xref: /linux/drivers/nvme/target/tcp.c (revision d3eeb99bbc99cc5eb94a4a75ed4415a0272254ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/crc32c.h>
11 #include <linux/err.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/inet.h>
20 #include <linux/llist.h>
21 #include <trace/events/sock.h>
22 
23 #include "nvmet.h"
24 
25 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
26 #define NVMET_TCP_MAXH2CDATA		0x400000 /* 16M arbitrary limit */
27 #define NVMET_TCP_BACKLOG 128
28 
param_store_val(const char * str,int * val,int min,int max)29 static int param_store_val(const char *str, int *val, int min, int max)
30 {
31 	int ret, new_val;
32 
33 	ret = kstrtoint(str, 10, &new_val);
34 	if (ret)
35 		return -EINVAL;
36 
37 	if (new_val < min || new_val > max)
38 		return -EINVAL;
39 
40 	*val = new_val;
41 	return 0;
42 }
43 
set_params(const char * str,const struct kernel_param * kp)44 static int set_params(const char *str, const struct kernel_param *kp)
45 {
46 	return param_store_val(str, kp->arg, 0, INT_MAX);
47 }
48 
49 static const struct kernel_param_ops set_param_ops = {
50 	.set	= set_params,
51 	.get	= param_get_int,
52 };
53 
54 /* Define the socket priority to use for connections were it is desirable
55  * that the NIC consider performing optimized packet processing or filtering.
56  * A non-zero value being sufficient to indicate general consideration of any
57  * possible optimization.  Making it a module param allows for alternative
58  * values that may be unique for some NIC implementations.
59  */
60 static int so_priority;
61 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
62 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
63 
64 /* Define a time period (in usecs) that io_work() shall sample an activated
65  * queue before determining it to be idle.  This optional module behavior
66  * can enable NIC solutions that support socket optimized packet processing
67  * using advanced interrupt moderation techniques.
68  */
69 static int idle_poll_period_usecs;
70 device_param_cb(idle_poll_period_usecs, &set_param_ops,
71 		&idle_poll_period_usecs, 0644);
72 MODULE_PARM_DESC(idle_poll_period_usecs,
73 		"nvmet tcp io_work poll till idle time period in usecs: Default 0");
74 
75 #ifdef CONFIG_NVME_TARGET_TCP_TLS
76 /*
77  * TLS handshake timeout
78  */
79 static int tls_handshake_timeout = 10;
80 module_param(tls_handshake_timeout, int, 0644);
81 MODULE_PARM_DESC(tls_handshake_timeout,
82 		 "nvme TLS handshake timeout in seconds (default 10)");
83 #endif
84 
85 #define NVMET_TCP_RECV_BUDGET		8
86 #define NVMET_TCP_SEND_BUDGET		8
87 #define NVMET_TCP_IO_WORK_BUDGET	64
88 
89 enum nvmet_tcp_send_state {
90 	NVMET_TCP_SEND_DATA_PDU,
91 	NVMET_TCP_SEND_DATA,
92 	NVMET_TCP_SEND_R2T,
93 	NVMET_TCP_SEND_DDGST,
94 	NVMET_TCP_SEND_RESPONSE
95 };
96 
97 enum nvmet_tcp_recv_state {
98 	NVMET_TCP_RECV_PDU,
99 	NVMET_TCP_RECV_DATA,
100 	NVMET_TCP_RECV_DDGST,
101 	NVMET_TCP_RECV_ERR,
102 };
103 
104 enum {
105 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
106 };
107 
108 struct nvmet_tcp_cmd {
109 	struct nvmet_tcp_queue		*queue;
110 	struct nvmet_req		req;
111 
112 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
113 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
114 	struct nvme_tcp_data_pdu	*data_pdu;
115 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
116 
117 	u32				rbytes_done;
118 	u32				wbytes_done;
119 
120 	u32				pdu_len;
121 	u32				pdu_recv;
122 	int				sg_idx;
123 	char				recv_cbuf[CMSG_LEN(sizeof(char))];
124 	struct msghdr			recv_msg;
125 	struct bio_vec			*iov;
126 	u32				flags;
127 
128 	struct list_head		entry;
129 	struct llist_node		lentry;
130 
131 	/* send state */
132 	u32				offset;
133 	struct scatterlist		*cur_sg;
134 	enum nvmet_tcp_send_state	state;
135 
136 	__le32				exp_ddgst;
137 	__le32				recv_ddgst;
138 };
139 
140 enum nvmet_tcp_queue_state {
141 	NVMET_TCP_Q_CONNECTING,
142 	NVMET_TCP_Q_TLS_HANDSHAKE,
143 	NVMET_TCP_Q_LIVE,
144 	NVMET_TCP_Q_DISCONNECTING,
145 	NVMET_TCP_Q_FAILED,
146 };
147 
148 struct nvmet_tcp_queue {
149 	struct socket		*sock;
150 	struct nvmet_tcp_port	*port;
151 	struct work_struct	io_work;
152 	struct nvmet_cq		nvme_cq;
153 	struct nvmet_sq		nvme_sq;
154 	struct kref		kref;
155 
156 	/* send state */
157 	struct nvmet_tcp_cmd	*cmds;
158 	unsigned int		nr_cmds;
159 	struct list_head	free_list;
160 	struct llist_head	resp_list;
161 	struct list_head	resp_send_list;
162 	int			send_list_len;
163 	struct nvmet_tcp_cmd	*snd_cmd;
164 
165 	/* recv state */
166 	int			offset;
167 	int			left;
168 	enum nvmet_tcp_recv_state rcv_state;
169 	struct nvmet_tcp_cmd	*cmd;
170 	union nvme_tcp_pdu	pdu;
171 
172 	/* digest state */
173 	bool			hdr_digest;
174 	bool			data_digest;
175 
176 	/* TLS state */
177 	key_serial_t		tls_pskid;
178 	struct delayed_work	tls_handshake_tmo_work;
179 
180 	unsigned long           poll_end;
181 
182 	spinlock_t		state_lock;
183 	enum nvmet_tcp_queue_state state;
184 
185 	struct sockaddr_storage	sockaddr;
186 	struct sockaddr_storage	sockaddr_peer;
187 	struct work_struct	release_work;
188 
189 	int			idx;
190 	struct list_head	queue_list;
191 
192 	struct nvmet_tcp_cmd	connect;
193 
194 	struct page_frag_cache	pf_cache;
195 
196 	void (*data_ready)(struct sock *);
197 	void (*state_change)(struct sock *);
198 	void (*write_space)(struct sock *);
199 };
200 
201 struct nvmet_tcp_port {
202 	struct socket		*sock;
203 	struct work_struct	accept_work;
204 	struct nvmet_port	*nport;
205 	struct sockaddr_storage addr;
206 	void (*data_ready)(struct sock *);
207 };
208 
209 static DEFINE_IDA(nvmet_tcp_queue_ida);
210 static LIST_HEAD(nvmet_tcp_queue_list);
211 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
212 
213 static struct workqueue_struct *nvmet_tcp_wq;
214 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
215 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
216 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
217 
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)218 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
219 		struct nvmet_tcp_cmd *cmd)
220 {
221 	if (unlikely(!queue->nr_cmds)) {
222 		/* We didn't allocate cmds yet, send 0xffff */
223 		return USHRT_MAX;
224 	}
225 
226 	return cmd - queue->cmds;
227 }
228 
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)229 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
230 {
231 	return nvme_is_write(cmd->req.cmd) &&
232 		cmd->rbytes_done < cmd->req.transfer_len;
233 }
234 
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)235 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
236 {
237 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
238 }
239 
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)240 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
241 {
242 	return !nvme_is_write(cmd->req.cmd) &&
243 		cmd->req.transfer_len > 0 &&
244 		!cmd->req.cqe->status;
245 }
246 
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)247 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
248 {
249 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
250 		!cmd->rbytes_done;
251 }
252 
253 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)254 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
255 {
256 	struct nvmet_tcp_cmd *cmd;
257 
258 	cmd = list_first_entry_or_null(&queue->free_list,
259 				struct nvmet_tcp_cmd, entry);
260 	if (!cmd)
261 		return NULL;
262 	list_del_init(&cmd->entry);
263 
264 	cmd->rbytes_done = cmd->wbytes_done = 0;
265 	cmd->pdu_len = 0;
266 	cmd->pdu_recv = 0;
267 	cmd->iov = NULL;
268 	cmd->flags = 0;
269 	return cmd;
270 }
271 
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)272 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
273 {
274 	if (unlikely(cmd == &cmd->queue->connect))
275 		return;
276 
277 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
278 }
279 
queue_cpu(struct nvmet_tcp_queue * queue)280 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
281 {
282 	return queue->sock->sk->sk_incoming_cpu;
283 }
284 
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)285 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
286 {
287 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
288 }
289 
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)290 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
291 {
292 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
293 }
294 
nvmet_tcp_hdgst(void * pdu,size_t len)295 static inline void nvmet_tcp_hdgst(void *pdu, size_t len)
296 {
297 	put_unaligned_le32(~crc32c(~0, pdu, len), pdu + len);
298 }
299 
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)300 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
301 	void *pdu, size_t len)
302 {
303 	struct nvme_tcp_hdr *hdr = pdu;
304 	__le32 recv_digest;
305 	__le32 exp_digest;
306 
307 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
308 		pr_err("queue %d: header digest enabled but no header digest\n",
309 			queue->idx);
310 		return -EPROTO;
311 	}
312 
313 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
314 	nvmet_tcp_hdgst(pdu, len);
315 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
316 	if (recv_digest != exp_digest) {
317 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
318 			queue->idx, le32_to_cpu(recv_digest),
319 			le32_to_cpu(exp_digest));
320 		return -EPROTO;
321 	}
322 
323 	return 0;
324 }
325 
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)326 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
327 {
328 	struct nvme_tcp_hdr *hdr = pdu;
329 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
330 	u32 len;
331 
332 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
333 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
334 
335 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
336 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
337 		return -EPROTO;
338 	}
339 
340 	return 0;
341 }
342 
343 /* If cmd buffers are NULL, no operation is performed */
nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd * cmd)344 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
345 {
346 	kfree(cmd->iov);
347 	sgl_free(cmd->req.sg);
348 	cmd->iov = NULL;
349 	cmd->req.sg = NULL;
350 }
351 
nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd * cmd)352 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
353 {
354 	struct bio_vec *iov = cmd->iov;
355 	struct scatterlist *sg;
356 	u32 length, offset, sg_offset;
357 	int nr_pages;
358 
359 	length = cmd->pdu_len;
360 	nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
361 	offset = cmd->rbytes_done;
362 	cmd->sg_idx = offset / PAGE_SIZE;
363 	sg_offset = offset % PAGE_SIZE;
364 	sg = &cmd->req.sg[cmd->sg_idx];
365 
366 	while (length) {
367 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
368 
369 		bvec_set_page(iov, sg_page(sg), iov_len,
370 				sg->offset + sg_offset);
371 
372 		length -= iov_len;
373 		sg = sg_next(sg);
374 		iov++;
375 		sg_offset = 0;
376 	}
377 
378 	iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
379 		      nr_pages, cmd->pdu_len);
380 }
381 
nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)382 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
383 {
384 	queue->rcv_state = NVMET_TCP_RECV_ERR;
385 	if (queue->nvme_sq.ctrl)
386 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
387 	else
388 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
389 }
390 
nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)391 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
392 {
393 	queue->rcv_state = NVMET_TCP_RECV_ERR;
394 	if (status == -EPIPE || status == -ECONNRESET)
395 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
396 	else
397 		nvmet_tcp_fatal_error(queue);
398 }
399 
nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)400 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
401 {
402 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
403 	u32 len = le32_to_cpu(sgl->length);
404 
405 	if (!len)
406 		return 0;
407 
408 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
409 			  NVME_SGL_FMT_OFFSET)) {
410 		if (!nvme_is_write(cmd->req.cmd))
411 			return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
412 
413 		if (len > cmd->req.port->inline_data_size)
414 			return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
415 		cmd->pdu_len = len;
416 	}
417 	cmd->req.transfer_len += len;
418 
419 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
420 	if (!cmd->req.sg)
421 		return NVME_SC_INTERNAL;
422 	cmd->cur_sg = cmd->req.sg;
423 
424 	if (nvmet_tcp_has_data_in(cmd)) {
425 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
426 				sizeof(*cmd->iov), GFP_KERNEL);
427 		if (!cmd->iov)
428 			goto err;
429 	}
430 
431 	return 0;
432 err:
433 	nvmet_tcp_free_cmd_buffers(cmd);
434 	return NVME_SC_INTERNAL;
435 }
436 
nvmet_tcp_calc_ddgst(struct nvmet_tcp_cmd * cmd)437 static void nvmet_tcp_calc_ddgst(struct nvmet_tcp_cmd *cmd)
438 {
439 	size_t total_len = cmd->req.transfer_len;
440 	struct scatterlist *sg = cmd->req.sg;
441 	u32 crc = ~0;
442 
443 	while (total_len) {
444 		size_t len = min_t(size_t, total_len, sg->length);
445 
446 		/*
447 		 * Note that the scatterlist does not contain any highmem pages,
448 		 * as it was allocated by sgl_alloc() with GFP_KERNEL.
449 		 */
450 		crc = crc32c(crc, sg_virt(sg), len);
451 		total_len -= len;
452 		sg = sg_next(sg);
453 	}
454 	cmd->exp_ddgst = cpu_to_le32(~crc);
455 }
456 
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)457 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
458 {
459 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
460 	struct nvmet_tcp_queue *queue = cmd->queue;
461 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
462 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
463 
464 	cmd->offset = 0;
465 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
466 
467 	pdu->hdr.type = nvme_tcp_c2h_data;
468 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
469 						NVME_TCP_F_DATA_SUCCESS : 0);
470 	pdu->hdr.hlen = sizeof(*pdu);
471 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
472 	pdu->hdr.plen =
473 		cpu_to_le32(pdu->hdr.hlen + hdgst +
474 				cmd->req.transfer_len + ddgst);
475 	pdu->command_id = cmd->req.cqe->command_id;
476 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
477 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
478 
479 	if (queue->data_digest) {
480 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
481 		nvmet_tcp_calc_ddgst(cmd);
482 	}
483 
484 	if (cmd->queue->hdr_digest) {
485 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
486 		nvmet_tcp_hdgst(pdu, sizeof(*pdu));
487 	}
488 }
489 
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)490 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
491 {
492 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
493 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
494 
495 	cmd->offset = 0;
496 	cmd->state = NVMET_TCP_SEND_R2T;
497 
498 	pdu->hdr.type = nvme_tcp_r2t;
499 	pdu->hdr.flags = 0;
500 	pdu->hdr.hlen = sizeof(*pdu);
501 	pdu->hdr.pdo = 0;
502 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
503 
504 	pdu->command_id = cmd->req.cmd->common.command_id;
505 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
506 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
507 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
508 	if (cmd->queue->hdr_digest) {
509 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
510 		nvmet_tcp_hdgst(pdu, sizeof(*pdu));
511 	}
512 }
513 
nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)514 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
515 {
516 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
517 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
518 
519 	cmd->offset = 0;
520 	cmd->state = NVMET_TCP_SEND_RESPONSE;
521 
522 	pdu->hdr.type = nvme_tcp_rsp;
523 	pdu->hdr.flags = 0;
524 	pdu->hdr.hlen = sizeof(*pdu);
525 	pdu->hdr.pdo = 0;
526 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
527 	if (cmd->queue->hdr_digest) {
528 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
529 		nvmet_tcp_hdgst(pdu, sizeof(*pdu));
530 	}
531 }
532 
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)533 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
534 {
535 	struct llist_node *node;
536 	struct nvmet_tcp_cmd *cmd;
537 
538 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
539 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
540 		list_add(&cmd->entry, &queue->resp_send_list);
541 		queue->send_list_len++;
542 	}
543 }
544 
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)545 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
546 {
547 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
548 				struct nvmet_tcp_cmd, entry);
549 	if (!queue->snd_cmd) {
550 		nvmet_tcp_process_resp_list(queue);
551 		queue->snd_cmd =
552 			list_first_entry_or_null(&queue->resp_send_list,
553 					struct nvmet_tcp_cmd, entry);
554 		if (unlikely(!queue->snd_cmd))
555 			return NULL;
556 	}
557 
558 	list_del_init(&queue->snd_cmd->entry);
559 	queue->send_list_len--;
560 
561 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
562 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
563 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
564 		nvmet_setup_r2t_pdu(queue->snd_cmd);
565 	else
566 		nvmet_setup_response_pdu(queue->snd_cmd);
567 
568 	return queue->snd_cmd;
569 }
570 
nvmet_tcp_queue_response(struct nvmet_req * req)571 static void nvmet_tcp_queue_response(struct nvmet_req *req)
572 {
573 	struct nvmet_tcp_cmd *cmd =
574 		container_of(req, struct nvmet_tcp_cmd, req);
575 	struct nvmet_tcp_queue	*queue = cmd->queue;
576 	enum nvmet_tcp_recv_state queue_state;
577 	struct nvmet_tcp_cmd *queue_cmd;
578 	struct nvme_sgl_desc *sgl;
579 	u32 len;
580 
581 	/* Pairs with store_release in nvmet_prepare_receive_pdu() */
582 	queue_state = smp_load_acquire(&queue->rcv_state);
583 	queue_cmd = READ_ONCE(queue->cmd);
584 
585 	if (unlikely(cmd == queue_cmd)) {
586 		sgl = &cmd->req.cmd->common.dptr.sgl;
587 		len = le32_to_cpu(sgl->length);
588 
589 		/*
590 		 * Wait for inline data before processing the response.
591 		 * Avoid using helpers, this might happen before
592 		 * nvmet_req_init is completed.
593 		 */
594 		if (queue_state == NVMET_TCP_RECV_PDU &&
595 		    len && len <= cmd->req.port->inline_data_size &&
596 		    nvme_is_write(cmd->req.cmd))
597 			return;
598 	}
599 
600 	llist_add(&cmd->lentry, &queue->resp_list);
601 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
602 }
603 
nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)604 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
605 {
606 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
607 		nvmet_tcp_queue_response(&cmd->req);
608 	else
609 		cmd->req.execute(&cmd->req);
610 }
611 
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)612 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
613 {
614 	struct msghdr msg = {
615 		.msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
616 	};
617 	struct bio_vec bvec;
618 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
619 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
620 	int ret;
621 
622 	bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
623 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
624 	ret = sock_sendmsg(cmd->queue->sock, &msg);
625 	if (ret <= 0)
626 		return ret;
627 
628 	cmd->offset += ret;
629 	left -= ret;
630 
631 	if (left)
632 		return -EAGAIN;
633 
634 	cmd->state = NVMET_TCP_SEND_DATA;
635 	cmd->offset  = 0;
636 	return 1;
637 }
638 
nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)639 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
640 {
641 	struct nvmet_tcp_queue *queue = cmd->queue;
642 	int ret;
643 
644 	while (cmd->cur_sg) {
645 		struct msghdr msg = {
646 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
647 		};
648 		struct page *page = sg_page(cmd->cur_sg);
649 		struct bio_vec bvec;
650 		u32 left = cmd->cur_sg->length - cmd->offset;
651 
652 		if ((!last_in_batch && cmd->queue->send_list_len) ||
653 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
654 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
655 			msg.msg_flags |= MSG_MORE;
656 
657 		bvec_set_page(&bvec, page, left, cmd->offset);
658 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
659 		ret = sock_sendmsg(cmd->queue->sock, &msg);
660 		if (ret <= 0)
661 			return ret;
662 
663 		cmd->offset += ret;
664 		cmd->wbytes_done += ret;
665 
666 		/* Done with sg?*/
667 		if (cmd->offset == cmd->cur_sg->length) {
668 			cmd->cur_sg = sg_next(cmd->cur_sg);
669 			cmd->offset = 0;
670 		}
671 	}
672 
673 	if (queue->data_digest) {
674 		cmd->state = NVMET_TCP_SEND_DDGST;
675 		cmd->offset = 0;
676 	} else {
677 		if (queue->nvme_sq.sqhd_disabled) {
678 			cmd->queue->snd_cmd = NULL;
679 			nvmet_tcp_put_cmd(cmd);
680 		} else {
681 			nvmet_setup_response_pdu(cmd);
682 		}
683 	}
684 
685 	if (queue->nvme_sq.sqhd_disabled)
686 		nvmet_tcp_free_cmd_buffers(cmd);
687 
688 	return 1;
689 
690 }
691 
nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)692 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
693 		bool last_in_batch)
694 {
695 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
696 	struct bio_vec bvec;
697 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
698 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
699 	int ret;
700 
701 	if (!last_in_batch && cmd->queue->send_list_len)
702 		msg.msg_flags |= MSG_MORE;
703 	else
704 		msg.msg_flags |= MSG_EOR;
705 
706 	bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
707 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
708 	ret = sock_sendmsg(cmd->queue->sock, &msg);
709 	if (ret <= 0)
710 		return ret;
711 	cmd->offset += ret;
712 	left -= ret;
713 
714 	if (left)
715 		return -EAGAIN;
716 
717 	nvmet_tcp_free_cmd_buffers(cmd);
718 	cmd->queue->snd_cmd = NULL;
719 	nvmet_tcp_put_cmd(cmd);
720 	return 1;
721 }
722 
nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)723 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
724 {
725 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
726 	struct bio_vec bvec;
727 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
728 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
729 	int ret;
730 
731 	if (!last_in_batch && cmd->queue->send_list_len)
732 		msg.msg_flags |= MSG_MORE;
733 	else
734 		msg.msg_flags |= MSG_EOR;
735 
736 	bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
737 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
738 	ret = sock_sendmsg(cmd->queue->sock, &msg);
739 	if (ret <= 0)
740 		return ret;
741 	cmd->offset += ret;
742 	left -= ret;
743 
744 	if (left)
745 		return -EAGAIN;
746 
747 	cmd->queue->snd_cmd = NULL;
748 	return 1;
749 }
750 
nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)751 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
752 {
753 	struct nvmet_tcp_queue *queue = cmd->queue;
754 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
755 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
756 	struct kvec iov = {
757 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
758 		.iov_len = left
759 	};
760 	int ret;
761 
762 	if (!last_in_batch && cmd->queue->send_list_len)
763 		msg.msg_flags |= MSG_MORE;
764 	else
765 		msg.msg_flags |= MSG_EOR;
766 
767 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
768 	if (unlikely(ret <= 0))
769 		return ret;
770 
771 	cmd->offset += ret;
772 	left -= ret;
773 
774 	if (left)
775 		return -EAGAIN;
776 
777 	if (queue->nvme_sq.sqhd_disabled) {
778 		cmd->queue->snd_cmd = NULL;
779 		nvmet_tcp_put_cmd(cmd);
780 	} else {
781 		nvmet_setup_response_pdu(cmd);
782 	}
783 	return 1;
784 }
785 
nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)786 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
787 		bool last_in_batch)
788 {
789 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
790 	int ret = 0;
791 
792 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
793 		cmd = nvmet_tcp_fetch_cmd(queue);
794 		if (unlikely(!cmd))
795 			return 0;
796 	}
797 
798 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
799 		ret = nvmet_try_send_data_pdu(cmd);
800 		if (ret <= 0)
801 			goto done_send;
802 	}
803 
804 	if (cmd->state == NVMET_TCP_SEND_DATA) {
805 		ret = nvmet_try_send_data(cmd, last_in_batch);
806 		if (ret <= 0)
807 			goto done_send;
808 	}
809 
810 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
811 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
812 		if (ret <= 0)
813 			goto done_send;
814 	}
815 
816 	if (cmd->state == NVMET_TCP_SEND_R2T) {
817 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
818 		if (ret <= 0)
819 			goto done_send;
820 	}
821 
822 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
823 		ret = nvmet_try_send_response(cmd, last_in_batch);
824 
825 done_send:
826 	if (ret < 0) {
827 		if (ret == -EAGAIN)
828 			return 0;
829 		return ret;
830 	}
831 
832 	return 1;
833 }
834 
nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)835 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
836 		int budget, int *sends)
837 {
838 	int i, ret = 0;
839 
840 	for (i = 0; i < budget; i++) {
841 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
842 		if (unlikely(ret < 0)) {
843 			nvmet_tcp_socket_error(queue, ret);
844 			goto done;
845 		} else if (ret == 0) {
846 			break;
847 		}
848 		(*sends)++;
849 	}
850 done:
851 	return ret;
852 }
853 
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)854 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
855 {
856 	queue->offset = 0;
857 	queue->left = sizeof(struct nvme_tcp_hdr);
858 	WRITE_ONCE(queue->cmd, NULL);
859 	/* Ensure rcv_state is visible only after queue->cmd is set */
860 	smp_store_release(&queue->rcv_state, NVMET_TCP_RECV_PDU);
861 }
862 
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)863 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
864 {
865 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
866 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
867 	struct msghdr msg = {};
868 	struct kvec iov;
869 	int ret;
870 
871 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
872 		pr_err("bad nvme-tcp pdu length (%d)\n",
873 			le32_to_cpu(icreq->hdr.plen));
874 		nvmet_tcp_fatal_error(queue);
875 		return -EPROTO;
876 	}
877 
878 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
879 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
880 		return -EPROTO;
881 	}
882 
883 	if (icreq->hpda != 0) {
884 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
885 			icreq->hpda);
886 		return -EPROTO;
887 	}
888 
889 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
890 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
891 
892 	memset(icresp, 0, sizeof(*icresp));
893 	icresp->hdr.type = nvme_tcp_icresp;
894 	icresp->hdr.hlen = sizeof(*icresp);
895 	icresp->hdr.pdo = 0;
896 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
897 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
898 	icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
899 	icresp->cpda = 0;
900 	if (queue->hdr_digest)
901 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
902 	if (queue->data_digest)
903 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
904 
905 	iov.iov_base = icresp;
906 	iov.iov_len = sizeof(*icresp);
907 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
908 	if (ret < 0) {
909 		queue->state = NVMET_TCP_Q_FAILED;
910 		return ret; /* queue removal will cleanup */
911 	}
912 
913 	queue->state = NVMET_TCP_Q_LIVE;
914 	nvmet_prepare_receive_pdu(queue);
915 	return 0;
916 }
917 
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)918 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
919 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
920 {
921 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
922 	int ret;
923 
924 	/*
925 	 * This command has not been processed yet, hence we are trying to
926 	 * figure out if there is still pending data left to receive. If
927 	 * we don't, we can simply prepare for the next pdu and bail out,
928 	 * otherwise we will need to prepare a buffer and receive the
929 	 * stale data before continuing forward.
930 	 */
931 	if (!nvme_is_write(cmd->req.cmd) || !data_len ||
932 	    data_len > cmd->req.port->inline_data_size) {
933 		nvmet_prepare_receive_pdu(queue);
934 		return;
935 	}
936 
937 	ret = nvmet_tcp_map_data(cmd);
938 	if (unlikely(ret)) {
939 		pr_err("queue %d: failed to map data\n", queue->idx);
940 		nvmet_tcp_fatal_error(queue);
941 		return;
942 	}
943 
944 	queue->rcv_state = NVMET_TCP_RECV_DATA;
945 	nvmet_tcp_build_pdu_iovec(cmd);
946 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
947 }
948 
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)949 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
950 {
951 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
952 	struct nvmet_tcp_cmd *cmd;
953 	unsigned int exp_data_len;
954 
955 	if (likely(queue->nr_cmds)) {
956 		if (unlikely(data->ttag >= queue->nr_cmds)) {
957 			pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
958 				queue->idx, data->ttag, queue->nr_cmds);
959 			goto err_proto;
960 		}
961 		cmd = &queue->cmds[data->ttag];
962 	} else {
963 		cmd = &queue->connect;
964 	}
965 
966 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
967 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
968 			data->ttag, le32_to_cpu(data->data_offset),
969 			cmd->rbytes_done);
970 		goto err_proto;
971 	}
972 
973 	exp_data_len = le32_to_cpu(data->hdr.plen) -
974 			nvmet_tcp_hdgst_len(queue) -
975 			nvmet_tcp_ddgst_len(queue) -
976 			sizeof(*data);
977 
978 	cmd->pdu_len = le32_to_cpu(data->data_length);
979 	if (unlikely(cmd->pdu_len != exp_data_len ||
980 		     cmd->pdu_len == 0 ||
981 		     cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
982 		pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
983 		goto err_proto;
984 	}
985        /*
986 	* Ensure command data structures are initialized. We must check both
987 	* cmd->req.sg and cmd->iov because they can have different NULL states:
988 	* - Uninitialized commands: both NULL
989 	* - READ commands: cmd->req.sg allocated, cmd->iov NULL
990 	* - WRITE commands: both allocated
991 	*/
992 	if (unlikely(!cmd->req.sg || !cmd->iov)) {
993 		pr_err("queue %d: H2CData PDU received for invalid command state (ttag %u)\n",
994 			queue->idx, data->ttag);
995 		goto err_proto;
996 	}
997 	cmd->pdu_recv = 0;
998 	nvmet_tcp_build_pdu_iovec(cmd);
999 	queue->cmd = cmd;
1000 	queue->rcv_state = NVMET_TCP_RECV_DATA;
1001 
1002 	return 0;
1003 
1004 err_proto:
1005 	/* FIXME: use proper transport errors */
1006 	nvmet_tcp_fatal_error(queue);
1007 	return -EPROTO;
1008 }
1009 
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)1010 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1011 {
1012 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1013 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1014 	struct nvmet_req *req;
1015 	int ret;
1016 
1017 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1018 		if (hdr->type != nvme_tcp_icreq) {
1019 			pr_err("unexpected pdu type (%d) before icreq\n",
1020 				hdr->type);
1021 			nvmet_tcp_fatal_error(queue);
1022 			return -EPROTO;
1023 		}
1024 		return nvmet_tcp_handle_icreq(queue);
1025 	}
1026 
1027 	if (unlikely(hdr->type == nvme_tcp_icreq)) {
1028 		pr_err("queue %d: received icreq pdu in state %d\n",
1029 			queue->idx, queue->state);
1030 		nvmet_tcp_fatal_error(queue);
1031 		return -EPROTO;
1032 	}
1033 
1034 	if (hdr->type == nvme_tcp_h2c_data) {
1035 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1036 		if (unlikely(ret))
1037 			return ret;
1038 		return 0;
1039 	}
1040 
1041 	queue->cmd = nvmet_tcp_get_cmd(queue);
1042 	if (unlikely(!queue->cmd)) {
1043 		/* This should never happen */
1044 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1045 			queue->idx, queue->nr_cmds, queue->send_list_len,
1046 			nvme_cmd->common.opcode);
1047 		nvmet_tcp_fatal_error(queue);
1048 		return -ENOMEM;
1049 	}
1050 
1051 	req = &queue->cmd->req;
1052 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1053 
1054 	if (unlikely(!nvmet_req_init(req, &queue->nvme_sq, &nvmet_tcp_ops))) {
1055 		pr_err("failed cmd %p id %d opcode %d, data_len: %d, status: %04x\n",
1056 			req->cmd, req->cmd->common.command_id,
1057 			req->cmd->common.opcode,
1058 			le32_to_cpu(req->cmd->common.dptr.sgl.length),
1059 			le16_to_cpu(req->cqe->status));
1060 
1061 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1062 		return 0;
1063 	}
1064 
1065 	ret = nvmet_tcp_map_data(queue->cmd);
1066 	if (unlikely(ret)) {
1067 		pr_err("queue %d: failed to map data\n", queue->idx);
1068 		if (nvmet_tcp_has_inline_data(queue->cmd))
1069 			nvmet_tcp_fatal_error(queue);
1070 		else
1071 			nvmet_req_complete(req, ret);
1072 		ret = -EAGAIN;
1073 		goto out;
1074 	}
1075 
1076 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1077 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1078 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1079 			nvmet_tcp_build_pdu_iovec(queue->cmd);
1080 			return 0;
1081 		}
1082 		/* send back R2T */
1083 		nvmet_tcp_queue_response(&queue->cmd->req);
1084 		goto out;
1085 	}
1086 
1087 	queue->cmd->req.execute(&queue->cmd->req);
1088 out:
1089 	nvmet_prepare_receive_pdu(queue);
1090 	return ret;
1091 }
1092 
1093 static const u8 nvme_tcp_pdu_sizes[] = {
1094 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1095 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1096 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1097 };
1098 
nvmet_tcp_pdu_size(u8 type)1099 static inline u8 nvmet_tcp_pdu_size(u8 type)
1100 {
1101 	size_t idx = type;
1102 
1103 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1104 		nvme_tcp_pdu_sizes[idx]) ?
1105 			nvme_tcp_pdu_sizes[idx] : 0;
1106 }
1107 
nvmet_tcp_pdu_valid(u8 type)1108 static inline bool nvmet_tcp_pdu_valid(u8 type)
1109 {
1110 	switch (type) {
1111 	case nvme_tcp_icreq:
1112 	case nvme_tcp_cmd:
1113 	case nvme_tcp_h2c_data:
1114 		/* fallthru */
1115 		return true;
1116 	}
1117 
1118 	return false;
1119 }
1120 
nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue * queue,struct msghdr * msg,char * cbuf)1121 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1122 		struct msghdr *msg, char *cbuf)
1123 {
1124 	struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1125 	u8 ctype, level, description;
1126 	int ret = 0;
1127 
1128 	ctype = tls_get_record_type(queue->sock->sk, cmsg);
1129 	switch (ctype) {
1130 	case 0:
1131 		break;
1132 	case TLS_RECORD_TYPE_DATA:
1133 		break;
1134 	case TLS_RECORD_TYPE_ALERT:
1135 		tls_alert_recv(queue->sock->sk, msg, &level, &description);
1136 		if (level == TLS_ALERT_LEVEL_FATAL) {
1137 			pr_err("queue %d: TLS Alert desc %u\n",
1138 			       queue->idx, description);
1139 			ret = -ENOTCONN;
1140 		} else {
1141 			pr_warn("queue %d: TLS Alert desc %u\n",
1142 			       queue->idx, description);
1143 			ret = -EAGAIN;
1144 		}
1145 		break;
1146 	default:
1147 		/* discard this record type */
1148 		pr_err("queue %d: TLS record %d unhandled\n",
1149 		       queue->idx, ctype);
1150 		ret = -EAGAIN;
1151 		break;
1152 	}
1153 	return ret;
1154 }
1155 
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1156 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1157 {
1158 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1159 	int len, ret;
1160 	struct kvec iov;
1161 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1162 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1163 
1164 recv:
1165 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1166 	iov.iov_len = queue->left;
1167 	if (queue->tls_pskid) {
1168 		msg.msg_control = cbuf;
1169 		msg.msg_controllen = sizeof(cbuf);
1170 	}
1171 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1172 			iov.iov_len, msg.msg_flags);
1173 	if (unlikely(len < 0))
1174 		return len;
1175 	if (queue->tls_pskid) {
1176 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1177 		if (ret < 0)
1178 			return ret;
1179 	}
1180 
1181 	queue->offset += len;
1182 	queue->left -= len;
1183 	if (queue->left)
1184 		return -EAGAIN;
1185 
1186 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1187 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1188 
1189 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1190 			pr_err("unexpected pdu type %d\n", hdr->type);
1191 			nvmet_tcp_fatal_error(queue);
1192 			return -EIO;
1193 		}
1194 
1195 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1196 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1197 			return -EIO;
1198 		}
1199 
1200 		queue->left = hdr->hlen - queue->offset + hdgst;
1201 		goto recv;
1202 	}
1203 
1204 	if (queue->hdr_digest &&
1205 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1206 		nvmet_tcp_fatal_error(queue); /* fatal */
1207 		return -EPROTO;
1208 	}
1209 
1210 	if (queue->data_digest &&
1211 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1212 		nvmet_tcp_fatal_error(queue); /* fatal */
1213 		return -EPROTO;
1214 	}
1215 
1216 	return nvmet_tcp_done_recv_pdu(queue);
1217 }
1218 
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1219 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1220 {
1221 	struct nvmet_tcp_queue *queue = cmd->queue;
1222 
1223 	nvmet_tcp_calc_ddgst(cmd);
1224 	queue->offset = 0;
1225 	queue->left = NVME_TCP_DIGEST_LENGTH;
1226 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1227 }
1228 
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1229 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1230 {
1231 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1232 	int len, ret;
1233 
1234 	while (msg_data_left(&cmd->recv_msg)) {
1235 		len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1236 			cmd->recv_msg.msg_flags);
1237 		if (len <= 0)
1238 			return len;
1239 		if (queue->tls_pskid) {
1240 			ret = nvmet_tcp_tls_record_ok(cmd->queue,
1241 					&cmd->recv_msg, cmd->recv_cbuf);
1242 			if (ret < 0)
1243 				return ret;
1244 		}
1245 
1246 		cmd->pdu_recv += len;
1247 		cmd->rbytes_done += len;
1248 	}
1249 
1250 	if (queue->data_digest) {
1251 		nvmet_tcp_prep_recv_ddgst(cmd);
1252 		return 0;
1253 	}
1254 
1255 	if (cmd->rbytes_done == cmd->req.transfer_len)
1256 		nvmet_tcp_execute_request(cmd);
1257 
1258 	nvmet_prepare_receive_pdu(queue);
1259 	return 0;
1260 }
1261 
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1262 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1263 {
1264 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1265 	int ret, len;
1266 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1267 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1268 	struct kvec iov = {
1269 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1270 		.iov_len = queue->left
1271 	};
1272 
1273 	if (queue->tls_pskid) {
1274 		msg.msg_control = cbuf;
1275 		msg.msg_controllen = sizeof(cbuf);
1276 	}
1277 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1278 			iov.iov_len, msg.msg_flags);
1279 	if (unlikely(len < 0))
1280 		return len;
1281 	if (queue->tls_pskid) {
1282 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1283 		if (ret < 0)
1284 			return ret;
1285 	}
1286 
1287 	queue->offset += len;
1288 	queue->left -= len;
1289 	if (queue->left)
1290 		return -EAGAIN;
1291 
1292 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1293 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1294 			queue->idx, cmd->req.cmd->common.command_id,
1295 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1296 			le32_to_cpu(cmd->exp_ddgst));
1297 		nvmet_req_uninit(&cmd->req);
1298 		nvmet_tcp_free_cmd_buffers(cmd);
1299 		nvmet_tcp_fatal_error(queue);
1300 		ret = -EPROTO;
1301 		goto out;
1302 	}
1303 
1304 	if (cmd->rbytes_done == cmd->req.transfer_len)
1305 		nvmet_tcp_execute_request(cmd);
1306 
1307 	ret = 0;
1308 out:
1309 	nvmet_prepare_receive_pdu(queue);
1310 	return ret;
1311 }
1312 
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1313 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1314 {
1315 	int result = 0;
1316 
1317 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1318 		return 0;
1319 
1320 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1321 		result = nvmet_tcp_try_recv_pdu(queue);
1322 		if (result != 0)
1323 			goto done_recv;
1324 	}
1325 
1326 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1327 		result = nvmet_tcp_try_recv_data(queue);
1328 		if (result != 0)
1329 			goto done_recv;
1330 	}
1331 
1332 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1333 		result = nvmet_tcp_try_recv_ddgst(queue);
1334 		if (result != 0)
1335 			goto done_recv;
1336 	}
1337 
1338 done_recv:
1339 	if (result < 0) {
1340 		if (result == -EAGAIN)
1341 			return 0;
1342 		return result;
1343 	}
1344 	return 1;
1345 }
1346 
nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1347 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1348 		int budget, int *recvs)
1349 {
1350 	int i, ret = 0;
1351 
1352 	for (i = 0; i < budget; i++) {
1353 		ret = nvmet_tcp_try_recv_one(queue);
1354 		if (unlikely(ret < 0)) {
1355 			nvmet_tcp_socket_error(queue, ret);
1356 			goto done;
1357 		} else if (ret == 0) {
1358 			break;
1359 		}
1360 		(*recvs)++;
1361 	}
1362 done:
1363 	return ret;
1364 }
1365 
nvmet_tcp_release_queue(struct kref * kref)1366 static void nvmet_tcp_release_queue(struct kref *kref)
1367 {
1368 	struct nvmet_tcp_queue *queue =
1369 		container_of(kref, struct nvmet_tcp_queue, kref);
1370 
1371 	WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1372 	queue_work(nvmet_wq, &queue->release_work);
1373 }
1374 
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1375 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1376 {
1377 	spin_lock_bh(&queue->state_lock);
1378 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1379 		/* Socket closed during handshake */
1380 		tls_handshake_cancel(queue->sock->sk);
1381 	}
1382 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1383 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1384 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1385 	}
1386 	spin_unlock_bh(&queue->state_lock);
1387 }
1388 
nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue * queue)1389 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1390 {
1391 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1392 }
1393 
nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue * queue,int ops)1394 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1395 		int ops)
1396 {
1397 	if (!idle_poll_period_usecs)
1398 		return false;
1399 
1400 	if (ops)
1401 		nvmet_tcp_arm_queue_deadline(queue);
1402 
1403 	return !time_after(jiffies, queue->poll_end);
1404 }
1405 
nvmet_tcp_io_work(struct work_struct * w)1406 static void nvmet_tcp_io_work(struct work_struct *w)
1407 {
1408 	struct nvmet_tcp_queue *queue =
1409 		container_of(w, struct nvmet_tcp_queue, io_work);
1410 	bool pending;
1411 	int ret, ops = 0;
1412 
1413 	do {
1414 		pending = false;
1415 
1416 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1417 		if (ret > 0)
1418 			pending = true;
1419 		else if (ret < 0)
1420 			return;
1421 
1422 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1423 		if (ret > 0)
1424 			pending = true;
1425 		else if (ret < 0)
1426 			return;
1427 
1428 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1429 
1430 	/*
1431 	 * Requeue the worker if idle deadline period is in progress or any
1432 	 * ops activity was recorded during the do-while loop above.
1433 	 */
1434 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1435 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1436 }
1437 
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1438 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1439 		struct nvmet_tcp_cmd *c)
1440 {
1441 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1442 
1443 	c->queue = queue;
1444 	c->req.port = queue->port->nport;
1445 
1446 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1447 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1448 	if (!c->cmd_pdu)
1449 		return -ENOMEM;
1450 	c->req.cmd = &c->cmd_pdu->cmd;
1451 
1452 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1453 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1454 	if (!c->rsp_pdu)
1455 		goto out_free_cmd;
1456 	c->req.cqe = &c->rsp_pdu->cqe;
1457 
1458 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1459 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1460 	if (!c->data_pdu)
1461 		goto out_free_rsp;
1462 
1463 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1464 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1465 	if (!c->r2t_pdu)
1466 		goto out_free_data;
1467 
1468 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1469 		c->recv_msg.msg_control = c->recv_cbuf;
1470 		c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1471 	}
1472 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1473 
1474 	list_add_tail(&c->entry, &queue->free_list);
1475 
1476 	return 0;
1477 out_free_data:
1478 	page_frag_free(c->data_pdu);
1479 out_free_rsp:
1480 	page_frag_free(c->rsp_pdu);
1481 out_free_cmd:
1482 	page_frag_free(c->cmd_pdu);
1483 	return -ENOMEM;
1484 }
1485 
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1486 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1487 {
1488 	page_frag_free(c->r2t_pdu);
1489 	page_frag_free(c->data_pdu);
1490 	page_frag_free(c->rsp_pdu);
1491 	page_frag_free(c->cmd_pdu);
1492 }
1493 
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1494 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1495 {
1496 	struct nvmet_tcp_cmd *cmds;
1497 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1498 
1499 	cmds = kvcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1500 	if (!cmds)
1501 		goto out;
1502 
1503 	for (i = 0; i < nr_cmds; i++) {
1504 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1505 		if (ret)
1506 			goto out_free;
1507 	}
1508 
1509 	queue->cmds = cmds;
1510 
1511 	return 0;
1512 out_free:
1513 	while (--i >= 0)
1514 		nvmet_tcp_free_cmd(cmds + i);
1515 	kvfree(cmds);
1516 out:
1517 	return ret;
1518 }
1519 
nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1520 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1521 {
1522 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1523 	int i;
1524 
1525 	for (i = 0; i < queue->nr_cmds; i++)
1526 		nvmet_tcp_free_cmd(cmds + i);
1527 
1528 	nvmet_tcp_free_cmd(&queue->connect);
1529 	kvfree(cmds);
1530 }
1531 
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1532 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1533 {
1534 	struct socket *sock = queue->sock;
1535 
1536 	if (!queue->state_change)
1537 		return;
1538 
1539 	write_lock_bh(&sock->sk->sk_callback_lock);
1540 	sock->sk->sk_data_ready =  queue->data_ready;
1541 	sock->sk->sk_state_change = queue->state_change;
1542 	sock->sk->sk_write_space = queue->write_space;
1543 	sock->sk->sk_user_data = NULL;
1544 	write_unlock_bh(&sock->sk->sk_callback_lock);
1545 }
1546 
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1547 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1548 {
1549 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1550 	int i;
1551 
1552 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1553 		if (nvmet_tcp_need_data_in(cmd))
1554 			nvmet_req_uninit(&cmd->req);
1555 	}
1556 
1557 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1558 		/* failed in connect */
1559 		nvmet_req_uninit(&queue->connect.req);
1560 	}
1561 }
1562 
nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue * queue)1563 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1564 {
1565 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1566 	int i;
1567 
1568 	for (i = 0; i < queue->nr_cmds; i++, cmd++)
1569 		nvmet_tcp_free_cmd_buffers(cmd);
1570 	nvmet_tcp_free_cmd_buffers(&queue->connect);
1571 }
1572 
nvmet_tcp_release_queue_work(struct work_struct * w)1573 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1574 {
1575 	struct nvmet_tcp_queue *queue =
1576 		container_of(w, struct nvmet_tcp_queue, release_work);
1577 
1578 	mutex_lock(&nvmet_tcp_queue_mutex);
1579 	list_del_init(&queue->queue_list);
1580 	mutex_unlock(&nvmet_tcp_queue_mutex);
1581 
1582 	nvmet_tcp_restore_socket_callbacks(queue);
1583 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1584 	cancel_work_sync(&queue->io_work);
1585 	/* stop accepting incoming data */
1586 	queue->rcv_state = NVMET_TCP_RECV_ERR;
1587 
1588 	nvmet_sq_put_tls_key(&queue->nvme_sq);
1589 	nvmet_tcp_uninit_data_in_cmds(queue);
1590 	nvmet_sq_destroy(&queue->nvme_sq);
1591 	nvmet_cq_put(&queue->nvme_cq);
1592 	cancel_work_sync(&queue->io_work);
1593 	nvmet_tcp_free_cmd_data_in_buffers(queue);
1594 	/* ->sock will be released by fput() */
1595 	fput(queue->sock->file);
1596 	nvmet_tcp_free_cmds(queue);
1597 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1598 	page_frag_cache_drain(&queue->pf_cache);
1599 	kfree(queue);
1600 }
1601 
nvmet_tcp_data_ready(struct sock * sk)1602 static void nvmet_tcp_data_ready(struct sock *sk)
1603 {
1604 	struct nvmet_tcp_queue *queue;
1605 
1606 	trace_sk_data_ready(sk);
1607 
1608 	read_lock_bh(&sk->sk_callback_lock);
1609 	queue = sk->sk_user_data;
1610 	if (likely(queue)) {
1611 		if (queue->data_ready)
1612 			queue->data_ready(sk);
1613 		if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1614 			queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1615 				      &queue->io_work);
1616 	}
1617 	read_unlock_bh(&sk->sk_callback_lock);
1618 }
1619 
nvmet_tcp_write_space(struct sock * sk)1620 static void nvmet_tcp_write_space(struct sock *sk)
1621 {
1622 	struct nvmet_tcp_queue *queue;
1623 
1624 	read_lock_bh(&sk->sk_callback_lock);
1625 	queue = sk->sk_user_data;
1626 	if (unlikely(!queue))
1627 		goto out;
1628 
1629 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1630 		queue->write_space(sk);
1631 		goto out;
1632 	}
1633 
1634 	if (sk_stream_is_writeable(sk)) {
1635 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1636 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1637 	}
1638 out:
1639 	read_unlock_bh(&sk->sk_callback_lock);
1640 }
1641 
nvmet_tcp_state_change(struct sock * sk)1642 static void nvmet_tcp_state_change(struct sock *sk)
1643 {
1644 	struct nvmet_tcp_queue *queue;
1645 
1646 	read_lock_bh(&sk->sk_callback_lock);
1647 	queue = sk->sk_user_data;
1648 	if (!queue)
1649 		goto done;
1650 
1651 	switch (sk->sk_state) {
1652 	case TCP_FIN_WAIT2:
1653 	case TCP_LAST_ACK:
1654 		break;
1655 	case TCP_FIN_WAIT1:
1656 	case TCP_CLOSE_WAIT:
1657 	case TCP_CLOSE:
1658 		/* FALLTHRU */
1659 		nvmet_tcp_schedule_release_queue(queue);
1660 		break;
1661 	default:
1662 		pr_warn("queue %d unhandled state %d\n",
1663 			queue->idx, sk->sk_state);
1664 	}
1665 done:
1666 	read_unlock_bh(&sk->sk_callback_lock);
1667 }
1668 
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1669 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1670 {
1671 	struct socket *sock = queue->sock;
1672 	struct inet_sock *inet = inet_sk(sock->sk);
1673 	int ret;
1674 
1675 	ret = kernel_getsockname(sock,
1676 		(struct sockaddr *)&queue->sockaddr);
1677 	if (ret < 0)
1678 		return ret;
1679 
1680 	ret = kernel_getpeername(sock,
1681 		(struct sockaddr *)&queue->sockaddr_peer);
1682 	if (ret < 0)
1683 		return ret;
1684 
1685 	/*
1686 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1687 	 * close. This is done to prevent stale data from being sent should
1688 	 * the network connection be restored before TCP times out.
1689 	 */
1690 	sock_no_linger(sock->sk);
1691 
1692 	if (so_priority > 0)
1693 		sock_set_priority(sock->sk, so_priority);
1694 
1695 	/* Set socket type of service */
1696 	if (inet->rcv_tos > 0)
1697 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1698 
1699 	ret = 0;
1700 	write_lock_bh(&sock->sk->sk_callback_lock);
1701 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1702 		/*
1703 		 * If the socket is already closing, don't even start
1704 		 * consuming it
1705 		 */
1706 		ret = -ENOTCONN;
1707 	} else {
1708 		sock->sk->sk_user_data = queue;
1709 		queue->data_ready = sock->sk->sk_data_ready;
1710 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1711 		queue->state_change = sock->sk->sk_state_change;
1712 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1713 		queue->write_space = sock->sk->sk_write_space;
1714 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1715 		if (idle_poll_period_usecs)
1716 			nvmet_tcp_arm_queue_deadline(queue);
1717 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1718 	}
1719 	write_unlock_bh(&sock->sk->sk_callback_lock);
1720 
1721 	return ret;
1722 }
1723 
1724 #ifdef CONFIG_NVME_TARGET_TCP_TLS
nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue * queue)1725 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1726 {
1727 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1728 	int len, ret;
1729 	struct kvec iov = {
1730 		.iov_base = (u8 *)&queue->pdu + queue->offset,
1731 		.iov_len = sizeof(struct nvme_tcp_hdr),
1732 	};
1733 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1734 	struct msghdr msg = {
1735 		.msg_control = cbuf,
1736 		.msg_controllen = sizeof(cbuf),
1737 		.msg_flags = MSG_PEEK,
1738 	};
1739 
1740 	if (nvmet_port_secure_channel_required(queue->port->nport))
1741 		return 0;
1742 
1743 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1744 			iov.iov_len, msg.msg_flags);
1745 	if (unlikely(len < 0)) {
1746 		pr_debug("queue %d: peek error %d\n",
1747 			 queue->idx, len);
1748 		return len;
1749 	}
1750 
1751 	ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1752 	if (ret < 0)
1753 		return ret;
1754 
1755 	if (len < sizeof(struct nvme_tcp_hdr)) {
1756 		pr_debug("queue %d: short read, %d bytes missing\n",
1757 			 queue->idx, (int)iov.iov_len - len);
1758 		return -EAGAIN;
1759 	}
1760 	pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1761 		 queue->idx, hdr->type, hdr->hlen, hdr->plen,
1762 		 (int)sizeof(struct nvme_tcp_icreq_pdu));
1763 	if (hdr->type == nvme_tcp_icreq &&
1764 	    hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1765 	    hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1766 		pr_debug("queue %d: icreq detected\n",
1767 			 queue->idx);
1768 		return len;
1769 	}
1770 	return 0;
1771 }
1772 
nvmet_tcp_tls_key_lookup(struct nvmet_tcp_queue * queue,key_serial_t peerid)1773 static int nvmet_tcp_tls_key_lookup(struct nvmet_tcp_queue *queue,
1774 				    key_serial_t peerid)
1775 {
1776 	struct key *tls_key = nvme_tls_key_lookup(peerid);
1777 	int status = 0;
1778 
1779 	if (IS_ERR(tls_key)) {
1780 		pr_warn("%s: queue %d failed to lookup key %x\n",
1781 			__func__, queue->idx, peerid);
1782 		spin_lock_bh(&queue->state_lock);
1783 		queue->state = NVMET_TCP_Q_FAILED;
1784 		spin_unlock_bh(&queue->state_lock);
1785 		status = PTR_ERR(tls_key);
1786 	} else {
1787 		pr_debug("%s: queue %d using TLS PSK %x\n",
1788 			 __func__, queue->idx, peerid);
1789 		queue->nvme_sq.tls_key = tls_key;
1790 	}
1791 	return status;
1792 }
1793 
nvmet_tcp_tls_handshake_done(void * data,int status,key_serial_t peerid)1794 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1795 					 key_serial_t peerid)
1796 {
1797 	struct nvmet_tcp_queue *queue = data;
1798 
1799 	pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1800 		 queue->idx, peerid, status);
1801 	spin_lock_bh(&queue->state_lock);
1802 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1803 		spin_unlock_bh(&queue->state_lock);
1804 		return;
1805 	}
1806 	if (!status) {
1807 		queue->tls_pskid = peerid;
1808 		queue->state = NVMET_TCP_Q_CONNECTING;
1809 	} else
1810 		queue->state = NVMET_TCP_Q_FAILED;
1811 	spin_unlock_bh(&queue->state_lock);
1812 
1813 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1814 
1815 	if (!status)
1816 		status = nvmet_tcp_tls_key_lookup(queue, peerid);
1817 
1818 	if (status)
1819 		nvmet_tcp_schedule_release_queue(queue);
1820 	else
1821 		nvmet_tcp_set_queue_sock(queue);
1822 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1823 }
1824 
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1825 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1826 {
1827 	struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1828 			struct nvmet_tcp_queue, tls_handshake_tmo_work);
1829 
1830 	pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1831 	/*
1832 	 * If tls_handshake_cancel() fails we've lost the race with
1833 	 * nvmet_tcp_tls_handshake_done() */
1834 	if (!tls_handshake_cancel(queue->sock->sk))
1835 		return;
1836 	spin_lock_bh(&queue->state_lock);
1837 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1838 		spin_unlock_bh(&queue->state_lock);
1839 		return;
1840 	}
1841 	queue->state = NVMET_TCP_Q_FAILED;
1842 	spin_unlock_bh(&queue->state_lock);
1843 	nvmet_tcp_schedule_release_queue(queue);
1844 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1845 }
1846 
nvmet_tcp_tls_handshake(struct nvmet_tcp_queue * queue)1847 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1848 {
1849 	int ret = -EOPNOTSUPP;
1850 	struct tls_handshake_args args;
1851 
1852 	if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1853 		pr_warn("cannot start TLS in state %d\n", queue->state);
1854 		return -EINVAL;
1855 	}
1856 
1857 	kref_get(&queue->kref);
1858 	pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1859 	memset(&args, 0, sizeof(args));
1860 	args.ta_sock = queue->sock;
1861 	args.ta_done = nvmet_tcp_tls_handshake_done;
1862 	args.ta_data = queue;
1863 	args.ta_keyring = key_serial(queue->port->nport->keyring);
1864 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1865 
1866 	ret = tls_server_hello_psk(&args, GFP_KERNEL);
1867 	if (ret) {
1868 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1869 		pr_err("failed to start TLS, err=%d\n", ret);
1870 	} else {
1871 		queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1872 				   tls_handshake_timeout * HZ);
1873 	}
1874 	return ret;
1875 }
1876 #else
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1877 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1878 #endif
1879 
nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1880 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1881 		struct socket *newsock)
1882 {
1883 	struct nvmet_tcp_queue *queue;
1884 	struct file *sock_file = NULL;
1885 	int ret;
1886 
1887 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1888 	if (!queue) {
1889 		ret = -ENOMEM;
1890 		goto out_release;
1891 	}
1892 
1893 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1894 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1895 	kref_init(&queue->kref);
1896 	queue->sock = newsock;
1897 	queue->port = port;
1898 	queue->nr_cmds = 0;
1899 	spin_lock_init(&queue->state_lock);
1900 	if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1901 	    NVMF_TCP_SECTYPE_TLS13)
1902 		queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1903 	else
1904 		queue->state = NVMET_TCP_Q_CONNECTING;
1905 	INIT_LIST_HEAD(&queue->free_list);
1906 	init_llist_head(&queue->resp_list);
1907 	INIT_LIST_HEAD(&queue->resp_send_list);
1908 
1909 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1910 	if (IS_ERR(sock_file)) {
1911 		ret = PTR_ERR(sock_file);
1912 		goto out_free_queue;
1913 	}
1914 
1915 	queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1916 	if (queue->idx < 0) {
1917 		ret = queue->idx;
1918 		goto out_sock;
1919 	}
1920 
1921 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1922 	if (ret)
1923 		goto out_ida_remove;
1924 
1925 	nvmet_cq_init(&queue->nvme_cq);
1926 	ret = nvmet_sq_init(&queue->nvme_sq, &queue->nvme_cq);
1927 	if (ret)
1928 		goto out_free_connect;
1929 
1930 	nvmet_prepare_receive_pdu(queue);
1931 
1932 	mutex_lock(&nvmet_tcp_queue_mutex);
1933 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1934 	mutex_unlock(&nvmet_tcp_queue_mutex);
1935 
1936 	INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1937 			  nvmet_tcp_tls_handshake_timeout);
1938 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1939 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1940 		struct sock *sk = queue->sock->sk;
1941 
1942 		/* Restore the default callbacks before starting upcall */
1943 		write_lock_bh(&sk->sk_callback_lock);
1944 		sk->sk_user_data = NULL;
1945 		sk->sk_data_ready = port->data_ready;
1946 		write_unlock_bh(&sk->sk_callback_lock);
1947 		if (!nvmet_tcp_try_peek_pdu(queue)) {
1948 			if (!nvmet_tcp_tls_handshake(queue))
1949 				return;
1950 			/* TLS handshake failed, terminate the connection */
1951 			goto out_destroy_sq;
1952 		}
1953 		/* Not a TLS connection, continue with normal processing */
1954 		queue->state = NVMET_TCP_Q_CONNECTING;
1955 	}
1956 #endif
1957 
1958 	ret = nvmet_tcp_set_queue_sock(queue);
1959 	if (ret)
1960 		goto out_destroy_sq;
1961 
1962 	return;
1963 out_destroy_sq:
1964 	mutex_lock(&nvmet_tcp_queue_mutex);
1965 	list_del_init(&queue->queue_list);
1966 	mutex_unlock(&nvmet_tcp_queue_mutex);
1967 	nvmet_sq_destroy(&queue->nvme_sq);
1968 out_free_connect:
1969 	nvmet_cq_put(&queue->nvme_cq);
1970 	nvmet_tcp_free_cmd(&queue->connect);
1971 out_ida_remove:
1972 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1973 out_sock:
1974 	fput(queue->sock->file);
1975 out_free_queue:
1976 	kfree(queue);
1977 out_release:
1978 	pr_err("failed to allocate queue, error %d\n", ret);
1979 	if (!sock_file)
1980 		sock_release(newsock);
1981 }
1982 
nvmet_tcp_accept_work(struct work_struct * w)1983 static void nvmet_tcp_accept_work(struct work_struct *w)
1984 {
1985 	struct nvmet_tcp_port *port =
1986 		container_of(w, struct nvmet_tcp_port, accept_work);
1987 	struct socket *newsock;
1988 	int ret;
1989 
1990 	while (true) {
1991 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1992 		if (ret < 0) {
1993 			if (ret != -EAGAIN)
1994 				pr_warn("failed to accept err=%d\n", ret);
1995 			return;
1996 		}
1997 		nvmet_tcp_alloc_queue(port, newsock);
1998 	}
1999 }
2000 
nvmet_tcp_listen_data_ready(struct sock * sk)2001 static void nvmet_tcp_listen_data_ready(struct sock *sk)
2002 {
2003 	struct nvmet_tcp_port *port;
2004 
2005 	trace_sk_data_ready(sk);
2006 
2007 	if (sk->sk_state != TCP_LISTEN)
2008 		return;
2009 
2010 	read_lock_bh(&sk->sk_callback_lock);
2011 	port = sk->sk_user_data;
2012 	if (port)
2013 		queue_work(nvmet_wq, &port->accept_work);
2014 	read_unlock_bh(&sk->sk_callback_lock);
2015 }
2016 
nvmet_tcp_add_port(struct nvmet_port * nport)2017 static int nvmet_tcp_add_port(struct nvmet_port *nport)
2018 {
2019 	struct nvmet_tcp_port *port;
2020 	__kernel_sa_family_t af;
2021 	int ret;
2022 
2023 	port = kzalloc(sizeof(*port), GFP_KERNEL);
2024 	if (!port)
2025 		return -ENOMEM;
2026 
2027 	switch (nport->disc_addr.adrfam) {
2028 	case NVMF_ADDR_FAMILY_IP4:
2029 		af = AF_INET;
2030 		break;
2031 	case NVMF_ADDR_FAMILY_IP6:
2032 		af = AF_INET6;
2033 		break;
2034 	default:
2035 		pr_err("address family %d not supported\n",
2036 				nport->disc_addr.adrfam);
2037 		ret = -EINVAL;
2038 		goto err_port;
2039 	}
2040 
2041 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2042 			nport->disc_addr.trsvcid, &port->addr);
2043 	if (ret) {
2044 		pr_err("malformed ip/port passed: %s:%s\n",
2045 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2046 		goto err_port;
2047 	}
2048 
2049 	port->nport = nport;
2050 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2051 	if (port->nport->inline_data_size < 0)
2052 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2053 
2054 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2055 				IPPROTO_TCP, &port->sock);
2056 	if (ret) {
2057 		pr_err("failed to create a socket\n");
2058 		goto err_port;
2059 	}
2060 
2061 	port->sock->sk->sk_user_data = port;
2062 	port->data_ready = port->sock->sk->sk_data_ready;
2063 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2064 	sock_set_reuseaddr(port->sock->sk);
2065 	tcp_sock_set_nodelay(port->sock->sk);
2066 	if (so_priority > 0)
2067 		sock_set_priority(port->sock->sk, so_priority);
2068 
2069 	ret = kernel_bind(port->sock, (struct sockaddr_unsized *)&port->addr,
2070 			sizeof(port->addr));
2071 	if (ret) {
2072 		pr_err("failed to bind port socket %d\n", ret);
2073 		goto err_sock;
2074 	}
2075 
2076 	ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG);
2077 	if (ret) {
2078 		pr_err("failed to listen %d on port sock\n", ret);
2079 		goto err_sock;
2080 	}
2081 
2082 	nport->priv = port;
2083 	pr_info("enabling port %d (%pISpc)\n",
2084 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
2085 
2086 	return 0;
2087 
2088 err_sock:
2089 	sock_release(port->sock);
2090 err_port:
2091 	kfree(port);
2092 	return ret;
2093 }
2094 
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)2095 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2096 {
2097 	struct nvmet_tcp_queue *queue;
2098 
2099 	mutex_lock(&nvmet_tcp_queue_mutex);
2100 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2101 		if (queue->port == port)
2102 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2103 	mutex_unlock(&nvmet_tcp_queue_mutex);
2104 }
2105 
nvmet_tcp_remove_port(struct nvmet_port * nport)2106 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2107 {
2108 	struct nvmet_tcp_port *port = nport->priv;
2109 
2110 	write_lock_bh(&port->sock->sk->sk_callback_lock);
2111 	port->sock->sk->sk_data_ready = port->data_ready;
2112 	port->sock->sk->sk_user_data = NULL;
2113 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
2114 	cancel_work_sync(&port->accept_work);
2115 	/*
2116 	 * Destroy the remaining queues, which are not belong to any
2117 	 * controller yet.
2118 	 */
2119 	nvmet_tcp_destroy_port_queues(port);
2120 
2121 	sock_release(port->sock);
2122 	kfree(port);
2123 }
2124 
nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)2125 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2126 {
2127 	struct nvmet_tcp_queue *queue;
2128 
2129 	mutex_lock(&nvmet_tcp_queue_mutex);
2130 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2131 		if (queue->nvme_sq.ctrl == ctrl)
2132 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2133 	mutex_unlock(&nvmet_tcp_queue_mutex);
2134 }
2135 
nvmet_tcp_install_queue(struct nvmet_sq * sq)2136 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2137 {
2138 	struct nvmet_tcp_queue *queue =
2139 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2140 
2141 	if (sq->qid == 0) {
2142 		struct nvmet_tcp_queue *q;
2143 		int pending = 0;
2144 
2145 		/* Check for pending controller teardown */
2146 		mutex_lock(&nvmet_tcp_queue_mutex);
2147 		list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2148 			if (q->nvme_sq.ctrl == sq->ctrl &&
2149 			    q->state == NVMET_TCP_Q_DISCONNECTING)
2150 				pending++;
2151 		}
2152 		mutex_unlock(&nvmet_tcp_queue_mutex);
2153 		if (pending > NVMET_TCP_BACKLOG)
2154 			return NVME_SC_CONNECT_CTRL_BUSY;
2155 	}
2156 
2157 	queue->nr_cmds = sq->size * 2;
2158 	if (nvmet_tcp_alloc_cmds(queue)) {
2159 		queue->nr_cmds = 0;
2160 		return NVME_SC_INTERNAL;
2161 	}
2162 	return 0;
2163 }
2164 
nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)2165 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2166 		struct nvmet_port *nport, char *traddr)
2167 {
2168 	struct nvmet_tcp_port *port = nport->priv;
2169 
2170 	if (inet_addr_is_any(&port->addr)) {
2171 		struct nvmet_tcp_cmd *cmd =
2172 			container_of(req, struct nvmet_tcp_cmd, req);
2173 		struct nvmet_tcp_queue *queue = cmd->queue;
2174 
2175 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2176 	} else {
2177 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2178 	}
2179 }
2180 
nvmet_tcp_host_port_addr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)2181 static ssize_t nvmet_tcp_host_port_addr(struct nvmet_ctrl *ctrl,
2182 			char *traddr, size_t traddr_len)
2183 {
2184 	struct nvmet_sq *sq = ctrl->sqs[0];
2185 	struct nvmet_tcp_queue *queue =
2186 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2187 
2188 	if (queue->sockaddr_peer.ss_family == AF_UNSPEC)
2189 		return -EINVAL;
2190 	return snprintf(traddr, traddr_len, "%pISc",
2191 			(struct sockaddr *)&queue->sockaddr_peer);
2192 }
2193 
2194 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2195 	.owner			= THIS_MODULE,
2196 	.type			= NVMF_TRTYPE_TCP,
2197 	.msdbd			= 1,
2198 	.add_port		= nvmet_tcp_add_port,
2199 	.remove_port		= nvmet_tcp_remove_port,
2200 	.queue_response		= nvmet_tcp_queue_response,
2201 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
2202 	.install_queue		= nvmet_tcp_install_queue,
2203 	.disc_traddr		= nvmet_tcp_disc_port_addr,
2204 	.host_traddr		= nvmet_tcp_host_port_addr,
2205 };
2206 
nvmet_tcp_init(void)2207 static int __init nvmet_tcp_init(void)
2208 {
2209 	int ret;
2210 
2211 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2212 				WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2213 	if (!nvmet_tcp_wq)
2214 		return -ENOMEM;
2215 
2216 	ret = nvmet_register_transport(&nvmet_tcp_ops);
2217 	if (ret)
2218 		goto err;
2219 
2220 	return 0;
2221 err:
2222 	destroy_workqueue(nvmet_tcp_wq);
2223 	return ret;
2224 }
2225 
nvmet_tcp_exit(void)2226 static void __exit nvmet_tcp_exit(void)
2227 {
2228 	struct nvmet_tcp_queue *queue;
2229 
2230 	nvmet_unregister_transport(&nvmet_tcp_ops);
2231 
2232 	flush_workqueue(nvmet_wq);
2233 	mutex_lock(&nvmet_tcp_queue_mutex);
2234 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2235 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2236 	mutex_unlock(&nvmet_tcp_queue_mutex);
2237 	flush_workqueue(nvmet_wq);
2238 
2239 	destroy_workqueue(nvmet_tcp_wq);
2240 	ida_destroy(&nvmet_tcp_queue_ida);
2241 }
2242 
2243 module_init(nvmet_tcp_init);
2244 module_exit(nvmet_tcp_exit);
2245 
2246 MODULE_DESCRIPTION("NVMe target TCP transport driver");
2247 MODULE_LICENSE("GPL v2");
2248 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
2249