1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/uuid.h> 26 #include <linux/xarray.h> 27 #include <linux/file.h> 28 #include <linux/lockdep.h> 29 30 struct module; 31 struct request_queue; 32 struct elevator_queue; 33 struct blk_trace; 34 struct request; 35 struct sg_io_hdr; 36 struct blkcg_gq; 37 struct blk_flush_queue; 38 struct kiocb; 39 struct pr_ops; 40 struct rq_qos; 41 struct blk_report_zones_args; 42 struct blk_queue_stats; 43 struct blk_stat_callback; 44 struct blk_crypto_profile; 45 46 extern const struct device_type disk_type; 47 extern const struct device_type part_type; 48 extern const struct class block_class; 49 50 /* 51 * Maximum number of blkcg policies allowed to be registered concurrently. 52 * Defined here to simplify include dependency. 53 */ 54 #define BLKCG_MAX_POLS 6 55 56 #define DISK_MAX_PARTS 256 57 #define DISK_NAME_LEN 32 58 59 #define PARTITION_META_INFO_VOLNAMELTH 64 60 /* 61 * Enough for the string representation of any kind of UUID plus NULL. 62 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 63 */ 64 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 65 66 struct partition_meta_info { 67 char uuid[PARTITION_META_INFO_UUIDLTH]; 68 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 69 }; 70 71 /** 72 * DOC: genhd capability flags 73 * 74 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 75 * removable media. When set, the device remains present even when media is not 76 * inserted. Shall not be set for devices which are removed entirely when the 77 * media is removed. 78 * 79 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 80 * doesn't appear in sysfs, and can't be opened from userspace or using 81 * blkdev_get*. Used for the underlying components of multipath devices. 82 * 83 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 84 * scan for partitions from add_disk, and users can't add partitions manually. 85 * 86 */ 87 enum { 88 GENHD_FL_REMOVABLE = 1 << 0, 89 GENHD_FL_HIDDEN = 1 << 1, 90 GENHD_FL_NO_PART = 1 << 2, 91 }; 92 93 enum { 94 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 95 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 96 }; 97 98 enum { 99 /* Poll even if events_poll_msecs is unset */ 100 DISK_EVENT_FLAG_POLL = 1 << 0, 101 /* Forward events to udev */ 102 DISK_EVENT_FLAG_UEVENT = 1 << 1, 103 /* Block event polling when open for exclusive write */ 104 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 105 }; 106 107 struct disk_events; 108 struct badblocks; 109 110 enum blk_integrity_checksum { 111 BLK_INTEGRITY_CSUM_NONE = 0, 112 BLK_INTEGRITY_CSUM_IP = 1, 113 BLK_INTEGRITY_CSUM_CRC = 2, 114 BLK_INTEGRITY_CSUM_CRC64 = 3, 115 } __packed ; 116 117 struct blk_integrity { 118 unsigned char flags; 119 enum blk_integrity_checksum csum_type; 120 unsigned char metadata_size; 121 unsigned char pi_offset; 122 unsigned char interval_exp; 123 unsigned char tag_size; 124 unsigned char pi_tuple_size; 125 }; 126 127 typedef unsigned int __bitwise blk_mode_t; 128 129 /* open for reading */ 130 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0)) 131 /* open for writing */ 132 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1)) 133 /* open exclusively (vs other exclusive openers */ 134 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2)) 135 /* opened with O_NDELAY */ 136 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3)) 137 /* open for "writes" only for ioctls (specialy hack for floppy.c) */ 138 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4)) 139 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */ 140 #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5)) 141 /* return partition scanning errors */ 142 #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6)) 143 144 struct gendisk { 145 /* 146 * major/first_minor/minors should not be set by any new driver, the 147 * block core will take care of allocating them automatically. 148 */ 149 int major; 150 int first_minor; 151 int minors; 152 153 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 154 155 unsigned short events; /* supported events */ 156 unsigned short event_flags; /* flags related to event processing */ 157 158 struct xarray part_tbl; 159 struct block_device *part0; 160 161 const struct block_device_operations *fops; 162 struct request_queue *queue; 163 void *private_data; 164 165 struct bio_set bio_split; 166 167 int flags; 168 unsigned long state; 169 #define GD_NEED_PART_SCAN 0 170 #define GD_READ_ONLY 1 171 #define GD_DEAD 2 172 #define GD_NATIVE_CAPACITY 3 173 #define GD_ADDED 4 174 #define GD_SUPPRESS_PART_SCAN 5 175 #define GD_OWNS_QUEUE 6 176 #define GD_ZONE_APPEND_USED 7 177 178 struct mutex open_mutex; /* open/close mutex */ 179 unsigned open_partitions; /* number of open partitions */ 180 181 struct backing_dev_info *bdi; 182 struct kobject queue_kobj; /* the queue/ directory */ 183 struct kobject *slave_dir; 184 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 185 struct list_head slave_bdevs; 186 #endif 187 struct timer_rand_state *random; 188 struct disk_events *ev; 189 190 #ifdef CONFIG_BLK_DEV_ZONED 191 /* 192 * Zoned block device information. Reads of this information must be 193 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this 194 * information is only allowed while no requests are being processed. 195 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue(). 196 */ 197 unsigned int nr_zones; 198 unsigned int zone_capacity; 199 unsigned int last_zone_capacity; 200 u8 __rcu *zones_cond; 201 unsigned int zone_wplugs_hash_bits; 202 atomic_t nr_zone_wplugs; 203 spinlock_t zone_wplugs_lock; 204 struct mempool *zone_wplugs_pool; 205 struct hlist_head *zone_wplugs_hash; 206 struct workqueue_struct *zone_wplugs_wq; 207 #endif /* CONFIG_BLK_DEV_ZONED */ 208 209 #if IS_ENABLED(CONFIG_CDROM) 210 struct cdrom_device_info *cdi; 211 #endif 212 int node_id; 213 struct badblocks *bb; 214 struct lockdep_map lockdep_map; 215 u64 diskseq; 216 blk_mode_t open_mode; 217 218 /* 219 * Independent sector access ranges. This is always NULL for 220 * devices that do not have multiple independent access ranges. 221 */ 222 struct blk_independent_access_ranges *ia_ranges; 223 224 struct mutex rqos_state_mutex; /* rqos state change mutex */ 225 }; 226 227 /** 228 * disk_openers - returns how many openers are there for a disk 229 * @disk: disk to check 230 * 231 * This returns the number of openers for a disk. Note that this value is only 232 * stable if disk->open_mutex is held. 233 * 234 * Note: Due to a quirk in the block layer open code, each open partition is 235 * only counted once even if there are multiple openers. 236 */ 237 static inline unsigned int disk_openers(struct gendisk *disk) 238 { 239 return atomic_read(&disk->part0->bd_openers); 240 } 241 242 /** 243 * disk_has_partscan - return %true if partition scanning is enabled on a disk 244 * @disk: disk to check 245 * 246 * Returns %true if partitions scanning is enabled for @disk, or %false if 247 * partition scanning is disabled either permanently or temporarily. 248 */ 249 static inline bool disk_has_partscan(struct gendisk *disk) 250 { 251 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) && 252 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 253 } 254 255 /* 256 * The gendisk is refcounted by the part0 block_device, and the bd_device 257 * therein is also used for device model presentation in sysfs. 258 */ 259 #define dev_to_disk(device) \ 260 (dev_to_bdev(device)->bd_disk) 261 #define disk_to_dev(disk) \ 262 (&((disk)->part0->bd_device)) 263 264 #if IS_REACHABLE(CONFIG_CDROM) 265 #define disk_to_cdi(disk) ((disk)->cdi) 266 #else 267 #define disk_to_cdi(disk) NULL 268 #endif 269 270 static inline dev_t disk_devt(struct gendisk *disk) 271 { 272 return MKDEV(disk->major, disk->first_minor); 273 } 274 275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 276 /* 277 * We should strive for 1 << (PAGE_SHIFT + MAX_PAGECACHE_ORDER) 278 * however we constrain this to what we can validate and test. 279 */ 280 #define BLK_MAX_BLOCK_SIZE SZ_64K 281 #else 282 #define BLK_MAX_BLOCK_SIZE PAGE_SIZE 283 #endif 284 285 286 /* blk_validate_limits() validates bsize, so drivers don't usually need to */ 287 static inline int blk_validate_block_size(unsigned long bsize) 288 { 289 if (bsize < 512 || bsize > BLK_MAX_BLOCK_SIZE || !is_power_of_2(bsize)) 290 return -EINVAL; 291 292 return 0; 293 } 294 295 static inline bool blk_op_is_passthrough(blk_opf_t op) 296 { 297 op &= REQ_OP_MASK; 298 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 299 } 300 301 /* flags set by the driver in queue_limits.features */ 302 typedef unsigned int __bitwise blk_features_t; 303 304 /* supports a volatile write cache */ 305 #define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0)) 306 307 /* supports passing on the FUA bit */ 308 #define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1)) 309 310 /* rotational device (hard drive or floppy) */ 311 #define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2)) 312 313 /* contributes to the random number pool */ 314 #define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3)) 315 316 /* do disk/partitions IO accounting */ 317 #define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4)) 318 319 /* don't modify data until writeback is done */ 320 #define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5)) 321 322 /* always completes in submit context */ 323 #define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6)) 324 325 /* supports REQ_NOWAIT */ 326 #define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7)) 327 328 /* supports DAX */ 329 #define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8)) 330 331 /* supports I/O polling */ 332 #define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9)) 333 334 /* is a zoned device */ 335 #define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10)) 336 337 /* supports PCI(e) p2p requests */ 338 #define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12)) 339 340 /* skip this queue in blk_mq_(un)quiesce_tagset */ 341 #define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13)) 342 343 /* undocumented magic for bcache */ 344 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \ 345 ((__force blk_features_t)(1u << 15)) 346 347 /* atomic writes enabled */ 348 #define BLK_FEAT_ATOMIC_WRITES \ 349 ((__force blk_features_t)(1u << 16)) 350 351 /* 352 * Flags automatically inherited when stacking limits. 353 */ 354 #define BLK_FEAT_INHERIT_MASK \ 355 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \ 356 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | \ 357 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE) 358 359 /* internal flags in queue_limits.flags */ 360 typedef unsigned int __bitwise blk_flags_t; 361 362 /* do not send FLUSH/FUA commands despite advertising a write cache */ 363 #define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0)) 364 365 /* I/O topology is misaligned */ 366 #define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1)) 367 368 /* passthrough command IO accounting */ 369 #define BLK_FLAG_IOSTATS_PASSTHROUGH ((__force blk_flags_t)(1u << 2)) 370 371 struct queue_limits { 372 blk_features_t features; 373 blk_flags_t flags; 374 unsigned long seg_boundary_mask; 375 unsigned long virt_boundary_mask; 376 377 unsigned int max_hw_sectors; 378 unsigned int max_dev_sectors; 379 unsigned int chunk_sectors; 380 unsigned int max_sectors; 381 unsigned int max_user_sectors; 382 unsigned int max_segment_size; 383 unsigned int max_fast_segment_size; 384 unsigned int physical_block_size; 385 unsigned int logical_block_size; 386 unsigned int alignment_offset; 387 unsigned int io_min; 388 unsigned int io_opt; 389 unsigned int max_discard_sectors; 390 unsigned int max_hw_discard_sectors; 391 unsigned int max_user_discard_sectors; 392 unsigned int max_secure_erase_sectors; 393 unsigned int max_write_zeroes_sectors; 394 unsigned int max_wzeroes_unmap_sectors; 395 unsigned int max_hw_wzeroes_unmap_sectors; 396 unsigned int max_user_wzeroes_unmap_sectors; 397 unsigned int max_hw_zone_append_sectors; 398 unsigned int max_zone_append_sectors; 399 unsigned int discard_granularity; 400 unsigned int discard_alignment; 401 unsigned int zone_write_granularity; 402 403 /* atomic write limits */ 404 unsigned int atomic_write_hw_max; 405 unsigned int atomic_write_max_sectors; 406 unsigned int atomic_write_hw_boundary; 407 unsigned int atomic_write_boundary_sectors; 408 unsigned int atomic_write_hw_unit_min; 409 unsigned int atomic_write_unit_min; 410 unsigned int atomic_write_hw_unit_max; 411 unsigned int atomic_write_unit_max; 412 413 unsigned short max_segments; 414 unsigned short max_integrity_segments; 415 unsigned short max_discard_segments; 416 417 unsigned short max_write_streams; 418 unsigned int write_stream_granularity; 419 420 unsigned int max_open_zones; 421 unsigned int max_active_zones; 422 423 /* 424 * Drivers that set dma_alignment to less than 511 must be prepared to 425 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 426 * due to possible offsets. 427 */ 428 unsigned int dma_alignment; 429 unsigned int dma_pad_mask; 430 431 struct blk_integrity integrity; 432 }; 433 434 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 435 void *data); 436 437 int disk_report_zone(struct gendisk *disk, struct blk_zone *zone, 438 unsigned int idx, struct blk_report_zones_args *args); 439 440 int blkdev_get_zone_info(struct block_device *bdev, sector_t sector, 441 struct blk_zone *zone); 442 443 #define BLK_ALL_ZONES ((unsigned int)-1) 444 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 445 unsigned int nr_zones, report_zones_cb cb, void *data); 446 int blkdev_report_zones_cached(struct block_device *bdev, sector_t sector, 447 unsigned int nr_zones, report_zones_cb cb, void *data); 448 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 449 sector_t sectors, sector_t nr_sectors); 450 int blk_revalidate_disk_zones(struct gendisk *disk); 451 452 /* 453 * Independent access ranges: struct blk_independent_access_range describes 454 * a range of contiguous sectors that can be accessed using device command 455 * execution resources that are independent from the resources used for 456 * other access ranges. This is typically found with single-LUN multi-actuator 457 * HDDs where each access range is served by a different set of heads. 458 * The set of independent ranges supported by the device is defined using 459 * struct blk_independent_access_ranges. The independent ranges must not overlap 460 * and must include all sectors within the disk capacity (no sector holes 461 * allowed). 462 * For a device with multiple ranges, requests targeting sectors in different 463 * ranges can be executed in parallel. A request can straddle an access range 464 * boundary. 465 */ 466 struct blk_independent_access_range { 467 struct kobject kobj; 468 sector_t sector; 469 sector_t nr_sectors; 470 }; 471 472 struct blk_independent_access_ranges { 473 struct kobject kobj; 474 bool sysfs_registered; 475 unsigned int nr_ia_ranges; 476 struct blk_independent_access_range ia_range[]; 477 }; 478 479 struct request_queue { 480 /* 481 * The queue owner gets to use this for whatever they like. 482 * ll_rw_blk doesn't touch it. 483 */ 484 void *queuedata; 485 486 struct elevator_queue *elevator; 487 488 const struct blk_mq_ops *mq_ops; 489 490 /* sw queues */ 491 struct blk_mq_ctx __percpu *queue_ctx; 492 493 /* 494 * various queue flags, see QUEUE_* below 495 */ 496 unsigned long queue_flags; 497 498 unsigned int __data_racy rq_timeout; 499 500 unsigned int queue_depth; 501 502 refcount_t refs; 503 504 /* hw dispatch queues */ 505 unsigned int nr_hw_queues; 506 struct blk_mq_hw_ctx * __rcu *queue_hw_ctx; 507 508 struct percpu_ref q_usage_counter; 509 struct lock_class_key io_lock_cls_key; 510 struct lockdep_map io_lockdep_map; 511 512 struct lock_class_key q_lock_cls_key; 513 struct lockdep_map q_lockdep_map; 514 515 struct request *last_merge; 516 517 spinlock_t queue_lock; 518 519 int quiesce_depth; 520 521 struct gendisk *disk; 522 523 /* 524 * mq queue kobject 525 */ 526 struct kobject *mq_kobj; 527 528 struct queue_limits limits; 529 530 #ifdef CONFIG_PM 531 struct device *dev; 532 enum rpm_status rpm_status; 533 #endif 534 535 /* 536 * Number of contexts that have called blk_set_pm_only(). If this 537 * counter is above zero then only RQF_PM requests are processed. 538 */ 539 atomic_t pm_only; 540 541 struct blk_queue_stats *stats; 542 struct rq_qos *rq_qos; 543 struct mutex rq_qos_mutex; 544 545 /* 546 * ida allocated id for this queue. Used to index queues from 547 * ioctx. 548 */ 549 int id; 550 551 /* 552 * queue settings 553 */ 554 unsigned long nr_requests; /* Max # of requests */ 555 556 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 557 struct blk_crypto_profile *crypto_profile; 558 struct kobject *crypto_kobject; 559 #endif 560 561 struct timer_list timeout; 562 struct work_struct timeout_work; 563 564 atomic_t nr_active_requests_shared_tags; 565 566 struct blk_mq_tags *sched_shared_tags; 567 568 struct list_head icq_list; 569 #ifdef CONFIG_BLK_CGROUP 570 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 571 struct blkcg_gq *root_blkg; 572 struct list_head blkg_list; 573 struct mutex blkcg_mutex; 574 #endif 575 576 int node; 577 578 spinlock_t requeue_lock; 579 struct list_head requeue_list; 580 struct delayed_work requeue_work; 581 582 #ifdef CONFIG_BLK_DEV_IO_TRACE 583 struct blk_trace __rcu *blk_trace; 584 #endif 585 /* 586 * for flush operations 587 */ 588 struct blk_flush_queue *fq; 589 struct list_head flush_list; 590 591 /* 592 * Protects against I/O scheduler switching, particularly when updating 593 * q->elevator. Since the elevator update code path may also modify q-> 594 * nr_requests and wbt latency, this lock also protects the sysfs attrs 595 * nr_requests and wbt_lat_usec. Additionally the nr_hw_queues update 596 * may modify hctx tags, reserved-tags and cpumask, so this lock also 597 * helps protect the hctx sysfs/debugfs attrs. To ensure proper locking 598 * order during an elevator or nr_hw_queue update, first freeze the 599 * queue, then acquire ->elevator_lock. 600 */ 601 struct mutex elevator_lock; 602 603 struct mutex sysfs_lock; 604 /* 605 * Protects queue limits and also sysfs attribute read_ahead_kb. 606 */ 607 struct mutex limits_lock; 608 609 /* 610 * for reusing dead hctx instance in case of updating 611 * nr_hw_queues 612 */ 613 struct list_head unused_hctx_list; 614 spinlock_t unused_hctx_lock; 615 616 int mq_freeze_depth; 617 618 #ifdef CONFIG_BLK_DEV_THROTTLING 619 /* Throttle data */ 620 struct throtl_data *td; 621 #endif 622 struct rcu_head rcu_head; 623 #ifdef CONFIG_LOCKDEP 624 struct task_struct *mq_freeze_owner; 625 int mq_freeze_owner_depth; 626 /* 627 * Records disk & queue state in current context, used in unfreeze 628 * queue 629 */ 630 bool mq_freeze_disk_dead; 631 bool mq_freeze_queue_dying; 632 #endif 633 wait_queue_head_t mq_freeze_wq; 634 /* 635 * Protect concurrent access to q_usage_counter by 636 * percpu_ref_kill() and percpu_ref_reinit(). 637 */ 638 struct mutex mq_freeze_lock; 639 640 struct blk_mq_tag_set *tag_set; 641 struct list_head tag_set_list; 642 643 struct dentry *debugfs_dir; 644 struct dentry *sched_debugfs_dir; 645 struct dentry *rqos_debugfs_dir; 646 /* 647 * Serializes all debugfs metadata operations using the above dentries. 648 */ 649 struct mutex debugfs_mutex; 650 }; 651 652 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 653 enum { 654 QUEUE_FLAG_DYING, /* queue being torn down */ 655 QUEUE_FLAG_NOMERGES, /* disable merge attempts */ 656 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */ 657 QUEUE_FLAG_FAIL_IO, /* fake timeout */ 658 QUEUE_FLAG_NOXMERGES, /* No extended merges */ 659 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */ 660 QUEUE_FLAG_INIT_DONE, /* queue is initialized */ 661 QUEUE_FLAG_STATS, /* track IO start and completion times */ 662 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */ 663 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */ 664 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */ 665 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */ 666 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */ 667 QUEUE_FLAG_DISABLE_WBT_DEF, /* for sched to disable/enable wbt */ 668 QUEUE_FLAG_NO_ELV_SWITCH, /* can't switch elevator any more */ 669 QUEUE_FLAG_QOS_ENABLED, /* qos is enabled */ 670 QUEUE_FLAG_BIO_ISSUE_TIME, /* record bio->issue_time_ns */ 671 QUEUE_FLAG_MAX 672 }; 673 674 #define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP) 675 676 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 677 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 678 679 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 680 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 681 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 682 #define blk_queue_noxmerges(q) \ 683 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 684 #define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL)) 685 #define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT) 686 #define blk_queue_passthrough_stat(q) \ 687 ((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH) 688 #define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX) 689 #define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA) 690 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 691 #define blk_queue_rq_alloc_time(q) \ 692 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 693 #else 694 #define blk_queue_rq_alloc_time(q) false 695 #endif 696 697 #define blk_noretry_request(rq) \ 698 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 699 REQ_FAILFAST_DRIVER)) 700 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 701 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 702 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 703 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 704 #define blk_queue_skip_tagset_quiesce(q) \ 705 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE) 706 #define blk_queue_disable_wbt(q) \ 707 test_bit(QUEUE_FLAG_DISABLE_WBT_DEF, &(q)->queue_flags) 708 #define blk_queue_no_elv_switch(q) \ 709 test_bit(QUEUE_FLAG_NO_ELV_SWITCH, &(q)->queue_flags) 710 711 extern void blk_set_pm_only(struct request_queue *q); 712 extern void blk_clear_pm_only(struct request_queue *q); 713 714 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 715 716 #define dma_map_bvec(dev, bv, dir, attrs) \ 717 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 718 (dir), (attrs)) 719 720 static inline bool queue_is_mq(struct request_queue *q) 721 { 722 return q->mq_ops; 723 } 724 725 #ifdef CONFIG_PM 726 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 727 { 728 return q->rpm_status; 729 } 730 #else 731 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 732 { 733 return RPM_ACTIVE; 734 } 735 #endif 736 737 static inline bool blk_queue_is_zoned(struct request_queue *q) 738 { 739 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 740 (q->limits.features & BLK_FEAT_ZONED); 741 } 742 743 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 744 { 745 if (!blk_queue_is_zoned(disk->queue)) 746 return 0; 747 return sector >> ilog2(disk->queue->limits.chunk_sectors); 748 } 749 750 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 751 { 752 return bdev->bd_disk->queue->limits.max_open_zones; 753 } 754 755 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 756 { 757 return bdev->bd_disk->queue->limits.max_active_zones; 758 } 759 760 static inline unsigned int blk_queue_depth(struct request_queue *q) 761 { 762 if (q->queue_depth) 763 return q->queue_depth; 764 765 return q->nr_requests; 766 } 767 768 /* 769 * default timeout for SG_IO if none specified 770 */ 771 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 772 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 773 774 /* This should not be used directly - use rq_for_each_segment */ 775 #define for_each_bio(_bio) \ 776 for (; _bio; _bio = _bio->bi_next) 777 778 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk, 779 const struct attribute_group **groups, 780 struct fwnode_handle *fwnode); 781 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 782 const struct attribute_group **groups); 783 static inline int __must_check add_disk(struct gendisk *disk) 784 { 785 return device_add_disk(NULL, disk, NULL); 786 } 787 void del_gendisk(struct gendisk *gp); 788 void invalidate_disk(struct gendisk *disk); 789 void set_disk_ro(struct gendisk *disk, bool read_only); 790 void disk_uevent(struct gendisk *disk, enum kobject_action action); 791 792 static inline u8 bdev_partno(const struct block_device *bdev) 793 { 794 return atomic_read(&bdev->__bd_flags) & BD_PARTNO; 795 } 796 797 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag) 798 { 799 return atomic_read(&bdev->__bd_flags) & flag; 800 } 801 802 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag) 803 { 804 atomic_or(flag, &bdev->__bd_flags); 805 } 806 807 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag) 808 { 809 atomic_andnot(flag, &bdev->__bd_flags); 810 } 811 812 static inline bool get_disk_ro(struct gendisk *disk) 813 { 814 return bdev_test_flag(disk->part0, BD_READ_ONLY) || 815 test_bit(GD_READ_ONLY, &disk->state); 816 } 817 818 static inline bool bdev_read_only(struct block_device *bdev) 819 { 820 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk); 821 } 822 823 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 824 void disk_force_media_change(struct gendisk *disk); 825 void bdev_mark_dead(struct block_device *bdev, bool surprise); 826 827 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 828 void rand_initialize_disk(struct gendisk *disk); 829 830 static inline sector_t get_start_sect(struct block_device *bdev) 831 { 832 return bdev->bd_start_sect; 833 } 834 835 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 836 { 837 return bdev->bd_nr_sectors; 838 } 839 840 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 841 { 842 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 843 } 844 845 static inline sector_t get_capacity(struct gendisk *disk) 846 { 847 return bdev_nr_sectors(disk->part0); 848 } 849 850 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 851 { 852 return bdev_nr_sectors(sb->s_bdev) >> 853 (sb->s_blocksize_bits - SECTOR_SHIFT); 854 } 855 856 #ifdef CONFIG_BLK_DEV_ZONED 857 static inline unsigned int disk_nr_zones(struct gendisk *disk) 858 { 859 return disk->nr_zones; 860 } 861 862 /** 863 * bio_needs_zone_write_plugging - Check if a BIO needs to be handled with zone 864 * write plugging 865 * @bio: The BIO being submitted 866 * 867 * Return true whenever @bio execution needs to be handled through zone 868 * write plugging (using blk_zone_plug_bio()). Return false otherwise. 869 */ 870 static inline bool bio_needs_zone_write_plugging(struct bio *bio) 871 { 872 enum req_op op = bio_op(bio); 873 874 /* 875 * Only zoned block devices have a zone write plug hash table. But not 876 * all of them have one (e.g. DM devices may not need one). 877 */ 878 if (!bio->bi_bdev->bd_disk->zone_wplugs_hash) 879 return false; 880 881 /* Only write operations need zone write plugging. */ 882 if (!op_is_write(op)) 883 return false; 884 885 /* Ignore empty flush */ 886 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 887 return false; 888 889 /* Ignore BIOs that already have been handled by zone write plugging. */ 890 if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING)) 891 return false; 892 893 /* 894 * All zone write operations must be handled through zone write plugging 895 * using blk_zone_plug_bio(). 896 */ 897 switch (op) { 898 case REQ_OP_ZONE_APPEND: 899 case REQ_OP_WRITE: 900 case REQ_OP_WRITE_ZEROES: 901 case REQ_OP_ZONE_FINISH: 902 case REQ_OP_ZONE_RESET: 903 case REQ_OP_ZONE_RESET_ALL: 904 return true; 905 default: 906 return false; 907 } 908 } 909 910 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs); 911 912 /** 913 * disk_zone_capacity - returns the zone capacity of zone containing @sector 914 * @disk: disk to work with 915 * @sector: sector number within the querying zone 916 * 917 * Returns the zone capacity of a zone containing @sector. @sector can be any 918 * sector in the zone. 919 */ 920 static inline unsigned int disk_zone_capacity(struct gendisk *disk, 921 sector_t sector) 922 { 923 sector_t zone_sectors = disk->queue->limits.chunk_sectors; 924 925 if (sector + zone_sectors >= get_capacity(disk)) 926 return disk->last_zone_capacity; 927 return disk->zone_capacity; 928 } 929 static inline unsigned int bdev_zone_capacity(struct block_device *bdev, 930 sector_t pos) 931 { 932 return disk_zone_capacity(bdev->bd_disk, pos); 933 } 934 935 bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector); 936 937 #else /* CONFIG_BLK_DEV_ZONED */ 938 static inline unsigned int disk_nr_zones(struct gendisk *disk) 939 { 940 return 0; 941 } 942 943 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector) 944 { 945 return false; 946 } 947 948 static inline bool bio_needs_zone_write_plugging(struct bio *bio) 949 { 950 return false; 951 } 952 953 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs) 954 { 955 return false; 956 } 957 #endif /* CONFIG_BLK_DEV_ZONED */ 958 959 static inline unsigned int bdev_nr_zones(struct block_device *bdev) 960 { 961 return disk_nr_zones(bdev->bd_disk); 962 } 963 964 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 965 966 void put_disk(struct gendisk *disk); 967 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node, 968 struct lock_class_key *lkclass); 969 970 /** 971 * blk_alloc_disk - allocate a gendisk structure 972 * @lim: queue limits to be used for this disk. 973 * @node_id: numa node to allocate on 974 * 975 * Allocate and pre-initialize a gendisk structure for use with BIO based 976 * drivers. 977 * 978 * Returns an ERR_PTR on error, else the allocated disk. 979 * 980 * Context: can sleep 981 */ 982 #define blk_alloc_disk(lim, node_id) \ 983 ({ \ 984 static struct lock_class_key __key; \ 985 \ 986 __blk_alloc_disk(lim, node_id, &__key); \ 987 }) 988 989 int __register_blkdev(unsigned int major, const char *name, 990 void (*probe)(dev_t devt)); 991 #define register_blkdev(major, name) \ 992 __register_blkdev(major, name, NULL) 993 void unregister_blkdev(unsigned int major, const char *name); 994 995 bool disk_check_media_change(struct gendisk *disk); 996 void set_capacity(struct gendisk *disk, sector_t size); 997 998 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 999 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 1000 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 1001 #else 1002 static inline int bd_link_disk_holder(struct block_device *bdev, 1003 struct gendisk *disk) 1004 { 1005 return 0; 1006 } 1007 static inline void bd_unlink_disk_holder(struct block_device *bdev, 1008 struct gendisk *disk) 1009 { 1010 } 1011 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 1012 1013 dev_t part_devt(struct gendisk *disk, u8 partno); 1014 void inc_diskseq(struct gendisk *disk); 1015 void blk_request_module(dev_t devt); 1016 1017 extern int blk_register_queue(struct gendisk *disk); 1018 extern void blk_unregister_queue(struct gendisk *disk); 1019 void submit_bio_noacct(struct bio *bio); 1020 struct bio *bio_split_to_limits(struct bio *bio); 1021 struct bio *bio_submit_split_bioset(struct bio *bio, unsigned int split_sectors, 1022 struct bio_set *bs); 1023 1024 extern int blk_lld_busy(struct request_queue *q); 1025 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 1026 extern void blk_queue_exit(struct request_queue *q); 1027 extern void blk_sync_queue(struct request_queue *q); 1028 1029 /* Helper to convert REQ_OP_XXX to its string format XXX */ 1030 extern const char *blk_op_str(enum req_op op); 1031 1032 int blk_status_to_errno(blk_status_t status); 1033 blk_status_t errno_to_blk_status(int errno); 1034 const char *blk_status_to_str(blk_status_t status); 1035 1036 /* only poll the hardware once, don't continue until a completion was found */ 1037 #define BLK_POLL_ONESHOT (1 << 0) 1038 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 1039 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 1040 unsigned int flags); 1041 1042 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 1043 { 1044 return bdev->bd_queue; /* this is never NULL */ 1045 } 1046 1047 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1048 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1049 1050 static inline unsigned int bio_zone_no(struct bio *bio) 1051 { 1052 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 1053 } 1054 1055 static inline bool bio_straddles_zones(struct bio *bio) 1056 { 1057 return bio_sectors(bio) && 1058 bio_zone_no(bio) != 1059 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1); 1060 } 1061 1062 /* 1063 * Return how much within the boundary is left to be used for I/O at a given 1064 * offset. 1065 */ 1066 static inline unsigned int blk_boundary_sectors_left(sector_t offset, 1067 unsigned int boundary_sectors) 1068 { 1069 if (unlikely(!is_power_of_2(boundary_sectors))) 1070 return boundary_sectors - sector_div(offset, boundary_sectors); 1071 return boundary_sectors - (offset & (boundary_sectors - 1)); 1072 } 1073 1074 /** 1075 * queue_limits_start_update - start an atomic update of queue limits 1076 * @q: queue to update 1077 * 1078 * This functions starts an atomic update of the queue limits. It takes a lock 1079 * to prevent other updates and returns a snapshot of the current limits that 1080 * the caller can modify. The caller must call queue_limits_commit_update() 1081 * to finish the update. 1082 * 1083 * Context: process context. 1084 */ 1085 static inline struct queue_limits 1086 queue_limits_start_update(struct request_queue *q) 1087 { 1088 mutex_lock(&q->limits_lock); 1089 return q->limits; 1090 } 1091 int queue_limits_commit_update_frozen(struct request_queue *q, 1092 struct queue_limits *lim); 1093 int queue_limits_commit_update(struct request_queue *q, 1094 struct queue_limits *lim); 1095 int queue_limits_set(struct request_queue *q, struct queue_limits *lim); 1096 int blk_validate_limits(struct queue_limits *lim); 1097 1098 /** 1099 * queue_limits_cancel_update - cancel an atomic update of queue limits 1100 * @q: queue to update 1101 * 1102 * This functions cancels an atomic update of the queue limits started by 1103 * queue_limits_start_update() and should be used when an error occurs after 1104 * starting update. 1105 */ 1106 static inline void queue_limits_cancel_update(struct request_queue *q) 1107 { 1108 mutex_unlock(&q->limits_lock); 1109 } 1110 1111 /* 1112 * These helpers are for drivers that have sloppy feature negotiation and might 1113 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O 1114 * completion handler when the device returned an indicator that the respective 1115 * feature is not actually supported. They are racy and the driver needs to 1116 * cope with that. Try to avoid this scheme if you can. 1117 */ 1118 static inline void blk_queue_disable_discard(struct request_queue *q) 1119 { 1120 q->limits.max_discard_sectors = 0; 1121 } 1122 1123 static inline void blk_queue_disable_secure_erase(struct request_queue *q) 1124 { 1125 q->limits.max_secure_erase_sectors = 0; 1126 } 1127 1128 static inline void blk_queue_disable_write_zeroes(struct request_queue *q) 1129 { 1130 q->limits.max_write_zeroes_sectors = 0; 1131 q->limits.max_wzeroes_unmap_sectors = 0; 1132 } 1133 1134 /* 1135 * Access functions for manipulating queue properties 1136 */ 1137 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1138 extern void blk_set_stacking_limits(struct queue_limits *lim); 1139 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1140 sector_t offset); 1141 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 1142 sector_t offset, const char *pfx); 1143 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1144 1145 struct blk_independent_access_ranges * 1146 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 1147 void disk_set_independent_access_ranges(struct gendisk *disk, 1148 struct blk_independent_access_ranges *iars); 1149 1150 bool __must_check blk_get_queue(struct request_queue *); 1151 extern void blk_put_queue(struct request_queue *); 1152 1153 void blk_mark_disk_dead(struct gendisk *disk); 1154 1155 struct rq_list { 1156 struct request *head; 1157 struct request *tail; 1158 }; 1159 1160 #ifdef CONFIG_BLOCK 1161 /* 1162 * blk_plug permits building a queue of related requests by holding the I/O 1163 * fragments for a short period. This allows merging of sequential requests 1164 * into single larger request. As the requests are moved from a per-task list to 1165 * the device's request_queue in a batch, this results in improved scalability 1166 * as the lock contention for request_queue lock is reduced. 1167 * 1168 * It is ok not to disable preemption when adding the request to the plug list 1169 * or when attempting a merge. For details, please see schedule() where 1170 * blk_flush_plug() is called. 1171 */ 1172 struct blk_plug { 1173 struct rq_list mq_list; /* blk-mq requests */ 1174 1175 /* if ios_left is > 1, we can batch tag/rq allocations */ 1176 struct rq_list cached_rqs; 1177 u64 cur_ktime; 1178 unsigned short nr_ios; 1179 1180 unsigned short rq_count; 1181 1182 bool multiple_queues; 1183 bool has_elevator; 1184 1185 struct list_head cb_list; /* md requires an unplug callback */ 1186 }; 1187 1188 struct blk_plug_cb; 1189 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1190 struct blk_plug_cb { 1191 struct list_head list; 1192 blk_plug_cb_fn callback; 1193 void *data; 1194 }; 1195 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1196 void *data, int size); 1197 extern void blk_start_plug(struct blk_plug *); 1198 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1199 extern void blk_finish_plug(struct blk_plug *); 1200 1201 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1202 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1203 { 1204 if (plug) 1205 __blk_flush_plug(plug, async); 1206 } 1207 1208 /* 1209 * tsk == current here 1210 */ 1211 static inline void blk_plug_invalidate_ts(struct task_struct *tsk) 1212 { 1213 struct blk_plug *plug = tsk->plug; 1214 1215 if (plug) 1216 plug->cur_ktime = 0; 1217 current->flags &= ~PF_BLOCK_TS; 1218 } 1219 1220 int blkdev_issue_flush(struct block_device *bdev); 1221 long nr_blockdev_pages(void); 1222 #else /* CONFIG_BLOCK */ 1223 struct blk_plug { 1224 }; 1225 1226 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1227 unsigned short nr_ios) 1228 { 1229 } 1230 1231 static inline void blk_start_plug(struct blk_plug *plug) 1232 { 1233 } 1234 1235 static inline void blk_finish_plug(struct blk_plug *plug) 1236 { 1237 } 1238 1239 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1240 { 1241 } 1242 1243 static inline void blk_plug_invalidate_ts(struct task_struct *tsk) 1244 { 1245 } 1246 1247 static inline int blkdev_issue_flush(struct block_device *bdev) 1248 { 1249 return 0; 1250 } 1251 1252 static inline long nr_blockdev_pages(void) 1253 { 1254 return 0; 1255 } 1256 #endif /* CONFIG_BLOCK */ 1257 1258 extern void blk_io_schedule(void); 1259 1260 int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1261 sector_t nr_sects, gfp_t gfp_mask); 1262 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1263 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1264 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1265 sector_t nr_sects, gfp_t gfp); 1266 1267 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1268 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1269 #define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */ 1270 1271 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1272 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1273 unsigned flags); 1274 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1275 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1276 1277 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1278 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1279 { 1280 return blkdev_issue_discard(sb->s_bdev, 1281 block << (sb->s_blocksize_bits - 1282 SECTOR_SHIFT), 1283 nr_blocks << (sb->s_blocksize_bits - 1284 SECTOR_SHIFT), 1285 gfp_mask); 1286 } 1287 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1288 sector_t nr_blocks, gfp_t gfp_mask) 1289 { 1290 return blkdev_issue_zeroout(sb->s_bdev, 1291 block << (sb->s_blocksize_bits - 1292 SECTOR_SHIFT), 1293 nr_blocks << (sb->s_blocksize_bits - 1294 SECTOR_SHIFT), 1295 gfp_mask, 0); 1296 } 1297 1298 static inline bool bdev_is_partition(struct block_device *bdev) 1299 { 1300 return bdev_partno(bdev) != 0; 1301 } 1302 1303 enum blk_default_limits { 1304 BLK_MAX_SEGMENTS = 128, 1305 BLK_SAFE_MAX_SECTORS = 255, 1306 BLK_MAX_SEGMENT_SIZE = 65536, 1307 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1308 }; 1309 1310 static inline struct queue_limits *bdev_limits(struct block_device *bdev) 1311 { 1312 return &bdev_get_queue(bdev)->limits; 1313 } 1314 1315 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1316 { 1317 return q->limits.seg_boundary_mask; 1318 } 1319 1320 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1321 { 1322 return q->limits.virt_boundary_mask; 1323 } 1324 1325 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1326 { 1327 return q->limits.max_sectors; 1328 } 1329 1330 static inline unsigned int queue_max_bytes(struct request_queue *q) 1331 { 1332 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1333 } 1334 1335 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1336 { 1337 return q->limits.max_hw_sectors; 1338 } 1339 1340 static inline unsigned short queue_max_segments(const struct request_queue *q) 1341 { 1342 return q->limits.max_segments; 1343 } 1344 1345 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1346 { 1347 return q->limits.max_discard_segments; 1348 } 1349 1350 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1351 { 1352 return q->limits.max_segment_size; 1353 } 1354 1355 static inline bool queue_emulates_zone_append(struct request_queue *q) 1356 { 1357 return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors; 1358 } 1359 1360 static inline bool bdev_emulates_zone_append(struct block_device *bdev) 1361 { 1362 return queue_emulates_zone_append(bdev_get_queue(bdev)); 1363 } 1364 1365 static inline unsigned int 1366 bdev_max_zone_append_sectors(struct block_device *bdev) 1367 { 1368 return bdev_limits(bdev)->max_zone_append_sectors; 1369 } 1370 1371 static inline unsigned int bdev_max_segments(struct block_device *bdev) 1372 { 1373 return queue_max_segments(bdev_get_queue(bdev)); 1374 } 1375 1376 static inline unsigned short bdev_max_write_streams(struct block_device *bdev) 1377 { 1378 if (bdev_is_partition(bdev)) 1379 return 0; 1380 return bdev_limits(bdev)->max_write_streams; 1381 } 1382 1383 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1384 { 1385 return q->limits.logical_block_size; 1386 } 1387 1388 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1389 { 1390 return queue_logical_block_size(bdev_get_queue(bdev)); 1391 } 1392 1393 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1394 { 1395 return q->limits.physical_block_size; 1396 } 1397 1398 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1399 { 1400 return queue_physical_block_size(bdev_get_queue(bdev)); 1401 } 1402 1403 static inline unsigned int queue_io_min(const struct request_queue *q) 1404 { 1405 return q->limits.io_min; 1406 } 1407 1408 static inline unsigned int bdev_io_min(struct block_device *bdev) 1409 { 1410 return queue_io_min(bdev_get_queue(bdev)); 1411 } 1412 1413 static inline unsigned int queue_io_opt(const struct request_queue *q) 1414 { 1415 return q->limits.io_opt; 1416 } 1417 1418 static inline unsigned int bdev_io_opt(struct block_device *bdev) 1419 { 1420 return queue_io_opt(bdev_get_queue(bdev)); 1421 } 1422 1423 static inline unsigned int 1424 queue_zone_write_granularity(const struct request_queue *q) 1425 { 1426 return q->limits.zone_write_granularity; 1427 } 1428 1429 static inline unsigned int 1430 bdev_zone_write_granularity(struct block_device *bdev) 1431 { 1432 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1433 } 1434 1435 int bdev_alignment_offset(struct block_device *bdev); 1436 unsigned int bdev_discard_alignment(struct block_device *bdev); 1437 1438 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1439 { 1440 return bdev_limits(bdev)->max_discard_sectors; 1441 } 1442 1443 static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1444 { 1445 return bdev_limits(bdev)->discard_granularity; 1446 } 1447 1448 static inline unsigned int 1449 bdev_max_secure_erase_sectors(struct block_device *bdev) 1450 { 1451 return bdev_limits(bdev)->max_secure_erase_sectors; 1452 } 1453 1454 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1455 { 1456 return bdev_limits(bdev)->max_write_zeroes_sectors; 1457 } 1458 1459 static inline unsigned int 1460 bdev_write_zeroes_unmap_sectors(struct block_device *bdev) 1461 { 1462 return bdev_limits(bdev)->max_wzeroes_unmap_sectors; 1463 } 1464 1465 static inline bool bdev_nonrot(struct block_device *bdev) 1466 { 1467 return blk_queue_nonrot(bdev_get_queue(bdev)); 1468 } 1469 1470 static inline bool bdev_synchronous(struct block_device *bdev) 1471 { 1472 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS; 1473 } 1474 1475 static inline bool bdev_stable_writes(struct block_device *bdev) 1476 { 1477 struct request_queue *q = bdev_get_queue(bdev); 1478 1479 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1480 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE) 1481 return true; 1482 return q->limits.features & BLK_FEAT_STABLE_WRITES; 1483 } 1484 1485 static inline bool blk_queue_write_cache(struct request_queue *q) 1486 { 1487 return (q->limits.features & BLK_FEAT_WRITE_CACHE) && 1488 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED); 1489 } 1490 1491 static inline bool bdev_write_cache(struct block_device *bdev) 1492 { 1493 return blk_queue_write_cache(bdev_get_queue(bdev)); 1494 } 1495 1496 static inline bool bdev_fua(struct block_device *bdev) 1497 { 1498 return bdev_limits(bdev)->features & BLK_FEAT_FUA; 1499 } 1500 1501 static inline bool bdev_nowait(struct block_device *bdev) 1502 { 1503 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT; 1504 } 1505 1506 static inline bool bdev_is_zoned(struct block_device *bdev) 1507 { 1508 return blk_queue_is_zoned(bdev_get_queue(bdev)); 1509 } 1510 1511 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec) 1512 { 1513 return disk_zone_no(bdev->bd_disk, sec); 1514 } 1515 1516 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1517 { 1518 struct request_queue *q = bdev_get_queue(bdev); 1519 1520 if (!blk_queue_is_zoned(q)) 1521 return 0; 1522 return q->limits.chunk_sectors; 1523 } 1524 1525 static inline sector_t bdev_zone_start(struct block_device *bdev, 1526 sector_t sector) 1527 { 1528 return sector & ~(bdev_zone_sectors(bdev) - 1); 1529 } 1530 1531 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev, 1532 sector_t sector) 1533 { 1534 return sector & (bdev_zone_sectors(bdev) - 1); 1535 } 1536 1537 static inline sector_t bio_offset_from_zone_start(struct bio *bio) 1538 { 1539 return bdev_offset_from_zone_start(bio->bi_bdev, 1540 bio->bi_iter.bi_sector); 1541 } 1542 1543 static inline bool bdev_is_zone_start(struct block_device *bdev, 1544 sector_t sector) 1545 { 1546 return bdev_offset_from_zone_start(bdev, sector) == 0; 1547 } 1548 1549 /* Check whether @sector is a multiple of the zone size. */ 1550 static inline bool bdev_is_zone_aligned(struct block_device *bdev, 1551 sector_t sector) 1552 { 1553 return bdev_is_zone_start(bdev, sector); 1554 } 1555 1556 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector, 1557 sector_t nr_sects, gfp_t gfp_mask); 1558 1559 static inline unsigned int queue_dma_alignment(const struct request_queue *q) 1560 { 1561 return q->limits.dma_alignment; 1562 } 1563 1564 static inline unsigned int 1565 queue_atomic_write_unit_max_bytes(const struct request_queue *q) 1566 { 1567 return q->limits.atomic_write_unit_max; 1568 } 1569 1570 static inline unsigned int 1571 queue_atomic_write_unit_min_bytes(const struct request_queue *q) 1572 { 1573 return q->limits.atomic_write_unit_min; 1574 } 1575 1576 static inline unsigned int 1577 queue_atomic_write_boundary_bytes(const struct request_queue *q) 1578 { 1579 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT; 1580 } 1581 1582 static inline unsigned int 1583 queue_atomic_write_max_bytes(const struct request_queue *q) 1584 { 1585 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT; 1586 } 1587 1588 static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1589 { 1590 return queue_dma_alignment(bdev_get_queue(bdev)); 1591 } 1592 1593 static inline unsigned int 1594 blk_lim_dma_alignment_and_pad(struct queue_limits *lim) 1595 { 1596 return lim->dma_alignment | lim->dma_pad_mask; 1597 } 1598 1599 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr, 1600 unsigned int len) 1601 { 1602 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits); 1603 1604 return !(addr & alignment) && !(len & alignment); 1605 } 1606 1607 /* assumes size > 256 */ 1608 static inline unsigned int blksize_bits(unsigned int size) 1609 { 1610 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT; 1611 } 1612 1613 int kblockd_schedule_work(struct work_struct *work); 1614 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1615 1616 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1617 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1618 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1619 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1620 1621 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1622 1623 bool blk_crypto_register(struct blk_crypto_profile *profile, 1624 struct request_queue *q); 1625 1626 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1627 1628 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1629 struct request_queue *q) 1630 { 1631 return true; 1632 } 1633 1634 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1635 1636 enum blk_unique_id { 1637 /* these match the Designator Types specified in SPC */ 1638 BLK_UID_T10 = 1, 1639 BLK_UID_EUI64 = 2, 1640 BLK_UID_NAA = 3, 1641 }; 1642 1643 struct block_device_operations { 1644 void (*submit_bio)(struct bio *bio); 1645 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1646 unsigned int flags); 1647 int (*open)(struct gendisk *disk, blk_mode_t mode); 1648 void (*release)(struct gendisk *disk); 1649 int (*ioctl)(struct block_device *bdev, blk_mode_t mode, 1650 unsigned cmd, unsigned long arg); 1651 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode, 1652 unsigned cmd, unsigned long arg); 1653 unsigned int (*check_events) (struct gendisk *disk, 1654 unsigned int clearing); 1655 void (*unlock_native_capacity) (struct gendisk *); 1656 int (*getgeo)(struct gendisk *, struct hd_geometry *); 1657 int (*set_read_only)(struct block_device *bdev, bool ro); 1658 void (*free_disk)(struct gendisk *disk); 1659 /* this callback is with swap_lock and sometimes page table lock held */ 1660 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1661 int (*report_zones)(struct gendisk *, sector_t sector, 1662 unsigned int nr_zones, 1663 struct blk_report_zones_args *args); 1664 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1665 /* returns the length of the identifier or a negative errno: */ 1666 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1667 enum blk_unique_id id_type); 1668 struct module *owner; 1669 const struct pr_ops *pr_ops; 1670 1671 /* 1672 * Special callback for probing GPT entry at a given sector. 1673 * Needed by Android devices, used by GPT scanner and MMC blk 1674 * driver. 1675 */ 1676 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1677 }; 1678 1679 #ifdef CONFIG_COMPAT 1680 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t, 1681 unsigned int, unsigned long); 1682 #else 1683 #define blkdev_compat_ptr_ioctl NULL 1684 #endif 1685 1686 static inline void blk_wake_io_task(struct task_struct *waiter) 1687 { 1688 /* 1689 * If we're polling, the task itself is doing the completions. For 1690 * that case, we don't need to signal a wakeup, it's enough to just 1691 * mark us as RUNNING. 1692 */ 1693 if (waiter == current) 1694 __set_current_state(TASK_RUNNING); 1695 else 1696 wake_up_process(waiter); 1697 } 1698 1699 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op, 1700 unsigned long start_time); 1701 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1702 unsigned int sectors, unsigned long start_time); 1703 1704 unsigned long bio_start_io_acct(struct bio *bio); 1705 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1706 struct block_device *orig_bdev); 1707 1708 /** 1709 * bio_end_io_acct - end I/O accounting for bio based drivers 1710 * @bio: bio to end account for 1711 * @start_time: start time returned by bio_start_io_acct() 1712 */ 1713 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1714 { 1715 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1716 } 1717 1718 int bdev_validate_blocksize(struct block_device *bdev, int block_size); 1719 int set_blocksize(struct file *file, int size); 1720 1721 int lookup_bdev(const char *pathname, dev_t *dev); 1722 1723 void blkdev_show(struct seq_file *seqf, off_t offset); 1724 1725 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1726 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1727 #ifdef CONFIG_BLOCK 1728 #define BLKDEV_MAJOR_MAX 512 1729 #else 1730 #define BLKDEV_MAJOR_MAX 0 1731 #endif 1732 1733 struct blk_holder_ops { 1734 void (*mark_dead)(struct block_device *bdev, bool surprise); 1735 1736 /* 1737 * Sync the file system mounted on the block device. 1738 */ 1739 void (*sync)(struct block_device *bdev); 1740 1741 /* 1742 * Freeze the file system mounted on the block device. 1743 */ 1744 int (*freeze)(struct block_device *bdev); 1745 1746 /* 1747 * Thaw the file system mounted on the block device. 1748 */ 1749 int (*thaw)(struct block_device *bdev); 1750 }; 1751 1752 /* 1753 * For filesystems using @fs_holder_ops, the @holder argument passed to 1754 * helpers used to open and claim block devices via 1755 * bd_prepare_to_claim() must point to a superblock. 1756 */ 1757 extern const struct blk_holder_ops fs_holder_ops; 1758 1759 /* 1760 * Return the correct open flags for blkdev_get_by_* for super block flags 1761 * as stored in sb->s_flags. 1762 */ 1763 #define sb_open_mode(flags) \ 1764 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \ 1765 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE)) 1766 1767 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder, 1768 const struct blk_holder_ops *hops); 1769 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode, 1770 void *holder, const struct blk_holder_ops *hops); 1771 int bd_prepare_to_claim(struct block_device *bdev, void *holder, 1772 const struct blk_holder_ops *hops); 1773 void bd_abort_claiming(struct block_device *bdev, void *holder); 1774 1775 struct block_device *I_BDEV(struct inode *inode); 1776 struct block_device *file_bdev(struct file *bdev_file); 1777 bool disk_live(struct gendisk *disk); 1778 unsigned int block_size(struct block_device *bdev); 1779 1780 #ifdef CONFIG_BLOCK 1781 void invalidate_bdev(struct block_device *bdev); 1782 int sync_blockdev(struct block_device *bdev); 1783 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1784 int sync_blockdev_nowait(struct block_device *bdev); 1785 void sync_bdevs(bool wait); 1786 void bdev_statx(const struct path *path, struct kstat *stat, u32 request_mask); 1787 void printk_all_partitions(void); 1788 int __init early_lookup_bdev(const char *pathname, dev_t *dev); 1789 #else 1790 static inline void invalidate_bdev(struct block_device *bdev) 1791 { 1792 } 1793 static inline int sync_blockdev(struct block_device *bdev) 1794 { 1795 return 0; 1796 } 1797 static inline int sync_blockdev_nowait(struct block_device *bdev) 1798 { 1799 return 0; 1800 } 1801 static inline void sync_bdevs(bool wait) 1802 { 1803 } 1804 static inline void bdev_statx(const struct path *path, struct kstat *stat, 1805 u32 request_mask) 1806 { 1807 } 1808 static inline void printk_all_partitions(void) 1809 { 1810 } 1811 static inline int early_lookup_bdev(const char *pathname, dev_t *dev) 1812 { 1813 return -EINVAL; 1814 } 1815 #endif /* CONFIG_BLOCK */ 1816 1817 int bdev_freeze(struct block_device *bdev); 1818 int bdev_thaw(struct block_device *bdev); 1819 void bdev_fput(struct file *bdev_file); 1820 1821 struct io_comp_batch { 1822 struct rq_list req_list; 1823 bool need_ts; 1824 void (*complete)(struct io_comp_batch *); 1825 }; 1826 1827 static inline bool blk_atomic_write_start_sect_aligned(sector_t sector, 1828 struct queue_limits *limits) 1829 { 1830 unsigned int alignment = max(limits->atomic_write_hw_unit_min, 1831 limits->atomic_write_hw_boundary); 1832 1833 return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT); 1834 } 1835 1836 static inline bool bdev_can_atomic_write(struct block_device *bdev) 1837 { 1838 struct request_queue *bd_queue = bdev->bd_queue; 1839 struct queue_limits *limits = &bd_queue->limits; 1840 1841 if (!limits->atomic_write_unit_min) 1842 return false; 1843 1844 if (bdev_is_partition(bdev)) 1845 return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect, 1846 limits); 1847 1848 return true; 1849 } 1850 1851 static inline unsigned int 1852 bdev_atomic_write_unit_min_bytes(struct block_device *bdev) 1853 { 1854 if (!bdev_can_atomic_write(bdev)) 1855 return 0; 1856 return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev)); 1857 } 1858 1859 static inline unsigned int 1860 bdev_atomic_write_unit_max_bytes(struct block_device *bdev) 1861 { 1862 if (!bdev_can_atomic_write(bdev)) 1863 return 0; 1864 return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev)); 1865 } 1866 1867 static inline int bio_split_rw_at(struct bio *bio, 1868 const struct queue_limits *lim, 1869 unsigned *segs, unsigned max_bytes) 1870 { 1871 return bio_split_io_at(bio, lim, segs, max_bytes, lim->dma_alignment); 1872 } 1873 1874 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1875 1876 #endif /* _LINUX_BLKDEV_H */ 1877