*
1683 * This is a duplicate writethrough io that is no
1684 * longer needed because the block has been demoted.
1685 */
1686 bio_endio(bio);
1687 return DM_MAPIO_SUBMITTED;
1688 }
1689 } else {
1690 /*
1691 * Hit.
1692 */
1693 inc_hit_counter(cache, bio);
1694
1695 /*
1696 * Passthrough always maps to the origin, invalidating any
1697 * cache blocks that are written to.
1698 */
1699 if (passthrough_mode(cache)) {
1700 if (bio_data_dir(bio) == WRITE) {
1701 bio_drop_shared_lock(cache, bio);
1702 atomic_inc(&cache->stats.demotion);
1703 invalidate_start(cache, cblock, block, bio);
1704 } else
1705 remap_to_origin_clear_discard(cache, bio, block);
1706 } else {
1707 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1708 !is_dirty(cache, cblock)) {
1709 remap_to_origin_and_cache(cache, bio, block, cblock);
1710 accounted_begin(cache, bio);
1711 } else
1712 remap_to_cache_dirty(cache, bio, block, cblock);
1713 }
1714 }
1715
1716 /*
1717 * dm core turns FUA requests into a separate payload and FLUSH req.
1718 */
1719 if (bio->bi_opf & REQ_FUA) {
1720 /*
1721 * issue_after_commit will call accounted_begin a second time. So
1722 * we call accounted_complete() to avoid double accounting.
1723 */
1724 accounted_complete(cache, bio);
1725 issue_after_commit(&cache->committer, bio);
1726 *commit_needed = true;
1727 return DM_MAPIO_SUBMITTED;
1728 }
1729
1730 return DM_MAPIO_REMAPPED;
1731 }
1732
process_bio(struct cache * cache,struct bio * bio)1733 static bool process_bio(struct cache *cache, struct bio *bio)
1734 {
1735 bool commit_needed;
1736
1737 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1738 dm_submit_bio_remap(bio, NULL);
1739
1740 return commit_needed;
1741 }
1742
1743 /*
1744 * A non-zero return indicates read_only or fail_io mode.
1745 */
commit(struct cache * cache,bool clean_shutdown)1746 static int commit(struct cache *cache, bool clean_shutdown)
1747 {
1748 int r;
1749
1750 if (get_cache_mode(cache) >= CM_READ_ONLY)
1751 return -EINVAL;
1752
1753 atomic_inc(&cache->stats.commit_count);
1754 r = dm_cache_commit(cache->cmd, clean_shutdown);
1755 if (r)
1756 metadata_operation_failed(cache, "dm_cache_commit", r);
1757
1758 return r;
1759 }
1760
1761 /*
1762 * Used by the batcher.
1763 */
commit_op(void * context)1764 static blk_status_t commit_op(void *context)
1765 {
1766 struct cache *cache = context;
1767
1768 if (dm_cache_changed_this_transaction(cache->cmd))
1769 return errno_to_blk_status(commit(cache, false));
1770
1771 return 0;
1772 }
1773
1774 /*----------------------------------------------------------------*/
1775
process_flush_bio(struct cache * cache,struct bio * bio)1776 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1777 {
1778 struct per_bio_data *pb = get_per_bio_data(bio);
1779
1780 if (!pb->req_nr)
1781 remap_to_origin(cache, bio);
1782 else
1783 remap_to_cache(cache, bio, 0);
1784
1785 issue_after_commit(&cache->committer, bio);
1786 return true;
1787 }
1788
process_discard_bio(struct cache * cache,struct bio * bio)1789 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1790 {
1791 dm_dblock_t b, e;
1792
1793 /*
1794 * FIXME: do we need to lock the region? Or can we just assume the
1795 * user wont be so foolish as to issue discard concurrently with
1796 * other IO?
1797 */
1798 calc_discard_block_range(cache, bio, &b, &e);
1799 while (b != e) {
1800 set_discard(cache, b);
1801 b = to_dblock(from_dblock(b) + 1);
1802 }
1803
1804 if (cache->features.discard_passdown) {
1805 remap_to_origin(cache, bio);
1806 dm_submit_bio_remap(bio, NULL);
1807 } else
1808 bio_endio(bio);
1809
1810 return false;
1811 }
1812
process_deferred_bios(struct work_struct * ws)1813 static void process_deferred_bios(struct work_struct *ws)
1814 {
1815 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1816
1817 bool commit_needed = false;
1818 struct bio_list bios;
1819 struct bio *bio;
1820
1821 bio_list_init(&bios);
1822
1823 spin_lock_irq(&cache->lock);
1824 bio_list_merge_init(&bios, &cache->deferred_bios);
1825 spin_unlock_irq(&cache->lock);
1826
1827 while ((bio = bio_list_pop(&bios))) {
1828 if (bio->bi_opf & REQ_PREFLUSH)
1829 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1830
1831 else if (bio_op(bio) == REQ_OP_DISCARD)
1832 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1833
1834 else
1835 commit_needed = process_bio(cache, bio) || commit_needed;
1836 cond_resched();
1837 }
1838
1839 if (commit_needed)
1840 schedule_commit(&cache->committer);
1841 }
1842
1843 /*
1844 *--------------------------------------------------------------
1845 * Main worker loop
1846 *--------------------------------------------------------------
1847 */
requeue_deferred_bios(struct cache * cache)1848 static void requeue_deferred_bios(struct cache *cache)
1849 {
1850 struct bio *bio;
1851 struct bio_list bios;
1852
1853 bio_list_init(&bios);
1854 bio_list_merge_init(&bios, &cache->deferred_bios);
1855
1856 while ((bio = bio_list_pop(&bios))) {
1857 bio->bi_status = BLK_STS_DM_REQUEUE;
1858 bio_endio(bio);
1859 cond_resched();
1860 }
1861 }
1862
1863 /*
1864 * We want to commit periodically so that not too much
1865 * unwritten metadata builds up.
1866 */
do_waker(struct work_struct * ws)1867 static void do_waker(struct work_struct *ws)
1868 {
1869 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1870
1871 policy_tick(cache->policy, true);
1872 wake_migration_worker(cache);
1873 schedule_commit(&cache->committer);
1874 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1875 }
1876
check_migrations(struct work_struct * ws)1877 static void check_migrations(struct work_struct *ws)
1878 {
1879 int r;
1880 struct policy_work *op;
1881 struct cache *cache = container_of(ws, struct cache, migration_worker);
1882 enum busy b;
1883
1884 for (;;) {
1885 b = spare_migration_bandwidth(cache);
1886
1887 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1888 if (r == -ENODATA)
1889 break;
1890
1891 if (r) {
1892 DMERR_LIMIT("%s: policy_background_work failed",
1893 cache_device_name(cache));
1894 break;
1895 }
1896
1897 r = mg_start(cache, op, NULL);
1898 if (r)
1899 break;
1900
1901 cond_resched();
1902 }
1903 }
1904
1905 /*
1906 *--------------------------------------------------------------
1907 * Target methods
1908 *--------------------------------------------------------------
1909 */
1910
1911 /*
1912 * This function gets called on the error paths of the constructor, so we
1913 * have to cope with a partially initialised struct.
1914 */
__destroy(struct cache * cache)1915 static void __destroy(struct cache *cache)
1916 {
1917 mempool_exit(&cache->migration_pool);
1918
1919 if (cache->prison)
1920 dm_bio_prison_destroy_v2(cache->prison);
1921
1922 if (cache->wq)
1923 destroy_workqueue(cache->wq);
1924
1925 if (cache->dirty_bitset)
1926 free_bitset(cache->dirty_bitset);
1927
1928 if (cache->discard_bitset)
1929 free_bitset(cache->discard_bitset);
1930
1931 if (cache->invalid_bitset)
1932 free_bitset(cache->invalid_bitset);
1933
1934 if (cache->copier)
1935 dm_kcopyd_client_destroy(cache->copier);
1936
1937 if (cache->cmd)
1938 dm_cache_metadata_close(cache->cmd);
1939
1940 if (cache->metadata_dev)
1941 dm_put_device(cache->ti, cache->metadata_dev);
1942
1943 if (cache->origin_dev)
1944 dm_put_device(cache->ti, cache->origin_dev);
1945
1946 if (cache->cache_dev)
1947 dm_put_device(cache->ti, cache->cache_dev);
1948
1949 if (cache->policy)
1950 dm_cache_policy_destroy(cache->policy);
1951
1952 bioset_exit(&cache->bs);
1953
1954 kfree(cache);
1955 }
1956
destroy(struct cache * cache)1957 static void destroy(struct cache *cache)
1958 {
1959 unsigned int i;
1960
1961 cancel_delayed_work_sync(&cache->waker);
1962
1963 for (i = 0; i < cache->nr_ctr_args ; i++)
1964 kfree(cache->ctr_args[i]);
1965 kfree(cache->ctr_args);
1966
1967 __destroy(cache);
1968 }
1969
cache_dtr(struct dm_target * ti)1970 static void cache_dtr(struct dm_target *ti)
1971 {
1972 struct cache *cache = ti->private;
1973
1974 destroy(cache);
1975 }
1976
get_dev_size(struct dm_dev * dev)1977 static sector_t get_dev_size(struct dm_dev *dev)
1978 {
1979 return bdev_nr_sectors(dev->bdev);
1980 }
1981
1982 /*----------------------------------------------------------------*/
1983
1984 /*
1985 * Construct a cache device mapping.
1986 *
1987 * cache <metadata dev> <cache dev> <origin dev> <block size>
1988 * <#feature args> [<feature arg>]*
1989 * <policy> <#policy args> [<policy arg>]*
1990 *
1991 * metadata dev : fast device holding the persistent metadata
1992 * cache dev : fast device holding cached data blocks
1993 * origin dev : slow device holding original data blocks
1994 * block size : cache unit size in sectors
1995 *
1996 * #feature args : number of feature arguments passed
1997 * feature args : writethrough. (The default is writeback.)
1998 *
1999 * policy : the replacement policy to use
2000 * #policy args : an even number of policy arguments corresponding
2001 * to key/value pairs passed to the policy
2002 * policy args : key/value pairs passed to the policy
2003 * E.g. 'sequential_threshold 1024'
2004 * See cache-policies.txt for details.
2005 *
2006 * Optional feature arguments are:
2007 * writethrough : write through caching that prohibits cache block
2008 * content from being different from origin block content.
2009 * Without this argument, the default behaviour is to write
2010 * back cache block contents later for performance reasons,
2011 * so they may differ from the corresponding origin blocks.
2012 */
2013 struct cache_args {
2014 struct dm_target *ti;
2015
2016 struct dm_dev *metadata_dev;
2017
2018 struct dm_dev *cache_dev;
2019 sector_t cache_sectors;
2020
2021 struct dm_dev *origin_dev;
2022
2023 uint32_t block_size;
2024
2025 const char *policy_name;
2026 int policy_argc;
2027 const char **policy_argv;
2028
2029 struct cache_features features;
2030 };
2031
destroy_cache_args(struct cache_args * ca)2032 static void destroy_cache_args(struct cache_args *ca)
2033 {
2034 if (ca->metadata_dev)
2035 dm_put_device(ca->ti, ca->metadata_dev);
2036
2037 if (ca->cache_dev)
2038 dm_put_device(ca->ti, ca->cache_dev);
2039
2040 if (ca->origin_dev)
2041 dm_put_device(ca->ti, ca->origin_dev);
2042
2043 kfree(ca);
2044 }
2045
at_least_one_arg(struct dm_arg_set * as,char ** error)2046 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2047 {
2048 if (!as->argc) {
2049 *error = "Insufficient args";
2050 return false;
2051 }
2052
2053 return true;
2054 }
2055
parse_metadata_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2056 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2057 char **error)
2058 {
2059 int r;
2060 sector_t metadata_dev_size;
2061
2062 if (!at_least_one_arg(as, error))
2063 return -EINVAL;
2064
2065 r = dm_get_device(ca->ti, dm_shift_arg(as),
2066 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2067 if (r) {
2068 *error = "Error opening metadata device";
2069 return r;
2070 }
2071
2072 metadata_dev_size = get_dev_size(ca->metadata_dev);
2073 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2074 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2075 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2076
2077 return 0;
2078 }
2079
parse_cache_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2080 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2081 char **error)
2082 {
2083 int r;
2084
2085 if (!at_least_one_arg(as, error))
2086 return -EINVAL;
2087
2088 r = dm_get_device(ca->ti, dm_shift_arg(as),
2089 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2090 if (r) {
2091 *error = "Error opening cache device";
2092 return r;
2093 }
2094 ca->cache_sectors = get_dev_size(ca->cache_dev);
2095
2096 return 0;
2097 }
2098
parse_origin_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2099 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2100 char **error)
2101 {
2102 sector_t origin_sectors;
2103 int r;
2104
2105 if (!at_least_one_arg(as, error))
2106 return -EINVAL;
2107
2108 r = dm_get_device(ca->ti, dm_shift_arg(as),
2109 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2110 if (r) {
2111 *error = "Error opening origin device";
2112 return r;
2113 }
2114
2115 origin_sectors = get_dev_size(ca->origin_dev);
2116 if (ca->ti->len > origin_sectors) {
2117 *error = "Device size larger than cached device";
2118 return -EINVAL;
2119 }
2120
2121 return 0;
2122 }
2123
parse_block_size(struct cache_args * ca,struct dm_arg_set * as,char ** error)2124 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2125 char **error)
2126 {
2127 unsigned long block_size;
2128
2129 if (!at_least_one_arg(as, error))
2130 return -EINVAL;
2131
2132 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2133 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2134 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2135 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2136 *error = "Invalid data block size";
2137 return -EINVAL;
2138 }
2139
2140 if (block_size > ca->cache_sectors) {
2141 *error = "Data block size is larger than the cache device";
2142 return -EINVAL;
2143 }
2144
2145 ca->block_size = block_size;
2146
2147 return 0;
2148 }
2149
init_features(struct cache_features * cf)2150 static void init_features(struct cache_features *cf)
2151 {
2152 cf->mode = CM_WRITE;
2153 cf->io_mode = CM_IO_WRITEBACK;
2154 cf->metadata_version = 1;
2155 cf->discard_passdown = true;
2156 }
2157
parse_features(struct cache_args * ca,struct dm_arg_set * as,char ** error)2158 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2159 char **error)
2160 {
2161 static const struct dm_arg _args[] = {
2162 {0, 3, "Invalid number of cache feature arguments"},
2163 };
2164
2165 int r, mode_ctr = 0;
2166 unsigned int argc;
2167 const char *arg;
2168 struct cache_features *cf = &ca->features;
2169
2170 init_features(cf);
2171
2172 r = dm_read_arg_group(_args, as, &argc, error);
2173 if (r)
2174 return -EINVAL;
2175
2176 while (argc--) {
2177 arg = dm_shift_arg(as);
2178
2179 if (!strcasecmp(arg, "writeback")) {
2180 cf->io_mode = CM_IO_WRITEBACK;
2181 mode_ctr++;
2182 }
2183
2184 else if (!strcasecmp(arg, "writethrough")) {
2185 cf->io_mode = CM_IO_WRITETHROUGH;
2186 mode_ctr++;
2187 }
2188
2189 else if (!strcasecmp(arg, "passthrough")) {
2190 cf->io_mode = CM_IO_PASSTHROUGH;
2191 mode_ctr++;
2192 }
2193
2194 else if (!strcasecmp(arg, "metadata2"))
2195 cf->metadata_version = 2;
2196
2197 else if (!strcasecmp(arg, "no_discard_passdown"))
2198 cf->discard_passdown = false;
2199
2200 else {
2201 *error = "Unrecognised cache feature requested";
2202 return -EINVAL;
2203 }
2204 }
2205
2206 if (mode_ctr > 1) {
2207 *error = "Duplicate cache io_mode features requested";
2208 return -EINVAL;
2209 }
2210
2211 return 0;
2212 }
2213
parse_policy(struct cache_args * ca,struct dm_arg_set * as,char ** error)2214 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2215 char **error)
2216 {
2217 static const struct dm_arg _args[] = {
2218 {0, 1024, "Invalid number of policy arguments"},
2219 };
2220
2221 int r;
2222
2223 if (!at_least_one_arg(as, error))
2224 return -EINVAL;
2225
2226 ca->policy_name = dm_shift_arg(as);
2227
2228 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2229 if (r)
2230 return -EINVAL;
2231
2232 ca->policy_argv = (const char **)as->argv;
2233 dm_consume_args(as, ca->policy_argc);
2234
2235 return 0;
2236 }
2237
parse_cache_args(struct cache_args * ca,int argc,char ** argv,char ** error)2238 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2239 char **error)
2240 {
2241 int r;
2242 struct dm_arg_set as;
2243
2244 as.argc = argc;
2245 as.argv = argv;
2246
2247 r = parse_metadata_dev(ca, &as, error);
2248 if (r)
2249 return r;
2250
2251 r = parse_cache_dev(ca, &as, error);
2252 if (r)
2253 return r;
2254
2255 r = parse_origin_dev(ca, &as, error);
2256 if (r)
2257 return r;
2258
2259 r = parse_block_size(ca, &as, error);
2260 if (r)
2261 return r;
2262
2263 r = parse_features(ca, &as, error);
2264 if (r)
2265 return r;
2266
2267 r = parse_policy(ca, &as, error);
2268 if (r)
2269 return r;
2270
2271 return 0;
2272 }
2273
2274 /*----------------------------------------------------------------*/
2275
2276 static struct kmem_cache *migration_cache = NULL;
2277
2278 #define NOT_CORE_OPTION 1
2279
process_config_option(struct cache * cache,const char * key,const char * value)2280 static int process_config_option(struct cache *cache, const char *key, const char *value)
2281 {
2282 unsigned long tmp;
2283
2284 if (!strcasecmp(key, "migration_threshold")) {
2285 if (kstrtoul(value, 10, &tmp))
2286 return -EINVAL;
2287
2288 cache->migration_threshold = tmp;
2289 return 0;
2290 }
2291
2292 return NOT_CORE_OPTION;
2293 }
2294
set_config_value(struct cache * cache,const char * key,const char * value)2295 static int set_config_value(struct cache *cache, const char *key, const char *value)
2296 {
2297 int r = process_config_option(cache, key, value);
2298
2299 if (r == NOT_CORE_OPTION)
2300 r = policy_set_config_value(cache->policy, key, value);
2301
2302 if (r)
2303 DMWARN("bad config value for %s: %s", key, value);
2304
2305 return r;
2306 }
2307
set_config_values(struct cache * cache,int argc,const char ** argv)2308 static int set_config_values(struct cache *cache, int argc, const char **argv)
2309 {
2310 int r = 0;
2311
2312 if (argc & 1) {
2313 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2314 return -EINVAL;
2315 }
2316
2317 while (argc) {
2318 r = set_config_value(cache, argv[0], argv[1]);
2319 if (r)
2320 break;
2321
2322 argc -= 2;
2323 argv += 2;
2324 }
2325
2326 return r;
2327 }
2328
create_cache_policy(struct cache * cache,struct cache_args * ca,char ** error)2329 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2330 char **error)
2331 {
2332 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2333 cache->cache_size,
2334 cache->origin_sectors,
2335 cache->sectors_per_block);
2336 if (IS_ERR(p)) {
2337 *error = "Error creating cache's policy";
2338 return PTR_ERR(p);
2339 }
2340 cache->policy = p;
2341 BUG_ON(!cache->policy);
2342
2343 return 0;
2344 }
2345
2346 /*
2347 * We want the discard block size to be at least the size of the cache
2348 * block size and have no more than 2^14 discard blocks across the origin.
2349 */
2350 #define MAX_DISCARD_BLOCKS (1 << 14)
2351
too_many_discard_blocks(sector_t discard_block_size,sector_t origin_size)2352 static bool too_many_discard_blocks(sector_t discard_block_size,
2353 sector_t origin_size)
2354 {
2355 (void) sector_div(origin_size, discard_block_size);
2356
2357 return origin_size > MAX_DISCARD_BLOCKS;
2358 }
2359
calculate_discard_block_size(sector_t cache_block_size,sector_t origin_size)2360 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2361 sector_t origin_size)
2362 {
2363 sector_t discard_block_size = cache_block_size;
2364
2365 if (origin_size)
2366 while (too_many_discard_blocks(discard_block_size, origin_size))
2367 discard_block_size *= 2;
2368
2369 return discard_block_size;
2370 }
2371
set_cache_size(struct cache * cache,dm_cblock_t size)2372 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2373 {
2374 dm_block_t nr_blocks = from_cblock(size);
2375
2376 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2377 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2378 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2379 "Please consider increasing the cache block size to reduce the overall cache block count.",
2380 (unsigned long long) nr_blocks);
2381
2382 cache->cache_size = size;
2383 }
2384
2385 #define DEFAULT_MIGRATION_THRESHOLD 2048
2386
cache_create(struct cache_args * ca,struct cache ** result)2387 static int cache_create(struct cache_args *ca, struct cache **result)
2388 {
2389 int r = 0;
2390 char **error = &ca->ti->error;
2391 struct cache *cache;
2392 struct dm_target *ti = ca->ti;
2393 dm_block_t origin_blocks;
2394 struct dm_cache_metadata *cmd;
2395 bool may_format = ca->features.mode == CM_WRITE;
2396
2397 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2398 if (!cache)
2399 return -ENOMEM;
2400
2401 cache->ti = ca->ti;
2402 ti->private = cache;
2403 ti->accounts_remapped_io = true;
2404 ti->num_flush_bios = 2;
2405 ti->flush_supported = true;
2406
2407 ti->num_discard_bios = 1;
2408 ti->discards_supported = true;
2409
2410 ti->per_io_data_size = sizeof(struct per_bio_data);
2411
2412 cache->features = ca->features;
2413 if (writethrough_mode(cache)) {
2414 /* Create bioset for writethrough bios issued to origin */
2415 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2416 if (r)
2417 goto bad;
2418 }
2419
2420 cache->metadata_dev = ca->metadata_dev;
2421 cache->origin_dev = ca->origin_dev;
2422 cache->cache_dev = ca->cache_dev;
2423
2424 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2425
2426 origin_blocks = cache->origin_sectors = ti->len;
2427 origin_blocks = block_div(origin_blocks, ca->block_size);
2428 cache->origin_blocks = to_oblock(origin_blocks);
2429
2430 cache->sectors_per_block = ca->block_size;
2431 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2432 r = -EINVAL;
2433 goto bad;
2434 }
2435
2436 if (ca->block_size & (ca->block_size - 1)) {
2437 dm_block_t cache_size = ca->cache_sectors;
2438
2439 cache->sectors_per_block_shift = -1;
2440 cache_size = block_div(cache_size, ca->block_size);
2441 set_cache_size(cache, to_cblock(cache_size));
2442 } else {
2443 cache->sectors_per_block_shift = __ffs(ca->block_size);
2444 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2445 }
2446
2447 r = create_cache_policy(cache, ca, error);
2448 if (r)
2449 goto bad;
2450
2451 cache->policy_nr_args = ca->policy_argc;
2452 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2453
2454 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2455 if (r) {
2456 *error = "Error setting cache policy's config values";
2457 goto bad;
2458 }
2459
2460 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2461 ca->block_size, may_format,
2462 dm_cache_policy_get_hint_size(cache->policy),
2463 ca->features.metadata_version);
2464 if (IS_ERR(cmd)) {
2465 *error = "Error creating metadata object";
2466 r = PTR_ERR(cmd);
2467 goto bad;
2468 }
2469 cache->cmd = cmd;
2470 set_cache_mode(cache, CM_WRITE);
2471 if (get_cache_mode(cache) != CM_WRITE) {
2472 *error = "Unable to get write access to metadata, please check/repair metadata.";
2473 r = -EINVAL;
2474 goto bad;
2475 }
2476
2477 if (passthrough_mode(cache)) {
2478 bool all_clean;
2479
2480 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2481 if (r) {
2482 *error = "dm_cache_metadata_all_clean() failed";
2483 goto bad;
2484 }
2485
2486 if (!all_clean) {
2487 *error = "Cannot enter passthrough mode unless all blocks are clean";
2488 r = -EINVAL;
2489 goto bad;
2490 }
2491
2492 policy_allow_migrations(cache->policy, false);
2493 }
2494
2495 spin_lock_init(&cache->lock);
2496 bio_list_init(&cache->deferred_bios);
2497 atomic_set(&cache->nr_allocated_migrations, 0);
2498 atomic_set(&cache->nr_io_migrations, 0);
2499 init_waitqueue_head(&cache->migration_wait);
2500
2501 r = -ENOMEM;
2502 atomic_set(&cache->nr_dirty, 0);
2503 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2504 if (!cache->dirty_bitset) {
2505 *error = "could not allocate dirty bitset";
2506 goto bad;
2507 }
2508 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2509
2510 cache->discard_block_size =
2511 calculate_discard_block_size(cache->sectors_per_block,
2512 cache->origin_sectors);
2513 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2514 cache->discard_block_size));
2515 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2516 if (!cache->discard_bitset) {
2517 *error = "could not allocate discard bitset";
2518 goto bad;
2519 }
2520 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2521
2522 cache->invalid_bitset = alloc_bitset(from_cblock(cache->cache_size));
2523 if (!cache->invalid_bitset) {
2524 *error = "could not allocate bitset for invalid blocks";
2525 goto bad;
2526 }
2527 clear_bitset(cache->invalid_bitset, from_cblock(cache->cache_size));
2528
2529 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2530 if (IS_ERR(cache->copier)) {
2531 *error = "could not create kcopyd client";
2532 r = PTR_ERR(cache->copier);
2533 goto bad;
2534 }
2535
2536 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2537 if (!cache->wq) {
2538 *error = "could not create workqueue for metadata object";
2539 goto bad;
2540 }
2541 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2542 INIT_WORK(&cache->migration_worker, check_migrations);
2543 INIT_DELAYED_WORK(&cache->waker, do_waker);
2544
2545 cache->prison = dm_bio_prison_create_v2(cache->wq);
2546 if (!cache->prison) {
2547 *error = "could not create bio prison";
2548 goto bad;
2549 }
2550
2551 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2552 migration_cache);
2553 if (r) {
2554 *error = "Error creating cache's migration mempool";
2555 goto bad;
2556 }
2557
2558 cache->need_tick_bio = true;
2559 cache->sized = false;
2560 cache->invalidate = false;
2561 cache->commit_requested = false;
2562 cache->loaded_mappings = false;
2563 cache->loaded_discards = false;
2564
2565 load_stats(cache);
2566
2567 atomic_set(&cache->stats.demotion, 0);
2568 atomic_set(&cache->stats.promotion, 0);
2569 atomic_set(&cache->stats.copies_avoided, 0);
2570 atomic_set(&cache->stats.cache_cell_clash, 0);
2571 atomic_set(&cache->stats.commit_count, 0);
2572 atomic_set(&cache->stats.discard_count, 0);
2573
2574 spin_lock_init(&cache->invalidation_lock);
2575 INIT_LIST_HEAD(&cache->invalidation_requests);
2576
2577 batcher_init(&cache->committer, commit_op, cache,
2578 issue_op, cache, cache->wq);
2579 dm_iot_init(&cache->tracker);
2580
2581 init_rwsem(&cache->background_work_lock);
2582 prevent_background_work(cache);
2583
2584 *result = cache;
2585 return 0;
2586 bad:
2587 __destroy(cache);
2588 return r;
2589 }
2590
copy_ctr_args(struct cache * cache,int argc,const char ** argv)2591 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2592 {
2593 unsigned int i;
2594 const char **copy;
2595
2596 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2597 if (!copy)
2598 return -ENOMEM;
2599 for (i = 0; i < argc; i++) {
2600 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2601 if (!copy[i]) {
2602 while (i--)
2603 kfree(copy[i]);
2604 kfree(copy);
2605 return -ENOMEM;
2606 }
2607 }
2608
2609 cache->nr_ctr_args = argc;
2610 cache->ctr_args = copy;
2611
2612 return 0;
2613 }
2614
cache_ctr(struct dm_target * ti,unsigned int argc,char ** argv)2615 static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2616 {
2617 int r = -EINVAL;
2618 struct cache_args *ca;
2619 struct cache *cache = NULL;
2620
2621 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2622 if (!ca) {
2623 ti->error = "Error allocating memory for cache";
2624 return -ENOMEM;
2625 }
2626 ca->ti = ti;
2627
2628 r = parse_cache_args(ca, argc, argv, &ti->error);
2629 if (r)
2630 goto out;
2631
2632 r = cache_create(ca, &cache);
2633 if (r)
2634 goto out;
2635
2636 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2637 if (r) {
2638 __destroy(cache);
2639 goto out;
2640 }
2641
2642 ti->private = cache;
2643 out:
2644 destroy_cache_args(ca);
2645 return r;
2646 }
2647
2648 /*----------------------------------------------------------------*/
2649
cache_map(struct dm_target * ti,struct bio * bio)2650 static int cache_map(struct dm_target *ti, struct bio *bio)
2651 {
2652 struct cache *cache = ti->private;
2653
2654 int r;
2655 bool commit_needed;
2656 dm_oblock_t block = get_bio_block(cache, bio);
2657
2658 init_per_bio_data(bio);
2659 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2660 /*
2661 * This can only occur if the io goes to a partial block at
2662 * the end of the origin device. We don't cache these.
2663 * Just remap to the origin and carry on.
2664 */
2665 remap_to_origin(cache, bio);
2666 accounted_begin(cache, bio);
2667 return DM_MAPIO_REMAPPED;
2668 }
2669
2670 if (discard_or_flush(bio)) {
2671 defer_bio(cache, bio);
2672 return DM_MAPIO_SUBMITTED;
2673 }
2674
2675 r = map_bio(cache, bio, block, &commit_needed);
2676 if (commit_needed)
2677 schedule_commit(&cache->committer);
2678
2679 return r;
2680 }
2681
cache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * error)2682 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2683 {
2684 struct cache *cache = ti->private;
2685 unsigned long flags;
2686 struct per_bio_data *pb = get_per_bio_data(bio);
2687
2688 if (pb->tick) {
2689 policy_tick(cache->policy, false);
2690
2691 spin_lock_irqsave(&cache->lock, flags);
2692 cache->need_tick_bio = true;
2693 spin_unlock_irqrestore(&cache->lock, flags);
2694 }
2695
2696 bio_drop_shared_lock(cache, bio);
2697 accounted_complete(cache, bio);
2698
2699 return DM_ENDIO_DONE;
2700 }
2701
write_dirty_bitset(struct cache * cache)2702 static int write_dirty_bitset(struct cache *cache)
2703 {
2704 int r;
2705
2706 if (get_cache_mode(cache) >= CM_READ_ONLY)
2707 return -EINVAL;
2708
2709 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2710 if (r)
2711 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2712
2713 return r;
2714 }
2715
write_discard_bitset(struct cache * cache)2716 static int write_discard_bitset(struct cache *cache)
2717 {
2718 unsigned int i, r;
2719
2720 if (get_cache_mode(cache) >= CM_READ_ONLY)
2721 return -EINVAL;
2722
2723 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2724 cache->discard_nr_blocks);
2725 if (r) {
2726 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2727 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2728 return r;
2729 }
2730
2731 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2732 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2733 is_discarded(cache, to_dblock(i)));
2734 if (r) {
2735 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2736 return r;
2737 }
2738 }
2739
2740 return 0;
2741 }
2742
write_hints(struct cache * cache)2743 static int write_hints(struct cache *cache)
2744 {
2745 int r;
2746
2747 if (get_cache_mode(cache) >= CM_READ_ONLY)
2748 return -EINVAL;
2749
2750 r = dm_cache_write_hints(cache->cmd, cache->policy);
2751 if (r) {
2752 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2753 return r;
2754 }
2755
2756 return 0;
2757 }
2758
2759 /*
2760 * returns true on success
2761 */
sync_metadata(struct cache * cache)2762 static bool sync_metadata(struct cache *cache)
2763 {
2764 int r1, r2, r3, r4;
2765
2766 r1 = write_dirty_bitset(cache);
2767 if (r1)
2768 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2769
2770 r2 = write_discard_bitset(cache);
2771 if (r2)
2772 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2773
2774 save_stats(cache);
2775
2776 r3 = write_hints(cache);
2777 if (r3)
2778 DMERR("%s: could not write hints", cache_device_name(cache));
2779
2780 /*
2781 * If writing the above metadata failed, we still commit, but don't
2782 * set the clean shutdown flag. This will effectively force every
2783 * dirty bit to be set on reload.
2784 */
2785 r4 = commit(cache, !r1 && !r2 && !r3);
2786 if (r4)
2787 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2788
2789 return !r1 && !r2 && !r3 && !r4;
2790 }
2791
cache_postsuspend(struct dm_target * ti)2792 static void cache_postsuspend(struct dm_target *ti)
2793 {
2794 struct cache *cache = ti->private;
2795
2796 prevent_background_work(cache);
2797 BUG_ON(atomic_read(&cache->nr_io_migrations));
2798
2799 cancel_delayed_work_sync(&cache->waker);
2800 drain_workqueue(cache->wq);
2801 WARN_ON(cache->tracker.in_flight);
2802
2803 /*
2804 * If it's a flush suspend there won't be any deferred bios, so this
2805 * call is harmless.
2806 */
2807 requeue_deferred_bios(cache);
2808
2809 if (get_cache_mode(cache) == CM_WRITE)
2810 (void) sync_metadata(cache);
2811 }
2812
load_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2813 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2814 bool dirty, uint32_t hint, bool hint_valid)
2815 {
2816 struct cache *cache = context;
2817
2818 if (dirty) {
2819 set_bit(from_cblock(cblock), cache->dirty_bitset);
2820 atomic_inc(&cache->nr_dirty);
2821 } else
2822 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2823
2824 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2825 }
2826
load_filtered_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2827 static int load_filtered_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2828 bool dirty, uint32_t hint, bool hint_valid)
2829 {
2830 struct cache *cache = context;
2831
2832 if (from_oblock(oblock) >= from_oblock(cache->origin_blocks)) {
2833 if (dirty) {
2834 DMERR("%s: unable to shrink origin; cache block %u is dirty",
2835 cache_device_name(cache), from_cblock(cblock));
2836 return -EFBIG;
2837 }
2838 set_bit(from_cblock(cblock), cache->invalid_bitset);
2839 return 0;
2840 }
2841
2842 return load_mapping(context, oblock, cblock, dirty, hint, hint_valid);
2843 }
2844
2845 /*
2846 * The discard block size in the on disk metadata is not
2847 * necessarily the same as we're currently using. So we have to
2848 * be careful to only set the discarded attribute if we know it
2849 * covers a complete block of the new size.
2850 */
2851 struct discard_load_info {
2852 struct cache *cache;
2853
2854 /*
2855 * These blocks are sized using the on disk dblock size, rather
2856 * than the current one.
2857 */
2858 dm_block_t block_size;
2859 dm_block_t discard_begin, discard_end;
2860 };
2861
discard_load_info_init(struct cache * cache,struct discard_load_info * li)2862 static void discard_load_info_init(struct cache *cache,
2863 struct discard_load_info *li)
2864 {
2865 li->cache = cache;
2866 li->discard_begin = li->discard_end = 0;
2867 }
2868
set_discard_range(struct discard_load_info * li)2869 static void set_discard_range(struct discard_load_info *li)
2870 {
2871 sector_t b, e;
2872
2873 if (li->discard_begin == li->discard_end)
2874 return;
2875
2876 /*
2877 * Convert to sectors.
2878 */
2879 b = li->discard_begin * li->block_size;
2880 e = li->discard_end * li->block_size;
2881
2882 /*
2883 * Then convert back to the current dblock size.
2884 */
2885 b = dm_sector_div_up(b, li->cache->discard_block_size);
2886 sector_div(e, li->cache->discard_block_size);
2887
2888 /*
2889 * The origin may have shrunk, so we need to check we're still in
2890 * bounds.
2891 */
2892 if (e > from_dblock(li->cache->discard_nr_blocks))
2893 e = from_dblock(li->cache->discard_nr_blocks);
2894
2895 for (; b < e; b++)
2896 set_discard(li->cache, to_dblock(b));
2897 }
2898
load_discard(void * context,sector_t discard_block_size,dm_dblock_t dblock,bool discard)2899 static int load_discard(void *context, sector_t discard_block_size,
2900 dm_dblock_t dblock, bool discard)
2901 {
2902 struct discard_load_info *li = context;
2903
2904 li->block_size = discard_block_size;
2905
2906 if (discard) {
2907 if (from_dblock(dblock) == li->discard_end)
2908 /*
2909 * We're already in a discard range, just extend it.
2910 */
2911 li->discard_end = li->discard_end + 1ULL;
2912
2913 else {
2914 /*
2915 * Emit the old range and start a new one.
2916 */
2917 set_discard_range(li);
2918 li->discard_begin = from_dblock(dblock);
2919 li->discard_end = li->discard_begin + 1ULL;
2920 }
2921 } else {
2922 set_discard_range(li);
2923 li->discard_begin = li->discard_end = 0;
2924 }
2925
2926 return 0;
2927 }
2928
get_cache_dev_size(struct cache * cache)2929 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2930 {
2931 sector_t size = get_dev_size(cache->cache_dev);
2932 (void) sector_div(size, cache->sectors_per_block);
2933 return to_cblock(size);
2934 }
2935
can_resume(struct cache * cache)2936 static bool can_resume(struct cache *cache)
2937 {
2938 /*
2939 * Disallow retrying the resume operation for devices that failed the
2940 * first resume attempt, as the failure leaves the policy object partially
2941 * initialized. Retrying could trigger BUG_ON when loading cache mappings
2942 * into the incomplete policy object.
2943 */
2944 if (cache->sized && !cache->loaded_mappings) {
2945 if (get_cache_mode(cache) != CM_WRITE)
2946 DMERR("%s: unable to resume a failed-loaded cache, please check metadata.",
2947 cache_device_name(cache));
2948 else
2949 DMERR("%s: unable to resume cache due to missing proper cache table reload",
2950 cache_device_name(cache));
2951 return false;
2952 }
2953
2954 return true;
2955 }
2956
can_resize(struct cache * cache,dm_cblock_t new_size)2957 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2958 {
2959 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2960 DMERR("%s: unable to extend cache due to missing cache table reload",
2961 cache_device_name(cache));
2962 return false;
2963 }
2964
2965 /*
2966 * We can't drop a dirty block when shrinking the cache.
2967 */
2968 if (cache->loaded_mappings) {
2969 new_size = to_cblock(find_next_bit(cache->dirty_bitset,
2970 from_cblock(cache->cache_size),
2971 from_cblock(new_size)));
2972 if (new_size != cache->cache_size) {
2973 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2974 cache_device_name(cache),
2975 (unsigned long long) from_cblock(new_size));
2976 return false;
2977 }
2978 }
2979
2980 return true;
2981 }
2982
resize_cache_dev(struct cache * cache,dm_cblock_t new_size)2983 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2984 {
2985 int r;
2986
2987 r = dm_cache_resize(cache->cmd, new_size);
2988 if (r) {
2989 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2990 metadata_operation_failed(cache, "dm_cache_resize", r);
2991 return r;
2992 }
2993
2994 set_cache_size(cache, new_size);
2995
2996 return 0;
2997 }
2998
truncate_oblocks(struct cache * cache)2999 static int truncate_oblocks(struct cache *cache)
3000 {
3001 uint32_t nr_blocks = from_cblock(cache->cache_size);
3002 uint32_t i;
3003 int r;
3004
3005 for_each_set_bit(i, cache->invalid_bitset, nr_blocks) {
3006 r = dm_cache_remove_mapping(cache->cmd, to_cblock(i));
3007 if (r) {
3008 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
3009 cache_device_name(cache));
3010 return r;
3011 }
3012 }
3013
3014 return 0;
3015 }
3016
cache_preresume(struct dm_target * ti)3017 static int cache_preresume(struct dm_target *ti)
3018 {
3019 int r = 0;
3020 struct cache *cache = ti->private;
3021 dm_cblock_t csize = get_cache_dev_size(cache);
3022
3023 if (!can_resume(cache))
3024 return -EINVAL;
3025
3026 /*
3027 * Check to see if the cache has resized.
3028 */
3029 if (!cache->sized || csize != cache->cache_size) {
3030 if (!can_resize(cache, csize))
3031 return -EINVAL;
3032
3033 r = resize_cache_dev(cache, csize);
3034 if (r)
3035 return r;
3036
3037 cache->sized = true;
3038 }
3039
3040 if (!cache->loaded_mappings) {
3041 /*
3042 * The fast device could have been resized since the last
3043 * failed preresume attempt. To be safe we start by a blank
3044 * bitset for cache blocks.
3045 */
3046 clear_bitset(cache->invalid_bitset, from_cblock(cache->cache_size));
3047
3048 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3049 load_filtered_mapping, cache);
3050 if (r) {
3051 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3052 if (r != -EFBIG)
3053 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3054 return r;
3055 }
3056
3057 r = truncate_oblocks(cache);
3058 if (r) {
3059 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
3060 return r;
3061 }
3062
3063 cache->loaded_mappings = true;
3064 }
3065
3066 if (!cache->loaded_discards) {
3067 struct discard_load_info li;
3068
3069 /*
3070 * The discard bitset could have been resized, or the
3071 * discard block size changed. To be safe we start by
3072 * setting every dblock to not discarded.
3073 */
3074 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3075
3076 discard_load_info_init(cache, &li);
3077 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3078 if (r) {
3079 DMERR("%s: could not load origin discards", cache_device_name(cache));
3080 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3081 return r;
3082 }
3083 set_discard_range(&li);
3084
3085 cache->loaded_discards = true;
3086 }
3087
3088 return r;
3089 }
3090
cache_resume(struct dm_target * ti)3091 static void cache_resume(struct dm_target *ti)
3092 {
3093 struct cache *cache = ti->private;
3094
3095 cache->need_tick_bio = true;
3096 allow_background_work(cache);
3097 do_waker(&cache->waker.work);
3098 }
3099
emit_flags(struct cache * cache,char * result,unsigned int maxlen,ssize_t * sz_ptr)3100 static void emit_flags(struct cache *cache, char *result,
3101 unsigned int maxlen, ssize_t *sz_ptr)
3102 {
3103 ssize_t sz = *sz_ptr;
3104 struct cache_features *cf = &cache->features;
3105 unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3106
3107 DMEMIT("%u ", count);
3108
3109 if (cf->metadata_version == 2)
3110 DMEMIT("metadata2 ");
3111
3112 if (writethrough_mode(cache))
3113 DMEMIT("writethrough ");
3114
3115 else if (passthrough_mode(cache))
3116 DMEMIT("passthrough ");
3117
3118 else if (writeback_mode(cache))
3119 DMEMIT("writeback ");
3120
3121 else {
3122 DMEMIT("unknown ");
3123 DMERR("%s: internal error: unknown io mode: %d",
3124 cache_device_name(cache), (int) cf->io_mode);
3125 }
3126
3127 if (!cf->discard_passdown)
3128 DMEMIT("no_discard_passdown ");
3129
3130 *sz_ptr = sz;
3131 }
3132
3133 /*
3134 * Status format:
3135 *
3136 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3137 * <cache block size> <#used cache blocks>/<#total cache blocks>
3138 * <#read hits> <#read misses> <#write hits> <#write misses>
3139 * <#demotions> <#promotions> <#dirty>
3140 * <#features> <features>*
3141 * <#core args> <core args>
3142 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3143 */
cache_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3144 static void cache_status(struct dm_target *ti, status_type_t type,
3145 unsigned int status_flags, char *result, unsigned int maxlen)
3146 {
3147 int r = 0;
3148 unsigned int i;
3149 ssize_t sz = 0;
3150 dm_block_t nr_free_blocks_metadata = 0;
3151 dm_block_t nr_blocks_metadata = 0;
3152 char buf[BDEVNAME_SIZE];
3153 struct cache *cache = ti->private;
3154 dm_cblock_t residency;
3155 bool needs_check;
3156
3157 switch (type) {
3158 case STATUSTYPE_INFO:
3159 if (get_cache_mode(cache) == CM_FAIL) {
3160 DMEMIT("Fail");
3161 break;
3162 }
3163
3164 /* Commit to ensure statistics aren't out-of-date */
3165 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3166 (void) commit(cache, false);
3167
3168 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3169 if (r) {
3170 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3171 cache_device_name(cache), r);
3172 goto err;
3173 }
3174
3175 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3176 if (r) {
3177 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3178 cache_device_name(cache), r);
3179 goto err;
3180 }
3181
3182 residency = policy_residency(cache->policy);
3183
3184 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3185 (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3186 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3187 (unsigned long long)nr_blocks_metadata,
3188 (unsigned long long)cache->sectors_per_block,
3189 (unsigned long long) from_cblock(residency),
3190 (unsigned long long) from_cblock(cache->cache_size),
3191 (unsigned int) atomic_read(&cache->stats.read_hit),
3192 (unsigned int) atomic_read(&cache->stats.read_miss),
3193 (unsigned int) atomic_read(&cache->stats.write_hit),
3194 (unsigned int) atomic_read(&cache->stats.write_miss),
3195 (unsigned int) atomic_read(&cache->stats.demotion),
3196 (unsigned int) atomic_read(&cache->stats.promotion),
3197 (unsigned long) atomic_read(&cache->nr_dirty));
3198
3199 emit_flags(cache, result, maxlen, &sz);
3200
3201 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3202
3203 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3204 if (sz < maxlen) {
3205 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3206 if (r)
3207 DMERR("%s: policy_emit_config_values returned %d",
3208 cache_device_name(cache), r);
3209 }
3210
3211 if (get_cache_mode(cache) == CM_READ_ONLY)
3212 DMEMIT("ro ");
3213 else
3214 DMEMIT("rw ");
3215
3216 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3217
3218 if (r || needs_check)
3219 DMEMIT("needs_check ");
3220 else
3221 DMEMIT("- ");
3222
3223 break;
3224
3225 case STATUSTYPE_TABLE:
3226 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3227 DMEMIT("%s ", buf);
3228 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3229 DMEMIT("%s ", buf);
3230 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3231 DMEMIT("%s", buf);
3232
3233 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3234 DMEMIT(" %s", cache->ctr_args[i]);
3235 if (cache->nr_ctr_args)
3236 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3237 break;
3238
3239 case STATUSTYPE_IMA:
3240 DMEMIT_TARGET_NAME_VERSION(ti->type);
3241 if (get_cache_mode(cache) == CM_FAIL)
3242 DMEMIT(",metadata_mode=fail");
3243 else if (get_cache_mode(cache) == CM_READ_ONLY)
3244 DMEMIT(",metadata_mode=ro");
3245 else
3246 DMEMIT(",metadata_mode=rw");
3247
3248 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3249 DMEMIT(",cache_metadata_device=%s", buf);
3250 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3251 DMEMIT(",cache_device=%s", buf);
3252 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3253 DMEMIT(",cache_origin_device=%s", buf);
3254 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3255 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3256 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3257 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3258 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3259 DMEMIT(";");
3260 break;
3261 }
3262
3263 return;
3264
3265 err:
3266 DMEMIT("Error");
3267 }
3268
3269 /*
3270 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3271 * the one-past-the-end value.
3272 */
3273 struct cblock_range {
3274 dm_cblock_t begin;
3275 dm_cblock_t end;
3276 };
3277
3278 /*
3279 * A cache block range can take two forms:
3280 *
3281 * i) A single cblock, eg. '3456'
3282 * ii) A begin and end cblock with a dash between, eg. 123-234
3283 */
parse_cblock_range(struct cache * cache,const char * str,struct cblock_range * result)3284 static int parse_cblock_range(struct cache *cache, const char *str,
3285 struct cblock_range *result)
3286 {
3287 char dummy;
3288 uint64_t b, e;
3289 int r;
3290
3291 /*
3292 * Try and parse form (ii) first.
3293 */
3294 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3295
3296 if (r == 2) {
3297 result->begin = to_cblock(b);
3298 result->end = to_cblock(e);
3299 return 0;
3300 }
3301
3302 /*
3303 * That didn't work, try form (i).
3304 */
3305 r = sscanf(str, "%llu%c", &b, &dummy);
3306
3307 if (r == 1) {
3308 result->begin = to_cblock(b);
3309 result->end = to_cblock(from_cblock(result->begin) + 1u);
3310 return 0;
3311 }
3312
3313 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3314 return -EINVAL;
3315 }
3316
validate_cblock_range(struct cache * cache,struct cblock_range * range)3317 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3318 {
3319 uint64_t b = from_cblock(range->begin);
3320 uint64_t e = from_cblock(range->end);
3321 uint64_t n = from_cblock(cache->cache_size);
3322
3323 if (b >= n) {
3324 DMERR("%s: begin cblock out of range: %llu >= %llu",
3325 cache_device_name(cache), b, n);
3326 return -EINVAL;
3327 }
3328
3329 if (e > n) {
3330 DMERR("%s: end cblock out of range: %llu > %llu",
3331 cache_device_name(cache), e, n);
3332 return -EINVAL;
3333 }
3334
3335 if (b >= e) {
3336 DMERR("%s: invalid cblock range: %llu >= %llu",
3337 cache_device_name(cache), b, e);
3338 return -EINVAL;
3339 }
3340
3341 return 0;
3342 }
3343
cblock_succ(dm_cblock_t b)3344 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3345 {
3346 return to_cblock(from_cblock(b) + 1);
3347 }
3348
request_invalidation(struct cache * cache,struct cblock_range * range)3349 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3350 {
3351 int r = 0;
3352
3353 /*
3354 * We don't need to do any locking here because we know we're in
3355 * passthrough mode. There's is potential for a race between an
3356 * invalidation triggered by an io and an invalidation message. This
3357 * is harmless, we must not worry if the policy call fails.
3358 */
3359 while (range->begin != range->end) {
3360 r = invalidate_cblock(cache, range->begin);
3361 if (r)
3362 return r;
3363
3364 range->begin = cblock_succ(range->begin);
3365 }
3366
3367 cache->commit_requested = true;
3368 return r;
3369 }
3370
process_invalidate_cblocks_message(struct cache * cache,unsigned int count,const char ** cblock_ranges)3371 static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3372 const char **cblock_ranges)
3373 {
3374 int r = 0;
3375 unsigned int i;
3376 struct cblock_range range;
3377
3378 if (!passthrough_mode(cache)) {
3379 DMERR("%s: cache has to be in passthrough mode for invalidation",
3380 cache_device_name(cache));
3381 return -EPERM;
3382 }
3383
3384 for (i = 0; i < count; i++) {
3385 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3386 if (r)
3387 break;
3388
3389 r = validate_cblock_range(cache, &range);
3390 if (r)
3391 break;
3392
3393 /*
3394 * Pass begin and end origin blocks to the worker and wake it.
3395 */
3396 r = request_invalidation(cache, &range);
3397 if (r)
3398 break;
3399 }
3400
3401 return r;
3402 }
3403
3404 /*
3405 * Supports
3406 * "<key> <value>"
3407 * and
3408 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3409 *
3410 * The key migration_threshold is supported by the cache target core.
3411 */
cache_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3412 static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3413 char *result, unsigned int maxlen)
3414 {
3415 struct cache *cache = ti->private;
3416
3417 if (!argc)
3418 return -EINVAL;
3419
3420 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3421 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3422 cache_device_name(cache));
3423 return -EOPNOTSUPP;
3424 }
3425
3426 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3427 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3428
3429 if (argc != 2)
3430 return -EINVAL;
3431
3432 return set_config_value(cache, argv[0], argv[1]);
3433 }
3434
cache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3435 static int cache_iterate_devices(struct dm_target *ti,
3436 iterate_devices_callout_fn fn, void *data)
3437 {
3438 int r = 0;
3439 struct cache *cache = ti->private;
3440
3441 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3442 if (!r)
3443 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3444
3445 return r;
3446 }
3447
3448 /*
3449 * If discard_passdown was enabled verify that the origin device
3450 * supports discards. Disable discard_passdown if not.
3451 */
disable_passdown_if_not_supported(struct cache * cache)3452 static void disable_passdown_if_not_supported(struct cache *cache)
3453 {
3454 struct block_device *origin_bdev = cache->origin_dev->bdev;
3455 struct queue_limits *origin_limits = bdev_limits(origin_bdev);
3456 const char *reason = NULL;
3457
3458 if (!cache->features.discard_passdown)
3459 return;
3460
3461 if (!bdev_max_discard_sectors(origin_bdev))
3462 reason = "discard unsupported";
3463
3464 else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3465 reason = "max discard sectors smaller than a block";
3466
3467 if (reason) {
3468 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3469 origin_bdev, reason);
3470 cache->features.discard_passdown = false;
3471 }
3472 }
3473
set_discard_limits(struct cache * cache,struct queue_limits * limits)3474 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3475 {
3476 struct block_device *origin_bdev = cache->origin_dev->bdev;
3477 struct queue_limits *origin_limits = bdev_limits(origin_bdev);
3478
3479 if (!cache->features.discard_passdown) {
3480 /* No passdown is done so setting own virtual limits */
3481 limits->max_hw_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3482 cache->origin_sectors);
3483 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3484 return;
3485 }
3486
3487 /*
3488 * cache_iterate_devices() is stacking both origin and fast device limits
3489 * but discards aren't passed to fast device, so inherit origin's limits.
3490 */
3491 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3492 limits->discard_granularity = origin_limits->discard_granularity;
3493 limits->discard_alignment = origin_limits->discard_alignment;
3494 }
3495
cache_io_hints(struct dm_target * ti,struct queue_limits * limits)3496 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3497 {
3498 struct cache *cache = ti->private;
3499 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3500
3501 /*
3502 * If the system-determined stacked limits are compatible with the
3503 * cache's blocksize (io_opt is a factor) do not override them.
3504 */
3505 if (io_opt_sectors < cache->sectors_per_block ||
3506 do_div(io_opt_sectors, cache->sectors_per_block)) {
3507 limits->io_min = cache->sectors_per_block << SECTOR_SHIFT;
3508 limits->io_opt = cache->sectors_per_block << SECTOR_SHIFT;
3509 }
3510
3511 disable_passdown_if_not_supported(cache);
3512 set_discard_limits(cache, limits);
3513 }
3514
3515 /*----------------------------------------------------------------*/
3516
3517 static struct target_type cache_target = {
3518 .name = "cache",
3519 .version = {2, 3, 0},
3520 .module = THIS_MODULE,
3521 .ctr = cache_ctr,
3522 .dtr = cache_dtr,
3523 .map = cache_map,
3524 .end_io = cache_end_io,
3525 .postsuspend = cache_postsuspend,
3526 .preresume = cache_preresume,
3527 .resume = cache_resume,
3528 .status = cache_status,
3529 .message = cache_message,
3530 .iterate_devices = cache_iterate_devices,
3531 .io_hints = cache_io_hints,
3532 };
3533
dm_cache_init(void)3534 static int __init dm_cache_init(void)
3535 {
3536 int r;
3537
3538 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3539 if (!migration_cache) {
3540 r = -ENOMEM;
3541 goto err;
3542 }
3543
3544 btracker_work_cache = kmem_cache_create("dm_cache_bt_work",
3545 sizeof(struct bt_work), __alignof__(struct bt_work), 0, NULL);
3546 if (!btracker_work_cache) {
3547 r = -ENOMEM;
3548 goto err;
3549 }
3550
3551 r = dm_register_target(&cache_target);
3552 if (r) {
3553 goto err;
3554 }
3555
3556 return 0;
3557
3558 err:
3559 kmem_cache_destroy(migration_cache);
3560 kmem_cache_destroy(btracker_work_cache);
3561 return r;
3562 }
3563
dm_cache_exit(void)3564 static void __exit dm_cache_exit(void)
3565 {
3566 dm_unregister_target(&cache_target);
3567 kmem_cache_destroy(migration_cache);
3568 kmem_cache_destroy(btracker_work_cache);
3569 }
3570
3571 module_init(dm_cache_init);
3572 module_exit(dm_cache_exit);
3573
3574 MODULE_DESCRIPTION(DM_NAME " cache target");
3575 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3576 MODULE_LICENSE("GPL");
3577