xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision 390db60f8e2bd21fae544917eb3a8618265c058c)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "amdgpu_sdma.h"
40 #include "mes_v11_api_def.h"
41 #include "kfd_debug.h"
42 
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 /* See unmap_queues_cpsch() */
47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff
48 
49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
50 				  u32 pasid, unsigned int vmid);
51 
52 static int execute_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param,
55 				uint32_t grace_period);
56 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
57 				enum kfd_unmap_queues_filter filter,
58 				uint32_t filter_param,
59 				uint32_t grace_period,
60 				bool reset);
61 
62 static int map_queues_cpsch(struct device_queue_manager *dqm);
63 
64 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
65 				struct queue *q);
66 
67 static inline void deallocate_hqd(struct device_queue_manager *dqm,
68 				struct queue *q);
69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
70 static int allocate_sdma_queue(struct device_queue_manager *dqm,
71 				struct queue *q, const uint32_t *restore_sdma_id);
72 
73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma);
74 
75 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
77 {
78 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
79 		return KFD_MQD_TYPE_SDMA;
80 	return KFD_MQD_TYPE_CP;
81 }
82 
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
84 {
85 	int i;
86 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
87 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
88 
89 	/* queue is available for KFD usage if bit is 1 */
90 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
91 		if (test_bit(pipe_offset + i,
92 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
93 			return true;
94 	return false;
95 }
96 
get_cp_queues_num(struct device_queue_manager * dqm)97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
98 {
99 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
100 				AMDGPU_MAX_QUEUES);
101 }
102 
get_queues_per_pipe(struct device_queue_manager * dqm)103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
104 {
105 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
106 }
107 
get_pipes_per_mec(struct device_queue_manager * dqm)108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
109 {
110 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
111 }
112 
get_num_all_sdma_engines(struct device_queue_manager * dqm)113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
114 {
115 	return kfd_get_num_sdma_engines(dqm->dev) +
116 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
117 }
118 
get_num_sdma_queues(struct device_queue_manager * dqm)119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
120 {
121 	return kfd_get_num_sdma_engines(dqm->dev) *
122 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
123 }
124 
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
126 {
127 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
128 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
129 }
130 
init_sdma_bitmaps(struct device_queue_manager * dqm)131 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
132 {
133 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
134 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
135 
136 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
137 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
138 
139 	/* Mask out the reserved queues */
140 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
141 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
142 		      KFD_MAX_SDMA_QUEUES);
143 }
144 
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)145 void program_sh_mem_settings(struct device_queue_manager *dqm,
146 					struct qcm_process_device *qpd)
147 {
148 	uint32_t xcc_mask = dqm->dev->xcc_mask;
149 	int xcc_id;
150 
151 	for_each_inst(xcc_id, xcc_mask)
152 		dqm->dev->kfd2kgd->program_sh_mem_settings(
153 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
154 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
155 			qpd->sh_mem_bases, xcc_id);
156 }
157 
kfd_hws_hang(struct device_queue_manager * dqm)158 static void kfd_hws_hang(struct device_queue_manager *dqm)
159 {
160 	struct device_process_node *cur;
161 	struct qcm_process_device *qpd;
162 	struct queue *q;
163 
164 	/* Mark all device queues as reset. */
165 	list_for_each_entry(cur, &dqm->queues, list) {
166 		qpd = cur->qpd;
167 		list_for_each_entry(q, &qpd->queues_list, list) {
168 			struct kfd_process_device *pdd = qpd_to_pdd(qpd);
169 
170 			pdd->has_reset_queue = true;
171 		}
172 	}
173 
174 	/*
175 	 * Issue a GPU reset if HWS is unresponsive
176 	 */
177 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
178 }
179 
convert_to_mes_queue_type(int queue_type)180 static int convert_to_mes_queue_type(int queue_type)
181 {
182 	int mes_queue_type;
183 
184 	switch (queue_type) {
185 	case KFD_QUEUE_TYPE_COMPUTE:
186 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
187 		break;
188 	case KFD_QUEUE_TYPE_SDMA:
189 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
190 		break;
191 	default:
192 		WARN(1, "Invalid queue type %d", queue_type);
193 		mes_queue_type = -EINVAL;
194 		break;
195 	}
196 
197 	return mes_queue_type;
198 }
199 
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)200 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
201 			 struct qcm_process_device *qpd)
202 {
203 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
204 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
205 	struct mes_add_queue_input queue_input;
206 	int r, queue_type;
207 	uint64_t wptr_addr_off;
208 
209 	if (!dqm->sched_running || dqm->sched_halt)
210 		return 0;
211 	if (!down_read_trylock(&adev->reset_domain->sem))
212 		return -EIO;
213 
214 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
215 	queue_input.process_id = pdd->pasid;
216 	queue_input.page_table_base_addr =  qpd->page_table_base;
217 	queue_input.process_va_start = 0;
218 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
219 	/* MES unit for quantum is 100ns */
220 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
221 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
222 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
223 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
224 	queue_input.inprocess_gang_priority = q->properties.priority;
225 	queue_input.gang_global_priority_level =
226 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
227 	queue_input.doorbell_offset = q->properties.doorbell_off;
228 	queue_input.mqd_addr = q->gart_mqd_addr;
229 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
230 
231 	wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
232 	queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
233 
234 	queue_input.is_kfd_process = 1;
235 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
236 	queue_input.queue_size = q->properties.queue_size >> 2;
237 
238 	queue_input.paging = false;
239 	queue_input.tba_addr = qpd->tba_addr;
240 	queue_input.tma_addr = qpd->tma_addr;
241 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
242 	queue_input.skip_process_ctx_clear =
243 		qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
244 						(qpd->pqm->process->debug_trap_enabled ||
245 						 kfd_dbg_has_ttmps_always_setup(q->device));
246 
247 	queue_type = convert_to_mes_queue_type(q->properties.type);
248 	if (queue_type < 0) {
249 		dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
250 			q->properties.type);
251 		up_read(&adev->reset_domain->sem);
252 		return -EINVAL;
253 	}
254 	queue_input.queue_type = (uint32_t)queue_type;
255 
256 	queue_input.exclusively_scheduled = q->properties.is_gws;
257 
258 	amdgpu_mes_lock(&adev->mes);
259 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
260 	amdgpu_mes_unlock(&adev->mes);
261 	up_read(&adev->reset_domain->sem);
262 	if (r) {
263 		dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
264 			q->properties.doorbell_off);
265 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
266 		kfd_hws_hang(dqm);
267 	}
268 
269 	return r;
270 }
271 
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)272 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
273 			struct qcm_process_device *qpd)
274 {
275 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
276 	int r;
277 	struct mes_remove_queue_input queue_input;
278 
279 	if (!dqm->sched_running || dqm->sched_halt)
280 		return 0;
281 	if (!down_read_trylock(&adev->reset_domain->sem))
282 		return -EIO;
283 
284 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
285 	queue_input.doorbell_offset = q->properties.doorbell_off;
286 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
287 
288 	amdgpu_mes_lock(&adev->mes);
289 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
290 	amdgpu_mes_unlock(&adev->mes);
291 	up_read(&adev->reset_domain->sem);
292 
293 	if (r) {
294 		dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
295 			q->properties.doorbell_off);
296 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
297 		kfd_hws_hang(dqm);
298 	}
299 
300 	return r;
301 }
302 
remove_all_kfd_queues_mes(struct device_queue_manager * dqm)303 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
304 {
305 	struct device_process_node *cur;
306 	struct device *dev = dqm->dev->adev->dev;
307 	struct qcm_process_device *qpd;
308 	struct queue *q;
309 	int retval = 0;
310 
311 	list_for_each_entry(cur, &dqm->queues, list) {
312 		qpd = cur->qpd;
313 		list_for_each_entry(q, &qpd->queues_list, list) {
314 			if (q->properties.is_active) {
315 				retval = remove_queue_mes(dqm, q, qpd);
316 				if (retval) {
317 					dev_err(dev, "%s: Failed to remove queue %d for dev %d",
318 						__func__,
319 						q->properties.queue_id,
320 						dqm->dev->id);
321 					return retval;
322 				}
323 			}
324 		}
325 	}
326 
327 	return retval;
328 }
329 
add_all_kfd_queues_mes(struct device_queue_manager * dqm)330 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
331 {
332 	struct device_process_node *cur;
333 	struct device *dev = dqm->dev->adev->dev;
334 	struct qcm_process_device *qpd;
335 	struct queue *q;
336 	int retval = 0;
337 
338 	list_for_each_entry(cur, &dqm->queues, list) {
339 		qpd = cur->qpd;
340 		list_for_each_entry(q, &qpd->queues_list, list) {
341 			if (!q->properties.is_active)
342 				continue;
343 			retval = add_queue_mes(dqm, q, qpd);
344 			if (retval) {
345 				dev_err(dev, "%s: Failed to add queue %d for dev %d",
346 					__func__,
347 					q->properties.queue_id,
348 					dqm->dev->id);
349 				return retval;
350 			}
351 		}
352 	}
353 
354 	return retval;
355 }
356 
suspend_all_queues_mes(struct device_queue_manager * dqm)357 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
358 {
359 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
360 	int r = 0;
361 
362 	if (!down_read_trylock(&adev->reset_domain->sem))
363 		return -EIO;
364 
365 	r = amdgpu_mes_suspend(adev);
366 	up_read(&adev->reset_domain->sem);
367 
368 	if (r) {
369 		dev_err(adev->dev, "failed to suspend gangs from MES\n");
370 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
371 		kfd_hws_hang(dqm);
372 	}
373 
374 	return r;
375 }
376 
resume_all_queues_mes(struct device_queue_manager * dqm)377 static int resume_all_queues_mes(struct device_queue_manager *dqm)
378 {
379 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
380 	int r = 0;
381 
382 	if (!down_read_trylock(&adev->reset_domain->sem))
383 		return -EIO;
384 
385 	r = amdgpu_mes_resume(adev);
386 	up_read(&adev->reset_domain->sem);
387 
388 	if (r) {
389 		dev_err(adev->dev, "failed to resume gangs from MES\n");
390 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
391 		kfd_hws_hang(dqm);
392 	}
393 
394 	return r;
395 }
396 
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)397 static void increment_queue_count(struct device_queue_manager *dqm,
398 				  struct qcm_process_device *qpd,
399 				  struct queue *q)
400 {
401 	dqm->active_queue_count++;
402 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
403 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
404 		dqm->active_cp_queue_count++;
405 
406 	if (q->properties.is_gws) {
407 		dqm->gws_queue_count++;
408 		qpd->mapped_gws_queue = true;
409 	}
410 }
411 
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)412 static void decrement_queue_count(struct device_queue_manager *dqm,
413 				  struct qcm_process_device *qpd,
414 				  struct queue *q)
415 {
416 	dqm->active_queue_count--;
417 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
418 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
419 		dqm->active_cp_queue_count--;
420 
421 	if (q->properties.is_gws) {
422 		dqm->gws_queue_count--;
423 		qpd->mapped_gws_queue = false;
424 	}
425 }
426 
427 /*
428  * Allocate a doorbell ID to this queue.
429  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
430  */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)431 static int allocate_doorbell(struct qcm_process_device *qpd,
432 			     struct queue *q,
433 			     uint32_t const *restore_id)
434 {
435 	struct kfd_node *dev = qpd->dqm->dev;
436 
437 	if (!KFD_IS_SOC15(dev)) {
438 		/* On pre-SOC15 chips we need to use the queue ID to
439 		 * preserve the user mode ABI.
440 		 */
441 
442 		if (restore_id && *restore_id != q->properties.queue_id)
443 			return -EINVAL;
444 
445 		q->doorbell_id = q->properties.queue_id;
446 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
447 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
448 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
449 		 * doorbell assignments based on the engine and queue id.
450 		 * The doobell index distance between RLC (2*i) and (2*i+1)
451 		 * for a SDMA engine is 512.
452 		 */
453 
454 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
455 
456 		/*
457 		 * q->properties.sdma_engine_id corresponds to the virtual
458 		 * sdma engine number. However, for doorbell allocation,
459 		 * we need the physical sdma engine id in order to get the
460 		 * correct doorbell offset.
461 		 */
462 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
463 					       get_num_all_sdma_engines(qpd->dqm) +
464 					       q->properties.sdma_engine_id]
465 						+ (q->properties.sdma_queue_id & 1)
466 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
467 						+ (q->properties.sdma_queue_id >> 1);
468 
469 		if (restore_id && *restore_id != valid_id)
470 			return -EINVAL;
471 		q->doorbell_id = valid_id;
472 	} else {
473 		/* For CP queues on SOC15 */
474 		if (restore_id) {
475 			/* make sure that ID is free  */
476 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
477 				return -EINVAL;
478 
479 			q->doorbell_id = *restore_id;
480 		} else {
481 			/* or reserve a free doorbell ID */
482 			unsigned int found;
483 
484 			found = find_first_zero_bit(qpd->doorbell_bitmap,
485 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
486 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
487 				pr_debug("No doorbells available");
488 				return -EBUSY;
489 			}
490 			set_bit(found, qpd->doorbell_bitmap);
491 			q->doorbell_id = found;
492 		}
493 	}
494 
495 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
496 								  qpd->proc_doorbells,
497 								  q->doorbell_id,
498 								  dev->kfd->device_info.doorbell_size);
499 	return 0;
500 }
501 
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)502 static void deallocate_doorbell(struct qcm_process_device *qpd,
503 				struct queue *q)
504 {
505 	unsigned int old;
506 	struct kfd_node *dev = qpd->dqm->dev;
507 
508 	if (!KFD_IS_SOC15(dev) ||
509 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
510 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
511 		return;
512 
513 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
514 	WARN_ON(!old);
515 }
516 
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)517 static void program_trap_handler_settings(struct device_queue_manager *dqm,
518 				struct qcm_process_device *qpd)
519 {
520 	uint32_t xcc_mask = dqm->dev->xcc_mask;
521 	int xcc_id;
522 
523 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
524 		for_each_inst(xcc_id, xcc_mask)
525 			dqm->dev->kfd2kgd->program_trap_handler_settings(
526 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
527 				qpd->tma_addr, xcc_id);
528 }
529 
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)530 static int allocate_vmid(struct device_queue_manager *dqm,
531 			struct qcm_process_device *qpd,
532 			struct queue *q)
533 {
534 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
535 	struct device *dev = dqm->dev->adev->dev;
536 	int allocated_vmid = -1, i;
537 
538 	for (i = dqm->dev->vm_info.first_vmid_kfd;
539 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
540 		if (!dqm->vmid_pasid[i]) {
541 			allocated_vmid = i;
542 			break;
543 		}
544 	}
545 
546 	if (allocated_vmid < 0) {
547 		dev_err(dev, "no more vmid to allocate\n");
548 		return -ENOSPC;
549 	}
550 
551 	pr_debug("vmid allocated: %d\n", allocated_vmid);
552 
553 	dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
554 
555 	set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
556 
557 	qpd->vmid = allocated_vmid;
558 	q->properties.vmid = allocated_vmid;
559 
560 	program_sh_mem_settings(dqm, qpd);
561 
562 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
563 		program_trap_handler_settings(dqm, qpd);
564 
565 	/* qpd->page_table_base is set earlier when register_process()
566 	 * is called, i.e. when the first queue is created.
567 	 */
568 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
569 			qpd->vmid,
570 			qpd->page_table_base);
571 	/* invalidate the VM context after pasid and vmid mapping is set up */
572 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
573 
574 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
575 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
576 				qpd->sh_hidden_private_base, qpd->vmid);
577 
578 	return 0;
579 }
580 
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)581 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
582 				struct qcm_process_device *qpd)
583 {
584 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
585 	int ret;
586 
587 	if (!qpd->ib_kaddr)
588 		return -ENOMEM;
589 
590 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
591 	if (ret)
592 		return ret;
593 
594 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
595 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
596 				pmf->release_mem_size / sizeof(uint32_t));
597 }
598 
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)599 static void deallocate_vmid(struct device_queue_manager *dqm,
600 				struct qcm_process_device *qpd,
601 				struct queue *q)
602 {
603 	struct device *dev = dqm->dev->adev->dev;
604 
605 	/* On GFX v7, CP doesn't flush TC at dequeue */
606 	if (q->device->adev->asic_type == CHIP_HAWAII)
607 		if (flush_texture_cache_nocpsch(q->device, qpd))
608 			dev_err(dev, "Failed to flush TC\n");
609 
610 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
611 
612 	/* Release the vmid mapping */
613 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
614 	dqm->vmid_pasid[qpd->vmid] = 0;
615 
616 	qpd->vmid = 0;
617 	q->properties.vmid = 0;
618 }
619 
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)620 static int create_queue_nocpsch(struct device_queue_manager *dqm,
621 				struct queue *q,
622 				struct qcm_process_device *qpd,
623 				const struct kfd_criu_queue_priv_data *qd,
624 				const void *restore_mqd, const void *restore_ctl_stack)
625 {
626 	struct mqd_manager *mqd_mgr;
627 	int retval;
628 
629 	dqm_lock(dqm);
630 
631 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
632 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
633 				dqm->total_queue_count);
634 		retval = -EPERM;
635 		goto out_unlock;
636 	}
637 
638 	if (list_empty(&qpd->queues_list)) {
639 		retval = allocate_vmid(dqm, qpd, q);
640 		if (retval)
641 			goto out_unlock;
642 	}
643 	q->properties.vmid = qpd->vmid;
644 	/*
645 	 * Eviction state logic: mark all queues as evicted, even ones
646 	 * not currently active. Restoring inactive queues later only
647 	 * updates the is_evicted flag but is a no-op otherwise.
648 	 */
649 	q->properties.is_evicted = !!qpd->evicted;
650 
651 	q->properties.tba_addr = qpd->tba_addr;
652 	q->properties.tma_addr = qpd->tma_addr;
653 
654 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
655 			q->properties.type)];
656 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
657 		retval = allocate_hqd(dqm, q);
658 		if (retval)
659 			goto deallocate_vmid;
660 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
661 			q->pipe, q->queue);
662 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
663 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
664 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
665 		if (retval)
666 			goto deallocate_vmid;
667 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
668 	}
669 
670 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
671 	if (retval)
672 		goto out_deallocate_hqd;
673 
674 	/* Temporarily release dqm lock to avoid a circular lock dependency */
675 	dqm_unlock(dqm);
676 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
677 	dqm_lock(dqm);
678 
679 	if (!q->mqd_mem_obj) {
680 		retval = -ENOMEM;
681 		goto out_deallocate_doorbell;
682 	}
683 
684 	if (qd)
685 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
686 				     &q->properties, restore_mqd, restore_ctl_stack,
687 				     qd->ctl_stack_size);
688 	else
689 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
690 					&q->gart_mqd_addr, &q->properties);
691 
692 	if (q->properties.is_active) {
693 		if (!dqm->sched_running) {
694 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
695 			goto add_queue_to_list;
696 		}
697 
698 		if (WARN(q->process->mm != current->mm,
699 					"should only run in user thread"))
700 			retval = -EFAULT;
701 		else
702 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
703 					q->queue, &q->properties, current->mm);
704 		if (retval)
705 			goto out_free_mqd;
706 	}
707 
708 add_queue_to_list:
709 	list_add(&q->list, &qpd->queues_list);
710 	qpd->queue_count++;
711 	if (q->properties.is_active)
712 		increment_queue_count(dqm, qpd, q);
713 
714 	/*
715 	 * Unconditionally increment this counter, regardless of the queue's
716 	 * type or whether the queue is active.
717 	 */
718 	dqm->total_queue_count++;
719 	pr_debug("Total of %d queues are accountable so far\n",
720 			dqm->total_queue_count);
721 	goto out_unlock;
722 
723 out_free_mqd:
724 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
725 out_deallocate_doorbell:
726 	deallocate_doorbell(qpd, q);
727 out_deallocate_hqd:
728 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
729 		deallocate_hqd(dqm, q);
730 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
731 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
732 		deallocate_sdma_queue(dqm, q);
733 deallocate_vmid:
734 	if (list_empty(&qpd->queues_list))
735 		deallocate_vmid(dqm, qpd, q);
736 out_unlock:
737 	dqm_unlock(dqm);
738 	return retval;
739 }
740 
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)741 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
742 {
743 	bool set;
744 	int pipe, bit, i;
745 
746 	set = false;
747 
748 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
749 			i < get_pipes_per_mec(dqm);
750 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
751 
752 		if (!is_pipe_enabled(dqm, 0, pipe))
753 			continue;
754 
755 		if (dqm->allocated_queues[pipe] != 0) {
756 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
757 			dqm->allocated_queues[pipe] &= ~(1 << bit);
758 			q->pipe = pipe;
759 			q->queue = bit;
760 			set = true;
761 			break;
762 		}
763 	}
764 
765 	if (!set)
766 		return -EBUSY;
767 
768 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
769 	/* horizontal hqd allocation */
770 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
771 
772 	return 0;
773 }
774 
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)775 static inline void deallocate_hqd(struct device_queue_manager *dqm,
776 				struct queue *q)
777 {
778 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
779 }
780 
781 #define SQ_IND_CMD_CMD_KILL		0x00000003
782 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
783 
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)784 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
785 {
786 	int status = 0;
787 	unsigned int vmid;
788 	uint16_t queried_pasid;
789 	union SQ_CMD_BITS reg_sq_cmd;
790 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
791 	struct kfd_process_device *pdd;
792 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
793 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
794 	uint32_t xcc_mask = dev->xcc_mask;
795 	int xcc_id;
796 
797 	reg_sq_cmd.u32All = 0;
798 	reg_gfx_index.u32All = 0;
799 
800 	pr_debug("Killing all process wavefronts\n");
801 
802 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
803 		dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
804 		return -EOPNOTSUPP;
805 	}
806 
807 	/* taking the VMID for that process on the safe way using PDD */
808 	pdd = kfd_get_process_device_data(dev, p);
809 	if (!pdd)
810 		return -EFAULT;
811 
812 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
813 	 * ATC_VMID15_PASID_MAPPING
814 	 * to check which VMID the current process is mapped to.
815 	 */
816 
817 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
818 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
819 				(dev->adev, vmid, &queried_pasid);
820 
821 		if (status && queried_pasid == pdd->pasid) {
822 			pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
823 					vmid, p->lead_thread->pid);
824 			break;
825 		}
826 	}
827 
828 	if (vmid > last_vmid_to_scan) {
829 		dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
830 				p->lead_thread->pid);
831 		return -EFAULT;
832 	}
833 
834 	reg_gfx_index.bits.sh_broadcast_writes = 1;
835 	reg_gfx_index.bits.se_broadcast_writes = 1;
836 	reg_gfx_index.bits.instance_broadcast_writes = 1;
837 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
838 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
839 	reg_sq_cmd.bits.vm_id = vmid;
840 
841 	for_each_inst(xcc_id, xcc_mask)
842 		dev->kfd2kgd->wave_control_execute(
843 			dev->adev, reg_gfx_index.u32All,
844 			reg_sq_cmd.u32All, xcc_id);
845 
846 	return 0;
847 }
848 
849 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
850  * to avoid asynchronized access
851  */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)852 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
853 				struct qcm_process_device *qpd,
854 				struct queue *q)
855 {
856 	int retval;
857 	struct mqd_manager *mqd_mgr;
858 
859 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
860 			q->properties.type)];
861 
862 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
863 		deallocate_hqd(dqm, q);
864 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
865 		deallocate_sdma_queue(dqm, q);
866 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
867 		deallocate_sdma_queue(dqm, q);
868 	else {
869 		pr_debug("q->properties.type %d is invalid\n",
870 				q->properties.type);
871 		return -EINVAL;
872 	}
873 	dqm->total_queue_count--;
874 
875 	deallocate_doorbell(qpd, q);
876 
877 	if (!dqm->sched_running) {
878 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
879 		return 0;
880 	}
881 
882 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
883 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
884 				KFD_UNMAP_LATENCY_MS,
885 				q->pipe, q->queue);
886 	if (retval == -ETIME)
887 		qpd->reset_wavefronts = true;
888 
889 	list_del(&q->list);
890 	if (list_empty(&qpd->queues_list)) {
891 		if (qpd->reset_wavefronts) {
892 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
893 					dqm->dev);
894 			/* dbgdev_wave_reset_wavefronts has to be called before
895 			 * deallocate_vmid(), i.e. when vmid is still in use.
896 			 */
897 			dbgdev_wave_reset_wavefronts(dqm->dev,
898 					qpd->pqm->process);
899 			qpd->reset_wavefronts = false;
900 		}
901 
902 		deallocate_vmid(dqm, qpd, q);
903 	}
904 	qpd->queue_count--;
905 	if (q->properties.is_active)
906 		decrement_queue_count(dqm, qpd, q);
907 
908 	return retval;
909 }
910 
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)911 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
912 				struct qcm_process_device *qpd,
913 				struct queue *q)
914 {
915 	int retval;
916 	uint64_t sdma_val = 0;
917 	struct device *dev = dqm->dev->adev->dev;
918 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
919 	struct mqd_manager *mqd_mgr =
920 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
921 
922 	/* Get the SDMA queue stats */
923 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
924 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
925 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
926 							&sdma_val);
927 		if (retval)
928 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
929 				q->properties.queue_id);
930 	}
931 
932 	dqm_lock(dqm);
933 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
934 	if (!retval)
935 		pdd->sdma_past_activity_counter += sdma_val;
936 	dqm_unlock(dqm);
937 
938 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
939 
940 	return retval;
941 }
942 
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)943 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
944 			struct mqd_update_info *minfo)
945 {
946 	int retval = 0;
947 	struct device *dev = dqm->dev->adev->dev;
948 	struct mqd_manager *mqd_mgr;
949 	struct kfd_process_device *pdd;
950 	bool prev_active = false;
951 
952 	dqm_lock(dqm);
953 	pdd = kfd_get_process_device_data(q->device, q->process);
954 	if (!pdd) {
955 		retval = -ENODEV;
956 		goto out_unlock;
957 	}
958 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
959 			q->properties.type)];
960 
961 	/* Save previous activity state for counters */
962 	prev_active = q->properties.is_active;
963 
964 	/* Make sure the queue is unmapped before updating the MQD */
965 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
966 		if (!dqm->dev->kfd->shared_resources.enable_mes)
967 			retval = unmap_queues_cpsch(dqm,
968 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
969 		else if (prev_active)
970 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
971 
972 		/* queue is reset so inaccessable  */
973 		if (pdd->has_reset_queue) {
974 			retval = -EACCES;
975 			goto out_unlock;
976 		}
977 
978 		if (retval) {
979 			dev_err(dev, "unmap queue failed\n");
980 			goto out_unlock;
981 		}
982 	} else if (prev_active &&
983 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
984 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
985 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
986 
987 		if (!dqm->sched_running) {
988 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
989 			goto out_unlock;
990 		}
991 
992 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
993 				(dqm->dev->kfd->cwsr_enabled ?
994 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
995 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
996 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
997 		if (retval) {
998 			dev_err(dev, "destroy mqd failed\n");
999 			goto out_unlock;
1000 		}
1001 	}
1002 
1003 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1004 
1005 	/*
1006 	 * check active state vs. the previous state and modify
1007 	 * counter accordingly. map_queues_cpsch uses the
1008 	 * dqm->active_queue_count to determine whether a new runlist must be
1009 	 * uploaded.
1010 	 */
1011 	if (q->properties.is_active && !prev_active) {
1012 		increment_queue_count(dqm, &pdd->qpd, q);
1013 	} else if (!q->properties.is_active && prev_active) {
1014 		decrement_queue_count(dqm, &pdd->qpd, q);
1015 	} else if (q->gws && !q->properties.is_gws) {
1016 		if (q->properties.is_active) {
1017 			dqm->gws_queue_count++;
1018 			pdd->qpd.mapped_gws_queue = true;
1019 		}
1020 		q->properties.is_gws = true;
1021 	} else if (!q->gws && q->properties.is_gws) {
1022 		if (q->properties.is_active) {
1023 			dqm->gws_queue_count--;
1024 			pdd->qpd.mapped_gws_queue = false;
1025 		}
1026 		q->properties.is_gws = false;
1027 	}
1028 
1029 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1030 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1031 			retval = map_queues_cpsch(dqm);
1032 		else if (q->properties.is_active)
1033 			retval = add_queue_mes(dqm, q, &pdd->qpd);
1034 	} else if (q->properties.is_active &&
1035 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1036 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1037 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1038 		if (WARN(q->process->mm != current->mm,
1039 			 "should only run in user thread"))
1040 			retval = -EFAULT;
1041 		else
1042 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1043 						   q->pipe, q->queue,
1044 						   &q->properties, current->mm);
1045 	}
1046 
1047 out_unlock:
1048 	dqm_unlock(dqm);
1049 	return retval;
1050 }
1051 
1052 /* suspend_single_queue does not lock the dqm like the
1053  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1054  * lock the dqm before calling, and unlock after calling.
1055  *
1056  * The reason we don't lock the dqm is because this function may be
1057  * called on multiple queues in a loop, so rather than locking/unlocking
1058  * multiple times, we will just keep the dqm locked for all of the calls.
1059  */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)1060 static int suspend_single_queue(struct device_queue_manager *dqm,
1061 				      struct kfd_process_device *pdd,
1062 				      struct queue *q)
1063 {
1064 	bool is_new;
1065 
1066 	if (q->properties.is_suspended)
1067 		return 0;
1068 
1069 	pr_debug("Suspending process pid %d queue [%i]\n",
1070 			pdd->process->lead_thread->pid,
1071 			q->properties.queue_id);
1072 
1073 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1074 
1075 	if (is_new || q->properties.is_being_destroyed) {
1076 		pr_debug("Suspend: skip %s queue id %i\n",
1077 				is_new ? "new" : "destroyed",
1078 				q->properties.queue_id);
1079 		return -EBUSY;
1080 	}
1081 
1082 	q->properties.is_suspended = true;
1083 	if (q->properties.is_active) {
1084 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1085 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
1086 
1087 			if (r)
1088 				return r;
1089 		}
1090 
1091 		decrement_queue_count(dqm, &pdd->qpd, q);
1092 		q->properties.is_active = false;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /* resume_single_queue does not lock the dqm like the functions
1099  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1100  * lock the dqm before calling, and unlock after calling.
1101  *
1102  * The reason we don't lock the dqm is because this function may be
1103  * called on multiple queues in a loop, so rather than locking/unlocking
1104  * multiple times, we will just keep the dqm locked for all of the calls.
1105  */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1106 static int resume_single_queue(struct device_queue_manager *dqm,
1107 				      struct qcm_process_device *qpd,
1108 				      struct queue *q)
1109 {
1110 	struct kfd_process_device *pdd;
1111 
1112 	if (!q->properties.is_suspended)
1113 		return 0;
1114 
1115 	pdd = qpd_to_pdd(qpd);
1116 
1117 	pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1118 			    pdd->process->lead_thread->pid,
1119 			    q->properties.queue_id);
1120 
1121 	q->properties.is_suspended = false;
1122 
1123 	if (QUEUE_IS_ACTIVE(q->properties)) {
1124 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1125 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1126 
1127 			if (r)
1128 				return r;
1129 		}
1130 
1131 		q->properties.is_active = true;
1132 		increment_queue_count(dqm, qpd, q);
1133 	}
1134 
1135 	return 0;
1136 }
1137 
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1138 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1139 					struct qcm_process_device *qpd)
1140 {
1141 	struct queue *q;
1142 	struct mqd_manager *mqd_mgr;
1143 	struct kfd_process_device *pdd;
1144 	int retval, ret = 0;
1145 
1146 	dqm_lock(dqm);
1147 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1148 		goto out;
1149 
1150 	pdd = qpd_to_pdd(qpd);
1151 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1152 			    pdd->process->lead_thread->pid);
1153 
1154 	pdd->last_evict_timestamp = get_jiffies_64();
1155 	/* Mark all queues as evicted. Deactivate all active queues on
1156 	 * the qpd.
1157 	 */
1158 	list_for_each_entry(q, &qpd->queues_list, list) {
1159 		q->properties.is_evicted = true;
1160 		if (!q->properties.is_active)
1161 			continue;
1162 
1163 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1164 				q->properties.type)];
1165 		q->properties.is_active = false;
1166 		decrement_queue_count(dqm, qpd, q);
1167 
1168 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1169 			continue;
1170 
1171 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1172 				(dqm->dev->kfd->cwsr_enabled ?
1173 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1174 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1175 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1176 		if (retval && !ret)
1177 			/* Return the first error, but keep going to
1178 			 * maintain a consistent eviction state
1179 			 */
1180 			ret = retval;
1181 	}
1182 
1183 out:
1184 	dqm_unlock(dqm);
1185 	return ret;
1186 }
1187 
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1188 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1189 				      struct qcm_process_device *qpd)
1190 {
1191 	struct queue *q;
1192 	struct device *dev = dqm->dev->adev->dev;
1193 	struct kfd_process_device *pdd;
1194 	int retval = 0;
1195 
1196 	dqm_lock(dqm);
1197 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1198 		goto out;
1199 
1200 	pdd = qpd_to_pdd(qpd);
1201 
1202 	/* The debugger creates processes that temporarily have not acquired
1203 	 * all VMs for all devices and has no VMs itself.
1204 	 * Skip queue eviction on process eviction.
1205 	 */
1206 	if (!pdd->drm_priv)
1207 		goto out;
1208 
1209 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1210 			    pdd->process->lead_thread->pid);
1211 
1212 	if (dqm->dev->kfd->shared_resources.enable_mes) {
1213 		pdd->last_evict_timestamp = get_jiffies_64();
1214 		retval = suspend_all_queues_mes(dqm);
1215 		if (retval) {
1216 			dev_err(dev, "Suspending all queues failed");
1217 			goto out;
1218 		}
1219 	}
1220 
1221 	/* Mark all queues as evicted. Deactivate all active queues on
1222 	 * the qpd.
1223 	 */
1224 	list_for_each_entry(q, &qpd->queues_list, list) {
1225 		q->properties.is_evicted = true;
1226 		if (!q->properties.is_active)
1227 			continue;
1228 
1229 		q->properties.is_active = false;
1230 		decrement_queue_count(dqm, qpd, q);
1231 
1232 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1233 			retval = remove_queue_mes(dqm, q, qpd);
1234 			if (retval) {
1235 				dev_err(dev, "Failed to evict queue %d\n",
1236 					q->properties.queue_id);
1237 				goto out;
1238 			}
1239 		}
1240 	}
1241 
1242 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1243 		pdd->last_evict_timestamp = get_jiffies_64();
1244 		retval = execute_queues_cpsch(dqm,
1245 					      qpd->is_debug ?
1246 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1247 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1248 					      USE_DEFAULT_GRACE_PERIOD);
1249 	} else {
1250 		retval = resume_all_queues_mes(dqm);
1251 		if (retval)
1252 			dev_err(dev, "Resuming all queues failed");
1253 	}
1254 
1255 out:
1256 	dqm_unlock(dqm);
1257 	return retval;
1258 }
1259 
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1260 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1261 					  struct qcm_process_device *qpd)
1262 {
1263 	struct mm_struct *mm = NULL;
1264 	struct queue *q;
1265 	struct mqd_manager *mqd_mgr;
1266 	struct kfd_process_device *pdd;
1267 	uint64_t pd_base;
1268 	uint64_t eviction_duration;
1269 	int retval, ret = 0;
1270 
1271 	pdd = qpd_to_pdd(qpd);
1272 	/* Retrieve PD base */
1273 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1274 
1275 	dqm_lock(dqm);
1276 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1277 		goto out;
1278 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1279 		qpd->evicted--;
1280 		goto out;
1281 	}
1282 
1283 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1284 			    pdd->process->lead_thread->pid);
1285 
1286 	/* Update PD Base in QPD */
1287 	qpd->page_table_base = pd_base;
1288 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1289 
1290 	if (!list_empty(&qpd->queues_list)) {
1291 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1292 				dqm->dev->adev,
1293 				qpd->vmid,
1294 				qpd->page_table_base);
1295 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1296 	}
1297 
1298 	/* Take a safe reference to the mm_struct, which may otherwise
1299 	 * disappear even while the kfd_process is still referenced.
1300 	 */
1301 	mm = get_task_mm(pdd->process->lead_thread);
1302 	if (!mm) {
1303 		ret = -EFAULT;
1304 		goto out;
1305 	}
1306 
1307 	/* Remove the eviction flags. Activate queues that are not
1308 	 * inactive for other reasons.
1309 	 */
1310 	list_for_each_entry(q, &qpd->queues_list, list) {
1311 		q->properties.is_evicted = false;
1312 		if (!QUEUE_IS_ACTIVE(q->properties))
1313 			continue;
1314 
1315 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1316 				q->properties.type)];
1317 		q->properties.is_active = true;
1318 		increment_queue_count(dqm, qpd, q);
1319 
1320 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1321 			continue;
1322 
1323 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1324 				       q->queue, &q->properties, mm);
1325 		if (retval && !ret)
1326 			/* Return the first error, but keep going to
1327 			 * maintain a consistent eviction state
1328 			 */
1329 			ret = retval;
1330 	}
1331 	qpd->evicted = 0;
1332 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1333 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1334 out:
1335 	if (mm)
1336 		mmput(mm);
1337 	dqm_unlock(dqm);
1338 	return ret;
1339 }
1340 
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1341 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1342 					struct qcm_process_device *qpd)
1343 {
1344 	struct queue *q;
1345 	struct device *dev = dqm->dev->adev->dev;
1346 	struct kfd_process_device *pdd;
1347 	uint64_t eviction_duration;
1348 	int retval = 0;
1349 
1350 	pdd = qpd_to_pdd(qpd);
1351 
1352 	dqm_lock(dqm);
1353 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1354 		goto out;
1355 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1356 		qpd->evicted--;
1357 		goto out;
1358 	}
1359 
1360 	/* The debugger creates processes that temporarily have not acquired
1361 	 * all VMs for all devices and has no VMs itself.
1362 	 * Skip queue restore on process restore.
1363 	 */
1364 	if (!pdd->drm_priv)
1365 		goto vm_not_acquired;
1366 
1367 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1368 			    pdd->process->lead_thread->pid);
1369 
1370 	/* Update PD Base in QPD */
1371 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1372 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1373 
1374 	/* activate all active queues on the qpd */
1375 	list_for_each_entry(q, &qpd->queues_list, list) {
1376 		q->properties.is_evicted = false;
1377 		if (!QUEUE_IS_ACTIVE(q->properties))
1378 			continue;
1379 
1380 		q->properties.is_active = true;
1381 		increment_queue_count(dqm, &pdd->qpd, q);
1382 
1383 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1384 			retval = add_queue_mes(dqm, q, qpd);
1385 			if (retval) {
1386 				dev_err(dev, "Failed to restore queue %d\n",
1387 					q->properties.queue_id);
1388 				goto out;
1389 			}
1390 		}
1391 	}
1392 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1393 		retval = execute_queues_cpsch(dqm,
1394 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1395 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1396 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1397 vm_not_acquired:
1398 	qpd->evicted = 0;
1399 out:
1400 	dqm_unlock(dqm);
1401 	return retval;
1402 }
1403 
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1404 static int register_process(struct device_queue_manager *dqm,
1405 					struct qcm_process_device *qpd)
1406 {
1407 	struct device_process_node *n;
1408 	struct kfd_process_device *pdd;
1409 	uint64_t pd_base;
1410 	int retval;
1411 
1412 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1413 	if (!n)
1414 		return -ENOMEM;
1415 
1416 	n->qpd = qpd;
1417 
1418 	pdd = qpd_to_pdd(qpd);
1419 	/* Retrieve PD base */
1420 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1421 
1422 	dqm_lock(dqm);
1423 	list_add(&n->list, &dqm->queues);
1424 
1425 	/* Update PD Base in QPD */
1426 	qpd->page_table_base = pd_base;
1427 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1428 
1429 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1430 
1431 	dqm->processes_count++;
1432 
1433 	dqm_unlock(dqm);
1434 
1435 	/* Outside the DQM lock because under the DQM lock we can't do
1436 	 * reclaim or take other locks that others hold while reclaiming.
1437 	 */
1438 	kfd_inc_compute_active(dqm->dev);
1439 
1440 	return retval;
1441 }
1442 
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1443 static int unregister_process(struct device_queue_manager *dqm,
1444 					struct qcm_process_device *qpd)
1445 {
1446 	int retval;
1447 	struct device_process_node *cur, *next;
1448 
1449 	pr_debug("qpd->queues_list is %s\n",
1450 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1451 
1452 	retval = 0;
1453 	dqm_lock(dqm);
1454 
1455 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1456 		if (qpd == cur->qpd) {
1457 			list_del(&cur->list);
1458 			kfree(cur);
1459 			dqm->processes_count--;
1460 			goto out;
1461 		}
1462 	}
1463 	/* qpd not found in dqm list */
1464 	retval = 1;
1465 out:
1466 	dqm_unlock(dqm);
1467 
1468 	/* Outside the DQM lock because under the DQM lock we can't do
1469 	 * reclaim or take other locks that others hold while reclaiming.
1470 	 */
1471 	if (!retval)
1472 		kfd_dec_compute_active(dqm->dev);
1473 
1474 	return retval;
1475 }
1476 
1477 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1478 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1479 			unsigned int vmid)
1480 {
1481 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1482 	int xcc_id, ret;
1483 
1484 	for_each_inst(xcc_id, xcc_mask) {
1485 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1486 			dqm->dev->adev, pasid, vmid, xcc_id);
1487 		if (ret)
1488 			break;
1489 	}
1490 
1491 	return ret;
1492 }
1493 
init_interrupts(struct device_queue_manager * dqm)1494 static void init_interrupts(struct device_queue_manager *dqm)
1495 {
1496 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1497 	unsigned int i, xcc_id;
1498 
1499 	for_each_inst(xcc_id, xcc_mask) {
1500 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1501 			if (is_pipe_enabled(dqm, 0, i)) {
1502 				dqm->dev->kfd2kgd->init_interrupts(
1503 					dqm->dev->adev, i, xcc_id);
1504 			}
1505 		}
1506 	}
1507 }
1508 
initialize_nocpsch(struct device_queue_manager * dqm)1509 static int initialize_nocpsch(struct device_queue_manager *dqm)
1510 {
1511 	int pipe, queue;
1512 
1513 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1514 
1515 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1516 					sizeof(unsigned int), GFP_KERNEL);
1517 	if (!dqm->allocated_queues)
1518 		return -ENOMEM;
1519 
1520 	mutex_init(&dqm->lock_hidden);
1521 	INIT_LIST_HEAD(&dqm->queues);
1522 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1523 	dqm->active_cp_queue_count = 0;
1524 	dqm->gws_queue_count = 0;
1525 
1526 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1527 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1528 
1529 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1530 			if (test_bit(pipe_offset + queue,
1531 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1532 				dqm->allocated_queues[pipe] |= 1 << queue;
1533 	}
1534 
1535 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1536 
1537 	init_sdma_bitmaps(dqm);
1538 
1539 	return 0;
1540 }
1541 
uninitialize(struct device_queue_manager * dqm)1542 static void uninitialize(struct device_queue_manager *dqm)
1543 {
1544 	int i;
1545 
1546 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1547 
1548 	kfree(dqm->allocated_queues);
1549 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1550 		kfree(dqm->mqd_mgrs[i]);
1551 	mutex_destroy(&dqm->lock_hidden);
1552 }
1553 
start_nocpsch(struct device_queue_manager * dqm)1554 static int start_nocpsch(struct device_queue_manager *dqm)
1555 {
1556 	int r = 0;
1557 
1558 	pr_info("SW scheduler is used");
1559 	init_interrupts(dqm);
1560 
1561 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1562 		r = pm_init(&dqm->packet_mgr, dqm);
1563 	if (!r)
1564 		dqm->sched_running = true;
1565 
1566 	return r;
1567 }
1568 
stop_nocpsch(struct device_queue_manager * dqm)1569 static int stop_nocpsch(struct device_queue_manager *dqm)
1570 {
1571 	dqm_lock(dqm);
1572 	if (!dqm->sched_running) {
1573 		dqm_unlock(dqm);
1574 		return 0;
1575 	}
1576 
1577 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1578 		pm_uninit(&dqm->packet_mgr);
1579 	dqm->sched_running = false;
1580 	dqm_unlock(dqm);
1581 
1582 	return 0;
1583 }
1584 
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1585 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1586 				struct queue *q, const uint32_t *restore_sdma_id)
1587 {
1588 	struct device *dev = dqm->dev->adev->dev;
1589 	int bit;
1590 
1591 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1592 		if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) {
1593 			dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n",
1594 				 get_num_sdma_queues(dqm));
1595 			return -ENOMEM;
1596 		}
1597 
1598 		if (restore_sdma_id) {
1599 			/* Re-use existing sdma_id */
1600 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1601 				dev_err(dev, "SDMA queue already in use\n");
1602 				return -EBUSY;
1603 			}
1604 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1605 			q->sdma_id = *restore_sdma_id;
1606 		} else {
1607 			/* Find first available sdma_id */
1608 			bit = find_first_bit(dqm->sdma_bitmap,
1609 					     get_num_sdma_queues(dqm));
1610 			clear_bit(bit, dqm->sdma_bitmap);
1611 			q->sdma_id = bit;
1612 		}
1613 
1614 		q->properties.sdma_engine_id =
1615 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1616 		q->properties.sdma_queue_id = q->sdma_id /
1617 				kfd_get_num_sdma_engines(dqm->dev);
1618 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1619 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) {
1620 			dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n",
1621 				 get_num_xgmi_sdma_queues(dqm));
1622 			return -ENOMEM;
1623 		}
1624 		if (restore_sdma_id) {
1625 			/* Re-use existing sdma_id */
1626 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1627 				dev_err(dev, "SDMA queue already in use\n");
1628 				return -EBUSY;
1629 			}
1630 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1631 			q->sdma_id = *restore_sdma_id;
1632 		} else {
1633 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1634 					     get_num_xgmi_sdma_queues(dqm));
1635 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1636 			q->sdma_id = bit;
1637 		}
1638 		/* sdma_engine_id is sdma id including
1639 		 * both PCIe-optimized SDMAs and XGMI-
1640 		 * optimized SDMAs. The calculation below
1641 		 * assumes the first N engines are always
1642 		 * PCIe-optimized ones
1643 		 */
1644 		q->properties.sdma_engine_id =
1645 			kfd_get_num_sdma_engines(dqm->dev) +
1646 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1647 		q->properties.sdma_queue_id = q->sdma_id /
1648 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1649 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1650 		int i, num_queues, num_engines, eng_offset = 0, start_engine;
1651 		bool free_bit_found = false, is_xgmi = false;
1652 
1653 		if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1654 			num_queues = get_num_sdma_queues(dqm);
1655 			num_engines = kfd_get_num_sdma_engines(dqm->dev);
1656 			q->properties.type = KFD_QUEUE_TYPE_SDMA;
1657 		} else {
1658 			num_queues = get_num_xgmi_sdma_queues(dqm);
1659 			num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1660 			eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1661 			q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1662 			is_xgmi = true;
1663 		}
1664 
1665 		/* Scan available bit based on target engine ID. */
1666 		start_engine = q->properties.sdma_engine_id - eng_offset;
1667 		for (i = start_engine; i < num_queues; i += num_engines) {
1668 
1669 			if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1670 				continue;
1671 
1672 			clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1673 			q->sdma_id = i;
1674 			q->properties.sdma_queue_id = q->sdma_id / num_engines;
1675 			free_bit_found = true;
1676 			break;
1677 		}
1678 
1679 		if (!free_bit_found) {
1680 			dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n",
1681 				 q->properties.sdma_engine_id, num_queues);
1682 			return -ENOMEM;
1683 		}
1684 	}
1685 
1686 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1687 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1688 
1689 	return 0;
1690 }
1691 
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1692 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1693 				struct queue *q)
1694 {
1695 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1696 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1697 			return;
1698 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1699 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1700 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1701 			return;
1702 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1703 	}
1704 }
1705 
1706 /*
1707  * Device Queue Manager implementation for cp scheduler
1708  */
1709 
set_sched_resources(struct device_queue_manager * dqm)1710 static int set_sched_resources(struct device_queue_manager *dqm)
1711 {
1712 	int i, mec;
1713 	struct scheduling_resources res;
1714 	struct device *dev = dqm->dev->adev->dev;
1715 
1716 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1717 
1718 	res.queue_mask = 0;
1719 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1720 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1721 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1722 
1723 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1724 			continue;
1725 
1726 		/* only acquire queues from the first MEC */
1727 		if (mec > 0)
1728 			continue;
1729 
1730 		/* This situation may be hit in the future if a new HW
1731 		 * generation exposes more than 64 queues. If so, the
1732 		 * definition of res.queue_mask needs updating
1733 		 */
1734 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1735 			dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1736 			break;
1737 		}
1738 
1739 		res.queue_mask |= 1ull
1740 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1741 				dqm->dev->adev, i);
1742 	}
1743 	res.gws_mask = ~0ull;
1744 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1745 
1746 	pr_debug("Scheduling resources:\n"
1747 			"vmid mask: 0x%8X\n"
1748 			"queue mask: 0x%8llX\n",
1749 			res.vmid_mask, res.queue_mask);
1750 
1751 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1752 }
1753 
initialize_cpsch(struct device_queue_manager * dqm)1754 static int initialize_cpsch(struct device_queue_manager *dqm)
1755 {
1756 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1757 
1758 	mutex_init(&dqm->lock_hidden);
1759 	INIT_LIST_HEAD(&dqm->queues);
1760 	dqm->active_queue_count = dqm->processes_count = 0;
1761 	dqm->active_cp_queue_count = 0;
1762 	dqm->gws_queue_count = 0;
1763 	dqm->active_runlist = false;
1764 	dqm->trap_debug_vmid = 0;
1765 
1766 	init_sdma_bitmaps(dqm);
1767 
1768 	update_dqm_wait_times(dqm);
1769 	return 0;
1770 }
1771 
1772 /* halt_cpsch:
1773  * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1774  * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1775  * is called.
1776  */
halt_cpsch(struct device_queue_manager * dqm)1777 static int halt_cpsch(struct device_queue_manager *dqm)
1778 {
1779 	int ret = 0;
1780 
1781 	dqm_lock(dqm);
1782 	if (!dqm->sched_running) {
1783 		dqm_unlock(dqm);
1784 		return 0;
1785 	}
1786 
1787 	WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1788 
1789 	if (!dqm->is_hws_hang) {
1790 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1791 			ret = unmap_queues_cpsch(dqm,
1792 						 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1793 				USE_DEFAULT_GRACE_PERIOD, false);
1794 		else
1795 			ret = remove_all_kfd_queues_mes(dqm);
1796 	}
1797 	dqm->sched_halt = true;
1798 	dqm_unlock(dqm);
1799 
1800 	return ret;
1801 }
1802 
1803 /* unhalt_cpsch
1804  * Unset dqm->sched_halt and map queues back to runlist
1805  */
unhalt_cpsch(struct device_queue_manager * dqm)1806 static int unhalt_cpsch(struct device_queue_manager *dqm)
1807 {
1808 	int ret = 0;
1809 
1810 	dqm_lock(dqm);
1811 	if (!dqm->sched_running || !dqm->sched_halt) {
1812 		WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1813 		dqm_unlock(dqm);
1814 		return 0;
1815 	}
1816 	dqm->sched_halt = false;
1817 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1818 		ret = execute_queues_cpsch(dqm,
1819 					   KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1820 			0, USE_DEFAULT_GRACE_PERIOD);
1821 	else
1822 		ret = add_all_kfd_queues_mes(dqm);
1823 
1824 	dqm_unlock(dqm);
1825 
1826 	return ret;
1827 }
1828 
start_cpsch(struct device_queue_manager * dqm)1829 static int start_cpsch(struct device_queue_manager *dqm)
1830 {
1831 	struct device *dev = dqm->dev->adev->dev;
1832 	int retval, num_hw_queue_slots;
1833 
1834 	retval = 0;
1835 
1836 	dqm_lock(dqm);
1837 
1838 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1839 		retval = pm_init(&dqm->packet_mgr, dqm);
1840 		if (retval)
1841 			goto fail_packet_manager_init;
1842 
1843 		retval = set_sched_resources(dqm);
1844 		if (retval)
1845 			goto fail_set_sched_resources;
1846 	}
1847 	pr_debug("Allocating fence memory\n");
1848 
1849 	/* allocate fence memory on the gart */
1850 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1851 					&dqm->fence_mem);
1852 
1853 	if (retval)
1854 		goto fail_allocate_vidmem;
1855 
1856 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1857 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1858 
1859 	init_interrupts(dqm);
1860 
1861 	/* clear hang status when driver try to start the hw scheduler */
1862 	dqm->sched_running = true;
1863 
1864 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1865 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
1866 				KFD_DEQUEUE_WAIT_INIT, 0 /* unused */))
1867 			dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n");
1868 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1869 	}
1870 
1871 	/* setup per-queue reset detection buffer  */
1872 	num_hw_queue_slots =  dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1873 			      dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1874 			      NUM_XCC(dqm->dev->xcc_mask);
1875 
1876 	dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1877 	dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1878 
1879 	if (!dqm->detect_hang_info) {
1880 		retval = -ENOMEM;
1881 		goto fail_detect_hang_buffer;
1882 	}
1883 
1884 	dqm_unlock(dqm);
1885 
1886 	return 0;
1887 fail_detect_hang_buffer:
1888 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1889 fail_allocate_vidmem:
1890 fail_set_sched_resources:
1891 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1892 		pm_uninit(&dqm->packet_mgr);
1893 fail_packet_manager_init:
1894 	dqm_unlock(dqm);
1895 	return retval;
1896 }
1897 
stop_cpsch(struct device_queue_manager * dqm)1898 static int stop_cpsch(struct device_queue_manager *dqm)
1899 {
1900 	dqm_lock(dqm);
1901 	if (!dqm->sched_running) {
1902 		dqm_unlock(dqm);
1903 		return 0;
1904 	}
1905 
1906 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1907 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1908 	else
1909 		remove_all_kfd_queues_mes(dqm);
1910 
1911 	dqm->sched_running = false;
1912 
1913 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1914 		pm_release_ib(&dqm->packet_mgr);
1915 
1916 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1917 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1918 		pm_uninit(&dqm->packet_mgr);
1919 	kfree(dqm->detect_hang_info);
1920 	dqm->detect_hang_info = NULL;
1921 	dqm_unlock(dqm);
1922 
1923 	return 0;
1924 }
1925 
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1926 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1927 					struct kernel_queue *kq,
1928 					struct qcm_process_device *qpd)
1929 {
1930 	dqm_lock(dqm);
1931 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1932 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1933 				dqm->total_queue_count);
1934 		dqm_unlock(dqm);
1935 		return -EPERM;
1936 	}
1937 
1938 	/*
1939 	 * Unconditionally increment this counter, regardless of the queue's
1940 	 * type or whether the queue is active.
1941 	 */
1942 	dqm->total_queue_count++;
1943 	pr_debug("Total of %d queues are accountable so far\n",
1944 			dqm->total_queue_count);
1945 
1946 	list_add(&kq->list, &qpd->priv_queue_list);
1947 	increment_queue_count(dqm, qpd, kq->queue);
1948 	qpd->is_debug = true;
1949 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1950 			USE_DEFAULT_GRACE_PERIOD);
1951 	dqm_unlock(dqm);
1952 
1953 	return 0;
1954 }
1955 
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1956 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1957 					struct kernel_queue *kq,
1958 					struct qcm_process_device *qpd)
1959 {
1960 	dqm_lock(dqm);
1961 	list_del(&kq->list);
1962 	decrement_queue_count(dqm, qpd, kq->queue);
1963 	qpd->is_debug = false;
1964 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1965 			USE_DEFAULT_GRACE_PERIOD);
1966 	/*
1967 	 * Unconditionally decrement this counter, regardless of the queue's
1968 	 * type.
1969 	 */
1970 	dqm->total_queue_count--;
1971 	pr_debug("Total of %d queues are accountable so far\n",
1972 			dqm->total_queue_count);
1973 	dqm_unlock(dqm);
1974 }
1975 
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1976 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1977 			struct qcm_process_device *qpd,
1978 			const struct kfd_criu_queue_priv_data *qd,
1979 			const void *restore_mqd, const void *restore_ctl_stack)
1980 {
1981 	int retval;
1982 	struct mqd_manager *mqd_mgr;
1983 
1984 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1985 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1986 				dqm->total_queue_count);
1987 		retval = -EPERM;
1988 		goto out;
1989 	}
1990 
1991 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1992 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1993 		q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1994 		dqm_lock(dqm);
1995 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1996 		dqm_unlock(dqm);
1997 		if (retval)
1998 			goto out;
1999 	}
2000 
2001 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
2002 	if (retval)
2003 		goto out_deallocate_sdma_queue;
2004 
2005 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2006 			q->properties.type)];
2007 
2008 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2009 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2010 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2011 	q->properties.tba_addr = qpd->tba_addr;
2012 	q->properties.tma_addr = qpd->tma_addr;
2013 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2014 	if (!q->mqd_mem_obj) {
2015 		retval = -ENOMEM;
2016 		goto out_deallocate_doorbell;
2017 	}
2018 
2019 	dqm_lock(dqm);
2020 	/*
2021 	 * Eviction state logic: mark all queues as evicted, even ones
2022 	 * not currently active. Restoring inactive queues later only
2023 	 * updates the is_evicted flag but is a no-op otherwise.
2024 	 */
2025 	q->properties.is_evicted = !!qpd->evicted;
2026 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2027 				  kfd_dbg_has_cwsr_workaround(q->device);
2028 
2029 	if (qd)
2030 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2031 				     &q->properties, restore_mqd, restore_ctl_stack,
2032 				     qd->ctl_stack_size);
2033 	else
2034 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2035 					&q->gart_mqd_addr, &q->properties);
2036 
2037 	list_add(&q->list, &qpd->queues_list);
2038 	qpd->queue_count++;
2039 
2040 	if (q->properties.is_active) {
2041 		increment_queue_count(dqm, qpd, q);
2042 
2043 		if (!dqm->dev->kfd->shared_resources.enable_mes)
2044 			retval = execute_queues_cpsch(dqm,
2045 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2046 		else
2047 			retval = add_queue_mes(dqm, q, qpd);
2048 		if (retval)
2049 			goto cleanup_queue;
2050 	}
2051 
2052 	/*
2053 	 * Unconditionally increment this counter, regardless of the queue's
2054 	 * type or whether the queue is active.
2055 	 */
2056 	dqm->total_queue_count++;
2057 
2058 	pr_debug("Total of %d queues are accountable so far\n",
2059 			dqm->total_queue_count);
2060 
2061 	dqm_unlock(dqm);
2062 	return retval;
2063 
2064 cleanup_queue:
2065 	qpd->queue_count--;
2066 	list_del(&q->list);
2067 	if (q->properties.is_active)
2068 		decrement_queue_count(dqm, qpd, q);
2069 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2070 	dqm_unlock(dqm);
2071 out_deallocate_doorbell:
2072 	deallocate_doorbell(qpd, q);
2073 out_deallocate_sdma_queue:
2074 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2075 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2076 		dqm_lock(dqm);
2077 		deallocate_sdma_queue(dqm, q);
2078 		dqm_unlock(dqm);
2079 	}
2080 out:
2081 	return retval;
2082 }
2083 
amdkfd_fence_wait_timeout(struct device_queue_manager * dqm,uint64_t fence_value,unsigned int timeout_ms)2084 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2085 			      uint64_t fence_value,
2086 			      unsigned int timeout_ms)
2087 {
2088 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2089 	struct device *dev = dqm->dev->adev->dev;
2090 	uint64_t *fence_addr = dqm->fence_addr;
2091 
2092 	while (*fence_addr != fence_value) {
2093 		/* Fatal err detected, this response won't come */
2094 		if (amdgpu_amdkfd_is_fed(dqm->dev->adev))
2095 			return -EIO;
2096 
2097 		if (time_after(jiffies, end_jiffies)) {
2098 			dev_err(dev, "qcm fence wait loop timeout expired\n");
2099 			/* In HWS case, this is used to halt the driver thread
2100 			 * in order not to mess up CP states before doing
2101 			 * scandumps for FW debugging.
2102 			 */
2103 			while (halt_if_hws_hang)
2104 				schedule();
2105 
2106 			return -ETIME;
2107 		}
2108 		schedule();
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)2115 static int map_queues_cpsch(struct device_queue_manager *dqm)
2116 {
2117 	struct device *dev = dqm->dev->adev->dev;
2118 	int retval;
2119 
2120 	if (!dqm->sched_running || dqm->sched_halt)
2121 		return 0;
2122 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2123 		return 0;
2124 	if (dqm->active_runlist)
2125 		return 0;
2126 
2127 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2128 	pr_debug("%s sent runlist\n", __func__);
2129 	if (retval) {
2130 		dev_err(dev, "failed to execute runlist\n");
2131 		return retval;
2132 	}
2133 	dqm->active_runlist = true;
2134 
2135 	return retval;
2136 }
2137 
set_queue_as_reset(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)2138 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2139 			       struct qcm_process_device *qpd)
2140 {
2141 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2142 
2143 	dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2144 		q->properties.queue_id, pdd->process->lead_thread->pid);
2145 
2146 	pdd->has_reset_queue = true;
2147 	if (q->properties.is_active) {
2148 		q->properties.is_active = false;
2149 		decrement_queue_count(dqm, qpd, q);
2150 	}
2151 }
2152 
detect_queue_hang(struct device_queue_manager * dqm)2153 static int detect_queue_hang(struct device_queue_manager *dqm)
2154 {
2155 	int i;
2156 
2157 	/* detect should be used only in dqm locked queue reset */
2158 	if (WARN_ON(dqm->detect_hang_count > 0))
2159 		return 0;
2160 
2161 	memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2162 
2163 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2164 		uint32_t mec, pipe, queue;
2165 		int xcc_id;
2166 
2167 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2168 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2169 
2170 		if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2171 			continue;
2172 
2173 		amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2174 
2175 		for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2176 			uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2177 						dqm->dev->adev, pipe, queue, xcc_id);
2178 			struct dqm_detect_hang_info hang_info;
2179 
2180 			if (!queue_addr)
2181 				continue;
2182 
2183 			hang_info.pipe_id = pipe;
2184 			hang_info.queue_id = queue;
2185 			hang_info.xcc_id = xcc_id;
2186 			hang_info.queue_address = queue_addr;
2187 
2188 			dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2189 			dqm->detect_hang_count++;
2190 		}
2191 	}
2192 
2193 	return dqm->detect_hang_count;
2194 }
2195 
find_queue_by_address(struct device_queue_manager * dqm,uint64_t queue_address)2196 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2197 {
2198 	struct device_process_node *cur;
2199 	struct qcm_process_device *qpd;
2200 	struct queue *q;
2201 
2202 	list_for_each_entry(cur, &dqm->queues, list) {
2203 		qpd = cur->qpd;
2204 		list_for_each_entry(q, &qpd->queues_list, list) {
2205 			if (queue_address == q->properties.queue_address)
2206 				return q;
2207 		}
2208 	}
2209 
2210 	return NULL;
2211 }
2212 
reset_hung_queues(struct device_queue_manager * dqm)2213 static int reset_hung_queues(struct device_queue_manager *dqm)
2214 {
2215 	int r = 0, reset_count = 0, i;
2216 
2217 	if (!dqm->detect_hang_info || dqm->is_hws_hang)
2218 		return -EIO;
2219 
2220 	/* assume dqm locked. */
2221 	if (!detect_queue_hang(dqm))
2222 		return -ENOTRECOVERABLE;
2223 
2224 	for (i = 0; i < dqm->detect_hang_count; i++) {
2225 		struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2226 		struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2227 		struct kfd_process_device *pdd;
2228 		uint64_t queue_addr = 0;
2229 
2230 		if (!q) {
2231 			r = -ENOTRECOVERABLE;
2232 			goto reset_fail;
2233 		}
2234 
2235 		pdd = kfd_get_process_device_data(dqm->dev, q->process);
2236 		if (!pdd) {
2237 			r = -ENOTRECOVERABLE;
2238 			goto reset_fail;
2239 		}
2240 
2241 		queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2242 				hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2243 				KFD_UNMAP_LATENCY_MS);
2244 
2245 		/* either reset failed or we reset an unexpected queue. */
2246 		if (queue_addr != q->properties.queue_address) {
2247 			r = -ENOTRECOVERABLE;
2248 			goto reset_fail;
2249 		}
2250 
2251 		set_queue_as_reset(dqm, q, &pdd->qpd);
2252 		reset_count++;
2253 	}
2254 
2255 	if (reset_count == dqm->detect_hang_count)
2256 		kfd_signal_reset_event(dqm->dev);
2257 	else
2258 		r = -ENOTRECOVERABLE;
2259 
2260 reset_fail:
2261 	dqm->detect_hang_count = 0;
2262 
2263 	return r;
2264 }
2265 
sdma_has_hang(struct device_queue_manager * dqm)2266 static bool sdma_has_hang(struct device_queue_manager *dqm)
2267 {
2268 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2269 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2270 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2271 	int i, j;
2272 
2273 	for (i = engine_start; i < engine_end; i++) {
2274 		for (j = 0; j < num_queues_per_eng; j++) {
2275 			if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j))
2276 				continue;
2277 
2278 			return true;
2279 		}
2280 	}
2281 
2282 	return false;
2283 }
2284 
set_sdma_queue_as_reset(struct device_queue_manager * dqm,uint32_t doorbell_off)2285 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm,
2286 				    uint32_t doorbell_off)
2287 {
2288 	struct device_process_node *cur;
2289 	struct qcm_process_device *qpd;
2290 	struct queue *q;
2291 
2292 	list_for_each_entry(cur, &dqm->queues, list) {
2293 		qpd = cur->qpd;
2294 		list_for_each_entry(q, &qpd->queues_list, list) {
2295 			if ((q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2296 			     q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) &&
2297 			     q->properties.doorbell_off == doorbell_off) {
2298 				set_queue_as_reset(dqm, q, qpd);
2299 				return true;
2300 			}
2301 		}
2302 	}
2303 
2304 	return false;
2305 }
2306 
reset_hung_queues_sdma(struct device_queue_manager * dqm)2307 static int reset_hung_queues_sdma(struct device_queue_manager *dqm)
2308 {
2309 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2310 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2311 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2312 	int r = 0, i, j;
2313 
2314 	if (dqm->is_hws_hang)
2315 		return -EIO;
2316 
2317 	/* Scan for hung HW queues and reset engine. */
2318 	dqm->detect_hang_count = 0;
2319 	for (i = engine_start; i < engine_end; i++) {
2320 		for (j = 0; j < num_queues_per_eng; j++) {
2321 			uint32_t doorbell_off =
2322 				dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j);
2323 
2324 			if (!doorbell_off)
2325 				continue;
2326 
2327 			/* Reset engine and check. */
2328 			if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) ||
2329 			    dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) ||
2330 			    !set_sdma_queue_as_reset(dqm, doorbell_off)) {
2331 				r = -ENOTRECOVERABLE;
2332 				goto reset_fail;
2333 			}
2334 
2335 			/* Should only expect one queue active per engine */
2336 			dqm->detect_hang_count++;
2337 			break;
2338 		}
2339 	}
2340 
2341 	/* Signal process reset */
2342 	if (dqm->detect_hang_count)
2343 		kfd_signal_reset_event(dqm->dev);
2344 	else
2345 		r = -ENOTRECOVERABLE;
2346 
2347 reset_fail:
2348 	dqm->detect_hang_count = 0;
2349 
2350 	return r;
2351 }
2352 
reset_queues_on_hws_hang(struct device_queue_manager * dqm,bool is_sdma)2353 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma)
2354 {
2355 	struct amdgpu_device *adev = dqm->dev->adev;
2356 
2357 	while (halt_if_hws_hang)
2358 		schedule();
2359 
2360 	if (adev->debug_disable_gpu_ring_reset) {
2361 		dev_info_once(adev->dev,
2362 			      "%s queue hung, but ring reset disabled",
2363 			      is_sdma ? "sdma" : "compute");
2364 
2365 		return -EPERM;
2366 	}
2367 	if (!amdgpu_gpu_recovery)
2368 		return -ENOTRECOVERABLE;
2369 
2370 	return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm);
2371 }
2372 
2373 /* dqm->lock mutex has to be locked before calling this function
2374  *
2375  * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time
2376  *   for context switch latency. Lower values are used by debugger
2377  *   since context switching are triggered at high frequency.
2378  *   This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE
2379  *
2380  */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)2381 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2382 				enum kfd_unmap_queues_filter filter,
2383 				uint32_t filter_param,
2384 				uint32_t grace_period,
2385 				bool reset)
2386 {
2387 	struct device *dev = dqm->dev->adev->dev;
2388 	struct mqd_manager *mqd_mgr;
2389 	int retval;
2390 
2391 	if (!dqm->sched_running)
2392 		return 0;
2393 	if (!dqm->active_runlist)
2394 		return 0;
2395 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2396 		return -EIO;
2397 
2398 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2399 		retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2400 				KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period);
2401 		if (retval)
2402 			goto out;
2403 	}
2404 
2405 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2406 	if (retval)
2407 		goto out;
2408 
2409 	*dqm->fence_addr = KFD_FENCE_INIT;
2410 	mb();
2411 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2412 				KFD_FENCE_COMPLETED);
2413 	/* should be timed out */
2414 	retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2415 					   queue_preemption_timeout_ms);
2416 	if (retval) {
2417 		dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2418 		kfd_hws_hang(dqm);
2419 		goto out;
2420 	}
2421 
2422 	/* In the current MEC firmware implementation, if compute queue
2423 	 * doesn't response to the preemption request in time, HIQ will
2424 	 * abandon the unmap request without returning any timeout error
2425 	 * to driver. Instead, MEC firmware will log the doorbell of the
2426 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2427 	 * To make sure the queue unmap was successful, driver need to
2428 	 * check those fields
2429 	 */
2430 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2431 	if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) &&
2432 	    reset_queues_on_hws_hang(dqm, false))
2433 		goto reset_fail;
2434 
2435 	/* Check for SDMA hang and attempt SDMA reset */
2436 	if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true))
2437 		goto reset_fail;
2438 
2439 	/* We need to reset the grace period value for this device */
2440 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2441 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2442 				KFD_DEQUEUE_WAIT_RESET, 0 /* unused */))
2443 			dev_err(dev, "Failed to reset grace period\n");
2444 	}
2445 
2446 	pm_release_ib(&dqm->packet_mgr);
2447 	dqm->active_runlist = false;
2448 out:
2449 	up_read(&dqm->dev->adev->reset_domain->sem);
2450 	return retval;
2451 
2452 reset_fail:
2453 	dqm->is_hws_hang = true;
2454 	kfd_hws_hang(dqm);
2455 	up_read(&dqm->dev->adev->reset_domain->sem);
2456 	return -ETIME;
2457 }
2458 
2459 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)2460 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2461 {
2462 	int retval;
2463 
2464 	dqm_lock(dqm);
2465 
2466 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2467 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2468 
2469 	dqm_unlock(dqm);
2470 	return retval;
2471 }
2472 
2473 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2474 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2475 				enum kfd_unmap_queues_filter filter,
2476 				uint32_t filter_param,
2477 				uint32_t grace_period)
2478 {
2479 	int retval;
2480 
2481 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2482 		return -EIO;
2483 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2484 	if (!retval)
2485 		retval = map_queues_cpsch(dqm);
2486 	up_read(&dqm->dev->adev->reset_domain->sem);
2487 	return retval;
2488 }
2489 
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2490 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2491 				 struct queue *q)
2492 {
2493 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2494 								q->process);
2495 	int ret = 0;
2496 
2497 	if (WARN_ON(!pdd))
2498 		return ret;
2499 
2500 	if (pdd->qpd.is_debug)
2501 		return ret;
2502 
2503 	q->properties.is_being_destroyed = true;
2504 
2505 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2506 		dqm_unlock(dqm);
2507 		mutex_unlock(&q->process->mutex);
2508 		ret = wait_event_interruptible(dqm->destroy_wait,
2509 						!q->properties.is_suspended);
2510 
2511 		mutex_lock(&q->process->mutex);
2512 		dqm_lock(dqm);
2513 	}
2514 
2515 	return ret;
2516 }
2517 
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2518 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2519 				struct qcm_process_device *qpd,
2520 				struct queue *q)
2521 {
2522 	int retval;
2523 	struct mqd_manager *mqd_mgr;
2524 	uint64_t sdma_val = 0;
2525 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2526 	struct device *dev = dqm->dev->adev->dev;
2527 
2528 	/* Get the SDMA queue stats */
2529 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2530 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2531 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2532 							&sdma_val);
2533 		if (retval)
2534 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2535 				q->properties.queue_id);
2536 	}
2537 
2538 	/* remove queue from list to prevent rescheduling after preemption */
2539 	dqm_lock(dqm);
2540 
2541 	retval = wait_on_destroy_queue(dqm, q);
2542 
2543 	if (retval) {
2544 		dqm_unlock(dqm);
2545 		return retval;
2546 	}
2547 
2548 	if (qpd->is_debug) {
2549 		/*
2550 		 * error, currently we do not allow to destroy a queue
2551 		 * of a currently debugged process
2552 		 */
2553 		retval = -EBUSY;
2554 		goto failed_try_destroy_debugged_queue;
2555 
2556 	}
2557 
2558 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2559 			q->properties.type)];
2560 
2561 	deallocate_doorbell(qpd, q);
2562 
2563 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2564 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2565 		deallocate_sdma_queue(dqm, q);
2566 		pdd->sdma_past_activity_counter += sdma_val;
2567 	}
2568 
2569 	if (q->properties.is_active) {
2570 		decrement_queue_count(dqm, qpd, q);
2571 		q->properties.is_active = false;
2572 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2573 			retval = execute_queues_cpsch(dqm,
2574 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2575 						      USE_DEFAULT_GRACE_PERIOD);
2576 			if (retval == -ETIME)
2577 				qpd->reset_wavefronts = true;
2578 		} else {
2579 			retval = remove_queue_mes(dqm, q, qpd);
2580 		}
2581 	}
2582 	list_del(&q->list);
2583 	qpd->queue_count--;
2584 
2585 	/*
2586 	 * Unconditionally decrement this counter, regardless of the queue's
2587 	 * type
2588 	 */
2589 	dqm->total_queue_count--;
2590 	pr_debug("Total of %d queues are accountable so far\n",
2591 			dqm->total_queue_count);
2592 
2593 	dqm_unlock(dqm);
2594 
2595 	/*
2596 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2597 	 * circular locking
2598 	 */
2599 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2600 				qpd->pqm->process, q->device,
2601 				-1, false, NULL, 0);
2602 
2603 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2604 
2605 	return retval;
2606 
2607 failed_try_destroy_debugged_queue:
2608 
2609 	dqm_unlock(dqm);
2610 	return retval;
2611 }
2612 
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size,u32 misc_process_properties)2613 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2614 				   struct qcm_process_device *qpd,
2615 				   enum cache_policy default_policy,
2616 				   enum cache_policy alternate_policy,
2617 				   void __user *alternate_aperture_base,
2618 				   uint64_t alternate_aperture_size,
2619 				   u32 misc_process_properties)
2620 {
2621 	bool retval = true;
2622 
2623 	if (!dqm->asic_ops.set_cache_memory_policy)
2624 		return retval;
2625 
2626 	dqm_lock(dqm);
2627 
2628 	retval = dqm->asic_ops.set_cache_memory_policy(
2629 			dqm,
2630 			qpd,
2631 			default_policy,
2632 			alternate_policy,
2633 			alternate_aperture_base,
2634 			alternate_aperture_size,
2635 			misc_process_properties);
2636 
2637 	if (retval)
2638 		goto out;
2639 
2640 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2641 		program_sh_mem_settings(dqm, qpd);
2642 
2643 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2644 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2645 		qpd->sh_mem_ape1_limit);
2646 
2647 out:
2648 	dqm_unlock(dqm);
2649 	return retval;
2650 }
2651 
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2652 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2653 		struct qcm_process_device *qpd)
2654 {
2655 	struct queue *q;
2656 	struct device_process_node *cur, *next_dpn;
2657 	int retval = 0;
2658 	bool found = false;
2659 
2660 	dqm_lock(dqm);
2661 
2662 	/* Clear all user mode queues */
2663 	while (!list_empty(&qpd->queues_list)) {
2664 		struct mqd_manager *mqd_mgr;
2665 		int ret;
2666 
2667 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2668 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2669 				q->properties.type)];
2670 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2671 		if (ret)
2672 			retval = ret;
2673 		dqm_unlock(dqm);
2674 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2675 		dqm_lock(dqm);
2676 	}
2677 
2678 	/* Unregister process */
2679 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2680 		if (qpd == cur->qpd) {
2681 			list_del(&cur->list);
2682 			kfree(cur);
2683 			dqm->processes_count--;
2684 			found = true;
2685 			break;
2686 		}
2687 	}
2688 
2689 	dqm_unlock(dqm);
2690 
2691 	/* Outside the DQM lock because under the DQM lock we can't do
2692 	 * reclaim or take other locks that others hold while reclaiming.
2693 	 */
2694 	if (found)
2695 		kfd_dec_compute_active(dqm->dev);
2696 
2697 	return retval;
2698 }
2699 
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2700 static int get_wave_state(struct device_queue_manager *dqm,
2701 			  struct queue *q,
2702 			  void __user *ctl_stack,
2703 			  u32 *ctl_stack_used_size,
2704 			  u32 *save_area_used_size)
2705 {
2706 	struct mqd_manager *mqd_mgr;
2707 
2708 	dqm_lock(dqm);
2709 
2710 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2711 
2712 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2713 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2714 	    !mqd_mgr->get_wave_state) {
2715 		dqm_unlock(dqm);
2716 		return -EINVAL;
2717 	}
2718 
2719 	dqm_unlock(dqm);
2720 
2721 	/*
2722 	 * get_wave_state is outside the dqm lock to prevent circular locking
2723 	 * and the queue should be protected against destruction by the process
2724 	 * lock.
2725 	 */
2726 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2727 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2728 }
2729 
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2730 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2731 			const struct queue *q,
2732 			u32 *mqd_size,
2733 			u32 *ctl_stack_size)
2734 {
2735 	struct mqd_manager *mqd_mgr;
2736 	enum KFD_MQD_TYPE mqd_type =
2737 			get_mqd_type_from_queue_type(q->properties.type);
2738 
2739 	dqm_lock(dqm);
2740 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2741 	*mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask);
2742 	*ctl_stack_size = 0;
2743 
2744 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2745 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2746 
2747 	dqm_unlock(dqm);
2748 }
2749 
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2750 static int checkpoint_mqd(struct device_queue_manager *dqm,
2751 			  const struct queue *q,
2752 			  void *mqd,
2753 			  void *ctl_stack)
2754 {
2755 	struct mqd_manager *mqd_mgr;
2756 	int r = 0;
2757 	enum KFD_MQD_TYPE mqd_type =
2758 			get_mqd_type_from_queue_type(q->properties.type);
2759 
2760 	dqm_lock(dqm);
2761 
2762 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2763 		r = -EINVAL;
2764 		goto dqm_unlock;
2765 	}
2766 
2767 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2768 	if (!mqd_mgr->checkpoint_mqd) {
2769 		r = -EOPNOTSUPP;
2770 		goto dqm_unlock;
2771 	}
2772 
2773 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2774 
2775 dqm_unlock:
2776 	dqm_unlock(dqm);
2777 	return r;
2778 }
2779 
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2780 static int process_termination_cpsch(struct device_queue_manager *dqm,
2781 		struct qcm_process_device *qpd)
2782 {
2783 	int retval;
2784 	struct queue *q;
2785 	struct device *dev = dqm->dev->adev->dev;
2786 	struct kernel_queue *kq, *kq_next;
2787 	struct mqd_manager *mqd_mgr;
2788 	struct device_process_node *cur, *next_dpn;
2789 	enum kfd_unmap_queues_filter filter =
2790 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2791 	bool found = false;
2792 
2793 	retval = 0;
2794 
2795 	dqm_lock(dqm);
2796 
2797 	/* Clean all kernel queues */
2798 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2799 		list_del(&kq->list);
2800 		decrement_queue_count(dqm, qpd, kq->queue);
2801 		qpd->is_debug = false;
2802 		dqm->total_queue_count--;
2803 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2804 	}
2805 
2806 	/* Clear all user mode queues */
2807 	list_for_each_entry(q, &qpd->queues_list, list) {
2808 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2809 			deallocate_sdma_queue(dqm, q);
2810 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2811 			deallocate_sdma_queue(dqm, q);
2812 
2813 		if (q->properties.is_active) {
2814 			decrement_queue_count(dqm, qpd, q);
2815 
2816 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2817 				retval = remove_queue_mes(dqm, q, qpd);
2818 				if (retval)
2819 					dev_err(dev, "Failed to remove queue %d\n",
2820 						q->properties.queue_id);
2821 			}
2822 		}
2823 
2824 		dqm->total_queue_count--;
2825 	}
2826 
2827 	/* Unregister process */
2828 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2829 		if (qpd == cur->qpd) {
2830 			list_del(&cur->list);
2831 			kfree(cur);
2832 			dqm->processes_count--;
2833 			found = true;
2834 			break;
2835 		}
2836 	}
2837 
2838 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2839 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2840 
2841 	if ((retval || qpd->reset_wavefronts) &&
2842 	    down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2843 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2844 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2845 		qpd->reset_wavefronts = false;
2846 		up_read(&dqm->dev->adev->reset_domain->sem);
2847 	}
2848 
2849 	/* Lastly, free mqd resources.
2850 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2851 	 */
2852 	while (!list_empty(&qpd->queues_list)) {
2853 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2854 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2855 				q->properties.type)];
2856 		list_del(&q->list);
2857 		qpd->queue_count--;
2858 		dqm_unlock(dqm);
2859 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2860 		dqm_lock(dqm);
2861 	}
2862 	dqm_unlock(dqm);
2863 
2864 	/* Outside the DQM lock because under the DQM lock we can't do
2865 	 * reclaim or take other locks that others hold while reclaiming.
2866 	 */
2867 	if (found)
2868 		kfd_dec_compute_active(dqm->dev);
2869 
2870 	return retval;
2871 }
2872 
init_mqd_managers(struct device_queue_manager * dqm)2873 static int init_mqd_managers(struct device_queue_manager *dqm)
2874 {
2875 	int i, j;
2876 	struct device *dev = dqm->dev->adev->dev;
2877 	struct mqd_manager *mqd_mgr;
2878 
2879 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2880 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2881 		if (!mqd_mgr) {
2882 			dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2883 			goto out_free;
2884 		}
2885 		dqm->mqd_mgrs[i] = mqd_mgr;
2886 	}
2887 
2888 	return 0;
2889 
2890 out_free:
2891 	for (j = 0; j < i; j++) {
2892 		kfree(dqm->mqd_mgrs[j]);
2893 		dqm->mqd_mgrs[j] = NULL;
2894 	}
2895 
2896 	return -ENOMEM;
2897 }
2898 
2899 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2900 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2901 {
2902 	int retval;
2903 	struct kfd_node *dev = dqm->dev;
2904 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2905 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2906 		get_num_all_sdma_engines(dqm) *
2907 		dev->kfd->device_info.num_sdma_queues_per_engine +
2908 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2909 		NUM_XCC(dqm->dev->xcc_mask));
2910 
2911 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2912 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2913 		(void *)&(mem_obj->cpu_ptr), false);
2914 
2915 	return retval;
2916 }
2917 
device_queue_manager_init(struct kfd_node * dev)2918 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2919 {
2920 	struct device_queue_manager *dqm;
2921 
2922 	pr_debug("Loading device queue manager\n");
2923 
2924 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2925 	if (!dqm)
2926 		return NULL;
2927 
2928 	switch (dev->adev->asic_type) {
2929 	/* HWS is not available on Hawaii. */
2930 	case CHIP_HAWAII:
2931 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2932 	 * available on Tonga.
2933 	 *
2934 	 * FIXME: This argument also applies to Kaveri.
2935 	 */
2936 	case CHIP_TONGA:
2937 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2938 		break;
2939 	default:
2940 		dqm->sched_policy = sched_policy;
2941 		break;
2942 	}
2943 
2944 	dqm->dev = dev;
2945 	switch (dqm->sched_policy) {
2946 	case KFD_SCHED_POLICY_HWS:
2947 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2948 		/* initialize dqm for cp scheduling */
2949 		dqm->ops.create_queue = create_queue_cpsch;
2950 		dqm->ops.initialize = initialize_cpsch;
2951 		dqm->ops.start = start_cpsch;
2952 		dqm->ops.stop = stop_cpsch;
2953 		dqm->ops.halt = halt_cpsch;
2954 		dqm->ops.unhalt = unhalt_cpsch;
2955 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2956 		dqm->ops.update_queue = update_queue;
2957 		dqm->ops.register_process = register_process;
2958 		dqm->ops.unregister_process = unregister_process;
2959 		dqm->ops.uninitialize = uninitialize;
2960 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2961 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2962 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2963 		dqm->ops.process_termination = process_termination_cpsch;
2964 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2965 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2966 		dqm->ops.get_wave_state = get_wave_state;
2967 		dqm->ops.reset_queues = reset_queues_cpsch;
2968 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2969 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2970 		break;
2971 	case KFD_SCHED_POLICY_NO_HWS:
2972 		/* initialize dqm for no cp scheduling */
2973 		dqm->ops.start = start_nocpsch;
2974 		dqm->ops.stop = stop_nocpsch;
2975 		dqm->ops.create_queue = create_queue_nocpsch;
2976 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2977 		dqm->ops.update_queue = update_queue;
2978 		dqm->ops.register_process = register_process;
2979 		dqm->ops.unregister_process = unregister_process;
2980 		dqm->ops.initialize = initialize_nocpsch;
2981 		dqm->ops.uninitialize = uninitialize;
2982 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2983 		dqm->ops.process_termination = process_termination_nocpsch;
2984 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2985 		dqm->ops.restore_process_queues =
2986 			restore_process_queues_nocpsch;
2987 		dqm->ops.get_wave_state = get_wave_state;
2988 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2989 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2990 		break;
2991 	default:
2992 		dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2993 		goto out_free;
2994 	}
2995 
2996 	switch (dev->adev->asic_type) {
2997 	case CHIP_KAVERI:
2998 	case CHIP_HAWAII:
2999 		device_queue_manager_init_cik(&dqm->asic_ops);
3000 		break;
3001 
3002 	case CHIP_CARRIZO:
3003 	case CHIP_TONGA:
3004 	case CHIP_FIJI:
3005 	case CHIP_POLARIS10:
3006 	case CHIP_POLARIS11:
3007 	case CHIP_POLARIS12:
3008 	case CHIP_VEGAM:
3009 		device_queue_manager_init_vi(&dqm->asic_ops);
3010 		break;
3011 
3012 	default:
3013 		if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
3014 			device_queue_manager_init_v12(&dqm->asic_ops);
3015 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
3016 			device_queue_manager_init_v11(&dqm->asic_ops);
3017 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
3018 			device_queue_manager_init_v10(&dqm->asic_ops);
3019 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
3020 			device_queue_manager_init_v9(&dqm->asic_ops);
3021 		else {
3022 			WARN(1, "Unexpected ASIC family %u",
3023 			     dev->adev->asic_type);
3024 			goto out_free;
3025 		}
3026 	}
3027 
3028 	if (init_mqd_managers(dqm))
3029 		goto out_free;
3030 
3031 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
3032 		dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
3033 		goto out_free;
3034 	}
3035 
3036 	if (!dqm->ops.initialize(dqm)) {
3037 		init_waitqueue_head(&dqm->destroy_wait);
3038 		return dqm;
3039 	}
3040 
3041 out_free:
3042 	kfree(dqm);
3043 	return NULL;
3044 }
3045 
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)3046 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
3047 				    struct kfd_mem_obj *mqd)
3048 {
3049 	WARN(!mqd, "No hiq sdma mqd trunk to free");
3050 
3051 	amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
3052 }
3053 
device_queue_manager_uninit(struct device_queue_manager * dqm)3054 void device_queue_manager_uninit(struct device_queue_manager *dqm)
3055 {
3056 	dqm->ops.stop(dqm);
3057 	dqm->ops.uninitialize(dqm);
3058 	if (!dqm->dev->kfd->shared_resources.enable_mes)
3059 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
3060 	kfree(dqm);
3061 }
3062 
kfd_dqm_suspend_bad_queue_mes(struct kfd_node * knode,u32 pasid,u32 doorbell_id)3063 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
3064 {
3065 	struct kfd_process_device *pdd = NULL;
3066 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
3067 	struct device_queue_manager *dqm = knode->dqm;
3068 	struct device *dev = dqm->dev->adev->dev;
3069 	struct qcm_process_device *qpd;
3070 	struct queue *q = NULL;
3071 	int ret = 0;
3072 
3073 	if (!pdd)
3074 		return -EINVAL;
3075 
3076 	dqm_lock(dqm);
3077 
3078 	if (pdd) {
3079 		qpd = &pdd->qpd;
3080 
3081 		list_for_each_entry(q, &qpd->queues_list, list) {
3082 			if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3083 				ret = suspend_all_queues_mes(dqm);
3084 				if (ret) {
3085 					dev_err(dev, "Suspending all queues failed");
3086 					goto out;
3087 				}
3088 
3089 				q->properties.is_evicted = true;
3090 				q->properties.is_active = false;
3091 				decrement_queue_count(dqm, qpd, q);
3092 
3093 				ret = remove_queue_mes(dqm, q, qpd);
3094 				if (ret) {
3095 					dev_err(dev, "Removing bad queue failed");
3096 					goto out;
3097 				}
3098 
3099 				ret = resume_all_queues_mes(dqm);
3100 				if (ret)
3101 					dev_err(dev, "Resuming all queues failed");
3102 
3103 				break;
3104 			}
3105 		}
3106 	}
3107 
3108 out:
3109 	dqm_unlock(dqm);
3110 	kfd_unref_process(p);
3111 	return ret;
3112 }
3113 
kfd_evict_process_device(struct kfd_process_device * pdd)3114 int kfd_evict_process_device(struct kfd_process_device *pdd)
3115 {
3116 	struct device_queue_manager *dqm;
3117 	struct kfd_process *p;
3118 
3119 	p = pdd->process;
3120 	dqm = pdd->dev->dqm;
3121 
3122 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3123 
3124 	return dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3125 }
3126 
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3127 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3128 				struct qcm_process_device *qpd)
3129 {
3130 	int r;
3131 	struct device *dev = dqm->dev->adev->dev;
3132 	int updated_vmid_mask;
3133 
3134 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3135 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3136 		return -EINVAL;
3137 	}
3138 
3139 	dqm_lock(dqm);
3140 
3141 	if (dqm->trap_debug_vmid != 0) {
3142 		dev_err(dev, "Trap debug id already reserved\n");
3143 		r = -EBUSY;
3144 		goto out_unlock;
3145 	}
3146 
3147 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3148 			USE_DEFAULT_GRACE_PERIOD, false);
3149 	if (r)
3150 		goto out_unlock;
3151 
3152 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3153 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3154 
3155 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3156 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3157 	r = set_sched_resources(dqm);
3158 	if (r)
3159 		goto out_unlock;
3160 
3161 	r = map_queues_cpsch(dqm);
3162 	if (r)
3163 		goto out_unlock;
3164 
3165 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3166 
3167 out_unlock:
3168 	dqm_unlock(dqm);
3169 	return r;
3170 }
3171 
3172 /*
3173  * Releases vmid for the trap debugger
3174  */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3175 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3176 			struct qcm_process_device *qpd)
3177 {
3178 	struct device *dev = dqm->dev->adev->dev;
3179 	int r;
3180 	int updated_vmid_mask;
3181 	uint32_t trap_debug_vmid;
3182 
3183 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3184 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3185 		return -EINVAL;
3186 	}
3187 
3188 	dqm_lock(dqm);
3189 	trap_debug_vmid = dqm->trap_debug_vmid;
3190 	if (dqm->trap_debug_vmid == 0) {
3191 		dev_err(dev, "Trap debug id is not reserved\n");
3192 		r = -EINVAL;
3193 		goto out_unlock;
3194 	}
3195 
3196 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3197 			USE_DEFAULT_GRACE_PERIOD, false);
3198 	if (r)
3199 		goto out_unlock;
3200 
3201 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3202 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3203 
3204 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3205 	dqm->trap_debug_vmid = 0;
3206 	r = set_sched_resources(dqm);
3207 	if (r)
3208 		goto out_unlock;
3209 
3210 	r = map_queues_cpsch(dqm);
3211 	if (r)
3212 		goto out_unlock;
3213 
3214 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3215 
3216 out_unlock:
3217 	dqm_unlock(dqm);
3218 	return r;
3219 }
3220 
3221 #define QUEUE_NOT_FOUND		-1
3222 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)3223 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3224 {
3225 	int i;
3226 
3227 	for (i = 0; i < num_queues; i++)
3228 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3229 }
3230 
3231 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)3232 static int q_array_get_index(unsigned int queue_id,
3233 		uint32_t num_queues,
3234 		uint32_t *queue_ids)
3235 {
3236 	int i;
3237 
3238 	for (i = 0; i < num_queues; i++)
3239 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3240 			return i;
3241 
3242 	return QUEUE_NOT_FOUND;
3243 }
3244 
3245 struct copy_context_work_handler_workarea {
3246 	struct work_struct copy_context_work;
3247 	struct kfd_process *p;
3248 };
3249 
copy_context_work_handler(struct work_struct * work)3250 static void copy_context_work_handler(struct work_struct *work)
3251 {
3252 	struct copy_context_work_handler_workarea *workarea;
3253 	struct mqd_manager *mqd_mgr;
3254 	struct queue *q;
3255 	struct mm_struct *mm;
3256 	struct kfd_process *p;
3257 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3258 	int i;
3259 
3260 	workarea = container_of(work,
3261 			struct copy_context_work_handler_workarea,
3262 			copy_context_work);
3263 
3264 	p = workarea->p;
3265 	mm = get_task_mm(p->lead_thread);
3266 
3267 	if (!mm)
3268 		return;
3269 
3270 	kthread_use_mm(mm);
3271 	for (i = 0; i < p->n_pdds; i++) {
3272 		struct kfd_process_device *pdd = p->pdds[i];
3273 		struct device_queue_manager *dqm = pdd->dev->dqm;
3274 		struct qcm_process_device *qpd = &pdd->qpd;
3275 
3276 		list_for_each_entry(q, &qpd->queues_list, list) {
3277 			if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3278 				continue;
3279 
3280 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3281 
3282 			/* We ignore the return value from get_wave_state
3283 			 * because
3284 			 * i) right now, it always returns 0, and
3285 			 * ii) if we hit an error, we would continue to the
3286 			 *      next queue anyway.
3287 			 */
3288 			mqd_mgr->get_wave_state(mqd_mgr,
3289 					q->mqd,
3290 					&q->properties,
3291 					(void __user *)	q->properties.ctx_save_restore_area_address,
3292 					&tmp_ctl_stack_used_size,
3293 					&tmp_save_area_used_size);
3294 		}
3295 	}
3296 	kthread_unuse_mm(mm);
3297 	mmput(mm);
3298 }
3299 
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)3300 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3301 {
3302 	size_t array_size = num_queues * sizeof(uint32_t);
3303 
3304 	if (!usr_queue_id_array)
3305 		return NULL;
3306 
3307 	return memdup_user(usr_queue_id_array, array_size);
3308 }
3309 
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)3310 int resume_queues(struct kfd_process *p,
3311 		uint32_t num_queues,
3312 		uint32_t *usr_queue_id_array)
3313 {
3314 	uint32_t *queue_ids = NULL;
3315 	int total_resumed = 0;
3316 	int i;
3317 
3318 	if (usr_queue_id_array) {
3319 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3320 
3321 		if (IS_ERR(queue_ids))
3322 			return PTR_ERR(queue_ids);
3323 
3324 		/* mask all queues as invalid.  unmask per successful request */
3325 		q_array_invalidate(num_queues, queue_ids);
3326 	}
3327 
3328 	for (i = 0; i < p->n_pdds; i++) {
3329 		struct kfd_process_device *pdd = p->pdds[i];
3330 		struct device_queue_manager *dqm = pdd->dev->dqm;
3331 		struct device *dev = dqm->dev->adev->dev;
3332 		struct qcm_process_device *qpd = &pdd->qpd;
3333 		struct queue *q;
3334 		int r, per_device_resumed = 0;
3335 
3336 		dqm_lock(dqm);
3337 
3338 		/* unmask queues that resume or already resumed as valid */
3339 		list_for_each_entry(q, &qpd->queues_list, list) {
3340 			int q_idx = QUEUE_NOT_FOUND;
3341 
3342 			if (queue_ids)
3343 				q_idx = q_array_get_index(
3344 						q->properties.queue_id,
3345 						num_queues,
3346 						queue_ids);
3347 
3348 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3349 				int err = resume_single_queue(dqm, &pdd->qpd, q);
3350 
3351 				if (queue_ids) {
3352 					if (!err) {
3353 						queue_ids[q_idx] &=
3354 							~KFD_DBG_QUEUE_INVALID_MASK;
3355 					} else {
3356 						queue_ids[q_idx] |=
3357 							KFD_DBG_QUEUE_ERROR_MASK;
3358 						break;
3359 					}
3360 				}
3361 
3362 				if (dqm->dev->kfd->shared_resources.enable_mes) {
3363 					wake_up_all(&dqm->destroy_wait);
3364 					if (!err)
3365 						total_resumed++;
3366 				} else {
3367 					per_device_resumed++;
3368 				}
3369 			}
3370 		}
3371 
3372 		if (!per_device_resumed) {
3373 			dqm_unlock(dqm);
3374 			continue;
3375 		}
3376 
3377 		r = execute_queues_cpsch(dqm,
3378 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3379 					0,
3380 					USE_DEFAULT_GRACE_PERIOD);
3381 		if (r) {
3382 			dev_err(dev, "Failed to resume process queues\n");
3383 			if (queue_ids) {
3384 				list_for_each_entry(q, &qpd->queues_list, list) {
3385 					int q_idx = q_array_get_index(
3386 							q->properties.queue_id,
3387 							num_queues,
3388 							queue_ids);
3389 
3390 					/* mask queue as error on resume fail */
3391 					if (q_idx != QUEUE_NOT_FOUND)
3392 						queue_ids[q_idx] |=
3393 							KFD_DBG_QUEUE_ERROR_MASK;
3394 				}
3395 			}
3396 		} else {
3397 			wake_up_all(&dqm->destroy_wait);
3398 			total_resumed += per_device_resumed;
3399 		}
3400 
3401 		dqm_unlock(dqm);
3402 	}
3403 
3404 	if (queue_ids) {
3405 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3406 				num_queues * sizeof(uint32_t)))
3407 			pr_err("copy_to_user failed on queue resume\n");
3408 
3409 		kfree(queue_ids);
3410 	}
3411 
3412 	return total_resumed;
3413 }
3414 
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)3415 int suspend_queues(struct kfd_process *p,
3416 			uint32_t num_queues,
3417 			uint32_t grace_period,
3418 			uint64_t exception_clear_mask,
3419 			uint32_t *usr_queue_id_array)
3420 {
3421 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3422 	int total_suspended = 0;
3423 	int i;
3424 
3425 	if (IS_ERR(queue_ids))
3426 		return PTR_ERR(queue_ids);
3427 
3428 	/* mask all queues as invalid.  umask on successful request */
3429 	q_array_invalidate(num_queues, queue_ids);
3430 
3431 	for (i = 0; i < p->n_pdds; i++) {
3432 		struct kfd_process_device *pdd = p->pdds[i];
3433 		struct device_queue_manager *dqm = pdd->dev->dqm;
3434 		struct device *dev = dqm->dev->adev->dev;
3435 		struct qcm_process_device *qpd = &pdd->qpd;
3436 		struct queue *q;
3437 		int r, per_device_suspended = 0;
3438 
3439 		mutex_lock(&p->event_mutex);
3440 		dqm_lock(dqm);
3441 
3442 		/* unmask queues that suspend or already suspended */
3443 		list_for_each_entry(q, &qpd->queues_list, list) {
3444 			int q_idx = q_array_get_index(q->properties.queue_id,
3445 							num_queues,
3446 							queue_ids);
3447 
3448 			if (q_idx != QUEUE_NOT_FOUND) {
3449 				int err = suspend_single_queue(dqm, pdd, q);
3450 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3451 
3452 				if (!err) {
3453 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3454 					if (exception_clear_mask && is_mes)
3455 						q->properties.exception_status &=
3456 							~exception_clear_mask;
3457 
3458 					if (is_mes)
3459 						total_suspended++;
3460 					else
3461 						per_device_suspended++;
3462 				} else if (err != -EBUSY) {
3463 					r = err;
3464 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3465 					break;
3466 				}
3467 			}
3468 		}
3469 
3470 		if (!per_device_suspended) {
3471 			dqm_unlock(dqm);
3472 			mutex_unlock(&p->event_mutex);
3473 			if (total_suspended)
3474 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3475 			continue;
3476 		}
3477 
3478 		r = execute_queues_cpsch(dqm,
3479 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3480 			grace_period);
3481 
3482 		if (r)
3483 			dev_err(dev, "Failed to suspend process queues.\n");
3484 		else
3485 			total_suspended += per_device_suspended;
3486 
3487 		list_for_each_entry(q, &qpd->queues_list, list) {
3488 			int q_idx = q_array_get_index(q->properties.queue_id,
3489 						num_queues, queue_ids);
3490 
3491 			if (q_idx == QUEUE_NOT_FOUND)
3492 				continue;
3493 
3494 			/* mask queue as error on suspend fail */
3495 			if (r)
3496 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3497 			else if (exception_clear_mask)
3498 				q->properties.exception_status &=
3499 							~exception_clear_mask;
3500 		}
3501 
3502 		dqm_unlock(dqm);
3503 		mutex_unlock(&p->event_mutex);
3504 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3505 	}
3506 
3507 	if (total_suspended) {
3508 		struct copy_context_work_handler_workarea copy_context_worker;
3509 
3510 		INIT_WORK_ONSTACK(
3511 				&copy_context_worker.copy_context_work,
3512 				copy_context_work_handler);
3513 
3514 		copy_context_worker.p = p;
3515 
3516 		schedule_work(&copy_context_worker.copy_context_work);
3517 
3518 
3519 		flush_work(&copy_context_worker.copy_context_work);
3520 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3521 	}
3522 
3523 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3524 			num_queues * sizeof(uint32_t)))
3525 		pr_err("copy_to_user failed on queue suspend\n");
3526 
3527 	kfree(queue_ids);
3528 
3529 	return total_suspended;
3530 }
3531 
set_queue_type_for_user(struct queue_properties * q_props)3532 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3533 {
3534 	switch (q_props->type) {
3535 	case KFD_QUEUE_TYPE_COMPUTE:
3536 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3537 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3538 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3539 	case KFD_QUEUE_TYPE_SDMA:
3540 		return KFD_IOC_QUEUE_TYPE_SDMA;
3541 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3542 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3543 	default:
3544 		WARN_ONCE(true, "queue type not recognized!");
3545 		return 0xffffffff;
3546 	};
3547 }
3548 
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3549 void set_queue_snapshot_entry(struct queue *q,
3550 			      uint64_t exception_clear_mask,
3551 			      struct kfd_queue_snapshot_entry *qss_entry)
3552 {
3553 	qss_entry->ring_base_address = q->properties.queue_address;
3554 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3555 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3556 	qss_entry->ctx_save_restore_address =
3557 				q->properties.ctx_save_restore_area_address;
3558 	qss_entry->ctx_save_restore_area_size =
3559 				q->properties.ctx_save_restore_area_size;
3560 	qss_entry->exception_status = q->properties.exception_status;
3561 	qss_entry->queue_id = q->properties.queue_id;
3562 	qss_entry->gpu_id = q->device->id;
3563 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3564 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3565 	q->properties.exception_status &= ~exception_clear_mask;
3566 }
3567 
debug_lock_and_unmap(struct device_queue_manager * dqm)3568 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3569 {
3570 	struct device *dev = dqm->dev->adev->dev;
3571 	int r;
3572 
3573 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3574 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3575 		return -EINVAL;
3576 	}
3577 
3578 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3579 		return 0;
3580 
3581 	dqm_lock(dqm);
3582 
3583 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3584 	if (r)
3585 		dqm_unlock(dqm);
3586 
3587 	return r;
3588 }
3589 
debug_map_and_unlock(struct device_queue_manager * dqm)3590 int debug_map_and_unlock(struct device_queue_manager *dqm)
3591 {
3592 	struct device *dev = dqm->dev->adev->dev;
3593 	int r;
3594 
3595 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3596 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3597 		return -EINVAL;
3598 	}
3599 
3600 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3601 		return 0;
3602 
3603 	r = map_queues_cpsch(dqm);
3604 
3605 	dqm_unlock(dqm);
3606 
3607 	return r;
3608 }
3609 
debug_refresh_runlist(struct device_queue_manager * dqm)3610 int debug_refresh_runlist(struct device_queue_manager *dqm)
3611 {
3612 	int r = debug_lock_and_unmap(dqm);
3613 
3614 	if (r)
3615 		return r;
3616 
3617 	return debug_map_and_unlock(dqm);
3618 }
3619 
kfd_dqm_is_queue_in_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd,int doorbell_off,u32 * queue_format)3620 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3621 				 struct qcm_process_device *qpd,
3622 				 int doorbell_off, u32 *queue_format)
3623 {
3624 	struct queue *q;
3625 	bool r = false;
3626 
3627 	if (!queue_format)
3628 		return r;
3629 
3630 	dqm_lock(dqm);
3631 
3632 	list_for_each_entry(q, &qpd->queues_list, list) {
3633 		if (q->properties.doorbell_off == doorbell_off) {
3634 			*queue_format = q->properties.format;
3635 			r = true;
3636 			goto out;
3637 		}
3638 	}
3639 
3640 out:
3641 	dqm_unlock(dqm);
3642 	return r;
3643 }
3644 #if defined(CONFIG_DEBUG_FS)
3645 
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3646 static void seq_reg_dump(struct seq_file *m,
3647 			 uint32_t (*dump)[2], uint32_t n_regs)
3648 {
3649 	uint32_t i, count;
3650 
3651 	for (i = 0, count = 0; i < n_regs; i++) {
3652 		if (count == 0 ||
3653 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3654 			seq_printf(m, "%s    %08x: %08x",
3655 				   i ? "\n" : "",
3656 				   dump[i][0], dump[i][1]);
3657 			count = 7;
3658 		} else {
3659 			seq_printf(m, " %08x", dump[i][1]);
3660 			count--;
3661 		}
3662 	}
3663 
3664 	seq_puts(m, "\n");
3665 }
3666 
dqm_debugfs_hqds(struct seq_file * m,void * data)3667 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3668 {
3669 	struct device_queue_manager *dqm = data;
3670 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3671 	uint32_t (*dump)[2], n_regs;
3672 	int pipe, queue;
3673 	int r = 0, xcc_id;
3674 	uint32_t sdma_engine_start;
3675 
3676 	if (!dqm->sched_running) {
3677 		seq_puts(m, " Device is stopped\n");
3678 		return 0;
3679 	}
3680 
3681 	for_each_inst(xcc_id, xcc_mask) {
3682 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3683 						KFD_CIK_HIQ_PIPE,
3684 						KFD_CIK_HIQ_QUEUE, &dump,
3685 						&n_regs, xcc_id);
3686 		if (!r) {
3687 			seq_printf(
3688 				m,
3689 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3690 				xcc_id,
3691 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3692 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3693 				KFD_CIK_HIQ_QUEUE);
3694 			seq_reg_dump(m, dump, n_regs);
3695 
3696 			kfree(dump);
3697 		}
3698 
3699 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3700 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3701 
3702 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3703 				if (!test_bit(pipe_offset + queue,
3704 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3705 					continue;
3706 
3707 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3708 								pipe, queue,
3709 								&dump, &n_regs,
3710 								xcc_id);
3711 				if (r)
3712 					break;
3713 
3714 				seq_printf(m,
3715 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3716 					   xcc_id, pipe, queue);
3717 				seq_reg_dump(m, dump, n_regs);
3718 
3719 				kfree(dump);
3720 			}
3721 		}
3722 	}
3723 
3724 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3725 	for (pipe = sdma_engine_start;
3726 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3727 	     pipe++) {
3728 		for (queue = 0;
3729 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3730 		     queue++) {
3731 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3732 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3733 			if (r)
3734 				break;
3735 
3736 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3737 				  pipe, queue);
3738 			seq_reg_dump(m, dump, n_regs);
3739 
3740 			kfree(dump);
3741 		}
3742 	}
3743 
3744 	return r;
3745 }
3746 
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3747 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3748 {
3749 	int r = 0;
3750 
3751 	dqm_lock(dqm);
3752 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3753 	if (r) {
3754 		dqm_unlock(dqm);
3755 		return r;
3756 	}
3757 	dqm->active_runlist = true;
3758 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3759 				0, USE_DEFAULT_GRACE_PERIOD);
3760 	dqm_unlock(dqm);
3761 
3762 	return r;
3763 }
3764 
3765 #endif
3766