1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Bluetooth Software UART Qualcomm protocol
4 *
5 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6 * protocol extension to H4.
7 *
8 * Copyright (C) 2007 Texas Instruments, Inc.
9 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10 *
11 * Acknowledgements:
12 * This file is based on hci_ll.c, which was...
13 * Written by Ohad Ben-Cohen <ohad@bencohen.org>
14 * which was in turn based on hci_h4.c, which was written
15 * by Maxim Krasnyansky and Marcel Holtmann.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/pwrseq/consumer.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/serdev.h>
34 #include <linux/mutex.h>
35 #include <linux/unaligned.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39
40 #include "hci_uart.h"
41 #include "btqca.h"
42
43 /* HCI_IBS protocol messages */
44 #define HCI_IBS_SLEEP_IND 0xFE
45 #define HCI_IBS_WAKE_IND 0xFD
46 #define HCI_IBS_WAKE_ACK 0xFC
47 #define HCI_MAX_IBS_SIZE 10
48
49 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100
50 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 200
51 #define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000
52 #define CMD_TRANS_TIMEOUT_MS 100
53 #define MEMDUMP_TIMEOUT_MS 8000
54 #define IBS_DISABLE_SSR_TIMEOUT_MS \
55 (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
56 #define FW_DOWNLOAD_TIMEOUT_MS 3000
57
58 /* susclk rate */
59 #define SUSCLK_RATE_32KHZ 32768
60
61 /* Controller debug log header */
62 #define QCA_DEBUG_HANDLE 0x2EDC
63
64 /* max retry count when init fails */
65 #define MAX_INIT_RETRIES 3
66
67 /* Controller dump header */
68 #define QCA_SSR_DUMP_HANDLE 0x0108
69 #define QCA_DUMP_PACKET_SIZE 255
70 #define QCA_LAST_SEQUENCE_NUM 0xFFFF
71 #define QCA_CRASHBYTE_PACKET_LEN 1096
72 #define QCA_MEMDUMP_BYTE 0xFB
73
74 enum qca_flags {
75 QCA_IBS_DISABLED,
76 QCA_DROP_VENDOR_EVENT,
77 QCA_SUSPENDING,
78 QCA_MEMDUMP_COLLECTION,
79 QCA_HW_ERROR_EVENT,
80 QCA_SSR_TRIGGERED,
81 QCA_BT_OFF,
82 QCA_ROM_FW,
83 QCA_DEBUGFS_CREATED,
84 };
85
86 enum qca_capabilities {
87 QCA_CAP_WIDEBAND_SPEECH = BIT(0),
88 QCA_CAP_VALID_LE_STATES = BIT(1),
89 };
90
91 /* HCI_IBS transmit side sleep protocol states */
92 enum tx_ibs_states {
93 HCI_IBS_TX_ASLEEP,
94 HCI_IBS_TX_WAKING,
95 HCI_IBS_TX_AWAKE,
96 };
97
98 /* HCI_IBS receive side sleep protocol states */
99 enum rx_states {
100 HCI_IBS_RX_ASLEEP,
101 HCI_IBS_RX_AWAKE,
102 };
103
104 /* HCI_IBS transmit and receive side clock state vote */
105 enum hci_ibs_clock_state_vote {
106 HCI_IBS_VOTE_STATS_UPDATE,
107 HCI_IBS_TX_VOTE_CLOCK_ON,
108 HCI_IBS_TX_VOTE_CLOCK_OFF,
109 HCI_IBS_RX_VOTE_CLOCK_ON,
110 HCI_IBS_RX_VOTE_CLOCK_OFF,
111 };
112
113 /* Controller memory dump states */
114 enum qca_memdump_states {
115 QCA_MEMDUMP_IDLE,
116 QCA_MEMDUMP_COLLECTING,
117 QCA_MEMDUMP_COLLECTED,
118 QCA_MEMDUMP_TIMEOUT,
119 };
120
121 struct qca_memdump_info {
122 u32 current_seq_no;
123 u32 received_dump;
124 u32 ram_dump_size;
125 };
126
127 struct qca_memdump_event_hdr {
128 __u8 evt;
129 __u8 plen;
130 __u16 opcode;
131 __le16 seq_no;
132 __u8 reserved;
133 } __packed;
134
135
136 struct qca_dump_size {
137 __le32 dump_size;
138 } __packed;
139
140 struct qca_data {
141 struct hci_uart *hu;
142 struct sk_buff *rx_skb;
143 struct sk_buff_head txq;
144 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */
145 struct sk_buff_head rx_memdump_q; /* Memdump wait queue */
146 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */
147 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/
148 u8 rx_ibs_state; /* HCI_IBS receive side power state */
149 bool tx_vote; /* Clock must be on for TX */
150 bool rx_vote; /* Clock must be on for RX */
151 struct timer_list tx_idle_timer;
152 u32 tx_idle_delay;
153 struct timer_list wake_retrans_timer;
154 u32 wake_retrans;
155 struct workqueue_struct *workqueue;
156 struct work_struct ws_awake_rx;
157 struct work_struct ws_awake_device;
158 struct work_struct ws_rx_vote_off;
159 struct work_struct ws_tx_vote_off;
160 struct work_struct ctrl_memdump_evt;
161 struct delayed_work ctrl_memdump_timeout;
162 struct qca_memdump_info *qca_memdump;
163 unsigned long flags;
164 struct completion drop_ev_comp;
165 wait_queue_head_t suspend_wait_q;
166 enum qca_memdump_states memdump_state;
167 struct mutex hci_memdump_lock;
168
169 u16 fw_version;
170 u16 controller_id;
171 /* For debugging purpose */
172 u64 ibs_sent_wacks;
173 u64 ibs_sent_slps;
174 u64 ibs_sent_wakes;
175 u64 ibs_recv_wacks;
176 u64 ibs_recv_slps;
177 u64 ibs_recv_wakes;
178 u64 vote_last_jif;
179 u32 vote_on_ms;
180 u32 vote_off_ms;
181 u64 tx_votes_on;
182 u64 rx_votes_on;
183 u64 tx_votes_off;
184 u64 rx_votes_off;
185 u64 votes_on;
186 u64 votes_off;
187 };
188
189 enum qca_speed_type {
190 QCA_INIT_SPEED = 1,
191 QCA_OPER_SPEED
192 };
193
194 /*
195 * Voltage regulator information required for configuring the
196 * QCA Bluetooth chipset
197 */
198 struct qca_vreg {
199 const char *name;
200 unsigned int load_uA;
201 };
202
203 struct qca_device_data {
204 enum qca_btsoc_type soc_type;
205 struct qca_vreg *vregs;
206 size_t num_vregs;
207 uint32_t capabilities;
208 };
209
210 /*
211 * Platform data for the QCA Bluetooth power driver.
212 */
213 struct qca_power {
214 struct device *dev;
215 struct regulator_bulk_data *vreg_bulk;
216 int num_vregs;
217 bool vregs_on;
218 struct pwrseq_desc *pwrseq;
219 };
220
221 struct qca_serdev {
222 struct hci_uart serdev_hu;
223 struct gpio_desc *bt_en;
224 struct gpio_desc *sw_ctrl;
225 struct clk *susclk;
226 enum qca_btsoc_type btsoc_type;
227 struct qca_power *bt_power;
228 u32 init_speed;
229 u32 oper_speed;
230 bool bdaddr_property_broken;
231 const char *firmware_name;
232 };
233
234 static int qca_regulator_enable(struct qca_serdev *qcadev);
235 static void qca_regulator_disable(struct qca_serdev *qcadev);
236 static void qca_power_shutdown(struct hci_uart *hu);
237 static int qca_power_off(struct hci_dev *hdev);
238 static void qca_controller_memdump(struct work_struct *work);
239 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb);
240
qca_soc_type(struct hci_uart * hu)241 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
242 {
243 enum qca_btsoc_type soc_type;
244
245 if (hu->serdev) {
246 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
247
248 soc_type = qsd->btsoc_type;
249 } else {
250 soc_type = QCA_ROME;
251 }
252
253 return soc_type;
254 }
255
qca_get_firmware_name(struct hci_uart * hu)256 static const char *qca_get_firmware_name(struct hci_uart *hu)
257 {
258 if (hu->serdev) {
259 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
260
261 return qsd->firmware_name;
262 } else {
263 return NULL;
264 }
265 }
266
__serial_clock_on(struct tty_struct * tty)267 static void __serial_clock_on(struct tty_struct *tty)
268 {
269 /* TODO: Some chipset requires to enable UART clock on client
270 * side to save power consumption or manual work is required.
271 * Please put your code to control UART clock here if needed
272 */
273 }
274
__serial_clock_off(struct tty_struct * tty)275 static void __serial_clock_off(struct tty_struct *tty)
276 {
277 /* TODO: Some chipset requires to disable UART clock on client
278 * side to save power consumption or manual work is required.
279 * Please put your code to control UART clock off here if needed
280 */
281 }
282
283 /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)284 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
285 {
286 struct qca_data *qca = hu->priv;
287 unsigned int diff;
288
289 bool old_vote = (qca->tx_vote | qca->rx_vote);
290 bool new_vote;
291
292 switch (vote) {
293 case HCI_IBS_VOTE_STATS_UPDATE:
294 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
295
296 if (old_vote)
297 qca->vote_off_ms += diff;
298 else
299 qca->vote_on_ms += diff;
300 return;
301
302 case HCI_IBS_TX_VOTE_CLOCK_ON:
303 qca->tx_vote = true;
304 qca->tx_votes_on++;
305 break;
306
307 case HCI_IBS_RX_VOTE_CLOCK_ON:
308 qca->rx_vote = true;
309 qca->rx_votes_on++;
310 break;
311
312 case HCI_IBS_TX_VOTE_CLOCK_OFF:
313 qca->tx_vote = false;
314 qca->tx_votes_off++;
315 break;
316
317 case HCI_IBS_RX_VOTE_CLOCK_OFF:
318 qca->rx_vote = false;
319 qca->rx_votes_off++;
320 break;
321
322 default:
323 BT_ERR("Voting irregularity");
324 return;
325 }
326
327 new_vote = qca->rx_vote | qca->tx_vote;
328
329 if (new_vote != old_vote) {
330 if (new_vote)
331 __serial_clock_on(hu->tty);
332 else
333 __serial_clock_off(hu->tty);
334
335 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
336 vote ? "true" : "false");
337
338 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
339
340 if (new_vote) {
341 qca->votes_on++;
342 qca->vote_off_ms += diff;
343 } else {
344 qca->votes_off++;
345 qca->vote_on_ms += diff;
346 }
347 qca->vote_last_jif = jiffies;
348 }
349 }
350
351 /* Builds and sends an HCI_IBS command packet.
352 * These are very simple packets with only 1 cmd byte.
353 */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)354 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
355 {
356 int err = 0;
357 struct sk_buff *skb = NULL;
358 struct qca_data *qca = hu->priv;
359
360 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
361
362 skb = bt_skb_alloc(1, GFP_ATOMIC);
363 if (!skb) {
364 BT_ERR("Failed to allocate memory for HCI_IBS packet");
365 return -ENOMEM;
366 }
367
368 /* Assign HCI_IBS type */
369 skb_put_u8(skb, cmd);
370
371 skb_queue_tail(&qca->txq, skb);
372
373 return err;
374 }
375
qca_wq_awake_device(struct work_struct * work)376 static void qca_wq_awake_device(struct work_struct *work)
377 {
378 struct qca_data *qca = container_of(work, struct qca_data,
379 ws_awake_device);
380 struct hci_uart *hu = qca->hu;
381 unsigned long retrans_delay;
382 unsigned long flags;
383
384 BT_DBG("hu %p wq awake device", hu);
385
386 /* Vote for serial clock */
387 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
388
389 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
390
391 /* Send wake indication to device */
392 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
393 BT_ERR("Failed to send WAKE to device");
394
395 qca->ibs_sent_wakes++;
396
397 /* Start retransmit timer */
398 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
399 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
400
401 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
402
403 /* Actually send the packets */
404 hci_uart_tx_wakeup(hu);
405 }
406
qca_wq_awake_rx(struct work_struct * work)407 static void qca_wq_awake_rx(struct work_struct *work)
408 {
409 struct qca_data *qca = container_of(work, struct qca_data,
410 ws_awake_rx);
411 struct hci_uart *hu = qca->hu;
412 unsigned long flags;
413
414 BT_DBG("hu %p wq awake rx", hu);
415
416 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
417
418 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
419 qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
420
421 /* Always acknowledge device wake up,
422 * sending IBS message doesn't count as TX ON.
423 */
424 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
425 BT_ERR("Failed to acknowledge device wake up");
426
427 qca->ibs_sent_wacks++;
428
429 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
430
431 /* Actually send the packets */
432 hci_uart_tx_wakeup(hu);
433 }
434
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)435 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
436 {
437 struct qca_data *qca = container_of(work, struct qca_data,
438 ws_rx_vote_off);
439 struct hci_uart *hu = qca->hu;
440
441 BT_DBG("hu %p rx clock vote off", hu);
442
443 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
444 }
445
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)446 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
447 {
448 struct qca_data *qca = container_of(work, struct qca_data,
449 ws_tx_vote_off);
450 struct hci_uart *hu = qca->hu;
451
452 BT_DBG("hu %p tx clock vote off", hu);
453
454 /* Run HCI tx handling unlocked */
455 hci_uart_tx_wakeup(hu);
456
457 /* Now that message queued to tty driver, vote for tty clocks off.
458 * It is up to the tty driver to pend the clocks off until tx done.
459 */
460 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
461 }
462
hci_ibs_tx_idle_timeout(struct timer_list * t)463 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
464 {
465 struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
466 struct hci_uart *hu = qca->hu;
467 unsigned long flags;
468
469 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
470
471 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
472 flags, SINGLE_DEPTH_NESTING);
473
474 switch (qca->tx_ibs_state) {
475 case HCI_IBS_TX_AWAKE:
476 /* TX_IDLE, go to SLEEP */
477 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
478 BT_ERR("Failed to send SLEEP to device");
479 break;
480 }
481 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
482 qca->ibs_sent_slps++;
483 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
484 break;
485
486 case HCI_IBS_TX_ASLEEP:
487 case HCI_IBS_TX_WAKING:
488 default:
489 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
490 break;
491 }
492
493 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
494 }
495
hci_ibs_wake_retrans_timeout(struct timer_list * t)496 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
497 {
498 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
499 struct hci_uart *hu = qca->hu;
500 unsigned long flags, retrans_delay;
501 bool retransmit = false;
502
503 BT_DBG("hu %p wake retransmit timeout in %d state",
504 hu, qca->tx_ibs_state);
505
506 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
507 flags, SINGLE_DEPTH_NESTING);
508
509 /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
510 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
511 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
512 return;
513 }
514
515 switch (qca->tx_ibs_state) {
516 case HCI_IBS_TX_WAKING:
517 /* No WAKE_ACK, retransmit WAKE */
518 retransmit = true;
519 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
520 BT_ERR("Failed to acknowledge device wake up");
521 break;
522 }
523 qca->ibs_sent_wakes++;
524 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
525 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
526 break;
527
528 case HCI_IBS_TX_ASLEEP:
529 case HCI_IBS_TX_AWAKE:
530 default:
531 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
532 break;
533 }
534
535 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
536
537 if (retransmit)
538 hci_uart_tx_wakeup(hu);
539 }
540
541
qca_controller_memdump_timeout(struct work_struct * work)542 static void qca_controller_memdump_timeout(struct work_struct *work)
543 {
544 struct qca_data *qca = container_of(work, struct qca_data,
545 ctrl_memdump_timeout.work);
546 struct hci_uart *hu = qca->hu;
547
548 mutex_lock(&qca->hci_memdump_lock);
549 if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
550 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
551 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
552 /* Inject hw error event to reset the device
553 * and driver.
554 */
555 hci_reset_dev(hu->hdev);
556 }
557 }
558
559 mutex_unlock(&qca->hci_memdump_lock);
560 }
561
562
563 /* Initialize protocol */
qca_open(struct hci_uart * hu)564 static int qca_open(struct hci_uart *hu)
565 {
566 struct qca_serdev *qcadev;
567 struct qca_data *qca;
568
569 BT_DBG("hu %p qca_open", hu);
570
571 if (!hci_uart_has_flow_control(hu))
572 return -EOPNOTSUPP;
573
574 qca = kzalloc(sizeof(*qca), GFP_KERNEL);
575 if (!qca)
576 return -ENOMEM;
577
578 skb_queue_head_init(&qca->txq);
579 skb_queue_head_init(&qca->tx_wait_q);
580 skb_queue_head_init(&qca->rx_memdump_q);
581 spin_lock_init(&qca->hci_ibs_lock);
582 mutex_init(&qca->hci_memdump_lock);
583 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
584 if (!qca->workqueue) {
585 BT_ERR("QCA Workqueue not initialized properly");
586 kfree(qca);
587 return -ENOMEM;
588 }
589
590 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
591 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
592 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
593 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
594 INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
595 INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
596 qca_controller_memdump_timeout);
597 init_waitqueue_head(&qca->suspend_wait_q);
598
599 qca->hu = hu;
600 init_completion(&qca->drop_ev_comp);
601
602 /* Assume we start with both sides asleep -- extra wakes OK */
603 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
604 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
605
606 qca->vote_last_jif = jiffies;
607
608 hu->priv = qca;
609
610 if (hu->serdev) {
611 qcadev = serdev_device_get_drvdata(hu->serdev);
612
613 switch (qcadev->btsoc_type) {
614 case QCA_WCN3988:
615 case QCA_WCN3990:
616 case QCA_WCN3991:
617 case QCA_WCN3998:
618 case QCA_WCN6750:
619 hu->init_speed = qcadev->init_speed;
620 break;
621
622 default:
623 break;
624 }
625
626 if (qcadev->oper_speed)
627 hu->oper_speed = qcadev->oper_speed;
628 }
629
630 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
631 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
632
633 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
634 qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
635
636 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
637 qca->tx_idle_delay, qca->wake_retrans);
638
639 return 0;
640 }
641
qca_debugfs_init(struct hci_dev * hdev)642 static void qca_debugfs_init(struct hci_dev *hdev)
643 {
644 struct hci_uart *hu = hci_get_drvdata(hdev);
645 struct qca_data *qca = hu->priv;
646 struct dentry *ibs_dir;
647 umode_t mode;
648
649 if (!hdev->debugfs)
650 return;
651
652 if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
653 return;
654
655 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
656
657 /* read only */
658 mode = 0444;
659 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
660 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
661 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
662 &qca->ibs_sent_slps);
663 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
664 &qca->ibs_sent_wakes);
665 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
666 &qca->ibs_sent_wacks);
667 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
668 &qca->ibs_recv_slps);
669 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
670 &qca->ibs_recv_wakes);
671 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
672 &qca->ibs_recv_wacks);
673 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
674 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
675 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
676 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
677 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
678 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
679 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
680 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
681 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
682 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
683
684 /* read/write */
685 mode = 0644;
686 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
687 debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
688 &qca->tx_idle_delay);
689 }
690
691 /* Flush protocol data */
qca_flush(struct hci_uart * hu)692 static int qca_flush(struct hci_uart *hu)
693 {
694 struct qca_data *qca = hu->priv;
695
696 BT_DBG("hu %p qca flush", hu);
697
698 skb_queue_purge(&qca->tx_wait_q);
699 skb_queue_purge(&qca->txq);
700
701 return 0;
702 }
703
704 /* Close protocol */
qca_close(struct hci_uart * hu)705 static int qca_close(struct hci_uart *hu)
706 {
707 struct qca_data *qca = hu->priv;
708
709 BT_DBG("hu %p qca close", hu);
710
711 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
712
713 skb_queue_purge(&qca->tx_wait_q);
714 skb_queue_purge(&qca->txq);
715 skb_queue_purge(&qca->rx_memdump_q);
716 /*
717 * Shut the timers down so they can't be rearmed when
718 * destroy_workqueue() drains pending work which in turn might try
719 * to arm a timer. After shutdown rearm attempts are silently
720 * ignored by the timer core code.
721 */
722 timer_shutdown_sync(&qca->tx_idle_timer);
723 timer_shutdown_sync(&qca->wake_retrans_timer);
724 destroy_workqueue(qca->workqueue);
725 qca->hu = NULL;
726
727 kfree_skb(qca->rx_skb);
728
729 hu->priv = NULL;
730
731 kfree(qca);
732
733 return 0;
734 }
735
736 /* Called upon a wake-up-indication from the device.
737 */
device_want_to_wakeup(struct hci_uart * hu)738 static void device_want_to_wakeup(struct hci_uart *hu)
739 {
740 unsigned long flags;
741 struct qca_data *qca = hu->priv;
742
743 BT_DBG("hu %p want to wake up", hu);
744
745 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
746
747 qca->ibs_recv_wakes++;
748
749 /* Don't wake the rx up when suspending. */
750 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
751 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
752 return;
753 }
754
755 switch (qca->rx_ibs_state) {
756 case HCI_IBS_RX_ASLEEP:
757 /* Make sure clock is on - we may have turned clock off since
758 * receiving the wake up indicator awake rx clock.
759 */
760 queue_work(qca->workqueue, &qca->ws_awake_rx);
761 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
762 return;
763
764 case HCI_IBS_RX_AWAKE:
765 /* Always acknowledge device wake up,
766 * sending IBS message doesn't count as TX ON.
767 */
768 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
769 BT_ERR("Failed to acknowledge device wake up");
770 break;
771 }
772 qca->ibs_sent_wacks++;
773 break;
774
775 default:
776 /* Any other state is illegal */
777 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
778 qca->rx_ibs_state);
779 break;
780 }
781
782 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
783
784 /* Actually send the packets */
785 hci_uart_tx_wakeup(hu);
786 }
787
788 /* Called upon a sleep-indication from the device.
789 */
device_want_to_sleep(struct hci_uart * hu)790 static void device_want_to_sleep(struct hci_uart *hu)
791 {
792 unsigned long flags;
793 struct qca_data *qca = hu->priv;
794
795 BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
796
797 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
798
799 qca->ibs_recv_slps++;
800
801 switch (qca->rx_ibs_state) {
802 case HCI_IBS_RX_AWAKE:
803 /* Update state */
804 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
805 /* Vote off rx clock under workqueue */
806 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
807 break;
808
809 case HCI_IBS_RX_ASLEEP:
810 break;
811
812 default:
813 /* Any other state is illegal */
814 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
815 qca->rx_ibs_state);
816 break;
817 }
818
819 wake_up_interruptible(&qca->suspend_wait_q);
820
821 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
822 }
823
824 /* Called upon wake-up-acknowledgement from the device
825 */
device_woke_up(struct hci_uart * hu)826 static void device_woke_up(struct hci_uart *hu)
827 {
828 unsigned long flags, idle_delay;
829 struct qca_data *qca = hu->priv;
830 struct sk_buff *skb = NULL;
831
832 BT_DBG("hu %p woke up", hu);
833
834 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
835
836 qca->ibs_recv_wacks++;
837
838 /* Don't react to the wake-up-acknowledgment when suspending. */
839 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
840 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
841 return;
842 }
843
844 switch (qca->tx_ibs_state) {
845 case HCI_IBS_TX_AWAKE:
846 /* Expect one if we send 2 WAKEs */
847 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
848 qca->tx_ibs_state);
849 break;
850
851 case HCI_IBS_TX_WAKING:
852 /* Send pending packets */
853 while ((skb = skb_dequeue(&qca->tx_wait_q)))
854 skb_queue_tail(&qca->txq, skb);
855
856 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
857 del_timer(&qca->wake_retrans_timer);
858 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
859 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
860 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
861 break;
862
863 case HCI_IBS_TX_ASLEEP:
864 default:
865 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
866 qca->tx_ibs_state);
867 break;
868 }
869
870 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
871
872 /* Actually send the packets */
873 hci_uart_tx_wakeup(hu);
874 }
875
876 /* Enqueue frame for transmission (padding, crc, etc) may be called from
877 * two simultaneous tasklets.
878 */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)879 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
880 {
881 unsigned long flags = 0, idle_delay;
882 struct qca_data *qca = hu->priv;
883
884 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
885 qca->tx_ibs_state);
886
887 if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
888 /* As SSR is in progress, ignore the packets */
889 bt_dev_dbg(hu->hdev, "SSR is in progress");
890 kfree_skb(skb);
891 return 0;
892 }
893
894 /* Prepend skb with frame type */
895 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
896
897 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
898
899 /* Don't go to sleep in middle of patch download or
900 * Out-Of-Band(GPIOs control) sleep is selected.
901 * Don't wake the device up when suspending.
902 */
903 if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
904 test_bit(QCA_SUSPENDING, &qca->flags)) {
905 skb_queue_tail(&qca->txq, skb);
906 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
907 return 0;
908 }
909
910 /* Act according to current state */
911 switch (qca->tx_ibs_state) {
912 case HCI_IBS_TX_AWAKE:
913 BT_DBG("Device awake, sending normally");
914 skb_queue_tail(&qca->txq, skb);
915 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
916 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
917 break;
918
919 case HCI_IBS_TX_ASLEEP:
920 BT_DBG("Device asleep, waking up and queueing packet");
921 /* Save packet for later */
922 skb_queue_tail(&qca->tx_wait_q, skb);
923
924 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
925 /* Schedule a work queue to wake up device */
926 queue_work(qca->workqueue, &qca->ws_awake_device);
927 break;
928
929 case HCI_IBS_TX_WAKING:
930 BT_DBG("Device waking up, queueing packet");
931 /* Transient state; just keep packet for later */
932 skb_queue_tail(&qca->tx_wait_q, skb);
933 break;
934
935 default:
936 BT_ERR("Illegal tx state: %d (losing packet)",
937 qca->tx_ibs_state);
938 dev_kfree_skb_irq(skb);
939 break;
940 }
941
942 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
943
944 return 0;
945 }
946
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)947 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
948 {
949 struct hci_uart *hu = hci_get_drvdata(hdev);
950
951 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
952
953 device_want_to_sleep(hu);
954
955 kfree_skb(skb);
956 return 0;
957 }
958
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)959 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
960 {
961 struct hci_uart *hu = hci_get_drvdata(hdev);
962
963 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
964
965 device_want_to_wakeup(hu);
966
967 kfree_skb(skb);
968 return 0;
969 }
970
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)971 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
972 {
973 struct hci_uart *hu = hci_get_drvdata(hdev);
974
975 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
976
977 device_woke_up(hu);
978
979 kfree_skb(skb);
980 return 0;
981 }
982
qca_recv_acl_data(struct hci_dev * hdev,struct sk_buff * skb)983 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
984 {
985 /* We receive debug logs from chip as an ACL packets.
986 * Instead of sending the data to ACL to decode the
987 * received data, we are pushing them to the above layers
988 * as a diagnostic packet.
989 */
990 if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
991 return hci_recv_diag(hdev, skb);
992
993 return hci_recv_frame(hdev, skb);
994 }
995
qca_dmp_hdr(struct hci_dev * hdev,struct sk_buff * skb)996 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
997 {
998 struct hci_uart *hu = hci_get_drvdata(hdev);
999 struct qca_data *qca = hu->priv;
1000 char buf[80];
1001
1002 snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n",
1003 qca->controller_id);
1004 skb_put_data(skb, buf, strlen(buf));
1005
1006 snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n",
1007 qca->fw_version);
1008 skb_put_data(skb, buf, strlen(buf));
1009
1010 snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n");
1011 skb_put_data(skb, buf, strlen(buf));
1012
1013 snprintf(buf, sizeof(buf), "Driver: %s\n",
1014 hu->serdev->dev.driver->name);
1015 skb_put_data(skb, buf, strlen(buf));
1016 }
1017
qca_controller_memdump(struct work_struct * work)1018 static void qca_controller_memdump(struct work_struct *work)
1019 {
1020 struct qca_data *qca = container_of(work, struct qca_data,
1021 ctrl_memdump_evt);
1022 struct hci_uart *hu = qca->hu;
1023 struct sk_buff *skb;
1024 struct qca_memdump_event_hdr *cmd_hdr;
1025 struct qca_memdump_info *qca_memdump = qca->qca_memdump;
1026 struct qca_dump_size *dump;
1027 u16 seq_no;
1028 u32 rx_size;
1029 int ret = 0;
1030 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1031
1032 while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1033
1034 mutex_lock(&qca->hci_memdump_lock);
1035 /* Skip processing the received packets if timeout detected
1036 * or memdump collection completed.
1037 */
1038 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1039 qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1040 mutex_unlock(&qca->hci_memdump_lock);
1041 return;
1042 }
1043
1044 if (!qca_memdump) {
1045 qca_memdump = kzalloc(sizeof(*qca_memdump), GFP_ATOMIC);
1046 if (!qca_memdump) {
1047 mutex_unlock(&qca->hci_memdump_lock);
1048 return;
1049 }
1050
1051 qca->qca_memdump = qca_memdump;
1052 }
1053
1054 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1055 cmd_hdr = (void *) skb->data;
1056 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1057 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1058
1059 if (!seq_no) {
1060
1061 /* This is the first frame of memdump packet from
1062 * the controller, Disable IBS to receive dump
1063 * with out any interruption, ideally time required for
1064 * the controller to send the dump is 8 seconds. let us
1065 * start timer to handle this asynchronous activity.
1066 */
1067 set_bit(QCA_IBS_DISABLED, &qca->flags);
1068 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1069 dump = (void *) skb->data;
1070 qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size);
1071 if (!(qca_memdump->ram_dump_size)) {
1072 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1073 kfree(qca_memdump);
1074 kfree_skb(skb);
1075 mutex_unlock(&qca->hci_memdump_lock);
1076 return;
1077 }
1078
1079 queue_delayed_work(qca->workqueue,
1080 &qca->ctrl_memdump_timeout,
1081 msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1082 skb_pull(skb, sizeof(qca_memdump->ram_dump_size));
1083 qca_memdump->current_seq_no = 0;
1084 qca_memdump->received_dump = 0;
1085 ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size);
1086 bt_dev_info(hu->hdev, "hci_devcd_init Return:%d",
1087 ret);
1088 if (ret < 0) {
1089 kfree(qca->qca_memdump);
1090 qca->qca_memdump = NULL;
1091 qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1092 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1093 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1094 clear_bit(QCA_IBS_DISABLED, &qca->flags);
1095 mutex_unlock(&qca->hci_memdump_lock);
1096 return;
1097 }
1098
1099 bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1100 qca_memdump->ram_dump_size);
1101
1102 }
1103
1104 /* If sequence no 0 is missed then there is no point in
1105 * accepting the other sequences.
1106 */
1107 if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
1108 bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1109 kfree(qca_memdump);
1110 kfree_skb(skb);
1111 mutex_unlock(&qca->hci_memdump_lock);
1112 return;
1113 }
1114 /* There could be chance of missing some packets from
1115 * the controller. In such cases let us store the dummy
1116 * packets in the buffer.
1117 */
1118 /* For QCA6390, controller does not lost packets but
1119 * sequence number field of packet sometimes has error
1120 * bits, so skip this checking for missing packet.
1121 */
1122 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1123 (soc_type != QCA_QCA6390) &&
1124 seq_no != QCA_LAST_SEQUENCE_NUM) {
1125 bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1126 qca_memdump->current_seq_no);
1127 rx_size = qca_memdump->received_dump;
1128 rx_size += QCA_DUMP_PACKET_SIZE;
1129 if (rx_size > qca_memdump->ram_dump_size) {
1130 bt_dev_err(hu->hdev,
1131 "QCA memdump received %d, no space for missed packet",
1132 qca_memdump->received_dump);
1133 break;
1134 }
1135 hci_devcd_append_pattern(hu->hdev, 0x00,
1136 QCA_DUMP_PACKET_SIZE);
1137 qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1138 qca_memdump->current_seq_no++;
1139 }
1140
1141 rx_size = qca_memdump->received_dump + skb->len;
1142 if (rx_size <= qca_memdump->ram_dump_size) {
1143 if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1144 (seq_no != qca_memdump->current_seq_no)) {
1145 bt_dev_err(hu->hdev,
1146 "QCA memdump unexpected packet %d",
1147 seq_no);
1148 }
1149 bt_dev_dbg(hu->hdev,
1150 "QCA memdump packet %d with length %d",
1151 seq_no, skb->len);
1152 hci_devcd_append(hu->hdev, skb);
1153 qca_memdump->current_seq_no += 1;
1154 qca_memdump->received_dump = rx_size;
1155 } else {
1156 bt_dev_err(hu->hdev,
1157 "QCA memdump received no space for packet %d",
1158 qca_memdump->current_seq_no);
1159 }
1160
1161 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1162 bt_dev_info(hu->hdev,
1163 "QCA memdump Done, received %d, total %d",
1164 qca_memdump->received_dump,
1165 qca_memdump->ram_dump_size);
1166 hci_devcd_complete(hu->hdev);
1167 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1168 kfree(qca->qca_memdump);
1169 qca->qca_memdump = NULL;
1170 qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1171 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1172 }
1173
1174 mutex_unlock(&qca->hci_memdump_lock);
1175 }
1176
1177 }
1178
qca_controller_memdump_event(struct hci_dev * hdev,struct sk_buff * skb)1179 static int qca_controller_memdump_event(struct hci_dev *hdev,
1180 struct sk_buff *skb)
1181 {
1182 struct hci_uart *hu = hci_get_drvdata(hdev);
1183 struct qca_data *qca = hu->priv;
1184
1185 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1186 skb_queue_tail(&qca->rx_memdump_q, skb);
1187 queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1188
1189 return 0;
1190 }
1191
qca_recv_event(struct hci_dev * hdev,struct sk_buff * skb)1192 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1193 {
1194 struct hci_uart *hu = hci_get_drvdata(hdev);
1195 struct qca_data *qca = hu->priv;
1196
1197 if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1198 struct hci_event_hdr *hdr = (void *)skb->data;
1199
1200 /* For the WCN3990 the vendor command for a baudrate change
1201 * isn't sent as synchronous HCI command, because the
1202 * controller sends the corresponding vendor event with the
1203 * new baudrate. The event is received and properly decoded
1204 * after changing the baudrate of the host port. It needs to
1205 * be dropped, otherwise it can be misinterpreted as
1206 * response to a later firmware download command (also a
1207 * vendor command).
1208 */
1209
1210 if (hdr->evt == HCI_EV_VENDOR)
1211 complete(&qca->drop_ev_comp);
1212
1213 kfree_skb(skb);
1214
1215 return 0;
1216 }
1217 /* We receive chip memory dump as an event packet, With a dedicated
1218 * handler followed by a hardware error event. When this event is
1219 * received we store dump into a file before closing hci. This
1220 * dump will help in triaging the issues.
1221 */
1222 if ((skb->data[0] == HCI_VENDOR_PKT) &&
1223 (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1224 return qca_controller_memdump_event(hdev, skb);
1225
1226 return hci_recv_frame(hdev, skb);
1227 }
1228
1229 #define QCA_IBS_SLEEP_IND_EVENT \
1230 .type = HCI_IBS_SLEEP_IND, \
1231 .hlen = 0, \
1232 .loff = 0, \
1233 .lsize = 0, \
1234 .maxlen = HCI_MAX_IBS_SIZE
1235
1236 #define QCA_IBS_WAKE_IND_EVENT \
1237 .type = HCI_IBS_WAKE_IND, \
1238 .hlen = 0, \
1239 .loff = 0, \
1240 .lsize = 0, \
1241 .maxlen = HCI_MAX_IBS_SIZE
1242
1243 #define QCA_IBS_WAKE_ACK_EVENT \
1244 .type = HCI_IBS_WAKE_ACK, \
1245 .hlen = 0, \
1246 .loff = 0, \
1247 .lsize = 0, \
1248 .maxlen = HCI_MAX_IBS_SIZE
1249
1250 static const struct h4_recv_pkt qca_recv_pkts[] = {
1251 { H4_RECV_ACL, .recv = qca_recv_acl_data },
1252 { H4_RECV_SCO, .recv = hci_recv_frame },
1253 { H4_RECV_EVENT, .recv = qca_recv_event },
1254 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind },
1255 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack },
1256 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1257 };
1258
qca_recv(struct hci_uart * hu,const void * data,int count)1259 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1260 {
1261 struct qca_data *qca = hu->priv;
1262
1263 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1264 return -EUNATCH;
1265
1266 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1267 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1268 if (IS_ERR(qca->rx_skb)) {
1269 int err = PTR_ERR(qca->rx_skb);
1270 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1271 qca->rx_skb = NULL;
1272 return err;
1273 }
1274
1275 return count;
1276 }
1277
qca_dequeue(struct hci_uart * hu)1278 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1279 {
1280 struct qca_data *qca = hu->priv;
1281
1282 return skb_dequeue(&qca->txq);
1283 }
1284
qca_get_baudrate_value(int speed)1285 static uint8_t qca_get_baudrate_value(int speed)
1286 {
1287 switch (speed) {
1288 case 9600:
1289 return QCA_BAUDRATE_9600;
1290 case 19200:
1291 return QCA_BAUDRATE_19200;
1292 case 38400:
1293 return QCA_BAUDRATE_38400;
1294 case 57600:
1295 return QCA_BAUDRATE_57600;
1296 case 115200:
1297 return QCA_BAUDRATE_115200;
1298 case 230400:
1299 return QCA_BAUDRATE_230400;
1300 case 460800:
1301 return QCA_BAUDRATE_460800;
1302 case 500000:
1303 return QCA_BAUDRATE_500000;
1304 case 921600:
1305 return QCA_BAUDRATE_921600;
1306 case 1000000:
1307 return QCA_BAUDRATE_1000000;
1308 case 2000000:
1309 return QCA_BAUDRATE_2000000;
1310 case 3000000:
1311 return QCA_BAUDRATE_3000000;
1312 case 3200000:
1313 return QCA_BAUDRATE_3200000;
1314 case 3500000:
1315 return QCA_BAUDRATE_3500000;
1316 default:
1317 return QCA_BAUDRATE_115200;
1318 }
1319 }
1320
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)1321 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1322 {
1323 struct hci_uart *hu = hci_get_drvdata(hdev);
1324 struct qca_data *qca = hu->priv;
1325 struct sk_buff *skb;
1326 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1327
1328 if (baudrate > QCA_BAUDRATE_3200000)
1329 return -EINVAL;
1330
1331 cmd[4] = baudrate;
1332
1333 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1334 if (!skb) {
1335 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1336 return -ENOMEM;
1337 }
1338
1339 /* Assign commands to change baudrate and packet type. */
1340 skb_put_data(skb, cmd, sizeof(cmd));
1341 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1342
1343 skb_queue_tail(&qca->txq, skb);
1344 hci_uart_tx_wakeup(hu);
1345
1346 /* Wait for the baudrate change request to be sent */
1347
1348 while (!skb_queue_empty(&qca->txq))
1349 usleep_range(100, 200);
1350
1351 if (hu->serdev)
1352 serdev_device_wait_until_sent(hu->serdev,
1353 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1354
1355 /* Give the controller time to process the request */
1356 switch (qca_soc_type(hu)) {
1357 case QCA_WCN3988:
1358 case QCA_WCN3990:
1359 case QCA_WCN3991:
1360 case QCA_WCN3998:
1361 case QCA_WCN6750:
1362 case QCA_WCN6855:
1363 case QCA_WCN7850:
1364 usleep_range(1000, 10000);
1365 break;
1366
1367 default:
1368 msleep(300);
1369 }
1370
1371 return 0;
1372 }
1373
host_set_baudrate(struct hci_uart * hu,unsigned int speed)1374 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1375 {
1376 if (hu->serdev)
1377 serdev_device_set_baudrate(hu->serdev, speed);
1378 else
1379 hci_uart_set_baudrate(hu, speed);
1380 }
1381
qca_send_power_pulse(struct hci_uart * hu,bool on)1382 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1383 {
1384 int ret;
1385 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1386 u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1387
1388 /* These power pulses are single byte command which are sent
1389 * at required baudrate to wcn3990. On wcn3990, we have an external
1390 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1391 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1392 * and also we use the same power inputs to turn on and off for
1393 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1394 * we send a power on pulse at 115200 bps. This algorithm will help to
1395 * save power. Disabling hardware flow control is mandatory while
1396 * sending power pulses to SoC.
1397 */
1398 bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1399
1400 serdev_device_write_flush(hu->serdev);
1401 hci_uart_set_flow_control(hu, true);
1402 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1403 if (ret < 0) {
1404 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1405 return ret;
1406 }
1407
1408 serdev_device_wait_until_sent(hu->serdev, timeout);
1409 hci_uart_set_flow_control(hu, false);
1410
1411 /* Give to controller time to boot/shutdown */
1412 if (on)
1413 msleep(100);
1414 else
1415 usleep_range(1000, 10000);
1416
1417 return 0;
1418 }
1419
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1420 static unsigned int qca_get_speed(struct hci_uart *hu,
1421 enum qca_speed_type speed_type)
1422 {
1423 unsigned int speed = 0;
1424
1425 if (speed_type == QCA_INIT_SPEED) {
1426 if (hu->init_speed)
1427 speed = hu->init_speed;
1428 else if (hu->proto->init_speed)
1429 speed = hu->proto->init_speed;
1430 } else {
1431 if (hu->oper_speed)
1432 speed = hu->oper_speed;
1433 else if (hu->proto->oper_speed)
1434 speed = hu->proto->oper_speed;
1435 }
1436
1437 return speed;
1438 }
1439
qca_check_speeds(struct hci_uart * hu)1440 static int qca_check_speeds(struct hci_uart *hu)
1441 {
1442 switch (qca_soc_type(hu)) {
1443 case QCA_WCN3988:
1444 case QCA_WCN3990:
1445 case QCA_WCN3991:
1446 case QCA_WCN3998:
1447 case QCA_WCN6750:
1448 case QCA_WCN6855:
1449 case QCA_WCN7850:
1450 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1451 !qca_get_speed(hu, QCA_OPER_SPEED))
1452 return -EINVAL;
1453 break;
1454
1455 default:
1456 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1457 !qca_get_speed(hu, QCA_OPER_SPEED))
1458 return -EINVAL;
1459 }
1460
1461 return 0;
1462 }
1463
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1464 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1465 {
1466 unsigned int speed, qca_baudrate;
1467 struct qca_data *qca = hu->priv;
1468 int ret = 0;
1469
1470 if (speed_type == QCA_INIT_SPEED) {
1471 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1472 if (speed)
1473 host_set_baudrate(hu, speed);
1474 } else {
1475 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1476
1477 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1478 if (!speed)
1479 return 0;
1480
1481 /* Disable flow control for wcn3990 to deassert RTS while
1482 * changing the baudrate of chip and host.
1483 */
1484 switch (soc_type) {
1485 case QCA_WCN3988:
1486 case QCA_WCN3990:
1487 case QCA_WCN3991:
1488 case QCA_WCN3998:
1489 case QCA_WCN6750:
1490 case QCA_WCN6855:
1491 case QCA_WCN7850:
1492 hci_uart_set_flow_control(hu, true);
1493 break;
1494
1495 default:
1496 break;
1497 }
1498
1499 switch (soc_type) {
1500 case QCA_WCN3990:
1501 reinit_completion(&qca->drop_ev_comp);
1502 set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1503 break;
1504
1505 default:
1506 break;
1507 }
1508
1509 qca_baudrate = qca_get_baudrate_value(speed);
1510 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1511 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1512 if (ret)
1513 goto error;
1514
1515 host_set_baudrate(hu, speed);
1516
1517 error:
1518 switch (soc_type) {
1519 case QCA_WCN3988:
1520 case QCA_WCN3990:
1521 case QCA_WCN3991:
1522 case QCA_WCN3998:
1523 case QCA_WCN6750:
1524 case QCA_WCN6855:
1525 case QCA_WCN7850:
1526 hci_uart_set_flow_control(hu, false);
1527 break;
1528
1529 default:
1530 break;
1531 }
1532
1533 switch (soc_type) {
1534 case QCA_WCN3990:
1535 /* Wait for the controller to send the vendor event
1536 * for the baudrate change command.
1537 */
1538 if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1539 msecs_to_jiffies(100))) {
1540 bt_dev_err(hu->hdev,
1541 "Failed to change controller baudrate\n");
1542 ret = -ETIMEDOUT;
1543 }
1544
1545 clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1546 break;
1547
1548 default:
1549 break;
1550 }
1551 }
1552
1553 return ret;
1554 }
1555
qca_send_crashbuffer(struct hci_uart * hu)1556 static int qca_send_crashbuffer(struct hci_uart *hu)
1557 {
1558 struct qca_data *qca = hu->priv;
1559 struct sk_buff *skb;
1560
1561 skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1562 if (!skb) {
1563 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1564 return -ENOMEM;
1565 }
1566
1567 /* We forcefully crash the controller, by sending 0xfb byte for
1568 * 1024 times. We also might have chance of losing data, To be
1569 * on safer side we send 1096 bytes to the SoC.
1570 */
1571 memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1572 QCA_CRASHBYTE_PACKET_LEN);
1573 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1574 bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1575 skb_queue_tail(&qca->txq, skb);
1576 hci_uart_tx_wakeup(hu);
1577
1578 return 0;
1579 }
1580
qca_wait_for_dump_collection(struct hci_dev * hdev)1581 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1582 {
1583 struct hci_uart *hu = hci_get_drvdata(hdev);
1584 struct qca_data *qca = hu->priv;
1585
1586 wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1587 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1588
1589 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1590 }
1591
qca_hw_error(struct hci_dev * hdev,u8 code)1592 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1593 {
1594 struct hci_uart *hu = hci_get_drvdata(hdev);
1595 struct qca_data *qca = hu->priv;
1596
1597 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1598 set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1599 bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1600
1601 if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1602 /* If hardware error event received for other than QCA
1603 * soc memory dump event, then we need to crash the SOC
1604 * and wait here for 8 seconds to get the dump packets.
1605 * This will block main thread to be on hold until we
1606 * collect dump.
1607 */
1608 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1609 qca_send_crashbuffer(hu);
1610 qca_wait_for_dump_collection(hdev);
1611 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1612 /* Let us wait here until memory dump collected or
1613 * memory dump timer expired.
1614 */
1615 bt_dev_info(hdev, "waiting for dump to complete");
1616 qca_wait_for_dump_collection(hdev);
1617 }
1618
1619 mutex_lock(&qca->hci_memdump_lock);
1620 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1621 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1622 hci_devcd_abort(hu->hdev);
1623 if (qca->qca_memdump) {
1624 kfree(qca->qca_memdump);
1625 qca->qca_memdump = NULL;
1626 }
1627 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1628 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1629 }
1630 mutex_unlock(&qca->hci_memdump_lock);
1631
1632 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1633 qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1634 cancel_work_sync(&qca->ctrl_memdump_evt);
1635 skb_queue_purge(&qca->rx_memdump_q);
1636 }
1637
1638 clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1639 }
1640
qca_cmd_timeout(struct hci_dev * hdev)1641 static void qca_cmd_timeout(struct hci_dev *hdev)
1642 {
1643 struct hci_uart *hu = hci_get_drvdata(hdev);
1644 struct qca_data *qca = hu->priv;
1645
1646 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1647 if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1648 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1649 qca_send_crashbuffer(hu);
1650 qca_wait_for_dump_collection(hdev);
1651 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1652 /* Let us wait here until memory dump collected or
1653 * memory dump timer expired.
1654 */
1655 bt_dev_info(hdev, "waiting for dump to complete");
1656 qca_wait_for_dump_collection(hdev);
1657 }
1658
1659 mutex_lock(&qca->hci_memdump_lock);
1660 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1661 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1662 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1663 /* Inject hw error event to reset the device
1664 * and driver.
1665 */
1666 hci_reset_dev(hu->hdev);
1667 }
1668 }
1669 mutex_unlock(&qca->hci_memdump_lock);
1670 }
1671
qca_wakeup(struct hci_dev * hdev)1672 static bool qca_wakeup(struct hci_dev *hdev)
1673 {
1674 struct hci_uart *hu = hci_get_drvdata(hdev);
1675 bool wakeup;
1676
1677 if (!hu->serdev)
1678 return true;
1679
1680 /* BT SoC attached through the serial bus is handled by the serdev driver.
1681 * So we need to use the device handle of the serdev driver to get the
1682 * status of device may wakeup.
1683 */
1684 wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1685 bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1686
1687 return wakeup;
1688 }
1689
qca_port_reopen(struct hci_uart * hu)1690 static int qca_port_reopen(struct hci_uart *hu)
1691 {
1692 int ret;
1693
1694 /* Now the device is in ready state to communicate with host.
1695 * To sync host with device we need to reopen port.
1696 * Without this, we will have RTS and CTS synchronization
1697 * issues.
1698 */
1699 serdev_device_close(hu->serdev);
1700 ret = serdev_device_open(hu->serdev);
1701 if (ret) {
1702 bt_dev_err(hu->hdev, "failed to open port");
1703 return ret;
1704 }
1705
1706 hci_uart_set_flow_control(hu, false);
1707
1708 return 0;
1709 }
1710
qca_regulator_init(struct hci_uart * hu)1711 static int qca_regulator_init(struct hci_uart *hu)
1712 {
1713 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1714 struct qca_serdev *qcadev;
1715 int ret;
1716 bool sw_ctrl_state;
1717
1718 /* Check for vregs status, may be hci down has turned
1719 * off the voltage regulator.
1720 */
1721 qcadev = serdev_device_get_drvdata(hu->serdev);
1722
1723 if (!qcadev->bt_power->vregs_on) {
1724 serdev_device_close(hu->serdev);
1725 ret = qca_regulator_enable(qcadev);
1726 if (ret)
1727 return ret;
1728
1729 ret = serdev_device_open(hu->serdev);
1730 if (ret) {
1731 bt_dev_err(hu->hdev, "failed to open port");
1732 return ret;
1733 }
1734 }
1735
1736 switch (soc_type) {
1737 case QCA_WCN3988:
1738 case QCA_WCN3990:
1739 case QCA_WCN3991:
1740 case QCA_WCN3998:
1741 /* Forcefully enable wcn399x to enter in to boot mode. */
1742 host_set_baudrate(hu, 2400);
1743 ret = qca_send_power_pulse(hu, false);
1744 if (ret)
1745 return ret;
1746 break;
1747
1748 default:
1749 break;
1750 }
1751
1752 /* For wcn6750 need to enable gpio bt_en */
1753 if (qcadev->bt_en) {
1754 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1755 msleep(50);
1756 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1757 msleep(50);
1758 if (qcadev->sw_ctrl) {
1759 sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1760 bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1761 }
1762 }
1763
1764 qca_set_speed(hu, QCA_INIT_SPEED);
1765
1766 switch (soc_type) {
1767 case QCA_WCN3988:
1768 case QCA_WCN3990:
1769 case QCA_WCN3991:
1770 case QCA_WCN3998:
1771 ret = qca_send_power_pulse(hu, true);
1772 if (ret)
1773 return ret;
1774 break;
1775
1776 default:
1777 break;
1778 }
1779
1780 return qca_port_reopen(hu);
1781 }
1782
qca_power_on(struct hci_dev * hdev)1783 static int qca_power_on(struct hci_dev *hdev)
1784 {
1785 struct hci_uart *hu = hci_get_drvdata(hdev);
1786 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1787 struct qca_serdev *qcadev;
1788 struct qca_data *qca = hu->priv;
1789 int ret = 0;
1790
1791 /* Non-serdev device usually is powered by external power
1792 * and don't need additional action in driver for power on
1793 */
1794 if (!hu->serdev)
1795 return 0;
1796
1797 switch (soc_type) {
1798 case QCA_WCN3988:
1799 case QCA_WCN3990:
1800 case QCA_WCN3991:
1801 case QCA_WCN3998:
1802 case QCA_WCN6750:
1803 case QCA_WCN6855:
1804 case QCA_WCN7850:
1805 case QCA_QCA6390:
1806 ret = qca_regulator_init(hu);
1807 break;
1808
1809 default:
1810 qcadev = serdev_device_get_drvdata(hu->serdev);
1811 if (qcadev->bt_en) {
1812 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1813 /* Controller needs time to bootup. */
1814 msleep(150);
1815 }
1816 }
1817
1818 clear_bit(QCA_BT_OFF, &qca->flags);
1819 return ret;
1820 }
1821
hci_coredump_qca(struct hci_dev * hdev)1822 static void hci_coredump_qca(struct hci_dev *hdev)
1823 {
1824 int err;
1825 static const u8 param[] = { 0x26 };
1826
1827 err = __hci_cmd_send(hdev, 0xfc0c, 1, param);
1828 if (err < 0)
1829 bt_dev_err(hdev, "%s: trigger crash failed (%d)", __func__, err);
1830 }
1831
qca_get_data_path_id(struct hci_dev * hdev,__u8 * data_path_id)1832 static int qca_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
1833 {
1834 /* QCA uses 1 as non-HCI data path id for HFP */
1835 *data_path_id = 1;
1836 return 0;
1837 }
1838
qca_configure_hfp_offload(struct hci_dev * hdev)1839 static int qca_configure_hfp_offload(struct hci_dev *hdev)
1840 {
1841 bt_dev_info(hdev, "HFP non-HCI data transport is supported");
1842 hdev->get_data_path_id = qca_get_data_path_id;
1843 /* Do not need to send HCI_Configure_Data_Path to configure non-HCI
1844 * data transport path for QCA controllers, so set below field as NULL.
1845 */
1846 hdev->get_codec_config_data = NULL;
1847 return 0;
1848 }
1849
qca_setup(struct hci_uart * hu)1850 static int qca_setup(struct hci_uart *hu)
1851 {
1852 struct hci_dev *hdev = hu->hdev;
1853 struct qca_data *qca = hu->priv;
1854 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1855 unsigned int retries = 0;
1856 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1857 const char *firmware_name = qca_get_firmware_name(hu);
1858 int ret;
1859 struct qca_btsoc_version ver;
1860 struct qca_serdev *qcadev;
1861 const char *soc_name;
1862
1863 ret = qca_check_speeds(hu);
1864 if (ret)
1865 return ret;
1866
1867 clear_bit(QCA_ROM_FW, &qca->flags);
1868 /* Patch downloading has to be done without IBS mode */
1869 set_bit(QCA_IBS_DISABLED, &qca->flags);
1870
1871 /* Enable controller to do both LE scan and BR/EDR inquiry
1872 * simultaneously.
1873 */
1874 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1875
1876 switch (soc_type) {
1877 case QCA_QCA2066:
1878 soc_name = "qca2066";
1879 break;
1880
1881 case QCA_WCN3988:
1882 case QCA_WCN3990:
1883 case QCA_WCN3991:
1884 case QCA_WCN3998:
1885 soc_name = "wcn399x";
1886 break;
1887
1888 case QCA_WCN6750:
1889 soc_name = "wcn6750";
1890 break;
1891
1892 case QCA_WCN6855:
1893 soc_name = "wcn6855";
1894 break;
1895
1896 case QCA_WCN7850:
1897 soc_name = "wcn7850";
1898 break;
1899
1900 default:
1901 soc_name = "ROME/QCA6390";
1902 }
1903 bt_dev_info(hdev, "setting up %s", soc_name);
1904
1905 qca->memdump_state = QCA_MEMDUMP_IDLE;
1906
1907 retry:
1908 ret = qca_power_on(hdev);
1909 if (ret)
1910 goto out;
1911
1912 clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1913
1914 switch (soc_type) {
1915 case QCA_WCN3988:
1916 case QCA_WCN3990:
1917 case QCA_WCN3991:
1918 case QCA_WCN3998:
1919 case QCA_WCN6750:
1920 case QCA_WCN6855:
1921 case QCA_WCN7850:
1922 qcadev = serdev_device_get_drvdata(hu->serdev);
1923 if (qcadev->bdaddr_property_broken)
1924 set_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks);
1925
1926 hci_set_aosp_capable(hdev);
1927
1928 ret = qca_read_soc_version(hdev, &ver, soc_type);
1929 if (ret)
1930 goto out;
1931 break;
1932
1933 default:
1934 qca_set_speed(hu, QCA_INIT_SPEED);
1935 }
1936
1937 /* Setup user speed if needed */
1938 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1939 if (speed) {
1940 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1941 if (ret)
1942 goto out;
1943
1944 qca_baudrate = qca_get_baudrate_value(speed);
1945 }
1946
1947 switch (soc_type) {
1948 case QCA_WCN3988:
1949 case QCA_WCN3990:
1950 case QCA_WCN3991:
1951 case QCA_WCN3998:
1952 case QCA_WCN6750:
1953 case QCA_WCN6855:
1954 case QCA_WCN7850:
1955 break;
1956
1957 default:
1958 /* Get QCA version information */
1959 ret = qca_read_soc_version(hdev, &ver, soc_type);
1960 if (ret)
1961 goto out;
1962 }
1963
1964 /* Setup patch / NVM configurations */
1965 ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1966 firmware_name);
1967 if (!ret) {
1968 clear_bit(QCA_IBS_DISABLED, &qca->flags);
1969 qca_debugfs_init(hdev);
1970 hu->hdev->hw_error = qca_hw_error;
1971 hu->hdev->cmd_timeout = qca_cmd_timeout;
1972 if (hu->serdev) {
1973 if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1974 hu->hdev->wakeup = qca_wakeup;
1975 }
1976 } else if (ret == -ENOENT) {
1977 /* No patch/nvm-config found, run with original fw/config */
1978 set_bit(QCA_ROM_FW, &qca->flags);
1979 ret = 0;
1980 } else if (ret == -EAGAIN) {
1981 /*
1982 * Userspace firmware loader will return -EAGAIN in case no
1983 * patch/nvm-config is found, so run with original fw/config.
1984 */
1985 set_bit(QCA_ROM_FW, &qca->flags);
1986 ret = 0;
1987 }
1988
1989 out:
1990 if (ret && retries < MAX_INIT_RETRIES) {
1991 bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1992 qca_power_shutdown(hu);
1993 if (hu->serdev) {
1994 serdev_device_close(hu->serdev);
1995 ret = serdev_device_open(hu->serdev);
1996 if (ret) {
1997 bt_dev_err(hdev, "failed to open port");
1998 return ret;
1999 }
2000 }
2001 retries++;
2002 goto retry;
2003 }
2004
2005 /* Setup bdaddr */
2006 if (soc_type == QCA_ROME)
2007 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
2008 else
2009 hu->hdev->set_bdaddr = qca_set_bdaddr;
2010
2011 if (soc_type == QCA_QCA2066)
2012 qca_configure_hfp_offload(hdev);
2013
2014 qca->fw_version = le16_to_cpu(ver.patch_ver);
2015 qca->controller_id = le16_to_cpu(ver.rom_ver);
2016 hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL);
2017
2018 return ret;
2019 }
2020
2021 static const struct hci_uart_proto qca_proto = {
2022 .id = HCI_UART_QCA,
2023 .name = "QCA",
2024 .manufacturer = 29,
2025 .init_speed = 115200,
2026 .oper_speed = 3000000,
2027 .open = qca_open,
2028 .close = qca_close,
2029 .flush = qca_flush,
2030 .setup = qca_setup,
2031 .recv = qca_recv,
2032 .enqueue = qca_enqueue,
2033 .dequeue = qca_dequeue,
2034 };
2035
2036 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = {
2037 .soc_type = QCA_WCN3988,
2038 .vregs = (struct qca_vreg []) {
2039 { "vddio", 15000 },
2040 { "vddxo", 80000 },
2041 { "vddrf", 300000 },
2042 { "vddch0", 450000 },
2043 },
2044 .num_vregs = 4,
2045 };
2046
2047 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
2048 .soc_type = QCA_WCN3990,
2049 .vregs = (struct qca_vreg []) {
2050 { "vddio", 15000 },
2051 { "vddxo", 80000 },
2052 { "vddrf", 300000 },
2053 { "vddch0", 450000 },
2054 },
2055 .num_vregs = 4,
2056 };
2057
2058 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
2059 .soc_type = QCA_WCN3991,
2060 .vregs = (struct qca_vreg []) {
2061 { "vddio", 15000 },
2062 { "vddxo", 80000 },
2063 { "vddrf", 300000 },
2064 { "vddch0", 450000 },
2065 },
2066 .num_vregs = 4,
2067 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2068 };
2069
2070 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
2071 .soc_type = QCA_WCN3998,
2072 .vregs = (struct qca_vreg []) {
2073 { "vddio", 10000 },
2074 { "vddxo", 80000 },
2075 { "vddrf", 300000 },
2076 { "vddch0", 450000 },
2077 },
2078 .num_vregs = 4,
2079 };
2080
2081 static const struct qca_device_data qca_soc_data_qca2066 __maybe_unused = {
2082 .soc_type = QCA_QCA2066,
2083 .num_vregs = 0,
2084 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2085 };
2086
2087 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
2088 .soc_type = QCA_QCA6390,
2089 .num_vregs = 0,
2090 };
2091
2092 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
2093 .soc_type = QCA_WCN6750,
2094 .vregs = (struct qca_vreg []) {
2095 { "vddio", 5000 },
2096 { "vddaon", 26000 },
2097 { "vddbtcxmx", 126000 },
2098 { "vddrfacmn", 12500 },
2099 { "vddrfa0p8", 102000 },
2100 { "vddrfa1p7", 302000 },
2101 { "vddrfa1p2", 257000 },
2102 { "vddrfa2p2", 1700000 },
2103 { "vddasd", 200 },
2104 },
2105 .num_vregs = 9,
2106 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2107 };
2108
2109 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
2110 .soc_type = QCA_WCN6855,
2111 .vregs = (struct qca_vreg []) {
2112 { "vddio", 5000 },
2113 { "vddbtcxmx", 126000 },
2114 { "vddrfacmn", 12500 },
2115 { "vddrfa0p8", 102000 },
2116 { "vddrfa1p7", 302000 },
2117 { "vddrfa1p2", 257000 },
2118 },
2119 .num_vregs = 6,
2120 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2121 };
2122
2123 static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = {
2124 .soc_type = QCA_WCN7850,
2125 .vregs = (struct qca_vreg []) {
2126 { "vddio", 5000 },
2127 { "vddaon", 26000 },
2128 { "vdddig", 126000 },
2129 { "vddrfa0p8", 102000 },
2130 { "vddrfa1p2", 257000 },
2131 { "vddrfa1p9", 302000 },
2132 },
2133 .num_vregs = 6,
2134 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2135 };
2136
qca_power_shutdown(struct hci_uart * hu)2137 static void qca_power_shutdown(struct hci_uart *hu)
2138 {
2139 struct qca_serdev *qcadev;
2140 struct qca_data *qca = hu->priv;
2141 unsigned long flags;
2142 enum qca_btsoc_type soc_type = qca_soc_type(hu);
2143 bool sw_ctrl_state;
2144 struct qca_power *power;
2145
2146 /* From this point we go into power off state. But serial port is
2147 * still open, stop queueing the IBS data and flush all the buffered
2148 * data in skb's.
2149 */
2150 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
2151 set_bit(QCA_IBS_DISABLED, &qca->flags);
2152 qca_flush(hu);
2153 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2154
2155 /* Non-serdev device usually is powered by external power
2156 * and don't need additional action in driver for power down
2157 */
2158 if (!hu->serdev)
2159 return;
2160
2161 qcadev = serdev_device_get_drvdata(hu->serdev);
2162 power = qcadev->bt_power;
2163
2164 if (power && power->pwrseq) {
2165 pwrseq_power_off(power->pwrseq);
2166 set_bit(QCA_BT_OFF, &qca->flags);
2167 return;
2168 }
2169
2170 switch (soc_type) {
2171 case QCA_WCN3988:
2172 case QCA_WCN3990:
2173 case QCA_WCN3991:
2174 case QCA_WCN3998:
2175 host_set_baudrate(hu, 2400);
2176 qca_send_power_pulse(hu, false);
2177 qca_regulator_disable(qcadev);
2178 break;
2179
2180 case QCA_WCN6750:
2181 case QCA_WCN6855:
2182 gpiod_set_value_cansleep(qcadev->bt_en, 0);
2183 msleep(100);
2184 qca_regulator_disable(qcadev);
2185 if (qcadev->sw_ctrl) {
2186 sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
2187 bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
2188 }
2189 break;
2190
2191 default:
2192 gpiod_set_value_cansleep(qcadev->bt_en, 0);
2193 }
2194
2195 set_bit(QCA_BT_OFF, &qca->flags);
2196 }
2197
qca_power_off(struct hci_dev * hdev)2198 static int qca_power_off(struct hci_dev *hdev)
2199 {
2200 struct hci_uart *hu = hci_get_drvdata(hdev);
2201 struct qca_data *qca = hu->priv;
2202 enum qca_btsoc_type soc_type = qca_soc_type(hu);
2203
2204 hu->hdev->hw_error = NULL;
2205 hu->hdev->cmd_timeout = NULL;
2206
2207 del_timer_sync(&qca->wake_retrans_timer);
2208 del_timer_sync(&qca->tx_idle_timer);
2209
2210 /* Stop sending shutdown command if soc crashes. */
2211 if (soc_type != QCA_ROME
2212 && qca->memdump_state == QCA_MEMDUMP_IDLE) {
2213 qca_send_pre_shutdown_cmd(hdev);
2214 usleep_range(8000, 10000);
2215 }
2216
2217 qca_power_shutdown(hu);
2218 return 0;
2219 }
2220
qca_regulator_enable(struct qca_serdev * qcadev)2221 static int qca_regulator_enable(struct qca_serdev *qcadev)
2222 {
2223 struct qca_power *power = qcadev->bt_power;
2224 int ret;
2225
2226 if (power->pwrseq)
2227 return pwrseq_power_on(power->pwrseq);
2228
2229 /* Already enabled */
2230 if (power->vregs_on)
2231 return 0;
2232
2233 BT_DBG("enabling %d regulators)", power->num_vregs);
2234
2235 ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
2236 if (ret)
2237 return ret;
2238
2239 power->vregs_on = true;
2240
2241 ret = clk_prepare_enable(qcadev->susclk);
2242 if (ret)
2243 qca_regulator_disable(qcadev);
2244
2245 return ret;
2246 }
2247
qca_regulator_disable(struct qca_serdev * qcadev)2248 static void qca_regulator_disable(struct qca_serdev *qcadev)
2249 {
2250 struct qca_power *power;
2251
2252 if (!qcadev)
2253 return;
2254
2255 power = qcadev->bt_power;
2256
2257 /* Already disabled? */
2258 if (!power->vregs_on)
2259 return;
2260
2261 regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2262 power->vregs_on = false;
2263
2264 clk_disable_unprepare(qcadev->susclk);
2265 }
2266
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)2267 static int qca_init_regulators(struct qca_power *qca,
2268 const struct qca_vreg *vregs, size_t num_vregs)
2269 {
2270 struct regulator_bulk_data *bulk;
2271 int ret;
2272 int i;
2273
2274 bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2275 if (!bulk)
2276 return -ENOMEM;
2277
2278 for (i = 0; i < num_vregs; i++)
2279 bulk[i].supply = vregs[i].name;
2280
2281 ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2282 if (ret < 0)
2283 return ret;
2284
2285 for (i = 0; i < num_vregs; i++) {
2286 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2287 if (ret)
2288 return ret;
2289 }
2290
2291 qca->vreg_bulk = bulk;
2292 qca->num_vregs = num_vregs;
2293
2294 return 0;
2295 }
2296
qca_serdev_probe(struct serdev_device * serdev)2297 static int qca_serdev_probe(struct serdev_device *serdev)
2298 {
2299 struct qca_serdev *qcadev;
2300 struct hci_dev *hdev;
2301 const struct qca_device_data *data;
2302 int err;
2303 bool power_ctrl_enabled = true;
2304
2305 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2306 if (!qcadev)
2307 return -ENOMEM;
2308
2309 qcadev->serdev_hu.serdev = serdev;
2310 data = device_get_match_data(&serdev->dev);
2311 serdev_device_set_drvdata(serdev, qcadev);
2312 device_property_read_string(&serdev->dev, "firmware-name",
2313 &qcadev->firmware_name);
2314 device_property_read_u32(&serdev->dev, "max-speed",
2315 &qcadev->oper_speed);
2316 if (!qcadev->oper_speed)
2317 BT_DBG("UART will pick default operating speed");
2318
2319 qcadev->bdaddr_property_broken = device_property_read_bool(&serdev->dev,
2320 "qcom,local-bd-address-broken");
2321
2322 if (data)
2323 qcadev->btsoc_type = data->soc_type;
2324 else
2325 qcadev->btsoc_type = QCA_ROME;
2326
2327 switch (qcadev->btsoc_type) {
2328 case QCA_WCN3988:
2329 case QCA_WCN3990:
2330 case QCA_WCN3991:
2331 case QCA_WCN3998:
2332 case QCA_WCN6750:
2333 case QCA_WCN6855:
2334 case QCA_WCN7850:
2335 case QCA_QCA6390:
2336 qcadev->bt_power = devm_kzalloc(&serdev->dev,
2337 sizeof(struct qca_power),
2338 GFP_KERNEL);
2339 if (!qcadev->bt_power)
2340 return -ENOMEM;
2341 break;
2342 default:
2343 break;
2344 }
2345
2346 switch (qcadev->btsoc_type) {
2347 case QCA_WCN6855:
2348 case QCA_WCN7850:
2349 if (!device_property_present(&serdev->dev, "enable-gpios")) {
2350 /*
2351 * Backward compatibility with old DT sources. If the
2352 * node doesn't have the 'enable-gpios' property then
2353 * let's use the power sequencer. Otherwise, let's
2354 * drive everything ourselves.
2355 */
2356 qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev,
2357 "bluetooth");
2358 if (IS_ERR(qcadev->bt_power->pwrseq))
2359 return PTR_ERR(qcadev->bt_power->pwrseq);
2360
2361 break;
2362 }
2363 fallthrough;
2364 case QCA_WCN3988:
2365 case QCA_WCN3990:
2366 case QCA_WCN3991:
2367 case QCA_WCN3998:
2368 case QCA_WCN6750:
2369 qcadev->bt_power->dev = &serdev->dev;
2370 err = qca_init_regulators(qcadev->bt_power, data->vregs,
2371 data->num_vregs);
2372 if (err) {
2373 BT_ERR("Failed to init regulators:%d", err);
2374 return err;
2375 }
2376
2377 qcadev->bt_power->vregs_on = false;
2378
2379 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2380 GPIOD_OUT_LOW);
2381 if (IS_ERR(qcadev->bt_en) &&
2382 (data->soc_type == QCA_WCN6750 ||
2383 data->soc_type == QCA_WCN6855)) {
2384 dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2385 return PTR_ERR(qcadev->bt_en);
2386 }
2387
2388 if (!qcadev->bt_en)
2389 power_ctrl_enabled = false;
2390
2391 qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2392 GPIOD_IN);
2393 if (IS_ERR(qcadev->sw_ctrl) &&
2394 (data->soc_type == QCA_WCN6750 ||
2395 data->soc_type == QCA_WCN6855 ||
2396 data->soc_type == QCA_WCN7850)) {
2397 dev_err(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2398 return PTR_ERR(qcadev->sw_ctrl);
2399 }
2400
2401 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2402 if (IS_ERR(qcadev->susclk)) {
2403 dev_err(&serdev->dev, "failed to acquire clk\n");
2404 return PTR_ERR(qcadev->susclk);
2405 }
2406 break;
2407
2408 case QCA_QCA6390:
2409 if (dev_of_node(&serdev->dev)) {
2410 qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev,
2411 "bluetooth");
2412 if (IS_ERR(qcadev->bt_power->pwrseq))
2413 return PTR_ERR(qcadev->bt_power->pwrseq);
2414 break;
2415 }
2416 fallthrough;
2417
2418 default:
2419 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2420 GPIOD_OUT_LOW);
2421 if (IS_ERR(qcadev->bt_en)) {
2422 dev_err(&serdev->dev, "failed to acquire enable gpio\n");
2423 return PTR_ERR(qcadev->bt_en);
2424 }
2425
2426 if (!qcadev->bt_en)
2427 power_ctrl_enabled = false;
2428
2429 qcadev->susclk = devm_clk_get_optional_enabled_with_rate(
2430 &serdev->dev, NULL, SUSCLK_RATE_32KHZ);
2431 if (IS_ERR(qcadev->susclk)) {
2432 dev_warn(&serdev->dev, "failed to acquire clk\n");
2433 return PTR_ERR(qcadev->susclk);
2434 }
2435 }
2436
2437 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2438 if (err) {
2439 BT_ERR("serdev registration failed");
2440 return err;
2441 }
2442
2443 hdev = qcadev->serdev_hu.hdev;
2444
2445 if (power_ctrl_enabled) {
2446 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2447 hdev->shutdown = qca_power_off;
2448 }
2449
2450 if (data) {
2451 /* Wideband speech support must be set per driver since it can't
2452 * be queried via hci. Same with the valid le states quirk.
2453 */
2454 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2455 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2456 &hdev->quirks);
2457
2458 if (!(data->capabilities & QCA_CAP_VALID_LE_STATES))
2459 set_bit(HCI_QUIRK_BROKEN_LE_STATES, &hdev->quirks);
2460 }
2461
2462 return 0;
2463 }
2464
qca_serdev_remove(struct serdev_device * serdev)2465 static void qca_serdev_remove(struct serdev_device *serdev)
2466 {
2467 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2468 struct qca_power *power = qcadev->bt_power;
2469
2470 switch (qcadev->btsoc_type) {
2471 case QCA_WCN3988:
2472 case QCA_WCN3990:
2473 case QCA_WCN3991:
2474 case QCA_WCN3998:
2475 case QCA_WCN6750:
2476 case QCA_WCN6855:
2477 case QCA_WCN7850:
2478 if (power->vregs_on)
2479 qca_power_shutdown(&qcadev->serdev_hu);
2480 break;
2481 default:
2482 break;
2483 }
2484
2485 hci_uart_unregister_device(&qcadev->serdev_hu);
2486 }
2487
qca_serdev_shutdown(struct device * dev)2488 static void qca_serdev_shutdown(struct device *dev)
2489 {
2490 int ret;
2491 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2492 struct serdev_device *serdev = to_serdev_device(dev);
2493 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2494 struct hci_uart *hu = &qcadev->serdev_hu;
2495 struct hci_dev *hdev = hu->hdev;
2496 const u8 ibs_wake_cmd[] = { 0xFD };
2497 const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2498
2499 if (qcadev->btsoc_type == QCA_QCA6390) {
2500 /* The purpose of sending the VSC is to reset SOC into a initial
2501 * state and the state will ensure next hdev->setup() success.
2502 * if HCI_QUIRK_NON_PERSISTENT_SETUP is set, it means that
2503 * hdev->setup() can do its job regardless of SoC state, so
2504 * don't need to send the VSC.
2505 * if HCI_SETUP is set, it means that hdev->setup() was never
2506 * invoked and the SOC is already in the initial state, so
2507 * don't also need to send the VSC.
2508 */
2509 if (test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks) ||
2510 hci_dev_test_flag(hdev, HCI_SETUP))
2511 return;
2512
2513 /* The serdev must be in open state when control logic arrives
2514 * here, so also fix the use-after-free issue caused by that
2515 * the serdev is flushed or wrote after it is closed.
2516 */
2517 serdev_device_write_flush(serdev);
2518 ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2519 sizeof(ibs_wake_cmd));
2520 if (ret < 0) {
2521 BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2522 return;
2523 }
2524 serdev_device_wait_until_sent(serdev, timeout);
2525 usleep_range(8000, 10000);
2526
2527 serdev_device_write_flush(serdev);
2528 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2529 sizeof(edl_reset_soc_cmd));
2530 if (ret < 0) {
2531 BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2532 return;
2533 }
2534 serdev_device_wait_until_sent(serdev, timeout);
2535 usleep_range(8000, 10000);
2536 }
2537 }
2538
qca_suspend(struct device * dev)2539 static int __maybe_unused qca_suspend(struct device *dev)
2540 {
2541 struct serdev_device *serdev = to_serdev_device(dev);
2542 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2543 struct hci_uart *hu = &qcadev->serdev_hu;
2544 struct qca_data *qca = hu->priv;
2545 unsigned long flags;
2546 bool tx_pending = false;
2547 int ret = 0;
2548 u8 cmd;
2549 u32 wait_timeout = 0;
2550
2551 set_bit(QCA_SUSPENDING, &qca->flags);
2552
2553 /* if BT SoC is running with default firmware then it does not
2554 * support in-band sleep
2555 */
2556 if (test_bit(QCA_ROM_FW, &qca->flags))
2557 return 0;
2558
2559 /* During SSR after memory dump collection, controller will be
2560 * powered off and then powered on.If controller is powered off
2561 * during SSR then we should wait until SSR is completed.
2562 */
2563 if (test_bit(QCA_BT_OFF, &qca->flags) &&
2564 !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2565 return 0;
2566
2567 if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2568 test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2569 wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2570 IBS_DISABLE_SSR_TIMEOUT_MS :
2571 FW_DOWNLOAD_TIMEOUT_MS;
2572
2573 /* QCA_IBS_DISABLED flag is set to true, During FW download
2574 * and during memory dump collection. It is reset to false,
2575 * After FW download complete.
2576 */
2577 wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2578 TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2579
2580 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2581 bt_dev_err(hu->hdev, "SSR or FW download time out");
2582 ret = -ETIMEDOUT;
2583 goto error;
2584 }
2585 }
2586
2587 cancel_work_sync(&qca->ws_awake_device);
2588 cancel_work_sync(&qca->ws_awake_rx);
2589
2590 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2591 flags, SINGLE_DEPTH_NESTING);
2592
2593 switch (qca->tx_ibs_state) {
2594 case HCI_IBS_TX_WAKING:
2595 del_timer(&qca->wake_retrans_timer);
2596 fallthrough;
2597 case HCI_IBS_TX_AWAKE:
2598 del_timer(&qca->tx_idle_timer);
2599
2600 serdev_device_write_flush(hu->serdev);
2601 cmd = HCI_IBS_SLEEP_IND;
2602 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2603
2604 if (ret < 0) {
2605 BT_ERR("Failed to send SLEEP to device");
2606 break;
2607 }
2608
2609 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2610 qca->ibs_sent_slps++;
2611 tx_pending = true;
2612 break;
2613
2614 case HCI_IBS_TX_ASLEEP:
2615 break;
2616
2617 default:
2618 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2619 ret = -EINVAL;
2620 break;
2621 }
2622
2623 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2624
2625 if (ret < 0)
2626 goto error;
2627
2628 if (tx_pending) {
2629 serdev_device_wait_until_sent(hu->serdev,
2630 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2631 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2632 }
2633
2634 /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2635 * to sleep, so that the packet does not wake the system later.
2636 */
2637 ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2638 qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2639 msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2640 if (ret == 0) {
2641 ret = -ETIMEDOUT;
2642 goto error;
2643 }
2644
2645 return 0;
2646
2647 error:
2648 clear_bit(QCA_SUSPENDING, &qca->flags);
2649
2650 return ret;
2651 }
2652
qca_resume(struct device * dev)2653 static int __maybe_unused qca_resume(struct device *dev)
2654 {
2655 struct serdev_device *serdev = to_serdev_device(dev);
2656 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2657 struct hci_uart *hu = &qcadev->serdev_hu;
2658 struct qca_data *qca = hu->priv;
2659
2660 clear_bit(QCA_SUSPENDING, &qca->flags);
2661
2662 return 0;
2663 }
2664
2665 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2666
2667 #ifdef CONFIG_OF
2668 static const struct of_device_id qca_bluetooth_of_match[] = {
2669 { .compatible = "qcom,qca2066-bt", .data = &qca_soc_data_qca2066},
2670 { .compatible = "qcom,qca6174-bt" },
2671 { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2672 { .compatible = "qcom,qca9377-bt" },
2673 { .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988},
2674 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2675 { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2676 { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2677 { .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2678 { .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2679 { .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850},
2680 { /* sentinel */ }
2681 };
2682 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2683 #endif
2684
2685 #ifdef CONFIG_ACPI
2686 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2687 { "QCOM2066", (kernel_ulong_t)&qca_soc_data_qca2066 },
2688 { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2689 { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2690 { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2691 { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2692 { },
2693 };
2694 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2695 #endif
2696
2697 #ifdef CONFIG_DEV_COREDUMP
hciqca_coredump(struct device * dev)2698 static void hciqca_coredump(struct device *dev)
2699 {
2700 struct serdev_device *serdev = to_serdev_device(dev);
2701 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2702 struct hci_uart *hu = &qcadev->serdev_hu;
2703 struct hci_dev *hdev = hu->hdev;
2704
2705 if (hdev->dump.coredump)
2706 hdev->dump.coredump(hdev);
2707 }
2708 #endif
2709
2710 static struct serdev_device_driver qca_serdev_driver = {
2711 .probe = qca_serdev_probe,
2712 .remove = qca_serdev_remove,
2713 .driver = {
2714 .name = "hci_uart_qca",
2715 .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2716 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2717 .shutdown = qca_serdev_shutdown,
2718 .pm = &qca_pm_ops,
2719 #ifdef CONFIG_DEV_COREDUMP
2720 .coredump = hciqca_coredump,
2721 #endif
2722 },
2723 };
2724
qca_init(void)2725 int __init qca_init(void)
2726 {
2727 serdev_device_driver_register(&qca_serdev_driver);
2728
2729 return hci_uart_register_proto(&qca_proto);
2730 }
2731
qca_deinit(void)2732 int __exit qca_deinit(void)
2733 {
2734 serdev_device_driver_unregister(&qca_serdev_driver);
2735
2736 return hci_uart_unregister_proto(&qca_proto);
2737 }
2738