1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2012 Intel Corporation. All rights reserved. 8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * BSD LICENSE 15 * 16 * Copyright(c) 2012 Intel Corporation. All rights reserved. 17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved. 18 * 19 * Redistribution and use in source and binary forms, with or without 20 * modification, are permitted provided that the following conditions 21 * are met: 22 * 23 * * Redistributions of source code must retain the above copyright 24 * notice, this list of conditions and the following disclaimer. 25 * * Redistributions in binary form must reproduce the above copy 26 * notice, this list of conditions and the following disclaimer in 27 * the documentation and/or other materials provided with the 28 * distribution. 29 * * Neither the name of Intel Corporation nor the names of its 30 * contributors may be used to endorse or promote products derived 31 * from this software without specific prior written permission. 32 * 33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 44 * 45 * PCIe NTB Transport Linux driver 46 * 47 * Contact Information: 48 * Jon Mason <jon.mason@intel.com> 49 */ 50 #include <linux/debugfs.h> 51 #include <linux/delay.h> 52 #include <linux/dmaengine.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/errno.h> 55 #include <linux/export.h> 56 #include <linux/interrupt.h> 57 #include <linux/module.h> 58 #include <linux/pci.h> 59 #include <linux/slab.h> 60 #include <linux/types.h> 61 #include <linux/uaccess.h> 62 #include <linux/mutex.h> 63 #include "linux/ntb.h" 64 #include "linux/ntb_transport.h" 65 66 #define NTB_TRANSPORT_VERSION 4 67 #define NTB_TRANSPORT_VER "4" 68 #define NTB_TRANSPORT_NAME "ntb_transport" 69 #define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB" 70 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2) 71 72 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC); 73 MODULE_VERSION(NTB_TRANSPORT_VER); 74 MODULE_LICENSE("Dual BSD/GPL"); 75 MODULE_AUTHOR("Intel Corporation"); 76 77 static unsigned long max_mw_size; 78 module_param(max_mw_size, ulong, 0644); 79 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows"); 80 81 static unsigned int transport_mtu = 0x10000; 82 module_param(transport_mtu, uint, 0644); 83 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets"); 84 85 static unsigned char max_num_clients; 86 module_param(max_num_clients, byte, 0644); 87 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients"); 88 89 static unsigned int copy_bytes = 1024; 90 module_param(copy_bytes, uint, 0644); 91 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA"); 92 93 static bool use_dma; 94 module_param(use_dma, bool, 0644); 95 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy"); 96 97 static bool use_msi; 98 #ifdef CONFIG_NTB_MSI 99 module_param(use_msi, bool, 0644); 100 MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells"); 101 #endif 102 103 static struct dentry *nt_debugfs_dir; 104 105 /* Only two-ports NTB devices are supported */ 106 #define PIDX NTB_DEF_PEER_IDX 107 108 struct ntb_queue_entry { 109 /* ntb_queue list reference */ 110 struct list_head entry; 111 /* pointers to data to be transferred */ 112 void *cb_data; 113 void *buf; 114 unsigned int len; 115 unsigned int flags; 116 int retries; 117 int errors; 118 unsigned int tx_index; 119 unsigned int rx_index; 120 121 struct ntb_transport_qp *qp; 122 union { 123 struct ntb_payload_header __iomem *tx_hdr; 124 struct ntb_payload_header *rx_hdr; 125 }; 126 }; 127 128 struct ntb_rx_info { 129 unsigned int entry; 130 }; 131 132 struct ntb_transport_qp { 133 struct ntb_transport_ctx *transport; 134 struct ntb_dev *ndev; 135 void *cb_data; 136 struct dma_chan *tx_dma_chan; 137 struct dma_chan *rx_dma_chan; 138 139 bool client_ready; 140 bool link_is_up; 141 bool active; 142 143 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */ 144 u64 qp_bit; 145 146 struct ntb_rx_info __iomem *rx_info; 147 struct ntb_rx_info *remote_rx_info; 148 149 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data, 150 void *data, int len); 151 struct list_head tx_free_q; 152 spinlock_t ntb_tx_free_q_lock; 153 void __iomem *tx_mw; 154 phys_addr_t tx_mw_phys; 155 size_t tx_mw_size; 156 dma_addr_t tx_mw_dma_addr; 157 unsigned int tx_index; 158 unsigned int tx_max_entry; 159 unsigned int tx_max_frame; 160 161 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data, 162 void *data, int len); 163 struct list_head rx_post_q; 164 struct list_head rx_pend_q; 165 struct list_head rx_free_q; 166 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */ 167 spinlock_t ntb_rx_q_lock; 168 void *rx_buff; 169 unsigned int rx_index; 170 unsigned int rx_max_entry; 171 unsigned int rx_max_frame; 172 unsigned int rx_alloc_entry; 173 dma_cookie_t last_cookie; 174 struct tasklet_struct rxc_db_work; 175 176 void (*event_handler)(void *data, int status); 177 struct delayed_work link_work; 178 struct work_struct link_cleanup; 179 180 struct dentry *debugfs_dir; 181 struct dentry *debugfs_stats; 182 183 /* Stats */ 184 u64 rx_bytes; 185 u64 rx_pkts; 186 u64 rx_ring_empty; 187 u64 rx_err_no_buf; 188 u64 rx_err_oflow; 189 u64 rx_err_ver; 190 u64 rx_memcpy; 191 u64 rx_async; 192 u64 tx_bytes; 193 u64 tx_pkts; 194 u64 tx_ring_full; 195 u64 tx_err_no_buf; 196 u64 tx_memcpy; 197 u64 tx_async; 198 199 bool use_msi; 200 int msi_irq; 201 struct ntb_msi_desc msi_desc; 202 struct ntb_msi_desc peer_msi_desc; 203 }; 204 205 struct ntb_transport_mw { 206 phys_addr_t phys_addr; 207 resource_size_t phys_size; 208 void __iomem *vbase; 209 size_t xlat_size; 210 size_t buff_size; 211 size_t alloc_size; 212 void *alloc_addr; 213 void *virt_addr; 214 dma_addr_t dma_addr; 215 }; 216 217 struct ntb_transport_client_dev { 218 struct list_head entry; 219 struct ntb_transport_ctx *nt; 220 struct device dev; 221 }; 222 223 struct ntb_transport_ctx { 224 struct list_head entry; 225 struct list_head client_devs; 226 227 struct ntb_dev *ndev; 228 229 struct ntb_transport_mw *mw_vec; 230 struct ntb_transport_qp *qp_vec; 231 unsigned int mw_count; 232 unsigned int qp_count; 233 u64 qp_bitmap; 234 u64 qp_bitmap_free; 235 236 bool use_msi; 237 unsigned int msi_spad_offset; 238 u64 msi_db_mask; 239 240 bool link_is_up; 241 struct delayed_work link_work; 242 struct work_struct link_cleanup; 243 244 struct dentry *debugfs_node_dir; 245 246 /* Make sure workq of link event be executed serially */ 247 struct mutex link_event_lock; 248 }; 249 250 enum { 251 DESC_DONE_FLAG = BIT(0), 252 LINK_DOWN_FLAG = BIT(1), 253 }; 254 255 struct ntb_payload_header { 256 unsigned int ver; 257 unsigned int len; 258 unsigned int flags; 259 }; 260 261 enum { 262 VERSION = 0, 263 QP_LINKS, 264 NUM_QPS, 265 NUM_MWS, 266 MW0_SZ_HIGH, 267 MW0_SZ_LOW, 268 }; 269 270 #define dev_client_dev(__dev) \ 271 container_of((__dev), struct ntb_transport_client_dev, dev) 272 273 #define drv_client(__drv) \ 274 container_of((__drv), struct ntb_transport_client, driver) 275 276 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count) 277 #define NTB_QP_DEF_NUM_ENTRIES 100 278 #define NTB_LINK_DOWN_TIMEOUT 10 279 280 static void ntb_transport_rxc_db(unsigned long data); 281 static const struct ntb_ctx_ops ntb_transport_ops; 282 static struct ntb_client ntb_transport_client; 283 static int ntb_async_tx_submit(struct ntb_transport_qp *qp, 284 struct ntb_queue_entry *entry); 285 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset); 286 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset); 287 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset); 288 289 290 static int ntb_transport_bus_match(struct device *dev, 291 const struct device_driver *drv) 292 { 293 return !strncmp(dev_name(dev), drv->name, strlen(drv->name)); 294 } 295 296 static int ntb_transport_bus_probe(struct device *dev) 297 { 298 const struct ntb_transport_client *client; 299 int rc; 300 301 get_device(dev); 302 303 client = drv_client(dev->driver); 304 rc = client->probe(dev); 305 if (rc) 306 put_device(dev); 307 308 return rc; 309 } 310 311 static void ntb_transport_bus_remove(struct device *dev) 312 { 313 const struct ntb_transport_client *client; 314 315 client = drv_client(dev->driver); 316 client->remove(dev); 317 318 put_device(dev); 319 } 320 321 static const struct bus_type ntb_transport_bus = { 322 .name = "ntb_transport", 323 .match = ntb_transport_bus_match, 324 .probe = ntb_transport_bus_probe, 325 .remove = ntb_transport_bus_remove, 326 }; 327 328 static LIST_HEAD(ntb_transport_list); 329 330 static int ntb_bus_init(struct ntb_transport_ctx *nt) 331 { 332 list_add_tail(&nt->entry, &ntb_transport_list); 333 return 0; 334 } 335 336 static void ntb_bus_remove(struct ntb_transport_ctx *nt) 337 { 338 struct ntb_transport_client_dev *client_dev, *cd; 339 340 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) { 341 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n", 342 dev_name(&client_dev->dev)); 343 list_del(&client_dev->entry); 344 device_unregister(&client_dev->dev); 345 } 346 347 list_del(&nt->entry); 348 } 349 350 static void ntb_transport_client_release(struct device *dev) 351 { 352 struct ntb_transport_client_dev *client_dev; 353 354 client_dev = dev_client_dev(dev); 355 kfree(client_dev); 356 } 357 358 /** 359 * ntb_transport_unregister_client_dev - Unregister NTB client device 360 * @device_name: Name of NTB client device 361 * 362 * Unregister an NTB client device with the NTB transport layer 363 */ 364 void ntb_transport_unregister_client_dev(char *device_name) 365 { 366 struct ntb_transport_client_dev *client, *cd; 367 struct ntb_transport_ctx *nt; 368 369 list_for_each_entry(nt, &ntb_transport_list, entry) 370 list_for_each_entry_safe(client, cd, &nt->client_devs, entry) 371 if (!strncmp(dev_name(&client->dev), device_name, 372 strlen(device_name))) { 373 list_del(&client->entry); 374 device_unregister(&client->dev); 375 } 376 } 377 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev); 378 379 /** 380 * ntb_transport_register_client_dev - Register NTB client device 381 * @device_name: Name of NTB client device 382 * 383 * Register an NTB client device with the NTB transport layer 384 * 385 * Returns: %0 on success or -errno code on error 386 */ 387 int ntb_transport_register_client_dev(char *device_name) 388 { 389 struct ntb_transport_client_dev *client_dev; 390 struct ntb_transport_ctx *nt; 391 int node; 392 int rc, i = 0; 393 394 if (list_empty(&ntb_transport_list)) 395 return -ENODEV; 396 397 list_for_each_entry(nt, &ntb_transport_list, entry) { 398 struct device *dev; 399 400 node = dev_to_node(&nt->ndev->dev); 401 402 client_dev = kzalloc_node(sizeof(*client_dev), 403 GFP_KERNEL, node); 404 if (!client_dev) { 405 rc = -ENOMEM; 406 goto err; 407 } 408 409 dev = &client_dev->dev; 410 411 /* setup and register client devices */ 412 dev_set_name(dev, "%s%d", device_name, i); 413 dev->bus = &ntb_transport_bus; 414 dev->release = ntb_transport_client_release; 415 dev->parent = &nt->ndev->dev; 416 417 rc = device_register(dev); 418 if (rc) { 419 put_device(dev); 420 goto err; 421 } 422 423 list_add_tail(&client_dev->entry, &nt->client_devs); 424 i++; 425 } 426 427 return 0; 428 429 err: 430 ntb_transport_unregister_client_dev(device_name); 431 432 return rc; 433 } 434 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev); 435 436 /** 437 * ntb_transport_register_client - Register NTB client driver 438 * @drv: NTB client driver to be registered 439 * 440 * Register an NTB client driver with the NTB transport layer 441 * 442 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 443 */ 444 int ntb_transport_register_client(struct ntb_transport_client *drv) 445 { 446 drv->driver.bus = &ntb_transport_bus; 447 448 if (list_empty(&ntb_transport_list)) 449 return -ENODEV; 450 451 return driver_register(&drv->driver); 452 } 453 EXPORT_SYMBOL_GPL(ntb_transport_register_client); 454 455 /** 456 * ntb_transport_unregister_client - Unregister NTB client driver 457 * @drv: NTB client driver to be unregistered 458 * 459 * Unregister an NTB client driver with the NTB transport layer 460 * 461 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 462 */ 463 void ntb_transport_unregister_client(struct ntb_transport_client *drv) 464 { 465 driver_unregister(&drv->driver); 466 } 467 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client); 468 469 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count, 470 loff_t *offp) 471 { 472 struct ntb_transport_qp *qp; 473 char *buf; 474 ssize_t ret, out_offset, out_count; 475 476 qp = filp->private_data; 477 478 if (!qp || !qp->link_is_up) 479 return 0; 480 481 out_count = 1000; 482 483 buf = kmalloc(out_count, GFP_KERNEL); 484 if (!buf) 485 return -ENOMEM; 486 487 out_offset = 0; 488 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 489 "\nNTB QP stats:\n\n"); 490 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 491 "rx_bytes - \t%llu\n", qp->rx_bytes); 492 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 493 "rx_pkts - \t%llu\n", qp->rx_pkts); 494 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 495 "rx_memcpy - \t%llu\n", qp->rx_memcpy); 496 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 497 "rx_async - \t%llu\n", qp->rx_async); 498 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 499 "rx_ring_empty - %llu\n", qp->rx_ring_empty); 500 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 501 "rx_err_no_buf - %llu\n", qp->rx_err_no_buf); 502 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 503 "rx_err_oflow - \t%llu\n", qp->rx_err_oflow); 504 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 505 "rx_err_ver - \t%llu\n", qp->rx_err_ver); 506 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 507 "rx_buff - \t0x%p\n", qp->rx_buff); 508 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 509 "rx_index - \t%u\n", qp->rx_index); 510 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 511 "rx_max_entry - \t%u\n", qp->rx_max_entry); 512 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 513 "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry); 514 515 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 516 "tx_bytes - \t%llu\n", qp->tx_bytes); 517 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 518 "tx_pkts - \t%llu\n", qp->tx_pkts); 519 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 520 "tx_memcpy - \t%llu\n", qp->tx_memcpy); 521 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 522 "tx_async - \t%llu\n", qp->tx_async); 523 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 524 "tx_ring_full - \t%llu\n", qp->tx_ring_full); 525 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 526 "tx_err_no_buf - %llu\n", qp->tx_err_no_buf); 527 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 528 "tx_mw - \t0x%p\n", qp->tx_mw); 529 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 530 "tx_index (H) - \t%u\n", qp->tx_index); 531 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 532 "RRI (T) - \t%u\n", 533 qp->remote_rx_info->entry); 534 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 535 "tx_max_entry - \t%u\n", qp->tx_max_entry); 536 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 537 "free tx - \t%u\n", 538 ntb_transport_tx_free_entry(qp)); 539 540 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 541 "\n"); 542 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 543 "Using TX DMA - \t%s\n", 544 qp->tx_dma_chan ? "Yes" : "No"); 545 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 546 "Using RX DMA - \t%s\n", 547 qp->rx_dma_chan ? "Yes" : "No"); 548 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 549 "QP Link - \t%s\n", 550 qp->link_is_up ? "Up" : "Down"); 551 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 552 "\n"); 553 554 if (out_offset > out_count) 555 out_offset = out_count; 556 557 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); 558 kfree(buf); 559 return ret; 560 } 561 562 static const struct file_operations ntb_qp_debugfs_stats = { 563 .owner = THIS_MODULE, 564 .open = simple_open, 565 .read = debugfs_read, 566 }; 567 568 static void ntb_list_add(spinlock_t *lock, struct list_head *entry, 569 struct list_head *list) 570 { 571 unsigned long flags; 572 573 spin_lock_irqsave(lock, flags); 574 list_add_tail(entry, list); 575 spin_unlock_irqrestore(lock, flags); 576 } 577 578 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock, 579 struct list_head *list) 580 { 581 struct ntb_queue_entry *entry; 582 unsigned long flags; 583 584 spin_lock_irqsave(lock, flags); 585 if (list_empty(list)) { 586 entry = NULL; 587 goto out; 588 } 589 entry = list_first_entry(list, struct ntb_queue_entry, entry); 590 list_del(&entry->entry); 591 592 out: 593 spin_unlock_irqrestore(lock, flags); 594 595 return entry; 596 } 597 598 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock, 599 struct list_head *list, 600 struct list_head *to_list) 601 { 602 struct ntb_queue_entry *entry; 603 unsigned long flags; 604 605 spin_lock_irqsave(lock, flags); 606 607 if (list_empty(list)) { 608 entry = NULL; 609 } else { 610 entry = list_first_entry(list, struct ntb_queue_entry, entry); 611 list_move_tail(&entry->entry, to_list); 612 } 613 614 spin_unlock_irqrestore(lock, flags); 615 616 return entry; 617 } 618 619 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, 620 unsigned int qp_num) 621 { 622 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 623 struct ntb_transport_mw *mw; 624 struct ntb_dev *ndev = nt->ndev; 625 struct ntb_queue_entry *entry; 626 unsigned int rx_size, num_qps_mw; 627 unsigned int mw_num, mw_count, qp_count; 628 unsigned int i; 629 int node; 630 631 mw_count = nt->mw_count; 632 qp_count = nt->qp_count; 633 634 mw_num = QP_TO_MW(nt, qp_num); 635 mw = &nt->mw_vec[mw_num]; 636 637 if (!mw->virt_addr) 638 return -ENOMEM; 639 640 if (mw_num < qp_count % mw_count) 641 num_qps_mw = qp_count / mw_count + 1; 642 else 643 num_qps_mw = qp_count / mw_count; 644 645 rx_size = (unsigned int)mw->xlat_size / num_qps_mw; 646 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count); 647 rx_size -= sizeof(struct ntb_rx_info); 648 649 qp->remote_rx_info = qp->rx_buff + rx_size; 650 651 /* Due to housekeeping, there must be atleast 2 buffs */ 652 qp->rx_max_frame = min(transport_mtu, rx_size / 2); 653 qp->rx_max_entry = rx_size / qp->rx_max_frame; 654 qp->rx_index = 0; 655 656 /* 657 * Checking to see if we have more entries than the default. 658 * We should add additional entries if that is the case so we 659 * can be in sync with the transport frames. 660 */ 661 node = dev_to_node(&ndev->dev); 662 for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) { 663 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node); 664 if (!entry) 665 return -ENOMEM; 666 667 entry->qp = qp; 668 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, 669 &qp->rx_free_q); 670 qp->rx_alloc_entry++; 671 } 672 673 qp->remote_rx_info->entry = qp->rx_max_entry - 1; 674 675 /* setup the hdr offsets with 0's */ 676 for (i = 0; i < qp->rx_max_entry; i++) { 677 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) - 678 sizeof(struct ntb_payload_header)); 679 memset(offset, 0, sizeof(struct ntb_payload_header)); 680 } 681 682 qp->rx_pkts = 0; 683 qp->tx_pkts = 0; 684 qp->tx_index = 0; 685 686 return 0; 687 } 688 689 static irqreturn_t ntb_transport_isr(int irq, void *dev) 690 { 691 struct ntb_transport_qp *qp = dev; 692 693 tasklet_schedule(&qp->rxc_db_work); 694 695 return IRQ_HANDLED; 696 } 697 698 static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt, 699 unsigned int qp_num) 700 { 701 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 702 int spad = qp_num * 2 + nt->msi_spad_offset; 703 704 if (!nt->use_msi) 705 return; 706 707 if (spad >= ntb_spad_count(nt->ndev)) 708 return; 709 710 qp->peer_msi_desc.addr_offset = 711 ntb_peer_spad_read(qp->ndev, PIDX, spad); 712 qp->peer_msi_desc.data = 713 ntb_peer_spad_read(qp->ndev, PIDX, spad + 1); 714 715 dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n", 716 qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data); 717 718 if (qp->peer_msi_desc.addr_offset) { 719 qp->use_msi = true; 720 dev_info(&qp->ndev->pdev->dev, 721 "Using MSI interrupts for QP%d\n", qp_num); 722 } 723 } 724 725 static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt, 726 unsigned int qp_num) 727 { 728 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 729 int spad = qp_num * 2 + nt->msi_spad_offset; 730 int rc; 731 732 if (!nt->use_msi) 733 return; 734 735 if (spad >= ntb_spad_count(nt->ndev)) { 736 dev_warn_once(&qp->ndev->pdev->dev, 737 "Not enough SPADS to use MSI interrupts\n"); 738 return; 739 } 740 741 ntb_spad_write(qp->ndev, spad, 0); 742 ntb_spad_write(qp->ndev, spad + 1, 0); 743 744 if (!qp->msi_irq) { 745 qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr, 746 KBUILD_MODNAME, qp, 747 &qp->msi_desc); 748 if (qp->msi_irq < 0) { 749 dev_warn(&qp->ndev->pdev->dev, 750 "Unable to allocate MSI interrupt for qp%d\n", 751 qp_num); 752 return; 753 } 754 } 755 756 rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset); 757 if (rc) 758 goto err_free_interrupt; 759 760 rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data); 761 if (rc) 762 goto err_free_interrupt; 763 764 dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n", 765 qp_num, qp->msi_irq, qp->msi_desc.addr_offset, 766 qp->msi_desc.data); 767 768 return; 769 770 err_free_interrupt: 771 devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp); 772 } 773 774 static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt) 775 { 776 int i; 777 778 dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed"); 779 780 for (i = 0; i < nt->qp_count; i++) 781 ntb_transport_setup_qp_peer_msi(nt, i); 782 } 783 784 static void ntb_transport_msi_desc_changed(void *data) 785 { 786 struct ntb_transport_ctx *nt = data; 787 int i; 788 789 dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed"); 790 791 for (i = 0; i < nt->qp_count; i++) 792 ntb_transport_setup_qp_msi(nt, i); 793 794 ntb_peer_db_set(nt->ndev, nt->msi_db_mask); 795 } 796 797 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw) 798 { 799 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 800 struct pci_dev *pdev = nt->ndev->pdev; 801 802 if (!mw->virt_addr) 803 return; 804 805 ntb_mw_clear_trans(nt->ndev, PIDX, num_mw); 806 dma_free_coherent(&pdev->dev, mw->alloc_size, 807 mw->alloc_addr, mw->dma_addr); 808 mw->xlat_size = 0; 809 mw->buff_size = 0; 810 mw->alloc_size = 0; 811 mw->alloc_addr = NULL; 812 mw->virt_addr = NULL; 813 } 814 815 static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw, 816 struct device *ntb_dev, size_t align) 817 { 818 dma_addr_t dma_addr; 819 void *alloc_addr, *virt_addr; 820 int rc; 821 822 /* 823 * The buffer here is allocated against the NTB device. The reason to 824 * use dma_alloc_*() call is to allocate a large IOVA contiguous buffer 825 * backing the NTB BAR for the remote host to write to. During receive 826 * processing, the data is being copied out of the receive buffer to 827 * the kernel skbuff. When a DMA device is being used, dma_map_page() 828 * is called on the kvaddr of the receive buffer (from dma_alloc_*()) 829 * and remapped against the DMA device. It appears to be a double 830 * DMA mapping of buffers, but first is mapped to the NTB device and 831 * second is to the DMA device. DMA_ATTR_FORCE_CONTIGUOUS is necessary 832 * in order for the later dma_map_page() to not fail. 833 */ 834 alloc_addr = dma_alloc_attrs(ntb_dev, mw->alloc_size, 835 &dma_addr, GFP_KERNEL, 836 DMA_ATTR_FORCE_CONTIGUOUS); 837 if (!alloc_addr) { 838 dev_err(ntb_dev, "Unable to alloc MW buff of size %zu\n", 839 mw->alloc_size); 840 return -ENOMEM; 841 } 842 virt_addr = alloc_addr; 843 844 /* 845 * we must ensure that the memory address allocated is BAR size 846 * aligned in order for the XLAT register to take the value. This 847 * is a requirement of the hardware. It is recommended to setup CMA 848 * for BAR sizes equal or greater than 4MB. 849 */ 850 if (!IS_ALIGNED(dma_addr, align)) { 851 if (mw->alloc_size > mw->buff_size) { 852 virt_addr = PTR_ALIGN(alloc_addr, align); 853 dma_addr = ALIGN(dma_addr, align); 854 } else { 855 rc = -ENOMEM; 856 goto err; 857 } 858 } 859 860 mw->alloc_addr = alloc_addr; 861 mw->virt_addr = virt_addr; 862 mw->dma_addr = dma_addr; 863 864 return 0; 865 866 err: 867 dma_free_coherent(ntb_dev, mw->alloc_size, alloc_addr, dma_addr); 868 869 return rc; 870 } 871 872 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw, 873 resource_size_t size) 874 { 875 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 876 struct pci_dev *pdev = nt->ndev->pdev; 877 size_t xlat_size, buff_size; 878 resource_size_t xlat_align; 879 resource_size_t xlat_align_size; 880 int rc; 881 882 if (!size) 883 return -EINVAL; 884 885 rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align, 886 &xlat_align_size, NULL); 887 if (rc) 888 return rc; 889 890 xlat_size = round_up(size, xlat_align_size); 891 buff_size = round_up(size, xlat_align); 892 893 /* No need to re-setup */ 894 if (mw->xlat_size == xlat_size) 895 return 0; 896 897 if (mw->buff_size) 898 ntb_free_mw(nt, num_mw); 899 900 /* Alloc memory for receiving data. Must be aligned */ 901 mw->xlat_size = xlat_size; 902 mw->buff_size = buff_size; 903 mw->alloc_size = buff_size; 904 905 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align); 906 if (rc) { 907 mw->alloc_size *= 2; 908 rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align); 909 if (rc) { 910 dev_err(&pdev->dev, 911 "Unable to alloc aligned MW buff\n"); 912 mw->xlat_size = 0; 913 mw->buff_size = 0; 914 mw->alloc_size = 0; 915 return rc; 916 } 917 } 918 919 /* Notify HW the memory location of the receive buffer */ 920 rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr, 921 mw->xlat_size); 922 if (rc) { 923 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw); 924 ntb_free_mw(nt, num_mw); 925 return -EIO; 926 } 927 928 return 0; 929 } 930 931 static void ntb_qp_link_context_reset(struct ntb_transport_qp *qp) 932 { 933 qp->link_is_up = false; 934 qp->active = false; 935 936 qp->tx_index = 0; 937 qp->rx_index = 0; 938 qp->rx_bytes = 0; 939 qp->rx_pkts = 0; 940 qp->rx_ring_empty = 0; 941 qp->rx_err_no_buf = 0; 942 qp->rx_err_oflow = 0; 943 qp->rx_err_ver = 0; 944 qp->rx_memcpy = 0; 945 qp->rx_async = 0; 946 qp->tx_bytes = 0; 947 qp->tx_pkts = 0; 948 qp->tx_ring_full = 0; 949 qp->tx_err_no_buf = 0; 950 qp->tx_memcpy = 0; 951 qp->tx_async = 0; 952 } 953 954 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp) 955 { 956 ntb_qp_link_context_reset(qp); 957 if (qp->remote_rx_info) 958 qp->remote_rx_info->entry = qp->rx_max_entry - 1; 959 } 960 961 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp) 962 { 963 struct ntb_transport_ctx *nt = qp->transport; 964 struct pci_dev *pdev = nt->ndev->pdev; 965 966 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num); 967 968 cancel_delayed_work_sync(&qp->link_work); 969 ntb_qp_link_down_reset(qp); 970 971 if (qp->event_handler) 972 qp->event_handler(qp->cb_data, qp->link_is_up); 973 } 974 975 static void ntb_qp_link_cleanup_work(struct work_struct *work) 976 { 977 struct ntb_transport_qp *qp = container_of(work, 978 struct ntb_transport_qp, 979 link_cleanup); 980 struct ntb_transport_ctx *nt = qp->transport; 981 982 ntb_qp_link_cleanup(qp); 983 984 if (nt->link_is_up) 985 schedule_delayed_work(&qp->link_work, 986 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT)); 987 } 988 989 static void ntb_qp_link_down(struct ntb_transport_qp *qp) 990 { 991 schedule_work(&qp->link_cleanup); 992 } 993 994 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt) 995 { 996 struct ntb_transport_qp *qp; 997 u64 qp_bitmap_alloc; 998 unsigned int i, count; 999 1000 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free; 1001 1002 /* Pass along the info to any clients */ 1003 for (i = 0; i < nt->qp_count; i++) 1004 if (qp_bitmap_alloc & BIT_ULL(i)) { 1005 qp = &nt->qp_vec[i]; 1006 ntb_qp_link_cleanup(qp); 1007 cancel_work_sync(&qp->link_cleanup); 1008 cancel_delayed_work_sync(&qp->link_work); 1009 } 1010 1011 if (!nt->link_is_up) 1012 cancel_delayed_work_sync(&nt->link_work); 1013 1014 for (i = 0; i < nt->mw_count; i++) 1015 ntb_free_mw(nt, i); 1016 1017 /* The scratchpad registers keep the values if the remote side 1018 * goes down, blast them now to give them a sane value the next 1019 * time they are accessed 1020 */ 1021 count = ntb_spad_count(nt->ndev); 1022 for (i = 0; i < count; i++) 1023 ntb_spad_write(nt->ndev, i, 0); 1024 } 1025 1026 static void ntb_transport_link_cleanup_work(struct work_struct *work) 1027 { 1028 struct ntb_transport_ctx *nt = 1029 container_of(work, struct ntb_transport_ctx, link_cleanup); 1030 1031 guard(mutex)(&nt->link_event_lock); 1032 ntb_transport_link_cleanup(nt); 1033 } 1034 1035 static void ntb_transport_event_callback(void *data) 1036 { 1037 struct ntb_transport_ctx *nt = data; 1038 1039 if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1) 1040 schedule_delayed_work(&nt->link_work, 0); 1041 else 1042 schedule_work(&nt->link_cleanup); 1043 } 1044 1045 static void ntb_transport_link_work(struct work_struct *work) 1046 { 1047 struct ntb_transport_ctx *nt = 1048 container_of(work, struct ntb_transport_ctx, link_work.work); 1049 struct ntb_dev *ndev = nt->ndev; 1050 struct pci_dev *pdev = ndev->pdev; 1051 resource_size_t size; 1052 u32 val; 1053 int rc = 0, i, spad; 1054 1055 guard(mutex)(&nt->link_event_lock); 1056 1057 /* send the local info, in the opposite order of the way we read it */ 1058 1059 if (nt->use_msi) { 1060 rc = ntb_msi_setup_mws(ndev); 1061 if (rc) { 1062 dev_warn(&pdev->dev, 1063 "Failed to register MSI memory window: %d\n", 1064 rc); 1065 nt->use_msi = false; 1066 } 1067 } 1068 1069 for (i = 0; i < nt->qp_count; i++) 1070 ntb_transport_setup_qp_msi(nt, i); 1071 1072 for (i = 0; i < nt->mw_count; i++) { 1073 size = nt->mw_vec[i].phys_size; 1074 1075 if (max_mw_size && size > max_mw_size) 1076 size = max_mw_size; 1077 1078 spad = MW0_SZ_HIGH + (i * 2); 1079 ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size)); 1080 1081 spad = MW0_SZ_LOW + (i * 2); 1082 ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size)); 1083 } 1084 1085 ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count); 1086 1087 ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count); 1088 1089 ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION); 1090 1091 /* Query the remote side for its info */ 1092 val = ntb_spad_read(ndev, VERSION); 1093 dev_dbg(&pdev->dev, "Remote version = %d\n", val); 1094 if (val != NTB_TRANSPORT_VERSION) 1095 goto out; 1096 1097 val = ntb_spad_read(ndev, NUM_QPS); 1098 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val); 1099 if (val != nt->qp_count) 1100 goto out; 1101 1102 val = ntb_spad_read(ndev, NUM_MWS); 1103 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val); 1104 if (val != nt->mw_count) 1105 goto out; 1106 1107 for (i = 0; i < nt->mw_count; i++) { 1108 u64 val64; 1109 1110 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2)); 1111 val64 = (u64)val << 32; 1112 1113 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2)); 1114 val64 |= val; 1115 1116 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64); 1117 1118 rc = ntb_set_mw(nt, i, val64); 1119 if (rc) 1120 goto out1; 1121 } 1122 1123 nt->link_is_up = true; 1124 1125 for (i = 0; i < nt->qp_count; i++) { 1126 struct ntb_transport_qp *qp = &nt->qp_vec[i]; 1127 1128 ntb_transport_setup_qp_mw(nt, i); 1129 ntb_transport_setup_qp_peer_msi(nt, i); 1130 1131 if (qp->client_ready) 1132 schedule_delayed_work(&qp->link_work, 0); 1133 } 1134 1135 return; 1136 1137 out1: 1138 for (i = 0; i < nt->mw_count; i++) 1139 ntb_free_mw(nt, i); 1140 1141 /* if there's an actual failure, we should just bail */ 1142 if (rc < 0) 1143 return; 1144 1145 out: 1146 if (ntb_link_is_up(ndev, NULL, NULL) == 1) 1147 schedule_delayed_work(&nt->link_work, 1148 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT)); 1149 } 1150 1151 static void ntb_qp_link_work(struct work_struct *work) 1152 { 1153 struct ntb_transport_qp *qp = container_of(work, 1154 struct ntb_transport_qp, 1155 link_work.work); 1156 struct pci_dev *pdev = qp->ndev->pdev; 1157 struct ntb_transport_ctx *nt = qp->transport; 1158 int val; 1159 1160 WARN_ON(!nt->link_is_up); 1161 1162 val = ntb_spad_read(nt->ndev, QP_LINKS); 1163 1164 ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num)); 1165 1166 /* query remote spad for qp ready bits */ 1167 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val); 1168 1169 /* See if the remote side is up */ 1170 if (val & BIT(qp->qp_num)) { 1171 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num); 1172 qp->link_is_up = true; 1173 qp->active = true; 1174 1175 if (qp->event_handler) 1176 qp->event_handler(qp->cb_data, qp->link_is_up); 1177 1178 if (qp->active) 1179 tasklet_schedule(&qp->rxc_db_work); 1180 } else if (nt->link_is_up) 1181 schedule_delayed_work(&qp->link_work, 1182 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT)); 1183 } 1184 1185 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt, 1186 unsigned int qp_num) 1187 { 1188 struct ntb_transport_qp *qp; 1189 phys_addr_t mw_base; 1190 resource_size_t mw_size; 1191 unsigned int num_qps_mw, tx_size; 1192 unsigned int mw_num, mw_count, qp_count; 1193 u64 qp_offset; 1194 1195 mw_count = nt->mw_count; 1196 qp_count = nt->qp_count; 1197 1198 mw_num = QP_TO_MW(nt, qp_num); 1199 1200 qp = &nt->qp_vec[qp_num]; 1201 qp->qp_num = qp_num; 1202 qp->transport = nt; 1203 qp->ndev = nt->ndev; 1204 qp->client_ready = false; 1205 qp->event_handler = NULL; 1206 ntb_qp_link_context_reset(qp); 1207 1208 if (mw_num < qp_count % mw_count) 1209 num_qps_mw = qp_count / mw_count + 1; 1210 else 1211 num_qps_mw = qp_count / mw_count; 1212 1213 mw_base = nt->mw_vec[mw_num].phys_addr; 1214 mw_size = nt->mw_vec[mw_num].phys_size; 1215 1216 if (max_mw_size && mw_size > max_mw_size) 1217 mw_size = max_mw_size; 1218 1219 tx_size = (unsigned int)mw_size / num_qps_mw; 1220 qp_offset = tx_size * (qp_num / mw_count); 1221 1222 qp->tx_mw_size = tx_size; 1223 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset; 1224 if (!qp->tx_mw) 1225 return -EINVAL; 1226 1227 qp->tx_mw_phys = mw_base + qp_offset; 1228 if (!qp->tx_mw_phys) 1229 return -EINVAL; 1230 1231 tx_size -= sizeof(struct ntb_rx_info); 1232 qp->rx_info = qp->tx_mw + tx_size; 1233 1234 /* Due to housekeeping, there must be atleast 2 buffs */ 1235 qp->tx_max_frame = min(transport_mtu, tx_size / 2); 1236 qp->tx_max_entry = tx_size / qp->tx_max_frame; 1237 1238 if (nt->debugfs_node_dir) { 1239 char debugfs_name[4]; 1240 1241 snprintf(debugfs_name, 4, "qp%d", qp_num); 1242 qp->debugfs_dir = debugfs_create_dir(debugfs_name, 1243 nt->debugfs_node_dir); 1244 1245 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR, 1246 qp->debugfs_dir, qp, 1247 &ntb_qp_debugfs_stats); 1248 } else { 1249 qp->debugfs_dir = NULL; 1250 qp->debugfs_stats = NULL; 1251 } 1252 1253 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work); 1254 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work); 1255 1256 spin_lock_init(&qp->ntb_rx_q_lock); 1257 spin_lock_init(&qp->ntb_tx_free_q_lock); 1258 1259 INIT_LIST_HEAD(&qp->rx_post_q); 1260 INIT_LIST_HEAD(&qp->rx_pend_q); 1261 INIT_LIST_HEAD(&qp->rx_free_q); 1262 INIT_LIST_HEAD(&qp->tx_free_q); 1263 1264 tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db, 1265 (unsigned long)qp); 1266 1267 return 0; 1268 } 1269 1270 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev) 1271 { 1272 struct ntb_transport_ctx *nt; 1273 struct ntb_transport_mw *mw; 1274 unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads; 1275 u64 qp_bitmap; 1276 int node; 1277 int rc, i; 1278 1279 mw_count = ntb_peer_mw_count(ndev); 1280 1281 if (!ndev->ops->mw_set_trans) { 1282 dev_err(&ndev->dev, "Inbound MW based NTB API is required\n"); 1283 return -EINVAL; 1284 } 1285 1286 if (ntb_db_is_unsafe(ndev)) 1287 dev_dbg(&ndev->dev, 1288 "doorbell is unsafe, proceed anyway...\n"); 1289 if (ntb_spad_is_unsafe(ndev)) 1290 dev_dbg(&ndev->dev, 1291 "scratchpad is unsafe, proceed anyway...\n"); 1292 1293 if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT) 1294 dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n"); 1295 1296 node = dev_to_node(&ndev->dev); 1297 1298 nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node); 1299 if (!nt) 1300 return -ENOMEM; 1301 1302 nt->ndev = ndev; 1303 1304 /* 1305 * If we are using MSI, and have at least one extra memory window, 1306 * we will reserve the last MW for the MSI window. 1307 */ 1308 if (use_msi && mw_count > 1) { 1309 rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed); 1310 if (!rc) { 1311 mw_count -= 1; 1312 nt->use_msi = true; 1313 } 1314 } 1315 1316 spad_count = ntb_spad_count(ndev); 1317 1318 /* Limit the MW's based on the availability of scratchpads */ 1319 1320 if (spad_count < NTB_TRANSPORT_MIN_SPADS) { 1321 nt->mw_count = 0; 1322 rc = -EINVAL; 1323 goto err; 1324 } 1325 1326 max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2; 1327 nt->mw_count = min(mw_count, max_mw_count_for_spads); 1328 1329 nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH; 1330 1331 nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec), 1332 GFP_KERNEL, node); 1333 if (!nt->mw_vec) { 1334 rc = -ENOMEM; 1335 goto err; 1336 } 1337 1338 for (i = 0; i < mw_count; i++) { 1339 mw = &nt->mw_vec[i]; 1340 1341 rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr, 1342 &mw->phys_size); 1343 if (rc) 1344 goto err1; 1345 1346 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size); 1347 if (!mw->vbase) { 1348 rc = -ENOMEM; 1349 goto err1; 1350 } 1351 1352 mw->buff_size = 0; 1353 mw->xlat_size = 0; 1354 mw->virt_addr = NULL; 1355 mw->dma_addr = 0; 1356 } 1357 1358 qp_bitmap = ntb_db_valid_mask(ndev); 1359 1360 qp_count = ilog2(qp_bitmap); 1361 if (nt->use_msi) { 1362 qp_count -= 1; 1363 nt->msi_db_mask = BIT_ULL(qp_count); 1364 ntb_db_clear_mask(ndev, nt->msi_db_mask); 1365 } 1366 1367 if (max_num_clients && max_num_clients < qp_count) 1368 qp_count = max_num_clients; 1369 else if (nt->mw_count < qp_count) 1370 qp_count = nt->mw_count; 1371 1372 qp_bitmap &= BIT_ULL(qp_count) - 1; 1373 1374 nt->qp_count = qp_count; 1375 nt->qp_bitmap = qp_bitmap; 1376 nt->qp_bitmap_free = qp_bitmap; 1377 1378 nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec), 1379 GFP_KERNEL, node); 1380 if (!nt->qp_vec) { 1381 rc = -ENOMEM; 1382 goto err1; 1383 } 1384 1385 if (nt_debugfs_dir) { 1386 nt->debugfs_node_dir = 1387 debugfs_create_dir(pci_name(ndev->pdev), 1388 nt_debugfs_dir); 1389 } 1390 1391 for (i = 0; i < qp_count; i++) { 1392 rc = ntb_transport_init_queue(nt, i); 1393 if (rc) 1394 goto err2; 1395 } 1396 1397 mutex_init(&nt->link_event_lock); 1398 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work); 1399 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work); 1400 1401 rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops); 1402 if (rc) 1403 goto err2; 1404 1405 INIT_LIST_HEAD(&nt->client_devs); 1406 rc = ntb_bus_init(nt); 1407 if (rc) 1408 goto err3; 1409 1410 nt->link_is_up = false; 1411 ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); 1412 ntb_link_event(ndev); 1413 1414 return 0; 1415 1416 err3: 1417 ntb_clear_ctx(ndev); 1418 err2: 1419 kfree(nt->qp_vec); 1420 err1: 1421 while (i--) { 1422 mw = &nt->mw_vec[i]; 1423 iounmap(mw->vbase); 1424 } 1425 kfree(nt->mw_vec); 1426 err: 1427 kfree(nt); 1428 return rc; 1429 } 1430 1431 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev) 1432 { 1433 struct ntb_transport_ctx *nt = ndev->ctx; 1434 struct ntb_transport_qp *qp; 1435 u64 qp_bitmap_alloc; 1436 int i; 1437 1438 ntb_transport_link_cleanup(nt); 1439 cancel_work_sync(&nt->link_cleanup); 1440 cancel_delayed_work_sync(&nt->link_work); 1441 1442 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free; 1443 1444 /* verify that all the qp's are freed */ 1445 for (i = 0; i < nt->qp_count; i++) { 1446 qp = &nt->qp_vec[i]; 1447 if (qp_bitmap_alloc & BIT_ULL(i)) 1448 ntb_transport_free_queue(qp); 1449 debugfs_remove_recursive(qp->debugfs_dir); 1450 } 1451 1452 ntb_link_disable(ndev); 1453 ntb_clear_ctx(ndev); 1454 1455 ntb_bus_remove(nt); 1456 1457 for (i = nt->mw_count; i--; ) { 1458 ntb_free_mw(nt, i); 1459 iounmap(nt->mw_vec[i].vbase); 1460 } 1461 1462 kfree(nt->qp_vec); 1463 kfree(nt->mw_vec); 1464 kfree(nt); 1465 } 1466 1467 static void ntb_complete_rxc(struct ntb_transport_qp *qp) 1468 { 1469 struct ntb_queue_entry *entry; 1470 void *cb_data; 1471 unsigned int len; 1472 unsigned long irqflags; 1473 1474 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags); 1475 1476 while (!list_empty(&qp->rx_post_q)) { 1477 entry = list_first_entry(&qp->rx_post_q, 1478 struct ntb_queue_entry, entry); 1479 if (!(entry->flags & DESC_DONE_FLAG)) 1480 break; 1481 1482 entry->rx_hdr->flags = 0; 1483 iowrite32(entry->rx_index, &qp->rx_info->entry); 1484 1485 cb_data = entry->cb_data; 1486 len = entry->len; 1487 1488 list_move_tail(&entry->entry, &qp->rx_free_q); 1489 1490 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags); 1491 1492 if (qp->rx_handler && qp->client_ready) 1493 qp->rx_handler(qp, qp->cb_data, cb_data, len); 1494 1495 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags); 1496 } 1497 1498 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags); 1499 } 1500 1501 static void ntb_rx_copy_callback(void *data, 1502 const struct dmaengine_result *res) 1503 { 1504 struct ntb_queue_entry *entry = data; 1505 1506 /* we need to check DMA results if we are using DMA */ 1507 if (res) { 1508 enum dmaengine_tx_result dma_err = res->result; 1509 1510 switch (dma_err) { 1511 case DMA_TRANS_READ_FAILED: 1512 case DMA_TRANS_WRITE_FAILED: 1513 entry->errors++; 1514 fallthrough; 1515 case DMA_TRANS_ABORTED: 1516 { 1517 struct ntb_transport_qp *qp = entry->qp; 1518 void *offset = qp->rx_buff + qp->rx_max_frame * 1519 qp->rx_index; 1520 1521 ntb_memcpy_rx(entry, offset); 1522 qp->rx_memcpy++; 1523 return; 1524 } 1525 1526 case DMA_TRANS_NOERROR: 1527 default: 1528 break; 1529 } 1530 } 1531 1532 entry->flags |= DESC_DONE_FLAG; 1533 1534 ntb_complete_rxc(entry->qp); 1535 } 1536 1537 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset) 1538 { 1539 void *buf = entry->buf; 1540 size_t len = entry->len; 1541 1542 memcpy(buf, offset, len); 1543 1544 /* Ensure that the data is fully copied out before clearing the flag */ 1545 wmb(); 1546 1547 ntb_rx_copy_callback(entry, NULL); 1548 } 1549 1550 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset) 1551 { 1552 struct dma_async_tx_descriptor *txd; 1553 struct ntb_transport_qp *qp = entry->qp; 1554 struct dma_chan *chan = qp->rx_dma_chan; 1555 struct dma_device *device; 1556 size_t pay_off, buff_off, len; 1557 struct dmaengine_unmap_data *unmap; 1558 dma_cookie_t cookie; 1559 void *buf = entry->buf; 1560 1561 len = entry->len; 1562 device = chan->device; 1563 pay_off = (size_t)offset & ~PAGE_MASK; 1564 buff_off = (size_t)buf & ~PAGE_MASK; 1565 1566 if (!is_dma_copy_aligned(device, pay_off, buff_off, len)) 1567 goto err; 1568 1569 unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT); 1570 if (!unmap) 1571 goto err; 1572 1573 unmap->len = len; 1574 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset), 1575 pay_off, len, DMA_TO_DEVICE); 1576 if (dma_mapping_error(device->dev, unmap->addr[0])) 1577 goto err_get_unmap; 1578 1579 unmap->to_cnt = 1; 1580 1581 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf), 1582 buff_off, len, DMA_FROM_DEVICE); 1583 if (dma_mapping_error(device->dev, unmap->addr[1])) 1584 goto err_get_unmap; 1585 1586 unmap->from_cnt = 1; 1587 1588 txd = device->device_prep_dma_memcpy(chan, unmap->addr[1], 1589 unmap->addr[0], len, 1590 DMA_PREP_INTERRUPT); 1591 if (!txd) 1592 goto err_get_unmap; 1593 1594 txd->callback_result = ntb_rx_copy_callback; 1595 txd->callback_param = entry; 1596 dma_set_unmap(txd, unmap); 1597 1598 cookie = dmaengine_submit(txd); 1599 if (dma_submit_error(cookie)) 1600 goto err_set_unmap; 1601 1602 dmaengine_unmap_put(unmap); 1603 1604 qp->last_cookie = cookie; 1605 1606 qp->rx_async++; 1607 1608 return 0; 1609 1610 err_set_unmap: 1611 dmaengine_unmap_put(unmap); 1612 err_get_unmap: 1613 dmaengine_unmap_put(unmap); 1614 err: 1615 return -ENXIO; 1616 } 1617 1618 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset) 1619 { 1620 struct ntb_transport_qp *qp = entry->qp; 1621 struct dma_chan *chan = qp->rx_dma_chan; 1622 int res; 1623 1624 if (!chan) 1625 goto err; 1626 1627 if (entry->len < copy_bytes) 1628 goto err; 1629 1630 res = ntb_async_rx_submit(entry, offset); 1631 if (res < 0) 1632 goto err; 1633 1634 if (!entry->retries) 1635 qp->rx_async++; 1636 1637 return; 1638 1639 err: 1640 ntb_memcpy_rx(entry, offset); 1641 qp->rx_memcpy++; 1642 } 1643 1644 static int ntb_process_rxc(struct ntb_transport_qp *qp) 1645 { 1646 struct ntb_payload_header *hdr; 1647 struct ntb_queue_entry *entry; 1648 void *offset; 1649 1650 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index; 1651 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header); 1652 1653 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n", 1654 qp->qp_num, hdr->ver, hdr->len, hdr->flags); 1655 1656 if (!(hdr->flags & DESC_DONE_FLAG)) { 1657 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n"); 1658 qp->rx_ring_empty++; 1659 return -EAGAIN; 1660 } 1661 1662 if (hdr->flags & LINK_DOWN_FLAG) { 1663 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n"); 1664 ntb_qp_link_down(qp); 1665 hdr->flags = 0; 1666 return -EAGAIN; 1667 } 1668 1669 if (hdr->ver != (u32)qp->rx_pkts) { 1670 dev_dbg(&qp->ndev->pdev->dev, 1671 "version mismatch, expected %llu - got %u\n", 1672 qp->rx_pkts, hdr->ver); 1673 qp->rx_err_ver++; 1674 return -EIO; 1675 } 1676 1677 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q); 1678 if (!entry) { 1679 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n"); 1680 qp->rx_err_no_buf++; 1681 return -EAGAIN; 1682 } 1683 1684 entry->rx_hdr = hdr; 1685 entry->rx_index = qp->rx_index; 1686 1687 if (hdr->len > entry->len) { 1688 dev_dbg(&qp->ndev->pdev->dev, 1689 "receive buffer overflow! Wanted %d got %d\n", 1690 hdr->len, entry->len); 1691 qp->rx_err_oflow++; 1692 1693 entry->len = -EIO; 1694 entry->flags |= DESC_DONE_FLAG; 1695 1696 ntb_complete_rxc(qp); 1697 } else { 1698 dev_dbg(&qp->ndev->pdev->dev, 1699 "RX OK index %u ver %u size %d into buf size %d\n", 1700 qp->rx_index, hdr->ver, hdr->len, entry->len); 1701 1702 qp->rx_bytes += hdr->len; 1703 qp->rx_pkts++; 1704 1705 entry->len = hdr->len; 1706 1707 ntb_async_rx(entry, offset); 1708 } 1709 1710 qp->rx_index++; 1711 qp->rx_index %= qp->rx_max_entry; 1712 1713 return 0; 1714 } 1715 1716 static void ntb_transport_rxc_db(unsigned long data) 1717 { 1718 struct ntb_transport_qp *qp = (void *)data; 1719 int rc, i; 1720 1721 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n", 1722 __func__, qp->qp_num); 1723 1724 /* Limit the number of packets processed in a single interrupt to 1725 * provide fairness to others 1726 */ 1727 for (i = 0; i < qp->rx_max_entry; i++) { 1728 rc = ntb_process_rxc(qp); 1729 if (rc) 1730 break; 1731 } 1732 1733 if (i && qp->rx_dma_chan) 1734 dma_async_issue_pending(qp->rx_dma_chan); 1735 1736 if (i == qp->rx_max_entry) { 1737 /* there is more work to do */ 1738 if (qp->active) 1739 tasklet_schedule(&qp->rxc_db_work); 1740 } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) { 1741 /* the doorbell bit is set: clear it */ 1742 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num)); 1743 /* ntb_db_read ensures ntb_db_clear write is committed */ 1744 ntb_db_read(qp->ndev); 1745 1746 /* an interrupt may have arrived between finishing 1747 * ntb_process_rxc and clearing the doorbell bit: 1748 * there might be some more work to do. 1749 */ 1750 if (qp->active) 1751 tasklet_schedule(&qp->rxc_db_work); 1752 } 1753 } 1754 1755 static void ntb_tx_copy_callback(void *data, 1756 const struct dmaengine_result *res) 1757 { 1758 struct ntb_queue_entry *entry = data; 1759 struct ntb_transport_qp *qp = entry->qp; 1760 struct ntb_payload_header __iomem *hdr = entry->tx_hdr; 1761 1762 /* we need to check DMA results if we are using DMA */ 1763 if (res) { 1764 enum dmaengine_tx_result dma_err = res->result; 1765 1766 switch (dma_err) { 1767 case DMA_TRANS_READ_FAILED: 1768 case DMA_TRANS_WRITE_FAILED: 1769 entry->errors++; 1770 fallthrough; 1771 case DMA_TRANS_ABORTED: 1772 { 1773 void __iomem *offset = 1774 qp->tx_mw + qp->tx_max_frame * 1775 entry->tx_index; 1776 1777 /* resubmit via CPU */ 1778 ntb_memcpy_tx(entry, offset); 1779 qp->tx_memcpy++; 1780 return; 1781 } 1782 1783 case DMA_TRANS_NOERROR: 1784 default: 1785 break; 1786 } 1787 } 1788 1789 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags); 1790 1791 if (qp->use_msi) 1792 ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc); 1793 else 1794 ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num)); 1795 1796 /* The entry length can only be zero if the packet is intended to be a 1797 * "link down" or similar. Since no payload is being sent in these 1798 * cases, there is nothing to add to the completion queue. 1799 */ 1800 if (entry->len > 0) { 1801 qp->tx_bytes += entry->len; 1802 1803 if (qp->tx_handler) 1804 qp->tx_handler(qp, qp->cb_data, entry->cb_data, 1805 entry->len); 1806 } 1807 1808 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q); 1809 } 1810 1811 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset) 1812 { 1813 #ifdef ARCH_HAS_NOCACHE_UACCESS 1814 /* 1815 * Using non-temporal mov to improve performance on non-cached 1816 * writes, even though we aren't actually copying from user space. 1817 */ 1818 __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len); 1819 #else 1820 memcpy_toio(offset, entry->buf, entry->len); 1821 #endif 1822 1823 /* Ensure that the data is fully copied out before setting the flags */ 1824 wmb(); 1825 1826 ntb_tx_copy_callback(entry, NULL); 1827 } 1828 1829 static int ntb_async_tx_submit(struct ntb_transport_qp *qp, 1830 struct ntb_queue_entry *entry) 1831 { 1832 struct dma_async_tx_descriptor *txd; 1833 struct dma_chan *chan = qp->tx_dma_chan; 1834 struct dma_device *device; 1835 size_t len = entry->len; 1836 void *buf = entry->buf; 1837 size_t dest_off, buff_off; 1838 struct dmaengine_unmap_data *unmap; 1839 dma_addr_t dest; 1840 dma_cookie_t cookie; 1841 1842 device = chan->device; 1843 dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index; 1844 buff_off = (size_t)buf & ~PAGE_MASK; 1845 dest_off = (size_t)dest & ~PAGE_MASK; 1846 1847 if (!is_dma_copy_aligned(device, buff_off, dest_off, len)) 1848 goto err; 1849 1850 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT); 1851 if (!unmap) 1852 goto err; 1853 1854 unmap->len = len; 1855 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf), 1856 buff_off, len, DMA_TO_DEVICE); 1857 if (dma_mapping_error(device->dev, unmap->addr[0])) 1858 goto err_get_unmap; 1859 1860 unmap->to_cnt = 1; 1861 1862 txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len, 1863 DMA_PREP_INTERRUPT); 1864 if (!txd) 1865 goto err_get_unmap; 1866 1867 txd->callback_result = ntb_tx_copy_callback; 1868 txd->callback_param = entry; 1869 dma_set_unmap(txd, unmap); 1870 1871 cookie = dmaengine_submit(txd); 1872 if (dma_submit_error(cookie)) 1873 goto err_set_unmap; 1874 1875 dmaengine_unmap_put(unmap); 1876 1877 dma_async_issue_pending(chan); 1878 1879 return 0; 1880 err_set_unmap: 1881 dmaengine_unmap_put(unmap); 1882 err_get_unmap: 1883 dmaengine_unmap_put(unmap); 1884 err: 1885 return -ENXIO; 1886 } 1887 1888 static void ntb_async_tx(struct ntb_transport_qp *qp, 1889 struct ntb_queue_entry *entry) 1890 { 1891 struct ntb_payload_header __iomem *hdr; 1892 struct dma_chan *chan = qp->tx_dma_chan; 1893 void __iomem *offset; 1894 int res; 1895 1896 entry->tx_index = qp->tx_index; 1897 offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index; 1898 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header); 1899 entry->tx_hdr = hdr; 1900 1901 iowrite32(entry->len, &hdr->len); 1902 iowrite32((u32)qp->tx_pkts, &hdr->ver); 1903 1904 if (!chan) 1905 goto err; 1906 1907 if (entry->len < copy_bytes) 1908 goto err; 1909 1910 res = ntb_async_tx_submit(qp, entry); 1911 if (res < 0) 1912 goto err; 1913 1914 if (!entry->retries) 1915 qp->tx_async++; 1916 1917 return; 1918 1919 err: 1920 ntb_memcpy_tx(entry, offset); 1921 qp->tx_memcpy++; 1922 } 1923 1924 static int ntb_process_tx(struct ntb_transport_qp *qp, 1925 struct ntb_queue_entry *entry) 1926 { 1927 if (!ntb_transport_tx_free_entry(qp)) { 1928 qp->tx_ring_full++; 1929 return -EAGAIN; 1930 } 1931 1932 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) { 1933 if (qp->tx_handler) 1934 qp->tx_handler(qp, qp->cb_data, NULL, -EIO); 1935 1936 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, 1937 &qp->tx_free_q); 1938 return 0; 1939 } 1940 1941 ntb_async_tx(qp, entry); 1942 1943 qp->tx_index++; 1944 qp->tx_index %= qp->tx_max_entry; 1945 1946 qp->tx_pkts++; 1947 1948 return 0; 1949 } 1950 1951 static void ntb_send_link_down(struct ntb_transport_qp *qp) 1952 { 1953 struct pci_dev *pdev = qp->ndev->pdev; 1954 struct ntb_queue_entry *entry; 1955 int i, rc; 1956 1957 if (!qp->link_is_up) 1958 return; 1959 1960 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num); 1961 1962 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) { 1963 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 1964 if (entry) 1965 break; 1966 msleep(100); 1967 } 1968 1969 if (!entry) 1970 return; 1971 1972 entry->cb_data = NULL; 1973 entry->buf = NULL; 1974 entry->len = 0; 1975 entry->flags = LINK_DOWN_FLAG; 1976 1977 rc = ntb_process_tx(qp, entry); 1978 if (rc) 1979 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n", 1980 qp->qp_num); 1981 1982 ntb_qp_link_down_reset(qp); 1983 } 1984 1985 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node) 1986 { 1987 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node; 1988 } 1989 1990 /** 1991 * ntb_transport_create_queue - Create a new NTB transport layer queue 1992 * @data: pointer for callback data 1993 * @client_dev: &struct device pointer 1994 * @handlers: pointer to various ntb queue (callback) handlers 1995 * 1996 * Create a new NTB transport layer queue and provide the queue with a callback 1997 * routine for both transmit and receive. The receive callback routine will be 1998 * used to pass up data when the transport has received it on the queue. The 1999 * transmit callback routine will be called when the transport has completed the 2000 * transmission of the data on the queue and the data is ready to be freed. 2001 * 2002 * RETURNS: pointer to newly created ntb_queue, NULL on error. 2003 */ 2004 struct ntb_transport_qp * 2005 ntb_transport_create_queue(void *data, struct device *client_dev, 2006 const struct ntb_queue_handlers *handlers) 2007 { 2008 struct ntb_dev *ndev; 2009 struct pci_dev *pdev; 2010 struct ntb_transport_ctx *nt; 2011 struct ntb_queue_entry *entry; 2012 struct ntb_transport_qp *qp; 2013 u64 qp_bit; 2014 unsigned int free_queue; 2015 dma_cap_mask_t dma_mask; 2016 int node; 2017 int i; 2018 2019 ndev = dev_ntb(client_dev->parent); 2020 pdev = ndev->pdev; 2021 nt = ndev->ctx; 2022 2023 node = dev_to_node(&ndev->dev); 2024 2025 free_queue = ffs(nt->qp_bitmap_free); 2026 if (!free_queue) 2027 goto err; 2028 2029 /* decrement free_queue to make it zero based */ 2030 free_queue--; 2031 2032 qp = &nt->qp_vec[free_queue]; 2033 qp_bit = BIT_ULL(qp->qp_num); 2034 2035 nt->qp_bitmap_free &= ~qp_bit; 2036 2037 qp->cb_data = data; 2038 qp->rx_handler = handlers->rx_handler; 2039 qp->tx_handler = handlers->tx_handler; 2040 qp->event_handler = handlers->event_handler; 2041 2042 dma_cap_zero(dma_mask); 2043 dma_cap_set(DMA_MEMCPY, dma_mask); 2044 2045 if (use_dma) { 2046 qp->tx_dma_chan = 2047 dma_request_channel(dma_mask, ntb_dma_filter_fn, 2048 (void *)(unsigned long)node); 2049 if (!qp->tx_dma_chan) 2050 dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n"); 2051 2052 qp->rx_dma_chan = 2053 dma_request_channel(dma_mask, ntb_dma_filter_fn, 2054 (void *)(unsigned long)node); 2055 if (!qp->rx_dma_chan) 2056 dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n"); 2057 } else { 2058 qp->tx_dma_chan = NULL; 2059 qp->rx_dma_chan = NULL; 2060 } 2061 2062 qp->tx_mw_dma_addr = 0; 2063 if (qp->tx_dma_chan) { 2064 qp->tx_mw_dma_addr = 2065 dma_map_resource(qp->tx_dma_chan->device->dev, 2066 qp->tx_mw_phys, qp->tx_mw_size, 2067 DMA_FROM_DEVICE, 0); 2068 if (dma_mapping_error(qp->tx_dma_chan->device->dev, 2069 qp->tx_mw_dma_addr)) { 2070 qp->tx_mw_dma_addr = 0; 2071 goto err1; 2072 } 2073 } 2074 2075 dev_dbg(&pdev->dev, "Using %s memcpy for TX\n", 2076 qp->tx_dma_chan ? "DMA" : "CPU"); 2077 2078 dev_dbg(&pdev->dev, "Using %s memcpy for RX\n", 2079 qp->rx_dma_chan ? "DMA" : "CPU"); 2080 2081 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { 2082 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node); 2083 if (!entry) 2084 goto err1; 2085 2086 entry->qp = qp; 2087 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, 2088 &qp->rx_free_q); 2089 } 2090 qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES; 2091 2092 for (i = 0; i < qp->tx_max_entry; i++) { 2093 entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node); 2094 if (!entry) 2095 goto err2; 2096 2097 entry->qp = qp; 2098 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, 2099 &qp->tx_free_q); 2100 } 2101 2102 ntb_db_clear(qp->ndev, qp_bit); 2103 ntb_db_clear_mask(qp->ndev, qp_bit); 2104 2105 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num); 2106 2107 return qp; 2108 2109 err2: 2110 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) 2111 kfree(entry); 2112 err1: 2113 qp->rx_alloc_entry = 0; 2114 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q))) 2115 kfree(entry); 2116 if (qp->tx_mw_dma_addr) 2117 dma_unmap_resource(qp->tx_dma_chan->device->dev, 2118 qp->tx_mw_dma_addr, qp->tx_mw_size, 2119 DMA_FROM_DEVICE, 0); 2120 if (qp->tx_dma_chan) 2121 dma_release_channel(qp->tx_dma_chan); 2122 if (qp->rx_dma_chan) 2123 dma_release_channel(qp->rx_dma_chan); 2124 nt->qp_bitmap_free |= qp_bit; 2125 err: 2126 return NULL; 2127 } 2128 EXPORT_SYMBOL_GPL(ntb_transport_create_queue); 2129 2130 /** 2131 * ntb_transport_free_queue - Frees NTB transport queue 2132 * @qp: NTB queue to be freed 2133 * 2134 * Frees NTB transport queue 2135 */ 2136 void ntb_transport_free_queue(struct ntb_transport_qp *qp) 2137 { 2138 struct pci_dev *pdev; 2139 struct ntb_queue_entry *entry; 2140 u64 qp_bit; 2141 2142 if (!qp) 2143 return; 2144 2145 pdev = qp->ndev->pdev; 2146 2147 qp->active = false; 2148 2149 if (qp->tx_dma_chan) { 2150 struct dma_chan *chan = qp->tx_dma_chan; 2151 /* Putting the dma_chan to NULL will force any new traffic to be 2152 * processed by the CPU instead of the DAM engine 2153 */ 2154 qp->tx_dma_chan = NULL; 2155 2156 /* Try to be nice and wait for any queued DMA engine 2157 * transactions to process before smashing it with a rock 2158 */ 2159 dma_sync_wait(chan, qp->last_cookie); 2160 dmaengine_terminate_all(chan); 2161 2162 dma_unmap_resource(chan->device->dev, 2163 qp->tx_mw_dma_addr, qp->tx_mw_size, 2164 DMA_FROM_DEVICE, 0); 2165 2166 dma_release_channel(chan); 2167 } 2168 2169 if (qp->rx_dma_chan) { 2170 struct dma_chan *chan = qp->rx_dma_chan; 2171 /* Putting the dma_chan to NULL will force any new traffic to be 2172 * processed by the CPU instead of the DAM engine 2173 */ 2174 qp->rx_dma_chan = NULL; 2175 2176 /* Try to be nice and wait for any queued DMA engine 2177 * transactions to process before smashing it with a rock 2178 */ 2179 dma_sync_wait(chan, qp->last_cookie); 2180 dmaengine_terminate_all(chan); 2181 dma_release_channel(chan); 2182 } 2183 2184 qp_bit = BIT_ULL(qp->qp_num); 2185 2186 ntb_db_set_mask(qp->ndev, qp_bit); 2187 tasklet_kill(&qp->rxc_db_work); 2188 2189 cancel_delayed_work_sync(&qp->link_work); 2190 2191 qp->cb_data = NULL; 2192 qp->rx_handler = NULL; 2193 qp->tx_handler = NULL; 2194 qp->event_handler = NULL; 2195 2196 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q))) 2197 kfree(entry); 2198 2199 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) { 2200 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n"); 2201 kfree(entry); 2202 } 2203 2204 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) { 2205 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n"); 2206 kfree(entry); 2207 } 2208 2209 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) 2210 kfree(entry); 2211 2212 qp->transport->qp_bitmap_free |= qp_bit; 2213 2214 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num); 2215 } 2216 EXPORT_SYMBOL_GPL(ntb_transport_free_queue); 2217 2218 /** 2219 * ntb_transport_rx_remove - Dequeues enqueued rx packet 2220 * @qp: NTB queue to be freed 2221 * @len: pointer to variable to write enqueued buffers length 2222 * 2223 * Dequeues unused buffers from receive queue. Should only be used during 2224 * shutdown of qp. 2225 * 2226 * RETURNS: NULL error value on error, or void* for success. 2227 */ 2228 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len) 2229 { 2230 struct ntb_queue_entry *entry; 2231 void *buf; 2232 2233 if (!qp || qp->client_ready) 2234 return NULL; 2235 2236 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q); 2237 if (!entry) 2238 return NULL; 2239 2240 buf = entry->cb_data; 2241 *len = entry->len; 2242 2243 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q); 2244 2245 return buf; 2246 } 2247 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove); 2248 2249 /** 2250 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry 2251 * @qp: NTB transport layer queue the entry is to be enqueued on 2252 * @cb: per buffer pointer for callback function to use 2253 * @data: pointer to data buffer that incoming packets will be copied into 2254 * @len: length of the data buffer 2255 * 2256 * Enqueue a new receive buffer onto the transport queue into which a NTB 2257 * payload can be received into. 2258 * 2259 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2260 */ 2261 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, 2262 unsigned int len) 2263 { 2264 struct ntb_queue_entry *entry; 2265 2266 if (!qp) 2267 return -EINVAL; 2268 2269 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q); 2270 if (!entry) 2271 return -ENOMEM; 2272 2273 entry->cb_data = cb; 2274 entry->buf = data; 2275 entry->len = len; 2276 entry->flags = 0; 2277 entry->retries = 0; 2278 entry->errors = 0; 2279 entry->rx_index = 0; 2280 2281 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q); 2282 2283 if (qp->active) 2284 tasklet_schedule(&qp->rxc_db_work); 2285 2286 return 0; 2287 } 2288 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue); 2289 2290 /** 2291 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry 2292 * @qp: NTB transport layer queue the entry is to be enqueued on 2293 * @cb: per buffer pointer for callback function to use 2294 * @data: pointer to data buffer that will be sent 2295 * @len: length of the data buffer 2296 * 2297 * Enqueue a new transmit buffer onto the transport queue from which a NTB 2298 * payload will be transmitted. This assumes that a lock is being held to 2299 * serialize access to the qp. 2300 * 2301 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2302 */ 2303 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, 2304 unsigned int len) 2305 { 2306 struct ntb_queue_entry *entry; 2307 int rc; 2308 2309 if (!qp || !len) 2310 return -EINVAL; 2311 2312 /* If the qp link is down already, just ignore. */ 2313 if (!qp->link_is_up) 2314 return 0; 2315 2316 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 2317 if (!entry) { 2318 qp->tx_err_no_buf++; 2319 return -EBUSY; 2320 } 2321 2322 entry->cb_data = cb; 2323 entry->buf = data; 2324 entry->len = len; 2325 entry->flags = 0; 2326 entry->errors = 0; 2327 entry->retries = 0; 2328 entry->tx_index = 0; 2329 2330 rc = ntb_process_tx(qp, entry); 2331 if (rc) 2332 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, 2333 &qp->tx_free_q); 2334 2335 return rc; 2336 } 2337 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue); 2338 2339 /** 2340 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue 2341 * @qp: NTB transport layer queue to be enabled 2342 * 2343 * Notify NTB transport layer of client readiness to use queue 2344 */ 2345 void ntb_transport_link_up(struct ntb_transport_qp *qp) 2346 { 2347 if (!qp) 2348 return; 2349 2350 qp->client_ready = true; 2351 2352 if (qp->transport->link_is_up) 2353 schedule_delayed_work(&qp->link_work, 0); 2354 } 2355 EXPORT_SYMBOL_GPL(ntb_transport_link_up); 2356 2357 /** 2358 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data 2359 * @qp: NTB transport layer queue to be disabled 2360 * 2361 * Notify NTB transport layer of client's desire to no longer receive data on 2362 * transport queue specified. It is the client's responsibility to ensure all 2363 * entries on queue are purged or otherwise handled appropriately. 2364 */ 2365 void ntb_transport_link_down(struct ntb_transport_qp *qp) 2366 { 2367 int val; 2368 2369 if (!qp) 2370 return; 2371 2372 qp->client_ready = false; 2373 2374 val = ntb_spad_read(qp->ndev, QP_LINKS); 2375 2376 ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num)); 2377 2378 if (qp->link_is_up) 2379 ntb_send_link_down(qp); 2380 else 2381 cancel_delayed_work_sync(&qp->link_work); 2382 } 2383 EXPORT_SYMBOL_GPL(ntb_transport_link_down); 2384 2385 /** 2386 * ntb_transport_link_query - Query transport link state 2387 * @qp: NTB transport layer queue to be queried 2388 * 2389 * Query connectivity to the remote system of the NTB transport queue 2390 * 2391 * RETURNS: true for link up or false for link down 2392 */ 2393 bool ntb_transport_link_query(struct ntb_transport_qp *qp) 2394 { 2395 if (!qp) 2396 return false; 2397 2398 return qp->link_is_up; 2399 } 2400 EXPORT_SYMBOL_GPL(ntb_transport_link_query); 2401 2402 /** 2403 * ntb_transport_qp_num - Query the qp number 2404 * @qp: NTB transport layer queue to be queried 2405 * 2406 * Query qp number of the NTB transport queue 2407 * 2408 * RETURNS: a zero based number specifying the qp number 2409 */ 2410 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp) 2411 { 2412 if (!qp) 2413 return 0; 2414 2415 return qp->qp_num; 2416 } 2417 EXPORT_SYMBOL_GPL(ntb_transport_qp_num); 2418 2419 /** 2420 * ntb_transport_max_size - Query the max payload size of a qp 2421 * @qp: NTB transport layer queue to be queried 2422 * 2423 * Query the maximum payload size permissible on the given qp 2424 * 2425 * RETURNS: the max payload size of a qp 2426 */ 2427 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp) 2428 { 2429 unsigned int max_size; 2430 unsigned int copy_align; 2431 struct dma_chan *rx_chan, *tx_chan; 2432 2433 if (!qp) 2434 return 0; 2435 2436 rx_chan = qp->rx_dma_chan; 2437 tx_chan = qp->tx_dma_chan; 2438 2439 copy_align = max(rx_chan ? rx_chan->device->copy_align : 0, 2440 tx_chan ? tx_chan->device->copy_align : 0); 2441 2442 /* If DMA engine usage is possible, try to find the max size for that */ 2443 max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header); 2444 max_size = round_down(max_size, 1 << copy_align); 2445 2446 return max_size; 2447 } 2448 EXPORT_SYMBOL_GPL(ntb_transport_max_size); 2449 2450 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp) 2451 { 2452 unsigned int head = qp->tx_index; 2453 unsigned int tail = qp->remote_rx_info->entry; 2454 2455 return tail >= head ? tail - head : qp->tx_max_entry + tail - head; 2456 } 2457 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry); 2458 2459 static void ntb_transport_doorbell_callback(void *data, int vector) 2460 { 2461 struct ntb_transport_ctx *nt = data; 2462 struct ntb_transport_qp *qp; 2463 u64 db_bits; 2464 unsigned int qp_num; 2465 2466 if (ntb_db_read(nt->ndev) & nt->msi_db_mask) { 2467 ntb_transport_msi_peer_desc_changed(nt); 2468 ntb_db_clear(nt->ndev, nt->msi_db_mask); 2469 } 2470 2471 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free & 2472 ntb_db_vector_mask(nt->ndev, vector)); 2473 2474 while (db_bits) { 2475 qp_num = __ffs(db_bits); 2476 qp = &nt->qp_vec[qp_num]; 2477 2478 if (qp->active) 2479 tasklet_schedule(&qp->rxc_db_work); 2480 2481 db_bits &= ~BIT_ULL(qp_num); 2482 } 2483 } 2484 2485 static const struct ntb_ctx_ops ntb_transport_ops = { 2486 .link_event = ntb_transport_event_callback, 2487 .db_event = ntb_transport_doorbell_callback, 2488 }; 2489 2490 static struct ntb_client ntb_transport_client = { 2491 .ops = { 2492 .probe = ntb_transport_probe, 2493 .remove = ntb_transport_free, 2494 }, 2495 }; 2496 2497 static int __init ntb_transport_init(void) 2498 { 2499 int rc; 2500 2501 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER); 2502 2503 if (debugfs_initialized()) 2504 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); 2505 2506 rc = bus_register(&ntb_transport_bus); 2507 if (rc) 2508 goto err_bus; 2509 2510 rc = ntb_register_client(&ntb_transport_client); 2511 if (rc) 2512 goto err_client; 2513 2514 return 0; 2515 2516 err_client: 2517 bus_unregister(&ntb_transport_bus); 2518 err_bus: 2519 debugfs_remove_recursive(nt_debugfs_dir); 2520 return rc; 2521 } 2522 module_init(ntb_transport_init); 2523 2524 static void __exit ntb_transport_exit(void) 2525 { 2526 ntb_unregister_client(&ntb_transport_client); 2527 bus_unregister(&ntb_transport_bus); 2528 debugfs_remove_recursive(nt_debugfs_dir); 2529 } 2530 module_exit(ntb_transport_exit); 2531