xref: /linux/drivers/firmware/qcom/qcom_scm.c (revision ed7171ff9fabc49ae6ed42fbd082a576473836fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 
6 #include <linux/arm-smccc.h>
7 #include <linux/bitfield.h>
8 #include <linux/bits.h>
9 #include <linux/cleanup.h>
10 #include <linux/clk.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/export.h>
16 #include <linux/firmware/qcom/qcom_scm.h>
17 #include <linux/firmware/qcom/qcom_tzmem.h>
18 #include <linux/init.h>
19 #include <linux/interconnect.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_platform.h>
26 #include <linux/of_reserved_mem.h>
27 #include <linux/platform_device.h>
28 #include <linux/reset-controller.h>
29 #include <linux/sizes.h>
30 #include <linux/types.h>
31 
32 #include "qcom_scm.h"
33 #include "qcom_tzmem.h"
34 
35 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
36 module_param(download_mode, bool, 0);
37 
38 struct qcom_scm {
39 	struct device *dev;
40 	struct clk *core_clk;
41 	struct clk *iface_clk;
42 	struct clk *bus_clk;
43 	struct icc_path *path;
44 	struct completion waitq_comp;
45 	struct reset_controller_dev reset;
46 
47 	/* control access to the interconnect path */
48 	struct mutex scm_bw_lock;
49 	int scm_vote_count;
50 
51 	u64 dload_mode_addr;
52 
53 	struct qcom_tzmem_pool *mempool;
54 };
55 
56 struct qcom_scm_current_perm_info {
57 	__le32 vmid;
58 	__le32 perm;
59 	__le64 ctx;
60 	__le32 ctx_size;
61 	__le32 unused;
62 };
63 
64 struct qcom_scm_mem_map_info {
65 	__le64 mem_addr;
66 	__le64 mem_size;
67 };
68 
69 /**
70  * struct qcom_scm_qseecom_resp - QSEECOM SCM call response.
71  * @result:    Result or status of the SCM call. See &enum qcom_scm_qseecom_result.
72  * @resp_type: Type of the response. See &enum qcom_scm_qseecom_resp_type.
73  * @data:      Response data. The type of this data is given in @resp_type.
74  */
75 struct qcom_scm_qseecom_resp {
76 	u64 result;
77 	u64 resp_type;
78 	u64 data;
79 };
80 
81 enum qcom_scm_qseecom_result {
82 	QSEECOM_RESULT_SUCCESS			= 0,
83 	QSEECOM_RESULT_INCOMPLETE		= 1,
84 	QSEECOM_RESULT_BLOCKED_ON_LISTENER	= 2,
85 	QSEECOM_RESULT_FAILURE			= 0xFFFFFFFF,
86 };
87 
88 enum qcom_scm_qseecom_resp_type {
89 	QSEECOM_SCM_RES_APP_ID			= 0xEE01,
90 	QSEECOM_SCM_RES_QSEOS_LISTENER_ID	= 0xEE02,
91 };
92 
93 enum qcom_scm_qseecom_tz_owner {
94 	QSEECOM_TZ_OWNER_SIP			= 2,
95 	QSEECOM_TZ_OWNER_TZ_APPS		= 48,
96 	QSEECOM_TZ_OWNER_QSEE_OS		= 50
97 };
98 
99 enum qcom_scm_qseecom_tz_svc {
100 	QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER	= 0,
101 	QSEECOM_TZ_SVC_APP_MGR			= 1,
102 	QSEECOM_TZ_SVC_INFO			= 6,
103 };
104 
105 enum qcom_scm_qseecom_tz_cmd_app {
106 	QSEECOM_TZ_CMD_APP_SEND			= 1,
107 	QSEECOM_TZ_CMD_APP_LOOKUP		= 3,
108 };
109 
110 enum qcom_scm_qseecom_tz_cmd_info {
111 	QSEECOM_TZ_CMD_INFO_VERSION		= 3,
112 };
113 
114 #define QSEECOM_MAX_APP_NAME_SIZE		64
115 
116 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
117 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
118 	0, BIT(0), BIT(3), BIT(5)
119 };
120 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
121 	BIT(2), BIT(1), BIT(4), BIT(6)
122 };
123 
124 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE	BIT(0)
125 
126 #define QCOM_DLOAD_MASK		GENMASK(5, 4)
127 #define QCOM_DLOAD_NODUMP	0
128 #define QCOM_DLOAD_FULLDUMP	1
129 
130 static const char * const qcom_scm_convention_names[] = {
131 	[SMC_CONVENTION_UNKNOWN] = "unknown",
132 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
133 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
134 	[SMC_CONVENTION_LEGACY] = "smc legacy",
135 };
136 
137 static struct qcom_scm *__scm;
138 
139 static int qcom_scm_clk_enable(void)
140 {
141 	int ret;
142 
143 	ret = clk_prepare_enable(__scm->core_clk);
144 	if (ret)
145 		goto bail;
146 
147 	ret = clk_prepare_enable(__scm->iface_clk);
148 	if (ret)
149 		goto disable_core;
150 
151 	ret = clk_prepare_enable(__scm->bus_clk);
152 	if (ret)
153 		goto disable_iface;
154 
155 	return 0;
156 
157 disable_iface:
158 	clk_disable_unprepare(__scm->iface_clk);
159 disable_core:
160 	clk_disable_unprepare(__scm->core_clk);
161 bail:
162 	return ret;
163 }
164 
165 static void qcom_scm_clk_disable(void)
166 {
167 	clk_disable_unprepare(__scm->core_clk);
168 	clk_disable_unprepare(__scm->iface_clk);
169 	clk_disable_unprepare(__scm->bus_clk);
170 }
171 
172 static int qcom_scm_bw_enable(void)
173 {
174 	int ret = 0;
175 
176 	if (!__scm->path)
177 		return 0;
178 
179 	mutex_lock(&__scm->scm_bw_lock);
180 	if (!__scm->scm_vote_count) {
181 		ret = icc_set_bw(__scm->path, 0, UINT_MAX);
182 		if (ret < 0) {
183 			dev_err(__scm->dev, "failed to set bandwidth request\n");
184 			goto err_bw;
185 		}
186 	}
187 	__scm->scm_vote_count++;
188 err_bw:
189 	mutex_unlock(&__scm->scm_bw_lock);
190 
191 	return ret;
192 }
193 
194 static void qcom_scm_bw_disable(void)
195 {
196 	if (!__scm->path)
197 		return;
198 
199 	mutex_lock(&__scm->scm_bw_lock);
200 	if (__scm->scm_vote_count-- == 1)
201 		icc_set_bw(__scm->path, 0, 0);
202 	mutex_unlock(&__scm->scm_bw_lock);
203 }
204 
205 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
206 static DEFINE_SPINLOCK(scm_query_lock);
207 
208 struct qcom_tzmem_pool *qcom_scm_get_tzmem_pool(void)
209 {
210 	return __scm->mempool;
211 }
212 
213 static enum qcom_scm_convention __get_convention(void)
214 {
215 	unsigned long flags;
216 	struct qcom_scm_desc desc = {
217 		.svc = QCOM_SCM_SVC_INFO,
218 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
219 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
220 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
221 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
222 		.arginfo = QCOM_SCM_ARGS(1),
223 		.owner = ARM_SMCCC_OWNER_SIP,
224 	};
225 	struct qcom_scm_res res;
226 	enum qcom_scm_convention probed_convention;
227 	int ret;
228 	bool forced = false;
229 
230 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
231 		return qcom_scm_convention;
232 
233 	/*
234 	 * Per the "SMC calling convention specification", the 64-bit calling
235 	 * convention can only be used when the client is 64-bit, otherwise
236 	 * system will encounter the undefined behaviour.
237 	 */
238 #if IS_ENABLED(CONFIG_ARM64)
239 	/*
240 	 * Device isn't required as there is only one argument - no device
241 	 * needed to dma_map_single to secure world
242 	 */
243 	probed_convention = SMC_CONVENTION_ARM_64;
244 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
245 	if (!ret && res.result[0] == 1)
246 		goto found;
247 
248 	/*
249 	 * Some SC7180 firmwares didn't implement the
250 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
251 	 * calling conventions on these firmwares. Luckily we don't make any
252 	 * early calls into the firmware on these SoCs so the device pointer
253 	 * will be valid here to check if the compatible matches.
254 	 */
255 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
256 		forced = true;
257 		goto found;
258 	}
259 #endif
260 
261 	probed_convention = SMC_CONVENTION_ARM_32;
262 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
263 	if (!ret && res.result[0] == 1)
264 		goto found;
265 
266 	probed_convention = SMC_CONVENTION_LEGACY;
267 found:
268 	spin_lock_irqsave(&scm_query_lock, flags);
269 	if (probed_convention != qcom_scm_convention) {
270 		qcom_scm_convention = probed_convention;
271 		pr_info("qcom_scm: convention: %s%s\n",
272 			qcom_scm_convention_names[qcom_scm_convention],
273 			forced ? " (forced)" : "");
274 	}
275 	spin_unlock_irqrestore(&scm_query_lock, flags);
276 
277 	return qcom_scm_convention;
278 }
279 
280 /**
281  * qcom_scm_call() - Invoke a syscall in the secure world
282  * @dev:	device
283  * @desc:	Descriptor structure containing arguments and return values
284  * @res:        Structure containing results from SMC/HVC call
285  *
286  * Sends a command to the SCM and waits for the command to finish processing.
287  * This should *only* be called in pre-emptible context.
288  */
289 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
290 			 struct qcom_scm_res *res)
291 {
292 	might_sleep();
293 	switch (__get_convention()) {
294 	case SMC_CONVENTION_ARM_32:
295 	case SMC_CONVENTION_ARM_64:
296 		return scm_smc_call(dev, desc, res, false);
297 	case SMC_CONVENTION_LEGACY:
298 		return scm_legacy_call(dev, desc, res);
299 	default:
300 		pr_err("Unknown current SCM calling convention.\n");
301 		return -EINVAL;
302 	}
303 }
304 
305 /**
306  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
307  * @dev:	device
308  * @desc:	Descriptor structure containing arguments and return values
309  * @res:	Structure containing results from SMC/HVC call
310  *
311  * Sends a command to the SCM and waits for the command to finish processing.
312  * This can be called in atomic context.
313  */
314 static int qcom_scm_call_atomic(struct device *dev,
315 				const struct qcom_scm_desc *desc,
316 				struct qcom_scm_res *res)
317 {
318 	switch (__get_convention()) {
319 	case SMC_CONVENTION_ARM_32:
320 	case SMC_CONVENTION_ARM_64:
321 		return scm_smc_call(dev, desc, res, true);
322 	case SMC_CONVENTION_LEGACY:
323 		return scm_legacy_call_atomic(dev, desc, res);
324 	default:
325 		pr_err("Unknown current SCM calling convention.\n");
326 		return -EINVAL;
327 	}
328 }
329 
330 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
331 					 u32 cmd_id)
332 {
333 	int ret;
334 	struct qcom_scm_desc desc = {
335 		.svc = QCOM_SCM_SVC_INFO,
336 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
337 		.owner = ARM_SMCCC_OWNER_SIP,
338 	};
339 	struct qcom_scm_res res;
340 
341 	desc.arginfo = QCOM_SCM_ARGS(1);
342 	switch (__get_convention()) {
343 	case SMC_CONVENTION_ARM_32:
344 	case SMC_CONVENTION_ARM_64:
345 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
346 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
347 		break;
348 	case SMC_CONVENTION_LEGACY:
349 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
350 		break;
351 	default:
352 		pr_err("Unknown SMC convention being used\n");
353 		return false;
354 	}
355 
356 	ret = qcom_scm_call(dev, &desc, &res);
357 
358 	return ret ? false : !!res.result[0];
359 }
360 
361 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
362 {
363 	int cpu;
364 	unsigned int flags = 0;
365 	struct qcom_scm_desc desc = {
366 		.svc = QCOM_SCM_SVC_BOOT,
367 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
368 		.arginfo = QCOM_SCM_ARGS(2),
369 		.owner = ARM_SMCCC_OWNER_SIP,
370 	};
371 
372 	for_each_present_cpu(cpu) {
373 		if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
374 			return -EINVAL;
375 		flags |= cpu_bits[cpu];
376 	}
377 
378 	desc.args[0] = flags;
379 	desc.args[1] = virt_to_phys(entry);
380 
381 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
382 }
383 
384 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
385 {
386 	struct qcom_scm_desc desc = {
387 		.svc = QCOM_SCM_SVC_BOOT,
388 		.cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
389 		.owner = ARM_SMCCC_OWNER_SIP,
390 		.arginfo = QCOM_SCM_ARGS(6),
391 		.args = {
392 			virt_to_phys(entry),
393 			/* Apply to all CPUs in all affinity levels */
394 			~0ULL, ~0ULL, ~0ULL, ~0ULL,
395 			flags,
396 		},
397 	};
398 
399 	/* Need a device for DMA of the additional arguments */
400 	if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
401 		return -EOPNOTSUPP;
402 
403 	return qcom_scm_call(__scm->dev, &desc, NULL);
404 }
405 
406 /**
407  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
408  * @entry: Entry point function for the cpus
409  *
410  * Set the Linux entry point for the SCM to transfer control to when coming
411  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
412  */
413 int qcom_scm_set_warm_boot_addr(void *entry)
414 {
415 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
416 		/* Fallback to old SCM call */
417 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
418 	return 0;
419 }
420 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
421 
422 /**
423  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
424  * @entry: Entry point function for the cpus
425  */
426 int qcom_scm_set_cold_boot_addr(void *entry)
427 {
428 	if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
429 		/* Fallback to old SCM call */
430 		return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
431 	return 0;
432 }
433 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
434 
435 /**
436  * qcom_scm_cpu_power_down() - Power down the cpu
437  * @flags:	Flags to flush cache
438  *
439  * This is an end point to power down cpu. If there was a pending interrupt,
440  * the control would return from this function, otherwise, the cpu jumps to the
441  * warm boot entry point set for this cpu upon reset.
442  */
443 void qcom_scm_cpu_power_down(u32 flags)
444 {
445 	struct qcom_scm_desc desc = {
446 		.svc = QCOM_SCM_SVC_BOOT,
447 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
448 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
449 		.arginfo = QCOM_SCM_ARGS(1),
450 		.owner = ARM_SMCCC_OWNER_SIP,
451 	};
452 
453 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
454 }
455 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
456 
457 int qcom_scm_set_remote_state(u32 state, u32 id)
458 {
459 	struct qcom_scm_desc desc = {
460 		.svc = QCOM_SCM_SVC_BOOT,
461 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
462 		.arginfo = QCOM_SCM_ARGS(2),
463 		.args[0] = state,
464 		.args[1] = id,
465 		.owner = ARM_SMCCC_OWNER_SIP,
466 	};
467 	struct qcom_scm_res res;
468 	int ret;
469 
470 	ret = qcom_scm_call(__scm->dev, &desc, &res);
471 
472 	return ret ? : res.result[0];
473 }
474 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
475 
476 static int qcom_scm_disable_sdi(void)
477 {
478 	int ret;
479 	struct qcom_scm_desc desc = {
480 		.svc = QCOM_SCM_SVC_BOOT,
481 		.cmd = QCOM_SCM_BOOT_SDI_CONFIG,
482 		.args[0] = 1, /* Disable watchdog debug */
483 		.args[1] = 0, /* Disable SDI */
484 		.arginfo = QCOM_SCM_ARGS(2),
485 		.owner = ARM_SMCCC_OWNER_SIP,
486 	};
487 	struct qcom_scm_res res;
488 
489 	ret = qcom_scm_clk_enable();
490 	if (ret)
491 		return ret;
492 	ret = qcom_scm_call(__scm->dev, &desc, &res);
493 
494 	qcom_scm_clk_disable();
495 
496 	return ret ? : res.result[0];
497 }
498 
499 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
500 {
501 	struct qcom_scm_desc desc = {
502 		.svc = QCOM_SCM_SVC_BOOT,
503 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
504 		.arginfo = QCOM_SCM_ARGS(2),
505 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
506 		.owner = ARM_SMCCC_OWNER_SIP,
507 	};
508 
509 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
510 
511 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
512 }
513 
514 static int qcom_scm_io_rmw(phys_addr_t addr, unsigned int mask, unsigned int val)
515 {
516 	unsigned int old;
517 	unsigned int new;
518 	int ret;
519 
520 	ret = qcom_scm_io_readl(addr, &old);
521 	if (ret)
522 		return ret;
523 
524 	new = (old & ~mask) | (val & mask);
525 
526 	return qcom_scm_io_writel(addr, new);
527 }
528 
529 static void qcom_scm_set_download_mode(bool enable)
530 {
531 	u32 val = enable ? QCOM_DLOAD_FULLDUMP : QCOM_DLOAD_NODUMP;
532 	int ret = 0;
533 
534 	if (__scm->dload_mode_addr) {
535 		ret = qcom_scm_io_rmw(__scm->dload_mode_addr, QCOM_DLOAD_MASK,
536 				      FIELD_PREP(QCOM_DLOAD_MASK, val));
537 	} else if (__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_BOOT,
538 						QCOM_SCM_BOOT_SET_DLOAD_MODE)) {
539 		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
540 	} else {
541 		dev_err(__scm->dev,
542 			"No available mechanism for setting download mode\n");
543 	}
544 
545 	if (ret)
546 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
547 }
548 
549 /**
550  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
551  *			       state machine for a given peripheral, using the
552  *			       metadata
553  * @peripheral: peripheral id
554  * @metadata:	pointer to memory containing ELF header, program header table
555  *		and optional blob of data used for authenticating the metadata
556  *		and the rest of the firmware
557  * @size:	size of the metadata
558  * @ctx:	optional metadata context
559  *
560  * Return: 0 on success.
561  *
562  * Upon successful return, the PAS metadata context (@ctx) will be used to
563  * track the metadata allocation, this needs to be released by invoking
564  * qcom_scm_pas_metadata_release() by the caller.
565  */
566 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
567 			    struct qcom_scm_pas_metadata *ctx)
568 {
569 	dma_addr_t mdata_phys;
570 	void *mdata_buf;
571 	int ret;
572 	struct qcom_scm_desc desc = {
573 		.svc = QCOM_SCM_SVC_PIL,
574 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
575 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
576 		.args[0] = peripheral,
577 		.owner = ARM_SMCCC_OWNER_SIP,
578 	};
579 	struct qcom_scm_res res;
580 
581 	/*
582 	 * During the scm call memory protection will be enabled for the meta
583 	 * data blob, so make sure it's physically contiguous, 4K aligned and
584 	 * non-cachable to avoid XPU violations.
585 	 *
586 	 * For PIL calls the hypervisor creates SHM Bridges for the blob
587 	 * buffers on behalf of Linux so we must not do it ourselves hence
588 	 * not using the TZMem allocator here.
589 	 *
590 	 * If we pass a buffer that is already part of an SHM Bridge to this
591 	 * call, it will fail.
592 	 */
593 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
594 				       GFP_KERNEL);
595 	if (!mdata_buf)
596 		return -ENOMEM;
597 
598 	memcpy(mdata_buf, metadata, size);
599 
600 	ret = qcom_scm_clk_enable();
601 	if (ret)
602 		goto out;
603 
604 	ret = qcom_scm_bw_enable();
605 	if (ret)
606 		goto disable_clk;
607 
608 	desc.args[1] = mdata_phys;
609 
610 	ret = qcom_scm_call(__scm->dev, &desc, &res);
611 	qcom_scm_bw_disable();
612 
613 disable_clk:
614 	qcom_scm_clk_disable();
615 
616 out:
617 	if (ret < 0 || !ctx) {
618 		dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
619 	} else if (ctx) {
620 		ctx->ptr = mdata_buf;
621 		ctx->phys = mdata_phys;
622 		ctx->size = size;
623 	}
624 
625 	return ret ? : res.result[0];
626 }
627 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
628 
629 /**
630  * qcom_scm_pas_metadata_release() - release metadata context
631  * @ctx:	metadata context
632  */
633 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
634 {
635 	if (!ctx->ptr)
636 		return;
637 
638 	dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
639 
640 	ctx->ptr = NULL;
641 	ctx->phys = 0;
642 	ctx->size = 0;
643 }
644 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
645 
646 /**
647  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
648  *			      for firmware loading
649  * @peripheral:	peripheral id
650  * @addr:	start address of memory area to prepare
651  * @size:	size of the memory area to prepare
652  *
653  * Returns 0 on success.
654  */
655 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
656 {
657 	int ret;
658 	struct qcom_scm_desc desc = {
659 		.svc = QCOM_SCM_SVC_PIL,
660 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
661 		.arginfo = QCOM_SCM_ARGS(3),
662 		.args[0] = peripheral,
663 		.args[1] = addr,
664 		.args[2] = size,
665 		.owner = ARM_SMCCC_OWNER_SIP,
666 	};
667 	struct qcom_scm_res res;
668 
669 	ret = qcom_scm_clk_enable();
670 	if (ret)
671 		return ret;
672 
673 	ret = qcom_scm_bw_enable();
674 	if (ret)
675 		goto disable_clk;
676 
677 	ret = qcom_scm_call(__scm->dev, &desc, &res);
678 	qcom_scm_bw_disable();
679 
680 disable_clk:
681 	qcom_scm_clk_disable();
682 
683 	return ret ? : res.result[0];
684 }
685 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
686 
687 /**
688  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
689  *				   and reset the remote processor
690  * @peripheral:	peripheral id
691  *
692  * Return 0 on success.
693  */
694 int qcom_scm_pas_auth_and_reset(u32 peripheral)
695 {
696 	int ret;
697 	struct qcom_scm_desc desc = {
698 		.svc = QCOM_SCM_SVC_PIL,
699 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
700 		.arginfo = QCOM_SCM_ARGS(1),
701 		.args[0] = peripheral,
702 		.owner = ARM_SMCCC_OWNER_SIP,
703 	};
704 	struct qcom_scm_res res;
705 
706 	ret = qcom_scm_clk_enable();
707 	if (ret)
708 		return ret;
709 
710 	ret = qcom_scm_bw_enable();
711 	if (ret)
712 		goto disable_clk;
713 
714 	ret = qcom_scm_call(__scm->dev, &desc, &res);
715 	qcom_scm_bw_disable();
716 
717 disable_clk:
718 	qcom_scm_clk_disable();
719 
720 	return ret ? : res.result[0];
721 }
722 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
723 
724 /**
725  * qcom_scm_pas_shutdown() - Shut down the remote processor
726  * @peripheral: peripheral id
727  *
728  * Returns 0 on success.
729  */
730 int qcom_scm_pas_shutdown(u32 peripheral)
731 {
732 	int ret;
733 	struct qcom_scm_desc desc = {
734 		.svc = QCOM_SCM_SVC_PIL,
735 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
736 		.arginfo = QCOM_SCM_ARGS(1),
737 		.args[0] = peripheral,
738 		.owner = ARM_SMCCC_OWNER_SIP,
739 	};
740 	struct qcom_scm_res res;
741 
742 	ret = qcom_scm_clk_enable();
743 	if (ret)
744 		return ret;
745 
746 	ret = qcom_scm_bw_enable();
747 	if (ret)
748 		goto disable_clk;
749 
750 	ret = qcom_scm_call(__scm->dev, &desc, &res);
751 	qcom_scm_bw_disable();
752 
753 disable_clk:
754 	qcom_scm_clk_disable();
755 
756 	return ret ? : res.result[0];
757 }
758 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
759 
760 /**
761  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
762  *			      available for the given peripherial
763  * @peripheral:	peripheral id
764  *
765  * Returns true if PAS is supported for this peripheral, otherwise false.
766  */
767 bool qcom_scm_pas_supported(u32 peripheral)
768 {
769 	int ret;
770 	struct qcom_scm_desc desc = {
771 		.svc = QCOM_SCM_SVC_PIL,
772 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
773 		.arginfo = QCOM_SCM_ARGS(1),
774 		.args[0] = peripheral,
775 		.owner = ARM_SMCCC_OWNER_SIP,
776 	};
777 	struct qcom_scm_res res;
778 
779 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
780 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
781 		return false;
782 
783 	ret = qcom_scm_call(__scm->dev, &desc, &res);
784 
785 	return ret ? false : !!res.result[0];
786 }
787 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
788 
789 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
790 {
791 	struct qcom_scm_desc desc = {
792 		.svc = QCOM_SCM_SVC_PIL,
793 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
794 		.arginfo = QCOM_SCM_ARGS(2),
795 		.args[0] = reset,
796 		.args[1] = 0,
797 		.owner = ARM_SMCCC_OWNER_SIP,
798 	};
799 	struct qcom_scm_res res;
800 	int ret;
801 
802 	ret = qcom_scm_call(__scm->dev, &desc, &res);
803 
804 	return ret ? : res.result[0];
805 }
806 
807 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
808 				     unsigned long idx)
809 {
810 	if (idx != 0)
811 		return -EINVAL;
812 
813 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
814 }
815 
816 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
817 				       unsigned long idx)
818 {
819 	if (idx != 0)
820 		return -EINVAL;
821 
822 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
823 }
824 
825 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
826 	.assert = qcom_scm_pas_reset_assert,
827 	.deassert = qcom_scm_pas_reset_deassert,
828 };
829 
830 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
831 {
832 	struct qcom_scm_desc desc = {
833 		.svc = QCOM_SCM_SVC_IO,
834 		.cmd = QCOM_SCM_IO_READ,
835 		.arginfo = QCOM_SCM_ARGS(1),
836 		.args[0] = addr,
837 		.owner = ARM_SMCCC_OWNER_SIP,
838 	};
839 	struct qcom_scm_res res;
840 	int ret;
841 
842 
843 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
844 	if (ret >= 0)
845 		*val = res.result[0];
846 
847 	return ret < 0 ? ret : 0;
848 }
849 EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
850 
851 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
852 {
853 	struct qcom_scm_desc desc = {
854 		.svc = QCOM_SCM_SVC_IO,
855 		.cmd = QCOM_SCM_IO_WRITE,
856 		.arginfo = QCOM_SCM_ARGS(2),
857 		.args[0] = addr,
858 		.args[1] = val,
859 		.owner = ARM_SMCCC_OWNER_SIP,
860 	};
861 
862 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
863 }
864 EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
865 
866 /**
867  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
868  * supports restore security config interface.
869  *
870  * Return true if restore-cfg interface is supported, false if not.
871  */
872 bool qcom_scm_restore_sec_cfg_available(void)
873 {
874 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
875 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
876 }
877 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
878 
879 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
880 {
881 	struct qcom_scm_desc desc = {
882 		.svc = QCOM_SCM_SVC_MP,
883 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
884 		.arginfo = QCOM_SCM_ARGS(2),
885 		.args[0] = device_id,
886 		.args[1] = spare,
887 		.owner = ARM_SMCCC_OWNER_SIP,
888 	};
889 	struct qcom_scm_res res;
890 	int ret;
891 
892 	ret = qcom_scm_call(__scm->dev, &desc, &res);
893 
894 	return ret ? : res.result[0];
895 }
896 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
897 
898 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
899 {
900 	struct qcom_scm_desc desc = {
901 		.svc = QCOM_SCM_SVC_MP,
902 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
903 		.arginfo = QCOM_SCM_ARGS(1),
904 		.args[0] = spare,
905 		.owner = ARM_SMCCC_OWNER_SIP,
906 	};
907 	struct qcom_scm_res res;
908 	int ret;
909 
910 	ret = qcom_scm_call(__scm->dev, &desc, &res);
911 
912 	if (size)
913 		*size = res.result[0];
914 
915 	return ret ? : res.result[1];
916 }
917 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
918 
919 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
920 {
921 	struct qcom_scm_desc desc = {
922 		.svc = QCOM_SCM_SVC_MP,
923 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
924 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
925 					 QCOM_SCM_VAL),
926 		.args[0] = addr,
927 		.args[1] = size,
928 		.args[2] = spare,
929 		.owner = ARM_SMCCC_OWNER_SIP,
930 	};
931 	int ret;
932 
933 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
934 
935 	/* the pg table has been initialized already, ignore the error */
936 	if (ret == -EPERM)
937 		ret = 0;
938 
939 	return ret;
940 }
941 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
942 
943 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
944 {
945 	struct qcom_scm_desc desc = {
946 		.svc = QCOM_SCM_SVC_MP,
947 		.cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
948 		.arginfo = QCOM_SCM_ARGS(2),
949 		.args[0] = size,
950 		.args[1] = spare,
951 		.owner = ARM_SMCCC_OWNER_SIP,
952 	};
953 
954 	return qcom_scm_call(__scm->dev, &desc, NULL);
955 }
956 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
957 
958 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
959 				   u32 cp_nonpixel_start,
960 				   u32 cp_nonpixel_size)
961 {
962 	int ret;
963 	struct qcom_scm_desc desc = {
964 		.svc = QCOM_SCM_SVC_MP,
965 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
966 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
967 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
968 		.args[0] = cp_start,
969 		.args[1] = cp_size,
970 		.args[2] = cp_nonpixel_start,
971 		.args[3] = cp_nonpixel_size,
972 		.owner = ARM_SMCCC_OWNER_SIP,
973 	};
974 	struct qcom_scm_res res;
975 
976 	ret = qcom_scm_call(__scm->dev, &desc, &res);
977 
978 	return ret ? : res.result[0];
979 }
980 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
981 
982 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
983 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
984 				 phys_addr_t dest, size_t dest_sz)
985 {
986 	int ret;
987 	struct qcom_scm_desc desc = {
988 		.svc = QCOM_SCM_SVC_MP,
989 		.cmd = QCOM_SCM_MP_ASSIGN,
990 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
991 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
992 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
993 		.args[0] = mem_region,
994 		.args[1] = mem_sz,
995 		.args[2] = src,
996 		.args[3] = src_sz,
997 		.args[4] = dest,
998 		.args[5] = dest_sz,
999 		.args[6] = 0,
1000 		.owner = ARM_SMCCC_OWNER_SIP,
1001 	};
1002 	struct qcom_scm_res res;
1003 
1004 	ret = qcom_scm_call(dev, &desc, &res);
1005 
1006 	return ret ? : res.result[0];
1007 }
1008 
1009 /**
1010  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
1011  * @mem_addr: mem region whose ownership need to be reassigned
1012  * @mem_sz:   size of the region.
1013  * @srcvm:    vmid for current set of owners, each set bit in
1014  *            flag indicate a unique owner
1015  * @newvm:    array having new owners and corresponding permission
1016  *            flags
1017  * @dest_cnt: number of owners in next set.
1018  *
1019  * Return negative errno on failure or 0 on success with @srcvm updated.
1020  */
1021 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
1022 			u64 *srcvm,
1023 			const struct qcom_scm_vmperm *newvm,
1024 			unsigned int dest_cnt)
1025 {
1026 	struct qcom_scm_current_perm_info *destvm;
1027 	struct qcom_scm_mem_map_info *mem_to_map;
1028 	phys_addr_t mem_to_map_phys;
1029 	phys_addr_t dest_phys;
1030 	phys_addr_t ptr_phys;
1031 	size_t mem_to_map_sz;
1032 	size_t dest_sz;
1033 	size_t src_sz;
1034 	size_t ptr_sz;
1035 	int next_vm;
1036 	__le32 *src;
1037 	int ret, i, b;
1038 	u64 srcvm_bits = *srcvm;
1039 
1040 	src_sz = hweight64(srcvm_bits) * sizeof(*src);
1041 	mem_to_map_sz = sizeof(*mem_to_map);
1042 	dest_sz = dest_cnt * sizeof(*destvm);
1043 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
1044 			ALIGN(dest_sz, SZ_64);
1045 
1046 	void *ptr __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1047 							ptr_sz, GFP_KERNEL);
1048 	if (!ptr)
1049 		return -ENOMEM;
1050 
1051 	ptr_phys = qcom_tzmem_to_phys(ptr);
1052 
1053 	/* Fill source vmid detail */
1054 	src = ptr;
1055 	i = 0;
1056 	for (b = 0; b < BITS_PER_TYPE(u64); b++) {
1057 		if (srcvm_bits & BIT(b))
1058 			src[i++] = cpu_to_le32(b);
1059 	}
1060 
1061 	/* Fill details of mem buff to map */
1062 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
1063 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
1064 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
1065 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
1066 
1067 	next_vm = 0;
1068 	/* Fill details of next vmid detail */
1069 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1070 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1071 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
1072 		destvm->vmid = cpu_to_le32(newvm->vmid);
1073 		destvm->perm = cpu_to_le32(newvm->perm);
1074 		destvm->ctx = 0;
1075 		destvm->ctx_size = 0;
1076 		next_vm |= BIT(newvm->vmid);
1077 	}
1078 
1079 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
1080 				    ptr_phys, src_sz, dest_phys, dest_sz);
1081 	if (ret) {
1082 		dev_err(__scm->dev,
1083 			"Assign memory protection call failed %d\n", ret);
1084 		return -EINVAL;
1085 	}
1086 
1087 	*srcvm = next_vm;
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
1091 
1092 /**
1093  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
1094  */
1095 bool qcom_scm_ocmem_lock_available(void)
1096 {
1097 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
1098 					    QCOM_SCM_OCMEM_LOCK_CMD);
1099 }
1100 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
1101 
1102 /**
1103  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
1104  * region to the specified initiator
1105  *
1106  * @id:     tz initiator id
1107  * @offset: OCMEM offset
1108  * @size:   OCMEM size
1109  * @mode:   access mode (WIDE/NARROW)
1110  */
1111 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
1112 			u32 mode)
1113 {
1114 	struct qcom_scm_desc desc = {
1115 		.svc = QCOM_SCM_SVC_OCMEM,
1116 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1117 		.args[0] = id,
1118 		.args[1] = offset,
1119 		.args[2] = size,
1120 		.args[3] = mode,
1121 		.arginfo = QCOM_SCM_ARGS(4),
1122 	};
1123 
1124 	return qcom_scm_call(__scm->dev, &desc, NULL);
1125 }
1126 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1127 
1128 /**
1129  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1130  * region from the specified initiator
1131  *
1132  * @id:     tz initiator id
1133  * @offset: OCMEM offset
1134  * @size:   OCMEM size
1135  */
1136 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1137 {
1138 	struct qcom_scm_desc desc = {
1139 		.svc = QCOM_SCM_SVC_OCMEM,
1140 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1141 		.args[0] = id,
1142 		.args[1] = offset,
1143 		.args[2] = size,
1144 		.arginfo = QCOM_SCM_ARGS(3),
1145 	};
1146 
1147 	return qcom_scm_call(__scm->dev, &desc, NULL);
1148 }
1149 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1150 
1151 /**
1152  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1153  *
1154  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1155  *	   qcom_scm_ice_set_key() are available.
1156  */
1157 bool qcom_scm_ice_available(void)
1158 {
1159 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1160 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1161 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1162 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1163 }
1164 EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1165 
1166 /**
1167  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1168  * @index: the keyslot to invalidate
1169  *
1170  * The UFSHCI and eMMC standards define a standard way to do this, but it
1171  * doesn't work on these SoCs; only this SCM call does.
1172  *
1173  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1174  * call doesn't specify which ICE instance the keyslot belongs to.
1175  *
1176  * Return: 0 on success; -errno on failure.
1177  */
1178 int qcom_scm_ice_invalidate_key(u32 index)
1179 {
1180 	struct qcom_scm_desc desc = {
1181 		.svc = QCOM_SCM_SVC_ES,
1182 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1183 		.arginfo = QCOM_SCM_ARGS(1),
1184 		.args[0] = index,
1185 		.owner = ARM_SMCCC_OWNER_SIP,
1186 	};
1187 
1188 	return qcom_scm_call(__scm->dev, &desc, NULL);
1189 }
1190 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1191 
1192 /**
1193  * qcom_scm_ice_set_key() - Set an inline encryption key
1194  * @index: the keyslot into which to set the key
1195  * @key: the key to program
1196  * @key_size: the size of the key in bytes
1197  * @cipher: the encryption algorithm the key is for
1198  * @data_unit_size: the encryption data unit size, i.e. the size of each
1199  *		    individual plaintext and ciphertext.  Given in 512-byte
1200  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1201  *
1202  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1203  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1204  *
1205  * The UFSHCI and eMMC standards define a standard way to do this, but it
1206  * doesn't work on these SoCs; only this SCM call does.
1207  *
1208  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1209  * call doesn't specify which ICE instance the keyslot belongs to.
1210  *
1211  * Return: 0 on success; -errno on failure.
1212  */
1213 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1214 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1215 {
1216 	struct qcom_scm_desc desc = {
1217 		.svc = QCOM_SCM_SVC_ES,
1218 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1219 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1220 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1221 					 QCOM_SCM_VAL),
1222 		.args[0] = index,
1223 		.args[2] = key_size,
1224 		.args[3] = cipher,
1225 		.args[4] = data_unit_size,
1226 		.owner = ARM_SMCCC_OWNER_SIP,
1227 	};
1228 
1229 	int ret;
1230 
1231 	void *keybuf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1232 							   key_size,
1233 							   GFP_KERNEL);
1234 	if (!keybuf)
1235 		return -ENOMEM;
1236 	memcpy(keybuf, key, key_size);
1237 	desc.args[1] = qcom_tzmem_to_phys(keybuf);
1238 
1239 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1240 
1241 	memzero_explicit(keybuf, key_size);
1242 
1243 	return ret;
1244 }
1245 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1246 
1247 /**
1248  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1249  *
1250  * Return true if HDCP is supported, false if not.
1251  */
1252 bool qcom_scm_hdcp_available(void)
1253 {
1254 	bool avail;
1255 	int ret = qcom_scm_clk_enable();
1256 
1257 	if (ret)
1258 		return ret;
1259 
1260 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1261 						QCOM_SCM_HDCP_INVOKE);
1262 
1263 	qcom_scm_clk_disable();
1264 
1265 	return avail;
1266 }
1267 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1268 
1269 /**
1270  * qcom_scm_hdcp_req() - Send HDCP request.
1271  * @req: HDCP request array
1272  * @req_cnt: HDCP request array count
1273  * @resp: response buffer passed to SCM
1274  *
1275  * Write HDCP register(s) through SCM.
1276  */
1277 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1278 {
1279 	int ret;
1280 	struct qcom_scm_desc desc = {
1281 		.svc = QCOM_SCM_SVC_HDCP,
1282 		.cmd = QCOM_SCM_HDCP_INVOKE,
1283 		.arginfo = QCOM_SCM_ARGS(10),
1284 		.args = {
1285 			req[0].addr,
1286 			req[0].val,
1287 			req[1].addr,
1288 			req[1].val,
1289 			req[2].addr,
1290 			req[2].val,
1291 			req[3].addr,
1292 			req[3].val,
1293 			req[4].addr,
1294 			req[4].val
1295 		},
1296 		.owner = ARM_SMCCC_OWNER_SIP,
1297 	};
1298 	struct qcom_scm_res res;
1299 
1300 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1301 		return -ERANGE;
1302 
1303 	ret = qcom_scm_clk_enable();
1304 	if (ret)
1305 		return ret;
1306 
1307 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1308 	*resp = res.result[0];
1309 
1310 	qcom_scm_clk_disable();
1311 
1312 	return ret;
1313 }
1314 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1315 
1316 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1317 {
1318 	struct qcom_scm_desc desc = {
1319 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1320 		.cmd = QCOM_SCM_SMMU_PT_FORMAT,
1321 		.arginfo = QCOM_SCM_ARGS(3),
1322 		.args[0] = sec_id,
1323 		.args[1] = ctx_num,
1324 		.args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1325 		.owner = ARM_SMCCC_OWNER_SIP,
1326 	};
1327 
1328 	return qcom_scm_call(__scm->dev, &desc, NULL);
1329 }
1330 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1331 
1332 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1333 {
1334 	struct qcom_scm_desc desc = {
1335 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1336 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1337 		.arginfo = QCOM_SCM_ARGS(2),
1338 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1339 		.args[1] = en,
1340 		.owner = ARM_SMCCC_OWNER_SIP,
1341 	};
1342 
1343 
1344 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1345 }
1346 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1347 
1348 bool qcom_scm_lmh_dcvsh_available(void)
1349 {
1350 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1351 }
1352 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1353 
1354 int qcom_scm_shm_bridge_enable(void)
1355 {
1356 	struct qcom_scm_desc desc = {
1357 		.svc = QCOM_SCM_SVC_MP,
1358 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_ENABLE,
1359 		.owner = ARM_SMCCC_OWNER_SIP
1360 	};
1361 
1362 	struct qcom_scm_res res;
1363 
1364 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
1365 					  QCOM_SCM_MP_SHM_BRIDGE_ENABLE))
1366 		return -EOPNOTSUPP;
1367 
1368 	return qcom_scm_call(__scm->dev, &desc, &res) ?: res.result[0];
1369 }
1370 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_enable);
1371 
1372 int qcom_scm_shm_bridge_create(struct device *dev, u64 pfn_and_ns_perm_flags,
1373 			       u64 ipfn_and_s_perm_flags, u64 size_and_flags,
1374 			       u64 ns_vmids, u64 *handle)
1375 {
1376 	struct qcom_scm_desc desc = {
1377 		.svc = QCOM_SCM_SVC_MP,
1378 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_CREATE,
1379 		.owner = ARM_SMCCC_OWNER_SIP,
1380 		.args[0] = pfn_and_ns_perm_flags,
1381 		.args[1] = ipfn_and_s_perm_flags,
1382 		.args[2] = size_and_flags,
1383 		.args[3] = ns_vmids,
1384 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
1385 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
1386 	};
1387 
1388 	struct qcom_scm_res res;
1389 	int ret;
1390 
1391 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1392 
1393 	if (handle && !ret)
1394 		*handle = res.result[1];
1395 
1396 	return ret ?: res.result[0];
1397 }
1398 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_create);
1399 
1400 int qcom_scm_shm_bridge_delete(struct device *dev, u64 handle)
1401 {
1402 	struct qcom_scm_desc desc = {
1403 		.svc = QCOM_SCM_SVC_MP,
1404 		.cmd = QCOM_SCM_MP_SHM_BRIDGE_DELETE,
1405 		.owner = ARM_SMCCC_OWNER_SIP,
1406 		.args[0] = handle,
1407 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1408 	};
1409 
1410 	return qcom_scm_call(__scm->dev, &desc, NULL);
1411 }
1412 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_delete);
1413 
1414 int qcom_scm_lmh_profile_change(u32 profile_id)
1415 {
1416 	struct qcom_scm_desc desc = {
1417 		.svc = QCOM_SCM_SVC_LMH,
1418 		.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1419 		.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1420 		.args[0] = profile_id,
1421 		.owner = ARM_SMCCC_OWNER_SIP,
1422 	};
1423 
1424 	return qcom_scm_call(__scm->dev, &desc, NULL);
1425 }
1426 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1427 
1428 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1429 		       u64 limit_node, u32 node_id, u64 version)
1430 {
1431 	int ret, payload_size = 5 * sizeof(u32);
1432 
1433 	struct qcom_scm_desc desc = {
1434 		.svc = QCOM_SCM_SVC_LMH,
1435 		.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1436 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1437 					QCOM_SCM_VAL, QCOM_SCM_VAL),
1438 		.args[1] = payload_size,
1439 		.args[2] = limit_node,
1440 		.args[3] = node_id,
1441 		.args[4] = version,
1442 		.owner = ARM_SMCCC_OWNER_SIP,
1443 	};
1444 
1445 	u32 *payload_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1446 							       payload_size,
1447 							       GFP_KERNEL);
1448 	if (!payload_buf)
1449 		return -ENOMEM;
1450 
1451 	payload_buf[0] = payload_fn;
1452 	payload_buf[1] = 0;
1453 	payload_buf[2] = payload_reg;
1454 	payload_buf[3] = 1;
1455 	payload_buf[4] = payload_val;
1456 
1457 	desc.args[0] = qcom_tzmem_to_phys(payload_buf);
1458 
1459 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1460 
1461 	return ret;
1462 }
1463 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1464 
1465 int qcom_scm_gpu_init_regs(u32 gpu_req)
1466 {
1467 	struct qcom_scm_desc desc = {
1468 		.svc = QCOM_SCM_SVC_GPU,
1469 		.cmd = QCOM_SCM_SVC_GPU_INIT_REGS,
1470 		.arginfo = QCOM_SCM_ARGS(1),
1471 		.args[0] = gpu_req,
1472 		.owner = ARM_SMCCC_OWNER_SIP,
1473 	};
1474 
1475 	return qcom_scm_call(__scm->dev, &desc, NULL);
1476 }
1477 EXPORT_SYMBOL_GPL(qcom_scm_gpu_init_regs);
1478 
1479 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1480 {
1481 	struct device_node *tcsr;
1482 	struct device_node *np = dev->of_node;
1483 	struct resource res;
1484 	u32 offset;
1485 	int ret;
1486 
1487 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1488 	if (!tcsr)
1489 		return 0;
1490 
1491 	ret = of_address_to_resource(tcsr, 0, &res);
1492 	of_node_put(tcsr);
1493 	if (ret)
1494 		return ret;
1495 
1496 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1497 	if (ret < 0)
1498 		return ret;
1499 
1500 	*addr = res.start + offset;
1501 
1502 	return 0;
1503 }
1504 
1505 #ifdef CONFIG_QCOM_QSEECOM
1506 
1507 /* Lock for QSEECOM SCM call executions */
1508 static DEFINE_MUTEX(qcom_scm_qseecom_call_lock);
1509 
1510 static int __qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1511 				   struct qcom_scm_qseecom_resp *res)
1512 {
1513 	struct qcom_scm_res scm_res = {};
1514 	int status;
1515 
1516 	/*
1517 	 * QSEECOM SCM calls should not be executed concurrently. Therefore, we
1518 	 * require the respective call lock to be held.
1519 	 */
1520 	lockdep_assert_held(&qcom_scm_qseecom_call_lock);
1521 
1522 	status = qcom_scm_call(__scm->dev, desc, &scm_res);
1523 
1524 	res->result = scm_res.result[0];
1525 	res->resp_type = scm_res.result[1];
1526 	res->data = scm_res.result[2];
1527 
1528 	if (status)
1529 		return status;
1530 
1531 	return 0;
1532 }
1533 
1534 /**
1535  * qcom_scm_qseecom_call() - Perform a QSEECOM SCM call.
1536  * @desc: SCM call descriptor.
1537  * @res:  SCM call response (output).
1538  *
1539  * Performs the QSEECOM SCM call described by @desc, returning the response in
1540  * @rsp.
1541  *
1542  * Return: Zero on success, nonzero on failure.
1543  */
1544 static int qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1545 				 struct qcom_scm_qseecom_resp *res)
1546 {
1547 	int status;
1548 
1549 	/*
1550 	 * Note: Multiple QSEECOM SCM calls should not be executed same time,
1551 	 * so lock things here. This needs to be extended to callback/listener
1552 	 * handling when support for that is implemented.
1553 	 */
1554 
1555 	mutex_lock(&qcom_scm_qseecom_call_lock);
1556 	status = __qcom_scm_qseecom_call(desc, res);
1557 	mutex_unlock(&qcom_scm_qseecom_call_lock);
1558 
1559 	dev_dbg(__scm->dev, "%s: owner=%x, svc=%x, cmd=%x, result=%lld, type=%llx, data=%llx\n",
1560 		__func__, desc->owner, desc->svc, desc->cmd, res->result,
1561 		res->resp_type, res->data);
1562 
1563 	if (status) {
1564 		dev_err(__scm->dev, "qseecom: scm call failed with error %d\n", status);
1565 		return status;
1566 	}
1567 
1568 	/*
1569 	 * TODO: Handle incomplete and blocked calls:
1570 	 *
1571 	 * Incomplete and blocked calls are not supported yet. Some devices
1572 	 * and/or commands require those, some don't. Let's warn about them
1573 	 * prominently in case someone attempts to try these commands with a
1574 	 * device/command combination that isn't supported yet.
1575 	 */
1576 	WARN_ON(res->result == QSEECOM_RESULT_INCOMPLETE);
1577 	WARN_ON(res->result == QSEECOM_RESULT_BLOCKED_ON_LISTENER);
1578 
1579 	return 0;
1580 }
1581 
1582 /**
1583  * qcom_scm_qseecom_get_version() - Query the QSEECOM version.
1584  * @version: Pointer where the QSEECOM version will be stored.
1585  *
1586  * Performs the QSEECOM SCM querying the QSEECOM version currently running in
1587  * the TrustZone.
1588  *
1589  * Return: Zero on success, nonzero on failure.
1590  */
1591 static int qcom_scm_qseecom_get_version(u32 *version)
1592 {
1593 	struct qcom_scm_desc desc = {};
1594 	struct qcom_scm_qseecom_resp res = {};
1595 	u32 feature = 10;
1596 	int ret;
1597 
1598 	desc.owner = QSEECOM_TZ_OWNER_SIP;
1599 	desc.svc = QSEECOM_TZ_SVC_INFO;
1600 	desc.cmd = QSEECOM_TZ_CMD_INFO_VERSION;
1601 	desc.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL);
1602 	desc.args[0] = feature;
1603 
1604 	ret = qcom_scm_qseecom_call(&desc, &res);
1605 	if (ret)
1606 		return ret;
1607 
1608 	*version = res.result;
1609 	return 0;
1610 }
1611 
1612 /**
1613  * qcom_scm_qseecom_app_get_id() - Query the app ID for a given QSEE app name.
1614  * @app_name: The name of the app.
1615  * @app_id:   The returned app ID.
1616  *
1617  * Query and return the application ID of the SEE app identified by the given
1618  * name. This returned ID is the unique identifier of the app required for
1619  * subsequent communication.
1620  *
1621  * Return: Zero on success, nonzero on failure, -ENOENT if the app has not been
1622  * loaded or could not be found.
1623  */
1624 int qcom_scm_qseecom_app_get_id(const char *app_name, u32 *app_id)
1625 {
1626 	unsigned long name_buf_size = QSEECOM_MAX_APP_NAME_SIZE;
1627 	unsigned long app_name_len = strlen(app_name);
1628 	struct qcom_scm_desc desc = {};
1629 	struct qcom_scm_qseecom_resp res = {};
1630 	int status;
1631 
1632 	if (app_name_len >= name_buf_size)
1633 		return -EINVAL;
1634 
1635 	char *name_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1636 							     name_buf_size,
1637 							     GFP_KERNEL);
1638 	if (!name_buf)
1639 		return -ENOMEM;
1640 
1641 	memcpy(name_buf, app_name, app_name_len);
1642 
1643 	desc.owner = QSEECOM_TZ_OWNER_QSEE_OS;
1644 	desc.svc = QSEECOM_TZ_SVC_APP_MGR;
1645 	desc.cmd = QSEECOM_TZ_CMD_APP_LOOKUP;
1646 	desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL);
1647 	desc.args[0] = qcom_tzmem_to_phys(name_buf);
1648 	desc.args[1] = app_name_len;
1649 
1650 	status = qcom_scm_qseecom_call(&desc, &res);
1651 
1652 	if (status)
1653 		return status;
1654 
1655 	if (res.result == QSEECOM_RESULT_FAILURE)
1656 		return -ENOENT;
1657 
1658 	if (res.result != QSEECOM_RESULT_SUCCESS)
1659 		return -EINVAL;
1660 
1661 	if (res.resp_type != QSEECOM_SCM_RES_APP_ID)
1662 		return -EINVAL;
1663 
1664 	*app_id = res.data;
1665 	return 0;
1666 }
1667 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_get_id);
1668 
1669 /**
1670  * qcom_scm_qseecom_app_send() - Send to and receive data from a given QSEE app.
1671  * @app_id:   The ID of the target app.
1672  * @req:      Request buffer sent to the app (must be TZ memory)
1673  * @req_size: Size of the request buffer.
1674  * @rsp:      Response buffer, written to by the app (must be TZ memory)
1675  * @rsp_size: Size of the response buffer.
1676  *
1677  * Sends a request to the QSEE app associated with the given ID and read back
1678  * its response. The caller must provide two DMA memory regions, one for the
1679  * request and one for the response, and fill out the @req region with the
1680  * respective (app-specific) request data. The QSEE app reads this and returns
1681  * its response in the @rsp region.
1682  *
1683  * Return: Zero on success, nonzero on failure.
1684  */
1685 int qcom_scm_qseecom_app_send(u32 app_id, void *req, size_t req_size,
1686 			      void *rsp, size_t rsp_size)
1687 {
1688 	struct qcom_scm_qseecom_resp res = {};
1689 	struct qcom_scm_desc desc = {};
1690 	phys_addr_t req_phys;
1691 	phys_addr_t rsp_phys;
1692 	int status;
1693 
1694 	req_phys = qcom_tzmem_to_phys(req);
1695 	rsp_phys = qcom_tzmem_to_phys(rsp);
1696 
1697 	desc.owner = QSEECOM_TZ_OWNER_TZ_APPS;
1698 	desc.svc = QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER;
1699 	desc.cmd = QSEECOM_TZ_CMD_APP_SEND;
1700 	desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL,
1701 				     QCOM_SCM_RW, QCOM_SCM_VAL,
1702 				     QCOM_SCM_RW, QCOM_SCM_VAL);
1703 	desc.args[0] = app_id;
1704 	desc.args[1] = req_phys;
1705 	desc.args[2] = req_size;
1706 	desc.args[3] = rsp_phys;
1707 	desc.args[4] = rsp_size;
1708 
1709 	status = qcom_scm_qseecom_call(&desc, &res);
1710 
1711 	if (status)
1712 		return status;
1713 
1714 	if (res.result != QSEECOM_RESULT_SUCCESS)
1715 		return -EIO;
1716 
1717 	return 0;
1718 }
1719 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_send);
1720 
1721 /*
1722  * We do not yet support re-entrant calls via the qseecom interface. To prevent
1723  + any potential issues with this, only allow validated machines for now.
1724  */
1725 static const struct of_device_id qcom_scm_qseecom_allowlist[] __maybe_unused = {
1726 	{ .compatible = "lenovo,flex-5g" },
1727 	{ .compatible = "lenovo,thinkpad-x13s", },
1728 	{ .compatible = "qcom,sc8180x-primus" },
1729 	{ .compatible = "qcom,x1e80100-crd" },
1730 	{ .compatible = "qcom,x1e80100-qcp" },
1731 	{ }
1732 };
1733 
1734 static bool qcom_scm_qseecom_machine_is_allowed(void)
1735 {
1736 	struct device_node *np;
1737 	bool match;
1738 
1739 	np = of_find_node_by_path("/");
1740 	if (!np)
1741 		return false;
1742 
1743 	match = of_match_node(qcom_scm_qseecom_allowlist, np);
1744 	of_node_put(np);
1745 
1746 	return match;
1747 }
1748 
1749 static void qcom_scm_qseecom_free(void *data)
1750 {
1751 	struct platform_device *qseecom_dev = data;
1752 
1753 	platform_device_del(qseecom_dev);
1754 	platform_device_put(qseecom_dev);
1755 }
1756 
1757 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1758 {
1759 	struct platform_device *qseecom_dev;
1760 	u32 version;
1761 	int ret;
1762 
1763 	/*
1764 	 * Note: We do two steps of validation here: First, we try to query the
1765 	 * QSEECOM version as a check to see if the interface exists on this
1766 	 * device. Second, we check against known good devices due to current
1767 	 * driver limitations (see comment in qcom_scm_qseecom_allowlist).
1768 	 *
1769 	 * Note that we deliberately do the machine check after the version
1770 	 * check so that we can log potentially supported devices. This should
1771 	 * be safe as downstream sources indicate that the version query is
1772 	 * neither blocking nor reentrant.
1773 	 */
1774 	ret = qcom_scm_qseecom_get_version(&version);
1775 	if (ret)
1776 		return 0;
1777 
1778 	dev_info(scm->dev, "qseecom: found qseecom with version 0x%x\n", version);
1779 
1780 	if (!qcom_scm_qseecom_machine_is_allowed()) {
1781 		dev_info(scm->dev, "qseecom: untested machine, skipping\n");
1782 		return 0;
1783 	}
1784 
1785 	/*
1786 	 * Set up QSEECOM interface device. All application clients will be
1787 	 * set up and managed by the corresponding driver for it.
1788 	 */
1789 	qseecom_dev = platform_device_alloc("qcom_qseecom", -1);
1790 	if (!qseecom_dev)
1791 		return -ENOMEM;
1792 
1793 	qseecom_dev->dev.parent = scm->dev;
1794 
1795 	ret = platform_device_add(qseecom_dev);
1796 	if (ret) {
1797 		platform_device_put(qseecom_dev);
1798 		return ret;
1799 	}
1800 
1801 	return devm_add_action_or_reset(scm->dev, qcom_scm_qseecom_free, qseecom_dev);
1802 }
1803 
1804 #else /* CONFIG_QCOM_QSEECOM */
1805 
1806 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1807 {
1808 	return 0;
1809 }
1810 
1811 #endif /* CONFIG_QCOM_QSEECOM */
1812 
1813 /**
1814  * qcom_scm_is_available() - Checks if SCM is available
1815  */
1816 bool qcom_scm_is_available(void)
1817 {
1818 	return !!READ_ONCE(__scm);
1819 }
1820 EXPORT_SYMBOL_GPL(qcom_scm_is_available);
1821 
1822 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1823 {
1824 	/* FW currently only supports a single wq_ctx (zero).
1825 	 * TODO: Update this logic to include dynamic allocation and lookup of
1826 	 * completion structs when FW supports more wq_ctx values.
1827 	 */
1828 	if (wq_ctx != 0) {
1829 		dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1830 		return -EINVAL;
1831 	}
1832 
1833 	return 0;
1834 }
1835 
1836 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1837 {
1838 	int ret;
1839 
1840 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1841 	if (ret)
1842 		return ret;
1843 
1844 	wait_for_completion(&__scm->waitq_comp);
1845 
1846 	return 0;
1847 }
1848 
1849 static int qcom_scm_waitq_wakeup(unsigned int wq_ctx)
1850 {
1851 	int ret;
1852 
1853 	ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1854 	if (ret)
1855 		return ret;
1856 
1857 	complete(&__scm->waitq_comp);
1858 
1859 	return 0;
1860 }
1861 
1862 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1863 {
1864 	int ret;
1865 	struct qcom_scm *scm = data;
1866 	u32 wq_ctx, flags, more_pending = 0;
1867 
1868 	do {
1869 		ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
1870 		if (ret) {
1871 			dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1872 			goto out;
1873 		}
1874 
1875 		if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE) {
1876 			dev_err(scm->dev, "Invalid flags received for wq_ctx: %u\n", flags);
1877 			goto out;
1878 		}
1879 
1880 		ret = qcom_scm_waitq_wakeup(wq_ctx);
1881 		if (ret)
1882 			goto out;
1883 	} while (more_pending);
1884 
1885 out:
1886 	return IRQ_HANDLED;
1887 }
1888 
1889 static int qcom_scm_probe(struct platform_device *pdev)
1890 {
1891 	struct qcom_tzmem_pool_config pool_config;
1892 	struct qcom_scm *scm;
1893 	int irq, ret;
1894 
1895 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1896 	if (!scm)
1897 		return -ENOMEM;
1898 
1899 	scm->dev = &pdev->dev;
1900 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1901 	if (ret < 0)
1902 		return ret;
1903 
1904 	init_completion(&scm->waitq_comp);
1905 	mutex_init(&scm->scm_bw_lock);
1906 
1907 	scm->path = devm_of_icc_get(&pdev->dev, NULL);
1908 	if (IS_ERR(scm->path))
1909 		return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1910 				     "failed to acquire interconnect path\n");
1911 
1912 	scm->core_clk = devm_clk_get_optional(&pdev->dev, "core");
1913 	if (IS_ERR(scm->core_clk))
1914 		return PTR_ERR(scm->core_clk);
1915 
1916 	scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface");
1917 	if (IS_ERR(scm->iface_clk))
1918 		return PTR_ERR(scm->iface_clk);
1919 
1920 	scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
1921 	if (IS_ERR(scm->bus_clk))
1922 		return PTR_ERR(scm->bus_clk);
1923 
1924 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1925 	scm->reset.nr_resets = 1;
1926 	scm->reset.of_node = pdev->dev.of_node;
1927 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1928 	if (ret)
1929 		return ret;
1930 
1931 	/* vote for max clk rate for highest performance */
1932 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1933 	if (ret)
1934 		return ret;
1935 
1936 	/* Let all above stores be available after this */
1937 	smp_store_release(&__scm, scm);
1938 
1939 	irq = platform_get_irq_optional(pdev, 0);
1940 	if (irq < 0) {
1941 		if (irq != -ENXIO)
1942 			return irq;
1943 	} else {
1944 		ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
1945 						IRQF_ONESHOT, "qcom-scm", __scm);
1946 		if (ret < 0)
1947 			return dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
1948 	}
1949 
1950 	__get_convention();
1951 
1952 	/*
1953 	 * If requested enable "download mode", from this point on warmboot
1954 	 * will cause the boot stages to enter download mode, unless
1955 	 * disabled below by a clean shutdown/reboot.
1956 	 */
1957 	if (download_mode)
1958 		qcom_scm_set_download_mode(true);
1959 
1960 
1961 	/*
1962 	 * Disable SDI if indicated by DT that it is enabled by default.
1963 	 */
1964 	if (of_property_read_bool(pdev->dev.of_node, "qcom,sdi-enabled"))
1965 		qcom_scm_disable_sdi();
1966 
1967 	ret = of_reserved_mem_device_init(__scm->dev);
1968 	if (ret && ret != -ENODEV)
1969 		return dev_err_probe(__scm->dev, ret,
1970 				     "Failed to setup the reserved memory region for TZ mem\n");
1971 
1972 	ret = qcom_tzmem_enable(__scm->dev);
1973 	if (ret)
1974 		return dev_err_probe(__scm->dev, ret,
1975 				     "Failed to enable the TrustZone memory allocator\n");
1976 
1977 	memset(&pool_config, 0, sizeof(pool_config));
1978 	pool_config.initial_size = 0;
1979 	pool_config.policy = QCOM_TZMEM_POLICY_ON_DEMAND;
1980 	pool_config.max_size = SZ_256K;
1981 
1982 	__scm->mempool = devm_qcom_tzmem_pool_new(__scm->dev, &pool_config);
1983 	if (IS_ERR(__scm->mempool))
1984 		return dev_err_probe(__scm->dev, PTR_ERR(__scm->mempool),
1985 				     "Failed to create the SCM memory pool\n");
1986 
1987 	/*
1988 	 * Initialize the QSEECOM interface.
1989 	 *
1990 	 * Note: QSEECOM is fairly self-contained and this only adds the
1991 	 * interface device (the driver of which does most of the heavy
1992 	 * lifting). So any errors returned here should be either -ENOMEM or
1993 	 * -EINVAL (with the latter only in case there's a bug in our code).
1994 	 * This means that there is no need to bring down the whole SCM driver.
1995 	 * Just log the error instead and let SCM live.
1996 	 */
1997 	ret = qcom_scm_qseecom_init(scm);
1998 	WARN(ret < 0, "failed to initialize qseecom: %d\n", ret);
1999 
2000 	return 0;
2001 }
2002 
2003 static void qcom_scm_shutdown(struct platform_device *pdev)
2004 {
2005 	/* Clean shutdown, disable download mode to allow normal restart */
2006 	qcom_scm_set_download_mode(false);
2007 }
2008 
2009 static const struct of_device_id qcom_scm_dt_match[] = {
2010 	{ .compatible = "qcom,scm" },
2011 
2012 	/* Legacy entries kept for backwards compatibility */
2013 	{ .compatible = "qcom,scm-apq8064" },
2014 	{ .compatible = "qcom,scm-apq8084" },
2015 	{ .compatible = "qcom,scm-ipq4019" },
2016 	{ .compatible = "qcom,scm-msm8953" },
2017 	{ .compatible = "qcom,scm-msm8974" },
2018 	{ .compatible = "qcom,scm-msm8996" },
2019 	{}
2020 };
2021 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
2022 
2023 static struct platform_driver qcom_scm_driver = {
2024 	.driver = {
2025 		.name	= "qcom_scm",
2026 		.of_match_table = qcom_scm_dt_match,
2027 		.suppress_bind_attrs = true,
2028 	},
2029 	.probe = qcom_scm_probe,
2030 	.shutdown = qcom_scm_shutdown,
2031 };
2032 
2033 static int __init qcom_scm_init(void)
2034 {
2035 	return platform_driver_register(&qcom_scm_driver);
2036 }
2037 subsys_initcall(qcom_scm_init);
2038 
2039 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
2040 MODULE_LICENSE("GPL v2");
2041