xref: /linux/drivers/bluetooth/hci_qca.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/pwrseq/consumer.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/serdev.h>
34 #include <linux/mutex.h>
35 #include <linux/unaligned.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 
40 #include "hci_uart.h"
41 #include "btqca.h"
42 
43 /* HCI_IBS protocol messages */
44 #define HCI_IBS_SLEEP_IND	0xFE
45 #define HCI_IBS_WAKE_IND	0xFD
46 #define HCI_IBS_WAKE_ACK	0xFC
47 #define HCI_MAX_IBS_SIZE	10
48 
49 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
50 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
51 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
52 #define CMD_TRANS_TIMEOUT_MS		100
53 #define MEMDUMP_TIMEOUT_MS		8000
54 #define IBS_DISABLE_SSR_TIMEOUT_MS \
55 	(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
56 #define FW_DOWNLOAD_TIMEOUT_MS		3000
57 
58 /* susclk rate */
59 #define SUSCLK_RATE_32KHZ	32768
60 
61 /* Controller debug log header */
62 #define QCA_DEBUG_HANDLE	0x2EDC
63 
64 /* max retry count when init fails */
65 #define MAX_INIT_RETRIES 3
66 
67 /* Controller dump header */
68 #define QCA_SSR_DUMP_HANDLE		0x0108
69 #define QCA_DUMP_PACKET_SIZE		255
70 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
71 #define QCA_CRASHBYTE_PACKET_LEN	1096
72 #define QCA_MEMDUMP_BYTE		0xFB
73 
74 enum qca_flags {
75 	QCA_IBS_DISABLED,
76 	QCA_DROP_VENDOR_EVENT,
77 	QCA_SUSPENDING,
78 	QCA_MEMDUMP_COLLECTION,
79 	QCA_HW_ERROR_EVENT,
80 	QCA_SSR_TRIGGERED,
81 	QCA_BT_OFF,
82 	QCA_ROM_FW,
83 	QCA_DEBUGFS_CREATED,
84 };
85 
86 enum qca_capabilities {
87 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
88 	QCA_CAP_VALID_LE_STATES = BIT(1),
89 };
90 
91 /* HCI_IBS transmit side sleep protocol states */
92 enum tx_ibs_states {
93 	HCI_IBS_TX_ASLEEP,
94 	HCI_IBS_TX_WAKING,
95 	HCI_IBS_TX_AWAKE,
96 };
97 
98 /* HCI_IBS receive side sleep protocol states */
99 enum rx_states {
100 	HCI_IBS_RX_ASLEEP,
101 	HCI_IBS_RX_AWAKE,
102 };
103 
104 /* HCI_IBS transmit and receive side clock state vote */
105 enum hci_ibs_clock_state_vote {
106 	HCI_IBS_VOTE_STATS_UPDATE,
107 	HCI_IBS_TX_VOTE_CLOCK_ON,
108 	HCI_IBS_TX_VOTE_CLOCK_OFF,
109 	HCI_IBS_RX_VOTE_CLOCK_ON,
110 	HCI_IBS_RX_VOTE_CLOCK_OFF,
111 };
112 
113 /* Controller memory dump states */
114 enum qca_memdump_states {
115 	QCA_MEMDUMP_IDLE,
116 	QCA_MEMDUMP_COLLECTING,
117 	QCA_MEMDUMP_COLLECTED,
118 	QCA_MEMDUMP_TIMEOUT,
119 };
120 
121 struct qca_memdump_info {
122 	u32 current_seq_no;
123 	u32 received_dump;
124 	u32 ram_dump_size;
125 };
126 
127 struct qca_memdump_event_hdr {
128 	__u8    evt;
129 	__u8    plen;
130 	__u16   opcode;
131 	__le16   seq_no;
132 	__u8    reserved;
133 } __packed;
134 
135 
136 struct qca_dump_size {
137 	__le32 dump_size;
138 } __packed;
139 
140 struct qca_data {
141 	struct hci_uart *hu;
142 	struct sk_buff *rx_skb;
143 	struct sk_buff_head txq;
144 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
145 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
146 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
147 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
148 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
149 	bool tx_vote;		/* Clock must be on for TX */
150 	bool rx_vote;		/* Clock must be on for RX */
151 	struct timer_list tx_idle_timer;
152 	u32 tx_idle_delay;
153 	struct timer_list wake_retrans_timer;
154 	u32 wake_retrans;
155 	struct workqueue_struct *workqueue;
156 	struct work_struct ws_awake_rx;
157 	struct work_struct ws_awake_device;
158 	struct work_struct ws_rx_vote_off;
159 	struct work_struct ws_tx_vote_off;
160 	struct work_struct ctrl_memdump_evt;
161 	struct delayed_work ctrl_memdump_timeout;
162 	struct qca_memdump_info *qca_memdump;
163 	unsigned long flags;
164 	struct completion drop_ev_comp;
165 	wait_queue_head_t suspend_wait_q;
166 	enum qca_memdump_states memdump_state;
167 	struct mutex hci_memdump_lock;
168 
169 	u16 fw_version;
170 	u16 controller_id;
171 	/* For debugging purpose */
172 	u64 ibs_sent_wacks;
173 	u64 ibs_sent_slps;
174 	u64 ibs_sent_wakes;
175 	u64 ibs_recv_wacks;
176 	u64 ibs_recv_slps;
177 	u64 ibs_recv_wakes;
178 	u64 vote_last_jif;
179 	u32 vote_on_ms;
180 	u32 vote_off_ms;
181 	u64 tx_votes_on;
182 	u64 rx_votes_on;
183 	u64 tx_votes_off;
184 	u64 rx_votes_off;
185 	u64 votes_on;
186 	u64 votes_off;
187 };
188 
189 enum qca_speed_type {
190 	QCA_INIT_SPEED = 1,
191 	QCA_OPER_SPEED
192 };
193 
194 /*
195  * Voltage regulator information required for configuring the
196  * QCA Bluetooth chipset
197  */
198 struct qca_vreg {
199 	const char *name;
200 	unsigned int load_uA;
201 };
202 
203 struct qca_device_data {
204 	enum qca_btsoc_type soc_type;
205 	struct qca_vreg *vregs;
206 	size_t num_vregs;
207 	uint32_t capabilities;
208 };
209 
210 /*
211  * Platform data for the QCA Bluetooth power driver.
212  */
213 struct qca_power {
214 	struct device *dev;
215 	struct regulator_bulk_data *vreg_bulk;
216 	int num_vregs;
217 	bool vregs_on;
218 	struct pwrseq_desc *pwrseq;
219 };
220 
221 struct qca_serdev {
222 	struct hci_uart	 serdev_hu;
223 	struct gpio_desc *bt_en;
224 	struct gpio_desc *sw_ctrl;
225 	struct clk	 *susclk;
226 	enum qca_btsoc_type btsoc_type;
227 	struct qca_power *bt_power;
228 	u32 init_speed;
229 	u32 oper_speed;
230 	bool bdaddr_property_broken;
231 	const char *firmware_name;
232 };
233 
234 static int qca_regulator_enable(struct qca_serdev *qcadev);
235 static void qca_regulator_disable(struct qca_serdev *qcadev);
236 static void qca_power_shutdown(struct hci_uart *hu);
237 static int qca_power_off(struct hci_dev *hdev);
238 static void qca_controller_memdump(struct work_struct *work);
239 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb);
240 
qca_soc_type(struct hci_uart * hu)241 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
242 {
243 	enum qca_btsoc_type soc_type;
244 
245 	if (hu->serdev) {
246 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
247 
248 		soc_type = qsd->btsoc_type;
249 	} else {
250 		soc_type = QCA_ROME;
251 	}
252 
253 	return soc_type;
254 }
255 
qca_get_firmware_name(struct hci_uart * hu)256 static const char *qca_get_firmware_name(struct hci_uart *hu)
257 {
258 	if (hu->serdev) {
259 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
260 
261 		return qsd->firmware_name;
262 	} else {
263 		return NULL;
264 	}
265 }
266 
__serial_clock_on(struct tty_struct * tty)267 static void __serial_clock_on(struct tty_struct *tty)
268 {
269 	/* TODO: Some chipset requires to enable UART clock on client
270 	 * side to save power consumption or manual work is required.
271 	 * Please put your code to control UART clock here if needed
272 	 */
273 }
274 
__serial_clock_off(struct tty_struct * tty)275 static void __serial_clock_off(struct tty_struct *tty)
276 {
277 	/* TODO: Some chipset requires to disable UART clock on client
278 	 * side to save power consumption or manual work is required.
279 	 * Please put your code to control UART clock off here if needed
280 	 */
281 }
282 
283 /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)284 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
285 {
286 	struct qca_data *qca = hu->priv;
287 	unsigned int diff;
288 
289 	bool old_vote = (qca->tx_vote | qca->rx_vote);
290 	bool new_vote;
291 
292 	switch (vote) {
293 	case HCI_IBS_VOTE_STATS_UPDATE:
294 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
295 
296 		if (old_vote)
297 			qca->vote_off_ms += diff;
298 		else
299 			qca->vote_on_ms += diff;
300 		return;
301 
302 	case HCI_IBS_TX_VOTE_CLOCK_ON:
303 		qca->tx_vote = true;
304 		qca->tx_votes_on++;
305 		break;
306 
307 	case HCI_IBS_RX_VOTE_CLOCK_ON:
308 		qca->rx_vote = true;
309 		qca->rx_votes_on++;
310 		break;
311 
312 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
313 		qca->tx_vote = false;
314 		qca->tx_votes_off++;
315 		break;
316 
317 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
318 		qca->rx_vote = false;
319 		qca->rx_votes_off++;
320 		break;
321 
322 	default:
323 		BT_ERR("Voting irregularity");
324 		return;
325 	}
326 
327 	new_vote = qca->rx_vote | qca->tx_vote;
328 
329 	if (new_vote != old_vote) {
330 		if (new_vote)
331 			__serial_clock_on(hu->tty);
332 		else
333 			__serial_clock_off(hu->tty);
334 
335 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
336 		       vote ? "true" : "false");
337 
338 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
339 
340 		if (new_vote) {
341 			qca->votes_on++;
342 			qca->vote_off_ms += diff;
343 		} else {
344 			qca->votes_off++;
345 			qca->vote_on_ms += diff;
346 		}
347 		qca->vote_last_jif = jiffies;
348 	}
349 }
350 
351 /* Builds and sends an HCI_IBS command packet.
352  * These are very simple packets with only 1 cmd byte.
353  */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)354 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
355 {
356 	int err = 0;
357 	struct sk_buff *skb = NULL;
358 	struct qca_data *qca = hu->priv;
359 
360 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
361 
362 	skb = bt_skb_alloc(1, GFP_ATOMIC);
363 	if (!skb) {
364 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
365 		return -ENOMEM;
366 	}
367 
368 	/* Assign HCI_IBS type */
369 	skb_put_u8(skb, cmd);
370 
371 	skb_queue_tail(&qca->txq, skb);
372 
373 	return err;
374 }
375 
qca_wq_awake_device(struct work_struct * work)376 static void qca_wq_awake_device(struct work_struct *work)
377 {
378 	struct qca_data *qca = container_of(work, struct qca_data,
379 					    ws_awake_device);
380 	struct hci_uart *hu = qca->hu;
381 	unsigned long retrans_delay;
382 	unsigned long flags;
383 
384 	BT_DBG("hu %p wq awake device", hu);
385 
386 	/* Vote for serial clock */
387 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
388 
389 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
390 
391 	/* Send wake indication to device */
392 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
393 		BT_ERR("Failed to send WAKE to device");
394 
395 	qca->ibs_sent_wakes++;
396 
397 	/* Start retransmit timer */
398 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
399 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
400 
401 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
402 
403 	/* Actually send the packets */
404 	hci_uart_tx_wakeup(hu);
405 }
406 
qca_wq_awake_rx(struct work_struct * work)407 static void qca_wq_awake_rx(struct work_struct *work)
408 {
409 	struct qca_data *qca = container_of(work, struct qca_data,
410 					    ws_awake_rx);
411 	struct hci_uart *hu = qca->hu;
412 	unsigned long flags;
413 
414 	BT_DBG("hu %p wq awake rx", hu);
415 
416 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
417 
418 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
419 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
420 
421 	/* Always acknowledge device wake up,
422 	 * sending IBS message doesn't count as TX ON.
423 	 */
424 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
425 		BT_ERR("Failed to acknowledge device wake up");
426 
427 	qca->ibs_sent_wacks++;
428 
429 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
430 
431 	/* Actually send the packets */
432 	hci_uart_tx_wakeup(hu);
433 }
434 
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)435 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
436 {
437 	struct qca_data *qca = container_of(work, struct qca_data,
438 					    ws_rx_vote_off);
439 	struct hci_uart *hu = qca->hu;
440 
441 	BT_DBG("hu %p rx clock vote off", hu);
442 
443 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
444 }
445 
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)446 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
447 {
448 	struct qca_data *qca = container_of(work, struct qca_data,
449 					    ws_tx_vote_off);
450 	struct hci_uart *hu = qca->hu;
451 
452 	BT_DBG("hu %p tx clock vote off", hu);
453 
454 	/* Run HCI tx handling unlocked */
455 	hci_uart_tx_wakeup(hu);
456 
457 	/* Now that message queued to tty driver, vote for tty clocks off.
458 	 * It is up to the tty driver to pend the clocks off until tx done.
459 	 */
460 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
461 }
462 
hci_ibs_tx_idle_timeout(struct timer_list * t)463 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
464 {
465 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
466 	struct hci_uart *hu = qca->hu;
467 	unsigned long flags;
468 
469 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
470 
471 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
472 				 flags, SINGLE_DEPTH_NESTING);
473 
474 	switch (qca->tx_ibs_state) {
475 	case HCI_IBS_TX_AWAKE:
476 		/* TX_IDLE, go to SLEEP */
477 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
478 			BT_ERR("Failed to send SLEEP to device");
479 			break;
480 		}
481 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
482 		qca->ibs_sent_slps++;
483 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
484 		break;
485 
486 	case HCI_IBS_TX_ASLEEP:
487 	case HCI_IBS_TX_WAKING:
488 	default:
489 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
490 		break;
491 	}
492 
493 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
494 }
495 
hci_ibs_wake_retrans_timeout(struct timer_list * t)496 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
497 {
498 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
499 	struct hci_uart *hu = qca->hu;
500 	unsigned long flags, retrans_delay;
501 	bool retransmit = false;
502 
503 	BT_DBG("hu %p wake retransmit timeout in %d state",
504 		hu, qca->tx_ibs_state);
505 
506 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
507 				 flags, SINGLE_DEPTH_NESTING);
508 
509 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
510 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
511 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
512 		return;
513 	}
514 
515 	switch (qca->tx_ibs_state) {
516 	case HCI_IBS_TX_WAKING:
517 		/* No WAKE_ACK, retransmit WAKE */
518 		retransmit = true;
519 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
520 			BT_ERR("Failed to acknowledge device wake up");
521 			break;
522 		}
523 		qca->ibs_sent_wakes++;
524 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
525 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
526 		break;
527 
528 	case HCI_IBS_TX_ASLEEP:
529 	case HCI_IBS_TX_AWAKE:
530 	default:
531 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
532 		break;
533 	}
534 
535 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
536 
537 	if (retransmit)
538 		hci_uart_tx_wakeup(hu);
539 }
540 
541 
qca_controller_memdump_timeout(struct work_struct * work)542 static void qca_controller_memdump_timeout(struct work_struct *work)
543 {
544 	struct qca_data *qca = container_of(work, struct qca_data,
545 					ctrl_memdump_timeout.work);
546 	struct hci_uart *hu = qca->hu;
547 
548 	mutex_lock(&qca->hci_memdump_lock);
549 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
550 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
551 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
552 			/* Inject hw error event to reset the device
553 			 * and driver.
554 			 */
555 			hci_reset_dev(hu->hdev);
556 		}
557 	}
558 
559 	mutex_unlock(&qca->hci_memdump_lock);
560 }
561 
562 
563 /* Initialize protocol */
qca_open(struct hci_uart * hu)564 static int qca_open(struct hci_uart *hu)
565 {
566 	struct qca_serdev *qcadev;
567 	struct qca_data *qca;
568 
569 	BT_DBG("hu %p qca_open", hu);
570 
571 	if (!hci_uart_has_flow_control(hu))
572 		return -EOPNOTSUPP;
573 
574 	qca = kzalloc(sizeof(*qca), GFP_KERNEL);
575 	if (!qca)
576 		return -ENOMEM;
577 
578 	skb_queue_head_init(&qca->txq);
579 	skb_queue_head_init(&qca->tx_wait_q);
580 	skb_queue_head_init(&qca->rx_memdump_q);
581 	spin_lock_init(&qca->hci_ibs_lock);
582 	mutex_init(&qca->hci_memdump_lock);
583 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
584 	if (!qca->workqueue) {
585 		BT_ERR("QCA Workqueue not initialized properly");
586 		kfree(qca);
587 		return -ENOMEM;
588 	}
589 
590 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
591 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
592 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
593 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
594 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
595 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
596 			  qca_controller_memdump_timeout);
597 	init_waitqueue_head(&qca->suspend_wait_q);
598 
599 	qca->hu = hu;
600 	init_completion(&qca->drop_ev_comp);
601 
602 	/* Assume we start with both sides asleep -- extra wakes OK */
603 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
604 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
605 
606 	qca->vote_last_jif = jiffies;
607 
608 	hu->priv = qca;
609 
610 	if (hu->serdev) {
611 		qcadev = serdev_device_get_drvdata(hu->serdev);
612 
613 		switch (qcadev->btsoc_type) {
614 		case QCA_WCN3988:
615 		case QCA_WCN3990:
616 		case QCA_WCN3991:
617 		case QCA_WCN3998:
618 		case QCA_WCN6750:
619 			hu->init_speed = qcadev->init_speed;
620 			break;
621 
622 		default:
623 			break;
624 		}
625 
626 		if (qcadev->oper_speed)
627 			hu->oper_speed = qcadev->oper_speed;
628 	}
629 
630 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
631 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
632 
633 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
634 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
635 
636 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
637 	       qca->tx_idle_delay, qca->wake_retrans);
638 
639 	return 0;
640 }
641 
qca_debugfs_init(struct hci_dev * hdev)642 static void qca_debugfs_init(struct hci_dev *hdev)
643 {
644 	struct hci_uart *hu = hci_get_drvdata(hdev);
645 	struct qca_data *qca = hu->priv;
646 	struct dentry *ibs_dir;
647 	umode_t mode;
648 
649 	if (!hdev->debugfs)
650 		return;
651 
652 	if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
653 		return;
654 
655 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
656 
657 	/* read only */
658 	mode = 0444;
659 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
660 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
661 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
662 			   &qca->ibs_sent_slps);
663 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
664 			   &qca->ibs_sent_wakes);
665 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
666 			   &qca->ibs_sent_wacks);
667 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
668 			   &qca->ibs_recv_slps);
669 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
670 			   &qca->ibs_recv_wakes);
671 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
672 			   &qca->ibs_recv_wacks);
673 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
674 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
675 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
676 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
677 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
678 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
679 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
680 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
681 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
682 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
683 
684 	/* read/write */
685 	mode = 0644;
686 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
687 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
688 			   &qca->tx_idle_delay);
689 }
690 
691 /* Flush protocol data */
qca_flush(struct hci_uart * hu)692 static int qca_flush(struct hci_uart *hu)
693 {
694 	struct qca_data *qca = hu->priv;
695 
696 	BT_DBG("hu %p qca flush", hu);
697 
698 	skb_queue_purge(&qca->tx_wait_q);
699 	skb_queue_purge(&qca->txq);
700 
701 	return 0;
702 }
703 
704 /* Close protocol */
qca_close(struct hci_uart * hu)705 static int qca_close(struct hci_uart *hu)
706 {
707 	struct qca_data *qca = hu->priv;
708 
709 	BT_DBG("hu %p qca close", hu);
710 
711 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
712 
713 	skb_queue_purge(&qca->tx_wait_q);
714 	skb_queue_purge(&qca->txq);
715 	skb_queue_purge(&qca->rx_memdump_q);
716 	/*
717 	 * Shut the timers down so they can't be rearmed when
718 	 * destroy_workqueue() drains pending work which in turn might try
719 	 * to arm a timer.  After shutdown rearm attempts are silently
720 	 * ignored by the timer core code.
721 	 */
722 	timer_shutdown_sync(&qca->tx_idle_timer);
723 	timer_shutdown_sync(&qca->wake_retrans_timer);
724 	destroy_workqueue(qca->workqueue);
725 	qca->hu = NULL;
726 
727 	kfree_skb(qca->rx_skb);
728 
729 	hu->priv = NULL;
730 
731 	kfree(qca);
732 
733 	return 0;
734 }
735 
736 /* Called upon a wake-up-indication from the device.
737  */
device_want_to_wakeup(struct hci_uart * hu)738 static void device_want_to_wakeup(struct hci_uart *hu)
739 {
740 	unsigned long flags;
741 	struct qca_data *qca = hu->priv;
742 
743 	BT_DBG("hu %p want to wake up", hu);
744 
745 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
746 
747 	qca->ibs_recv_wakes++;
748 
749 	/* Don't wake the rx up when suspending. */
750 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
751 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
752 		return;
753 	}
754 
755 	switch (qca->rx_ibs_state) {
756 	case HCI_IBS_RX_ASLEEP:
757 		/* Make sure clock is on - we may have turned clock off since
758 		 * receiving the wake up indicator awake rx clock.
759 		 */
760 		queue_work(qca->workqueue, &qca->ws_awake_rx);
761 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
762 		return;
763 
764 	case HCI_IBS_RX_AWAKE:
765 		/* Always acknowledge device wake up,
766 		 * sending IBS message doesn't count as TX ON.
767 		 */
768 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
769 			BT_ERR("Failed to acknowledge device wake up");
770 			break;
771 		}
772 		qca->ibs_sent_wacks++;
773 		break;
774 
775 	default:
776 		/* Any other state is illegal */
777 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
778 		       qca->rx_ibs_state);
779 		break;
780 	}
781 
782 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
783 
784 	/* Actually send the packets */
785 	hci_uart_tx_wakeup(hu);
786 }
787 
788 /* Called upon a sleep-indication from the device.
789  */
device_want_to_sleep(struct hci_uart * hu)790 static void device_want_to_sleep(struct hci_uart *hu)
791 {
792 	unsigned long flags;
793 	struct qca_data *qca = hu->priv;
794 
795 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
796 
797 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
798 
799 	qca->ibs_recv_slps++;
800 
801 	switch (qca->rx_ibs_state) {
802 	case HCI_IBS_RX_AWAKE:
803 		/* Update state */
804 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
805 		/* Vote off rx clock under workqueue */
806 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
807 		break;
808 
809 	case HCI_IBS_RX_ASLEEP:
810 		break;
811 
812 	default:
813 		/* Any other state is illegal */
814 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
815 		       qca->rx_ibs_state);
816 		break;
817 	}
818 
819 	wake_up_interruptible(&qca->suspend_wait_q);
820 
821 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
822 }
823 
824 /* Called upon wake-up-acknowledgement from the device
825  */
device_woke_up(struct hci_uart * hu)826 static void device_woke_up(struct hci_uart *hu)
827 {
828 	unsigned long flags, idle_delay;
829 	struct qca_data *qca = hu->priv;
830 	struct sk_buff *skb = NULL;
831 
832 	BT_DBG("hu %p woke up", hu);
833 
834 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
835 
836 	qca->ibs_recv_wacks++;
837 
838 	/* Don't react to the wake-up-acknowledgment when suspending. */
839 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
840 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
841 		return;
842 	}
843 
844 	switch (qca->tx_ibs_state) {
845 	case HCI_IBS_TX_AWAKE:
846 		/* Expect one if we send 2 WAKEs */
847 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
848 		       qca->tx_ibs_state);
849 		break;
850 
851 	case HCI_IBS_TX_WAKING:
852 		/* Send pending packets */
853 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
854 			skb_queue_tail(&qca->txq, skb);
855 
856 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
857 		del_timer(&qca->wake_retrans_timer);
858 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
859 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
860 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
861 		break;
862 
863 	case HCI_IBS_TX_ASLEEP:
864 	default:
865 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
866 		       qca->tx_ibs_state);
867 		break;
868 	}
869 
870 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
871 
872 	/* Actually send the packets */
873 	hci_uart_tx_wakeup(hu);
874 }
875 
876 /* Enqueue frame for transmission (padding, crc, etc) may be called from
877  * two simultaneous tasklets.
878  */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)879 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
880 {
881 	unsigned long flags = 0, idle_delay;
882 	struct qca_data *qca = hu->priv;
883 
884 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
885 	       qca->tx_ibs_state);
886 
887 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
888 		/* As SSR is in progress, ignore the packets */
889 		bt_dev_dbg(hu->hdev, "SSR is in progress");
890 		kfree_skb(skb);
891 		return 0;
892 	}
893 
894 	/* Prepend skb with frame type */
895 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
896 
897 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
898 
899 	/* Don't go to sleep in middle of patch download or
900 	 * Out-Of-Band(GPIOs control) sleep is selected.
901 	 * Don't wake the device up when suspending.
902 	 */
903 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
904 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
905 		skb_queue_tail(&qca->txq, skb);
906 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
907 		return 0;
908 	}
909 
910 	/* Act according to current state */
911 	switch (qca->tx_ibs_state) {
912 	case HCI_IBS_TX_AWAKE:
913 		BT_DBG("Device awake, sending normally");
914 		skb_queue_tail(&qca->txq, skb);
915 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
916 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
917 		break;
918 
919 	case HCI_IBS_TX_ASLEEP:
920 		BT_DBG("Device asleep, waking up and queueing packet");
921 		/* Save packet for later */
922 		skb_queue_tail(&qca->tx_wait_q, skb);
923 
924 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
925 		/* Schedule a work queue to wake up device */
926 		queue_work(qca->workqueue, &qca->ws_awake_device);
927 		break;
928 
929 	case HCI_IBS_TX_WAKING:
930 		BT_DBG("Device waking up, queueing packet");
931 		/* Transient state; just keep packet for later */
932 		skb_queue_tail(&qca->tx_wait_q, skb);
933 		break;
934 
935 	default:
936 		BT_ERR("Illegal tx state: %d (losing packet)",
937 		       qca->tx_ibs_state);
938 		dev_kfree_skb_irq(skb);
939 		break;
940 	}
941 
942 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
943 
944 	return 0;
945 }
946 
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)947 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
948 {
949 	struct hci_uart *hu = hci_get_drvdata(hdev);
950 
951 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
952 
953 	device_want_to_sleep(hu);
954 
955 	kfree_skb(skb);
956 	return 0;
957 }
958 
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)959 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
960 {
961 	struct hci_uart *hu = hci_get_drvdata(hdev);
962 
963 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
964 
965 	device_want_to_wakeup(hu);
966 
967 	kfree_skb(skb);
968 	return 0;
969 }
970 
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)971 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
972 {
973 	struct hci_uart *hu = hci_get_drvdata(hdev);
974 
975 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
976 
977 	device_woke_up(hu);
978 
979 	kfree_skb(skb);
980 	return 0;
981 }
982 
qca_recv_acl_data(struct hci_dev * hdev,struct sk_buff * skb)983 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
984 {
985 	/* We receive debug logs from chip as an ACL packets.
986 	 * Instead of sending the data to ACL to decode the
987 	 * received data, we are pushing them to the above layers
988 	 * as a diagnostic packet.
989 	 */
990 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
991 		return hci_recv_diag(hdev, skb);
992 
993 	return hci_recv_frame(hdev, skb);
994 }
995 
qca_dmp_hdr(struct hci_dev * hdev,struct sk_buff * skb)996 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
997 {
998 	struct hci_uart *hu = hci_get_drvdata(hdev);
999 	struct qca_data *qca = hu->priv;
1000 	char buf[80];
1001 
1002 	snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n",
1003 		qca->controller_id);
1004 	skb_put_data(skb, buf, strlen(buf));
1005 
1006 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n",
1007 		qca->fw_version);
1008 	skb_put_data(skb, buf, strlen(buf));
1009 
1010 	snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n");
1011 	skb_put_data(skb, buf, strlen(buf));
1012 
1013 	snprintf(buf, sizeof(buf), "Driver: %s\n",
1014 		hu->serdev->dev.driver->name);
1015 	skb_put_data(skb, buf, strlen(buf));
1016 }
1017 
qca_controller_memdump(struct work_struct * work)1018 static void qca_controller_memdump(struct work_struct *work)
1019 {
1020 	struct qca_data *qca = container_of(work, struct qca_data,
1021 					    ctrl_memdump_evt);
1022 	struct hci_uart *hu = qca->hu;
1023 	struct sk_buff *skb;
1024 	struct qca_memdump_event_hdr *cmd_hdr;
1025 	struct qca_memdump_info *qca_memdump = qca->qca_memdump;
1026 	struct qca_dump_size *dump;
1027 	u16 seq_no;
1028 	u32 rx_size;
1029 	int ret = 0;
1030 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1031 
1032 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1033 
1034 		mutex_lock(&qca->hci_memdump_lock);
1035 		/* Skip processing the received packets if timeout detected
1036 		 * or memdump collection completed.
1037 		 */
1038 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1039 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1040 			mutex_unlock(&qca->hci_memdump_lock);
1041 			return;
1042 		}
1043 
1044 		if (!qca_memdump) {
1045 			qca_memdump = kzalloc(sizeof(*qca_memdump), GFP_ATOMIC);
1046 			if (!qca_memdump) {
1047 				mutex_unlock(&qca->hci_memdump_lock);
1048 				return;
1049 			}
1050 
1051 			qca->qca_memdump = qca_memdump;
1052 		}
1053 
1054 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1055 		cmd_hdr = (void *) skb->data;
1056 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1057 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1058 
1059 		if (!seq_no) {
1060 
1061 			/* This is the first frame of memdump packet from
1062 			 * the controller, Disable IBS to receive dump
1063 			 * with out any interruption, ideally time required for
1064 			 * the controller to send the dump is 8 seconds. let us
1065 			 * start timer to handle this asynchronous activity.
1066 			 */
1067 			set_bit(QCA_IBS_DISABLED, &qca->flags);
1068 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1069 			dump = (void *) skb->data;
1070 			qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size);
1071 			if (!(qca_memdump->ram_dump_size)) {
1072 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1073 				kfree(qca_memdump);
1074 				kfree_skb(skb);
1075 				mutex_unlock(&qca->hci_memdump_lock);
1076 				return;
1077 			}
1078 
1079 			queue_delayed_work(qca->workqueue,
1080 					   &qca->ctrl_memdump_timeout,
1081 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1082 			skb_pull(skb, sizeof(qca_memdump->ram_dump_size));
1083 			qca_memdump->current_seq_no = 0;
1084 			qca_memdump->received_dump = 0;
1085 			ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size);
1086 			bt_dev_info(hu->hdev, "hci_devcd_init Return:%d",
1087 				    ret);
1088 			if (ret < 0) {
1089 				kfree(qca->qca_memdump);
1090 				qca->qca_memdump = NULL;
1091 				qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1092 				cancel_delayed_work(&qca->ctrl_memdump_timeout);
1093 				clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1094 				clear_bit(QCA_IBS_DISABLED, &qca->flags);
1095 				mutex_unlock(&qca->hci_memdump_lock);
1096 				return;
1097 			}
1098 
1099 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1100 				    qca_memdump->ram_dump_size);
1101 
1102 		}
1103 
1104 		/* If sequence no 0 is missed then there is no point in
1105 		 * accepting the other sequences.
1106 		 */
1107 		if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
1108 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1109 			kfree(qca_memdump);
1110 			kfree_skb(skb);
1111 			mutex_unlock(&qca->hci_memdump_lock);
1112 			return;
1113 		}
1114 		/* There could be chance of missing some packets from
1115 		 * the controller. In such cases let us store the dummy
1116 		 * packets in the buffer.
1117 		 */
1118 		/* For QCA6390, controller does not lost packets but
1119 		 * sequence number field of packet sometimes has error
1120 		 * bits, so skip this checking for missing packet.
1121 		 */
1122 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1123 			(soc_type != QCA_QCA6390) &&
1124 			seq_no != QCA_LAST_SEQUENCE_NUM) {
1125 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1126 				   qca_memdump->current_seq_no);
1127 			rx_size = qca_memdump->received_dump;
1128 			rx_size += QCA_DUMP_PACKET_SIZE;
1129 			if (rx_size > qca_memdump->ram_dump_size) {
1130 				bt_dev_err(hu->hdev,
1131 					   "QCA memdump received %d, no space for missed packet",
1132 					   qca_memdump->received_dump);
1133 				break;
1134 			}
1135 			hci_devcd_append_pattern(hu->hdev, 0x00,
1136 				QCA_DUMP_PACKET_SIZE);
1137 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1138 			qca_memdump->current_seq_no++;
1139 		}
1140 
1141 		rx_size = qca_memdump->received_dump  + skb->len;
1142 		if (rx_size <= qca_memdump->ram_dump_size) {
1143 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1144 			    (seq_no != qca_memdump->current_seq_no)) {
1145 				bt_dev_err(hu->hdev,
1146 					   "QCA memdump unexpected packet %d",
1147 					   seq_no);
1148 			}
1149 			bt_dev_dbg(hu->hdev,
1150 				   "QCA memdump packet %d with length %d",
1151 				   seq_no, skb->len);
1152 			hci_devcd_append(hu->hdev, skb);
1153 			qca_memdump->current_seq_no += 1;
1154 			qca_memdump->received_dump = rx_size;
1155 		} else {
1156 			bt_dev_err(hu->hdev,
1157 				   "QCA memdump received no space for packet %d",
1158 				    qca_memdump->current_seq_no);
1159 		}
1160 
1161 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1162 			bt_dev_info(hu->hdev,
1163 				"QCA memdump Done, received %d, total %d",
1164 				qca_memdump->received_dump,
1165 				qca_memdump->ram_dump_size);
1166 			hci_devcd_complete(hu->hdev);
1167 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1168 			kfree(qca->qca_memdump);
1169 			qca->qca_memdump = NULL;
1170 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1171 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1172 		}
1173 
1174 		mutex_unlock(&qca->hci_memdump_lock);
1175 	}
1176 
1177 }
1178 
qca_controller_memdump_event(struct hci_dev * hdev,struct sk_buff * skb)1179 static int qca_controller_memdump_event(struct hci_dev *hdev,
1180 					struct sk_buff *skb)
1181 {
1182 	struct hci_uart *hu = hci_get_drvdata(hdev);
1183 	struct qca_data *qca = hu->priv;
1184 
1185 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1186 	skb_queue_tail(&qca->rx_memdump_q, skb);
1187 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1188 
1189 	return 0;
1190 }
1191 
qca_recv_event(struct hci_dev * hdev,struct sk_buff * skb)1192 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1193 {
1194 	struct hci_uart *hu = hci_get_drvdata(hdev);
1195 	struct qca_data *qca = hu->priv;
1196 
1197 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1198 		struct hci_event_hdr *hdr = (void *)skb->data;
1199 
1200 		/* For the WCN3990 the vendor command for a baudrate change
1201 		 * isn't sent as synchronous HCI command, because the
1202 		 * controller sends the corresponding vendor event with the
1203 		 * new baudrate. The event is received and properly decoded
1204 		 * after changing the baudrate of the host port. It needs to
1205 		 * be dropped, otherwise it can be misinterpreted as
1206 		 * response to a later firmware download command (also a
1207 		 * vendor command).
1208 		 */
1209 
1210 		if (hdr->evt == HCI_EV_VENDOR)
1211 			complete(&qca->drop_ev_comp);
1212 
1213 		kfree_skb(skb);
1214 
1215 		return 0;
1216 	}
1217 	/* We receive chip memory dump as an event packet, With a dedicated
1218 	 * handler followed by a hardware error event. When this event is
1219 	 * received we store dump into a file before closing hci. This
1220 	 * dump will help in triaging the issues.
1221 	 */
1222 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1223 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1224 		return qca_controller_memdump_event(hdev, skb);
1225 
1226 	return hci_recv_frame(hdev, skb);
1227 }
1228 
1229 #define QCA_IBS_SLEEP_IND_EVENT \
1230 	.type = HCI_IBS_SLEEP_IND, \
1231 	.hlen = 0, \
1232 	.loff = 0, \
1233 	.lsize = 0, \
1234 	.maxlen = HCI_MAX_IBS_SIZE
1235 
1236 #define QCA_IBS_WAKE_IND_EVENT \
1237 	.type = HCI_IBS_WAKE_IND, \
1238 	.hlen = 0, \
1239 	.loff = 0, \
1240 	.lsize = 0, \
1241 	.maxlen = HCI_MAX_IBS_SIZE
1242 
1243 #define QCA_IBS_WAKE_ACK_EVENT \
1244 	.type = HCI_IBS_WAKE_ACK, \
1245 	.hlen = 0, \
1246 	.loff = 0, \
1247 	.lsize = 0, \
1248 	.maxlen = HCI_MAX_IBS_SIZE
1249 
1250 static const struct h4_recv_pkt qca_recv_pkts[] = {
1251 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1252 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1253 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1254 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1255 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1256 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1257 };
1258 
qca_recv(struct hci_uart * hu,const void * data,int count)1259 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1260 {
1261 	struct qca_data *qca = hu->priv;
1262 
1263 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1264 		return -EUNATCH;
1265 
1266 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1267 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1268 	if (IS_ERR(qca->rx_skb)) {
1269 		int err = PTR_ERR(qca->rx_skb);
1270 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1271 		qca->rx_skb = NULL;
1272 		return err;
1273 	}
1274 
1275 	return count;
1276 }
1277 
qca_dequeue(struct hci_uart * hu)1278 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1279 {
1280 	struct qca_data *qca = hu->priv;
1281 
1282 	return skb_dequeue(&qca->txq);
1283 }
1284 
qca_get_baudrate_value(int speed)1285 static uint8_t qca_get_baudrate_value(int speed)
1286 {
1287 	switch (speed) {
1288 	case 9600:
1289 		return QCA_BAUDRATE_9600;
1290 	case 19200:
1291 		return QCA_BAUDRATE_19200;
1292 	case 38400:
1293 		return QCA_BAUDRATE_38400;
1294 	case 57600:
1295 		return QCA_BAUDRATE_57600;
1296 	case 115200:
1297 		return QCA_BAUDRATE_115200;
1298 	case 230400:
1299 		return QCA_BAUDRATE_230400;
1300 	case 460800:
1301 		return QCA_BAUDRATE_460800;
1302 	case 500000:
1303 		return QCA_BAUDRATE_500000;
1304 	case 921600:
1305 		return QCA_BAUDRATE_921600;
1306 	case 1000000:
1307 		return QCA_BAUDRATE_1000000;
1308 	case 2000000:
1309 		return QCA_BAUDRATE_2000000;
1310 	case 3000000:
1311 		return QCA_BAUDRATE_3000000;
1312 	case 3200000:
1313 		return QCA_BAUDRATE_3200000;
1314 	case 3500000:
1315 		return QCA_BAUDRATE_3500000;
1316 	default:
1317 		return QCA_BAUDRATE_115200;
1318 	}
1319 }
1320 
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)1321 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1322 {
1323 	struct hci_uart *hu = hci_get_drvdata(hdev);
1324 	struct qca_data *qca = hu->priv;
1325 	struct sk_buff *skb;
1326 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1327 
1328 	if (baudrate > QCA_BAUDRATE_3200000)
1329 		return -EINVAL;
1330 
1331 	cmd[4] = baudrate;
1332 
1333 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1334 	if (!skb) {
1335 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1336 		return -ENOMEM;
1337 	}
1338 
1339 	/* Assign commands to change baudrate and packet type. */
1340 	skb_put_data(skb, cmd, sizeof(cmd));
1341 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1342 
1343 	skb_queue_tail(&qca->txq, skb);
1344 	hci_uart_tx_wakeup(hu);
1345 
1346 	/* Wait for the baudrate change request to be sent */
1347 
1348 	while (!skb_queue_empty(&qca->txq))
1349 		usleep_range(100, 200);
1350 
1351 	if (hu->serdev)
1352 		serdev_device_wait_until_sent(hu->serdev,
1353 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1354 
1355 	/* Give the controller time to process the request */
1356 	switch (qca_soc_type(hu)) {
1357 	case QCA_WCN3988:
1358 	case QCA_WCN3990:
1359 	case QCA_WCN3991:
1360 	case QCA_WCN3998:
1361 	case QCA_WCN6750:
1362 	case QCA_WCN6855:
1363 	case QCA_WCN7850:
1364 		usleep_range(1000, 10000);
1365 		break;
1366 
1367 	default:
1368 		msleep(300);
1369 	}
1370 
1371 	return 0;
1372 }
1373 
host_set_baudrate(struct hci_uart * hu,unsigned int speed)1374 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1375 {
1376 	if (hu->serdev)
1377 		serdev_device_set_baudrate(hu->serdev, speed);
1378 	else
1379 		hci_uart_set_baudrate(hu, speed);
1380 }
1381 
qca_send_power_pulse(struct hci_uart * hu,bool on)1382 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1383 {
1384 	int ret;
1385 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1386 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1387 
1388 	/* These power pulses are single byte command which are sent
1389 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1390 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1391 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1392 	 * and also we use the same power inputs to turn on and off for
1393 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1394 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1395 	 * save power. Disabling hardware flow control is mandatory while
1396 	 * sending power pulses to SoC.
1397 	 */
1398 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1399 
1400 	serdev_device_write_flush(hu->serdev);
1401 	hci_uart_set_flow_control(hu, true);
1402 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1403 	if (ret < 0) {
1404 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1405 		return ret;
1406 	}
1407 
1408 	serdev_device_wait_until_sent(hu->serdev, timeout);
1409 	hci_uart_set_flow_control(hu, false);
1410 
1411 	/* Give to controller time to boot/shutdown */
1412 	if (on)
1413 		msleep(100);
1414 	else
1415 		usleep_range(1000, 10000);
1416 
1417 	return 0;
1418 }
1419 
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1420 static unsigned int qca_get_speed(struct hci_uart *hu,
1421 				  enum qca_speed_type speed_type)
1422 {
1423 	unsigned int speed = 0;
1424 
1425 	if (speed_type == QCA_INIT_SPEED) {
1426 		if (hu->init_speed)
1427 			speed = hu->init_speed;
1428 		else if (hu->proto->init_speed)
1429 			speed = hu->proto->init_speed;
1430 	} else {
1431 		if (hu->oper_speed)
1432 			speed = hu->oper_speed;
1433 		else if (hu->proto->oper_speed)
1434 			speed = hu->proto->oper_speed;
1435 	}
1436 
1437 	return speed;
1438 }
1439 
qca_check_speeds(struct hci_uart * hu)1440 static int qca_check_speeds(struct hci_uart *hu)
1441 {
1442 	switch (qca_soc_type(hu)) {
1443 	case QCA_WCN3988:
1444 	case QCA_WCN3990:
1445 	case QCA_WCN3991:
1446 	case QCA_WCN3998:
1447 	case QCA_WCN6750:
1448 	case QCA_WCN6855:
1449 	case QCA_WCN7850:
1450 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1451 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1452 			return -EINVAL;
1453 		break;
1454 
1455 	default:
1456 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1457 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1458 			return -EINVAL;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1464 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1465 {
1466 	unsigned int speed, qca_baudrate;
1467 	struct qca_data *qca = hu->priv;
1468 	int ret = 0;
1469 
1470 	if (speed_type == QCA_INIT_SPEED) {
1471 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1472 		if (speed)
1473 			host_set_baudrate(hu, speed);
1474 	} else {
1475 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1476 
1477 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1478 		if (!speed)
1479 			return 0;
1480 
1481 		/* Disable flow control for wcn3990 to deassert RTS while
1482 		 * changing the baudrate of chip and host.
1483 		 */
1484 		switch (soc_type) {
1485 		case QCA_WCN3988:
1486 		case QCA_WCN3990:
1487 		case QCA_WCN3991:
1488 		case QCA_WCN3998:
1489 		case QCA_WCN6750:
1490 		case QCA_WCN6855:
1491 		case QCA_WCN7850:
1492 			hci_uart_set_flow_control(hu, true);
1493 			break;
1494 
1495 		default:
1496 			break;
1497 		}
1498 
1499 		switch (soc_type) {
1500 		case QCA_WCN3990:
1501 			reinit_completion(&qca->drop_ev_comp);
1502 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1503 			break;
1504 
1505 		default:
1506 			break;
1507 		}
1508 
1509 		qca_baudrate = qca_get_baudrate_value(speed);
1510 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1511 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1512 		if (ret)
1513 			goto error;
1514 
1515 		host_set_baudrate(hu, speed);
1516 
1517 error:
1518 		switch (soc_type) {
1519 		case QCA_WCN3988:
1520 		case QCA_WCN3990:
1521 		case QCA_WCN3991:
1522 		case QCA_WCN3998:
1523 		case QCA_WCN6750:
1524 		case QCA_WCN6855:
1525 		case QCA_WCN7850:
1526 			hci_uart_set_flow_control(hu, false);
1527 			break;
1528 
1529 		default:
1530 			break;
1531 		}
1532 
1533 		switch (soc_type) {
1534 		case QCA_WCN3990:
1535 			/* Wait for the controller to send the vendor event
1536 			 * for the baudrate change command.
1537 			 */
1538 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1539 						 msecs_to_jiffies(100))) {
1540 				bt_dev_err(hu->hdev,
1541 					   "Failed to change controller baudrate\n");
1542 				ret = -ETIMEDOUT;
1543 			}
1544 
1545 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1546 			break;
1547 
1548 		default:
1549 			break;
1550 		}
1551 	}
1552 
1553 	return ret;
1554 }
1555 
qca_send_crashbuffer(struct hci_uart * hu)1556 static int qca_send_crashbuffer(struct hci_uart *hu)
1557 {
1558 	struct qca_data *qca = hu->priv;
1559 	struct sk_buff *skb;
1560 
1561 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1562 	if (!skb) {
1563 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1564 		return -ENOMEM;
1565 	}
1566 
1567 	/* We forcefully crash the controller, by sending 0xfb byte for
1568 	 * 1024 times. We also might have chance of losing data, To be
1569 	 * on safer side we send 1096 bytes to the SoC.
1570 	 */
1571 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1572 	       QCA_CRASHBYTE_PACKET_LEN);
1573 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1574 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1575 	skb_queue_tail(&qca->txq, skb);
1576 	hci_uart_tx_wakeup(hu);
1577 
1578 	return 0;
1579 }
1580 
qca_wait_for_dump_collection(struct hci_dev * hdev)1581 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1582 {
1583 	struct hci_uart *hu = hci_get_drvdata(hdev);
1584 	struct qca_data *qca = hu->priv;
1585 
1586 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1587 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1588 
1589 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1590 }
1591 
qca_hw_error(struct hci_dev * hdev,u8 code)1592 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1593 {
1594 	struct hci_uart *hu = hci_get_drvdata(hdev);
1595 	struct qca_data *qca = hu->priv;
1596 
1597 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1598 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1599 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1600 
1601 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1602 		/* If hardware error event received for other than QCA
1603 		 * soc memory dump event, then we need to crash the SOC
1604 		 * and wait here for 8 seconds to get the dump packets.
1605 		 * This will block main thread to be on hold until we
1606 		 * collect dump.
1607 		 */
1608 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1609 		qca_send_crashbuffer(hu);
1610 		qca_wait_for_dump_collection(hdev);
1611 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1612 		/* Let us wait here until memory dump collected or
1613 		 * memory dump timer expired.
1614 		 */
1615 		bt_dev_info(hdev, "waiting for dump to complete");
1616 		qca_wait_for_dump_collection(hdev);
1617 	}
1618 
1619 	mutex_lock(&qca->hci_memdump_lock);
1620 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1621 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1622 		hci_devcd_abort(hu->hdev);
1623 		if (qca->qca_memdump) {
1624 			kfree(qca->qca_memdump);
1625 			qca->qca_memdump = NULL;
1626 		}
1627 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1628 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1629 	}
1630 	mutex_unlock(&qca->hci_memdump_lock);
1631 
1632 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1633 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1634 		cancel_work_sync(&qca->ctrl_memdump_evt);
1635 		skb_queue_purge(&qca->rx_memdump_q);
1636 	}
1637 
1638 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1639 }
1640 
qca_cmd_timeout(struct hci_dev * hdev)1641 static void qca_cmd_timeout(struct hci_dev *hdev)
1642 {
1643 	struct hci_uart *hu = hci_get_drvdata(hdev);
1644 	struct qca_data *qca = hu->priv;
1645 
1646 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1647 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1648 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1649 		qca_send_crashbuffer(hu);
1650 		qca_wait_for_dump_collection(hdev);
1651 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1652 		/* Let us wait here until memory dump collected or
1653 		 * memory dump timer expired.
1654 		 */
1655 		bt_dev_info(hdev, "waiting for dump to complete");
1656 		qca_wait_for_dump_collection(hdev);
1657 	}
1658 
1659 	mutex_lock(&qca->hci_memdump_lock);
1660 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1661 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1662 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1663 			/* Inject hw error event to reset the device
1664 			 * and driver.
1665 			 */
1666 			hci_reset_dev(hu->hdev);
1667 		}
1668 	}
1669 	mutex_unlock(&qca->hci_memdump_lock);
1670 }
1671 
qca_wakeup(struct hci_dev * hdev)1672 static bool qca_wakeup(struct hci_dev *hdev)
1673 {
1674 	struct hci_uart *hu = hci_get_drvdata(hdev);
1675 	bool wakeup;
1676 
1677 	if (!hu->serdev)
1678 		return true;
1679 
1680 	/* BT SoC attached through the serial bus is handled by the serdev driver.
1681 	 * So we need to use the device handle of the serdev driver to get the
1682 	 * status of device may wakeup.
1683 	 */
1684 	wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1685 	bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1686 
1687 	return wakeup;
1688 }
1689 
qca_port_reopen(struct hci_uart * hu)1690 static int qca_port_reopen(struct hci_uart *hu)
1691 {
1692 	int ret;
1693 
1694 	/* Now the device is in ready state to communicate with host.
1695 	 * To sync host with device we need to reopen port.
1696 	 * Without this, we will have RTS and CTS synchronization
1697 	 * issues.
1698 	 */
1699 	serdev_device_close(hu->serdev);
1700 	ret = serdev_device_open(hu->serdev);
1701 	if (ret) {
1702 		bt_dev_err(hu->hdev, "failed to open port");
1703 		return ret;
1704 	}
1705 
1706 	hci_uart_set_flow_control(hu, false);
1707 
1708 	return 0;
1709 }
1710 
qca_regulator_init(struct hci_uart * hu)1711 static int qca_regulator_init(struct hci_uart *hu)
1712 {
1713 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1714 	struct qca_serdev *qcadev;
1715 	int ret;
1716 	bool sw_ctrl_state;
1717 
1718 	/* Check for vregs status, may be hci down has turned
1719 	 * off the voltage regulator.
1720 	 */
1721 	qcadev = serdev_device_get_drvdata(hu->serdev);
1722 
1723 	if (!qcadev->bt_power->vregs_on) {
1724 		serdev_device_close(hu->serdev);
1725 		ret = qca_regulator_enable(qcadev);
1726 		if (ret)
1727 			return ret;
1728 
1729 		ret = serdev_device_open(hu->serdev);
1730 		if (ret) {
1731 			bt_dev_err(hu->hdev, "failed to open port");
1732 			return ret;
1733 		}
1734 	}
1735 
1736 	switch (soc_type) {
1737 	case QCA_WCN3988:
1738 	case QCA_WCN3990:
1739 	case QCA_WCN3991:
1740 	case QCA_WCN3998:
1741 		/* Forcefully enable wcn399x to enter in to boot mode. */
1742 		host_set_baudrate(hu, 2400);
1743 		ret = qca_send_power_pulse(hu, false);
1744 		if (ret)
1745 			return ret;
1746 		break;
1747 
1748 	default:
1749 		break;
1750 	}
1751 
1752 	/* For wcn6750 need to enable gpio bt_en */
1753 	if (qcadev->bt_en) {
1754 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1755 		msleep(50);
1756 		gpiod_set_value_cansleep(qcadev->bt_en, 1);
1757 		msleep(50);
1758 		if (qcadev->sw_ctrl) {
1759 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1760 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1761 		}
1762 	}
1763 
1764 	qca_set_speed(hu, QCA_INIT_SPEED);
1765 
1766 	switch (soc_type) {
1767 	case QCA_WCN3988:
1768 	case QCA_WCN3990:
1769 	case QCA_WCN3991:
1770 	case QCA_WCN3998:
1771 		ret = qca_send_power_pulse(hu, true);
1772 		if (ret)
1773 			return ret;
1774 		break;
1775 
1776 	default:
1777 		break;
1778 	}
1779 
1780 	return qca_port_reopen(hu);
1781 }
1782 
qca_power_on(struct hci_dev * hdev)1783 static int qca_power_on(struct hci_dev *hdev)
1784 {
1785 	struct hci_uart *hu = hci_get_drvdata(hdev);
1786 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1787 	struct qca_serdev *qcadev;
1788 	struct qca_data *qca = hu->priv;
1789 	int ret = 0;
1790 
1791 	/* Non-serdev device usually is powered by external power
1792 	 * and don't need additional action in driver for power on
1793 	 */
1794 	if (!hu->serdev)
1795 		return 0;
1796 
1797 	switch (soc_type) {
1798 	case QCA_WCN3988:
1799 	case QCA_WCN3990:
1800 	case QCA_WCN3991:
1801 	case QCA_WCN3998:
1802 	case QCA_WCN6750:
1803 	case QCA_WCN6855:
1804 	case QCA_WCN7850:
1805 	case QCA_QCA6390:
1806 		ret = qca_regulator_init(hu);
1807 		break;
1808 
1809 	default:
1810 		qcadev = serdev_device_get_drvdata(hu->serdev);
1811 		if (qcadev->bt_en) {
1812 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1813 			/* Controller needs time to bootup. */
1814 			msleep(150);
1815 		}
1816 	}
1817 
1818 	clear_bit(QCA_BT_OFF, &qca->flags);
1819 	return ret;
1820 }
1821 
hci_coredump_qca(struct hci_dev * hdev)1822 static void hci_coredump_qca(struct hci_dev *hdev)
1823 {
1824 	int err;
1825 	static const u8 param[] = { 0x26 };
1826 
1827 	err = __hci_cmd_send(hdev, 0xfc0c, 1, param);
1828 	if (err < 0)
1829 		bt_dev_err(hdev, "%s: trigger crash failed (%d)", __func__, err);
1830 }
1831 
qca_get_data_path_id(struct hci_dev * hdev,__u8 * data_path_id)1832 static int qca_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
1833 {
1834 	/* QCA uses 1 as non-HCI data path id for HFP */
1835 	*data_path_id = 1;
1836 	return 0;
1837 }
1838 
qca_configure_hfp_offload(struct hci_dev * hdev)1839 static int qca_configure_hfp_offload(struct hci_dev *hdev)
1840 {
1841 	bt_dev_info(hdev, "HFP non-HCI data transport is supported");
1842 	hdev->get_data_path_id = qca_get_data_path_id;
1843 	/* Do not need to send HCI_Configure_Data_Path to configure non-HCI
1844 	 * data transport path for QCA controllers, so set below field as NULL.
1845 	 */
1846 	hdev->get_codec_config_data = NULL;
1847 	return 0;
1848 }
1849 
qca_setup(struct hci_uart * hu)1850 static int qca_setup(struct hci_uart *hu)
1851 {
1852 	struct hci_dev *hdev = hu->hdev;
1853 	struct qca_data *qca = hu->priv;
1854 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1855 	unsigned int retries = 0;
1856 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1857 	const char *firmware_name = qca_get_firmware_name(hu);
1858 	int ret;
1859 	struct qca_btsoc_version ver;
1860 	struct qca_serdev *qcadev;
1861 	const char *soc_name;
1862 
1863 	ret = qca_check_speeds(hu);
1864 	if (ret)
1865 		return ret;
1866 
1867 	clear_bit(QCA_ROM_FW, &qca->flags);
1868 	/* Patch downloading has to be done without IBS mode */
1869 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1870 
1871 	/* Enable controller to do both LE scan and BR/EDR inquiry
1872 	 * simultaneously.
1873 	 */
1874 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1875 
1876 	switch (soc_type) {
1877 	case QCA_QCA2066:
1878 		soc_name = "qca2066";
1879 		break;
1880 
1881 	case QCA_WCN3988:
1882 	case QCA_WCN3990:
1883 	case QCA_WCN3991:
1884 	case QCA_WCN3998:
1885 		soc_name = "wcn399x";
1886 		break;
1887 
1888 	case QCA_WCN6750:
1889 		soc_name = "wcn6750";
1890 		break;
1891 
1892 	case QCA_WCN6855:
1893 		soc_name = "wcn6855";
1894 		break;
1895 
1896 	case QCA_WCN7850:
1897 		soc_name = "wcn7850";
1898 		break;
1899 
1900 	default:
1901 		soc_name = "ROME/QCA6390";
1902 	}
1903 	bt_dev_info(hdev, "setting up %s", soc_name);
1904 
1905 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1906 
1907 retry:
1908 	ret = qca_power_on(hdev);
1909 	if (ret)
1910 		goto out;
1911 
1912 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1913 
1914 	switch (soc_type) {
1915 	case QCA_WCN3988:
1916 	case QCA_WCN3990:
1917 	case QCA_WCN3991:
1918 	case QCA_WCN3998:
1919 	case QCA_WCN6750:
1920 	case QCA_WCN6855:
1921 	case QCA_WCN7850:
1922 		qcadev = serdev_device_get_drvdata(hu->serdev);
1923 		if (qcadev->bdaddr_property_broken)
1924 			set_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks);
1925 
1926 		hci_set_aosp_capable(hdev);
1927 
1928 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1929 		if (ret)
1930 			goto out;
1931 		break;
1932 
1933 	default:
1934 		qca_set_speed(hu, QCA_INIT_SPEED);
1935 	}
1936 
1937 	/* Setup user speed if needed */
1938 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1939 	if (speed) {
1940 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1941 		if (ret)
1942 			goto out;
1943 
1944 		qca_baudrate = qca_get_baudrate_value(speed);
1945 	}
1946 
1947 	switch (soc_type) {
1948 	case QCA_WCN3988:
1949 	case QCA_WCN3990:
1950 	case QCA_WCN3991:
1951 	case QCA_WCN3998:
1952 	case QCA_WCN6750:
1953 	case QCA_WCN6855:
1954 	case QCA_WCN7850:
1955 		break;
1956 
1957 	default:
1958 		/* Get QCA version information */
1959 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1960 		if (ret)
1961 			goto out;
1962 	}
1963 
1964 	/* Setup patch / NVM configurations */
1965 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1966 			firmware_name);
1967 	if (!ret) {
1968 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
1969 		qca_debugfs_init(hdev);
1970 		hu->hdev->hw_error = qca_hw_error;
1971 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1972 		if (hu->serdev) {
1973 			if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1974 				hu->hdev->wakeup = qca_wakeup;
1975 		}
1976 	} else if (ret == -ENOENT) {
1977 		/* No patch/nvm-config found, run with original fw/config */
1978 		set_bit(QCA_ROM_FW, &qca->flags);
1979 		ret = 0;
1980 	} else if (ret == -EAGAIN) {
1981 		/*
1982 		 * Userspace firmware loader will return -EAGAIN in case no
1983 		 * patch/nvm-config is found, so run with original fw/config.
1984 		 */
1985 		set_bit(QCA_ROM_FW, &qca->flags);
1986 		ret = 0;
1987 	}
1988 
1989 out:
1990 	if (ret && retries < MAX_INIT_RETRIES) {
1991 		bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1992 		qca_power_shutdown(hu);
1993 		if (hu->serdev) {
1994 			serdev_device_close(hu->serdev);
1995 			ret = serdev_device_open(hu->serdev);
1996 			if (ret) {
1997 				bt_dev_err(hdev, "failed to open port");
1998 				return ret;
1999 			}
2000 		}
2001 		retries++;
2002 		goto retry;
2003 	}
2004 
2005 	/* Setup bdaddr */
2006 	if (soc_type == QCA_ROME)
2007 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
2008 	else
2009 		hu->hdev->set_bdaddr = qca_set_bdaddr;
2010 
2011 	if (soc_type == QCA_QCA2066)
2012 		qca_configure_hfp_offload(hdev);
2013 
2014 	qca->fw_version = le16_to_cpu(ver.patch_ver);
2015 	qca->controller_id = le16_to_cpu(ver.rom_ver);
2016 	hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL);
2017 
2018 	return ret;
2019 }
2020 
2021 static const struct hci_uart_proto qca_proto = {
2022 	.id		= HCI_UART_QCA,
2023 	.name		= "QCA",
2024 	.manufacturer	= 29,
2025 	.init_speed	= 115200,
2026 	.oper_speed	= 3000000,
2027 	.open		= qca_open,
2028 	.close		= qca_close,
2029 	.flush		= qca_flush,
2030 	.setup		= qca_setup,
2031 	.recv		= qca_recv,
2032 	.enqueue	= qca_enqueue,
2033 	.dequeue	= qca_dequeue,
2034 };
2035 
2036 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = {
2037 	.soc_type = QCA_WCN3988,
2038 	.vregs = (struct qca_vreg []) {
2039 		{ "vddio", 15000  },
2040 		{ "vddxo", 80000  },
2041 		{ "vddrf", 300000 },
2042 		{ "vddch0", 450000 },
2043 	},
2044 	.num_vregs = 4,
2045 };
2046 
2047 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
2048 	.soc_type = QCA_WCN3990,
2049 	.vregs = (struct qca_vreg []) {
2050 		{ "vddio", 15000  },
2051 		{ "vddxo", 80000  },
2052 		{ "vddrf", 300000 },
2053 		{ "vddch0", 450000 },
2054 	},
2055 	.num_vregs = 4,
2056 };
2057 
2058 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
2059 	.soc_type = QCA_WCN3991,
2060 	.vregs = (struct qca_vreg []) {
2061 		{ "vddio", 15000  },
2062 		{ "vddxo", 80000  },
2063 		{ "vddrf", 300000 },
2064 		{ "vddch0", 450000 },
2065 	},
2066 	.num_vregs = 4,
2067 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2068 };
2069 
2070 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
2071 	.soc_type = QCA_WCN3998,
2072 	.vregs = (struct qca_vreg []) {
2073 		{ "vddio", 10000  },
2074 		{ "vddxo", 80000  },
2075 		{ "vddrf", 300000 },
2076 		{ "vddch0", 450000 },
2077 	},
2078 	.num_vregs = 4,
2079 };
2080 
2081 static const struct qca_device_data qca_soc_data_qca2066 __maybe_unused = {
2082 	.soc_type = QCA_QCA2066,
2083 	.num_vregs = 0,
2084 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2085 };
2086 
2087 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
2088 	.soc_type = QCA_QCA6390,
2089 	.num_vregs = 0,
2090 };
2091 
2092 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
2093 	.soc_type = QCA_WCN6750,
2094 	.vregs = (struct qca_vreg []) {
2095 		{ "vddio", 5000 },
2096 		{ "vddaon", 26000 },
2097 		{ "vddbtcxmx", 126000 },
2098 		{ "vddrfacmn", 12500 },
2099 		{ "vddrfa0p8", 102000 },
2100 		{ "vddrfa1p7", 302000 },
2101 		{ "vddrfa1p2", 257000 },
2102 		{ "vddrfa2p2", 1700000 },
2103 		{ "vddasd", 200 },
2104 	},
2105 	.num_vregs = 9,
2106 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2107 };
2108 
2109 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
2110 	.soc_type = QCA_WCN6855,
2111 	.vregs = (struct qca_vreg []) {
2112 		{ "vddio", 5000 },
2113 		{ "vddbtcxmx", 126000 },
2114 		{ "vddrfacmn", 12500 },
2115 		{ "vddrfa0p8", 102000 },
2116 		{ "vddrfa1p7", 302000 },
2117 		{ "vddrfa1p2", 257000 },
2118 	},
2119 	.num_vregs = 6,
2120 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2121 };
2122 
2123 static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = {
2124 	.soc_type = QCA_WCN7850,
2125 	.vregs = (struct qca_vreg []) {
2126 		{ "vddio", 5000 },
2127 		{ "vddaon", 26000 },
2128 		{ "vdddig", 126000 },
2129 		{ "vddrfa0p8", 102000 },
2130 		{ "vddrfa1p2", 257000 },
2131 		{ "vddrfa1p9", 302000 },
2132 	},
2133 	.num_vregs = 6,
2134 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2135 };
2136 
qca_power_shutdown(struct hci_uart * hu)2137 static void qca_power_shutdown(struct hci_uart *hu)
2138 {
2139 	struct qca_serdev *qcadev;
2140 	struct qca_data *qca = hu->priv;
2141 	unsigned long flags;
2142 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2143 	bool sw_ctrl_state;
2144 	struct qca_power *power;
2145 
2146 	/* From this point we go into power off state. But serial port is
2147 	 * still open, stop queueing the IBS data and flush all the buffered
2148 	 * data in skb's.
2149 	 */
2150 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
2151 	set_bit(QCA_IBS_DISABLED, &qca->flags);
2152 	qca_flush(hu);
2153 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2154 
2155 	/* Non-serdev device usually is powered by external power
2156 	 * and don't need additional action in driver for power down
2157 	 */
2158 	if (!hu->serdev)
2159 		return;
2160 
2161 	qcadev = serdev_device_get_drvdata(hu->serdev);
2162 	power = qcadev->bt_power;
2163 
2164 	if (power && power->pwrseq) {
2165 		pwrseq_power_off(power->pwrseq);
2166 		set_bit(QCA_BT_OFF, &qca->flags);
2167 		return;
2168         }
2169 
2170 	switch (soc_type) {
2171 	case QCA_WCN3988:
2172 	case QCA_WCN3990:
2173 	case QCA_WCN3991:
2174 	case QCA_WCN3998:
2175 		host_set_baudrate(hu, 2400);
2176 		qca_send_power_pulse(hu, false);
2177 		qca_regulator_disable(qcadev);
2178 		break;
2179 
2180 	case QCA_WCN6750:
2181 	case QCA_WCN6855:
2182 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2183 		msleep(100);
2184 		qca_regulator_disable(qcadev);
2185 		if (qcadev->sw_ctrl) {
2186 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
2187 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
2188 		}
2189 		break;
2190 
2191 	default:
2192 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2193 	}
2194 
2195 	set_bit(QCA_BT_OFF, &qca->flags);
2196 }
2197 
qca_power_off(struct hci_dev * hdev)2198 static int qca_power_off(struct hci_dev *hdev)
2199 {
2200 	struct hci_uart *hu = hci_get_drvdata(hdev);
2201 	struct qca_data *qca = hu->priv;
2202 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2203 
2204 	hu->hdev->hw_error = NULL;
2205 	hu->hdev->cmd_timeout = NULL;
2206 
2207 	del_timer_sync(&qca->wake_retrans_timer);
2208 	del_timer_sync(&qca->tx_idle_timer);
2209 
2210 	/* Stop sending shutdown command if soc crashes. */
2211 	if (soc_type != QCA_ROME
2212 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
2213 		qca_send_pre_shutdown_cmd(hdev);
2214 		usleep_range(8000, 10000);
2215 	}
2216 
2217 	qca_power_shutdown(hu);
2218 	return 0;
2219 }
2220 
qca_regulator_enable(struct qca_serdev * qcadev)2221 static int qca_regulator_enable(struct qca_serdev *qcadev)
2222 {
2223 	struct qca_power *power = qcadev->bt_power;
2224 	int ret;
2225 
2226 	if (power->pwrseq)
2227 		return pwrseq_power_on(power->pwrseq);
2228 
2229 	/* Already enabled */
2230 	if (power->vregs_on)
2231 		return 0;
2232 
2233 	BT_DBG("enabling %d regulators)", power->num_vregs);
2234 
2235 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
2236 	if (ret)
2237 		return ret;
2238 
2239 	power->vregs_on = true;
2240 
2241 	ret = clk_prepare_enable(qcadev->susclk);
2242 	if (ret)
2243 		qca_regulator_disable(qcadev);
2244 
2245 	return ret;
2246 }
2247 
qca_regulator_disable(struct qca_serdev * qcadev)2248 static void qca_regulator_disable(struct qca_serdev *qcadev)
2249 {
2250 	struct qca_power *power;
2251 
2252 	if (!qcadev)
2253 		return;
2254 
2255 	power = qcadev->bt_power;
2256 
2257 	/* Already disabled? */
2258 	if (!power->vregs_on)
2259 		return;
2260 
2261 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2262 	power->vregs_on = false;
2263 
2264 	clk_disable_unprepare(qcadev->susclk);
2265 }
2266 
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)2267 static int qca_init_regulators(struct qca_power *qca,
2268 				const struct qca_vreg *vregs, size_t num_vregs)
2269 {
2270 	struct regulator_bulk_data *bulk;
2271 	int ret;
2272 	int i;
2273 
2274 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2275 	if (!bulk)
2276 		return -ENOMEM;
2277 
2278 	for (i = 0; i < num_vregs; i++)
2279 		bulk[i].supply = vregs[i].name;
2280 
2281 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2282 	if (ret < 0)
2283 		return ret;
2284 
2285 	for (i = 0; i < num_vregs; i++) {
2286 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2287 		if (ret)
2288 			return ret;
2289 	}
2290 
2291 	qca->vreg_bulk = bulk;
2292 	qca->num_vregs = num_vregs;
2293 
2294 	return 0;
2295 }
2296 
qca_serdev_probe(struct serdev_device * serdev)2297 static int qca_serdev_probe(struct serdev_device *serdev)
2298 {
2299 	struct qca_serdev *qcadev;
2300 	struct hci_dev *hdev;
2301 	const struct qca_device_data *data;
2302 	int err;
2303 	bool power_ctrl_enabled = true;
2304 
2305 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2306 	if (!qcadev)
2307 		return -ENOMEM;
2308 
2309 	qcadev->serdev_hu.serdev = serdev;
2310 	data = device_get_match_data(&serdev->dev);
2311 	serdev_device_set_drvdata(serdev, qcadev);
2312 	device_property_read_string(&serdev->dev, "firmware-name",
2313 					 &qcadev->firmware_name);
2314 	device_property_read_u32(&serdev->dev, "max-speed",
2315 				 &qcadev->oper_speed);
2316 	if (!qcadev->oper_speed)
2317 		BT_DBG("UART will pick default operating speed");
2318 
2319 	qcadev->bdaddr_property_broken = device_property_read_bool(&serdev->dev,
2320 			"qcom,local-bd-address-broken");
2321 
2322 	if (data)
2323 		qcadev->btsoc_type = data->soc_type;
2324 	else
2325 		qcadev->btsoc_type = QCA_ROME;
2326 
2327 	switch (qcadev->btsoc_type) {
2328 	case QCA_WCN3988:
2329 	case QCA_WCN3990:
2330 	case QCA_WCN3991:
2331 	case QCA_WCN3998:
2332 	case QCA_WCN6750:
2333 	case QCA_WCN6855:
2334 	case QCA_WCN7850:
2335 	case QCA_QCA6390:
2336 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
2337 						sizeof(struct qca_power),
2338 						GFP_KERNEL);
2339 		if (!qcadev->bt_power)
2340 			return -ENOMEM;
2341 		break;
2342 	default:
2343 		break;
2344 	}
2345 
2346 	switch (qcadev->btsoc_type) {
2347 	case QCA_WCN6855:
2348 	case QCA_WCN7850:
2349 		if (!device_property_present(&serdev->dev, "enable-gpios")) {
2350 			/*
2351 			 * Backward compatibility with old DT sources. If the
2352 			 * node doesn't have the 'enable-gpios' property then
2353 			 * let's use the power sequencer. Otherwise, let's
2354 			 * drive everything ourselves.
2355 			 */
2356 			qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev,
2357 								   "bluetooth");
2358 			if (IS_ERR(qcadev->bt_power->pwrseq))
2359 				return PTR_ERR(qcadev->bt_power->pwrseq);
2360 
2361 			break;
2362 		}
2363 		fallthrough;
2364 	case QCA_WCN3988:
2365 	case QCA_WCN3990:
2366 	case QCA_WCN3991:
2367 	case QCA_WCN3998:
2368 	case QCA_WCN6750:
2369 		qcadev->bt_power->dev = &serdev->dev;
2370 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
2371 					  data->num_vregs);
2372 		if (err) {
2373 			BT_ERR("Failed to init regulators:%d", err);
2374 			return err;
2375 		}
2376 
2377 		qcadev->bt_power->vregs_on = false;
2378 
2379 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2380 					       GPIOD_OUT_LOW);
2381 		if (IS_ERR(qcadev->bt_en) &&
2382 		    (data->soc_type == QCA_WCN6750 ||
2383 		     data->soc_type == QCA_WCN6855)) {
2384 			dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2385 			return PTR_ERR(qcadev->bt_en);
2386 		}
2387 
2388 		if (!qcadev->bt_en)
2389 			power_ctrl_enabled = false;
2390 
2391 		qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2392 					       GPIOD_IN);
2393 		if (IS_ERR(qcadev->sw_ctrl) &&
2394 		    (data->soc_type == QCA_WCN6750 ||
2395 		     data->soc_type == QCA_WCN6855 ||
2396 		     data->soc_type == QCA_WCN7850)) {
2397 			dev_err(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2398 			return PTR_ERR(qcadev->sw_ctrl);
2399 		}
2400 
2401 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2402 		if (IS_ERR(qcadev->susclk)) {
2403 			dev_err(&serdev->dev, "failed to acquire clk\n");
2404 			return PTR_ERR(qcadev->susclk);
2405 		}
2406 		break;
2407 
2408 	case QCA_QCA6390:
2409 		if (dev_of_node(&serdev->dev)) {
2410 			qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev,
2411 								   "bluetooth");
2412 			if (IS_ERR(qcadev->bt_power->pwrseq))
2413 				return PTR_ERR(qcadev->bt_power->pwrseq);
2414 			break;
2415 		}
2416 		fallthrough;
2417 
2418 	default:
2419 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2420 					       GPIOD_OUT_LOW);
2421 		if (IS_ERR(qcadev->bt_en)) {
2422 			dev_err(&serdev->dev, "failed to acquire enable gpio\n");
2423 			return PTR_ERR(qcadev->bt_en);
2424 		}
2425 
2426 		if (!qcadev->bt_en)
2427 			power_ctrl_enabled = false;
2428 
2429 		qcadev->susclk = devm_clk_get_optional_enabled_with_rate(
2430 					&serdev->dev, NULL, SUSCLK_RATE_32KHZ);
2431 		if (IS_ERR(qcadev->susclk)) {
2432 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2433 			return PTR_ERR(qcadev->susclk);
2434 		}
2435 	}
2436 
2437 	err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2438 	if (err) {
2439 		BT_ERR("serdev registration failed");
2440 		return err;
2441 	}
2442 
2443 	hdev = qcadev->serdev_hu.hdev;
2444 
2445 	if (power_ctrl_enabled) {
2446 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2447 		hdev->shutdown = qca_power_off;
2448 	}
2449 
2450 	if (data) {
2451 		/* Wideband speech support must be set per driver since it can't
2452 		 * be queried via hci. Same with the valid le states quirk.
2453 		 */
2454 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2455 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2456 				&hdev->quirks);
2457 
2458 		if (!(data->capabilities & QCA_CAP_VALID_LE_STATES))
2459 			set_bit(HCI_QUIRK_BROKEN_LE_STATES, &hdev->quirks);
2460 	}
2461 
2462 	return 0;
2463 }
2464 
qca_serdev_remove(struct serdev_device * serdev)2465 static void qca_serdev_remove(struct serdev_device *serdev)
2466 {
2467 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2468 	struct qca_power *power = qcadev->bt_power;
2469 
2470 	switch (qcadev->btsoc_type) {
2471 	case QCA_WCN3988:
2472 	case QCA_WCN3990:
2473 	case QCA_WCN3991:
2474 	case QCA_WCN3998:
2475 	case QCA_WCN6750:
2476 	case QCA_WCN6855:
2477 	case QCA_WCN7850:
2478 		if (power->vregs_on)
2479 			qca_power_shutdown(&qcadev->serdev_hu);
2480 		break;
2481 	default:
2482 		break;
2483 	}
2484 
2485 	hci_uart_unregister_device(&qcadev->serdev_hu);
2486 }
2487 
qca_serdev_shutdown(struct device * dev)2488 static void qca_serdev_shutdown(struct device *dev)
2489 {
2490 	int ret;
2491 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2492 	struct serdev_device *serdev = to_serdev_device(dev);
2493 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2494 	struct hci_uart *hu = &qcadev->serdev_hu;
2495 	struct hci_dev *hdev = hu->hdev;
2496 	const u8 ibs_wake_cmd[] = { 0xFD };
2497 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2498 
2499 	if (qcadev->btsoc_type == QCA_QCA6390) {
2500 		/* The purpose of sending the VSC is to reset SOC into a initial
2501 		 * state and the state will ensure next hdev->setup() success.
2502 		 * if HCI_QUIRK_NON_PERSISTENT_SETUP is set, it means that
2503 		 * hdev->setup() can do its job regardless of SoC state, so
2504 		 * don't need to send the VSC.
2505 		 * if HCI_SETUP is set, it means that hdev->setup() was never
2506 		 * invoked and the SOC is already in the initial state, so
2507 		 * don't also need to send the VSC.
2508 		 */
2509 		if (test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks) ||
2510 		    hci_dev_test_flag(hdev, HCI_SETUP))
2511 			return;
2512 
2513 		/* The serdev must be in open state when control logic arrives
2514 		 * here, so also fix the use-after-free issue caused by that
2515 		 * the serdev is flushed or wrote after it is closed.
2516 		 */
2517 		serdev_device_write_flush(serdev);
2518 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2519 					      sizeof(ibs_wake_cmd));
2520 		if (ret < 0) {
2521 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2522 			return;
2523 		}
2524 		serdev_device_wait_until_sent(serdev, timeout);
2525 		usleep_range(8000, 10000);
2526 
2527 		serdev_device_write_flush(serdev);
2528 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2529 					      sizeof(edl_reset_soc_cmd));
2530 		if (ret < 0) {
2531 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2532 			return;
2533 		}
2534 		serdev_device_wait_until_sent(serdev, timeout);
2535 		usleep_range(8000, 10000);
2536 	}
2537 }
2538 
qca_suspend(struct device * dev)2539 static int __maybe_unused qca_suspend(struct device *dev)
2540 {
2541 	struct serdev_device *serdev = to_serdev_device(dev);
2542 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2543 	struct hci_uart *hu = &qcadev->serdev_hu;
2544 	struct qca_data *qca = hu->priv;
2545 	unsigned long flags;
2546 	bool tx_pending = false;
2547 	int ret = 0;
2548 	u8 cmd;
2549 	u32 wait_timeout = 0;
2550 
2551 	set_bit(QCA_SUSPENDING, &qca->flags);
2552 
2553 	/* if BT SoC is running with default firmware then it does not
2554 	 * support in-band sleep
2555 	 */
2556 	if (test_bit(QCA_ROM_FW, &qca->flags))
2557 		return 0;
2558 
2559 	/* During SSR after memory dump collection, controller will be
2560 	 * powered off and then powered on.If controller is powered off
2561 	 * during SSR then we should wait until SSR is completed.
2562 	 */
2563 	if (test_bit(QCA_BT_OFF, &qca->flags) &&
2564 	    !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2565 		return 0;
2566 
2567 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2568 	    test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2569 		wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2570 					IBS_DISABLE_SSR_TIMEOUT_MS :
2571 					FW_DOWNLOAD_TIMEOUT_MS;
2572 
2573 		/* QCA_IBS_DISABLED flag is set to true, During FW download
2574 		 * and during memory dump collection. It is reset to false,
2575 		 * After FW download complete.
2576 		 */
2577 		wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2578 			    TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2579 
2580 		if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2581 			bt_dev_err(hu->hdev, "SSR or FW download time out");
2582 			ret = -ETIMEDOUT;
2583 			goto error;
2584 		}
2585 	}
2586 
2587 	cancel_work_sync(&qca->ws_awake_device);
2588 	cancel_work_sync(&qca->ws_awake_rx);
2589 
2590 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2591 				 flags, SINGLE_DEPTH_NESTING);
2592 
2593 	switch (qca->tx_ibs_state) {
2594 	case HCI_IBS_TX_WAKING:
2595 		del_timer(&qca->wake_retrans_timer);
2596 		fallthrough;
2597 	case HCI_IBS_TX_AWAKE:
2598 		del_timer(&qca->tx_idle_timer);
2599 
2600 		serdev_device_write_flush(hu->serdev);
2601 		cmd = HCI_IBS_SLEEP_IND;
2602 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2603 
2604 		if (ret < 0) {
2605 			BT_ERR("Failed to send SLEEP to device");
2606 			break;
2607 		}
2608 
2609 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2610 		qca->ibs_sent_slps++;
2611 		tx_pending = true;
2612 		break;
2613 
2614 	case HCI_IBS_TX_ASLEEP:
2615 		break;
2616 
2617 	default:
2618 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2619 		ret = -EINVAL;
2620 		break;
2621 	}
2622 
2623 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2624 
2625 	if (ret < 0)
2626 		goto error;
2627 
2628 	if (tx_pending) {
2629 		serdev_device_wait_until_sent(hu->serdev,
2630 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2631 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2632 	}
2633 
2634 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2635 	 * to sleep, so that the packet does not wake the system later.
2636 	 */
2637 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2638 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2639 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2640 	if (ret == 0) {
2641 		ret = -ETIMEDOUT;
2642 		goto error;
2643 	}
2644 
2645 	return 0;
2646 
2647 error:
2648 	clear_bit(QCA_SUSPENDING, &qca->flags);
2649 
2650 	return ret;
2651 }
2652 
qca_resume(struct device * dev)2653 static int __maybe_unused qca_resume(struct device *dev)
2654 {
2655 	struct serdev_device *serdev = to_serdev_device(dev);
2656 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2657 	struct hci_uart *hu = &qcadev->serdev_hu;
2658 	struct qca_data *qca = hu->priv;
2659 
2660 	clear_bit(QCA_SUSPENDING, &qca->flags);
2661 
2662 	return 0;
2663 }
2664 
2665 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2666 
2667 #ifdef CONFIG_OF
2668 static const struct of_device_id qca_bluetooth_of_match[] = {
2669 	{ .compatible = "qcom,qca2066-bt", .data = &qca_soc_data_qca2066},
2670 	{ .compatible = "qcom,qca6174-bt" },
2671 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2672 	{ .compatible = "qcom,qca9377-bt" },
2673 	{ .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988},
2674 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2675 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2676 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2677 	{ .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2678 	{ .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2679 	{ .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850},
2680 	{ /* sentinel */ }
2681 };
2682 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2683 #endif
2684 
2685 #ifdef CONFIG_ACPI
2686 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2687 	{ "QCOM2066", (kernel_ulong_t)&qca_soc_data_qca2066 },
2688 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2689 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2690 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2691 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2692 	{ },
2693 };
2694 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2695 #endif
2696 
2697 #ifdef CONFIG_DEV_COREDUMP
hciqca_coredump(struct device * dev)2698 static void hciqca_coredump(struct device *dev)
2699 {
2700 	struct serdev_device *serdev = to_serdev_device(dev);
2701 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2702 	struct hci_uart *hu = &qcadev->serdev_hu;
2703 	struct hci_dev  *hdev = hu->hdev;
2704 
2705 	if (hdev->dump.coredump)
2706 		hdev->dump.coredump(hdev);
2707 }
2708 #endif
2709 
2710 static struct serdev_device_driver qca_serdev_driver = {
2711 	.probe = qca_serdev_probe,
2712 	.remove = qca_serdev_remove,
2713 	.driver = {
2714 		.name = "hci_uart_qca",
2715 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2716 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2717 		.shutdown = qca_serdev_shutdown,
2718 		.pm = &qca_pm_ops,
2719 #ifdef CONFIG_DEV_COREDUMP
2720 		.coredump = hciqca_coredump,
2721 #endif
2722 	},
2723 };
2724 
qca_init(void)2725 int __init qca_init(void)
2726 {
2727 	serdev_device_driver_register(&qca_serdev_driver);
2728 
2729 	return hci_uart_register_proto(&qca_proto);
2730 }
2731 
qca_deinit(void)2732 int __exit qca_deinit(void)
2733 {
2734 	serdev_device_driver_unregister(&qca_serdev_driver);
2735 
2736 	return hci_uart_unregister_proto(&qca_proto);
2737 }
2738