1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "amdgpu_sdma.h"
40 #include "mes_v11_api_def.h"
41 #include "kfd_debug.h"
42
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 /* See unmap_queues_cpsch() */
47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff
48
49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
50 u32 pasid, unsigned int vmid);
51
52 static int execute_queues_cpsch(struct device_queue_manager *dqm,
53 enum kfd_unmap_queues_filter filter,
54 uint32_t filter_param,
55 uint32_t grace_period);
56 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
57 enum kfd_unmap_queues_filter filter,
58 uint32_t filter_param,
59 uint32_t grace_period,
60 bool reset);
61
62 static int map_queues_cpsch(struct device_queue_manager *dqm);
63
64 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
65 struct queue *q);
66
67 static inline void deallocate_hqd(struct device_queue_manager *dqm,
68 struct queue *q);
69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
70 static int allocate_sdma_queue(struct device_queue_manager *dqm,
71 struct queue *q, const uint32_t *restore_sdma_id);
72
73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma);
74
75 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
77 {
78 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
79 return KFD_MQD_TYPE_SDMA;
80 return KFD_MQD_TYPE_CP;
81 }
82
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
84 {
85 int i;
86 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
87 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
88
89 /* queue is available for KFD usage if bit is 1 */
90 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
91 if (test_bit(pipe_offset + i,
92 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
93 return true;
94 return false;
95 }
96
get_cp_queues_num(struct device_queue_manager * dqm)97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
98 {
99 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
100 AMDGPU_MAX_QUEUES);
101 }
102
get_queues_per_pipe(struct device_queue_manager * dqm)103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
104 {
105 return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
106 }
107
get_pipes_per_mec(struct device_queue_manager * dqm)108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
109 {
110 return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
111 }
112
get_num_all_sdma_engines(struct device_queue_manager * dqm)113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
114 {
115 return kfd_get_num_sdma_engines(dqm->dev) +
116 kfd_get_num_xgmi_sdma_engines(dqm->dev);
117 }
118
get_num_sdma_queues(struct device_queue_manager * dqm)119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
120 {
121 return kfd_get_num_sdma_engines(dqm->dev) *
122 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
123 }
124
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
126 {
127 return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
128 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
129 }
130
init_sdma_bitmaps(struct device_queue_manager * dqm)131 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
132 {
133 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
134 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
135
136 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
137 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
138
139 /* Mask out the reserved queues */
140 bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
141 dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
142 KFD_MAX_SDMA_QUEUES);
143 }
144
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)145 void program_sh_mem_settings(struct device_queue_manager *dqm,
146 struct qcm_process_device *qpd)
147 {
148 uint32_t xcc_mask = dqm->dev->xcc_mask;
149 int xcc_id;
150
151 for_each_inst(xcc_id, xcc_mask)
152 dqm->dev->kfd2kgd->program_sh_mem_settings(
153 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
154 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
155 qpd->sh_mem_bases, xcc_id);
156 }
157
kfd_hws_hang(struct device_queue_manager * dqm)158 static void kfd_hws_hang(struct device_queue_manager *dqm)
159 {
160 struct device_process_node *cur;
161 struct qcm_process_device *qpd;
162 struct queue *q;
163
164 /* Mark all device queues as reset. */
165 list_for_each_entry(cur, &dqm->queues, list) {
166 qpd = cur->qpd;
167 list_for_each_entry(q, &qpd->queues_list, list) {
168 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
169
170 pdd->has_reset_queue = true;
171 }
172 }
173
174 /*
175 * Issue a GPU reset if HWS is unresponsive
176 */
177 amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
178 }
179
convert_to_mes_queue_type(int queue_type)180 static int convert_to_mes_queue_type(int queue_type)
181 {
182 int mes_queue_type;
183
184 switch (queue_type) {
185 case KFD_QUEUE_TYPE_COMPUTE:
186 mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
187 break;
188 case KFD_QUEUE_TYPE_SDMA:
189 mes_queue_type = MES_QUEUE_TYPE_SDMA;
190 break;
191 default:
192 WARN(1, "Invalid queue type %d", queue_type);
193 mes_queue_type = -EINVAL;
194 break;
195 }
196
197 return mes_queue_type;
198 }
199
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)200 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
201 struct qcm_process_device *qpd)
202 {
203 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
204 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
205 struct mes_add_queue_input queue_input;
206 int r, queue_type;
207 uint64_t wptr_addr_off;
208
209 if (!dqm->sched_running || dqm->sched_halt)
210 return 0;
211 if (!down_read_trylock(&adev->reset_domain->sem))
212 return -EIO;
213
214 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
215 queue_input.process_id = pdd->pasid;
216 queue_input.page_table_base_addr = qpd->page_table_base;
217 queue_input.process_va_start = 0;
218 queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
219 /* MES unit for quantum is 100ns */
220 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */
221 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
222 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
223 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
224 queue_input.inprocess_gang_priority = q->properties.priority;
225 queue_input.gang_global_priority_level =
226 AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
227 queue_input.doorbell_offset = q->properties.doorbell_off;
228 queue_input.mqd_addr = q->gart_mqd_addr;
229 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
230
231 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
232 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
233
234 queue_input.is_kfd_process = 1;
235 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
236 queue_input.queue_size = q->properties.queue_size >> 2;
237
238 queue_input.paging = false;
239 queue_input.tba_addr = qpd->tba_addr;
240 queue_input.tma_addr = qpd->tma_addr;
241 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
242 queue_input.skip_process_ctx_clear =
243 qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
244 (qpd->pqm->process->debug_trap_enabled ||
245 kfd_dbg_has_ttmps_always_setup(q->device));
246
247 queue_type = convert_to_mes_queue_type(q->properties.type);
248 if (queue_type < 0) {
249 dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
250 q->properties.type);
251 up_read(&adev->reset_domain->sem);
252 return -EINVAL;
253 }
254 queue_input.queue_type = (uint32_t)queue_type;
255
256 queue_input.exclusively_scheduled = q->properties.is_gws;
257
258 amdgpu_mes_lock(&adev->mes);
259 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
260 amdgpu_mes_unlock(&adev->mes);
261 up_read(&adev->reset_domain->sem);
262 if (r) {
263 dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
264 q->properties.doorbell_off);
265 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
266 kfd_hws_hang(dqm);
267 }
268
269 return r;
270 }
271
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)272 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
273 struct qcm_process_device *qpd)
274 {
275 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
276 int r;
277 struct mes_remove_queue_input queue_input;
278
279 if (!dqm->sched_running || dqm->sched_halt)
280 return 0;
281 if (!down_read_trylock(&adev->reset_domain->sem))
282 return -EIO;
283
284 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
285 queue_input.doorbell_offset = q->properties.doorbell_off;
286 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
287
288 amdgpu_mes_lock(&adev->mes);
289 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
290 amdgpu_mes_unlock(&adev->mes);
291 up_read(&adev->reset_domain->sem);
292
293 if (r) {
294 dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
295 q->properties.doorbell_off);
296 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
297 kfd_hws_hang(dqm);
298 }
299
300 return r;
301 }
302
remove_all_kfd_queues_mes(struct device_queue_manager * dqm)303 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
304 {
305 struct device_process_node *cur;
306 struct device *dev = dqm->dev->adev->dev;
307 struct qcm_process_device *qpd;
308 struct queue *q;
309 int retval = 0;
310
311 list_for_each_entry(cur, &dqm->queues, list) {
312 qpd = cur->qpd;
313 list_for_each_entry(q, &qpd->queues_list, list) {
314 if (q->properties.is_active) {
315 retval = remove_queue_mes(dqm, q, qpd);
316 if (retval) {
317 dev_err(dev, "%s: Failed to remove queue %d for dev %d",
318 __func__,
319 q->properties.queue_id,
320 dqm->dev->id);
321 return retval;
322 }
323 }
324 }
325 }
326
327 return retval;
328 }
329
add_all_kfd_queues_mes(struct device_queue_manager * dqm)330 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
331 {
332 struct device_process_node *cur;
333 struct device *dev = dqm->dev->adev->dev;
334 struct qcm_process_device *qpd;
335 struct queue *q;
336 int retval = 0;
337
338 list_for_each_entry(cur, &dqm->queues, list) {
339 qpd = cur->qpd;
340 list_for_each_entry(q, &qpd->queues_list, list) {
341 if (!q->properties.is_active)
342 continue;
343 retval = add_queue_mes(dqm, q, qpd);
344 if (retval) {
345 dev_err(dev, "%s: Failed to add queue %d for dev %d",
346 __func__,
347 q->properties.queue_id,
348 dqm->dev->id);
349 return retval;
350 }
351 }
352 }
353
354 return retval;
355 }
356
suspend_all_queues_mes(struct device_queue_manager * dqm)357 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
358 {
359 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
360 int r = 0;
361
362 if (!down_read_trylock(&adev->reset_domain->sem))
363 return -EIO;
364
365 r = amdgpu_mes_suspend(adev);
366 up_read(&adev->reset_domain->sem);
367
368 if (r) {
369 dev_err(adev->dev, "failed to suspend gangs from MES\n");
370 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
371 kfd_hws_hang(dqm);
372 }
373
374 return r;
375 }
376
resume_all_queues_mes(struct device_queue_manager * dqm)377 static int resume_all_queues_mes(struct device_queue_manager *dqm)
378 {
379 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
380 int r = 0;
381
382 if (!down_read_trylock(&adev->reset_domain->sem))
383 return -EIO;
384
385 r = amdgpu_mes_resume(adev);
386 up_read(&adev->reset_domain->sem);
387
388 if (r) {
389 dev_err(adev->dev, "failed to resume gangs from MES\n");
390 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
391 kfd_hws_hang(dqm);
392 }
393
394 return r;
395 }
396
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)397 static void increment_queue_count(struct device_queue_manager *dqm,
398 struct qcm_process_device *qpd,
399 struct queue *q)
400 {
401 dqm->active_queue_count++;
402 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
403 q->properties.type == KFD_QUEUE_TYPE_DIQ)
404 dqm->active_cp_queue_count++;
405
406 if (q->properties.is_gws) {
407 dqm->gws_queue_count++;
408 qpd->mapped_gws_queue = true;
409 }
410 }
411
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)412 static void decrement_queue_count(struct device_queue_manager *dqm,
413 struct qcm_process_device *qpd,
414 struct queue *q)
415 {
416 dqm->active_queue_count--;
417 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
418 q->properties.type == KFD_QUEUE_TYPE_DIQ)
419 dqm->active_cp_queue_count--;
420
421 if (q->properties.is_gws) {
422 dqm->gws_queue_count--;
423 qpd->mapped_gws_queue = false;
424 }
425 }
426
427 /*
428 * Allocate a doorbell ID to this queue.
429 * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
430 */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)431 static int allocate_doorbell(struct qcm_process_device *qpd,
432 struct queue *q,
433 uint32_t const *restore_id)
434 {
435 struct kfd_node *dev = qpd->dqm->dev;
436
437 if (!KFD_IS_SOC15(dev)) {
438 /* On pre-SOC15 chips we need to use the queue ID to
439 * preserve the user mode ABI.
440 */
441
442 if (restore_id && *restore_id != q->properties.queue_id)
443 return -EINVAL;
444
445 q->doorbell_id = q->properties.queue_id;
446 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
447 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
448 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
449 * doorbell assignments based on the engine and queue id.
450 * The doobell index distance between RLC (2*i) and (2*i+1)
451 * for a SDMA engine is 512.
452 */
453
454 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
455
456 /*
457 * q->properties.sdma_engine_id corresponds to the virtual
458 * sdma engine number. However, for doorbell allocation,
459 * we need the physical sdma engine id in order to get the
460 * correct doorbell offset.
461 */
462 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
463 get_num_all_sdma_engines(qpd->dqm) +
464 q->properties.sdma_engine_id]
465 + (q->properties.sdma_queue_id & 1)
466 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
467 + (q->properties.sdma_queue_id >> 1);
468
469 if (restore_id && *restore_id != valid_id)
470 return -EINVAL;
471 q->doorbell_id = valid_id;
472 } else {
473 /* For CP queues on SOC15 */
474 if (restore_id) {
475 /* make sure that ID is free */
476 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
477 return -EINVAL;
478
479 q->doorbell_id = *restore_id;
480 } else {
481 /* or reserve a free doorbell ID */
482 unsigned int found;
483
484 found = find_first_zero_bit(qpd->doorbell_bitmap,
485 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
486 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
487 pr_debug("No doorbells available");
488 return -EBUSY;
489 }
490 set_bit(found, qpd->doorbell_bitmap);
491 q->doorbell_id = found;
492 }
493 }
494
495 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
496 qpd->proc_doorbells,
497 q->doorbell_id,
498 dev->kfd->device_info.doorbell_size);
499 return 0;
500 }
501
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)502 static void deallocate_doorbell(struct qcm_process_device *qpd,
503 struct queue *q)
504 {
505 unsigned int old;
506 struct kfd_node *dev = qpd->dqm->dev;
507
508 if (!KFD_IS_SOC15(dev) ||
509 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
510 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
511 return;
512
513 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
514 WARN_ON(!old);
515 }
516
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)517 static void program_trap_handler_settings(struct device_queue_manager *dqm,
518 struct qcm_process_device *qpd)
519 {
520 uint32_t xcc_mask = dqm->dev->xcc_mask;
521 int xcc_id;
522
523 if (dqm->dev->kfd2kgd->program_trap_handler_settings)
524 for_each_inst(xcc_id, xcc_mask)
525 dqm->dev->kfd2kgd->program_trap_handler_settings(
526 dqm->dev->adev, qpd->vmid, qpd->tba_addr,
527 qpd->tma_addr, xcc_id);
528 }
529
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)530 static int allocate_vmid(struct device_queue_manager *dqm,
531 struct qcm_process_device *qpd,
532 struct queue *q)
533 {
534 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
535 struct device *dev = dqm->dev->adev->dev;
536 int allocated_vmid = -1, i;
537
538 for (i = dqm->dev->vm_info.first_vmid_kfd;
539 i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
540 if (!dqm->vmid_pasid[i]) {
541 allocated_vmid = i;
542 break;
543 }
544 }
545
546 if (allocated_vmid < 0) {
547 dev_err(dev, "no more vmid to allocate\n");
548 return -ENOSPC;
549 }
550
551 pr_debug("vmid allocated: %d\n", allocated_vmid);
552
553 dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
554
555 set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
556
557 qpd->vmid = allocated_vmid;
558 q->properties.vmid = allocated_vmid;
559
560 program_sh_mem_settings(dqm, qpd);
561
562 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
563 program_trap_handler_settings(dqm, qpd);
564
565 /* qpd->page_table_base is set earlier when register_process()
566 * is called, i.e. when the first queue is created.
567 */
568 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
569 qpd->vmid,
570 qpd->page_table_base);
571 /* invalidate the VM context after pasid and vmid mapping is set up */
572 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
573
574 if (dqm->dev->kfd2kgd->set_scratch_backing_va)
575 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
576 qpd->sh_hidden_private_base, qpd->vmid);
577
578 return 0;
579 }
580
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)581 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
582 struct qcm_process_device *qpd)
583 {
584 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
585 int ret;
586
587 if (!qpd->ib_kaddr)
588 return -ENOMEM;
589
590 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
591 if (ret)
592 return ret;
593
594 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
595 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
596 pmf->release_mem_size / sizeof(uint32_t));
597 }
598
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)599 static void deallocate_vmid(struct device_queue_manager *dqm,
600 struct qcm_process_device *qpd,
601 struct queue *q)
602 {
603 struct device *dev = dqm->dev->adev->dev;
604
605 /* On GFX v7, CP doesn't flush TC at dequeue */
606 if (q->device->adev->asic_type == CHIP_HAWAII)
607 if (flush_texture_cache_nocpsch(q->device, qpd))
608 dev_err(dev, "Failed to flush TC\n");
609
610 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
611
612 /* Release the vmid mapping */
613 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
614 dqm->vmid_pasid[qpd->vmid] = 0;
615
616 qpd->vmid = 0;
617 q->properties.vmid = 0;
618 }
619
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)620 static int create_queue_nocpsch(struct device_queue_manager *dqm,
621 struct queue *q,
622 struct qcm_process_device *qpd,
623 const struct kfd_criu_queue_priv_data *qd,
624 const void *restore_mqd, const void *restore_ctl_stack)
625 {
626 struct mqd_manager *mqd_mgr;
627 int retval;
628
629 dqm_lock(dqm);
630
631 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
632 pr_warn("Can't create new usermode queue because %d queues were already created\n",
633 dqm->total_queue_count);
634 retval = -EPERM;
635 goto out_unlock;
636 }
637
638 if (list_empty(&qpd->queues_list)) {
639 retval = allocate_vmid(dqm, qpd, q);
640 if (retval)
641 goto out_unlock;
642 }
643 q->properties.vmid = qpd->vmid;
644 /*
645 * Eviction state logic: mark all queues as evicted, even ones
646 * not currently active. Restoring inactive queues later only
647 * updates the is_evicted flag but is a no-op otherwise.
648 */
649 q->properties.is_evicted = !!qpd->evicted;
650
651 q->properties.tba_addr = qpd->tba_addr;
652 q->properties.tma_addr = qpd->tma_addr;
653
654 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
655 q->properties.type)];
656 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
657 retval = allocate_hqd(dqm, q);
658 if (retval)
659 goto deallocate_vmid;
660 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
661 q->pipe, q->queue);
662 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
663 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
664 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
665 if (retval)
666 goto deallocate_vmid;
667 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
668 }
669
670 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
671 if (retval)
672 goto out_deallocate_hqd;
673
674 /* Temporarily release dqm lock to avoid a circular lock dependency */
675 dqm_unlock(dqm);
676 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
677 dqm_lock(dqm);
678
679 if (!q->mqd_mem_obj) {
680 retval = -ENOMEM;
681 goto out_deallocate_doorbell;
682 }
683
684 if (qd)
685 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
686 &q->properties, restore_mqd, restore_ctl_stack,
687 qd->ctl_stack_size);
688 else
689 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
690 &q->gart_mqd_addr, &q->properties);
691
692 if (q->properties.is_active) {
693 if (!dqm->sched_running) {
694 WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
695 goto add_queue_to_list;
696 }
697
698 if (WARN(q->process->mm != current->mm,
699 "should only run in user thread"))
700 retval = -EFAULT;
701 else
702 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
703 q->queue, &q->properties, current->mm);
704 if (retval)
705 goto out_free_mqd;
706 }
707
708 add_queue_to_list:
709 list_add(&q->list, &qpd->queues_list);
710 qpd->queue_count++;
711 if (q->properties.is_active)
712 increment_queue_count(dqm, qpd, q);
713
714 /*
715 * Unconditionally increment this counter, regardless of the queue's
716 * type or whether the queue is active.
717 */
718 dqm->total_queue_count++;
719 pr_debug("Total of %d queues are accountable so far\n",
720 dqm->total_queue_count);
721 goto out_unlock;
722
723 out_free_mqd:
724 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
725 out_deallocate_doorbell:
726 deallocate_doorbell(qpd, q);
727 out_deallocate_hqd:
728 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
729 deallocate_hqd(dqm, q);
730 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
731 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
732 deallocate_sdma_queue(dqm, q);
733 deallocate_vmid:
734 if (list_empty(&qpd->queues_list))
735 deallocate_vmid(dqm, qpd, q);
736 out_unlock:
737 dqm_unlock(dqm);
738 return retval;
739 }
740
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)741 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
742 {
743 bool set;
744 int pipe, bit, i;
745
746 set = false;
747
748 for (pipe = dqm->next_pipe_to_allocate, i = 0;
749 i < get_pipes_per_mec(dqm);
750 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
751
752 if (!is_pipe_enabled(dqm, 0, pipe))
753 continue;
754
755 if (dqm->allocated_queues[pipe] != 0) {
756 bit = ffs(dqm->allocated_queues[pipe]) - 1;
757 dqm->allocated_queues[pipe] &= ~(1 << bit);
758 q->pipe = pipe;
759 q->queue = bit;
760 set = true;
761 break;
762 }
763 }
764
765 if (!set)
766 return -EBUSY;
767
768 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
769 /* horizontal hqd allocation */
770 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
771
772 return 0;
773 }
774
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)775 static inline void deallocate_hqd(struct device_queue_manager *dqm,
776 struct queue *q)
777 {
778 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
779 }
780
781 #define SQ_IND_CMD_CMD_KILL 0x00000003
782 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001
783
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)784 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
785 {
786 int status = 0;
787 unsigned int vmid;
788 uint16_t queried_pasid;
789 union SQ_CMD_BITS reg_sq_cmd;
790 union GRBM_GFX_INDEX_BITS reg_gfx_index;
791 struct kfd_process_device *pdd;
792 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
793 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
794 uint32_t xcc_mask = dev->xcc_mask;
795 int xcc_id;
796
797 reg_sq_cmd.u32All = 0;
798 reg_gfx_index.u32All = 0;
799
800 pr_debug("Killing all process wavefronts\n");
801
802 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
803 dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
804 return -EOPNOTSUPP;
805 }
806
807 /* taking the VMID for that process on the safe way using PDD */
808 pdd = kfd_get_process_device_data(dev, p);
809 if (!pdd)
810 return -EFAULT;
811
812 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
813 * ATC_VMID15_PASID_MAPPING
814 * to check which VMID the current process is mapped to.
815 */
816
817 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
818 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
819 (dev->adev, vmid, &queried_pasid);
820
821 if (status && queried_pasid == pdd->pasid) {
822 pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
823 vmid, p->lead_thread->pid);
824 break;
825 }
826 }
827
828 if (vmid > last_vmid_to_scan) {
829 dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
830 p->lead_thread->pid);
831 return -EFAULT;
832 }
833
834 reg_gfx_index.bits.sh_broadcast_writes = 1;
835 reg_gfx_index.bits.se_broadcast_writes = 1;
836 reg_gfx_index.bits.instance_broadcast_writes = 1;
837 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
838 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
839 reg_sq_cmd.bits.vm_id = vmid;
840
841 for_each_inst(xcc_id, xcc_mask)
842 dev->kfd2kgd->wave_control_execute(
843 dev->adev, reg_gfx_index.u32All,
844 reg_sq_cmd.u32All, xcc_id);
845
846 return 0;
847 }
848
849 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
850 * to avoid asynchronized access
851 */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)852 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
853 struct qcm_process_device *qpd,
854 struct queue *q)
855 {
856 int retval;
857 struct mqd_manager *mqd_mgr;
858
859 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
860 q->properties.type)];
861
862 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
863 deallocate_hqd(dqm, q);
864 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
865 deallocate_sdma_queue(dqm, q);
866 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
867 deallocate_sdma_queue(dqm, q);
868 else {
869 pr_debug("q->properties.type %d is invalid\n",
870 q->properties.type);
871 return -EINVAL;
872 }
873 dqm->total_queue_count--;
874
875 deallocate_doorbell(qpd, q);
876
877 if (!dqm->sched_running) {
878 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
879 return 0;
880 }
881
882 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
883 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
884 KFD_UNMAP_LATENCY_MS,
885 q->pipe, q->queue);
886 if (retval == -ETIME)
887 qpd->reset_wavefronts = true;
888
889 list_del(&q->list);
890 if (list_empty(&qpd->queues_list)) {
891 if (qpd->reset_wavefronts) {
892 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
893 dqm->dev);
894 /* dbgdev_wave_reset_wavefronts has to be called before
895 * deallocate_vmid(), i.e. when vmid is still in use.
896 */
897 dbgdev_wave_reset_wavefronts(dqm->dev,
898 qpd->pqm->process);
899 qpd->reset_wavefronts = false;
900 }
901
902 deallocate_vmid(dqm, qpd, q);
903 }
904 qpd->queue_count--;
905 if (q->properties.is_active)
906 decrement_queue_count(dqm, qpd, q);
907
908 return retval;
909 }
910
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)911 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
912 struct qcm_process_device *qpd,
913 struct queue *q)
914 {
915 int retval;
916 uint64_t sdma_val = 0;
917 struct device *dev = dqm->dev->adev->dev;
918 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
919 struct mqd_manager *mqd_mgr =
920 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
921
922 /* Get the SDMA queue stats */
923 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
924 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
925 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
926 &sdma_val);
927 if (retval)
928 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
929 q->properties.queue_id);
930 }
931
932 dqm_lock(dqm);
933 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
934 if (!retval)
935 pdd->sdma_past_activity_counter += sdma_val;
936 dqm_unlock(dqm);
937
938 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
939
940 return retval;
941 }
942
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)943 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
944 struct mqd_update_info *minfo)
945 {
946 int retval = 0;
947 struct device *dev = dqm->dev->adev->dev;
948 struct mqd_manager *mqd_mgr;
949 struct kfd_process_device *pdd;
950 bool prev_active = false;
951
952 dqm_lock(dqm);
953 pdd = kfd_get_process_device_data(q->device, q->process);
954 if (!pdd) {
955 retval = -ENODEV;
956 goto out_unlock;
957 }
958 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
959 q->properties.type)];
960
961 /* Save previous activity state for counters */
962 prev_active = q->properties.is_active;
963
964 /* Make sure the queue is unmapped before updating the MQD */
965 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
966 if (!dqm->dev->kfd->shared_resources.enable_mes)
967 retval = unmap_queues_cpsch(dqm,
968 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
969 else if (prev_active)
970 retval = remove_queue_mes(dqm, q, &pdd->qpd);
971
972 /* queue is reset so inaccessable */
973 if (pdd->has_reset_queue) {
974 retval = -EACCES;
975 goto out_unlock;
976 }
977
978 if (retval) {
979 dev_err(dev, "unmap queue failed\n");
980 goto out_unlock;
981 }
982 } else if (prev_active &&
983 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
984 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
985 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
986
987 if (!dqm->sched_running) {
988 WARN_ONCE(1, "Update non-HWS queue while stopped\n");
989 goto out_unlock;
990 }
991
992 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
993 (dqm->dev->kfd->cwsr_enabled ?
994 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
995 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
996 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
997 if (retval) {
998 dev_err(dev, "destroy mqd failed\n");
999 goto out_unlock;
1000 }
1001 }
1002
1003 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1004
1005 /*
1006 * check active state vs. the previous state and modify
1007 * counter accordingly. map_queues_cpsch uses the
1008 * dqm->active_queue_count to determine whether a new runlist must be
1009 * uploaded.
1010 */
1011 if (q->properties.is_active && !prev_active) {
1012 increment_queue_count(dqm, &pdd->qpd, q);
1013 } else if (!q->properties.is_active && prev_active) {
1014 decrement_queue_count(dqm, &pdd->qpd, q);
1015 } else if (q->gws && !q->properties.is_gws) {
1016 if (q->properties.is_active) {
1017 dqm->gws_queue_count++;
1018 pdd->qpd.mapped_gws_queue = true;
1019 }
1020 q->properties.is_gws = true;
1021 } else if (!q->gws && q->properties.is_gws) {
1022 if (q->properties.is_active) {
1023 dqm->gws_queue_count--;
1024 pdd->qpd.mapped_gws_queue = false;
1025 }
1026 q->properties.is_gws = false;
1027 }
1028
1029 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1030 if (!dqm->dev->kfd->shared_resources.enable_mes)
1031 retval = map_queues_cpsch(dqm);
1032 else if (q->properties.is_active)
1033 retval = add_queue_mes(dqm, q, &pdd->qpd);
1034 } else if (q->properties.is_active &&
1035 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1036 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1037 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1038 if (WARN(q->process->mm != current->mm,
1039 "should only run in user thread"))
1040 retval = -EFAULT;
1041 else
1042 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1043 q->pipe, q->queue,
1044 &q->properties, current->mm);
1045 }
1046
1047 out_unlock:
1048 dqm_unlock(dqm);
1049 return retval;
1050 }
1051
1052 /* suspend_single_queue does not lock the dqm like the
1053 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1054 * lock the dqm before calling, and unlock after calling.
1055 *
1056 * The reason we don't lock the dqm is because this function may be
1057 * called on multiple queues in a loop, so rather than locking/unlocking
1058 * multiple times, we will just keep the dqm locked for all of the calls.
1059 */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)1060 static int suspend_single_queue(struct device_queue_manager *dqm,
1061 struct kfd_process_device *pdd,
1062 struct queue *q)
1063 {
1064 bool is_new;
1065
1066 if (q->properties.is_suspended)
1067 return 0;
1068
1069 pr_debug("Suspending process pid %d queue [%i]\n",
1070 pdd->process->lead_thread->pid,
1071 q->properties.queue_id);
1072
1073 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1074
1075 if (is_new || q->properties.is_being_destroyed) {
1076 pr_debug("Suspend: skip %s queue id %i\n",
1077 is_new ? "new" : "destroyed",
1078 q->properties.queue_id);
1079 return -EBUSY;
1080 }
1081
1082 q->properties.is_suspended = true;
1083 if (q->properties.is_active) {
1084 if (dqm->dev->kfd->shared_resources.enable_mes) {
1085 int r = remove_queue_mes(dqm, q, &pdd->qpd);
1086
1087 if (r)
1088 return r;
1089 }
1090
1091 decrement_queue_count(dqm, &pdd->qpd, q);
1092 q->properties.is_active = false;
1093 }
1094
1095 return 0;
1096 }
1097
1098 /* resume_single_queue does not lock the dqm like the functions
1099 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1100 * lock the dqm before calling, and unlock after calling.
1101 *
1102 * The reason we don't lock the dqm is because this function may be
1103 * called on multiple queues in a loop, so rather than locking/unlocking
1104 * multiple times, we will just keep the dqm locked for all of the calls.
1105 */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1106 static int resume_single_queue(struct device_queue_manager *dqm,
1107 struct qcm_process_device *qpd,
1108 struct queue *q)
1109 {
1110 struct kfd_process_device *pdd;
1111
1112 if (!q->properties.is_suspended)
1113 return 0;
1114
1115 pdd = qpd_to_pdd(qpd);
1116
1117 pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1118 pdd->process->lead_thread->pid,
1119 q->properties.queue_id);
1120
1121 q->properties.is_suspended = false;
1122
1123 if (QUEUE_IS_ACTIVE(q->properties)) {
1124 if (dqm->dev->kfd->shared_resources.enable_mes) {
1125 int r = add_queue_mes(dqm, q, &pdd->qpd);
1126
1127 if (r)
1128 return r;
1129 }
1130
1131 q->properties.is_active = true;
1132 increment_queue_count(dqm, qpd, q);
1133 }
1134
1135 return 0;
1136 }
1137
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1138 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1139 struct qcm_process_device *qpd)
1140 {
1141 struct queue *q;
1142 struct mqd_manager *mqd_mgr;
1143 struct kfd_process_device *pdd;
1144 int retval, ret = 0;
1145
1146 dqm_lock(dqm);
1147 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1148 goto out;
1149
1150 pdd = qpd_to_pdd(qpd);
1151 pr_debug_ratelimited("Evicting process pid %d queues\n",
1152 pdd->process->lead_thread->pid);
1153
1154 pdd->last_evict_timestamp = get_jiffies_64();
1155 /* Mark all queues as evicted. Deactivate all active queues on
1156 * the qpd.
1157 */
1158 list_for_each_entry(q, &qpd->queues_list, list) {
1159 q->properties.is_evicted = true;
1160 if (!q->properties.is_active)
1161 continue;
1162
1163 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1164 q->properties.type)];
1165 q->properties.is_active = false;
1166 decrement_queue_count(dqm, qpd, q);
1167
1168 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1169 continue;
1170
1171 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1172 (dqm->dev->kfd->cwsr_enabled ?
1173 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1174 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1175 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1176 if (retval && !ret)
1177 /* Return the first error, but keep going to
1178 * maintain a consistent eviction state
1179 */
1180 ret = retval;
1181 }
1182
1183 out:
1184 dqm_unlock(dqm);
1185 return ret;
1186 }
1187
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1188 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1189 struct qcm_process_device *qpd)
1190 {
1191 struct queue *q;
1192 struct device *dev = dqm->dev->adev->dev;
1193 struct kfd_process_device *pdd;
1194 int retval = 0;
1195
1196 dqm_lock(dqm);
1197 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1198 goto out;
1199
1200 pdd = qpd_to_pdd(qpd);
1201
1202 /* The debugger creates processes that temporarily have not acquired
1203 * all VMs for all devices and has no VMs itself.
1204 * Skip queue eviction on process eviction.
1205 */
1206 if (!pdd->drm_priv)
1207 goto out;
1208
1209 pr_debug_ratelimited("Evicting process pid %d queues\n",
1210 pdd->process->lead_thread->pid);
1211
1212 if (dqm->dev->kfd->shared_resources.enable_mes) {
1213 pdd->last_evict_timestamp = get_jiffies_64();
1214 retval = suspend_all_queues_mes(dqm);
1215 if (retval) {
1216 dev_err(dev, "Suspending all queues failed");
1217 goto out;
1218 }
1219 }
1220
1221 /* Mark all queues as evicted. Deactivate all active queues on
1222 * the qpd.
1223 */
1224 list_for_each_entry(q, &qpd->queues_list, list) {
1225 q->properties.is_evicted = true;
1226 if (!q->properties.is_active)
1227 continue;
1228
1229 q->properties.is_active = false;
1230 decrement_queue_count(dqm, qpd, q);
1231
1232 if (dqm->dev->kfd->shared_resources.enable_mes) {
1233 retval = remove_queue_mes(dqm, q, qpd);
1234 if (retval) {
1235 dev_err(dev, "Failed to evict queue %d\n",
1236 q->properties.queue_id);
1237 goto out;
1238 }
1239 }
1240 }
1241
1242 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1243 pdd->last_evict_timestamp = get_jiffies_64();
1244 retval = execute_queues_cpsch(dqm,
1245 qpd->is_debug ?
1246 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1247 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1248 USE_DEFAULT_GRACE_PERIOD);
1249 } else {
1250 retval = resume_all_queues_mes(dqm);
1251 if (retval)
1252 dev_err(dev, "Resuming all queues failed");
1253 }
1254
1255 out:
1256 dqm_unlock(dqm);
1257 return retval;
1258 }
1259
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1260 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1261 struct qcm_process_device *qpd)
1262 {
1263 struct mm_struct *mm = NULL;
1264 struct queue *q;
1265 struct mqd_manager *mqd_mgr;
1266 struct kfd_process_device *pdd;
1267 uint64_t pd_base;
1268 uint64_t eviction_duration;
1269 int retval, ret = 0;
1270
1271 pdd = qpd_to_pdd(qpd);
1272 /* Retrieve PD base */
1273 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1274
1275 dqm_lock(dqm);
1276 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1277 goto out;
1278 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1279 qpd->evicted--;
1280 goto out;
1281 }
1282
1283 pr_debug_ratelimited("Restoring process pid %d queues\n",
1284 pdd->process->lead_thread->pid);
1285
1286 /* Update PD Base in QPD */
1287 qpd->page_table_base = pd_base;
1288 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1289
1290 if (!list_empty(&qpd->queues_list)) {
1291 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1292 dqm->dev->adev,
1293 qpd->vmid,
1294 qpd->page_table_base);
1295 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1296 }
1297
1298 /* Take a safe reference to the mm_struct, which may otherwise
1299 * disappear even while the kfd_process is still referenced.
1300 */
1301 mm = get_task_mm(pdd->process->lead_thread);
1302 if (!mm) {
1303 ret = -EFAULT;
1304 goto out;
1305 }
1306
1307 /* Remove the eviction flags. Activate queues that are not
1308 * inactive for other reasons.
1309 */
1310 list_for_each_entry(q, &qpd->queues_list, list) {
1311 q->properties.is_evicted = false;
1312 if (!QUEUE_IS_ACTIVE(q->properties))
1313 continue;
1314
1315 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1316 q->properties.type)];
1317 q->properties.is_active = true;
1318 increment_queue_count(dqm, qpd, q);
1319
1320 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1321 continue;
1322
1323 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1324 q->queue, &q->properties, mm);
1325 if (retval && !ret)
1326 /* Return the first error, but keep going to
1327 * maintain a consistent eviction state
1328 */
1329 ret = retval;
1330 }
1331 qpd->evicted = 0;
1332 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1333 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1334 out:
1335 if (mm)
1336 mmput(mm);
1337 dqm_unlock(dqm);
1338 return ret;
1339 }
1340
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1341 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1342 struct qcm_process_device *qpd)
1343 {
1344 struct queue *q;
1345 struct device *dev = dqm->dev->adev->dev;
1346 struct kfd_process_device *pdd;
1347 uint64_t eviction_duration;
1348 int retval = 0;
1349
1350 pdd = qpd_to_pdd(qpd);
1351
1352 dqm_lock(dqm);
1353 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1354 goto out;
1355 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1356 qpd->evicted--;
1357 goto out;
1358 }
1359
1360 /* The debugger creates processes that temporarily have not acquired
1361 * all VMs for all devices and has no VMs itself.
1362 * Skip queue restore on process restore.
1363 */
1364 if (!pdd->drm_priv)
1365 goto vm_not_acquired;
1366
1367 pr_debug_ratelimited("Restoring process pid %d queues\n",
1368 pdd->process->lead_thread->pid);
1369
1370 /* Update PD Base in QPD */
1371 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1372 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1373
1374 /* activate all active queues on the qpd */
1375 list_for_each_entry(q, &qpd->queues_list, list) {
1376 q->properties.is_evicted = false;
1377 if (!QUEUE_IS_ACTIVE(q->properties))
1378 continue;
1379
1380 q->properties.is_active = true;
1381 increment_queue_count(dqm, &pdd->qpd, q);
1382
1383 if (dqm->dev->kfd->shared_resources.enable_mes) {
1384 retval = add_queue_mes(dqm, q, qpd);
1385 if (retval) {
1386 dev_err(dev, "Failed to restore queue %d\n",
1387 q->properties.queue_id);
1388 goto out;
1389 }
1390 }
1391 }
1392 if (!dqm->dev->kfd->shared_resources.enable_mes)
1393 retval = execute_queues_cpsch(dqm,
1394 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1395 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1396 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1397 vm_not_acquired:
1398 qpd->evicted = 0;
1399 out:
1400 dqm_unlock(dqm);
1401 return retval;
1402 }
1403
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1404 static int register_process(struct device_queue_manager *dqm,
1405 struct qcm_process_device *qpd)
1406 {
1407 struct device_process_node *n;
1408 struct kfd_process_device *pdd;
1409 uint64_t pd_base;
1410 int retval;
1411
1412 n = kzalloc(sizeof(*n), GFP_KERNEL);
1413 if (!n)
1414 return -ENOMEM;
1415
1416 n->qpd = qpd;
1417
1418 pdd = qpd_to_pdd(qpd);
1419 /* Retrieve PD base */
1420 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1421
1422 dqm_lock(dqm);
1423 list_add(&n->list, &dqm->queues);
1424
1425 /* Update PD Base in QPD */
1426 qpd->page_table_base = pd_base;
1427 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1428
1429 retval = dqm->asic_ops.update_qpd(dqm, qpd);
1430
1431 dqm->processes_count++;
1432
1433 dqm_unlock(dqm);
1434
1435 /* Outside the DQM lock because under the DQM lock we can't do
1436 * reclaim or take other locks that others hold while reclaiming.
1437 */
1438 kfd_inc_compute_active(dqm->dev);
1439
1440 return retval;
1441 }
1442
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1443 static int unregister_process(struct device_queue_manager *dqm,
1444 struct qcm_process_device *qpd)
1445 {
1446 int retval;
1447 struct device_process_node *cur, *next;
1448
1449 pr_debug("qpd->queues_list is %s\n",
1450 list_empty(&qpd->queues_list) ? "empty" : "not empty");
1451
1452 retval = 0;
1453 dqm_lock(dqm);
1454
1455 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1456 if (qpd == cur->qpd) {
1457 list_del(&cur->list);
1458 kfree(cur);
1459 dqm->processes_count--;
1460 goto out;
1461 }
1462 }
1463 /* qpd not found in dqm list */
1464 retval = 1;
1465 out:
1466 dqm_unlock(dqm);
1467
1468 /* Outside the DQM lock because under the DQM lock we can't do
1469 * reclaim or take other locks that others hold while reclaiming.
1470 */
1471 if (!retval)
1472 kfd_dec_compute_active(dqm->dev);
1473
1474 return retval;
1475 }
1476
1477 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1478 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1479 unsigned int vmid)
1480 {
1481 uint32_t xcc_mask = dqm->dev->xcc_mask;
1482 int xcc_id, ret;
1483
1484 for_each_inst(xcc_id, xcc_mask) {
1485 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1486 dqm->dev->adev, pasid, vmid, xcc_id);
1487 if (ret)
1488 break;
1489 }
1490
1491 return ret;
1492 }
1493
init_interrupts(struct device_queue_manager * dqm)1494 static void init_interrupts(struct device_queue_manager *dqm)
1495 {
1496 uint32_t xcc_mask = dqm->dev->xcc_mask;
1497 unsigned int i, xcc_id;
1498
1499 for_each_inst(xcc_id, xcc_mask) {
1500 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1501 if (is_pipe_enabled(dqm, 0, i)) {
1502 dqm->dev->kfd2kgd->init_interrupts(
1503 dqm->dev->adev, i, xcc_id);
1504 }
1505 }
1506 }
1507 }
1508
initialize_nocpsch(struct device_queue_manager * dqm)1509 static int initialize_nocpsch(struct device_queue_manager *dqm)
1510 {
1511 int pipe, queue;
1512
1513 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1514
1515 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1516 sizeof(unsigned int), GFP_KERNEL);
1517 if (!dqm->allocated_queues)
1518 return -ENOMEM;
1519
1520 mutex_init(&dqm->lock_hidden);
1521 INIT_LIST_HEAD(&dqm->queues);
1522 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1523 dqm->active_cp_queue_count = 0;
1524 dqm->gws_queue_count = 0;
1525
1526 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1527 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1528
1529 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1530 if (test_bit(pipe_offset + queue,
1531 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1532 dqm->allocated_queues[pipe] |= 1 << queue;
1533 }
1534
1535 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1536
1537 init_sdma_bitmaps(dqm);
1538
1539 return 0;
1540 }
1541
uninitialize(struct device_queue_manager * dqm)1542 static void uninitialize(struct device_queue_manager *dqm)
1543 {
1544 int i;
1545
1546 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1547
1548 kfree(dqm->allocated_queues);
1549 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1550 kfree(dqm->mqd_mgrs[i]);
1551 mutex_destroy(&dqm->lock_hidden);
1552 }
1553
start_nocpsch(struct device_queue_manager * dqm)1554 static int start_nocpsch(struct device_queue_manager *dqm)
1555 {
1556 int r = 0;
1557
1558 pr_info("SW scheduler is used");
1559 init_interrupts(dqm);
1560
1561 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1562 r = pm_init(&dqm->packet_mgr, dqm);
1563 if (!r)
1564 dqm->sched_running = true;
1565
1566 return r;
1567 }
1568
stop_nocpsch(struct device_queue_manager * dqm)1569 static int stop_nocpsch(struct device_queue_manager *dqm)
1570 {
1571 dqm_lock(dqm);
1572 if (!dqm->sched_running) {
1573 dqm_unlock(dqm);
1574 return 0;
1575 }
1576
1577 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1578 pm_uninit(&dqm->packet_mgr);
1579 dqm->sched_running = false;
1580 dqm_unlock(dqm);
1581
1582 return 0;
1583 }
1584
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1585 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1586 struct queue *q, const uint32_t *restore_sdma_id)
1587 {
1588 struct device *dev = dqm->dev->adev->dev;
1589 int bit;
1590
1591 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1592 if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) {
1593 dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n",
1594 get_num_sdma_queues(dqm));
1595 return -ENOMEM;
1596 }
1597
1598 if (restore_sdma_id) {
1599 /* Re-use existing sdma_id */
1600 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1601 dev_err(dev, "SDMA queue already in use\n");
1602 return -EBUSY;
1603 }
1604 clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1605 q->sdma_id = *restore_sdma_id;
1606 } else {
1607 /* Find first available sdma_id */
1608 bit = find_first_bit(dqm->sdma_bitmap,
1609 get_num_sdma_queues(dqm));
1610 clear_bit(bit, dqm->sdma_bitmap);
1611 q->sdma_id = bit;
1612 }
1613
1614 q->properties.sdma_engine_id =
1615 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1616 q->properties.sdma_queue_id = q->sdma_id /
1617 kfd_get_num_sdma_engines(dqm->dev);
1618 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1619 if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) {
1620 dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n",
1621 get_num_xgmi_sdma_queues(dqm));
1622 return -ENOMEM;
1623 }
1624 if (restore_sdma_id) {
1625 /* Re-use existing sdma_id */
1626 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1627 dev_err(dev, "SDMA queue already in use\n");
1628 return -EBUSY;
1629 }
1630 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1631 q->sdma_id = *restore_sdma_id;
1632 } else {
1633 bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1634 get_num_xgmi_sdma_queues(dqm));
1635 clear_bit(bit, dqm->xgmi_sdma_bitmap);
1636 q->sdma_id = bit;
1637 }
1638 /* sdma_engine_id is sdma id including
1639 * both PCIe-optimized SDMAs and XGMI-
1640 * optimized SDMAs. The calculation below
1641 * assumes the first N engines are always
1642 * PCIe-optimized ones
1643 */
1644 q->properties.sdma_engine_id =
1645 kfd_get_num_sdma_engines(dqm->dev) +
1646 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1647 q->properties.sdma_queue_id = q->sdma_id /
1648 kfd_get_num_xgmi_sdma_engines(dqm->dev);
1649 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1650 int i, num_queues, num_engines, eng_offset = 0, start_engine;
1651 bool free_bit_found = false, is_xgmi = false;
1652
1653 if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1654 num_queues = get_num_sdma_queues(dqm);
1655 num_engines = kfd_get_num_sdma_engines(dqm->dev);
1656 q->properties.type = KFD_QUEUE_TYPE_SDMA;
1657 } else {
1658 num_queues = get_num_xgmi_sdma_queues(dqm);
1659 num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1660 eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1661 q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1662 is_xgmi = true;
1663 }
1664
1665 /* Scan available bit based on target engine ID. */
1666 start_engine = q->properties.sdma_engine_id - eng_offset;
1667 for (i = start_engine; i < num_queues; i += num_engines) {
1668
1669 if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1670 continue;
1671
1672 clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1673 q->sdma_id = i;
1674 q->properties.sdma_queue_id = q->sdma_id / num_engines;
1675 free_bit_found = true;
1676 break;
1677 }
1678
1679 if (!free_bit_found) {
1680 dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n",
1681 q->properties.sdma_engine_id, num_queues);
1682 return -ENOMEM;
1683 }
1684 }
1685
1686 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1687 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1688
1689 return 0;
1690 }
1691
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1692 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1693 struct queue *q)
1694 {
1695 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1696 if (q->sdma_id >= get_num_sdma_queues(dqm))
1697 return;
1698 set_bit(q->sdma_id, dqm->sdma_bitmap);
1699 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1700 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1701 return;
1702 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1703 }
1704 }
1705
1706 /*
1707 * Device Queue Manager implementation for cp scheduler
1708 */
1709
set_sched_resources(struct device_queue_manager * dqm)1710 static int set_sched_resources(struct device_queue_manager *dqm)
1711 {
1712 int i, mec;
1713 struct scheduling_resources res;
1714 struct device *dev = dqm->dev->adev->dev;
1715
1716 res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1717
1718 res.queue_mask = 0;
1719 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1720 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1721 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1722
1723 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1724 continue;
1725
1726 /* only acquire queues from the first MEC */
1727 if (mec > 0)
1728 continue;
1729
1730 /* This situation may be hit in the future if a new HW
1731 * generation exposes more than 64 queues. If so, the
1732 * definition of res.queue_mask needs updating
1733 */
1734 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1735 dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1736 break;
1737 }
1738
1739 res.queue_mask |= 1ull
1740 << amdgpu_queue_mask_bit_to_set_resource_bit(
1741 dqm->dev->adev, i);
1742 }
1743 res.gws_mask = ~0ull;
1744 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1745
1746 pr_debug("Scheduling resources:\n"
1747 "vmid mask: 0x%8X\n"
1748 "queue mask: 0x%8llX\n",
1749 res.vmid_mask, res.queue_mask);
1750
1751 return pm_send_set_resources(&dqm->packet_mgr, &res);
1752 }
1753
initialize_cpsch(struct device_queue_manager * dqm)1754 static int initialize_cpsch(struct device_queue_manager *dqm)
1755 {
1756 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1757
1758 mutex_init(&dqm->lock_hidden);
1759 INIT_LIST_HEAD(&dqm->queues);
1760 dqm->active_queue_count = dqm->processes_count = 0;
1761 dqm->active_cp_queue_count = 0;
1762 dqm->gws_queue_count = 0;
1763 dqm->active_runlist = false;
1764 dqm->trap_debug_vmid = 0;
1765
1766 init_sdma_bitmaps(dqm);
1767
1768 update_dqm_wait_times(dqm);
1769 return 0;
1770 }
1771
1772 /* halt_cpsch:
1773 * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1774 * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1775 * is called.
1776 */
halt_cpsch(struct device_queue_manager * dqm)1777 static int halt_cpsch(struct device_queue_manager *dqm)
1778 {
1779 int ret = 0;
1780
1781 dqm_lock(dqm);
1782 if (!dqm->sched_running) {
1783 dqm_unlock(dqm);
1784 return 0;
1785 }
1786
1787 WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1788
1789 if (!dqm->is_hws_hang) {
1790 if (!dqm->dev->kfd->shared_resources.enable_mes)
1791 ret = unmap_queues_cpsch(dqm,
1792 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1793 USE_DEFAULT_GRACE_PERIOD, false);
1794 else
1795 ret = remove_all_kfd_queues_mes(dqm);
1796 }
1797 dqm->sched_halt = true;
1798 dqm_unlock(dqm);
1799
1800 return ret;
1801 }
1802
1803 /* unhalt_cpsch
1804 * Unset dqm->sched_halt and map queues back to runlist
1805 */
unhalt_cpsch(struct device_queue_manager * dqm)1806 static int unhalt_cpsch(struct device_queue_manager *dqm)
1807 {
1808 int ret = 0;
1809
1810 dqm_lock(dqm);
1811 if (!dqm->sched_running || !dqm->sched_halt) {
1812 WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1813 dqm_unlock(dqm);
1814 return 0;
1815 }
1816 dqm->sched_halt = false;
1817 if (!dqm->dev->kfd->shared_resources.enable_mes)
1818 ret = execute_queues_cpsch(dqm,
1819 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1820 0, USE_DEFAULT_GRACE_PERIOD);
1821 else
1822 ret = add_all_kfd_queues_mes(dqm);
1823
1824 dqm_unlock(dqm);
1825
1826 return ret;
1827 }
1828
start_cpsch(struct device_queue_manager * dqm)1829 static int start_cpsch(struct device_queue_manager *dqm)
1830 {
1831 struct device *dev = dqm->dev->adev->dev;
1832 int retval, num_hw_queue_slots;
1833
1834 retval = 0;
1835
1836 dqm_lock(dqm);
1837
1838 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1839 retval = pm_init(&dqm->packet_mgr, dqm);
1840 if (retval)
1841 goto fail_packet_manager_init;
1842
1843 retval = set_sched_resources(dqm);
1844 if (retval)
1845 goto fail_set_sched_resources;
1846 }
1847 pr_debug("Allocating fence memory\n");
1848
1849 /* allocate fence memory on the gart */
1850 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1851 &dqm->fence_mem);
1852
1853 if (retval)
1854 goto fail_allocate_vidmem;
1855
1856 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1857 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1858
1859 init_interrupts(dqm);
1860
1861 /* clear hang status when driver try to start the hw scheduler */
1862 dqm->sched_running = true;
1863
1864 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1865 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
1866 KFD_DEQUEUE_WAIT_INIT, 0 /* unused */))
1867 dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n");
1868 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1869 }
1870
1871 /* setup per-queue reset detection buffer */
1872 num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1873 dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1874 NUM_XCC(dqm->dev->xcc_mask);
1875
1876 dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1877 dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1878
1879 if (!dqm->detect_hang_info) {
1880 retval = -ENOMEM;
1881 goto fail_detect_hang_buffer;
1882 }
1883
1884 dqm_unlock(dqm);
1885
1886 return 0;
1887 fail_detect_hang_buffer:
1888 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1889 fail_allocate_vidmem:
1890 fail_set_sched_resources:
1891 if (!dqm->dev->kfd->shared_resources.enable_mes)
1892 pm_uninit(&dqm->packet_mgr);
1893 fail_packet_manager_init:
1894 dqm_unlock(dqm);
1895 return retval;
1896 }
1897
stop_cpsch(struct device_queue_manager * dqm)1898 static int stop_cpsch(struct device_queue_manager *dqm)
1899 {
1900 dqm_lock(dqm);
1901 if (!dqm->sched_running) {
1902 dqm_unlock(dqm);
1903 return 0;
1904 }
1905
1906 if (!dqm->dev->kfd->shared_resources.enable_mes)
1907 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1908 else
1909 remove_all_kfd_queues_mes(dqm);
1910
1911 dqm->sched_running = false;
1912
1913 if (!dqm->dev->kfd->shared_resources.enable_mes)
1914 pm_release_ib(&dqm->packet_mgr);
1915
1916 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1917 if (!dqm->dev->kfd->shared_resources.enable_mes)
1918 pm_uninit(&dqm->packet_mgr);
1919 kfree(dqm->detect_hang_info);
1920 dqm->detect_hang_info = NULL;
1921 dqm_unlock(dqm);
1922
1923 return 0;
1924 }
1925
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1926 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1927 struct kernel_queue *kq,
1928 struct qcm_process_device *qpd)
1929 {
1930 dqm_lock(dqm);
1931 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1932 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1933 dqm->total_queue_count);
1934 dqm_unlock(dqm);
1935 return -EPERM;
1936 }
1937
1938 /*
1939 * Unconditionally increment this counter, regardless of the queue's
1940 * type or whether the queue is active.
1941 */
1942 dqm->total_queue_count++;
1943 pr_debug("Total of %d queues are accountable so far\n",
1944 dqm->total_queue_count);
1945
1946 list_add(&kq->list, &qpd->priv_queue_list);
1947 increment_queue_count(dqm, qpd, kq->queue);
1948 qpd->is_debug = true;
1949 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1950 USE_DEFAULT_GRACE_PERIOD);
1951 dqm_unlock(dqm);
1952
1953 return 0;
1954 }
1955
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1956 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1957 struct kernel_queue *kq,
1958 struct qcm_process_device *qpd)
1959 {
1960 dqm_lock(dqm);
1961 list_del(&kq->list);
1962 decrement_queue_count(dqm, qpd, kq->queue);
1963 qpd->is_debug = false;
1964 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1965 USE_DEFAULT_GRACE_PERIOD);
1966 /*
1967 * Unconditionally decrement this counter, regardless of the queue's
1968 * type.
1969 */
1970 dqm->total_queue_count--;
1971 pr_debug("Total of %d queues are accountable so far\n",
1972 dqm->total_queue_count);
1973 dqm_unlock(dqm);
1974 }
1975
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1976 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1977 struct qcm_process_device *qpd,
1978 const struct kfd_criu_queue_priv_data *qd,
1979 const void *restore_mqd, const void *restore_ctl_stack)
1980 {
1981 int retval;
1982 struct mqd_manager *mqd_mgr;
1983
1984 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1985 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1986 dqm->total_queue_count);
1987 retval = -EPERM;
1988 goto out;
1989 }
1990
1991 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1992 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1993 q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1994 dqm_lock(dqm);
1995 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1996 dqm_unlock(dqm);
1997 if (retval)
1998 goto out;
1999 }
2000
2001 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
2002 if (retval)
2003 goto out_deallocate_sdma_queue;
2004
2005 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2006 q->properties.type)];
2007
2008 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2009 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2010 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2011 q->properties.tba_addr = qpd->tba_addr;
2012 q->properties.tma_addr = qpd->tma_addr;
2013 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2014 if (!q->mqd_mem_obj) {
2015 retval = -ENOMEM;
2016 goto out_deallocate_doorbell;
2017 }
2018
2019 dqm_lock(dqm);
2020 /*
2021 * Eviction state logic: mark all queues as evicted, even ones
2022 * not currently active. Restoring inactive queues later only
2023 * updates the is_evicted flag but is a no-op otherwise.
2024 */
2025 q->properties.is_evicted = !!qpd->evicted;
2026 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2027 kfd_dbg_has_cwsr_workaround(q->device);
2028
2029 if (qd)
2030 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2031 &q->properties, restore_mqd, restore_ctl_stack,
2032 qd->ctl_stack_size);
2033 else
2034 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2035 &q->gart_mqd_addr, &q->properties);
2036
2037 list_add(&q->list, &qpd->queues_list);
2038 qpd->queue_count++;
2039
2040 if (q->properties.is_active) {
2041 increment_queue_count(dqm, qpd, q);
2042
2043 if (!dqm->dev->kfd->shared_resources.enable_mes)
2044 retval = execute_queues_cpsch(dqm,
2045 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2046 else
2047 retval = add_queue_mes(dqm, q, qpd);
2048 if (retval)
2049 goto cleanup_queue;
2050 }
2051
2052 /*
2053 * Unconditionally increment this counter, regardless of the queue's
2054 * type or whether the queue is active.
2055 */
2056 dqm->total_queue_count++;
2057
2058 pr_debug("Total of %d queues are accountable so far\n",
2059 dqm->total_queue_count);
2060
2061 dqm_unlock(dqm);
2062 return retval;
2063
2064 cleanup_queue:
2065 qpd->queue_count--;
2066 list_del(&q->list);
2067 if (q->properties.is_active)
2068 decrement_queue_count(dqm, qpd, q);
2069 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2070 dqm_unlock(dqm);
2071 out_deallocate_doorbell:
2072 deallocate_doorbell(qpd, q);
2073 out_deallocate_sdma_queue:
2074 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2075 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2076 dqm_lock(dqm);
2077 deallocate_sdma_queue(dqm, q);
2078 dqm_unlock(dqm);
2079 }
2080 out:
2081 return retval;
2082 }
2083
amdkfd_fence_wait_timeout(struct device_queue_manager * dqm,uint64_t fence_value,unsigned int timeout_ms)2084 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2085 uint64_t fence_value,
2086 unsigned int timeout_ms)
2087 {
2088 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2089 struct device *dev = dqm->dev->adev->dev;
2090 uint64_t *fence_addr = dqm->fence_addr;
2091
2092 while (*fence_addr != fence_value) {
2093 /* Fatal err detected, this response won't come */
2094 if (amdgpu_amdkfd_is_fed(dqm->dev->adev))
2095 return -EIO;
2096
2097 if (time_after(jiffies, end_jiffies)) {
2098 dev_err(dev, "qcm fence wait loop timeout expired\n");
2099 /* In HWS case, this is used to halt the driver thread
2100 * in order not to mess up CP states before doing
2101 * scandumps for FW debugging.
2102 */
2103 while (halt_if_hws_hang)
2104 schedule();
2105
2106 return -ETIME;
2107 }
2108 schedule();
2109 }
2110
2111 return 0;
2112 }
2113
2114 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)2115 static int map_queues_cpsch(struct device_queue_manager *dqm)
2116 {
2117 struct device *dev = dqm->dev->adev->dev;
2118 int retval;
2119
2120 if (!dqm->sched_running || dqm->sched_halt)
2121 return 0;
2122 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2123 return 0;
2124 if (dqm->active_runlist)
2125 return 0;
2126
2127 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2128 pr_debug("%s sent runlist\n", __func__);
2129 if (retval) {
2130 dev_err(dev, "failed to execute runlist\n");
2131 return retval;
2132 }
2133 dqm->active_runlist = true;
2134
2135 return retval;
2136 }
2137
set_queue_as_reset(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)2138 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2139 struct qcm_process_device *qpd)
2140 {
2141 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2142
2143 dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2144 q->properties.queue_id, pdd->process->lead_thread->pid);
2145
2146 pdd->has_reset_queue = true;
2147 if (q->properties.is_active) {
2148 q->properties.is_active = false;
2149 decrement_queue_count(dqm, qpd, q);
2150 }
2151 }
2152
detect_queue_hang(struct device_queue_manager * dqm)2153 static int detect_queue_hang(struct device_queue_manager *dqm)
2154 {
2155 int i;
2156
2157 /* detect should be used only in dqm locked queue reset */
2158 if (WARN_ON(dqm->detect_hang_count > 0))
2159 return 0;
2160
2161 memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2162
2163 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2164 uint32_t mec, pipe, queue;
2165 int xcc_id;
2166
2167 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2168 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2169
2170 if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2171 continue;
2172
2173 amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2174
2175 for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2176 uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2177 dqm->dev->adev, pipe, queue, xcc_id);
2178 struct dqm_detect_hang_info hang_info;
2179
2180 if (!queue_addr)
2181 continue;
2182
2183 hang_info.pipe_id = pipe;
2184 hang_info.queue_id = queue;
2185 hang_info.xcc_id = xcc_id;
2186 hang_info.queue_address = queue_addr;
2187
2188 dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2189 dqm->detect_hang_count++;
2190 }
2191 }
2192
2193 return dqm->detect_hang_count;
2194 }
2195
find_queue_by_address(struct device_queue_manager * dqm,uint64_t queue_address)2196 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2197 {
2198 struct device_process_node *cur;
2199 struct qcm_process_device *qpd;
2200 struct queue *q;
2201
2202 list_for_each_entry(cur, &dqm->queues, list) {
2203 qpd = cur->qpd;
2204 list_for_each_entry(q, &qpd->queues_list, list) {
2205 if (queue_address == q->properties.queue_address)
2206 return q;
2207 }
2208 }
2209
2210 return NULL;
2211 }
2212
reset_hung_queues(struct device_queue_manager * dqm)2213 static int reset_hung_queues(struct device_queue_manager *dqm)
2214 {
2215 int r = 0, reset_count = 0, i;
2216
2217 if (!dqm->detect_hang_info || dqm->is_hws_hang)
2218 return -EIO;
2219
2220 /* assume dqm locked. */
2221 if (!detect_queue_hang(dqm))
2222 return -ENOTRECOVERABLE;
2223
2224 for (i = 0; i < dqm->detect_hang_count; i++) {
2225 struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2226 struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2227 struct kfd_process_device *pdd;
2228 uint64_t queue_addr = 0;
2229
2230 if (!q) {
2231 r = -ENOTRECOVERABLE;
2232 goto reset_fail;
2233 }
2234
2235 pdd = kfd_get_process_device_data(dqm->dev, q->process);
2236 if (!pdd) {
2237 r = -ENOTRECOVERABLE;
2238 goto reset_fail;
2239 }
2240
2241 queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2242 hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2243 KFD_UNMAP_LATENCY_MS);
2244
2245 /* either reset failed or we reset an unexpected queue. */
2246 if (queue_addr != q->properties.queue_address) {
2247 r = -ENOTRECOVERABLE;
2248 goto reset_fail;
2249 }
2250
2251 set_queue_as_reset(dqm, q, &pdd->qpd);
2252 reset_count++;
2253 }
2254
2255 if (reset_count == dqm->detect_hang_count)
2256 kfd_signal_reset_event(dqm->dev);
2257 else
2258 r = -ENOTRECOVERABLE;
2259
2260 reset_fail:
2261 dqm->detect_hang_count = 0;
2262
2263 return r;
2264 }
2265
sdma_has_hang(struct device_queue_manager * dqm)2266 static bool sdma_has_hang(struct device_queue_manager *dqm)
2267 {
2268 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2269 int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2270 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2271 int i, j;
2272
2273 for (i = engine_start; i < engine_end; i++) {
2274 for (j = 0; j < num_queues_per_eng; j++) {
2275 if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j))
2276 continue;
2277
2278 return true;
2279 }
2280 }
2281
2282 return false;
2283 }
2284
set_sdma_queue_as_reset(struct device_queue_manager * dqm,uint32_t doorbell_off)2285 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm,
2286 uint32_t doorbell_off)
2287 {
2288 struct device_process_node *cur;
2289 struct qcm_process_device *qpd;
2290 struct queue *q;
2291
2292 list_for_each_entry(cur, &dqm->queues, list) {
2293 qpd = cur->qpd;
2294 list_for_each_entry(q, &qpd->queues_list, list) {
2295 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2296 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) &&
2297 q->properties.doorbell_off == doorbell_off) {
2298 set_queue_as_reset(dqm, q, qpd);
2299 return true;
2300 }
2301 }
2302 }
2303
2304 return false;
2305 }
2306
reset_hung_queues_sdma(struct device_queue_manager * dqm)2307 static int reset_hung_queues_sdma(struct device_queue_manager *dqm)
2308 {
2309 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2310 int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2311 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2312 int r = 0, i, j;
2313
2314 if (dqm->is_hws_hang)
2315 return -EIO;
2316
2317 /* Scan for hung HW queues and reset engine. */
2318 dqm->detect_hang_count = 0;
2319 for (i = engine_start; i < engine_end; i++) {
2320 for (j = 0; j < num_queues_per_eng; j++) {
2321 uint32_t doorbell_off =
2322 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j);
2323
2324 if (!doorbell_off)
2325 continue;
2326
2327 /* Reset engine and check. */
2328 if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) ||
2329 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) ||
2330 !set_sdma_queue_as_reset(dqm, doorbell_off)) {
2331 r = -ENOTRECOVERABLE;
2332 goto reset_fail;
2333 }
2334
2335 /* Should only expect one queue active per engine */
2336 dqm->detect_hang_count++;
2337 break;
2338 }
2339 }
2340
2341 /* Signal process reset */
2342 if (dqm->detect_hang_count)
2343 kfd_signal_reset_event(dqm->dev);
2344 else
2345 r = -ENOTRECOVERABLE;
2346
2347 reset_fail:
2348 dqm->detect_hang_count = 0;
2349
2350 return r;
2351 }
2352
reset_queues_on_hws_hang(struct device_queue_manager * dqm,bool is_sdma)2353 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma)
2354 {
2355 struct amdgpu_device *adev = dqm->dev->adev;
2356
2357 while (halt_if_hws_hang)
2358 schedule();
2359
2360 if (adev->debug_disable_gpu_ring_reset) {
2361 dev_info_once(adev->dev,
2362 "%s queue hung, but ring reset disabled",
2363 is_sdma ? "sdma" : "compute");
2364
2365 return -EPERM;
2366 }
2367 if (!amdgpu_gpu_recovery)
2368 return -ENOTRECOVERABLE;
2369
2370 return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm);
2371 }
2372
2373 /* dqm->lock mutex has to be locked before calling this function
2374 *
2375 * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time
2376 * for context switch latency. Lower values are used by debugger
2377 * since context switching are triggered at high frequency.
2378 * This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE
2379 *
2380 */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)2381 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2382 enum kfd_unmap_queues_filter filter,
2383 uint32_t filter_param,
2384 uint32_t grace_period,
2385 bool reset)
2386 {
2387 struct device *dev = dqm->dev->adev->dev;
2388 struct mqd_manager *mqd_mgr;
2389 int retval;
2390
2391 if (!dqm->sched_running)
2392 return 0;
2393 if (!dqm->active_runlist)
2394 return 0;
2395 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2396 return -EIO;
2397
2398 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2399 retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2400 KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period);
2401 if (retval)
2402 goto out;
2403 }
2404
2405 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2406 if (retval)
2407 goto out;
2408
2409 *dqm->fence_addr = KFD_FENCE_INIT;
2410 mb();
2411 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2412 KFD_FENCE_COMPLETED);
2413 /* should be timed out */
2414 retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2415 queue_preemption_timeout_ms);
2416 if (retval) {
2417 dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2418 kfd_hws_hang(dqm);
2419 goto out;
2420 }
2421
2422 /* In the current MEC firmware implementation, if compute queue
2423 * doesn't response to the preemption request in time, HIQ will
2424 * abandon the unmap request without returning any timeout error
2425 * to driver. Instead, MEC firmware will log the doorbell of the
2426 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2427 * To make sure the queue unmap was successful, driver need to
2428 * check those fields
2429 */
2430 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2431 if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) &&
2432 reset_queues_on_hws_hang(dqm, false))
2433 goto reset_fail;
2434
2435 /* Check for SDMA hang and attempt SDMA reset */
2436 if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true))
2437 goto reset_fail;
2438
2439 /* We need to reset the grace period value for this device */
2440 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2441 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2442 KFD_DEQUEUE_WAIT_RESET, 0 /* unused */))
2443 dev_err(dev, "Failed to reset grace period\n");
2444 }
2445
2446 pm_release_ib(&dqm->packet_mgr);
2447 dqm->active_runlist = false;
2448 out:
2449 up_read(&dqm->dev->adev->reset_domain->sem);
2450 return retval;
2451
2452 reset_fail:
2453 dqm->is_hws_hang = true;
2454 kfd_hws_hang(dqm);
2455 up_read(&dqm->dev->adev->reset_domain->sem);
2456 return -ETIME;
2457 }
2458
2459 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)2460 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2461 {
2462 int retval;
2463
2464 dqm_lock(dqm);
2465
2466 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2467 pasid, USE_DEFAULT_GRACE_PERIOD, true);
2468
2469 dqm_unlock(dqm);
2470 return retval;
2471 }
2472
2473 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2474 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2475 enum kfd_unmap_queues_filter filter,
2476 uint32_t filter_param,
2477 uint32_t grace_period)
2478 {
2479 int retval;
2480
2481 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2482 return -EIO;
2483 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2484 if (!retval)
2485 retval = map_queues_cpsch(dqm);
2486 up_read(&dqm->dev->adev->reset_domain->sem);
2487 return retval;
2488 }
2489
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2490 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2491 struct queue *q)
2492 {
2493 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2494 q->process);
2495 int ret = 0;
2496
2497 if (WARN_ON(!pdd))
2498 return ret;
2499
2500 if (pdd->qpd.is_debug)
2501 return ret;
2502
2503 q->properties.is_being_destroyed = true;
2504
2505 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2506 dqm_unlock(dqm);
2507 mutex_unlock(&q->process->mutex);
2508 ret = wait_event_interruptible(dqm->destroy_wait,
2509 !q->properties.is_suspended);
2510
2511 mutex_lock(&q->process->mutex);
2512 dqm_lock(dqm);
2513 }
2514
2515 return ret;
2516 }
2517
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2518 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2519 struct qcm_process_device *qpd,
2520 struct queue *q)
2521 {
2522 int retval;
2523 struct mqd_manager *mqd_mgr;
2524 uint64_t sdma_val = 0;
2525 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2526 struct device *dev = dqm->dev->adev->dev;
2527
2528 /* Get the SDMA queue stats */
2529 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2530 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2531 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2532 &sdma_val);
2533 if (retval)
2534 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2535 q->properties.queue_id);
2536 }
2537
2538 /* remove queue from list to prevent rescheduling after preemption */
2539 dqm_lock(dqm);
2540
2541 retval = wait_on_destroy_queue(dqm, q);
2542
2543 if (retval) {
2544 dqm_unlock(dqm);
2545 return retval;
2546 }
2547
2548 if (qpd->is_debug) {
2549 /*
2550 * error, currently we do not allow to destroy a queue
2551 * of a currently debugged process
2552 */
2553 retval = -EBUSY;
2554 goto failed_try_destroy_debugged_queue;
2555
2556 }
2557
2558 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2559 q->properties.type)];
2560
2561 deallocate_doorbell(qpd, q);
2562
2563 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2564 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2565 deallocate_sdma_queue(dqm, q);
2566 pdd->sdma_past_activity_counter += sdma_val;
2567 }
2568
2569 if (q->properties.is_active) {
2570 decrement_queue_count(dqm, qpd, q);
2571 q->properties.is_active = false;
2572 if (!dqm->dev->kfd->shared_resources.enable_mes) {
2573 retval = execute_queues_cpsch(dqm,
2574 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2575 USE_DEFAULT_GRACE_PERIOD);
2576 if (retval == -ETIME)
2577 qpd->reset_wavefronts = true;
2578 } else {
2579 retval = remove_queue_mes(dqm, q, qpd);
2580 }
2581 }
2582 list_del(&q->list);
2583 qpd->queue_count--;
2584
2585 /*
2586 * Unconditionally decrement this counter, regardless of the queue's
2587 * type
2588 */
2589 dqm->total_queue_count--;
2590 pr_debug("Total of %d queues are accountable so far\n",
2591 dqm->total_queue_count);
2592
2593 dqm_unlock(dqm);
2594
2595 /*
2596 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2597 * circular locking
2598 */
2599 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2600 qpd->pqm->process, q->device,
2601 -1, false, NULL, 0);
2602
2603 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2604
2605 return retval;
2606
2607 failed_try_destroy_debugged_queue:
2608
2609 dqm_unlock(dqm);
2610 return retval;
2611 }
2612
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size,u32 misc_process_properties)2613 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2614 struct qcm_process_device *qpd,
2615 enum cache_policy default_policy,
2616 enum cache_policy alternate_policy,
2617 void __user *alternate_aperture_base,
2618 uint64_t alternate_aperture_size,
2619 u32 misc_process_properties)
2620 {
2621 bool retval = true;
2622
2623 if (!dqm->asic_ops.set_cache_memory_policy)
2624 return retval;
2625
2626 dqm_lock(dqm);
2627
2628 retval = dqm->asic_ops.set_cache_memory_policy(
2629 dqm,
2630 qpd,
2631 default_policy,
2632 alternate_policy,
2633 alternate_aperture_base,
2634 alternate_aperture_size,
2635 misc_process_properties);
2636
2637 if (retval)
2638 goto out;
2639
2640 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2641 program_sh_mem_settings(dqm, qpd);
2642
2643 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2644 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2645 qpd->sh_mem_ape1_limit);
2646
2647 out:
2648 dqm_unlock(dqm);
2649 return retval;
2650 }
2651
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2652 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2653 struct qcm_process_device *qpd)
2654 {
2655 struct queue *q;
2656 struct device_process_node *cur, *next_dpn;
2657 int retval = 0;
2658 bool found = false;
2659
2660 dqm_lock(dqm);
2661
2662 /* Clear all user mode queues */
2663 while (!list_empty(&qpd->queues_list)) {
2664 struct mqd_manager *mqd_mgr;
2665 int ret;
2666
2667 q = list_first_entry(&qpd->queues_list, struct queue, list);
2668 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2669 q->properties.type)];
2670 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2671 if (ret)
2672 retval = ret;
2673 dqm_unlock(dqm);
2674 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2675 dqm_lock(dqm);
2676 }
2677
2678 /* Unregister process */
2679 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2680 if (qpd == cur->qpd) {
2681 list_del(&cur->list);
2682 kfree(cur);
2683 dqm->processes_count--;
2684 found = true;
2685 break;
2686 }
2687 }
2688
2689 dqm_unlock(dqm);
2690
2691 /* Outside the DQM lock because under the DQM lock we can't do
2692 * reclaim or take other locks that others hold while reclaiming.
2693 */
2694 if (found)
2695 kfd_dec_compute_active(dqm->dev);
2696
2697 return retval;
2698 }
2699
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2700 static int get_wave_state(struct device_queue_manager *dqm,
2701 struct queue *q,
2702 void __user *ctl_stack,
2703 u32 *ctl_stack_used_size,
2704 u32 *save_area_used_size)
2705 {
2706 struct mqd_manager *mqd_mgr;
2707
2708 dqm_lock(dqm);
2709
2710 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2711
2712 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2713 q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2714 !mqd_mgr->get_wave_state) {
2715 dqm_unlock(dqm);
2716 return -EINVAL;
2717 }
2718
2719 dqm_unlock(dqm);
2720
2721 /*
2722 * get_wave_state is outside the dqm lock to prevent circular locking
2723 * and the queue should be protected against destruction by the process
2724 * lock.
2725 */
2726 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2727 ctl_stack, ctl_stack_used_size, save_area_used_size);
2728 }
2729
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2730 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2731 const struct queue *q,
2732 u32 *mqd_size,
2733 u32 *ctl_stack_size)
2734 {
2735 struct mqd_manager *mqd_mgr;
2736 enum KFD_MQD_TYPE mqd_type =
2737 get_mqd_type_from_queue_type(q->properties.type);
2738
2739 dqm_lock(dqm);
2740 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2741 *mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask);
2742 *ctl_stack_size = 0;
2743
2744 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2745 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2746
2747 dqm_unlock(dqm);
2748 }
2749
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2750 static int checkpoint_mqd(struct device_queue_manager *dqm,
2751 const struct queue *q,
2752 void *mqd,
2753 void *ctl_stack)
2754 {
2755 struct mqd_manager *mqd_mgr;
2756 int r = 0;
2757 enum KFD_MQD_TYPE mqd_type =
2758 get_mqd_type_from_queue_type(q->properties.type);
2759
2760 dqm_lock(dqm);
2761
2762 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2763 r = -EINVAL;
2764 goto dqm_unlock;
2765 }
2766
2767 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2768 if (!mqd_mgr->checkpoint_mqd) {
2769 r = -EOPNOTSUPP;
2770 goto dqm_unlock;
2771 }
2772
2773 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2774
2775 dqm_unlock:
2776 dqm_unlock(dqm);
2777 return r;
2778 }
2779
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2780 static int process_termination_cpsch(struct device_queue_manager *dqm,
2781 struct qcm_process_device *qpd)
2782 {
2783 int retval;
2784 struct queue *q;
2785 struct device *dev = dqm->dev->adev->dev;
2786 struct kernel_queue *kq, *kq_next;
2787 struct mqd_manager *mqd_mgr;
2788 struct device_process_node *cur, *next_dpn;
2789 enum kfd_unmap_queues_filter filter =
2790 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2791 bool found = false;
2792
2793 retval = 0;
2794
2795 dqm_lock(dqm);
2796
2797 /* Clean all kernel queues */
2798 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2799 list_del(&kq->list);
2800 decrement_queue_count(dqm, qpd, kq->queue);
2801 qpd->is_debug = false;
2802 dqm->total_queue_count--;
2803 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2804 }
2805
2806 /* Clear all user mode queues */
2807 list_for_each_entry(q, &qpd->queues_list, list) {
2808 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2809 deallocate_sdma_queue(dqm, q);
2810 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2811 deallocate_sdma_queue(dqm, q);
2812
2813 if (q->properties.is_active) {
2814 decrement_queue_count(dqm, qpd, q);
2815
2816 if (dqm->dev->kfd->shared_resources.enable_mes) {
2817 retval = remove_queue_mes(dqm, q, qpd);
2818 if (retval)
2819 dev_err(dev, "Failed to remove queue %d\n",
2820 q->properties.queue_id);
2821 }
2822 }
2823
2824 dqm->total_queue_count--;
2825 }
2826
2827 /* Unregister process */
2828 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2829 if (qpd == cur->qpd) {
2830 list_del(&cur->list);
2831 kfree(cur);
2832 dqm->processes_count--;
2833 found = true;
2834 break;
2835 }
2836 }
2837
2838 if (!dqm->dev->kfd->shared_resources.enable_mes)
2839 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2840
2841 if ((retval || qpd->reset_wavefronts) &&
2842 down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2843 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2844 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2845 qpd->reset_wavefronts = false;
2846 up_read(&dqm->dev->adev->reset_domain->sem);
2847 }
2848
2849 /* Lastly, free mqd resources.
2850 * Do free_mqd() after dqm_unlock to avoid circular locking.
2851 */
2852 while (!list_empty(&qpd->queues_list)) {
2853 q = list_first_entry(&qpd->queues_list, struct queue, list);
2854 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2855 q->properties.type)];
2856 list_del(&q->list);
2857 qpd->queue_count--;
2858 dqm_unlock(dqm);
2859 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2860 dqm_lock(dqm);
2861 }
2862 dqm_unlock(dqm);
2863
2864 /* Outside the DQM lock because under the DQM lock we can't do
2865 * reclaim or take other locks that others hold while reclaiming.
2866 */
2867 if (found)
2868 kfd_dec_compute_active(dqm->dev);
2869
2870 return retval;
2871 }
2872
init_mqd_managers(struct device_queue_manager * dqm)2873 static int init_mqd_managers(struct device_queue_manager *dqm)
2874 {
2875 int i, j;
2876 struct device *dev = dqm->dev->adev->dev;
2877 struct mqd_manager *mqd_mgr;
2878
2879 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2880 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2881 if (!mqd_mgr) {
2882 dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2883 goto out_free;
2884 }
2885 dqm->mqd_mgrs[i] = mqd_mgr;
2886 }
2887
2888 return 0;
2889
2890 out_free:
2891 for (j = 0; j < i; j++) {
2892 kfree(dqm->mqd_mgrs[j]);
2893 dqm->mqd_mgrs[j] = NULL;
2894 }
2895
2896 return -ENOMEM;
2897 }
2898
2899 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2900 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2901 {
2902 int retval;
2903 struct kfd_node *dev = dqm->dev;
2904 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2905 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2906 get_num_all_sdma_engines(dqm) *
2907 dev->kfd->device_info.num_sdma_queues_per_engine +
2908 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2909 NUM_XCC(dqm->dev->xcc_mask));
2910
2911 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2912 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2913 (void *)&(mem_obj->cpu_ptr), false);
2914
2915 return retval;
2916 }
2917
device_queue_manager_init(struct kfd_node * dev)2918 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2919 {
2920 struct device_queue_manager *dqm;
2921
2922 pr_debug("Loading device queue manager\n");
2923
2924 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2925 if (!dqm)
2926 return NULL;
2927
2928 switch (dev->adev->asic_type) {
2929 /* HWS is not available on Hawaii. */
2930 case CHIP_HAWAII:
2931 /* HWS depends on CWSR for timely dequeue. CWSR is not
2932 * available on Tonga.
2933 *
2934 * FIXME: This argument also applies to Kaveri.
2935 */
2936 case CHIP_TONGA:
2937 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2938 break;
2939 default:
2940 dqm->sched_policy = sched_policy;
2941 break;
2942 }
2943
2944 dqm->dev = dev;
2945 switch (dqm->sched_policy) {
2946 case KFD_SCHED_POLICY_HWS:
2947 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2948 /* initialize dqm for cp scheduling */
2949 dqm->ops.create_queue = create_queue_cpsch;
2950 dqm->ops.initialize = initialize_cpsch;
2951 dqm->ops.start = start_cpsch;
2952 dqm->ops.stop = stop_cpsch;
2953 dqm->ops.halt = halt_cpsch;
2954 dqm->ops.unhalt = unhalt_cpsch;
2955 dqm->ops.destroy_queue = destroy_queue_cpsch;
2956 dqm->ops.update_queue = update_queue;
2957 dqm->ops.register_process = register_process;
2958 dqm->ops.unregister_process = unregister_process;
2959 dqm->ops.uninitialize = uninitialize;
2960 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2961 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2962 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2963 dqm->ops.process_termination = process_termination_cpsch;
2964 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2965 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2966 dqm->ops.get_wave_state = get_wave_state;
2967 dqm->ops.reset_queues = reset_queues_cpsch;
2968 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2969 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2970 break;
2971 case KFD_SCHED_POLICY_NO_HWS:
2972 /* initialize dqm for no cp scheduling */
2973 dqm->ops.start = start_nocpsch;
2974 dqm->ops.stop = stop_nocpsch;
2975 dqm->ops.create_queue = create_queue_nocpsch;
2976 dqm->ops.destroy_queue = destroy_queue_nocpsch;
2977 dqm->ops.update_queue = update_queue;
2978 dqm->ops.register_process = register_process;
2979 dqm->ops.unregister_process = unregister_process;
2980 dqm->ops.initialize = initialize_nocpsch;
2981 dqm->ops.uninitialize = uninitialize;
2982 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2983 dqm->ops.process_termination = process_termination_nocpsch;
2984 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2985 dqm->ops.restore_process_queues =
2986 restore_process_queues_nocpsch;
2987 dqm->ops.get_wave_state = get_wave_state;
2988 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2989 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2990 break;
2991 default:
2992 dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2993 goto out_free;
2994 }
2995
2996 switch (dev->adev->asic_type) {
2997 case CHIP_KAVERI:
2998 case CHIP_HAWAII:
2999 device_queue_manager_init_cik(&dqm->asic_ops);
3000 break;
3001
3002 case CHIP_CARRIZO:
3003 case CHIP_TONGA:
3004 case CHIP_FIJI:
3005 case CHIP_POLARIS10:
3006 case CHIP_POLARIS11:
3007 case CHIP_POLARIS12:
3008 case CHIP_VEGAM:
3009 device_queue_manager_init_vi(&dqm->asic_ops);
3010 break;
3011
3012 default:
3013 if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
3014 device_queue_manager_init_v12(&dqm->asic_ops);
3015 else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
3016 device_queue_manager_init_v11(&dqm->asic_ops);
3017 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
3018 device_queue_manager_init_v10(&dqm->asic_ops);
3019 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
3020 device_queue_manager_init_v9(&dqm->asic_ops);
3021 else {
3022 WARN(1, "Unexpected ASIC family %u",
3023 dev->adev->asic_type);
3024 goto out_free;
3025 }
3026 }
3027
3028 if (init_mqd_managers(dqm))
3029 goto out_free;
3030
3031 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
3032 dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
3033 goto out_free;
3034 }
3035
3036 if (!dqm->ops.initialize(dqm)) {
3037 init_waitqueue_head(&dqm->destroy_wait);
3038 return dqm;
3039 }
3040
3041 out_free:
3042 kfree(dqm);
3043 return NULL;
3044 }
3045
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)3046 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
3047 struct kfd_mem_obj *mqd)
3048 {
3049 WARN(!mqd, "No hiq sdma mqd trunk to free");
3050
3051 amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
3052 }
3053
device_queue_manager_uninit(struct device_queue_manager * dqm)3054 void device_queue_manager_uninit(struct device_queue_manager *dqm)
3055 {
3056 dqm->ops.stop(dqm);
3057 dqm->ops.uninitialize(dqm);
3058 if (!dqm->dev->kfd->shared_resources.enable_mes)
3059 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
3060 kfree(dqm);
3061 }
3062
kfd_dqm_suspend_bad_queue_mes(struct kfd_node * knode,u32 pasid,u32 doorbell_id)3063 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
3064 {
3065 struct kfd_process_device *pdd = NULL;
3066 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
3067 struct device_queue_manager *dqm = knode->dqm;
3068 struct device *dev = dqm->dev->adev->dev;
3069 struct qcm_process_device *qpd;
3070 struct queue *q = NULL;
3071 int ret = 0;
3072
3073 if (!pdd)
3074 return -EINVAL;
3075
3076 dqm_lock(dqm);
3077
3078 if (pdd) {
3079 qpd = &pdd->qpd;
3080
3081 list_for_each_entry(q, &qpd->queues_list, list) {
3082 if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3083 ret = suspend_all_queues_mes(dqm);
3084 if (ret) {
3085 dev_err(dev, "Suspending all queues failed");
3086 goto out;
3087 }
3088
3089 q->properties.is_evicted = true;
3090 q->properties.is_active = false;
3091 decrement_queue_count(dqm, qpd, q);
3092
3093 ret = remove_queue_mes(dqm, q, qpd);
3094 if (ret) {
3095 dev_err(dev, "Removing bad queue failed");
3096 goto out;
3097 }
3098
3099 ret = resume_all_queues_mes(dqm);
3100 if (ret)
3101 dev_err(dev, "Resuming all queues failed");
3102
3103 break;
3104 }
3105 }
3106 }
3107
3108 out:
3109 dqm_unlock(dqm);
3110 kfd_unref_process(p);
3111 return ret;
3112 }
3113
kfd_evict_process_device(struct kfd_process_device * pdd)3114 int kfd_evict_process_device(struct kfd_process_device *pdd)
3115 {
3116 struct device_queue_manager *dqm;
3117 struct kfd_process *p;
3118
3119 p = pdd->process;
3120 dqm = pdd->dev->dqm;
3121
3122 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3123
3124 return dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3125 }
3126
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3127 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3128 struct qcm_process_device *qpd)
3129 {
3130 int r;
3131 struct device *dev = dqm->dev->adev->dev;
3132 int updated_vmid_mask;
3133
3134 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3135 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3136 return -EINVAL;
3137 }
3138
3139 dqm_lock(dqm);
3140
3141 if (dqm->trap_debug_vmid != 0) {
3142 dev_err(dev, "Trap debug id already reserved\n");
3143 r = -EBUSY;
3144 goto out_unlock;
3145 }
3146
3147 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3148 USE_DEFAULT_GRACE_PERIOD, false);
3149 if (r)
3150 goto out_unlock;
3151
3152 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3153 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3154
3155 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3156 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3157 r = set_sched_resources(dqm);
3158 if (r)
3159 goto out_unlock;
3160
3161 r = map_queues_cpsch(dqm);
3162 if (r)
3163 goto out_unlock;
3164
3165 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3166
3167 out_unlock:
3168 dqm_unlock(dqm);
3169 return r;
3170 }
3171
3172 /*
3173 * Releases vmid for the trap debugger
3174 */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3175 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3176 struct qcm_process_device *qpd)
3177 {
3178 struct device *dev = dqm->dev->adev->dev;
3179 int r;
3180 int updated_vmid_mask;
3181 uint32_t trap_debug_vmid;
3182
3183 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3184 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3185 return -EINVAL;
3186 }
3187
3188 dqm_lock(dqm);
3189 trap_debug_vmid = dqm->trap_debug_vmid;
3190 if (dqm->trap_debug_vmid == 0) {
3191 dev_err(dev, "Trap debug id is not reserved\n");
3192 r = -EINVAL;
3193 goto out_unlock;
3194 }
3195
3196 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3197 USE_DEFAULT_GRACE_PERIOD, false);
3198 if (r)
3199 goto out_unlock;
3200
3201 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3202 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3203
3204 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3205 dqm->trap_debug_vmid = 0;
3206 r = set_sched_resources(dqm);
3207 if (r)
3208 goto out_unlock;
3209
3210 r = map_queues_cpsch(dqm);
3211 if (r)
3212 goto out_unlock;
3213
3214 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3215
3216 out_unlock:
3217 dqm_unlock(dqm);
3218 return r;
3219 }
3220
3221 #define QUEUE_NOT_FOUND -1
3222 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)3223 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3224 {
3225 int i;
3226
3227 for (i = 0; i < num_queues; i++)
3228 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3229 }
3230
3231 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)3232 static int q_array_get_index(unsigned int queue_id,
3233 uint32_t num_queues,
3234 uint32_t *queue_ids)
3235 {
3236 int i;
3237
3238 for (i = 0; i < num_queues; i++)
3239 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3240 return i;
3241
3242 return QUEUE_NOT_FOUND;
3243 }
3244
3245 struct copy_context_work_handler_workarea {
3246 struct work_struct copy_context_work;
3247 struct kfd_process *p;
3248 };
3249
copy_context_work_handler(struct work_struct * work)3250 static void copy_context_work_handler(struct work_struct *work)
3251 {
3252 struct copy_context_work_handler_workarea *workarea;
3253 struct mqd_manager *mqd_mgr;
3254 struct queue *q;
3255 struct mm_struct *mm;
3256 struct kfd_process *p;
3257 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3258 int i;
3259
3260 workarea = container_of(work,
3261 struct copy_context_work_handler_workarea,
3262 copy_context_work);
3263
3264 p = workarea->p;
3265 mm = get_task_mm(p->lead_thread);
3266
3267 if (!mm)
3268 return;
3269
3270 kthread_use_mm(mm);
3271 for (i = 0; i < p->n_pdds; i++) {
3272 struct kfd_process_device *pdd = p->pdds[i];
3273 struct device_queue_manager *dqm = pdd->dev->dqm;
3274 struct qcm_process_device *qpd = &pdd->qpd;
3275
3276 list_for_each_entry(q, &qpd->queues_list, list) {
3277 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3278 continue;
3279
3280 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3281
3282 /* We ignore the return value from get_wave_state
3283 * because
3284 * i) right now, it always returns 0, and
3285 * ii) if we hit an error, we would continue to the
3286 * next queue anyway.
3287 */
3288 mqd_mgr->get_wave_state(mqd_mgr,
3289 q->mqd,
3290 &q->properties,
3291 (void __user *) q->properties.ctx_save_restore_area_address,
3292 &tmp_ctl_stack_used_size,
3293 &tmp_save_area_used_size);
3294 }
3295 }
3296 kthread_unuse_mm(mm);
3297 mmput(mm);
3298 }
3299
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)3300 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3301 {
3302 size_t array_size = num_queues * sizeof(uint32_t);
3303
3304 if (!usr_queue_id_array)
3305 return NULL;
3306
3307 return memdup_user(usr_queue_id_array, array_size);
3308 }
3309
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)3310 int resume_queues(struct kfd_process *p,
3311 uint32_t num_queues,
3312 uint32_t *usr_queue_id_array)
3313 {
3314 uint32_t *queue_ids = NULL;
3315 int total_resumed = 0;
3316 int i;
3317
3318 if (usr_queue_id_array) {
3319 queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3320
3321 if (IS_ERR(queue_ids))
3322 return PTR_ERR(queue_ids);
3323
3324 /* mask all queues as invalid. unmask per successful request */
3325 q_array_invalidate(num_queues, queue_ids);
3326 }
3327
3328 for (i = 0; i < p->n_pdds; i++) {
3329 struct kfd_process_device *pdd = p->pdds[i];
3330 struct device_queue_manager *dqm = pdd->dev->dqm;
3331 struct device *dev = dqm->dev->adev->dev;
3332 struct qcm_process_device *qpd = &pdd->qpd;
3333 struct queue *q;
3334 int r, per_device_resumed = 0;
3335
3336 dqm_lock(dqm);
3337
3338 /* unmask queues that resume or already resumed as valid */
3339 list_for_each_entry(q, &qpd->queues_list, list) {
3340 int q_idx = QUEUE_NOT_FOUND;
3341
3342 if (queue_ids)
3343 q_idx = q_array_get_index(
3344 q->properties.queue_id,
3345 num_queues,
3346 queue_ids);
3347
3348 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3349 int err = resume_single_queue(dqm, &pdd->qpd, q);
3350
3351 if (queue_ids) {
3352 if (!err) {
3353 queue_ids[q_idx] &=
3354 ~KFD_DBG_QUEUE_INVALID_MASK;
3355 } else {
3356 queue_ids[q_idx] |=
3357 KFD_DBG_QUEUE_ERROR_MASK;
3358 break;
3359 }
3360 }
3361
3362 if (dqm->dev->kfd->shared_resources.enable_mes) {
3363 wake_up_all(&dqm->destroy_wait);
3364 if (!err)
3365 total_resumed++;
3366 } else {
3367 per_device_resumed++;
3368 }
3369 }
3370 }
3371
3372 if (!per_device_resumed) {
3373 dqm_unlock(dqm);
3374 continue;
3375 }
3376
3377 r = execute_queues_cpsch(dqm,
3378 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3379 0,
3380 USE_DEFAULT_GRACE_PERIOD);
3381 if (r) {
3382 dev_err(dev, "Failed to resume process queues\n");
3383 if (queue_ids) {
3384 list_for_each_entry(q, &qpd->queues_list, list) {
3385 int q_idx = q_array_get_index(
3386 q->properties.queue_id,
3387 num_queues,
3388 queue_ids);
3389
3390 /* mask queue as error on resume fail */
3391 if (q_idx != QUEUE_NOT_FOUND)
3392 queue_ids[q_idx] |=
3393 KFD_DBG_QUEUE_ERROR_MASK;
3394 }
3395 }
3396 } else {
3397 wake_up_all(&dqm->destroy_wait);
3398 total_resumed += per_device_resumed;
3399 }
3400
3401 dqm_unlock(dqm);
3402 }
3403
3404 if (queue_ids) {
3405 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3406 num_queues * sizeof(uint32_t)))
3407 pr_err("copy_to_user failed on queue resume\n");
3408
3409 kfree(queue_ids);
3410 }
3411
3412 return total_resumed;
3413 }
3414
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)3415 int suspend_queues(struct kfd_process *p,
3416 uint32_t num_queues,
3417 uint32_t grace_period,
3418 uint64_t exception_clear_mask,
3419 uint32_t *usr_queue_id_array)
3420 {
3421 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3422 int total_suspended = 0;
3423 int i;
3424
3425 if (IS_ERR(queue_ids))
3426 return PTR_ERR(queue_ids);
3427
3428 /* mask all queues as invalid. umask on successful request */
3429 q_array_invalidate(num_queues, queue_ids);
3430
3431 for (i = 0; i < p->n_pdds; i++) {
3432 struct kfd_process_device *pdd = p->pdds[i];
3433 struct device_queue_manager *dqm = pdd->dev->dqm;
3434 struct device *dev = dqm->dev->adev->dev;
3435 struct qcm_process_device *qpd = &pdd->qpd;
3436 struct queue *q;
3437 int r, per_device_suspended = 0;
3438
3439 mutex_lock(&p->event_mutex);
3440 dqm_lock(dqm);
3441
3442 /* unmask queues that suspend or already suspended */
3443 list_for_each_entry(q, &qpd->queues_list, list) {
3444 int q_idx = q_array_get_index(q->properties.queue_id,
3445 num_queues,
3446 queue_ids);
3447
3448 if (q_idx != QUEUE_NOT_FOUND) {
3449 int err = suspend_single_queue(dqm, pdd, q);
3450 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3451
3452 if (!err) {
3453 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3454 if (exception_clear_mask && is_mes)
3455 q->properties.exception_status &=
3456 ~exception_clear_mask;
3457
3458 if (is_mes)
3459 total_suspended++;
3460 else
3461 per_device_suspended++;
3462 } else if (err != -EBUSY) {
3463 r = err;
3464 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3465 break;
3466 }
3467 }
3468 }
3469
3470 if (!per_device_suspended) {
3471 dqm_unlock(dqm);
3472 mutex_unlock(&p->event_mutex);
3473 if (total_suspended)
3474 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3475 continue;
3476 }
3477
3478 r = execute_queues_cpsch(dqm,
3479 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3480 grace_period);
3481
3482 if (r)
3483 dev_err(dev, "Failed to suspend process queues.\n");
3484 else
3485 total_suspended += per_device_suspended;
3486
3487 list_for_each_entry(q, &qpd->queues_list, list) {
3488 int q_idx = q_array_get_index(q->properties.queue_id,
3489 num_queues, queue_ids);
3490
3491 if (q_idx == QUEUE_NOT_FOUND)
3492 continue;
3493
3494 /* mask queue as error on suspend fail */
3495 if (r)
3496 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3497 else if (exception_clear_mask)
3498 q->properties.exception_status &=
3499 ~exception_clear_mask;
3500 }
3501
3502 dqm_unlock(dqm);
3503 mutex_unlock(&p->event_mutex);
3504 amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3505 }
3506
3507 if (total_suspended) {
3508 struct copy_context_work_handler_workarea copy_context_worker;
3509
3510 INIT_WORK_ONSTACK(
3511 ©_context_worker.copy_context_work,
3512 copy_context_work_handler);
3513
3514 copy_context_worker.p = p;
3515
3516 schedule_work(©_context_worker.copy_context_work);
3517
3518
3519 flush_work(©_context_worker.copy_context_work);
3520 destroy_work_on_stack(©_context_worker.copy_context_work);
3521 }
3522
3523 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3524 num_queues * sizeof(uint32_t)))
3525 pr_err("copy_to_user failed on queue suspend\n");
3526
3527 kfree(queue_ids);
3528
3529 return total_suspended;
3530 }
3531
set_queue_type_for_user(struct queue_properties * q_props)3532 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3533 {
3534 switch (q_props->type) {
3535 case KFD_QUEUE_TYPE_COMPUTE:
3536 return q_props->format == KFD_QUEUE_FORMAT_PM4
3537 ? KFD_IOC_QUEUE_TYPE_COMPUTE
3538 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3539 case KFD_QUEUE_TYPE_SDMA:
3540 return KFD_IOC_QUEUE_TYPE_SDMA;
3541 case KFD_QUEUE_TYPE_SDMA_XGMI:
3542 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3543 default:
3544 WARN_ONCE(true, "queue type not recognized!");
3545 return 0xffffffff;
3546 };
3547 }
3548
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3549 void set_queue_snapshot_entry(struct queue *q,
3550 uint64_t exception_clear_mask,
3551 struct kfd_queue_snapshot_entry *qss_entry)
3552 {
3553 qss_entry->ring_base_address = q->properties.queue_address;
3554 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3555 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3556 qss_entry->ctx_save_restore_address =
3557 q->properties.ctx_save_restore_area_address;
3558 qss_entry->ctx_save_restore_area_size =
3559 q->properties.ctx_save_restore_area_size;
3560 qss_entry->exception_status = q->properties.exception_status;
3561 qss_entry->queue_id = q->properties.queue_id;
3562 qss_entry->gpu_id = q->device->id;
3563 qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3564 qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3565 q->properties.exception_status &= ~exception_clear_mask;
3566 }
3567
debug_lock_and_unmap(struct device_queue_manager * dqm)3568 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3569 {
3570 struct device *dev = dqm->dev->adev->dev;
3571 int r;
3572
3573 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3574 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3575 return -EINVAL;
3576 }
3577
3578 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3579 return 0;
3580
3581 dqm_lock(dqm);
3582
3583 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3584 if (r)
3585 dqm_unlock(dqm);
3586
3587 return r;
3588 }
3589
debug_map_and_unlock(struct device_queue_manager * dqm)3590 int debug_map_and_unlock(struct device_queue_manager *dqm)
3591 {
3592 struct device *dev = dqm->dev->adev->dev;
3593 int r;
3594
3595 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3596 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3597 return -EINVAL;
3598 }
3599
3600 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3601 return 0;
3602
3603 r = map_queues_cpsch(dqm);
3604
3605 dqm_unlock(dqm);
3606
3607 return r;
3608 }
3609
debug_refresh_runlist(struct device_queue_manager * dqm)3610 int debug_refresh_runlist(struct device_queue_manager *dqm)
3611 {
3612 int r = debug_lock_and_unmap(dqm);
3613
3614 if (r)
3615 return r;
3616
3617 return debug_map_and_unlock(dqm);
3618 }
3619
kfd_dqm_is_queue_in_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd,int doorbell_off,u32 * queue_format)3620 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3621 struct qcm_process_device *qpd,
3622 int doorbell_off, u32 *queue_format)
3623 {
3624 struct queue *q;
3625 bool r = false;
3626
3627 if (!queue_format)
3628 return r;
3629
3630 dqm_lock(dqm);
3631
3632 list_for_each_entry(q, &qpd->queues_list, list) {
3633 if (q->properties.doorbell_off == doorbell_off) {
3634 *queue_format = q->properties.format;
3635 r = true;
3636 goto out;
3637 }
3638 }
3639
3640 out:
3641 dqm_unlock(dqm);
3642 return r;
3643 }
3644 #if defined(CONFIG_DEBUG_FS)
3645
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3646 static void seq_reg_dump(struct seq_file *m,
3647 uint32_t (*dump)[2], uint32_t n_regs)
3648 {
3649 uint32_t i, count;
3650
3651 for (i = 0, count = 0; i < n_regs; i++) {
3652 if (count == 0 ||
3653 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3654 seq_printf(m, "%s %08x: %08x",
3655 i ? "\n" : "",
3656 dump[i][0], dump[i][1]);
3657 count = 7;
3658 } else {
3659 seq_printf(m, " %08x", dump[i][1]);
3660 count--;
3661 }
3662 }
3663
3664 seq_puts(m, "\n");
3665 }
3666
dqm_debugfs_hqds(struct seq_file * m,void * data)3667 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3668 {
3669 struct device_queue_manager *dqm = data;
3670 uint32_t xcc_mask = dqm->dev->xcc_mask;
3671 uint32_t (*dump)[2], n_regs;
3672 int pipe, queue;
3673 int r = 0, xcc_id;
3674 uint32_t sdma_engine_start;
3675
3676 if (!dqm->sched_running) {
3677 seq_puts(m, " Device is stopped\n");
3678 return 0;
3679 }
3680
3681 for_each_inst(xcc_id, xcc_mask) {
3682 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3683 KFD_CIK_HIQ_PIPE,
3684 KFD_CIK_HIQ_QUEUE, &dump,
3685 &n_regs, xcc_id);
3686 if (!r) {
3687 seq_printf(
3688 m,
3689 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3690 xcc_id,
3691 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3692 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3693 KFD_CIK_HIQ_QUEUE);
3694 seq_reg_dump(m, dump, n_regs);
3695
3696 kfree(dump);
3697 }
3698
3699 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3700 int pipe_offset = pipe * get_queues_per_pipe(dqm);
3701
3702 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3703 if (!test_bit(pipe_offset + queue,
3704 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3705 continue;
3706
3707 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3708 pipe, queue,
3709 &dump, &n_regs,
3710 xcc_id);
3711 if (r)
3712 break;
3713
3714 seq_printf(m,
3715 " Inst %d, CP Pipe %d, Queue %d\n",
3716 xcc_id, pipe, queue);
3717 seq_reg_dump(m, dump, n_regs);
3718
3719 kfree(dump);
3720 }
3721 }
3722 }
3723
3724 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3725 for (pipe = sdma_engine_start;
3726 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3727 pipe++) {
3728 for (queue = 0;
3729 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3730 queue++) {
3731 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3732 dqm->dev->adev, pipe, queue, &dump, &n_regs);
3733 if (r)
3734 break;
3735
3736 seq_printf(m, " SDMA Engine %d, RLC %d\n",
3737 pipe, queue);
3738 seq_reg_dump(m, dump, n_regs);
3739
3740 kfree(dump);
3741 }
3742 }
3743
3744 return r;
3745 }
3746
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3747 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3748 {
3749 int r = 0;
3750
3751 dqm_lock(dqm);
3752 r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3753 if (r) {
3754 dqm_unlock(dqm);
3755 return r;
3756 }
3757 dqm->active_runlist = true;
3758 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3759 0, USE_DEFAULT_GRACE_PERIOD);
3760 dqm_unlock(dqm);
3761
3762 return r;
3763 }
3764
3765 #endif
3766