1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5
6 #include <linux/bitfield.h>
7 #include <linux/bits.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-buf.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/list.h>
15 #include <linux/math64.h>
16 #include <linux/mm.h>
17 #include <linux/moduleparam.h>
18 #include <linux/scatterlist.h>
19 #include <linux/spinlock.h>
20 #include <linux/srcu.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/uaccess.h>
24 #include <linux/wait.h>
25 #include <drm/drm_file.h>
26 #include <drm/drm_gem.h>
27 #include <drm/drm_prime.h>
28 #include <drm/drm_print.h>
29 #include <uapi/drm/qaic_accel.h>
30
31 #include "qaic.h"
32
33 #define SEM_VAL_MASK GENMASK_ULL(11, 0)
34 #define SEM_INDEX_MASK GENMASK_ULL(4, 0)
35 #define BULK_XFER BIT(3)
36 #define GEN_COMPLETION BIT(4)
37 #define INBOUND_XFER 1
38 #define OUTBOUND_XFER 2
39 #define REQHP_OFF 0x0 /* we read this */
40 #define REQTP_OFF 0x4 /* we write this */
41 #define RSPHP_OFF 0x8 /* we write this */
42 #define RSPTP_OFF 0xc /* we read this */
43
44 #define ENCODE_SEM(val, index, sync, cmd, flags) \
45 ({ \
46 FIELD_PREP(GENMASK(11, 0), (val)) | \
47 FIELD_PREP(GENMASK(20, 16), (index)) | \
48 FIELD_PREP(BIT(22), (sync)) | \
49 FIELD_PREP(GENMASK(26, 24), (cmd)) | \
50 FIELD_PREP(GENMASK(30, 29), (flags)) | \
51 FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \
52 })
53 #define NUM_EVENTS 128
54 #define NUM_DELAYS 10
55 #define fifo_at(base, offset) ((base) + (offset) * get_dbc_req_elem_size())
56
57 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
58 module_param(wait_exec_default_timeout_ms, uint, 0600);
59 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
60
61 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
62 module_param(datapath_poll_interval_us, uint, 0600);
63 MODULE_PARM_DESC(datapath_poll_interval_us,
64 "Amount of time to sleep between activity when datapath polling is enabled");
65
66 struct dbc_req {
67 /*
68 * A request ID is assigned to each memory handle going in DMA queue.
69 * As a single memory handle can enqueue multiple elements in DMA queue
70 * all of them will have the same request ID.
71 */
72 __le16 req_id;
73 /* Future use */
74 __u8 seq_id;
75 /*
76 * Special encoded variable
77 * 7 0 - Do not force to generate MSI after DMA is completed
78 * 1 - Force to generate MSI after DMA is completed
79 * 6:5 Reserved
80 * 4 1 - Generate completion element in the response queue
81 * 0 - No Completion Code
82 * 3 0 - DMA request is a Link list transfer
83 * 1 - DMA request is a Bulk transfer
84 * 2 Reserved
85 * 1:0 00 - No DMA transfer involved
86 * 01 - DMA transfer is part of inbound transfer
87 * 10 - DMA transfer has outbound transfer
88 * 11 - NA
89 */
90 __u8 cmd;
91 __le32 resv;
92 /* Source address for the transfer */
93 __le64 src_addr;
94 /* Destination address for the transfer */
95 __le64 dest_addr;
96 /* Length of transfer request */
97 __le32 len;
98 __le32 resv2;
99 /* Doorbell address */
100 __le64 db_addr;
101 /*
102 * Special encoded variable
103 * 7 1 - Doorbell(db) write
104 * 0 - No doorbell write
105 * 6:2 Reserved
106 * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary
107 * 01 - 16 bit access, db address must be aligned to 16bit-boundary
108 * 10 - 8 bit access, db address must be aligned to 8bit-boundary
109 * 11 - Reserved
110 */
111 __u8 db_len;
112 __u8 resv3;
113 __le16 resv4;
114 /* 32 bit data written to doorbell address */
115 __le32 db_data;
116 /*
117 * Special encoded variable
118 * All the fields of sem_cmdX are passed from user and all are ORed
119 * together to form sem_cmd.
120 * 0:11 Semaphore value
121 * 15:12 Reserved
122 * 20:16 Semaphore index
123 * 21 Reserved
124 * 22 Semaphore Sync
125 * 23 Reserved
126 * 26:24 Semaphore command
127 * 28:27 Reserved
128 * 29 Semaphore DMA out bound sync fence
129 * 30 Semaphore DMA in bound sync fence
130 * 31 Enable semaphore command
131 */
132 __le32 sem_cmd0;
133 __le32 sem_cmd1;
134 __le32 sem_cmd2;
135 __le32 sem_cmd3;
136 } __packed;
137
138 struct dbc_rsp {
139 /* Request ID of the memory handle whose DMA transaction is completed */
140 __le16 req_id;
141 /* Status of the DMA transaction. 0 : Success otherwise failure */
142 __le16 status;
143 } __packed;
144
bo_queued(struct qaic_bo * bo)145 static inline bool bo_queued(struct qaic_bo *bo)
146 {
147 return !list_empty(&bo->xfer_list);
148 }
149
get_dbc_req_elem_size(void)150 inline int get_dbc_req_elem_size(void)
151 {
152 return sizeof(struct dbc_req);
153 }
154
get_dbc_rsp_elem_size(void)155 inline int get_dbc_rsp_elem_size(void)
156 {
157 return sizeof(struct dbc_rsp);
158 }
159
free_slice(struct kref * kref)160 static void free_slice(struct kref *kref)
161 {
162 struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
163
164 slice->bo->total_slice_nents -= slice->nents;
165 list_del(&slice->slice);
166 drm_gem_object_put(&slice->bo->base);
167 sg_free_table(slice->sgt);
168 kfree(slice->sgt);
169 kvfree(slice->reqs);
170 kfree(slice);
171 }
172
clone_range_of_sgt_for_slice(struct qaic_device * qdev,struct sg_table ** sgt_out,struct sg_table * sgt_in,u64 size,u64 offset)173 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
174 struct sg_table *sgt_in, u64 size, u64 offset)
175 {
176 struct scatterlist *sg, *sgn, *sgf, *sgl;
177 unsigned int len, nents, offf, offl;
178 struct sg_table *sgt;
179 size_t total_len;
180 int ret, j;
181
182 /* find out number of relevant nents needed for this mem */
183 total_len = 0;
184 sgf = NULL;
185 sgl = NULL;
186 nents = 0;
187 offf = 0;
188 offl = 0;
189
190 size = size ? size : PAGE_SIZE;
191 for_each_sgtable_dma_sg(sgt_in, sg, j) {
192 len = sg_dma_len(sg);
193
194 if (!len)
195 continue;
196 if (offset >= total_len && offset < total_len + len) {
197 sgf = sg;
198 offf = offset - total_len;
199 }
200 if (sgf)
201 nents++;
202 if (offset + size >= total_len &&
203 offset + size <= total_len + len) {
204 sgl = sg;
205 offl = offset + size - total_len;
206 break;
207 }
208 total_len += len;
209 }
210
211 if (!sgf || !sgl) {
212 ret = -EINVAL;
213 goto out;
214 }
215
216 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
217 if (!sgt) {
218 ret = -ENOMEM;
219 goto out;
220 }
221
222 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
223 if (ret)
224 goto free_sgt;
225
226 /* copy relevant sg node and fix page and length */
227 sgn = sgf;
228 for_each_sgtable_dma_sg(sgt, sg, j) {
229 memcpy(sg, sgn, sizeof(*sg));
230 if (sgn == sgf) {
231 sg_dma_address(sg) += offf;
232 sg_dma_len(sg) -= offf;
233 sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
234 } else {
235 offf = 0;
236 }
237 if (sgn == sgl) {
238 sg_dma_len(sg) = offl - offf;
239 sg_set_page(sg, sg_page(sgn), offl - offf, offf);
240 sg_mark_end(sg);
241 break;
242 }
243 sgn = sg_next(sgn);
244 }
245
246 *sgt_out = sgt;
247 return ret;
248
249 free_sgt:
250 kfree(sgt);
251 out:
252 *sgt_out = NULL;
253 return ret;
254 }
255
encode_reqs(struct qaic_device * qdev,struct bo_slice * slice,struct qaic_attach_slice_entry * req)256 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
257 struct qaic_attach_slice_entry *req)
258 {
259 __le64 db_addr = cpu_to_le64(req->db_addr);
260 __le32 db_data = cpu_to_le32(req->db_data);
261 struct scatterlist *sg;
262 __u8 cmd = BULK_XFER;
263 int presync_sem;
264 u64 dev_addr;
265 __u8 db_len;
266 int i;
267
268 if (!slice->no_xfer)
269 cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
270
271 if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
272 return -EINVAL;
273
274 presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
275 if (presync_sem > 1)
276 return -EINVAL;
277
278 presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
279 req->sem2.presync << 2 | req->sem3.presync << 3;
280
281 switch (req->db_len) {
282 case 32:
283 db_len = BIT(7);
284 break;
285 case 16:
286 db_len = BIT(7) | 1;
287 break;
288 case 8:
289 db_len = BIT(7) | 2;
290 break;
291 case 0:
292 db_len = 0; /* doorbell is not active for this command */
293 break;
294 default:
295 return -EINVAL; /* should never hit this */
296 }
297
298 /*
299 * When we end up splitting up a single request (ie a buf slice) into
300 * multiple DMA requests, we have to manage the sync data carefully.
301 * There can only be one presync sem. That needs to be on every xfer
302 * so that the DMA engine doesn't transfer data before the receiver is
303 * ready. We only do the doorbell and postsync sems after the xfer.
304 * To guarantee previous xfers for the request are complete, we use a
305 * fence.
306 */
307 dev_addr = req->dev_addr;
308 for_each_sgtable_dma_sg(slice->sgt, sg, i) {
309 slice->reqs[i].cmd = cmd;
310 slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
311 sg_dma_address(sg) : dev_addr);
312 slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
313 dev_addr : sg_dma_address(sg));
314 /*
315 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA
316 * segment size is set to UINT_MAX by qaic and hence return
317 * values of sg_dma_len(sg) can never exceed u32 range. So,
318 * by down sizing we are not corrupting the value.
319 */
320 slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
321 switch (presync_sem) {
322 case BIT(0):
323 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
324 req->sem0.index,
325 req->sem0.presync,
326 req->sem0.cmd,
327 req->sem0.flags));
328 break;
329 case BIT(1):
330 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
331 req->sem1.index,
332 req->sem1.presync,
333 req->sem1.cmd,
334 req->sem1.flags));
335 break;
336 case BIT(2):
337 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
338 req->sem2.index,
339 req->sem2.presync,
340 req->sem2.cmd,
341 req->sem2.flags));
342 break;
343 case BIT(3):
344 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
345 req->sem3.index,
346 req->sem3.presync,
347 req->sem3.cmd,
348 req->sem3.flags));
349 break;
350 }
351 dev_addr += sg_dma_len(sg);
352 }
353 /* add post transfer stuff to last segment */
354 i--;
355 slice->reqs[i].cmd |= GEN_COMPLETION;
356 slice->reqs[i].db_addr = db_addr;
357 slice->reqs[i].db_len = db_len;
358 slice->reqs[i].db_data = db_data;
359 /*
360 * Add a fence if we have more than one request going to the hardware
361 * representing the entirety of the user request, and the user request
362 * has no presync condition.
363 * Fences are expensive, so we try to avoid them. We rely on the
364 * hardware behavior to avoid needing one when there is a presync
365 * condition. When a presync exists, all requests for that same
366 * presync will be queued into a fifo. Thus, since we queue the
367 * post xfer activity only on the last request we queue, the hardware
368 * will ensure that the last queued request is processed last, thus
369 * making sure the post xfer activity happens at the right time without
370 * a fence.
371 */
372 if (i && !presync_sem)
373 req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
374 QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
375 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
376 req->sem0.presync, req->sem0.cmd,
377 req->sem0.flags));
378 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
379 req->sem1.presync, req->sem1.cmd,
380 req->sem1.flags));
381 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
382 req->sem2.presync, req->sem2.cmd,
383 req->sem2.flags));
384 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
385 req->sem3.presync, req->sem3.cmd,
386 req->sem3.flags));
387
388 return 0;
389 }
390
qaic_map_one_slice(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_entry * slice_ent)391 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
392 struct qaic_attach_slice_entry *slice_ent)
393 {
394 struct sg_table *sgt = NULL;
395 struct bo_slice *slice;
396 int ret;
397
398 ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
399 if (ret)
400 goto out;
401
402 slice = kmalloc(sizeof(*slice), GFP_KERNEL);
403 if (!slice) {
404 ret = -ENOMEM;
405 goto free_sgt;
406 }
407
408 slice->reqs = kvcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
409 if (!slice->reqs) {
410 ret = -ENOMEM;
411 goto free_slice;
412 }
413
414 slice->no_xfer = !slice_ent->size;
415 slice->sgt = sgt;
416 slice->nents = sgt->nents;
417 slice->dir = bo->dir;
418 slice->bo = bo;
419 slice->size = slice_ent->size;
420 slice->offset = slice_ent->offset;
421
422 ret = encode_reqs(qdev, slice, slice_ent);
423 if (ret)
424 goto free_req;
425
426 bo->total_slice_nents += sgt->nents;
427 kref_init(&slice->ref_count);
428 drm_gem_object_get(&bo->base);
429 list_add_tail(&slice->slice, &bo->slices);
430
431 return 0;
432
433 free_req:
434 kvfree(slice->reqs);
435 free_slice:
436 kfree(slice);
437 free_sgt:
438 sg_free_table(sgt);
439 kfree(sgt);
440 out:
441 return ret;
442 }
443
create_sgt(struct qaic_device * qdev,struct sg_table ** sgt_out,u64 size)444 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
445 {
446 struct scatterlist *sg;
447 struct sg_table *sgt;
448 struct page **pages;
449 int *pages_order;
450 int buf_extra;
451 int max_order;
452 int nr_pages;
453 int ret = 0;
454 int i, j, k;
455 int order;
456
457 if (size) {
458 nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
459 /*
460 * calculate how much extra we are going to allocate, to remove
461 * later
462 */
463 buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
464 max_order = min(MAX_PAGE_ORDER, get_order(size));
465 } else {
466 /* allocate a single page for book keeping */
467 nr_pages = 1;
468 buf_extra = 0;
469 max_order = 0;
470 }
471
472 pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
473 if (!pages) {
474 ret = -ENOMEM;
475 goto out;
476 }
477 pages_order = (void *)pages + sizeof(*pages) * nr_pages;
478
479 /*
480 * Allocate requested memory using alloc_pages. It is possible to allocate
481 * the requested memory in multiple chunks by calling alloc_pages
482 * multiple times. Use SG table to handle multiple allocated pages.
483 */
484 i = 0;
485 while (nr_pages > 0) {
486 order = min(get_order(nr_pages * PAGE_SIZE), max_order);
487 while (1) {
488 pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
489 __GFP_NOWARN | __GFP_ZERO |
490 (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
491 order);
492 if (pages[i])
493 break;
494 if (!order--) {
495 ret = -ENOMEM;
496 goto free_partial_alloc;
497 }
498 }
499
500 max_order = order;
501 pages_order[i] = order;
502
503 nr_pages -= 1 << order;
504 if (nr_pages <= 0)
505 /* account for over allocation */
506 buf_extra += abs(nr_pages) * PAGE_SIZE;
507 i++;
508 }
509
510 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
511 if (!sgt) {
512 ret = -ENOMEM;
513 goto free_partial_alloc;
514 }
515
516 if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
517 ret = -ENOMEM;
518 goto free_sgt;
519 }
520
521 /* Populate the SG table with the allocated memory pages */
522 sg = sgt->sgl;
523 for (k = 0; k < i; k++, sg = sg_next(sg)) {
524 /* Last entry requires special handling */
525 if (k < i - 1) {
526 sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
527 } else {
528 sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
529 sg_mark_end(sg);
530 }
531 }
532
533 kvfree(pages);
534 *sgt_out = sgt;
535 return ret;
536
537 free_sgt:
538 kfree(sgt);
539 free_partial_alloc:
540 for (j = 0; j < i; j++)
541 __free_pages(pages[j], pages_order[j]);
542 kvfree(pages);
543 out:
544 *sgt_out = NULL;
545 return ret;
546 }
547
invalid_sem(struct qaic_sem * sem)548 static bool invalid_sem(struct qaic_sem *sem)
549 {
550 if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
551 !(sem->presync == 0 || sem->presync == 1) || sem->pad ||
552 sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
553 sem->cmd > QAIC_SEM_WAIT_GT_0)
554 return true;
555 return false;
556 }
557
qaic_validate_req(struct qaic_device * qdev,struct qaic_attach_slice_entry * slice_ent,u32 count,u64 total_size)558 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
559 u32 count, u64 total_size)
560 {
561 u64 total;
562 int i;
563
564 for (i = 0; i < count; i++) {
565 if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
566 slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
567 invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
568 invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
569 return -EINVAL;
570
571 if (check_add_overflow(slice_ent[i].offset, slice_ent[i].size, &total) ||
572 total > total_size)
573 return -EINVAL;
574 }
575
576 return 0;
577 }
578
qaic_free_sgt(struct sg_table * sgt)579 static void qaic_free_sgt(struct sg_table *sgt)
580 {
581 struct scatterlist *sg;
582
583 if (!sgt)
584 return;
585
586 for (sg = sgt->sgl; sg; sg = sg_next(sg))
587 if (sg_page(sg))
588 __free_pages(sg_page(sg), get_order(sg->length));
589 sg_free_table(sgt);
590 kfree(sgt);
591 }
592
qaic_gem_print_info(struct drm_printer * p,unsigned int indent,const struct drm_gem_object * obj)593 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
594 const struct drm_gem_object *obj)
595 {
596 struct qaic_bo *bo = to_qaic_bo(obj);
597
598 drm_printf_indent(p, indent, "BO DMA direction %d\n", bo->dir);
599 }
600
601 static const struct vm_operations_struct drm_vm_ops = {
602 .open = drm_gem_vm_open,
603 .close = drm_gem_vm_close,
604 };
605
qaic_gem_object_mmap(struct drm_gem_object * obj,struct vm_area_struct * vma)606 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
607 {
608 struct qaic_bo *bo = to_qaic_bo(obj);
609 unsigned long offset = 0;
610 struct scatterlist *sg;
611 int ret = 0;
612
613 if (drm_gem_is_imported(obj))
614 return -EINVAL;
615
616 for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
617 if (sg_page(sg)) {
618 ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
619 sg->length, vma->vm_page_prot);
620 if (ret)
621 goto out;
622 offset += sg->length;
623 }
624 }
625
626 out:
627 return ret;
628 }
629
qaic_free_object(struct drm_gem_object * obj)630 static void qaic_free_object(struct drm_gem_object *obj)
631 {
632 struct qaic_bo *bo = to_qaic_bo(obj);
633
634 if (drm_gem_is_imported(obj)) {
635 /* DMABUF/PRIME Path */
636 drm_prime_gem_destroy(obj, NULL);
637 } else {
638 /* Private buffer allocation path */
639 qaic_free_sgt(bo->sgt);
640 }
641
642 mutex_destroy(&bo->lock);
643 drm_gem_object_release(obj);
644 kfree(bo);
645 }
646
qaic_get_sg_table(struct drm_gem_object * obj)647 static struct sg_table *qaic_get_sg_table(struct drm_gem_object *obj)
648 {
649 struct qaic_bo *bo = to_qaic_bo(obj);
650 struct scatterlist *sg, *sg_in;
651 struct sg_table *sgt, *sgt_in;
652 int i;
653
654 sgt_in = bo->sgt;
655
656 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
657 if (!sgt)
658 return ERR_PTR(-ENOMEM);
659
660 if (sg_alloc_table(sgt, sgt_in->orig_nents, GFP_KERNEL)) {
661 kfree(sgt);
662 return ERR_PTR(-ENOMEM);
663 }
664
665 sg = sgt->sgl;
666 for_each_sgtable_sg(sgt_in, sg_in, i) {
667 memcpy(sg, sg_in, sizeof(*sg));
668 sg = sg_next(sg);
669 }
670
671 return sgt;
672 }
673
674 static const struct drm_gem_object_funcs qaic_gem_funcs = {
675 .free = qaic_free_object,
676 .get_sg_table = qaic_get_sg_table,
677 .print_info = qaic_gem_print_info,
678 .mmap = qaic_gem_object_mmap,
679 .vm_ops = &drm_vm_ops,
680 };
681
qaic_init_bo(struct qaic_bo * bo,bool reinit)682 static void qaic_init_bo(struct qaic_bo *bo, bool reinit)
683 {
684 if (reinit) {
685 bo->sliced = false;
686 reinit_completion(&bo->xfer_done);
687 } else {
688 mutex_init(&bo->lock);
689 init_completion(&bo->xfer_done);
690 }
691 complete_all(&bo->xfer_done);
692 INIT_LIST_HEAD(&bo->slices);
693 INIT_LIST_HEAD(&bo->xfer_list);
694 }
695
qaic_alloc_init_bo(void)696 static struct qaic_bo *qaic_alloc_init_bo(void)
697 {
698 struct qaic_bo *bo;
699
700 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
701 if (!bo)
702 return ERR_PTR(-ENOMEM);
703
704 qaic_init_bo(bo, false);
705
706 return bo;
707 }
708
qaic_create_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)709 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
710 {
711 struct qaic_create_bo *args = data;
712 int usr_rcu_id, qdev_rcu_id;
713 struct drm_gem_object *obj;
714 struct qaic_device *qdev;
715 struct qaic_user *usr;
716 struct qaic_bo *bo;
717 size_t size;
718 int ret;
719
720 if (args->pad)
721 return -EINVAL;
722
723 size = PAGE_ALIGN(args->size);
724 if (size == 0)
725 return -EINVAL;
726
727 usr = file_priv->driver_priv;
728 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
729 if (!usr->qddev) {
730 ret = -ENODEV;
731 goto unlock_usr_srcu;
732 }
733
734 qdev = usr->qddev->qdev;
735 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
736 if (qdev->dev_state != QAIC_ONLINE) {
737 ret = -ENODEV;
738 goto unlock_dev_srcu;
739 }
740
741 bo = qaic_alloc_init_bo();
742 if (IS_ERR(bo)) {
743 ret = PTR_ERR(bo);
744 goto unlock_dev_srcu;
745 }
746 obj = &bo->base;
747
748 drm_gem_private_object_init(dev, obj, size);
749
750 obj->funcs = &qaic_gem_funcs;
751 ret = create_sgt(qdev, &bo->sgt, size);
752 if (ret)
753 goto free_bo;
754
755 ret = drm_gem_create_mmap_offset(obj);
756 if (ret)
757 goto free_bo;
758
759 ret = drm_gem_handle_create(file_priv, obj, &args->handle);
760 if (ret)
761 goto free_bo;
762
763 drm_gem_object_put(obj);
764 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
765 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
766
767 return 0;
768
769 free_bo:
770 drm_gem_object_put(obj);
771 unlock_dev_srcu:
772 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
773 unlock_usr_srcu:
774 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
775 return ret;
776 }
777
qaic_mmap_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)778 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
779 {
780 struct qaic_mmap_bo *args = data;
781 int usr_rcu_id, qdev_rcu_id;
782 struct drm_gem_object *obj;
783 struct qaic_device *qdev;
784 struct qaic_user *usr;
785 int ret = 0;
786
787 usr = file_priv->driver_priv;
788 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
789 if (!usr->qddev) {
790 ret = -ENODEV;
791 goto unlock_usr_srcu;
792 }
793
794 qdev = usr->qddev->qdev;
795 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
796 if (qdev->dev_state != QAIC_ONLINE) {
797 ret = -ENODEV;
798 goto unlock_dev_srcu;
799 }
800
801 obj = drm_gem_object_lookup(file_priv, args->handle);
802 if (!obj) {
803 ret = -ENOENT;
804 goto unlock_dev_srcu;
805 }
806
807 args->offset = drm_vma_node_offset_addr(&obj->vma_node);
808
809 drm_gem_object_put(obj);
810
811 unlock_dev_srcu:
812 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
813 unlock_usr_srcu:
814 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
815 return ret;
816 }
817
qaic_gem_prime_import(struct drm_device * dev,struct dma_buf * dma_buf)818 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
819 {
820 struct dma_buf_attachment *attach;
821 struct drm_gem_object *obj;
822 struct qaic_bo *bo;
823 int ret;
824
825 bo = qaic_alloc_init_bo();
826 if (IS_ERR(bo)) {
827 ret = PTR_ERR(bo);
828 goto out;
829 }
830
831 obj = &bo->base;
832 get_dma_buf(dma_buf);
833
834 attach = dma_buf_attach(dma_buf, dev->dev);
835 if (IS_ERR(attach)) {
836 ret = PTR_ERR(attach);
837 goto attach_fail;
838 }
839
840 if (!attach->dmabuf->size) {
841 ret = -EINVAL;
842 goto size_align_fail;
843 }
844
845 drm_gem_private_object_init(dev, obj, attach->dmabuf->size);
846 /*
847 * skipping dma_buf_map_attachment() as we do not know the direction
848 * just yet. Once the direction is known in the subsequent IOCTL to
849 * attach slicing, we can do it then.
850 */
851
852 obj->funcs = &qaic_gem_funcs;
853 obj->import_attach = attach;
854 obj->resv = dma_buf->resv;
855
856 return obj;
857
858 size_align_fail:
859 dma_buf_detach(dma_buf, attach);
860 attach_fail:
861 dma_buf_put(dma_buf);
862 kfree(bo);
863 out:
864 return ERR_PTR(ret);
865 }
866
qaic_prepare_import_bo(struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)867 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
868 {
869 struct drm_gem_object *obj = &bo->base;
870 struct sg_table *sgt;
871 int ret;
872
873 sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
874 if (IS_ERR(sgt)) {
875 ret = PTR_ERR(sgt);
876 return ret;
877 }
878
879 bo->sgt = sgt;
880
881 return 0;
882 }
883
qaic_prepare_export_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)884 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
885 struct qaic_attach_slice_hdr *hdr)
886 {
887 int ret;
888
889 ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
890 if (ret)
891 return -EFAULT;
892
893 return 0;
894 }
895
qaic_prepare_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)896 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
897 struct qaic_attach_slice_hdr *hdr)
898 {
899 int ret;
900
901 if (drm_gem_is_imported(&bo->base))
902 ret = qaic_prepare_import_bo(bo, hdr);
903 else
904 ret = qaic_prepare_export_bo(qdev, bo, hdr);
905 bo->dir = hdr->dir;
906 bo->dbc = &qdev->dbc[hdr->dbc_id];
907 bo->nr_slice = hdr->count;
908
909 return ret;
910 }
911
qaic_unprepare_import_bo(struct qaic_bo * bo)912 static void qaic_unprepare_import_bo(struct qaic_bo *bo)
913 {
914 dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
915 bo->sgt = NULL;
916 }
917
qaic_unprepare_export_bo(struct qaic_device * qdev,struct qaic_bo * bo)918 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
919 {
920 dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
921 }
922
qaic_unprepare_bo(struct qaic_device * qdev,struct qaic_bo * bo)923 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
924 {
925 if (drm_gem_is_imported(&bo->base))
926 qaic_unprepare_import_bo(bo);
927 else
928 qaic_unprepare_export_bo(qdev, bo);
929
930 bo->dir = 0;
931 bo->dbc = NULL;
932 bo->nr_slice = 0;
933 }
934
qaic_free_slices_bo(struct qaic_bo * bo)935 static void qaic_free_slices_bo(struct qaic_bo *bo)
936 {
937 struct bo_slice *slice, *temp;
938
939 list_for_each_entry_safe(slice, temp, &bo->slices, slice)
940 kref_put(&slice->ref_count, free_slice);
941 if (WARN_ON_ONCE(bo->total_slice_nents != 0))
942 bo->total_slice_nents = 0;
943 bo->nr_slice = 0;
944 }
945
qaic_attach_slicing_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr,struct qaic_attach_slice_entry * slice_ent)946 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
947 struct qaic_attach_slice_hdr *hdr,
948 struct qaic_attach_slice_entry *slice_ent)
949 {
950 int ret, i;
951
952 for (i = 0; i < hdr->count; i++) {
953 ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
954 if (ret) {
955 qaic_free_slices_bo(bo);
956 return ret;
957 }
958 }
959
960 if (bo->total_slice_nents > bo->dbc->nelem) {
961 qaic_free_slices_bo(bo);
962 return -ENOSPC;
963 }
964
965 return 0;
966 }
967
qaic_attach_slice_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)968 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
969 {
970 struct qaic_attach_slice_entry *slice_ent;
971 struct qaic_attach_slice *args = data;
972 int rcu_id, usr_rcu_id, qdev_rcu_id;
973 struct dma_bridge_chan *dbc;
974 struct drm_gem_object *obj;
975 struct qaic_device *qdev;
976 unsigned long arg_size;
977 struct qaic_user *usr;
978 u8 __user *user_data;
979 struct qaic_bo *bo;
980 int ret;
981
982 if (args->hdr.count == 0)
983 return -EINVAL;
984
985 if (check_mul_overflow((unsigned long)args->hdr.count,
986 (unsigned long)sizeof(*slice_ent),
987 &arg_size))
988 return -EINVAL;
989
990 if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
991 return -EINVAL;
992
993 if (args->data == 0)
994 return -EINVAL;
995
996 usr = file_priv->driver_priv;
997 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
998 if (!usr->qddev) {
999 ret = -ENODEV;
1000 goto unlock_usr_srcu;
1001 }
1002
1003 qdev = usr->qddev->qdev;
1004 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1005 if (qdev->dev_state != QAIC_ONLINE) {
1006 ret = -ENODEV;
1007 goto unlock_dev_srcu;
1008 }
1009
1010 if (args->hdr.dbc_id >= qdev->num_dbc) {
1011 ret = -EINVAL;
1012 goto unlock_dev_srcu;
1013 }
1014
1015 user_data = u64_to_user_ptr(args->data);
1016
1017 slice_ent = memdup_user(user_data, arg_size);
1018 if (IS_ERR(slice_ent)) {
1019 ret = PTR_ERR(slice_ent);
1020 goto unlock_dev_srcu;
1021 }
1022
1023 obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
1024 if (!obj) {
1025 ret = -ENOENT;
1026 goto free_slice_ent;
1027 }
1028
1029 ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, obj->size);
1030 if (ret)
1031 goto put_bo;
1032
1033 bo = to_qaic_bo(obj);
1034 ret = mutex_lock_interruptible(&bo->lock);
1035 if (ret)
1036 goto put_bo;
1037
1038 if (bo->sliced) {
1039 ret = -EINVAL;
1040 goto unlock_bo;
1041 }
1042
1043 dbc = &qdev->dbc[args->hdr.dbc_id];
1044 rcu_id = srcu_read_lock(&dbc->ch_lock);
1045 if (dbc->usr != usr) {
1046 ret = -EINVAL;
1047 goto unlock_ch_srcu;
1048 }
1049
1050 if (dbc->id == qdev->ssr_dbc) {
1051 ret = -EPIPE;
1052 goto unlock_ch_srcu;
1053 }
1054
1055 ret = qaic_prepare_bo(qdev, bo, &args->hdr);
1056 if (ret)
1057 goto unlock_ch_srcu;
1058
1059 ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
1060 if (ret)
1061 goto unprepare_bo;
1062
1063 if (args->hdr.dir == DMA_TO_DEVICE)
1064 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
1065
1066 bo->sliced = true;
1067 list_add_tail(&bo->bo_list, &bo->dbc->bo_lists);
1068 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1069 mutex_unlock(&bo->lock);
1070 kfree(slice_ent);
1071 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1072 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1073
1074 return 0;
1075
1076 unprepare_bo:
1077 qaic_unprepare_bo(qdev, bo);
1078 unlock_ch_srcu:
1079 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1080 unlock_bo:
1081 mutex_unlock(&bo->lock);
1082 put_bo:
1083 drm_gem_object_put(obj);
1084 free_slice_ent:
1085 kfree(slice_ent);
1086 unlock_dev_srcu:
1087 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1088 unlock_usr_srcu:
1089 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1090 return ret;
1091 }
1092
fifo_space_avail(u32 head,u32 tail,u32 q_size)1093 static inline u32 fifo_space_avail(u32 head, u32 tail, u32 q_size)
1094 {
1095 u32 avail = head - tail - 1;
1096
1097 if (head <= tail)
1098 avail += q_size;
1099
1100 return avail;
1101 }
1102
copy_exec_reqs(struct qaic_device * qdev,struct bo_slice * slice,u32 dbc_id,u32 head,u32 * ptail)1103 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
1104 u32 head, u32 *ptail)
1105 {
1106 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1107 struct dbc_req *reqs = slice->reqs;
1108 u32 tail = *ptail;
1109 u32 avail;
1110
1111 avail = fifo_space_avail(head, tail, dbc->nelem);
1112 if (avail < slice->nents)
1113 return -EAGAIN;
1114
1115 if (tail + slice->nents > dbc->nelem) {
1116 avail = dbc->nelem - tail;
1117 avail = min_t(u32, avail, slice->nents);
1118 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail);
1119 reqs += avail;
1120 avail = slice->nents - avail;
1121 if (avail)
1122 memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
1123 } else {
1124 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * slice->nents);
1125 }
1126
1127 *ptail = (tail + slice->nents) % dbc->nelem;
1128
1129 return 0;
1130 }
1131
copy_partial_exec_reqs(struct qaic_device * qdev,struct bo_slice * slice,u64 resize,struct dma_bridge_chan * dbc,u32 head,u32 * ptail)1132 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
1133 u64 resize, struct dma_bridge_chan *dbc, u32 head,
1134 u32 *ptail)
1135 {
1136 struct dbc_req *reqs = slice->reqs;
1137 struct dbc_req *last_req;
1138 u32 tail = *ptail;
1139 u64 last_bytes;
1140 u32 first_n;
1141 u32 avail;
1142
1143 avail = fifo_space_avail(head, tail, dbc->nelem);
1144
1145 /*
1146 * After this for loop is complete, first_n represents the index
1147 * of the last DMA request of this slice that needs to be
1148 * transferred after resizing and last_bytes represents DMA size
1149 * of that request.
1150 */
1151 last_bytes = resize;
1152 for (first_n = 0; first_n < slice->nents; first_n++)
1153 if (last_bytes > le32_to_cpu(reqs[first_n].len))
1154 last_bytes -= le32_to_cpu(reqs[first_n].len);
1155 else
1156 break;
1157
1158 if (avail < (first_n + 1))
1159 return -EAGAIN;
1160
1161 if (first_n) {
1162 if (tail + first_n > dbc->nelem) {
1163 avail = dbc->nelem - tail;
1164 avail = min_t(u32, avail, first_n);
1165 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail);
1166 last_req = reqs + avail;
1167 avail = first_n - avail;
1168 if (avail)
1169 memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
1170 } else {
1171 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * first_n);
1172 }
1173 }
1174
1175 /*
1176 * Copy over the last entry. Here we need to adjust len to the left over
1177 * size, and set src and dst to the entry it is copied to.
1178 */
1179 last_req = fifo_at(dbc->req_q_base, (tail + first_n) % dbc->nelem);
1180 memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
1181
1182 /*
1183 * last_bytes holds size of a DMA segment, maximum DMA segment size is
1184 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32
1185 * range. So, by down sizing we are not corrupting the value.
1186 */
1187 last_req->len = cpu_to_le32((u32)last_bytes);
1188 last_req->src_addr = reqs[first_n].src_addr;
1189 last_req->dest_addr = reqs[first_n].dest_addr;
1190 if (!last_bytes)
1191 /* Disable DMA transfer */
1192 last_req->cmd = GENMASK(7, 2) & reqs[first_n].cmd;
1193
1194 *ptail = (tail + first_n + 1) % dbc->nelem;
1195
1196 return 0;
1197 }
1198
send_bo_list_to_device(struct qaic_device * qdev,struct drm_file * file_priv,struct qaic_execute_entry * exec,unsigned int count,bool is_partial,struct dma_bridge_chan * dbc,u32 head,u32 * tail)1199 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
1200 struct qaic_execute_entry *exec, unsigned int count,
1201 bool is_partial, struct dma_bridge_chan *dbc, u32 head,
1202 u32 *tail)
1203 {
1204 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1205 struct drm_gem_object *obj;
1206 struct bo_slice *slice;
1207 unsigned long flags;
1208 struct qaic_bo *bo;
1209 int i, j;
1210 int ret;
1211
1212 for (i = 0; i < count; i++) {
1213 /*
1214 * ref count will be decremented when the transfer of this
1215 * buffer is complete. It is inside dbc_irq_threaded_fn().
1216 */
1217 obj = drm_gem_object_lookup(file_priv,
1218 is_partial ? pexec[i].handle : exec[i].handle);
1219 if (!obj) {
1220 ret = -ENOENT;
1221 goto failed_to_send_bo;
1222 }
1223
1224 bo = to_qaic_bo(obj);
1225 ret = mutex_lock_interruptible(&bo->lock);
1226 if (ret)
1227 goto failed_to_send_bo;
1228
1229 if (!bo->sliced) {
1230 ret = -EINVAL;
1231 goto unlock_bo;
1232 }
1233
1234 if (is_partial && pexec[i].resize > bo->base.size) {
1235 ret = -EINVAL;
1236 goto unlock_bo;
1237 }
1238
1239 spin_lock_irqsave(&dbc->xfer_lock, flags);
1240 if (bo_queued(bo)) {
1241 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1242 ret = -EINVAL;
1243 goto unlock_bo;
1244 }
1245
1246 bo->req_id = dbc->next_req_id++;
1247
1248 list_for_each_entry(slice, &bo->slices, slice) {
1249 for (j = 0; j < slice->nents; j++)
1250 slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
1251
1252 if (is_partial && (!pexec[i].resize || pexec[i].resize <= slice->offset))
1253 /* Configure the slice for no DMA transfer */
1254 ret = copy_partial_exec_reqs(qdev, slice, 0, dbc, head, tail);
1255 else if (is_partial && pexec[i].resize < slice->offset + slice->size)
1256 /* Configure the slice to be partially DMA transferred */
1257 ret = copy_partial_exec_reqs(qdev, slice,
1258 pexec[i].resize - slice->offset, dbc,
1259 head, tail);
1260 else
1261 ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
1262 if (ret) {
1263 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1264 goto unlock_bo;
1265 }
1266 }
1267 reinit_completion(&bo->xfer_done);
1268 list_add_tail(&bo->xfer_list, &dbc->xfer_list);
1269 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1270 dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
1271 mutex_unlock(&bo->lock);
1272 }
1273
1274 return 0;
1275
1276 unlock_bo:
1277 mutex_unlock(&bo->lock);
1278 failed_to_send_bo:
1279 if (likely(obj))
1280 drm_gem_object_put(obj);
1281 for (j = 0; j < i; j++) {
1282 spin_lock_irqsave(&dbc->xfer_lock, flags);
1283 bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
1284 obj = &bo->base;
1285 list_del_init(&bo->xfer_list);
1286 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1287 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1288 drm_gem_object_put(obj);
1289 }
1290 return ret;
1291 }
1292
update_profiling_data(struct drm_file * file_priv,struct qaic_execute_entry * exec,unsigned int count,bool is_partial,u64 received_ts,u64 submit_ts,u32 queue_level)1293 static void update_profiling_data(struct drm_file *file_priv,
1294 struct qaic_execute_entry *exec, unsigned int count,
1295 bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
1296 {
1297 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1298 struct drm_gem_object *obj;
1299 struct qaic_bo *bo;
1300 int i;
1301
1302 for (i = 0; i < count; i++) {
1303 /*
1304 * Since we already committed the BO to hardware, the only way
1305 * this should fail is a pending signal. We can't cancel the
1306 * submit to hardware, so we have to just skip the profiling
1307 * data. In case the signal is not fatal to the process, we
1308 * return success so that the user doesn't try to resubmit.
1309 */
1310 obj = drm_gem_object_lookup(file_priv,
1311 is_partial ? pexec[i].handle : exec[i].handle);
1312 if (!obj)
1313 break;
1314 bo = to_qaic_bo(obj);
1315 bo->perf_stats.req_received_ts = received_ts;
1316 bo->perf_stats.req_submit_ts = submit_ts;
1317 bo->perf_stats.queue_level_before = queue_level;
1318 queue_level += bo->total_slice_nents;
1319 drm_gem_object_put(obj);
1320 }
1321 }
1322
__qaic_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv,bool is_partial)1323 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
1324 bool is_partial)
1325 {
1326 struct qaic_execute *args = data;
1327 struct qaic_execute_entry *exec;
1328 struct dma_bridge_chan *dbc;
1329 int usr_rcu_id, qdev_rcu_id;
1330 struct qaic_device *qdev;
1331 struct qaic_user *usr;
1332 u64 received_ts;
1333 u32 queue_level;
1334 u64 submit_ts;
1335 int rcu_id;
1336 u32 head;
1337 u32 tail;
1338 u64 size;
1339 int ret;
1340
1341 received_ts = ktime_get_ns();
1342
1343 size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec);
1344 if (args->hdr.count == 0)
1345 return -EINVAL;
1346
1347 exec = memdup_array_user(u64_to_user_ptr(args->data), args->hdr.count, size);
1348 if (IS_ERR(exec))
1349 return PTR_ERR(exec);
1350
1351 usr = file_priv->driver_priv;
1352 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1353 if (!usr->qddev) {
1354 ret = -ENODEV;
1355 goto unlock_usr_srcu;
1356 }
1357
1358 qdev = usr->qddev->qdev;
1359 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1360 if (qdev->dev_state != QAIC_ONLINE) {
1361 ret = -ENODEV;
1362 goto unlock_dev_srcu;
1363 }
1364
1365 if (args->hdr.dbc_id >= qdev->num_dbc) {
1366 ret = -EINVAL;
1367 goto unlock_dev_srcu;
1368 }
1369
1370 dbc = &qdev->dbc[args->hdr.dbc_id];
1371
1372 rcu_id = srcu_read_lock(&dbc->ch_lock);
1373 if (!dbc->usr || dbc->usr->handle != usr->handle) {
1374 ret = -EPERM;
1375 goto release_ch_rcu;
1376 }
1377
1378 if (dbc->id == qdev->ssr_dbc) {
1379 ret = -EPIPE;
1380 goto release_ch_rcu;
1381 }
1382
1383 ret = mutex_lock_interruptible(&dbc->req_lock);
1384 if (ret)
1385 goto release_ch_rcu;
1386
1387 head = readl(dbc->dbc_base + REQHP_OFF);
1388 tail = readl(dbc->dbc_base + REQTP_OFF);
1389
1390 if (head == U32_MAX || tail == U32_MAX) {
1391 /* PCI link error */
1392 ret = -ENODEV;
1393 goto unlock_req_lock;
1394 }
1395
1396 queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
1397
1398 ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
1399 head, &tail);
1400 if (ret)
1401 goto unlock_req_lock;
1402
1403 /* Finalize commit to hardware */
1404 submit_ts = ktime_get_ns();
1405 writel(tail, dbc->dbc_base + REQTP_OFF);
1406 mutex_unlock(&dbc->req_lock);
1407
1408 update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
1409 submit_ts, queue_level);
1410
1411 if (datapath_polling)
1412 schedule_work(&dbc->poll_work);
1413
1414 unlock_req_lock:
1415 if (ret)
1416 mutex_unlock(&dbc->req_lock);
1417 release_ch_rcu:
1418 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1419 unlock_dev_srcu:
1420 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1421 unlock_usr_srcu:
1422 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1423 kfree(exec);
1424 return ret;
1425 }
1426
qaic_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1427 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1428 {
1429 return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
1430 }
1431
qaic_partial_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1432 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1433 {
1434 return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
1435 }
1436
1437 /*
1438 * Our interrupt handling is a bit more complicated than a simple ideal, but
1439 * sadly necessary.
1440 *
1441 * Each dbc has a completion queue. Entries in the queue correspond to DMA
1442 * requests which the device has processed. The hardware already has a built
1443 * in irq mitigation. When the device puts an entry into the queue, it will
1444 * only trigger an interrupt if the queue was empty. Therefore, when adding
1445 * the Nth event to a non-empty queue, the hardware doesn't trigger an
1446 * interrupt. This means the host doesn't get additional interrupts signaling
1447 * the same thing - the queue has something to process.
1448 * This behavior can be overridden in the DMA request.
1449 * This means that when the host receives an interrupt, it is required to
1450 * drain the queue.
1451 *
1452 * This behavior is what NAPI attempts to accomplish, although we can't use
1453 * NAPI as we don't have a netdev. We use threaded irqs instead.
1454 *
1455 * However, there is a situation where the host drains the queue fast enough
1456 * that every event causes an interrupt. Typically this is not a problem as
1457 * the rate of events would be low. However, that is not the case with
1458 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
1459 * lprnet, the host receives roughly 80k interrupts per second from the device
1460 * (per /proc/interrupts). While NAPI documentation indicates the host should
1461 * just chug along, sadly that behavior causes instability in some hosts.
1462 *
1463 * Therefore, we implement an interrupt disable scheme similar to NAPI. The
1464 * key difference is that we will delay after draining the queue for a small
1465 * time to allow additional events to come in via polling. Using the above
1466 * lprnet workload, this reduces the number of interrupts processed from
1467 * ~80k/sec to about 64 in 5 minutes and appears to solve the system
1468 * instability.
1469 */
dbc_irq_handler(int irq,void * data)1470 irqreturn_t dbc_irq_handler(int irq, void *data)
1471 {
1472 struct dma_bridge_chan *dbc = data;
1473 int rcu_id;
1474 u32 head;
1475 u32 tail;
1476
1477 rcu_id = srcu_read_lock(&dbc->ch_lock);
1478
1479 if (datapath_polling) {
1480 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1481 /*
1482 * Normally datapath_polling will not have irqs enabled, but
1483 * when running with only one MSI the interrupt is shared with
1484 * MHI so it cannot be disabled. Return ASAP instead.
1485 */
1486 return IRQ_HANDLED;
1487 }
1488
1489 if (!dbc->usr) {
1490 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1491 return IRQ_HANDLED;
1492 }
1493
1494 head = readl(dbc->dbc_base + RSPHP_OFF);
1495 if (head == U32_MAX) { /* PCI link error */
1496 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1497 return IRQ_NONE;
1498 }
1499
1500 tail = readl(dbc->dbc_base + RSPTP_OFF);
1501 if (tail == U32_MAX) { /* PCI link error */
1502 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1503 return IRQ_NONE;
1504 }
1505
1506 if (head == tail) { /* queue empty */
1507 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1508 return IRQ_NONE;
1509 }
1510
1511 if (!dbc->qdev->single_msi)
1512 disable_irq_nosync(irq);
1513 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1514 return IRQ_WAKE_THREAD;
1515 }
1516
qaic_irq_polling_work(struct work_struct * work)1517 void qaic_irq_polling_work(struct work_struct *work)
1518 {
1519 struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work);
1520 unsigned long flags;
1521 int rcu_id;
1522 u32 head;
1523 u32 tail;
1524
1525 rcu_id = srcu_read_lock(&dbc->ch_lock);
1526
1527 while (1) {
1528 if (dbc->qdev->dev_state != QAIC_ONLINE) {
1529 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1530 return;
1531 }
1532 if (!dbc->usr) {
1533 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1534 return;
1535 }
1536 spin_lock_irqsave(&dbc->xfer_lock, flags);
1537 if (list_empty(&dbc->xfer_list)) {
1538 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1539 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1540 return;
1541 }
1542 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1543
1544 head = readl(dbc->dbc_base + RSPHP_OFF);
1545 if (head == U32_MAX) { /* PCI link error */
1546 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1547 return;
1548 }
1549
1550 tail = readl(dbc->dbc_base + RSPTP_OFF);
1551 if (tail == U32_MAX) { /* PCI link error */
1552 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1553 return;
1554 }
1555
1556 if (head != tail) {
1557 irq_wake_thread(dbc->irq, dbc);
1558 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1559 return;
1560 }
1561
1562 cond_resched();
1563 usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
1564 }
1565 }
1566
dbc_irq_threaded_fn(int irq,void * data)1567 irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
1568 {
1569 struct dma_bridge_chan *dbc = data;
1570 int event_count = NUM_EVENTS;
1571 int delay_count = NUM_DELAYS;
1572 struct qaic_device *qdev;
1573 struct qaic_bo *bo, *i;
1574 struct dbc_rsp *rsp;
1575 unsigned long flags;
1576 int rcu_id;
1577 u16 status;
1578 u16 req_id;
1579 u32 head;
1580 u32 tail;
1581
1582 rcu_id = srcu_read_lock(&dbc->ch_lock);
1583 qdev = dbc->qdev;
1584
1585 head = readl(dbc->dbc_base + RSPHP_OFF);
1586 if (head == U32_MAX) /* PCI link error */
1587 goto error_out;
1588
1589 read_fifo:
1590
1591 if (!event_count) {
1592 event_count = NUM_EVENTS;
1593 cond_resched();
1594 }
1595
1596 /*
1597 * if this channel isn't assigned or gets unassigned during processing
1598 * we have nothing further to do
1599 */
1600 if (!dbc->usr)
1601 goto error_out;
1602
1603 tail = readl(dbc->dbc_base + RSPTP_OFF);
1604 if (tail == U32_MAX) /* PCI link error */
1605 goto error_out;
1606
1607 if (head == tail) { /* queue empty */
1608 if (delay_count) {
1609 --delay_count;
1610 usleep_range(100, 200);
1611 goto read_fifo; /* check for a new event */
1612 }
1613 goto normal_out;
1614 }
1615
1616 delay_count = NUM_DELAYS;
1617 while (head != tail) {
1618 if (!event_count)
1619 break;
1620 --event_count;
1621 rsp = dbc->rsp_q_base + head * sizeof(*rsp);
1622 req_id = le16_to_cpu(rsp->req_id);
1623 status = le16_to_cpu(rsp->status);
1624 if (status)
1625 pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
1626 spin_lock_irqsave(&dbc->xfer_lock, flags);
1627 /*
1628 * A BO can receive multiple interrupts, since a BO can be
1629 * divided into multiple slices and a buffer receives as many
1630 * interrupts as slices. So until it receives interrupts for
1631 * all the slices we cannot mark that buffer complete.
1632 */
1633 list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
1634 if (bo->req_id == req_id)
1635 bo->nr_slice_xfer_done++;
1636 else
1637 continue;
1638
1639 if (bo->nr_slice_xfer_done < bo->nr_slice)
1640 break;
1641
1642 /*
1643 * At this point we have received all the interrupts for
1644 * BO, which means BO execution is complete.
1645 */
1646 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1647 bo->nr_slice_xfer_done = 0;
1648 list_del_init(&bo->xfer_list);
1649 bo->perf_stats.req_processed_ts = ktime_get_ns();
1650 complete_all(&bo->xfer_done);
1651 drm_gem_object_put(&bo->base);
1652 break;
1653 }
1654 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1655 head = (head + 1) % dbc->nelem;
1656 }
1657
1658 /*
1659 * Update the head pointer of response queue and let the device know
1660 * that we have consumed elements from the queue.
1661 */
1662 writel(head, dbc->dbc_base + RSPHP_OFF);
1663
1664 /* elements might have been put in the queue while we were processing */
1665 goto read_fifo;
1666
1667 normal_out:
1668 if (!qdev->single_msi && likely(!datapath_polling))
1669 enable_irq(irq);
1670 else if (unlikely(datapath_polling))
1671 schedule_work(&dbc->poll_work);
1672 /* checking the fifo and enabling irqs is a race, missed event check */
1673 tail = readl(dbc->dbc_base + RSPTP_OFF);
1674 if (tail != U32_MAX && head != tail) {
1675 if (!qdev->single_msi && likely(!datapath_polling))
1676 disable_irq_nosync(irq);
1677 goto read_fifo;
1678 }
1679 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1680 return IRQ_HANDLED;
1681
1682 error_out:
1683 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1684 if (!qdev->single_msi && likely(!datapath_polling))
1685 enable_irq(irq);
1686 else if (unlikely(datapath_polling))
1687 schedule_work(&dbc->poll_work);
1688
1689 return IRQ_HANDLED;
1690 }
1691
qaic_wait_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1692 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1693 {
1694 struct qaic_wait *args = data;
1695 int usr_rcu_id, qdev_rcu_id;
1696 struct dma_bridge_chan *dbc;
1697 struct drm_gem_object *obj;
1698 struct qaic_device *qdev;
1699 unsigned long timeout;
1700 struct qaic_user *usr;
1701 struct qaic_bo *bo;
1702 int rcu_id;
1703 int ret;
1704
1705 if (args->pad != 0)
1706 return -EINVAL;
1707
1708 usr = file_priv->driver_priv;
1709 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1710 if (!usr->qddev) {
1711 ret = -ENODEV;
1712 goto unlock_usr_srcu;
1713 }
1714
1715 qdev = usr->qddev->qdev;
1716 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1717 if (qdev->dev_state != QAIC_ONLINE) {
1718 ret = -ENODEV;
1719 goto unlock_dev_srcu;
1720 }
1721
1722 if (args->dbc_id >= qdev->num_dbc) {
1723 ret = -EINVAL;
1724 goto unlock_dev_srcu;
1725 }
1726
1727 dbc = &qdev->dbc[args->dbc_id];
1728
1729 rcu_id = srcu_read_lock(&dbc->ch_lock);
1730 if (dbc->usr != usr) {
1731 ret = -EPERM;
1732 goto unlock_ch_srcu;
1733 }
1734
1735 if (dbc->id == qdev->ssr_dbc) {
1736 ret = -EPIPE;
1737 goto unlock_ch_srcu;
1738 }
1739
1740 obj = drm_gem_object_lookup(file_priv, args->handle);
1741 if (!obj) {
1742 ret = -ENOENT;
1743 goto unlock_ch_srcu;
1744 }
1745
1746 bo = to_qaic_bo(obj);
1747 timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
1748 timeout = msecs_to_jiffies(timeout);
1749 ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
1750 if (!ret) {
1751 ret = -ETIMEDOUT;
1752 goto put_obj;
1753 }
1754 if (ret > 0)
1755 ret = 0;
1756
1757 if (!dbc->usr)
1758 ret = -EPERM;
1759
1760 if (dbc->id == qdev->ssr_dbc)
1761 ret = -EPIPE;
1762
1763 put_obj:
1764 drm_gem_object_put(obj);
1765 unlock_ch_srcu:
1766 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1767 unlock_dev_srcu:
1768 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1769 unlock_usr_srcu:
1770 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1771 return ret;
1772 }
1773
qaic_perf_stats_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1774 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1775 {
1776 struct qaic_perf_stats_entry *ent = NULL;
1777 struct qaic_perf_stats *args = data;
1778 int usr_rcu_id, qdev_rcu_id;
1779 struct drm_gem_object *obj;
1780 struct qaic_device *qdev;
1781 struct qaic_user *usr;
1782 struct qaic_bo *bo;
1783 int ret = 0;
1784 int i;
1785
1786 usr = file_priv->driver_priv;
1787 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1788 if (!usr->qddev) {
1789 ret = -ENODEV;
1790 goto unlock_usr_srcu;
1791 }
1792
1793 qdev = usr->qddev->qdev;
1794 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1795 if (qdev->dev_state != QAIC_ONLINE) {
1796 ret = -ENODEV;
1797 goto unlock_dev_srcu;
1798 }
1799
1800 if (args->hdr.dbc_id >= qdev->num_dbc) {
1801 ret = -EINVAL;
1802 goto unlock_dev_srcu;
1803 }
1804
1805 ent = memdup_array_user(u64_to_user_ptr(args->data), args->hdr.count, sizeof(*ent));
1806 if (IS_ERR(ent)) {
1807 ret = PTR_ERR(ent);
1808 goto unlock_dev_srcu;
1809 }
1810
1811 for (i = 0; i < args->hdr.count; i++) {
1812 obj = drm_gem_object_lookup(file_priv, ent[i].handle);
1813 if (!obj) {
1814 ret = -ENOENT;
1815 goto free_ent;
1816 }
1817 bo = to_qaic_bo(obj);
1818 if (!bo->sliced) {
1819 drm_gem_object_put(obj);
1820 ret = -EINVAL;
1821 goto free_ent;
1822 }
1823 if (bo->dbc->id != args->hdr.dbc_id) {
1824 drm_gem_object_put(obj);
1825 ret = -EINVAL;
1826 goto free_ent;
1827 }
1828 /*
1829 * perf stats ioctl is called before wait ioctl is complete then
1830 * the latency information is invalid.
1831 */
1832 if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
1833 ent[i].device_latency_us = 0;
1834 } else {
1835 ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
1836 bo->perf_stats.req_submit_ts), 1000);
1837 }
1838 ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
1839 bo->perf_stats.req_received_ts), 1000);
1840 ent[i].queue_level_before = bo->perf_stats.queue_level_before;
1841 ent[i].num_queue_element = bo->total_slice_nents;
1842 drm_gem_object_put(obj);
1843 }
1844
1845 if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
1846 ret = -EFAULT;
1847
1848 free_ent:
1849 kfree(ent);
1850 unlock_dev_srcu:
1851 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1852 unlock_usr_srcu:
1853 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1854 return ret;
1855 }
1856
detach_slice_bo(struct qaic_device * qdev,struct qaic_bo * bo)1857 static void detach_slice_bo(struct qaic_device *qdev, struct qaic_bo *bo)
1858 {
1859 qaic_free_slices_bo(bo);
1860 qaic_unprepare_bo(qdev, bo);
1861 qaic_init_bo(bo, true);
1862 list_del(&bo->bo_list);
1863 drm_gem_object_put(&bo->base);
1864 }
1865
qaic_detach_slice_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1866 int qaic_detach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1867 {
1868 struct qaic_detach_slice *args = data;
1869 int rcu_id, usr_rcu_id, qdev_rcu_id;
1870 struct dma_bridge_chan *dbc;
1871 struct drm_gem_object *obj;
1872 struct qaic_device *qdev;
1873 struct qaic_user *usr;
1874 unsigned long flags;
1875 struct qaic_bo *bo;
1876 int ret;
1877
1878 if (args->pad != 0)
1879 return -EINVAL;
1880
1881 usr = file_priv->driver_priv;
1882 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1883 if (!usr->qddev) {
1884 ret = -ENODEV;
1885 goto unlock_usr_srcu;
1886 }
1887
1888 qdev = usr->qddev->qdev;
1889 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1890 if (qdev->dev_state != QAIC_ONLINE) {
1891 ret = -ENODEV;
1892 goto unlock_dev_srcu;
1893 }
1894
1895 obj = drm_gem_object_lookup(file_priv, args->handle);
1896 if (!obj) {
1897 ret = -ENOENT;
1898 goto unlock_dev_srcu;
1899 }
1900
1901 bo = to_qaic_bo(obj);
1902 ret = mutex_lock_interruptible(&bo->lock);
1903 if (ret)
1904 goto put_bo;
1905
1906 if (!bo->sliced) {
1907 ret = -EINVAL;
1908 goto unlock_bo;
1909 }
1910
1911 dbc = bo->dbc;
1912 rcu_id = srcu_read_lock(&dbc->ch_lock);
1913 if (dbc->usr != usr) {
1914 ret = -EINVAL;
1915 goto unlock_ch_srcu;
1916 }
1917
1918 /* Check if BO is committed to H/W for DMA */
1919 spin_lock_irqsave(&dbc->xfer_lock, flags);
1920 if (bo_queued(bo)) {
1921 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1922 ret = -EBUSY;
1923 goto unlock_ch_srcu;
1924 }
1925 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1926
1927 detach_slice_bo(qdev, bo);
1928
1929 unlock_ch_srcu:
1930 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1931 unlock_bo:
1932 mutex_unlock(&bo->lock);
1933 put_bo:
1934 drm_gem_object_put(obj);
1935 unlock_dev_srcu:
1936 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1937 unlock_usr_srcu:
1938 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1939 return ret;
1940 }
1941
empty_xfer_list(struct qaic_device * qdev,struct dma_bridge_chan * dbc)1942 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1943 {
1944 unsigned long flags;
1945 struct qaic_bo *bo;
1946
1947 spin_lock_irqsave(&dbc->xfer_lock, flags);
1948 while (!list_empty(&dbc->xfer_list)) {
1949 bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
1950 list_del_init(&bo->xfer_list);
1951 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1952 bo->nr_slice_xfer_done = 0;
1953 bo->req_id = 0;
1954 bo->perf_stats.req_received_ts = 0;
1955 bo->perf_stats.req_submit_ts = 0;
1956 bo->perf_stats.req_processed_ts = 0;
1957 bo->perf_stats.queue_level_before = 0;
1958 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1959 complete_all(&bo->xfer_done);
1960 drm_gem_object_put(&bo->base);
1961 spin_lock_irqsave(&dbc->xfer_lock, flags);
1962 }
1963 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1964 }
1965
sync_empty_xfer_list(struct qaic_device * qdev,struct dma_bridge_chan * dbc)1966 static void sync_empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1967 {
1968 empty_xfer_list(qdev, dbc);
1969 synchronize_srcu(&dbc->ch_lock);
1970 /*
1971 * Threads holding channel lock, may add more elements in the xfer_list.
1972 * Flush out these elements from xfer_list.
1973 */
1974 empty_xfer_list(qdev, dbc);
1975 }
1976
disable_dbc(struct qaic_device * qdev,u32 dbc_id,struct qaic_user * usr)1977 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1978 {
1979 if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
1980 return -EPERM;
1981
1982 qdev->dbc[dbc_id].usr = NULL;
1983 synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
1984 return 0;
1985 }
1986
1987 /**
1988 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
1989 * user. Add user context back to DBC to enable it. This function trusts the
1990 * DBC ID passed and expects the DBC to be disabled.
1991 * @qdev: qaic device handle
1992 * @dbc_id: ID of the DBC
1993 * @usr: User context
1994 */
enable_dbc(struct qaic_device * qdev,u32 dbc_id,struct qaic_user * usr)1995 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1996 {
1997 qdev->dbc[dbc_id].usr = usr;
1998 }
1999
wakeup_dbc(struct qaic_device * qdev,u32 dbc_id)2000 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
2001 {
2002 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
2003
2004 dbc->usr = NULL;
2005 sync_empty_xfer_list(qdev, dbc);
2006 }
2007
release_dbc(struct qaic_device * qdev,u32 dbc_id)2008 void release_dbc(struct qaic_device *qdev, u32 dbc_id)
2009 {
2010 struct qaic_bo *bo, *bo_temp;
2011 struct dma_bridge_chan *dbc;
2012
2013 dbc = &qdev->dbc[dbc_id];
2014 if (!dbc->in_use)
2015 return;
2016
2017 wakeup_dbc(qdev, dbc_id);
2018
2019 dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
2020 dbc->total_size = 0;
2021 dbc->req_q_base = NULL;
2022 dbc->dma_addr = 0;
2023 dbc->nelem = 0;
2024 dbc->usr = NULL;
2025
2026 list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
2027 drm_gem_object_get(&bo->base);
2028 mutex_lock(&bo->lock);
2029 detach_slice_bo(qdev, bo);
2030 mutex_unlock(&bo->lock);
2031 drm_gem_object_put(&bo->base);
2032 }
2033
2034 dbc->in_use = false;
2035 wake_up(&dbc->dbc_release);
2036 }
2037
qaic_data_get_fifo_info(struct dma_bridge_chan * dbc,u32 * head,u32 * tail)2038 void qaic_data_get_fifo_info(struct dma_bridge_chan *dbc, u32 *head, u32 *tail)
2039 {
2040 if (!dbc || !head || !tail)
2041 return;
2042
2043 *head = readl(dbc->dbc_base + REQHP_OFF);
2044 *tail = readl(dbc->dbc_base + REQTP_OFF);
2045 }
2046
2047 /*
2048 * qaic_dbc_enter_ssr - Prepare to enter in sub system reset(SSR) for given DBC ID.
2049 * @qdev: qaic device handle
2050 * @dbc_id: ID of the DBC which will enter SSR
2051 *
2052 * The device will automatically deactivate the workload as not
2053 * all errors can be silently recovered. The user will be
2054 * notified and will need to decide the required recovery
2055 * action to take.
2056 */
qaic_dbc_enter_ssr(struct qaic_device * qdev,u32 dbc_id)2057 void qaic_dbc_enter_ssr(struct qaic_device *qdev, u32 dbc_id)
2058 {
2059 qdev->ssr_dbc = dbc_id;
2060 release_dbc(qdev, dbc_id);
2061 }
2062
2063 /*
2064 * qaic_dbc_exit_ssr - Prepare to exit from sub system reset(SSR) for given DBC ID.
2065 * @qdev: qaic device handle
2066 *
2067 * The DBC returns to an operational state and begins accepting work after exiting SSR.
2068 */
qaic_dbc_exit_ssr(struct qaic_device * qdev)2069 void qaic_dbc_exit_ssr(struct qaic_device *qdev)
2070 {
2071 qdev->ssr_dbc = QAIC_SSR_DBC_SENTINEL;
2072 }
2073