xref: /linux/net/sched/sch_generic.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_generic.c	Generic packet scheduler routines.
4  *
5  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6  *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7  *              - Ingress support
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 #include <linux/skb_array.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/bpf.h>
28 #include <net/sch_generic.h>
29 #include <net/pkt_sched.h>
30 #include <net/dst.h>
31 #include <net/hotdata.h>
32 #include <trace/events/qdisc.h>
33 #include <trace/events/net.h>
34 #include <net/xfrm.h>
35 
36 /* Qdisc to use by default */
37 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
38 EXPORT_SYMBOL(default_qdisc_ops);
39 
qdisc_maybe_clear_missed(struct Qdisc * q,const struct netdev_queue * txq)40 static void qdisc_maybe_clear_missed(struct Qdisc *q,
41 				     const struct netdev_queue *txq)
42 {
43 	clear_bit(__QDISC_STATE_MISSED, &q->state);
44 
45 	/* Make sure the below netif_xmit_frozen_or_stopped()
46 	 * checking happens after clearing STATE_MISSED.
47 	 */
48 	smp_mb__after_atomic();
49 
50 	/* Checking netif_xmit_frozen_or_stopped() again to
51 	 * make sure STATE_MISSED is set if the STATE_MISSED
52 	 * set by netif_tx_wake_queue()'s rescheduling of
53 	 * net_tx_action() is cleared by the above clear_bit().
54 	 */
55 	if (!netif_xmit_frozen_or_stopped(txq))
56 		set_bit(__QDISC_STATE_MISSED, &q->state);
57 	else
58 		set_bit(__QDISC_STATE_DRAINING, &q->state);
59 }
60 
61 /* Main transmission queue. */
62 
63 /* Modifications to data participating in scheduling must be protected with
64  * qdisc_lock(qdisc) spinlock.
65  *
66  * The idea is the following:
67  * - enqueue, dequeue are serialized via qdisc root lock
68  * - ingress filtering is also serialized via qdisc root lock
69  * - updates to tree and tree walking are only done under the rtnl mutex.
70  */
71 
72 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
73 
__skb_dequeue_bad_txq(struct Qdisc * q)74 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
75 {
76 	const struct netdev_queue *txq = q->dev_queue;
77 	spinlock_t *lock = NULL;
78 	struct sk_buff *skb;
79 
80 	if (q->flags & TCQ_F_NOLOCK) {
81 		lock = qdisc_lock(q);
82 		spin_lock(lock);
83 	}
84 
85 	skb = skb_peek(&q->skb_bad_txq);
86 	if (skb) {
87 		/* check the reason of requeuing without tx lock first */
88 		txq = skb_get_tx_queue(txq->dev, skb);
89 		if (!netif_xmit_frozen_or_stopped(txq)) {
90 			skb = __skb_dequeue(&q->skb_bad_txq);
91 			if (qdisc_is_percpu_stats(q)) {
92 				qdisc_qstats_cpu_backlog_dec(q, skb);
93 				qdisc_qstats_cpu_qlen_dec(q);
94 			} else {
95 				qdisc_qstats_backlog_dec(q, skb);
96 				q->q.qlen--;
97 			}
98 		} else {
99 			skb = SKB_XOFF_MAGIC;
100 			qdisc_maybe_clear_missed(q, txq);
101 		}
102 	}
103 
104 	if (lock)
105 		spin_unlock(lock);
106 
107 	return skb;
108 }
109 
qdisc_dequeue_skb_bad_txq(struct Qdisc * q)110 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
111 {
112 	struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
113 
114 	if (unlikely(skb))
115 		skb = __skb_dequeue_bad_txq(q);
116 
117 	return skb;
118 }
119 
qdisc_enqueue_skb_bad_txq(struct Qdisc * q,struct sk_buff * skb)120 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
121 					     struct sk_buff *skb)
122 {
123 	spinlock_t *lock = NULL;
124 
125 	if (q->flags & TCQ_F_NOLOCK) {
126 		lock = qdisc_lock(q);
127 		spin_lock(lock);
128 	}
129 
130 	__skb_queue_tail(&q->skb_bad_txq, skb);
131 
132 	if (qdisc_is_percpu_stats(q)) {
133 		qdisc_qstats_cpu_backlog_inc(q, skb);
134 		qdisc_qstats_cpu_qlen_inc(q);
135 	} else {
136 		qdisc_qstats_backlog_inc(q, skb);
137 		q->q.qlen++;
138 	}
139 
140 	if (lock)
141 		spin_unlock(lock);
142 }
143 
dev_requeue_skb(struct sk_buff * skb,struct Qdisc * q)144 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
145 {
146 	spinlock_t *lock = NULL;
147 
148 	if (q->flags & TCQ_F_NOLOCK) {
149 		lock = qdisc_lock(q);
150 		spin_lock(lock);
151 	}
152 
153 	while (skb) {
154 		struct sk_buff *next = skb->next;
155 
156 		__skb_queue_tail(&q->gso_skb, skb);
157 
158 		/* it's still part of the queue */
159 		if (qdisc_is_percpu_stats(q)) {
160 			qdisc_qstats_cpu_requeues_inc(q);
161 			qdisc_qstats_cpu_backlog_inc(q, skb);
162 			qdisc_qstats_cpu_qlen_inc(q);
163 		} else {
164 			q->qstats.requeues++;
165 			qdisc_qstats_backlog_inc(q, skb);
166 			q->q.qlen++;
167 		}
168 
169 		skb = next;
170 	}
171 
172 	if (lock) {
173 		spin_unlock(lock);
174 		set_bit(__QDISC_STATE_MISSED, &q->state);
175 	} else {
176 		__netif_schedule(q);
177 	}
178 }
179 
try_bulk_dequeue_skb(struct Qdisc * q,struct sk_buff * skb,const struct netdev_queue * txq,int * packets,int budget)180 static void try_bulk_dequeue_skb(struct Qdisc *q,
181 				 struct sk_buff *skb,
182 				 const struct netdev_queue *txq,
183 				 int *packets, int budget)
184 {
185 	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
186 	int cnt = 0;
187 
188 	while (bytelimit > 0) {
189 		struct sk_buff *nskb = q->dequeue(q);
190 
191 		if (!nskb)
192 			break;
193 
194 		bytelimit -= nskb->len; /* covers GSO len */
195 		skb->next = nskb;
196 		skb = nskb;
197 		if (++cnt >= budget)
198 			break;
199 	}
200 	(*packets) += cnt;
201 	skb_mark_not_on_list(skb);
202 }
203 
204 /* This variant of try_bulk_dequeue_skb() makes sure
205  * all skbs in the chain are for the same txq
206  */
try_bulk_dequeue_skb_slow(struct Qdisc * q,struct sk_buff * skb,int * packets)207 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
208 				      struct sk_buff *skb,
209 				      int *packets)
210 {
211 	int mapping = skb_get_queue_mapping(skb);
212 	struct sk_buff *nskb;
213 	int cnt = 0;
214 
215 	do {
216 		nskb = q->dequeue(q);
217 		if (!nskb)
218 			break;
219 		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
220 			qdisc_enqueue_skb_bad_txq(q, nskb);
221 			break;
222 		}
223 		skb->next = nskb;
224 		skb = nskb;
225 	} while (++cnt < 8);
226 	(*packets) += cnt;
227 	skb_mark_not_on_list(skb);
228 }
229 
230 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
231  * A requeued skb (via q->gso_skb) can also be a SKB list.
232  */
dequeue_skb(struct Qdisc * q,bool * validate,int * packets,int budget)233 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
234 				   int *packets, int budget)
235 {
236 	const struct netdev_queue *txq = q->dev_queue;
237 	struct sk_buff *skb = NULL;
238 
239 	*packets = 1;
240 	if (unlikely(!skb_queue_empty(&q->gso_skb))) {
241 		spinlock_t *lock = NULL;
242 
243 		if (q->flags & TCQ_F_NOLOCK) {
244 			lock = qdisc_lock(q);
245 			spin_lock(lock);
246 		}
247 
248 		skb = skb_peek(&q->gso_skb);
249 
250 		/* skb may be null if another cpu pulls gso_skb off in between
251 		 * empty check and lock.
252 		 */
253 		if (!skb) {
254 			if (lock)
255 				spin_unlock(lock);
256 			goto validate;
257 		}
258 
259 		/* skb in gso_skb were already validated */
260 		*validate = false;
261 		if (xfrm_offload(skb))
262 			*validate = true;
263 		/* check the reason of requeuing without tx lock first */
264 		txq = skb_get_tx_queue(txq->dev, skb);
265 		if (!netif_xmit_frozen_or_stopped(txq)) {
266 			skb = __skb_dequeue(&q->gso_skb);
267 			if (qdisc_is_percpu_stats(q)) {
268 				qdisc_qstats_cpu_backlog_dec(q, skb);
269 				qdisc_qstats_cpu_qlen_dec(q);
270 			} else {
271 				qdisc_qstats_backlog_dec(q, skb);
272 				q->q.qlen--;
273 			}
274 		} else {
275 			skb = NULL;
276 			qdisc_maybe_clear_missed(q, txq);
277 		}
278 		if (lock)
279 			spin_unlock(lock);
280 		goto trace;
281 	}
282 validate:
283 	*validate = true;
284 
285 	if ((q->flags & TCQ_F_ONETXQUEUE) &&
286 	    netif_xmit_frozen_or_stopped(txq)) {
287 		qdisc_maybe_clear_missed(q, txq);
288 		return skb;
289 	}
290 
291 	skb = qdisc_dequeue_skb_bad_txq(q);
292 	if (unlikely(skb)) {
293 		if (skb == SKB_XOFF_MAGIC)
294 			return NULL;
295 		goto bulk;
296 	}
297 	skb = q->dequeue(q);
298 	if (skb) {
299 bulk:
300 		if (qdisc_may_bulk(q))
301 			try_bulk_dequeue_skb(q, skb, txq, packets, budget);
302 		else
303 			try_bulk_dequeue_skb_slow(q, skb, packets);
304 	}
305 trace:
306 	trace_qdisc_dequeue(q, txq, *packets, skb);
307 	return skb;
308 }
309 
310 /*
311  * Transmit possibly several skbs, and handle the return status as
312  * required. Owning qdisc running bit guarantees that only one CPU
313  * can execute this function.
314  *
315  * Returns to the caller:
316  *				false  - hardware queue frozen backoff
317  *				true   - feel free to send more pkts
318  */
sch_direct_xmit(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq,spinlock_t * root_lock,bool validate)319 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
320 		     struct net_device *dev, struct netdev_queue *txq,
321 		     spinlock_t *root_lock, bool validate)
322 {
323 	int ret = NETDEV_TX_BUSY;
324 	bool again = false;
325 
326 	/* And release qdisc */
327 	if (root_lock)
328 		spin_unlock(root_lock);
329 
330 	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
331 	if (validate)
332 		skb = validate_xmit_skb_list(skb, dev, &again);
333 
334 #ifdef CONFIG_XFRM_OFFLOAD
335 	if (unlikely(again)) {
336 		if (root_lock)
337 			spin_lock(root_lock);
338 
339 		dev_requeue_skb(skb, q);
340 		return false;
341 	}
342 #endif
343 
344 	if (likely(skb)) {
345 		HARD_TX_LOCK(dev, txq, smp_processor_id());
346 		if (!netif_xmit_frozen_or_stopped(txq))
347 			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
348 		else
349 			qdisc_maybe_clear_missed(q, txq);
350 
351 		HARD_TX_UNLOCK(dev, txq);
352 	} else {
353 		if (root_lock)
354 			spin_lock(root_lock);
355 		return true;
356 	}
357 
358 	if (root_lock)
359 		spin_lock(root_lock);
360 
361 	if (!dev_xmit_complete(ret)) {
362 		/* Driver returned NETDEV_TX_BUSY - requeue skb */
363 		if (unlikely(ret != NETDEV_TX_BUSY))
364 			net_warn_ratelimited("BUG %s code %d qlen %d\n",
365 					     dev->name, ret, q->q.qlen);
366 
367 		dev_requeue_skb(skb, q);
368 		return false;
369 	}
370 
371 	return true;
372 }
373 
374 /*
375  * NOTE: Called under qdisc_lock(q) with locally disabled BH.
376  *
377  * running seqcount guarantees only one CPU can process
378  * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
379  * this queue.
380  *
381  *  netif_tx_lock serializes accesses to device driver.
382  *
383  *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
384  *  if one is grabbed, another must be free.
385  *
386  * Note, that this procedure can be called by a watchdog timer
387  *
388  * Returns to the caller:
389  *				0  - queue is empty or throttled.
390  *				>0 - queue is not empty.
391  *
392  */
qdisc_restart(struct Qdisc * q,int * packets,int budget)393 static inline bool qdisc_restart(struct Qdisc *q, int *packets, int budget)
394 {
395 	spinlock_t *root_lock = NULL;
396 	struct netdev_queue *txq;
397 	struct net_device *dev;
398 	struct sk_buff *skb;
399 	bool validate;
400 
401 	/* Dequeue packet */
402 	skb = dequeue_skb(q, &validate, packets, budget);
403 	if (unlikely(!skb))
404 		return false;
405 
406 	if (!(q->flags & TCQ_F_NOLOCK))
407 		root_lock = qdisc_lock(q);
408 
409 	dev = qdisc_dev(q);
410 	txq = skb_get_tx_queue(dev, skb);
411 
412 	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
413 }
414 
__qdisc_run(struct Qdisc * q)415 void __qdisc_run(struct Qdisc *q)
416 {
417 	int quota = READ_ONCE(net_hotdata.dev_tx_weight);
418 	int packets;
419 
420 	while (qdisc_restart(q, &packets, quota)) {
421 		quota -= packets;
422 		if (quota <= 0) {
423 			if (q->flags & TCQ_F_NOLOCK)
424 				set_bit(__QDISC_STATE_MISSED, &q->state);
425 			else
426 				__netif_schedule(q);
427 
428 			break;
429 		}
430 	}
431 }
432 
dev_trans_start(struct net_device * dev)433 unsigned long dev_trans_start(struct net_device *dev)
434 {
435 	unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
436 	unsigned long val;
437 	unsigned int i;
438 
439 	for (i = 1; i < dev->num_tx_queues; i++) {
440 		val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
441 		if (val && time_after(val, res))
442 			res = val;
443 	}
444 
445 	return res;
446 }
447 EXPORT_SYMBOL(dev_trans_start);
448 
netif_freeze_queues(struct net_device * dev)449 static void netif_freeze_queues(struct net_device *dev)
450 {
451 	unsigned int i;
452 	int cpu;
453 
454 	cpu = smp_processor_id();
455 	for (i = 0; i < dev->num_tx_queues; i++) {
456 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
457 
458 		/* We are the only thread of execution doing a
459 		 * freeze, but we have to grab the _xmit_lock in
460 		 * order to synchronize with threads which are in
461 		 * the ->hard_start_xmit() handler and already
462 		 * checked the frozen bit.
463 		 */
464 		__netif_tx_lock(txq, cpu);
465 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
466 		__netif_tx_unlock(txq);
467 	}
468 }
469 
netif_tx_lock(struct net_device * dev)470 void netif_tx_lock(struct net_device *dev)
471 {
472 	spin_lock(&dev->tx_global_lock);
473 	netif_freeze_queues(dev);
474 }
475 EXPORT_SYMBOL(netif_tx_lock);
476 
netif_unfreeze_queues(struct net_device * dev)477 static void netif_unfreeze_queues(struct net_device *dev)
478 {
479 	unsigned int i;
480 
481 	for (i = 0; i < dev->num_tx_queues; i++) {
482 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
483 
484 		/* No need to grab the _xmit_lock here.  If the
485 		 * queue is not stopped for another reason, we
486 		 * force a schedule.
487 		 */
488 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
489 		netif_schedule_queue(txq);
490 	}
491 }
492 
netif_tx_unlock(struct net_device * dev)493 void netif_tx_unlock(struct net_device *dev)
494 {
495 	netif_unfreeze_queues(dev);
496 	spin_unlock(&dev->tx_global_lock);
497 }
498 EXPORT_SYMBOL(netif_tx_unlock);
499 
dev_watchdog(struct timer_list * t)500 static void dev_watchdog(struct timer_list *t)
501 {
502 	struct net_device *dev = timer_container_of(dev, t, watchdog_timer);
503 	bool release = true;
504 
505 	spin_lock(&dev->tx_global_lock);
506 	if (!qdisc_tx_is_noop(dev)) {
507 		if (netif_device_present(dev) &&
508 		    netif_running(dev) &&
509 		    netif_carrier_ok(dev)) {
510 			unsigned int timedout_ms = 0;
511 			unsigned int i;
512 			unsigned long trans_start;
513 			unsigned long oldest_start = jiffies;
514 
515 			for (i = 0; i < dev->num_tx_queues; i++) {
516 				struct netdev_queue *txq;
517 
518 				txq = netdev_get_tx_queue(dev, i);
519 				if (!netif_xmit_stopped(txq))
520 					continue;
521 
522 				/* Paired with WRITE_ONCE() + smp_mb...() in
523 				 * netdev_tx_sent_queue() and netif_tx_stop_queue().
524 				 */
525 				smp_mb();
526 				trans_start = READ_ONCE(txq->trans_start);
527 
528 				if (time_after(jiffies, trans_start + dev->watchdog_timeo)) {
529 					timedout_ms = jiffies_to_msecs(jiffies - trans_start);
530 					atomic_long_inc(&txq->trans_timeout);
531 					break;
532 				}
533 				if (time_after(oldest_start, trans_start))
534 					oldest_start = trans_start;
535 			}
536 
537 			if (unlikely(timedout_ms)) {
538 				trace_net_dev_xmit_timeout(dev, i);
539 				netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
540 					    raw_smp_processor_id(),
541 					    i, timedout_ms);
542 				netif_freeze_queues(dev);
543 				dev->netdev_ops->ndo_tx_timeout(dev, i);
544 				netif_unfreeze_queues(dev);
545 			}
546 			if (!mod_timer(&dev->watchdog_timer,
547 				       round_jiffies(oldest_start +
548 						     dev->watchdog_timeo)))
549 				release = false;
550 		}
551 	}
552 	spin_unlock(&dev->tx_global_lock);
553 
554 	if (release)
555 		netdev_put(dev, &dev->watchdog_dev_tracker);
556 }
557 
netdev_watchdog_up(struct net_device * dev)558 void netdev_watchdog_up(struct net_device *dev)
559 {
560 	if (!dev->netdev_ops->ndo_tx_timeout)
561 		return;
562 	if (dev->watchdog_timeo <= 0)
563 		dev->watchdog_timeo = 5*HZ;
564 	if (!mod_timer(&dev->watchdog_timer,
565 		       round_jiffies(jiffies + dev->watchdog_timeo)))
566 		netdev_hold(dev, &dev->watchdog_dev_tracker,
567 			    GFP_ATOMIC);
568 }
569 EXPORT_SYMBOL_GPL(netdev_watchdog_up);
570 
netdev_watchdog_down(struct net_device * dev)571 static void netdev_watchdog_down(struct net_device *dev)
572 {
573 	netif_tx_lock_bh(dev);
574 	if (timer_delete(&dev->watchdog_timer))
575 		netdev_put(dev, &dev->watchdog_dev_tracker);
576 	netif_tx_unlock_bh(dev);
577 }
578 
579 /**
580  *	netif_carrier_on - set carrier
581  *	@dev: network device
582  *
583  * Device has detected acquisition of carrier.
584  */
netif_carrier_on(struct net_device * dev)585 void netif_carrier_on(struct net_device *dev)
586 {
587 	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
588 		if (dev->reg_state == NETREG_UNINITIALIZED)
589 			return;
590 		atomic_inc(&dev->carrier_up_count);
591 		linkwatch_fire_event(dev);
592 		if (netif_running(dev))
593 			netdev_watchdog_up(dev);
594 	}
595 }
596 EXPORT_SYMBOL(netif_carrier_on);
597 
598 /**
599  *	netif_carrier_off - clear carrier
600  *	@dev: network device
601  *
602  * Device has detected loss of carrier.
603  */
netif_carrier_off(struct net_device * dev)604 void netif_carrier_off(struct net_device *dev)
605 {
606 	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
607 		if (dev->reg_state == NETREG_UNINITIALIZED)
608 			return;
609 		atomic_inc(&dev->carrier_down_count);
610 		linkwatch_fire_event(dev);
611 	}
612 }
613 EXPORT_SYMBOL(netif_carrier_off);
614 
615 /**
616  *	netif_carrier_event - report carrier state event
617  *	@dev: network device
618  *
619  * Device has detected a carrier event but the carrier state wasn't changed.
620  * Use in drivers when querying carrier state asynchronously, to avoid missing
621  * events (link flaps) if link recovers before it's queried.
622  */
netif_carrier_event(struct net_device * dev)623 void netif_carrier_event(struct net_device *dev)
624 {
625 	if (dev->reg_state == NETREG_UNINITIALIZED)
626 		return;
627 	atomic_inc(&dev->carrier_up_count);
628 	atomic_inc(&dev->carrier_down_count);
629 	linkwatch_fire_event(dev);
630 }
631 EXPORT_SYMBOL_GPL(netif_carrier_event);
632 
633 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
634    under all circumstances. It is difficult to invent anything faster or
635    cheaper.
636  */
637 
noop_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)638 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
639 			struct sk_buff **to_free)
640 {
641 	dev_core_stats_tx_dropped_inc(skb->dev);
642 	__qdisc_drop(skb, to_free);
643 	return NET_XMIT_CN;
644 }
645 
noop_dequeue(struct Qdisc * qdisc)646 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
647 {
648 	return NULL;
649 }
650 
651 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
652 	.id		=	"noop",
653 	.priv_size	=	0,
654 	.enqueue	=	noop_enqueue,
655 	.dequeue	=	noop_dequeue,
656 	.peek		=	noop_dequeue,
657 	.owner		=	THIS_MODULE,
658 };
659 
660 static struct netdev_queue noop_netdev_queue = {
661 	RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
662 	RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
663 };
664 
665 struct Qdisc noop_qdisc = {
666 	.enqueue	=	noop_enqueue,
667 	.dequeue	=	noop_dequeue,
668 	.flags		=	TCQ_F_BUILTIN,
669 	.ops		=	&noop_qdisc_ops,
670 	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
671 	.dev_queue	=	&noop_netdev_queue,
672 	.gso_skb = {
673 		.next = (struct sk_buff *)&noop_qdisc.gso_skb,
674 		.prev = (struct sk_buff *)&noop_qdisc.gso_skb,
675 		.qlen = 0,
676 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
677 	},
678 	.skb_bad_txq = {
679 		.next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
680 		.prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
681 		.qlen = 0,
682 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
683 	},
684 };
685 EXPORT_SYMBOL(noop_qdisc);
686 
noqueue_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)687 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
688 			struct netlink_ext_ack *extack)
689 {
690 	/* register_qdisc() assigns a default of noop_enqueue if unset,
691 	 * but __dev_queue_xmit() treats noqueue only as such
692 	 * if this is NULL - so clear it here. */
693 	qdisc->enqueue = NULL;
694 	return 0;
695 }
696 
697 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
698 	.id		=	"noqueue",
699 	.priv_size	=	0,
700 	.init		=	noqueue_init,
701 	.enqueue	=	noop_enqueue,
702 	.dequeue	=	noop_dequeue,
703 	.peek		=	noop_dequeue,
704 	.owner		=	THIS_MODULE,
705 };
706 
707 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = {
708 	1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
709 };
710 EXPORT_SYMBOL(sch_default_prio2band);
711 
712 /* 3-band FIFO queue: old style, but should be a bit faster than
713    generic prio+fifo combination.
714  */
715 
716 #define PFIFO_FAST_BANDS 3
717 
718 /*
719  * Private data for a pfifo_fast scheduler containing:
720  *	- rings for priority bands
721  */
722 struct pfifo_fast_priv {
723 	struct skb_array q[PFIFO_FAST_BANDS];
724 };
725 
band2list(struct pfifo_fast_priv * priv,int band)726 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
727 					  int band)
728 {
729 	return &priv->q[band];
730 }
731 
pfifo_fast_enqueue(struct sk_buff * skb,struct Qdisc * qdisc,struct sk_buff ** to_free)732 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
733 			      struct sk_buff **to_free)
734 {
735 	int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX];
736 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
737 	struct skb_array *q = band2list(priv, band);
738 	unsigned int pkt_len = qdisc_pkt_len(skb);
739 	int err;
740 
741 	err = skb_array_produce(q, skb);
742 
743 	if (unlikely(err)) {
744 		tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_OVERLIMIT);
745 
746 		if (qdisc_is_percpu_stats(qdisc))
747 			return qdisc_drop_cpu(skb, qdisc, to_free);
748 		else
749 			return qdisc_drop(skb, qdisc, to_free);
750 	}
751 
752 	qdisc_update_stats_at_enqueue(qdisc, pkt_len);
753 	return NET_XMIT_SUCCESS;
754 }
755 
pfifo_fast_dequeue(struct Qdisc * qdisc)756 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
757 {
758 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
759 	struct sk_buff *skb = NULL;
760 	bool need_retry = true;
761 	int band;
762 
763 retry:
764 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
765 		struct skb_array *q = band2list(priv, band);
766 
767 		if (__skb_array_empty(q))
768 			continue;
769 
770 		skb = __skb_array_consume(q);
771 	}
772 	if (likely(skb)) {
773 		qdisc_update_stats_at_dequeue(qdisc, skb);
774 	} else if (need_retry &&
775 		   READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
776 		/* Delay clearing the STATE_MISSED here to reduce
777 		 * the overhead of the second spin_trylock() in
778 		 * qdisc_run_begin() and __netif_schedule() calling
779 		 * in qdisc_run_end().
780 		 */
781 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
782 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
783 
784 		/* Make sure dequeuing happens after clearing
785 		 * STATE_MISSED.
786 		 */
787 		smp_mb__after_atomic();
788 
789 		need_retry = false;
790 
791 		goto retry;
792 	}
793 
794 	return skb;
795 }
796 
pfifo_fast_peek(struct Qdisc * qdisc)797 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
798 {
799 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
800 	struct sk_buff *skb = NULL;
801 	int band;
802 
803 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
804 		struct skb_array *q = band2list(priv, band);
805 
806 		skb = __skb_array_peek(q);
807 	}
808 
809 	return skb;
810 }
811 
pfifo_fast_reset(struct Qdisc * qdisc)812 static void pfifo_fast_reset(struct Qdisc *qdisc)
813 {
814 	int i, band;
815 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
816 
817 	for (band = 0; band < PFIFO_FAST_BANDS; band++) {
818 		struct skb_array *q = band2list(priv, band);
819 		struct sk_buff *skb;
820 
821 		/* NULL ring is possible if destroy path is due to a failed
822 		 * skb_array_init() in pfifo_fast_init() case.
823 		 */
824 		if (!q->ring.queue)
825 			continue;
826 
827 		while ((skb = __skb_array_consume(q)) != NULL)
828 			kfree_skb(skb);
829 	}
830 
831 	if (qdisc_is_percpu_stats(qdisc)) {
832 		for_each_possible_cpu(i) {
833 			struct gnet_stats_queue *q;
834 
835 			q = per_cpu_ptr(qdisc->cpu_qstats, i);
836 			q->backlog = 0;
837 			q->qlen = 0;
838 		}
839 	}
840 }
841 
pfifo_fast_dump(struct Qdisc * qdisc,struct sk_buff * skb)842 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
843 {
844 	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
845 
846 	memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1);
847 	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
848 		goto nla_put_failure;
849 	return skb->len;
850 
851 nla_put_failure:
852 	return -1;
853 }
854 
pfifo_fast_init(struct Qdisc * qdisc,struct nlattr * opt,struct netlink_ext_ack * extack)855 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
856 			   struct netlink_ext_ack *extack)
857 {
858 	unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
859 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
860 	int prio;
861 
862 	/* guard against zero length rings */
863 	if (!qlen)
864 		return -EINVAL;
865 
866 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
867 		struct skb_array *q = band2list(priv, prio);
868 		int err;
869 
870 		err = skb_array_init(q, qlen, GFP_KERNEL);
871 		if (err)
872 			return -ENOMEM;
873 	}
874 
875 	/* Can by-pass the queue discipline */
876 	qdisc->flags |= TCQ_F_CAN_BYPASS;
877 	return 0;
878 }
879 
pfifo_fast_destroy(struct Qdisc * sch)880 static void pfifo_fast_destroy(struct Qdisc *sch)
881 {
882 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
883 	int prio;
884 
885 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
886 		struct skb_array *q = band2list(priv, prio);
887 
888 		/* NULL ring is possible if destroy path is due to a failed
889 		 * skb_array_init() in pfifo_fast_init() case.
890 		 */
891 		if (!q->ring.queue)
892 			continue;
893 		/* Destroy ring but no need to kfree_skb because a call to
894 		 * pfifo_fast_reset() has already done that work.
895 		 */
896 		ptr_ring_cleanup(&q->ring, NULL);
897 	}
898 }
899 
pfifo_fast_change_tx_queue_len(struct Qdisc * sch,unsigned int new_len)900 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
901 					  unsigned int new_len)
902 {
903 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
904 	struct skb_array *bands[PFIFO_FAST_BANDS];
905 	int prio;
906 
907 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
908 		struct skb_array *q = band2list(priv, prio);
909 
910 		bands[prio] = q;
911 	}
912 
913 	return skb_array_resize_multiple_bh(bands, PFIFO_FAST_BANDS, new_len,
914 					    GFP_KERNEL);
915 }
916 
917 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
918 	.id		=	"pfifo_fast",
919 	.priv_size	=	sizeof(struct pfifo_fast_priv),
920 	.enqueue	=	pfifo_fast_enqueue,
921 	.dequeue	=	pfifo_fast_dequeue,
922 	.peek		=	pfifo_fast_peek,
923 	.init		=	pfifo_fast_init,
924 	.destroy	=	pfifo_fast_destroy,
925 	.reset		=	pfifo_fast_reset,
926 	.dump		=	pfifo_fast_dump,
927 	.change_tx_queue_len =  pfifo_fast_change_tx_queue_len,
928 	.owner		=	THIS_MODULE,
929 	.static_flags	=	TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
930 };
931 EXPORT_SYMBOL(pfifo_fast_ops);
932 
933 static struct lock_class_key qdisc_tx_busylock;
934 
qdisc_alloc(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,struct netlink_ext_ack * extack)935 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
936 			  const struct Qdisc_ops *ops,
937 			  struct netlink_ext_ack *extack)
938 {
939 	struct Qdisc *sch;
940 	unsigned int size = sizeof(*sch) + ops->priv_size;
941 	int err = -ENOBUFS;
942 	struct net_device *dev;
943 
944 	if (!dev_queue) {
945 		NL_SET_ERR_MSG(extack, "No device queue given");
946 		err = -EINVAL;
947 		goto errout;
948 	}
949 
950 	dev = dev_queue->dev;
951 	sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
952 
953 	if (!sch)
954 		goto errout;
955 	__skb_queue_head_init(&sch->gso_skb);
956 	__skb_queue_head_init(&sch->skb_bad_txq);
957 	gnet_stats_basic_sync_init(&sch->bstats);
958 	lockdep_register_key(&sch->root_lock_key);
959 	spin_lock_init(&sch->q.lock);
960 	lockdep_set_class(&sch->q.lock, &sch->root_lock_key);
961 
962 	if (ops->static_flags & TCQ_F_CPUSTATS) {
963 		sch->cpu_bstats =
964 			netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
965 		if (!sch->cpu_bstats)
966 			goto errout1;
967 
968 		sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
969 		if (!sch->cpu_qstats) {
970 			free_percpu(sch->cpu_bstats);
971 			goto errout1;
972 		}
973 	}
974 
975 	/* seqlock has the same scope of busylock, for NOLOCK qdisc */
976 	spin_lock_init(&sch->seqlock);
977 	lockdep_set_class(&sch->seqlock,
978 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
979 
980 	sch->ops = ops;
981 	sch->flags = ops->static_flags;
982 	sch->enqueue = ops->enqueue;
983 	sch->dequeue = ops->dequeue;
984 	sch->dev_queue = dev_queue;
985 	netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
986 	refcount_set(&sch->refcnt, 1);
987 
988 	return sch;
989 errout1:
990 	lockdep_unregister_key(&sch->root_lock_key);
991 	kfree(sch);
992 errout:
993 	return ERR_PTR(err);
994 }
995 
qdisc_create_dflt(struct netdev_queue * dev_queue,const struct Qdisc_ops * ops,unsigned int parentid,struct netlink_ext_ack * extack)996 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
997 				const struct Qdisc_ops *ops,
998 				unsigned int parentid,
999 				struct netlink_ext_ack *extack)
1000 {
1001 	struct Qdisc *sch;
1002 
1003 	if (!bpf_try_module_get(ops, ops->owner)) {
1004 		NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
1005 		return NULL;
1006 	}
1007 
1008 	sch = qdisc_alloc(dev_queue, ops, extack);
1009 	if (IS_ERR(sch)) {
1010 		bpf_module_put(ops, ops->owner);
1011 		return NULL;
1012 	}
1013 	sch->parent = parentid;
1014 
1015 	if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1016 		trace_qdisc_create(ops, dev_queue->dev, parentid);
1017 		return sch;
1018 	}
1019 
1020 	qdisc_put(sch);
1021 	return NULL;
1022 }
1023 EXPORT_SYMBOL(qdisc_create_dflt);
1024 
1025 /* Under qdisc_lock(qdisc) and BH! */
1026 
qdisc_reset(struct Qdisc * qdisc)1027 void qdisc_reset(struct Qdisc *qdisc)
1028 {
1029 	const struct Qdisc_ops *ops = qdisc->ops;
1030 
1031 	trace_qdisc_reset(qdisc);
1032 
1033 	if (ops->reset)
1034 		ops->reset(qdisc);
1035 
1036 	__skb_queue_purge(&qdisc->gso_skb);
1037 	__skb_queue_purge(&qdisc->skb_bad_txq);
1038 
1039 	qdisc->q.qlen = 0;
1040 	qdisc->qstats.backlog = 0;
1041 }
1042 EXPORT_SYMBOL(qdisc_reset);
1043 
qdisc_free(struct Qdisc * qdisc)1044 void qdisc_free(struct Qdisc *qdisc)
1045 {
1046 	if (qdisc_is_percpu_stats(qdisc)) {
1047 		free_percpu(qdisc->cpu_bstats);
1048 		free_percpu(qdisc->cpu_qstats);
1049 	}
1050 
1051 	kfree(qdisc);
1052 }
1053 
qdisc_free_cb(struct rcu_head * head)1054 static void qdisc_free_cb(struct rcu_head *head)
1055 {
1056 	struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1057 
1058 	qdisc_free(q);
1059 }
1060 
__qdisc_destroy(struct Qdisc * qdisc)1061 static void __qdisc_destroy(struct Qdisc *qdisc)
1062 {
1063 	const struct Qdisc_ops  *ops = qdisc->ops;
1064 	struct net_device *dev = qdisc_dev(qdisc);
1065 
1066 #ifdef CONFIG_NET_SCHED
1067 	qdisc_hash_del(qdisc);
1068 
1069 	qdisc_put_stab(rtnl_dereference(qdisc->stab));
1070 #endif
1071 	gen_kill_estimator(&qdisc->rate_est);
1072 
1073 	qdisc_reset(qdisc);
1074 
1075 
1076 	if (ops->destroy)
1077 		ops->destroy(qdisc);
1078 
1079 	lockdep_unregister_key(&qdisc->root_lock_key);
1080 	bpf_module_put(ops, ops->owner);
1081 	netdev_put(dev, &qdisc->dev_tracker);
1082 
1083 	trace_qdisc_destroy(qdisc);
1084 
1085 	call_rcu(&qdisc->rcu, qdisc_free_cb);
1086 }
1087 
qdisc_destroy(struct Qdisc * qdisc)1088 void qdisc_destroy(struct Qdisc *qdisc)
1089 {
1090 	if (qdisc->flags & TCQ_F_BUILTIN)
1091 		return;
1092 
1093 	__qdisc_destroy(qdisc);
1094 }
1095 
qdisc_put(struct Qdisc * qdisc)1096 void qdisc_put(struct Qdisc *qdisc)
1097 {
1098 	if (!qdisc)
1099 		return;
1100 
1101 	if (qdisc->flags & TCQ_F_BUILTIN ||
1102 	    !refcount_dec_and_test(&qdisc->refcnt))
1103 		return;
1104 
1105 	__qdisc_destroy(qdisc);
1106 }
1107 EXPORT_SYMBOL(qdisc_put);
1108 
1109 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1110  * Intended to be used as optimization, this function only takes rtnl lock if
1111  * qdisc reference counter reached zero.
1112  */
1113 
qdisc_put_unlocked(struct Qdisc * qdisc)1114 void qdisc_put_unlocked(struct Qdisc *qdisc)
1115 {
1116 	if (qdisc->flags & TCQ_F_BUILTIN ||
1117 	    !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1118 		return;
1119 
1120 	__qdisc_destroy(qdisc);
1121 	rtnl_unlock();
1122 }
1123 EXPORT_SYMBOL(qdisc_put_unlocked);
1124 
1125 /* Attach toplevel qdisc to device queue. */
dev_graft_qdisc(struct netdev_queue * dev_queue,struct Qdisc * qdisc)1126 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1127 			      struct Qdisc *qdisc)
1128 {
1129 	struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1130 	spinlock_t *root_lock;
1131 
1132 	root_lock = qdisc_lock(oqdisc);
1133 	spin_lock_bh(root_lock);
1134 
1135 	/* ... and graft new one */
1136 	if (qdisc == NULL)
1137 		qdisc = &noop_qdisc;
1138 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1139 	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1140 
1141 	spin_unlock_bh(root_lock);
1142 
1143 	return oqdisc;
1144 }
1145 EXPORT_SYMBOL(dev_graft_qdisc);
1146 
shutdown_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc_default)1147 static void shutdown_scheduler_queue(struct net_device *dev,
1148 				     struct netdev_queue *dev_queue,
1149 				     void *_qdisc_default)
1150 {
1151 	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1152 	struct Qdisc *qdisc_default = _qdisc_default;
1153 
1154 	if (qdisc) {
1155 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1156 		rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1157 
1158 		qdisc_put(qdisc);
1159 	}
1160 }
1161 
attach_one_default_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1162 static void attach_one_default_qdisc(struct net_device *dev,
1163 				     struct netdev_queue *dev_queue,
1164 				     void *_unused)
1165 {
1166 	struct Qdisc *qdisc;
1167 	const struct Qdisc_ops *ops = default_qdisc_ops;
1168 
1169 	if (dev->priv_flags & IFF_NO_QUEUE)
1170 		ops = &noqueue_qdisc_ops;
1171 	else if(dev->type == ARPHRD_CAN)
1172 		ops = &pfifo_fast_ops;
1173 
1174 	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1175 	if (!qdisc)
1176 		return;
1177 
1178 	if (!netif_is_multiqueue(dev))
1179 		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1180 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1181 }
1182 
attach_default_qdiscs(struct net_device * dev)1183 static void attach_default_qdiscs(struct net_device *dev)
1184 {
1185 	struct netdev_queue *txq;
1186 	struct Qdisc *qdisc;
1187 
1188 	txq = netdev_get_tx_queue(dev, 0);
1189 
1190 	if (!netif_is_multiqueue(dev) ||
1191 	    dev->priv_flags & IFF_NO_QUEUE) {
1192 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1193 		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1194 		rcu_assign_pointer(dev->qdisc, qdisc);
1195 		qdisc_refcount_inc(qdisc);
1196 	} else {
1197 		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1198 		if (qdisc) {
1199 			rcu_assign_pointer(dev->qdisc, qdisc);
1200 			qdisc->ops->attach(qdisc);
1201 		}
1202 	}
1203 	qdisc = rtnl_dereference(dev->qdisc);
1204 
1205 	/* Detect default qdisc setup/init failed and fallback to "noqueue" */
1206 	if (qdisc == &noop_qdisc) {
1207 		netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1208 			    default_qdisc_ops->id, noqueue_qdisc_ops.id);
1209 		netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1210 		dev->priv_flags |= IFF_NO_QUEUE;
1211 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1212 		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1213 		rcu_assign_pointer(dev->qdisc, qdisc);
1214 		qdisc_refcount_inc(qdisc);
1215 		dev->priv_flags ^= IFF_NO_QUEUE;
1216 	}
1217 
1218 #ifdef CONFIG_NET_SCHED
1219 	if (qdisc != &noop_qdisc)
1220 		qdisc_hash_add(qdisc, false);
1221 #endif
1222 }
1223 
transition_one_qdisc(struct net_device * dev,struct netdev_queue * dev_queue,void * _need_watchdog)1224 static void transition_one_qdisc(struct net_device *dev,
1225 				 struct netdev_queue *dev_queue,
1226 				 void *_need_watchdog)
1227 {
1228 	struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1229 	int *need_watchdog_p = _need_watchdog;
1230 
1231 	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1232 		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1233 
1234 	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1235 	if (need_watchdog_p) {
1236 		WRITE_ONCE(dev_queue->trans_start, 0);
1237 		*need_watchdog_p = 1;
1238 	}
1239 }
1240 
dev_activate(struct net_device * dev)1241 void dev_activate(struct net_device *dev)
1242 {
1243 	int need_watchdog;
1244 
1245 	/* No queueing discipline is attached to device;
1246 	 * create default one for devices, which need queueing
1247 	 * and noqueue_qdisc for virtual interfaces
1248 	 */
1249 
1250 	if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1251 		attach_default_qdiscs(dev);
1252 
1253 	if (!netif_carrier_ok(dev))
1254 		/* Delay activation until next carrier-on event */
1255 		return;
1256 
1257 	need_watchdog = 0;
1258 	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1259 	if (dev_ingress_queue(dev))
1260 		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1261 
1262 	if (need_watchdog) {
1263 		netif_trans_update(dev);
1264 		netdev_watchdog_up(dev);
1265 	}
1266 }
1267 EXPORT_SYMBOL(dev_activate);
1268 
qdisc_deactivate(struct Qdisc * qdisc)1269 static void qdisc_deactivate(struct Qdisc *qdisc)
1270 {
1271 	if (qdisc->flags & TCQ_F_BUILTIN)
1272 		return;
1273 
1274 	set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1275 }
1276 
dev_deactivate_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _sync_needed)1277 static void dev_deactivate_queue(struct net_device *dev,
1278 				 struct netdev_queue *dev_queue,
1279 				 void *_sync_needed)
1280 {
1281 	bool *sync_needed = _sync_needed;
1282 	struct Qdisc *qdisc;
1283 
1284 	qdisc = rtnl_dereference(dev_queue->qdisc);
1285 	if (qdisc) {
1286 		if (qdisc->enqueue)
1287 			*sync_needed = true;
1288 		qdisc_deactivate(qdisc);
1289 		rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1290 	}
1291 }
1292 
dev_reset_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _unused)1293 static void dev_reset_queue(struct net_device *dev,
1294 			    struct netdev_queue *dev_queue,
1295 			    void *_unused)
1296 {
1297 	struct Qdisc *qdisc;
1298 	bool nolock;
1299 
1300 	qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1301 	if (!qdisc)
1302 		return;
1303 
1304 	nolock = qdisc->flags & TCQ_F_NOLOCK;
1305 
1306 	if (nolock)
1307 		spin_lock_bh(&qdisc->seqlock);
1308 	spin_lock_bh(qdisc_lock(qdisc));
1309 
1310 	qdisc_reset(qdisc);
1311 
1312 	spin_unlock_bh(qdisc_lock(qdisc));
1313 	if (nolock) {
1314 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1315 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1316 		spin_unlock_bh(&qdisc->seqlock);
1317 	}
1318 }
1319 
some_qdisc_is_busy(struct net_device * dev)1320 static bool some_qdisc_is_busy(struct net_device *dev)
1321 {
1322 	unsigned int i;
1323 
1324 	for (i = 0; i < dev->num_tx_queues; i++) {
1325 		struct netdev_queue *dev_queue;
1326 		spinlock_t *root_lock;
1327 		struct Qdisc *q;
1328 		int val;
1329 
1330 		dev_queue = netdev_get_tx_queue(dev, i);
1331 		q = rtnl_dereference(dev_queue->qdisc_sleeping);
1332 
1333 		root_lock = qdisc_lock(q);
1334 		spin_lock_bh(root_lock);
1335 
1336 		val = (qdisc_is_running(q) ||
1337 		       test_bit(__QDISC_STATE_SCHED, &q->state));
1338 
1339 		spin_unlock_bh(root_lock);
1340 
1341 		if (val)
1342 			return true;
1343 	}
1344 	return false;
1345 }
1346 
1347 /**
1348  * 	dev_deactivate_many - deactivate transmissions on several devices
1349  * 	@head: list of devices to deactivate
1350  *
1351  *	This function returns only when all outstanding transmissions
1352  *	have completed, unless all devices are in dismantle phase.
1353  */
dev_deactivate_many(struct list_head * head)1354 void dev_deactivate_many(struct list_head *head)
1355 {
1356 	bool sync_needed = false;
1357 	struct net_device *dev;
1358 
1359 	list_for_each_entry(dev, head, close_list) {
1360 		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1361 					 &sync_needed);
1362 		if (dev_ingress_queue(dev))
1363 			dev_deactivate_queue(dev, dev_ingress_queue(dev),
1364 					     &sync_needed);
1365 
1366 		netdev_watchdog_down(dev);
1367 	}
1368 
1369 	/* Wait for outstanding qdisc enqueuing calls. */
1370 	if (sync_needed)
1371 		synchronize_net();
1372 
1373 	list_for_each_entry(dev, head, close_list) {
1374 		netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1375 
1376 		if (dev_ingress_queue(dev))
1377 			dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1378 	}
1379 
1380 	/* Wait for outstanding qdisc_run calls. */
1381 	list_for_each_entry(dev, head, close_list) {
1382 		while (some_qdisc_is_busy(dev)) {
1383 			/* wait_event() would avoid this sleep-loop but would
1384 			 * require expensive checks in the fast paths of packet
1385 			 * processing which isn't worth it.
1386 			 */
1387 			schedule_timeout_uninterruptible(1);
1388 		}
1389 	}
1390 }
1391 
dev_deactivate(struct net_device * dev)1392 void dev_deactivate(struct net_device *dev)
1393 {
1394 	LIST_HEAD(single);
1395 
1396 	list_add(&dev->close_list, &single);
1397 	dev_deactivate_many(&single);
1398 	list_del(&single);
1399 }
1400 EXPORT_SYMBOL(dev_deactivate);
1401 
qdisc_change_tx_queue_len(struct net_device * dev,struct netdev_queue * dev_queue)1402 static int qdisc_change_tx_queue_len(struct net_device *dev,
1403 				     struct netdev_queue *dev_queue)
1404 {
1405 	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1406 	const struct Qdisc_ops *ops = qdisc->ops;
1407 
1408 	if (ops->change_tx_queue_len)
1409 		return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1410 	return 0;
1411 }
1412 
dev_qdisc_change_real_num_tx(struct net_device * dev,unsigned int new_real_tx)1413 void dev_qdisc_change_real_num_tx(struct net_device *dev,
1414 				  unsigned int new_real_tx)
1415 {
1416 	struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1417 
1418 	if (qdisc->ops->change_real_num_tx)
1419 		qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1420 }
1421 
mq_change_real_num_tx(struct Qdisc * sch,unsigned int new_real_tx)1422 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1423 {
1424 #ifdef CONFIG_NET_SCHED
1425 	struct net_device *dev = qdisc_dev(sch);
1426 	struct Qdisc *qdisc;
1427 	unsigned int i;
1428 
1429 	for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1430 		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1431 		/* Only update the default qdiscs we created,
1432 		 * qdiscs with handles are always hashed.
1433 		 */
1434 		if (qdisc != &noop_qdisc && !qdisc->handle)
1435 			qdisc_hash_del(qdisc);
1436 	}
1437 	for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1438 		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1439 		if (qdisc != &noop_qdisc && !qdisc->handle)
1440 			qdisc_hash_add(qdisc, false);
1441 	}
1442 #endif
1443 }
1444 EXPORT_SYMBOL(mq_change_real_num_tx);
1445 
dev_qdisc_change_tx_queue_len(struct net_device * dev)1446 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1447 {
1448 	bool up = dev->flags & IFF_UP;
1449 	unsigned int i;
1450 	int ret = 0;
1451 
1452 	if (up)
1453 		dev_deactivate(dev);
1454 
1455 	for (i = 0; i < dev->num_tx_queues; i++) {
1456 		ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1457 
1458 		/* TODO: revert changes on a partial failure */
1459 		if (ret)
1460 			break;
1461 	}
1462 
1463 	if (up)
1464 		dev_activate(dev);
1465 	return ret;
1466 }
1467 
dev_init_scheduler_queue(struct net_device * dev,struct netdev_queue * dev_queue,void * _qdisc)1468 static void dev_init_scheduler_queue(struct net_device *dev,
1469 				     struct netdev_queue *dev_queue,
1470 				     void *_qdisc)
1471 {
1472 	struct Qdisc *qdisc = _qdisc;
1473 
1474 	rcu_assign_pointer(dev_queue->qdisc, qdisc);
1475 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1476 }
1477 
dev_init_scheduler(struct net_device * dev)1478 void dev_init_scheduler(struct net_device *dev)
1479 {
1480 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1481 	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1482 	if (dev_ingress_queue(dev))
1483 		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1484 
1485 	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1486 }
1487 
dev_shutdown(struct net_device * dev)1488 void dev_shutdown(struct net_device *dev)
1489 {
1490 	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1491 	if (dev_ingress_queue(dev))
1492 		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1493 	qdisc_put(rtnl_dereference(dev->qdisc));
1494 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1495 
1496 	WARN_ON(timer_pending(&dev->watchdog_timer));
1497 }
1498 
1499 /**
1500  * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1501  * @rate:   Rate to compute reciprocal division values of
1502  * @mult:   Multiplier for reciprocal division
1503  * @shift:  Shift for reciprocal division
1504  *
1505  * The multiplier and shift for reciprocal division by rate are stored
1506  * in mult and shift.
1507  *
1508  * The deal here is to replace a divide by a reciprocal one
1509  * in fast path (a reciprocal divide is a multiply and a shift)
1510  *
1511  * Normal formula would be :
1512  *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1513  *
1514  * We compute mult/shift to use instead :
1515  *  time_in_ns = (len * mult) >> shift;
1516  *
1517  * We try to get the highest possible mult value for accuracy,
1518  * but have to make sure no overflows will ever happen.
1519  *
1520  * reciprocal_value() is not used here it doesn't handle 64-bit values.
1521  */
psched_ratecfg_precompute__(u64 rate,u32 * mult,u8 * shift)1522 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1523 {
1524 	u64 factor = NSEC_PER_SEC;
1525 
1526 	*mult = 1;
1527 	*shift = 0;
1528 
1529 	if (rate <= 0)
1530 		return;
1531 
1532 	for (;;) {
1533 		*mult = div64_u64(factor, rate);
1534 		if (*mult & (1U << 31) || factor & (1ULL << 63))
1535 			break;
1536 		factor <<= 1;
1537 		(*shift)++;
1538 	}
1539 }
1540 
psched_ratecfg_precompute(struct psched_ratecfg * r,const struct tc_ratespec * conf,u64 rate64)1541 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1542 			       const struct tc_ratespec *conf,
1543 			       u64 rate64)
1544 {
1545 	memset(r, 0, sizeof(*r));
1546 	r->overhead = conf->overhead;
1547 	r->mpu = conf->mpu;
1548 	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1549 	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1550 	psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1551 }
1552 EXPORT_SYMBOL(psched_ratecfg_precompute);
1553 
psched_ppscfg_precompute(struct psched_pktrate * r,u64 pktrate64)1554 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1555 {
1556 	r->rate_pkts_ps = pktrate64;
1557 	psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1558 }
1559 EXPORT_SYMBOL(psched_ppscfg_precompute);
1560 
mini_qdisc_pair_swap(struct mini_Qdisc_pair * miniqp,struct tcf_proto * tp_head)1561 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1562 			  struct tcf_proto *tp_head)
1563 {
1564 	/* Protected with chain0->filter_chain_lock.
1565 	 * Can't access chain directly because tp_head can be NULL.
1566 	 */
1567 	struct mini_Qdisc *miniq_old =
1568 		rcu_dereference_protected(*miniqp->p_miniq, 1);
1569 	struct mini_Qdisc *miniq;
1570 
1571 	if (!tp_head) {
1572 		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1573 	} else {
1574 		miniq = miniq_old != &miniqp->miniq1 ?
1575 			&miniqp->miniq1 : &miniqp->miniq2;
1576 
1577 		/* We need to make sure that readers won't see the miniq
1578 		 * we are about to modify. So ensure that at least one RCU
1579 		 * grace period has elapsed since the miniq was made
1580 		 * inactive.
1581 		 */
1582 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
1583 			cond_synchronize_rcu(miniq->rcu_state);
1584 		else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1585 			synchronize_rcu_expedited();
1586 
1587 		miniq->filter_list = tp_head;
1588 		rcu_assign_pointer(*miniqp->p_miniq, miniq);
1589 	}
1590 
1591 	if (miniq_old)
1592 		/* This is counterpart of the rcu sync above. We need to
1593 		 * block potential new user of miniq_old until all readers
1594 		 * are not seeing it.
1595 		 */
1596 		miniq_old->rcu_state = start_poll_synchronize_rcu();
1597 }
1598 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1599 
mini_qdisc_pair_block_init(struct mini_Qdisc_pair * miniqp,struct tcf_block * block)1600 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1601 				struct tcf_block *block)
1602 {
1603 	miniqp->miniq1.block = block;
1604 	miniqp->miniq2.block = block;
1605 }
1606 EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1607 
mini_qdisc_pair_init(struct mini_Qdisc_pair * miniqp,struct Qdisc * qdisc,struct mini_Qdisc __rcu ** p_miniq)1608 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1609 			  struct mini_Qdisc __rcu **p_miniq)
1610 {
1611 	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1612 	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1613 	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1614 	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1615 	miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1616 	miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1617 	miniqp->p_miniq = p_miniq;
1618 }
1619 EXPORT_SYMBOL(mini_qdisc_pair_init);
1620