xref: /linux/drivers/crypto/qce/sha.c (revision 7ae9fb1b7ecbb5d85d07857943f677fd1a559b18)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/interrupt.h>
9 #include <crypto/internal/hash.h>
10 
11 #include "common.h"
12 #include "core.h"
13 #include "sha.h"
14 
15 struct qce_sha_saved_state {
16 	u8 pending_buf[QCE_SHA_MAX_BLOCKSIZE];
17 	u8 partial_digest[QCE_SHA_MAX_DIGESTSIZE];
18 	__be32 byte_count[2];
19 	unsigned int pending_buflen;
20 	unsigned int flags;
21 	u64 count;
22 	bool first_blk;
23 };
24 
25 static LIST_HEAD(ahash_algs);
26 
27 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
28 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
29 };
30 
31 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
32 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
33 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
34 };
35 
qce_ahash_done(void * data)36 static void qce_ahash_done(void *data)
37 {
38 	struct crypto_async_request *async_req = data;
39 	struct ahash_request *req = ahash_request_cast(async_req);
40 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
41 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
42 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
43 	struct qce_device *qce = tmpl->qce;
44 	struct qce_result_dump *result = qce->dma.result_buf;
45 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
46 	int error;
47 	u32 status;
48 
49 	error = qce_dma_terminate_all(&qce->dma);
50 	if (error)
51 		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
52 
53 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
54 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
55 
56 	memcpy(rctx->digest, result->auth_iv, digestsize);
57 	if (req->result && rctx->last_blk)
58 		memcpy(req->result, result->auth_iv, digestsize);
59 
60 	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
61 	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
62 
63 	error = qce_check_status(qce, &status);
64 	if (error < 0)
65 		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
66 
67 	req->src = rctx->src_orig;
68 	req->nbytes = rctx->nbytes_orig;
69 	rctx->last_blk = false;
70 	rctx->first_blk = false;
71 
72 	qce->async_req_done(tmpl->qce, error);
73 }
74 
qce_ahash_async_req_handle(struct crypto_async_request * async_req)75 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
76 {
77 	struct ahash_request *req = ahash_request_cast(async_req);
78 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
79 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
80 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
81 	struct qce_device *qce = tmpl->qce;
82 	unsigned long flags = rctx->flags;
83 	int ret;
84 
85 	if (IS_SHA_HMAC(flags)) {
86 		rctx->authkey = ctx->authkey;
87 		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
88 	} else if (IS_CMAC(flags)) {
89 		rctx->authkey = ctx->authkey;
90 		rctx->authklen = AES_KEYSIZE_128;
91 	}
92 
93 	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
94 	if (rctx->src_nents < 0) {
95 		dev_err(qce->dev, "Invalid numbers of src SG.\n");
96 		return rctx->src_nents;
97 	}
98 
99 	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
100 	if (!ret)
101 		return -EIO;
102 
103 	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
104 
105 	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
106 	if (!ret) {
107 		ret = -EIO;
108 		goto error_unmap_src;
109 	}
110 
111 	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
112 			       &rctx->result_sg, 1, qce_ahash_done, async_req);
113 	if (ret)
114 		goto error_unmap_dst;
115 
116 	qce_dma_issue_pending(&qce->dma);
117 
118 	ret = qce_start(async_req, tmpl->crypto_alg_type);
119 	if (ret)
120 		goto error_terminate;
121 
122 	return 0;
123 
124 error_terminate:
125 	qce_dma_terminate_all(&qce->dma);
126 error_unmap_dst:
127 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
128 error_unmap_src:
129 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
130 	return ret;
131 }
132 
qce_ahash_init(struct ahash_request * req)133 static int qce_ahash_init(struct ahash_request *req)
134 {
135 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
136 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
137 	const u32 *std_iv = tmpl->std_iv;
138 
139 	memset(rctx, 0, sizeof(*rctx));
140 	rctx->first_blk = true;
141 	rctx->last_blk = false;
142 	rctx->flags = tmpl->alg_flags;
143 	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
144 
145 	return 0;
146 }
147 
qce_ahash_export(struct ahash_request * req,void * out)148 static int qce_ahash_export(struct ahash_request *req, void *out)
149 {
150 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
151 	struct qce_sha_saved_state *export_state = out;
152 
153 	memcpy(export_state->pending_buf, rctx->buf, rctx->buflen);
154 	memcpy(export_state->partial_digest, rctx->digest, sizeof(rctx->digest));
155 	export_state->byte_count[0] = rctx->byte_count[0];
156 	export_state->byte_count[1] = rctx->byte_count[1];
157 	export_state->pending_buflen = rctx->buflen;
158 	export_state->count = rctx->count;
159 	export_state->first_blk = rctx->first_blk;
160 	export_state->flags = rctx->flags;
161 
162 	return 0;
163 }
164 
qce_ahash_import(struct ahash_request * req,const void * in)165 static int qce_ahash_import(struct ahash_request *req, const void *in)
166 {
167 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
168 	const struct qce_sha_saved_state *import_state = in;
169 
170 	memset(rctx, 0, sizeof(*rctx));
171 	rctx->count = import_state->count;
172 	rctx->buflen = import_state->pending_buflen;
173 	rctx->first_blk = import_state->first_blk;
174 	rctx->flags = import_state->flags;
175 	rctx->byte_count[0] = import_state->byte_count[0];
176 	rctx->byte_count[1] = import_state->byte_count[1];
177 	memcpy(rctx->buf, import_state->pending_buf, rctx->buflen);
178 	memcpy(rctx->digest, import_state->partial_digest, sizeof(rctx->digest));
179 
180 	return 0;
181 }
182 
qce_ahash_update(struct ahash_request * req)183 static int qce_ahash_update(struct ahash_request *req)
184 {
185 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
186 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
187 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
188 	struct qce_device *qce = tmpl->qce;
189 	struct scatterlist *sg_last, *sg;
190 	unsigned int total, len;
191 	unsigned int hash_later;
192 	unsigned int nbytes;
193 	unsigned int blocksize;
194 
195 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
196 	rctx->count += req->nbytes;
197 
198 	/* check for buffer from previous updates and append it */
199 	total = req->nbytes + rctx->buflen;
200 
201 	if (total <= blocksize) {
202 		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
203 					 0, req->nbytes, 0);
204 		rctx->buflen += req->nbytes;
205 		return 0;
206 	}
207 
208 	/* save the original req structure fields */
209 	rctx->src_orig = req->src;
210 	rctx->nbytes_orig = req->nbytes;
211 
212 	/*
213 	 * if we have data from previous update copy them on buffer. The old
214 	 * data will be combined with current request bytes.
215 	 */
216 	if (rctx->buflen)
217 		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
218 
219 	/* calculate how many bytes will be hashed later */
220 	hash_later = total % blocksize;
221 
222 	/*
223 	 * At this point, there is more than one block size of data.  If
224 	 * the available data to transfer is exactly a multiple of block
225 	 * size, save the last block to be transferred in qce_ahash_final
226 	 * (with the last block bit set) if this is indeed the end of data
227 	 * stream. If not this saved block will be transferred as part of
228 	 * next update. If this block is not held back and if this is
229 	 * indeed the end of data stream, the digest obtained will be wrong
230 	 * since qce_ahash_final will see that rctx->buflen is 0 and return
231 	 * doing nothing which in turn means that a digest will not be
232 	 * copied to the destination result buffer.  qce_ahash_final cannot
233 	 * be made to alter this behavior and allowed to proceed if
234 	 * rctx->buflen is 0 because the crypto engine BAM does not allow
235 	 * for zero length transfers.
236 	 */
237 	if (!hash_later)
238 		hash_later = blocksize;
239 
240 	if (hash_later) {
241 		unsigned int src_offset = req->nbytes - hash_later;
242 		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
243 					 hash_later, 0);
244 	}
245 
246 	/* here nbytes is multiple of blocksize */
247 	nbytes = total - hash_later;
248 
249 	len = rctx->buflen;
250 	sg = sg_last = req->src;
251 
252 	while (len < nbytes && sg) {
253 		if (len + sg_dma_len(sg) > nbytes)
254 			break;
255 		len += sg_dma_len(sg);
256 		sg_last = sg;
257 		sg = sg_next(sg);
258 	}
259 
260 	if (!sg_last)
261 		return -EINVAL;
262 
263 	if (rctx->buflen) {
264 		sg_init_table(rctx->sg, 2);
265 		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
266 		sg_chain(rctx->sg, 2, req->src);
267 		req->src = rctx->sg;
268 	}
269 
270 	req->nbytes = nbytes;
271 	rctx->buflen = hash_later;
272 
273 	return qce->async_req_enqueue(tmpl->qce, &req->base);
274 }
275 
qce_ahash_final(struct ahash_request * req)276 static int qce_ahash_final(struct ahash_request *req)
277 {
278 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
279 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
280 	struct qce_device *qce = tmpl->qce;
281 
282 	if (!rctx->buflen) {
283 		if (tmpl->hash_zero)
284 			memcpy(req->result, tmpl->hash_zero,
285 					tmpl->alg.ahash.halg.digestsize);
286 		return 0;
287 	}
288 
289 	rctx->last_blk = true;
290 
291 	rctx->src_orig = req->src;
292 	rctx->nbytes_orig = req->nbytes;
293 
294 	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
295 	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
296 
297 	req->src = rctx->sg;
298 	req->nbytes = rctx->buflen;
299 
300 	return qce->async_req_enqueue(tmpl->qce, &req->base);
301 }
302 
qce_ahash_digest(struct ahash_request * req)303 static int qce_ahash_digest(struct ahash_request *req)
304 {
305 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
306 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
307 	struct qce_device *qce = tmpl->qce;
308 	int ret;
309 
310 	ret = qce_ahash_init(req);
311 	if (ret)
312 		return ret;
313 
314 	rctx->src_orig = req->src;
315 	rctx->nbytes_orig = req->nbytes;
316 	rctx->first_blk = true;
317 	rctx->last_blk = true;
318 
319 	if (!rctx->nbytes_orig) {
320 		if (tmpl->hash_zero)
321 			memcpy(req->result, tmpl->hash_zero,
322 					tmpl->alg.ahash.halg.digestsize);
323 		return 0;
324 	}
325 
326 	return qce->async_req_enqueue(tmpl->qce, &req->base);
327 }
328 
qce_ahash_hmac_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)329 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
330 				 unsigned int keylen)
331 {
332 	unsigned int digestsize = crypto_ahash_digestsize(tfm);
333 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
334 	struct crypto_wait wait;
335 	struct ahash_request *req;
336 	struct scatterlist sg;
337 	unsigned int blocksize;
338 	struct crypto_ahash *ahash_tfm;
339 	u8 *buf;
340 	int ret;
341 	const char *alg_name;
342 
343 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
344 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
345 
346 	if (keylen <= blocksize) {
347 		memcpy(ctx->authkey, key, keylen);
348 		return 0;
349 	}
350 
351 	if (digestsize == SHA1_DIGEST_SIZE)
352 		alg_name = "sha1-qce";
353 	else if (digestsize == SHA256_DIGEST_SIZE)
354 		alg_name = "sha256-qce";
355 	else
356 		return -EINVAL;
357 
358 	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
359 	if (IS_ERR(ahash_tfm))
360 		return PTR_ERR(ahash_tfm);
361 
362 	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
363 	if (!req) {
364 		ret = -ENOMEM;
365 		goto err_free_ahash;
366 	}
367 
368 	crypto_init_wait(&wait);
369 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
370 				   crypto_req_done, &wait);
371 	crypto_ahash_clear_flags(ahash_tfm, ~0);
372 
373 	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
374 	if (!buf) {
375 		ret = -ENOMEM;
376 		goto err_free_req;
377 	}
378 
379 	memcpy(buf, key, keylen);
380 	sg_init_one(&sg, buf, keylen);
381 	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
382 
383 	ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
384 
385 	kfree(buf);
386 err_free_req:
387 	ahash_request_free(req);
388 err_free_ahash:
389 	crypto_free_ahash(ahash_tfm);
390 	return ret;
391 }
392 
qce_ahash_cra_init(struct crypto_tfm * tfm)393 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
394 {
395 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
396 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
397 
398 	crypto_ahash_set_reqsize_dma(ahash, sizeof(struct qce_sha_reqctx));
399 	memset(ctx, 0, sizeof(*ctx));
400 	return 0;
401 }
402 
403 struct qce_ahash_def {
404 	unsigned long flags;
405 	const char *name;
406 	const char *drv_name;
407 	unsigned int digestsize;
408 	unsigned int blocksize;
409 	unsigned int statesize;
410 	const u32 *std_iv;
411 };
412 
413 static const struct qce_ahash_def ahash_def[] = {
414 	{
415 		.flags		= QCE_HASH_SHA1,
416 		.name		= "sha1",
417 		.drv_name	= "sha1-qce",
418 		.digestsize	= SHA1_DIGEST_SIZE,
419 		.blocksize	= SHA1_BLOCK_SIZE,
420 		.statesize	= sizeof(struct qce_sha_saved_state),
421 		.std_iv		= std_iv_sha1,
422 	},
423 	{
424 		.flags		= QCE_HASH_SHA256,
425 		.name		= "sha256",
426 		.drv_name	= "sha256-qce",
427 		.digestsize	= SHA256_DIGEST_SIZE,
428 		.blocksize	= SHA256_BLOCK_SIZE,
429 		.statesize	= sizeof(struct qce_sha_saved_state),
430 		.std_iv		= std_iv_sha256,
431 	},
432 	{
433 		.flags		= QCE_HASH_SHA1_HMAC,
434 		.name		= "hmac(sha1)",
435 		.drv_name	= "hmac-sha1-qce",
436 		.digestsize	= SHA1_DIGEST_SIZE,
437 		.blocksize	= SHA1_BLOCK_SIZE,
438 		.statesize	= sizeof(struct qce_sha_saved_state),
439 		.std_iv		= std_iv_sha1,
440 	},
441 	{
442 		.flags		= QCE_HASH_SHA256_HMAC,
443 		.name		= "hmac(sha256)",
444 		.drv_name	= "hmac-sha256-qce",
445 		.digestsize	= SHA256_DIGEST_SIZE,
446 		.blocksize	= SHA256_BLOCK_SIZE,
447 		.statesize	= sizeof(struct qce_sha_saved_state),
448 		.std_iv		= std_iv_sha256,
449 	},
450 };
451 
qce_ahash_register_one(const struct qce_ahash_def * def,struct qce_device * qce)452 static int qce_ahash_register_one(const struct qce_ahash_def *def,
453 				  struct qce_device *qce)
454 {
455 	struct qce_alg_template *tmpl;
456 	struct ahash_alg *alg;
457 	struct crypto_alg *base;
458 	int ret;
459 
460 	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
461 	if (!tmpl)
462 		return -ENOMEM;
463 
464 	tmpl->std_iv = def->std_iv;
465 
466 	alg = &tmpl->alg.ahash;
467 	alg->init = qce_ahash_init;
468 	alg->update = qce_ahash_update;
469 	alg->final = qce_ahash_final;
470 	alg->digest = qce_ahash_digest;
471 	alg->export = qce_ahash_export;
472 	alg->import = qce_ahash_import;
473 	if (IS_SHA_HMAC(def->flags))
474 		alg->setkey = qce_ahash_hmac_setkey;
475 	alg->halg.digestsize = def->digestsize;
476 	alg->halg.statesize = def->statesize;
477 
478 	if (IS_SHA1(def->flags))
479 		tmpl->hash_zero = sha1_zero_message_hash;
480 	else if (IS_SHA256(def->flags))
481 		tmpl->hash_zero = sha256_zero_message_hash;
482 
483 	base = &alg->halg.base;
484 	base->cra_blocksize = def->blocksize;
485 	base->cra_priority = 300;
486 	base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
487 	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
488 	base->cra_alignmask = 0;
489 	base->cra_module = THIS_MODULE;
490 	base->cra_init = qce_ahash_cra_init;
491 
492 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
493 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
494 		 def->drv_name);
495 
496 	INIT_LIST_HEAD(&tmpl->entry);
497 	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
498 	tmpl->alg_flags = def->flags;
499 	tmpl->qce = qce;
500 
501 	ret = crypto_register_ahash(alg);
502 	if (ret) {
503 		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
504 		kfree(tmpl);
505 		return ret;
506 	}
507 
508 	list_add_tail(&tmpl->entry, &ahash_algs);
509 	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
510 	return 0;
511 }
512 
qce_ahash_unregister(struct qce_device * qce)513 static void qce_ahash_unregister(struct qce_device *qce)
514 {
515 	struct qce_alg_template *tmpl, *n;
516 
517 	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
518 		crypto_unregister_ahash(&tmpl->alg.ahash);
519 		list_del(&tmpl->entry);
520 		kfree(tmpl);
521 	}
522 }
523 
qce_ahash_register(struct qce_device * qce)524 static int qce_ahash_register(struct qce_device *qce)
525 {
526 	int ret, i;
527 
528 	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
529 		ret = qce_ahash_register_one(&ahash_def[i], qce);
530 		if (ret)
531 			goto err;
532 	}
533 
534 	return 0;
535 err:
536 	qce_ahash_unregister(qce);
537 	return ret;
538 }
539 
540 const struct qce_algo_ops ahash_ops = {
541 	.type = CRYPTO_ALG_TYPE_AHASH,
542 	.register_algs = qce_ahash_register,
543 	.unregister_algs = qce_ahash_unregister,
544 	.async_req_handle = qce_ahash_async_req_handle,
545 };
546