xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision 39d3389331abd712461f50249722f7ed9d815068)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "amdgpu_sdma.h"
40 #include "mes_v11_api_def.h"
41 #include "kfd_debug.h"
42 
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 /* See unmap_queues_cpsch() */
47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff
48 
49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
50 				  u32 pasid, unsigned int vmid);
51 
52 static int execute_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param,
55 				uint32_t grace_period);
56 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
57 				enum kfd_unmap_queues_filter filter,
58 				uint32_t filter_param,
59 				uint32_t grace_period,
60 				bool reset);
61 
62 static int map_queues_cpsch(struct device_queue_manager *dqm);
63 
64 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
65 				struct queue *q);
66 
67 static inline void deallocate_hqd(struct device_queue_manager *dqm,
68 				struct queue *q);
69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
70 static int allocate_sdma_queue(struct device_queue_manager *dqm,
71 				struct queue *q, const uint32_t *restore_sdma_id);
72 
73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma);
74 
75 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
77 {
78 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
79 		return KFD_MQD_TYPE_SDMA;
80 	return KFD_MQD_TYPE_CP;
81 }
82 
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
84 {
85 	int i;
86 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
87 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
88 
89 	/* queue is available for KFD usage if bit is 1 */
90 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
91 		if (test_bit(pipe_offset + i,
92 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
93 			return true;
94 	return false;
95 }
96 
get_cp_queues_num(struct device_queue_manager * dqm)97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
98 {
99 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
100 				AMDGPU_MAX_QUEUES);
101 }
102 
get_queues_per_pipe(struct device_queue_manager * dqm)103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
104 {
105 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
106 }
107 
get_pipes_per_mec(struct device_queue_manager * dqm)108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
109 {
110 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
111 }
112 
get_num_all_sdma_engines(struct device_queue_manager * dqm)113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
114 {
115 	return kfd_get_num_sdma_engines(dqm->dev) +
116 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
117 }
118 
get_num_sdma_queues(struct device_queue_manager * dqm)119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
120 {
121 	return kfd_get_num_sdma_engines(dqm->dev) *
122 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
123 }
124 
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
126 {
127 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
128 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
129 }
130 
init_sdma_bitmaps(struct device_queue_manager * dqm)131 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
132 {
133 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
134 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
135 
136 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
137 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
138 
139 	/* Mask out the reserved queues */
140 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
141 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
142 		      KFD_MAX_SDMA_QUEUES);
143 }
144 
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)145 void program_sh_mem_settings(struct device_queue_manager *dqm,
146 					struct qcm_process_device *qpd)
147 {
148 	uint32_t xcc_mask = dqm->dev->xcc_mask;
149 	int xcc_id;
150 
151 	for_each_inst(xcc_id, xcc_mask)
152 		dqm->dev->kfd2kgd->program_sh_mem_settings(
153 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
154 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
155 			qpd->sh_mem_bases, xcc_id);
156 }
157 
kfd_hws_hang(struct device_queue_manager * dqm)158 static void kfd_hws_hang(struct device_queue_manager *dqm)
159 {
160 	struct device_process_node *cur;
161 	struct qcm_process_device *qpd;
162 	struct queue *q;
163 
164 	/* Mark all device queues as reset. */
165 	list_for_each_entry(cur, &dqm->queues, list) {
166 		qpd = cur->qpd;
167 		list_for_each_entry(q, &qpd->queues_list, list) {
168 			struct kfd_process_device *pdd = qpd_to_pdd(qpd);
169 
170 			pdd->has_reset_queue = true;
171 		}
172 	}
173 
174 	/*
175 	 * Issue a GPU reset if HWS is unresponsive
176 	 */
177 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
178 }
179 
convert_to_mes_queue_type(int queue_type)180 static int convert_to_mes_queue_type(int queue_type)
181 {
182 	int mes_queue_type;
183 
184 	switch (queue_type) {
185 	case KFD_QUEUE_TYPE_COMPUTE:
186 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
187 		break;
188 	case KFD_QUEUE_TYPE_SDMA:
189 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
190 		break;
191 	default:
192 		WARN(1, "Invalid queue type %d", queue_type);
193 		mes_queue_type = -EINVAL;
194 		break;
195 	}
196 
197 	return mes_queue_type;
198 }
199 
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)200 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
201 			 struct qcm_process_device *qpd)
202 {
203 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
204 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
205 	struct mes_add_queue_input queue_input;
206 	int r, queue_type;
207 	uint64_t wptr_addr_off;
208 
209 	if (!dqm->sched_running || dqm->sched_halt)
210 		return 0;
211 	if (!down_read_trylock(&adev->reset_domain->sem))
212 		return -EIO;
213 
214 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
215 	queue_input.process_id = pdd->pasid;
216 	queue_input.page_table_base_addr =  qpd->page_table_base;
217 	queue_input.process_va_start = 0;
218 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
219 	/* MES unit for quantum is 100ns */
220 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
221 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
222 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
223 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
224 	queue_input.inprocess_gang_priority = q->properties.priority;
225 	queue_input.gang_global_priority_level =
226 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
227 	queue_input.doorbell_offset = q->properties.doorbell_off;
228 	queue_input.mqd_addr = q->gart_mqd_addr;
229 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
230 
231 	wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
232 	queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
233 
234 	queue_input.is_kfd_process = 1;
235 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
236 	queue_input.queue_size = q->properties.queue_size >> 2;
237 
238 	queue_input.paging = false;
239 	queue_input.tba_addr = qpd->tba_addr;
240 	queue_input.tma_addr = qpd->tma_addr;
241 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
242 	queue_input.skip_process_ctx_clear =
243 		qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
244 						(qpd->pqm->process->debug_trap_enabled ||
245 						 kfd_dbg_has_ttmps_always_setup(q->device));
246 
247 	queue_type = convert_to_mes_queue_type(q->properties.type);
248 	if (queue_type < 0) {
249 		dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
250 			q->properties.type);
251 		up_read(&adev->reset_domain->sem);
252 		return -EINVAL;
253 	}
254 	queue_input.queue_type = (uint32_t)queue_type;
255 
256 	queue_input.exclusively_scheduled = q->properties.is_gws;
257 
258 	amdgpu_mes_lock(&adev->mes);
259 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
260 	amdgpu_mes_unlock(&adev->mes);
261 	up_read(&adev->reset_domain->sem);
262 	if (r) {
263 		dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
264 			q->properties.doorbell_off);
265 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
266 		kfd_hws_hang(dqm);
267 	}
268 
269 	return r;
270 }
271 
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)272 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
273 			struct qcm_process_device *qpd)
274 {
275 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
276 	int r;
277 	struct mes_remove_queue_input queue_input;
278 
279 	if (!dqm->sched_running || dqm->sched_halt)
280 		return 0;
281 	if (!down_read_trylock(&adev->reset_domain->sem))
282 		return -EIO;
283 
284 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
285 	queue_input.doorbell_offset = q->properties.doorbell_off;
286 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
287 
288 	amdgpu_mes_lock(&adev->mes);
289 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
290 	amdgpu_mes_unlock(&adev->mes);
291 	up_read(&adev->reset_domain->sem);
292 
293 	if (r) {
294 		dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
295 			q->properties.doorbell_off);
296 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
297 		kfd_hws_hang(dqm);
298 	}
299 
300 	return r;
301 }
302 
remove_all_kfd_queues_mes(struct device_queue_manager * dqm)303 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
304 {
305 	struct device_process_node *cur;
306 	struct device *dev = dqm->dev->adev->dev;
307 	struct qcm_process_device *qpd;
308 	struct queue *q;
309 	int retval = 0;
310 
311 	list_for_each_entry(cur, &dqm->queues, list) {
312 		qpd = cur->qpd;
313 		list_for_each_entry(q, &qpd->queues_list, list) {
314 			if (q->properties.is_active) {
315 				retval = remove_queue_mes(dqm, q, qpd);
316 				if (retval) {
317 					dev_err(dev, "%s: Failed to remove queue %d for dev %d",
318 						__func__,
319 						q->properties.queue_id,
320 						dqm->dev->id);
321 					return retval;
322 				}
323 			}
324 		}
325 	}
326 
327 	return retval;
328 }
329 
add_all_kfd_queues_mes(struct device_queue_manager * dqm)330 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
331 {
332 	struct device_process_node *cur;
333 	struct device *dev = dqm->dev->adev->dev;
334 	struct qcm_process_device *qpd;
335 	struct queue *q;
336 	int retval = 0;
337 
338 	list_for_each_entry(cur, &dqm->queues, list) {
339 		qpd = cur->qpd;
340 		list_for_each_entry(q, &qpd->queues_list, list) {
341 			if (!q->properties.is_active)
342 				continue;
343 			retval = add_queue_mes(dqm, q, qpd);
344 			if (retval) {
345 				dev_err(dev, "%s: Failed to add queue %d for dev %d",
346 					__func__,
347 					q->properties.queue_id,
348 					dqm->dev->id);
349 				return retval;
350 			}
351 		}
352 	}
353 
354 	return retval;
355 }
356 
suspend_all_queues_mes(struct device_queue_manager * dqm)357 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
358 {
359 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
360 	int r = 0;
361 
362 	if (!down_read_trylock(&adev->reset_domain->sem))
363 		return -EIO;
364 
365 	r = amdgpu_mes_suspend(adev);
366 	up_read(&adev->reset_domain->sem);
367 
368 	if (r) {
369 		dev_err(adev->dev, "failed to suspend gangs from MES\n");
370 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
371 		kfd_hws_hang(dqm);
372 	}
373 
374 	return r;
375 }
376 
resume_all_queues_mes(struct device_queue_manager * dqm)377 static int resume_all_queues_mes(struct device_queue_manager *dqm)
378 {
379 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
380 	int r = 0;
381 
382 	if (!down_read_trylock(&adev->reset_domain->sem))
383 		return -EIO;
384 
385 	r = amdgpu_mes_resume(adev);
386 	up_read(&adev->reset_domain->sem);
387 
388 	if (r) {
389 		dev_err(adev->dev, "failed to resume gangs from MES\n");
390 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
391 		kfd_hws_hang(dqm);
392 	}
393 
394 	return r;
395 }
396 
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)397 static void increment_queue_count(struct device_queue_manager *dqm,
398 				  struct qcm_process_device *qpd,
399 				  struct queue *q)
400 {
401 	dqm->active_queue_count++;
402 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
403 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
404 		dqm->active_cp_queue_count++;
405 
406 	if (q->properties.is_gws) {
407 		dqm->gws_queue_count++;
408 		qpd->mapped_gws_queue = true;
409 	}
410 }
411 
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)412 static void decrement_queue_count(struct device_queue_manager *dqm,
413 				  struct qcm_process_device *qpd,
414 				  struct queue *q)
415 {
416 	dqm->active_queue_count--;
417 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
418 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
419 		dqm->active_cp_queue_count--;
420 
421 	if (q->properties.is_gws) {
422 		dqm->gws_queue_count--;
423 		qpd->mapped_gws_queue = false;
424 	}
425 }
426 
427 /*
428  * Allocate a doorbell ID to this queue.
429  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
430  */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)431 static int allocate_doorbell(struct qcm_process_device *qpd,
432 			     struct queue *q,
433 			     uint32_t const *restore_id)
434 {
435 	struct kfd_node *dev = qpd->dqm->dev;
436 
437 	if (!KFD_IS_SOC15(dev)) {
438 		/* On pre-SOC15 chips we need to use the queue ID to
439 		 * preserve the user mode ABI.
440 		 */
441 
442 		if (restore_id && *restore_id != q->properties.queue_id)
443 			return -EINVAL;
444 
445 		q->doorbell_id = q->properties.queue_id;
446 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
447 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
448 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
449 		 * doorbell assignments based on the engine and queue id.
450 		 * The doobell index distance between RLC (2*i) and (2*i+1)
451 		 * for a SDMA engine is 512.
452 		 */
453 
454 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
455 
456 		/*
457 		 * q->properties.sdma_engine_id corresponds to the virtual
458 		 * sdma engine number. However, for doorbell allocation,
459 		 * we need the physical sdma engine id in order to get the
460 		 * correct doorbell offset.
461 		 */
462 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
463 					       get_num_all_sdma_engines(qpd->dqm) +
464 					       q->properties.sdma_engine_id]
465 						+ (q->properties.sdma_queue_id & 1)
466 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
467 						+ (q->properties.sdma_queue_id >> 1);
468 
469 		if (restore_id && *restore_id != valid_id)
470 			return -EINVAL;
471 		q->doorbell_id = valid_id;
472 	} else {
473 		/* For CP queues on SOC15 */
474 		if (restore_id) {
475 			/* make sure that ID is free  */
476 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
477 				return -EINVAL;
478 
479 			q->doorbell_id = *restore_id;
480 		} else {
481 			/* or reserve a free doorbell ID */
482 			unsigned int found;
483 
484 			found = find_first_zero_bit(qpd->doorbell_bitmap,
485 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
486 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
487 				pr_debug("No doorbells available");
488 				return -EBUSY;
489 			}
490 			set_bit(found, qpd->doorbell_bitmap);
491 			q->doorbell_id = found;
492 		}
493 	}
494 
495 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
496 								  qpd->proc_doorbells,
497 								  q->doorbell_id,
498 								  dev->kfd->device_info.doorbell_size);
499 	return 0;
500 }
501 
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)502 static void deallocate_doorbell(struct qcm_process_device *qpd,
503 				struct queue *q)
504 {
505 	unsigned int old;
506 	struct kfd_node *dev = qpd->dqm->dev;
507 
508 	if (!KFD_IS_SOC15(dev) ||
509 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
510 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
511 		return;
512 
513 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
514 	WARN_ON(!old);
515 }
516 
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)517 static void program_trap_handler_settings(struct device_queue_manager *dqm,
518 				struct qcm_process_device *qpd)
519 {
520 	uint32_t xcc_mask = dqm->dev->xcc_mask;
521 	int xcc_id;
522 
523 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
524 		for_each_inst(xcc_id, xcc_mask)
525 			dqm->dev->kfd2kgd->program_trap_handler_settings(
526 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
527 				qpd->tma_addr, xcc_id);
528 }
529 
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)530 static int allocate_vmid(struct device_queue_manager *dqm,
531 			struct qcm_process_device *qpd,
532 			struct queue *q)
533 {
534 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
535 	struct device *dev = dqm->dev->adev->dev;
536 	int allocated_vmid = -1, i;
537 
538 	for (i = dqm->dev->vm_info.first_vmid_kfd;
539 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
540 		if (!dqm->vmid_pasid[i]) {
541 			allocated_vmid = i;
542 			break;
543 		}
544 	}
545 
546 	if (allocated_vmid < 0) {
547 		dev_err(dev, "no more vmid to allocate\n");
548 		return -ENOSPC;
549 	}
550 
551 	pr_debug("vmid allocated: %d\n", allocated_vmid);
552 
553 	dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
554 
555 	set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
556 
557 	qpd->vmid = allocated_vmid;
558 	q->properties.vmid = allocated_vmid;
559 
560 	program_sh_mem_settings(dqm, qpd);
561 
562 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
563 		program_trap_handler_settings(dqm, qpd);
564 
565 	/* qpd->page_table_base is set earlier when register_process()
566 	 * is called, i.e. when the first queue is created.
567 	 */
568 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
569 			qpd->vmid,
570 			qpd->page_table_base);
571 	/* invalidate the VM context after pasid and vmid mapping is set up */
572 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
573 
574 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
575 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
576 				qpd->sh_hidden_private_base, qpd->vmid);
577 
578 	return 0;
579 }
580 
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)581 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
582 				struct qcm_process_device *qpd)
583 {
584 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
585 	int ret;
586 
587 	if (!qpd->ib_kaddr)
588 		return -ENOMEM;
589 
590 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
591 	if (ret)
592 		return ret;
593 
594 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
595 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
596 				pmf->release_mem_size / sizeof(uint32_t));
597 }
598 
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)599 static void deallocate_vmid(struct device_queue_manager *dqm,
600 				struct qcm_process_device *qpd,
601 				struct queue *q)
602 {
603 	struct device *dev = dqm->dev->adev->dev;
604 
605 	/* On GFX v7, CP doesn't flush TC at dequeue */
606 	if (q->device->adev->asic_type == CHIP_HAWAII)
607 		if (flush_texture_cache_nocpsch(q->device, qpd))
608 			dev_err(dev, "Failed to flush TC\n");
609 
610 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
611 
612 	/* Release the vmid mapping */
613 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
614 	dqm->vmid_pasid[qpd->vmid] = 0;
615 
616 	qpd->vmid = 0;
617 	q->properties.vmid = 0;
618 }
619 
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)620 static int create_queue_nocpsch(struct device_queue_manager *dqm,
621 				struct queue *q,
622 				struct qcm_process_device *qpd,
623 				const struct kfd_criu_queue_priv_data *qd,
624 				const void *restore_mqd, const void *restore_ctl_stack)
625 {
626 	struct mqd_manager *mqd_mgr;
627 	int retval;
628 
629 	dqm_lock(dqm);
630 
631 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
632 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
633 				dqm->total_queue_count);
634 		retval = -EPERM;
635 		goto out_unlock;
636 	}
637 
638 	if (list_empty(&qpd->queues_list)) {
639 		retval = allocate_vmid(dqm, qpd, q);
640 		if (retval)
641 			goto out_unlock;
642 	}
643 	q->properties.vmid = qpd->vmid;
644 	/*
645 	 * Eviction state logic: mark all queues as evicted, even ones
646 	 * not currently active. Restoring inactive queues later only
647 	 * updates the is_evicted flag but is a no-op otherwise.
648 	 */
649 	q->properties.is_evicted = !!qpd->evicted;
650 
651 	q->properties.tba_addr = qpd->tba_addr;
652 	q->properties.tma_addr = qpd->tma_addr;
653 
654 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
655 			q->properties.type)];
656 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
657 		retval = allocate_hqd(dqm, q);
658 		if (retval)
659 			goto deallocate_vmid;
660 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
661 			q->pipe, q->queue);
662 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
663 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
664 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
665 		if (retval)
666 			goto deallocate_vmid;
667 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
668 	}
669 
670 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
671 	if (retval)
672 		goto out_deallocate_hqd;
673 
674 	/* Temporarily release dqm lock to avoid a circular lock dependency */
675 	dqm_unlock(dqm);
676 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
677 	dqm_lock(dqm);
678 
679 	if (!q->mqd_mem_obj) {
680 		retval = -ENOMEM;
681 		goto out_deallocate_doorbell;
682 	}
683 
684 	if (qd)
685 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
686 				     &q->properties, restore_mqd, restore_ctl_stack,
687 				     qd->ctl_stack_size);
688 	else
689 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
690 					&q->gart_mqd_addr, &q->properties);
691 
692 	if (q->properties.is_active) {
693 		if (!dqm->sched_running) {
694 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
695 			goto add_queue_to_list;
696 		}
697 
698 		if (WARN(q->process->mm != current->mm,
699 					"should only run in user thread"))
700 			retval = -EFAULT;
701 		else
702 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
703 					q->queue, &q->properties, current->mm);
704 		if (retval)
705 			goto out_free_mqd;
706 	}
707 
708 add_queue_to_list:
709 	list_add(&q->list, &qpd->queues_list);
710 	qpd->queue_count++;
711 	if (q->properties.is_active)
712 		increment_queue_count(dqm, qpd, q);
713 
714 	/*
715 	 * Unconditionally increment this counter, regardless of the queue's
716 	 * type or whether the queue is active.
717 	 */
718 	dqm->total_queue_count++;
719 	pr_debug("Total of %d queues are accountable so far\n",
720 			dqm->total_queue_count);
721 	goto out_unlock;
722 
723 out_free_mqd:
724 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
725 out_deallocate_doorbell:
726 	deallocate_doorbell(qpd, q);
727 out_deallocate_hqd:
728 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
729 		deallocate_hqd(dqm, q);
730 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
731 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
732 		deallocate_sdma_queue(dqm, q);
733 deallocate_vmid:
734 	if (list_empty(&qpd->queues_list))
735 		deallocate_vmid(dqm, qpd, q);
736 out_unlock:
737 	dqm_unlock(dqm);
738 	return retval;
739 }
740 
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)741 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
742 {
743 	bool set;
744 	int pipe, bit, i;
745 
746 	set = false;
747 
748 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
749 			i < get_pipes_per_mec(dqm);
750 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
751 
752 		if (!is_pipe_enabled(dqm, 0, pipe))
753 			continue;
754 
755 		if (dqm->allocated_queues[pipe] != 0) {
756 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
757 			dqm->allocated_queues[pipe] &= ~(1 << bit);
758 			q->pipe = pipe;
759 			q->queue = bit;
760 			set = true;
761 			break;
762 		}
763 	}
764 
765 	if (!set)
766 		return -EBUSY;
767 
768 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
769 	/* horizontal hqd allocation */
770 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
771 
772 	return 0;
773 }
774 
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)775 static inline void deallocate_hqd(struct device_queue_manager *dqm,
776 				struct queue *q)
777 {
778 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
779 }
780 
781 #define SQ_IND_CMD_CMD_KILL		0x00000003
782 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
783 
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)784 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
785 {
786 	int status = 0;
787 	unsigned int vmid;
788 	uint16_t queried_pasid;
789 	union SQ_CMD_BITS reg_sq_cmd;
790 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
791 	struct kfd_process_device *pdd;
792 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
793 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
794 	uint32_t xcc_mask = dev->xcc_mask;
795 	int xcc_id;
796 
797 	reg_sq_cmd.u32All = 0;
798 	reg_gfx_index.u32All = 0;
799 
800 	pr_debug("Killing all process wavefronts\n");
801 
802 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
803 		dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
804 		return -EOPNOTSUPP;
805 	}
806 
807 	/* taking the VMID for that process on the safe way using PDD */
808 	pdd = kfd_get_process_device_data(dev, p);
809 	if (!pdd)
810 		return -EFAULT;
811 
812 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
813 	 * ATC_VMID15_PASID_MAPPING
814 	 * to check which VMID the current process is mapped to.
815 	 */
816 
817 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
818 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
819 				(dev->adev, vmid, &queried_pasid);
820 
821 		if (status && queried_pasid == pdd->pasid) {
822 			pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
823 					vmid, p->lead_thread->pid);
824 			break;
825 		}
826 	}
827 
828 	if (vmid > last_vmid_to_scan) {
829 		dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
830 				p->lead_thread->pid);
831 		return -EFAULT;
832 	}
833 
834 	reg_gfx_index.bits.sh_broadcast_writes = 1;
835 	reg_gfx_index.bits.se_broadcast_writes = 1;
836 	reg_gfx_index.bits.instance_broadcast_writes = 1;
837 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
838 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
839 	reg_sq_cmd.bits.vm_id = vmid;
840 
841 	for_each_inst(xcc_id, xcc_mask)
842 		dev->kfd2kgd->wave_control_execute(
843 			dev->adev, reg_gfx_index.u32All,
844 			reg_sq_cmd.u32All, xcc_id);
845 
846 	return 0;
847 }
848 
849 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
850  * to avoid asynchronized access
851  */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)852 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
853 				struct qcm_process_device *qpd,
854 				struct queue *q)
855 {
856 	int retval;
857 	struct mqd_manager *mqd_mgr;
858 
859 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
860 			q->properties.type)];
861 
862 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
863 		deallocate_hqd(dqm, q);
864 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
865 		deallocate_sdma_queue(dqm, q);
866 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
867 		deallocate_sdma_queue(dqm, q);
868 	else {
869 		pr_debug("q->properties.type %d is invalid\n",
870 				q->properties.type);
871 		return -EINVAL;
872 	}
873 	dqm->total_queue_count--;
874 
875 	deallocate_doorbell(qpd, q);
876 
877 	if (!dqm->sched_running) {
878 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
879 		return 0;
880 	}
881 
882 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
883 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
884 				KFD_UNMAP_LATENCY_MS,
885 				q->pipe, q->queue);
886 	if (retval == -ETIME)
887 		qpd->reset_wavefronts = true;
888 
889 	list_del(&q->list);
890 	if (list_empty(&qpd->queues_list)) {
891 		if (qpd->reset_wavefronts) {
892 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
893 					dqm->dev);
894 			/* dbgdev_wave_reset_wavefronts has to be called before
895 			 * deallocate_vmid(), i.e. when vmid is still in use.
896 			 */
897 			dbgdev_wave_reset_wavefronts(dqm->dev,
898 					qpd->pqm->process);
899 			qpd->reset_wavefronts = false;
900 		}
901 
902 		deallocate_vmid(dqm, qpd, q);
903 	}
904 	qpd->queue_count--;
905 	if (q->properties.is_active)
906 		decrement_queue_count(dqm, qpd, q);
907 
908 	return retval;
909 }
910 
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)911 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
912 				struct qcm_process_device *qpd,
913 				struct queue *q)
914 {
915 	int retval;
916 	uint64_t sdma_val = 0;
917 	struct device *dev = dqm->dev->adev->dev;
918 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
919 	struct mqd_manager *mqd_mgr =
920 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
921 
922 	/* Get the SDMA queue stats */
923 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
924 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
925 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
926 							&sdma_val);
927 		if (retval)
928 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
929 				q->properties.queue_id);
930 	}
931 
932 	dqm_lock(dqm);
933 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
934 	if (!retval)
935 		pdd->sdma_past_activity_counter += sdma_val;
936 	dqm_unlock(dqm);
937 
938 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
939 
940 	return retval;
941 }
942 
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)943 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
944 			struct mqd_update_info *minfo)
945 {
946 	int retval = 0;
947 	struct device *dev = dqm->dev->adev->dev;
948 	struct mqd_manager *mqd_mgr;
949 	struct kfd_process_device *pdd;
950 	bool prev_active = false;
951 
952 	dqm_lock(dqm);
953 	pdd = kfd_get_process_device_data(q->device, q->process);
954 	if (!pdd) {
955 		retval = -ENODEV;
956 		goto out_unlock;
957 	}
958 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
959 			q->properties.type)];
960 
961 	/* Save previous activity state for counters */
962 	prev_active = q->properties.is_active;
963 
964 	/* Make sure the queue is unmapped before updating the MQD */
965 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
966 		if (!dqm->dev->kfd->shared_resources.enable_mes)
967 			retval = unmap_queues_cpsch(dqm,
968 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
969 		else if (prev_active)
970 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
971 
972 		/* queue is reset so inaccessable  */
973 		if (pdd->has_reset_queue) {
974 			retval = -EACCES;
975 			goto out_unlock;
976 		}
977 
978 		if (retval) {
979 			dev_err(dev, "unmap queue failed\n");
980 			goto out_unlock;
981 		}
982 	} else if (prev_active &&
983 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
984 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
985 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
986 
987 		if (!dqm->sched_running) {
988 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
989 			goto out_unlock;
990 		}
991 
992 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
993 				(dqm->dev->kfd->cwsr_enabled ?
994 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
995 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
996 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
997 		if (retval) {
998 			dev_err(dev, "destroy mqd failed\n");
999 			goto out_unlock;
1000 		}
1001 	}
1002 
1003 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1004 
1005 	/*
1006 	 * check active state vs. the previous state and modify
1007 	 * counter accordingly. map_queues_cpsch uses the
1008 	 * dqm->active_queue_count to determine whether a new runlist must be
1009 	 * uploaded.
1010 	 */
1011 	if (q->properties.is_active && !prev_active) {
1012 		increment_queue_count(dqm, &pdd->qpd, q);
1013 	} else if (!q->properties.is_active && prev_active) {
1014 		decrement_queue_count(dqm, &pdd->qpd, q);
1015 	} else if (q->gws && !q->properties.is_gws) {
1016 		if (q->properties.is_active) {
1017 			dqm->gws_queue_count++;
1018 			pdd->qpd.mapped_gws_queue = true;
1019 		}
1020 		q->properties.is_gws = true;
1021 	} else if (!q->gws && q->properties.is_gws) {
1022 		if (q->properties.is_active) {
1023 			dqm->gws_queue_count--;
1024 			pdd->qpd.mapped_gws_queue = false;
1025 		}
1026 		q->properties.is_gws = false;
1027 	}
1028 
1029 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1030 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1031 			retval = map_queues_cpsch(dqm);
1032 		else if (q->properties.is_active)
1033 			retval = add_queue_mes(dqm, q, &pdd->qpd);
1034 	} else if (q->properties.is_active &&
1035 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1036 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1037 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1038 		if (WARN(q->process->mm != current->mm,
1039 			 "should only run in user thread"))
1040 			retval = -EFAULT;
1041 		else
1042 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1043 						   q->pipe, q->queue,
1044 						   &q->properties, current->mm);
1045 	}
1046 
1047 out_unlock:
1048 	dqm_unlock(dqm);
1049 	return retval;
1050 }
1051 
1052 /* suspend_single_queue does not lock the dqm like the
1053  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1054  * lock the dqm before calling, and unlock after calling.
1055  *
1056  * The reason we don't lock the dqm is because this function may be
1057  * called on multiple queues in a loop, so rather than locking/unlocking
1058  * multiple times, we will just keep the dqm locked for all of the calls.
1059  */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)1060 static int suspend_single_queue(struct device_queue_manager *dqm,
1061 				      struct kfd_process_device *pdd,
1062 				      struct queue *q)
1063 {
1064 	bool is_new;
1065 
1066 	if (q->properties.is_suspended)
1067 		return 0;
1068 
1069 	pr_debug("Suspending process pid %d queue [%i]\n",
1070 			pdd->process->lead_thread->pid,
1071 			q->properties.queue_id);
1072 
1073 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1074 
1075 	if (is_new || q->properties.is_being_destroyed) {
1076 		pr_debug("Suspend: skip %s queue id %i\n",
1077 				is_new ? "new" : "destroyed",
1078 				q->properties.queue_id);
1079 		return -EBUSY;
1080 	}
1081 
1082 	q->properties.is_suspended = true;
1083 	if (q->properties.is_active) {
1084 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1085 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
1086 
1087 			if (r)
1088 				return r;
1089 		}
1090 
1091 		decrement_queue_count(dqm, &pdd->qpd, q);
1092 		q->properties.is_active = false;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /* resume_single_queue does not lock the dqm like the functions
1099  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1100  * lock the dqm before calling, and unlock after calling.
1101  *
1102  * The reason we don't lock the dqm is because this function may be
1103  * called on multiple queues in a loop, so rather than locking/unlocking
1104  * multiple times, we will just keep the dqm locked for all of the calls.
1105  */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1106 static int resume_single_queue(struct device_queue_manager *dqm,
1107 				      struct qcm_process_device *qpd,
1108 				      struct queue *q)
1109 {
1110 	struct kfd_process_device *pdd;
1111 
1112 	if (!q->properties.is_suspended)
1113 		return 0;
1114 
1115 	pdd = qpd_to_pdd(qpd);
1116 
1117 	pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1118 			    pdd->process->lead_thread->pid,
1119 			    q->properties.queue_id);
1120 
1121 	q->properties.is_suspended = false;
1122 
1123 	if (QUEUE_IS_ACTIVE(q->properties)) {
1124 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1125 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1126 
1127 			if (r)
1128 				return r;
1129 		}
1130 
1131 		q->properties.is_active = true;
1132 		increment_queue_count(dqm, qpd, q);
1133 	}
1134 
1135 	return 0;
1136 }
1137 
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1138 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1139 					struct qcm_process_device *qpd)
1140 {
1141 	struct queue *q;
1142 	struct mqd_manager *mqd_mgr;
1143 	struct kfd_process_device *pdd;
1144 	int retval, ret = 0;
1145 
1146 	dqm_lock(dqm);
1147 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1148 		goto out;
1149 
1150 	pdd = qpd_to_pdd(qpd);
1151 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1152 			    pdd->process->lead_thread->pid);
1153 
1154 	pdd->last_evict_timestamp = get_jiffies_64();
1155 	/* Mark all queues as evicted. Deactivate all active queues on
1156 	 * the qpd.
1157 	 */
1158 	list_for_each_entry(q, &qpd->queues_list, list) {
1159 		q->properties.is_evicted = true;
1160 		if (!q->properties.is_active)
1161 			continue;
1162 
1163 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1164 				q->properties.type)];
1165 		q->properties.is_active = false;
1166 		decrement_queue_count(dqm, qpd, q);
1167 
1168 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1169 			continue;
1170 
1171 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1172 				(dqm->dev->kfd->cwsr_enabled ?
1173 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1174 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1175 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1176 		if (retval && !ret)
1177 			/* Return the first error, but keep going to
1178 			 * maintain a consistent eviction state
1179 			 */
1180 			ret = retval;
1181 	}
1182 
1183 out:
1184 	dqm_unlock(dqm);
1185 	return ret;
1186 }
1187 
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1188 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1189 				      struct qcm_process_device *qpd)
1190 {
1191 	struct queue *q;
1192 	struct device *dev = dqm->dev->adev->dev;
1193 	struct kfd_process_device *pdd;
1194 	int retval = 0;
1195 
1196 	dqm_lock(dqm);
1197 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1198 		goto out;
1199 
1200 	pdd = qpd_to_pdd(qpd);
1201 
1202 	/* The debugger creates processes that temporarily have not acquired
1203 	 * all VMs for all devices and has no VMs itself.
1204 	 * Skip queue eviction on process eviction.
1205 	 */
1206 	if (!pdd->drm_priv)
1207 		goto out;
1208 
1209 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1210 			    pdd->process->lead_thread->pid);
1211 
1212 	if (dqm->dev->kfd->shared_resources.enable_mes)
1213 		pdd->last_evict_timestamp = get_jiffies_64();
1214 
1215 	/* Mark all queues as evicted. Deactivate all active queues on
1216 	 * the qpd.
1217 	 */
1218 	list_for_each_entry(q, &qpd->queues_list, list) {
1219 		q->properties.is_evicted = true;
1220 		if (!q->properties.is_active)
1221 			continue;
1222 
1223 		q->properties.is_active = false;
1224 		decrement_queue_count(dqm, qpd, q);
1225 
1226 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1227 			retval = remove_queue_mes(dqm, q, qpd);
1228 			if (retval) {
1229 				dev_err(dev, "Failed to evict queue %d\n",
1230 					q->properties.queue_id);
1231 				goto out;
1232 			}
1233 		}
1234 	}
1235 
1236 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1237 		pdd->last_evict_timestamp = get_jiffies_64();
1238 		retval = execute_queues_cpsch(dqm,
1239 					      qpd->is_debug ?
1240 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1241 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1242 					      USE_DEFAULT_GRACE_PERIOD);
1243 	}
1244 
1245 out:
1246 	dqm_unlock(dqm);
1247 	return retval;
1248 }
1249 
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1250 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1251 					  struct qcm_process_device *qpd)
1252 {
1253 	struct mm_struct *mm = NULL;
1254 	struct queue *q;
1255 	struct mqd_manager *mqd_mgr;
1256 	struct kfd_process_device *pdd;
1257 	uint64_t pd_base;
1258 	uint64_t eviction_duration;
1259 	int retval, ret = 0;
1260 
1261 	pdd = qpd_to_pdd(qpd);
1262 	/* Retrieve PD base */
1263 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1264 
1265 	dqm_lock(dqm);
1266 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1267 		goto out;
1268 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1269 		qpd->evicted--;
1270 		goto out;
1271 	}
1272 
1273 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1274 			    pdd->process->lead_thread->pid);
1275 
1276 	/* Update PD Base in QPD */
1277 	qpd->page_table_base = pd_base;
1278 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1279 
1280 	if (!list_empty(&qpd->queues_list)) {
1281 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1282 				dqm->dev->adev,
1283 				qpd->vmid,
1284 				qpd->page_table_base);
1285 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1286 	}
1287 
1288 	/* Take a safe reference to the mm_struct, which may otherwise
1289 	 * disappear even while the kfd_process is still referenced.
1290 	 */
1291 	mm = get_task_mm(pdd->process->lead_thread);
1292 	if (!mm) {
1293 		ret = -EFAULT;
1294 		goto out;
1295 	}
1296 
1297 	/* Remove the eviction flags. Activate queues that are not
1298 	 * inactive for other reasons.
1299 	 */
1300 	list_for_each_entry(q, &qpd->queues_list, list) {
1301 		q->properties.is_evicted = false;
1302 		if (!QUEUE_IS_ACTIVE(q->properties))
1303 			continue;
1304 
1305 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1306 				q->properties.type)];
1307 		q->properties.is_active = true;
1308 		increment_queue_count(dqm, qpd, q);
1309 
1310 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1311 			continue;
1312 
1313 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1314 				       q->queue, &q->properties, mm);
1315 		if (retval && !ret)
1316 			/* Return the first error, but keep going to
1317 			 * maintain a consistent eviction state
1318 			 */
1319 			ret = retval;
1320 	}
1321 	qpd->evicted = 0;
1322 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1323 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1324 out:
1325 	if (mm)
1326 		mmput(mm);
1327 	dqm_unlock(dqm);
1328 	return ret;
1329 }
1330 
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1331 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1332 					struct qcm_process_device *qpd)
1333 {
1334 	struct queue *q;
1335 	struct device *dev = dqm->dev->adev->dev;
1336 	struct kfd_process_device *pdd;
1337 	uint64_t eviction_duration;
1338 	int retval = 0;
1339 
1340 	pdd = qpd_to_pdd(qpd);
1341 
1342 	dqm_lock(dqm);
1343 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1344 		goto out;
1345 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1346 		qpd->evicted--;
1347 		goto out;
1348 	}
1349 
1350 	/* The debugger creates processes that temporarily have not acquired
1351 	 * all VMs for all devices and has no VMs itself.
1352 	 * Skip queue restore on process restore.
1353 	 */
1354 	if (!pdd->drm_priv)
1355 		goto vm_not_acquired;
1356 
1357 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1358 			    pdd->process->lead_thread->pid);
1359 
1360 	/* Update PD Base in QPD */
1361 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1362 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1363 
1364 	/* activate all active queues on the qpd */
1365 	list_for_each_entry(q, &qpd->queues_list, list) {
1366 		q->properties.is_evicted = false;
1367 		if (!QUEUE_IS_ACTIVE(q->properties))
1368 			continue;
1369 
1370 		q->properties.is_active = true;
1371 		increment_queue_count(dqm, &pdd->qpd, q);
1372 
1373 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1374 			retval = add_queue_mes(dqm, q, qpd);
1375 			if (retval) {
1376 				dev_err(dev, "Failed to restore queue %d\n",
1377 					q->properties.queue_id);
1378 				goto out;
1379 			}
1380 		}
1381 	}
1382 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1383 		retval = execute_queues_cpsch(dqm,
1384 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1385 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1386 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1387 vm_not_acquired:
1388 	qpd->evicted = 0;
1389 out:
1390 	dqm_unlock(dqm);
1391 	return retval;
1392 }
1393 
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1394 static int register_process(struct device_queue_manager *dqm,
1395 					struct qcm_process_device *qpd)
1396 {
1397 	struct device_process_node *n;
1398 	struct kfd_process_device *pdd;
1399 	uint64_t pd_base;
1400 	int retval;
1401 
1402 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1403 	if (!n)
1404 		return -ENOMEM;
1405 
1406 	n->qpd = qpd;
1407 
1408 	pdd = qpd_to_pdd(qpd);
1409 	/* Retrieve PD base */
1410 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1411 
1412 	dqm_lock(dqm);
1413 	list_add(&n->list, &dqm->queues);
1414 
1415 	/* Update PD Base in QPD */
1416 	qpd->page_table_base = pd_base;
1417 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1418 
1419 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1420 
1421 	dqm->processes_count++;
1422 
1423 	dqm_unlock(dqm);
1424 
1425 	/* Outside the DQM lock because under the DQM lock we can't do
1426 	 * reclaim or take other locks that others hold while reclaiming.
1427 	 */
1428 	kfd_inc_compute_active(dqm->dev);
1429 
1430 	return retval;
1431 }
1432 
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1433 static int unregister_process(struct device_queue_manager *dqm,
1434 					struct qcm_process_device *qpd)
1435 {
1436 	int retval;
1437 	struct device_process_node *cur, *next;
1438 
1439 	pr_debug("qpd->queues_list is %s\n",
1440 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1441 
1442 	retval = 0;
1443 	dqm_lock(dqm);
1444 
1445 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1446 		if (qpd == cur->qpd) {
1447 			list_del(&cur->list);
1448 			kfree(cur);
1449 			dqm->processes_count--;
1450 			goto out;
1451 		}
1452 	}
1453 	/* qpd not found in dqm list */
1454 	retval = 1;
1455 out:
1456 	dqm_unlock(dqm);
1457 
1458 	/* Outside the DQM lock because under the DQM lock we can't do
1459 	 * reclaim or take other locks that others hold while reclaiming.
1460 	 */
1461 	if (!retval)
1462 		kfd_dec_compute_active(dqm->dev);
1463 
1464 	return retval;
1465 }
1466 
1467 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1468 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1469 			unsigned int vmid)
1470 {
1471 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1472 	int xcc_id, ret;
1473 
1474 	for_each_inst(xcc_id, xcc_mask) {
1475 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1476 			dqm->dev->adev, pasid, vmid, xcc_id);
1477 		if (ret)
1478 			break;
1479 	}
1480 
1481 	return ret;
1482 }
1483 
init_interrupts(struct device_queue_manager * dqm)1484 static void init_interrupts(struct device_queue_manager *dqm)
1485 {
1486 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1487 	unsigned int i, xcc_id;
1488 
1489 	for_each_inst(xcc_id, xcc_mask) {
1490 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1491 			if (is_pipe_enabled(dqm, 0, i)) {
1492 				dqm->dev->kfd2kgd->init_interrupts(
1493 					dqm->dev->adev, i, xcc_id);
1494 			}
1495 		}
1496 	}
1497 }
1498 
initialize_nocpsch(struct device_queue_manager * dqm)1499 static int initialize_nocpsch(struct device_queue_manager *dqm)
1500 {
1501 	int pipe, queue;
1502 
1503 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1504 
1505 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1506 					sizeof(unsigned int), GFP_KERNEL);
1507 	if (!dqm->allocated_queues)
1508 		return -ENOMEM;
1509 
1510 	mutex_init(&dqm->lock_hidden);
1511 	INIT_LIST_HEAD(&dqm->queues);
1512 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1513 	dqm->active_cp_queue_count = 0;
1514 	dqm->gws_queue_count = 0;
1515 
1516 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1517 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1518 
1519 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1520 			if (test_bit(pipe_offset + queue,
1521 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1522 				dqm->allocated_queues[pipe] |= 1 << queue;
1523 	}
1524 
1525 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1526 
1527 	init_sdma_bitmaps(dqm);
1528 
1529 	return 0;
1530 }
1531 
uninitialize(struct device_queue_manager * dqm)1532 static void uninitialize(struct device_queue_manager *dqm)
1533 {
1534 	int i;
1535 
1536 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1537 
1538 	kfree(dqm->allocated_queues);
1539 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1540 		kfree(dqm->mqd_mgrs[i]);
1541 	mutex_destroy(&dqm->lock_hidden);
1542 }
1543 
start_nocpsch(struct device_queue_manager * dqm)1544 static int start_nocpsch(struct device_queue_manager *dqm)
1545 {
1546 	int r = 0;
1547 
1548 	pr_info("SW scheduler is used");
1549 	init_interrupts(dqm);
1550 
1551 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1552 		r = pm_init(&dqm->packet_mgr, dqm);
1553 	if (!r)
1554 		dqm->sched_running = true;
1555 
1556 	return r;
1557 }
1558 
stop_nocpsch(struct device_queue_manager * dqm)1559 static int stop_nocpsch(struct device_queue_manager *dqm)
1560 {
1561 	dqm_lock(dqm);
1562 	if (!dqm->sched_running) {
1563 		dqm_unlock(dqm);
1564 		return 0;
1565 	}
1566 
1567 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1568 		pm_uninit(&dqm->packet_mgr);
1569 	dqm->sched_running = false;
1570 	dqm_unlock(dqm);
1571 
1572 	return 0;
1573 }
1574 
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1575 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1576 				struct queue *q, const uint32_t *restore_sdma_id)
1577 {
1578 	struct device *dev = dqm->dev->adev->dev;
1579 	int bit;
1580 
1581 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1582 		if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) {
1583 			dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n",
1584 				 get_num_sdma_queues(dqm));
1585 			return -ENOMEM;
1586 		}
1587 
1588 		if (restore_sdma_id) {
1589 			/* Re-use existing sdma_id */
1590 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1591 				dev_err(dev, "SDMA queue already in use\n");
1592 				return -EBUSY;
1593 			}
1594 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1595 			q->sdma_id = *restore_sdma_id;
1596 		} else {
1597 			/* Find first available sdma_id */
1598 			bit = find_first_bit(dqm->sdma_bitmap,
1599 					     get_num_sdma_queues(dqm));
1600 			clear_bit(bit, dqm->sdma_bitmap);
1601 			q->sdma_id = bit;
1602 		}
1603 
1604 		q->properties.sdma_engine_id =
1605 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1606 		q->properties.sdma_queue_id = q->sdma_id /
1607 				kfd_get_num_sdma_engines(dqm->dev);
1608 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1609 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) {
1610 			dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n",
1611 				 get_num_xgmi_sdma_queues(dqm));
1612 			return -ENOMEM;
1613 		}
1614 		if (restore_sdma_id) {
1615 			/* Re-use existing sdma_id */
1616 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1617 				dev_err(dev, "SDMA queue already in use\n");
1618 				return -EBUSY;
1619 			}
1620 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1621 			q->sdma_id = *restore_sdma_id;
1622 		} else {
1623 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1624 					     get_num_xgmi_sdma_queues(dqm));
1625 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1626 			q->sdma_id = bit;
1627 		}
1628 		/* sdma_engine_id is sdma id including
1629 		 * both PCIe-optimized SDMAs and XGMI-
1630 		 * optimized SDMAs. The calculation below
1631 		 * assumes the first N engines are always
1632 		 * PCIe-optimized ones
1633 		 */
1634 		q->properties.sdma_engine_id =
1635 			kfd_get_num_sdma_engines(dqm->dev) +
1636 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1637 		q->properties.sdma_queue_id = q->sdma_id /
1638 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1639 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1640 		int i, num_queues, num_engines, eng_offset = 0, start_engine;
1641 		bool free_bit_found = false, is_xgmi = false;
1642 
1643 		if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1644 			num_queues = get_num_sdma_queues(dqm);
1645 			num_engines = kfd_get_num_sdma_engines(dqm->dev);
1646 			q->properties.type = KFD_QUEUE_TYPE_SDMA;
1647 		} else {
1648 			num_queues = get_num_xgmi_sdma_queues(dqm);
1649 			num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1650 			eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1651 			q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1652 			is_xgmi = true;
1653 		}
1654 
1655 		/* Scan available bit based on target engine ID. */
1656 		start_engine = q->properties.sdma_engine_id - eng_offset;
1657 		for (i = start_engine; i < num_queues; i += num_engines) {
1658 
1659 			if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1660 				continue;
1661 
1662 			clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1663 			q->sdma_id = i;
1664 			q->properties.sdma_queue_id = q->sdma_id / num_engines;
1665 			free_bit_found = true;
1666 			break;
1667 		}
1668 
1669 		if (!free_bit_found) {
1670 			dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n",
1671 				 q->properties.sdma_engine_id, num_queues);
1672 			return -ENOMEM;
1673 		}
1674 	}
1675 
1676 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1677 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1678 
1679 	return 0;
1680 }
1681 
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1682 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1683 				struct queue *q)
1684 {
1685 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1686 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1687 			return;
1688 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1689 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1690 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1691 			return;
1692 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1693 	}
1694 }
1695 
1696 /*
1697  * Device Queue Manager implementation for cp scheduler
1698  */
1699 
set_sched_resources(struct device_queue_manager * dqm)1700 static int set_sched_resources(struct device_queue_manager *dqm)
1701 {
1702 	int i, mec;
1703 	struct scheduling_resources res;
1704 	struct device *dev = dqm->dev->adev->dev;
1705 
1706 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1707 
1708 	res.queue_mask = 0;
1709 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1710 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1711 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1712 
1713 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1714 			continue;
1715 
1716 		/* only acquire queues from the first MEC */
1717 		if (mec > 0)
1718 			continue;
1719 
1720 		/* This situation may be hit in the future if a new HW
1721 		 * generation exposes more than 64 queues. If so, the
1722 		 * definition of res.queue_mask needs updating
1723 		 */
1724 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1725 			dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1726 			break;
1727 		}
1728 
1729 		res.queue_mask |= 1ull
1730 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1731 				dqm->dev->adev, i);
1732 	}
1733 	res.gws_mask = ~0ull;
1734 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1735 
1736 	pr_debug("Scheduling resources:\n"
1737 			"vmid mask: 0x%8X\n"
1738 			"queue mask: 0x%8llX\n",
1739 			res.vmid_mask, res.queue_mask);
1740 
1741 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1742 }
1743 
initialize_cpsch(struct device_queue_manager * dqm)1744 static int initialize_cpsch(struct device_queue_manager *dqm)
1745 {
1746 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1747 
1748 	mutex_init(&dqm->lock_hidden);
1749 	INIT_LIST_HEAD(&dqm->queues);
1750 	dqm->active_queue_count = dqm->processes_count = 0;
1751 	dqm->active_cp_queue_count = 0;
1752 	dqm->gws_queue_count = 0;
1753 	dqm->active_runlist = false;
1754 	dqm->trap_debug_vmid = 0;
1755 
1756 	init_sdma_bitmaps(dqm);
1757 
1758 	update_dqm_wait_times(dqm);
1759 	return 0;
1760 }
1761 
1762 /* halt_cpsch:
1763  * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1764  * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1765  * is called.
1766  */
halt_cpsch(struct device_queue_manager * dqm)1767 static int halt_cpsch(struct device_queue_manager *dqm)
1768 {
1769 	int ret = 0;
1770 
1771 	dqm_lock(dqm);
1772 	if (!dqm->sched_running) {
1773 		dqm_unlock(dqm);
1774 		return 0;
1775 	}
1776 
1777 	WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1778 
1779 	if (!dqm->is_hws_hang) {
1780 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1781 			ret = unmap_queues_cpsch(dqm,
1782 						 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1783 				USE_DEFAULT_GRACE_PERIOD, false);
1784 		else
1785 			ret = remove_all_kfd_queues_mes(dqm);
1786 	}
1787 	dqm->sched_halt = true;
1788 	dqm_unlock(dqm);
1789 
1790 	return ret;
1791 }
1792 
1793 /* unhalt_cpsch
1794  * Unset dqm->sched_halt and map queues back to runlist
1795  */
unhalt_cpsch(struct device_queue_manager * dqm)1796 static int unhalt_cpsch(struct device_queue_manager *dqm)
1797 {
1798 	int ret = 0;
1799 
1800 	dqm_lock(dqm);
1801 	if (!dqm->sched_running || !dqm->sched_halt) {
1802 		WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1803 		dqm_unlock(dqm);
1804 		return 0;
1805 	}
1806 	dqm->sched_halt = false;
1807 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1808 		ret = execute_queues_cpsch(dqm,
1809 					   KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1810 			0, USE_DEFAULT_GRACE_PERIOD);
1811 	else
1812 		ret = add_all_kfd_queues_mes(dqm);
1813 
1814 	dqm_unlock(dqm);
1815 
1816 	return ret;
1817 }
1818 
start_cpsch(struct device_queue_manager * dqm)1819 static int start_cpsch(struct device_queue_manager *dqm)
1820 {
1821 	struct device *dev = dqm->dev->adev->dev;
1822 	int retval, num_hw_queue_slots;
1823 
1824 	retval = 0;
1825 
1826 	dqm_lock(dqm);
1827 
1828 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1829 		retval = pm_init(&dqm->packet_mgr, dqm);
1830 		if (retval)
1831 			goto fail_packet_manager_init;
1832 
1833 		retval = set_sched_resources(dqm);
1834 		if (retval)
1835 			goto fail_set_sched_resources;
1836 	}
1837 	pr_debug("Allocating fence memory\n");
1838 
1839 	/* allocate fence memory on the gart */
1840 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1841 					&dqm->fence_mem);
1842 
1843 	if (retval)
1844 		goto fail_allocate_vidmem;
1845 
1846 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1847 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1848 
1849 	init_interrupts(dqm);
1850 
1851 	/* clear hang status when driver try to start the hw scheduler */
1852 	dqm->sched_running = true;
1853 
1854 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1855 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
1856 				KFD_DEQUEUE_WAIT_INIT, 0 /* unused */))
1857 			dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n");
1858 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1859 	}
1860 
1861 	/* setup per-queue reset detection buffer  */
1862 	num_hw_queue_slots =  dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1863 			      dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1864 			      NUM_XCC(dqm->dev->xcc_mask);
1865 
1866 	dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1867 	dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1868 
1869 	if (!dqm->detect_hang_info) {
1870 		retval = -ENOMEM;
1871 		goto fail_detect_hang_buffer;
1872 	}
1873 
1874 	dqm_unlock(dqm);
1875 
1876 	return 0;
1877 fail_detect_hang_buffer:
1878 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1879 fail_allocate_vidmem:
1880 fail_set_sched_resources:
1881 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1882 		pm_uninit(&dqm->packet_mgr);
1883 fail_packet_manager_init:
1884 	dqm_unlock(dqm);
1885 	return retval;
1886 }
1887 
stop_cpsch(struct device_queue_manager * dqm)1888 static int stop_cpsch(struct device_queue_manager *dqm)
1889 {
1890 	int ret = 0;
1891 
1892 	dqm_lock(dqm);
1893 	if (!dqm->sched_running) {
1894 		dqm_unlock(dqm);
1895 		return 0;
1896 	}
1897 
1898 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1899 		ret = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
1900 								0, USE_DEFAULT_GRACE_PERIOD, false);
1901 	else
1902 		ret = remove_all_kfd_queues_mes(dqm);
1903 
1904 	dqm->sched_running = false;
1905 
1906 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1907 		pm_release_ib(&dqm->packet_mgr);
1908 
1909 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1910 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1911 		pm_uninit(&dqm->packet_mgr);
1912 	kfree(dqm->detect_hang_info);
1913 	dqm->detect_hang_info = NULL;
1914 	dqm_unlock(dqm);
1915 
1916 	return ret;
1917 }
1918 
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1919 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1920 					struct kernel_queue *kq,
1921 					struct qcm_process_device *qpd)
1922 {
1923 	dqm_lock(dqm);
1924 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1925 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1926 				dqm->total_queue_count);
1927 		dqm_unlock(dqm);
1928 		return -EPERM;
1929 	}
1930 
1931 	/*
1932 	 * Unconditionally increment this counter, regardless of the queue's
1933 	 * type or whether the queue is active.
1934 	 */
1935 	dqm->total_queue_count++;
1936 	pr_debug("Total of %d queues are accountable so far\n",
1937 			dqm->total_queue_count);
1938 
1939 	list_add(&kq->list, &qpd->priv_queue_list);
1940 	increment_queue_count(dqm, qpd, kq->queue);
1941 	qpd->is_debug = true;
1942 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1943 			USE_DEFAULT_GRACE_PERIOD);
1944 	dqm_unlock(dqm);
1945 
1946 	return 0;
1947 }
1948 
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1949 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1950 					struct kernel_queue *kq,
1951 					struct qcm_process_device *qpd)
1952 {
1953 	dqm_lock(dqm);
1954 	list_del(&kq->list);
1955 	decrement_queue_count(dqm, qpd, kq->queue);
1956 	qpd->is_debug = false;
1957 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1958 			USE_DEFAULT_GRACE_PERIOD);
1959 	/*
1960 	 * Unconditionally decrement this counter, regardless of the queue's
1961 	 * type.
1962 	 */
1963 	dqm->total_queue_count--;
1964 	pr_debug("Total of %d queues are accountable so far\n",
1965 			dqm->total_queue_count);
1966 	dqm_unlock(dqm);
1967 }
1968 
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1969 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1970 			struct qcm_process_device *qpd,
1971 			const struct kfd_criu_queue_priv_data *qd,
1972 			const void *restore_mqd, const void *restore_ctl_stack)
1973 {
1974 	int retval;
1975 	struct mqd_manager *mqd_mgr;
1976 
1977 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1978 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1979 				dqm->total_queue_count);
1980 		retval = -EPERM;
1981 		goto out;
1982 	}
1983 
1984 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1985 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1986 		q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1987 		dqm_lock(dqm);
1988 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1989 		dqm_unlock(dqm);
1990 		if (retval)
1991 			goto out;
1992 	}
1993 
1994 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1995 	if (retval)
1996 		goto out_deallocate_sdma_queue;
1997 
1998 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1999 			q->properties.type)];
2000 
2001 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2002 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2003 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2004 	q->properties.tba_addr = qpd->tba_addr;
2005 	q->properties.tma_addr = qpd->tma_addr;
2006 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2007 	if (!q->mqd_mem_obj) {
2008 		retval = -ENOMEM;
2009 		goto out_deallocate_doorbell;
2010 	}
2011 
2012 	dqm_lock(dqm);
2013 	/*
2014 	 * Eviction state logic: mark all queues as evicted, even ones
2015 	 * not currently active. Restoring inactive queues later only
2016 	 * updates the is_evicted flag but is a no-op otherwise.
2017 	 */
2018 	q->properties.is_evicted = !!qpd->evicted;
2019 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2020 				  kfd_dbg_has_cwsr_workaround(q->device);
2021 
2022 	if (qd)
2023 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2024 				     &q->properties, restore_mqd, restore_ctl_stack,
2025 				     qd->ctl_stack_size);
2026 	else
2027 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2028 					&q->gart_mqd_addr, &q->properties);
2029 
2030 	list_add(&q->list, &qpd->queues_list);
2031 	qpd->queue_count++;
2032 
2033 	if (q->properties.is_active) {
2034 		increment_queue_count(dqm, qpd, q);
2035 
2036 		if (!dqm->dev->kfd->shared_resources.enable_mes)
2037 			retval = execute_queues_cpsch(dqm,
2038 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2039 		else
2040 			retval = add_queue_mes(dqm, q, qpd);
2041 		if (retval)
2042 			goto cleanup_queue;
2043 	}
2044 
2045 	/*
2046 	 * Unconditionally increment this counter, regardless of the queue's
2047 	 * type or whether the queue is active.
2048 	 */
2049 	dqm->total_queue_count++;
2050 
2051 	pr_debug("Total of %d queues are accountable so far\n",
2052 			dqm->total_queue_count);
2053 
2054 	dqm_unlock(dqm);
2055 	return retval;
2056 
2057 cleanup_queue:
2058 	qpd->queue_count--;
2059 	list_del(&q->list);
2060 	if (q->properties.is_active)
2061 		decrement_queue_count(dqm, qpd, q);
2062 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2063 	dqm_unlock(dqm);
2064 out_deallocate_doorbell:
2065 	deallocate_doorbell(qpd, q);
2066 out_deallocate_sdma_queue:
2067 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2068 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2069 		dqm_lock(dqm);
2070 		deallocate_sdma_queue(dqm, q);
2071 		dqm_unlock(dqm);
2072 	}
2073 out:
2074 	return retval;
2075 }
2076 
amdkfd_fence_wait_timeout(struct device_queue_manager * dqm,uint64_t fence_value,unsigned int timeout_ms)2077 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2078 			      uint64_t fence_value,
2079 			      unsigned int timeout_ms)
2080 {
2081 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2082 	struct device *dev = dqm->dev->adev->dev;
2083 	uint64_t *fence_addr = dqm->fence_addr;
2084 
2085 	while (*fence_addr != fence_value) {
2086 		/* Fatal err detected, this response won't come */
2087 		if (amdgpu_amdkfd_is_fed(dqm->dev->adev) ||
2088 		    amdgpu_in_reset(dqm->dev->adev))
2089 			return -EIO;
2090 
2091 		if (time_after(jiffies, end_jiffies)) {
2092 			dev_err(dev, "qcm fence wait loop timeout expired\n");
2093 			/* In HWS case, this is used to halt the driver thread
2094 			 * in order not to mess up CP states before doing
2095 			 * scandumps for FW debugging.
2096 			 */
2097 			while (halt_if_hws_hang)
2098 				schedule();
2099 
2100 			return -ETIME;
2101 		}
2102 		schedule();
2103 	}
2104 
2105 	return 0;
2106 }
2107 
2108 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)2109 static int map_queues_cpsch(struct device_queue_manager *dqm)
2110 {
2111 	struct device *dev = dqm->dev->adev->dev;
2112 	int retval;
2113 
2114 	if (!dqm->sched_running || dqm->sched_halt)
2115 		return 0;
2116 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2117 		return 0;
2118 	if (dqm->active_runlist)
2119 		return 0;
2120 
2121 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2122 	pr_debug("%s sent runlist\n", __func__);
2123 	if (retval) {
2124 		dev_err(dev, "failed to execute runlist\n");
2125 		return retval;
2126 	}
2127 	dqm->active_runlist = true;
2128 
2129 	return retval;
2130 }
2131 
set_queue_as_reset(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)2132 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2133 			       struct qcm_process_device *qpd)
2134 {
2135 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2136 
2137 	dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2138 		q->properties.queue_id, pdd->process->lead_thread->pid);
2139 
2140 	pdd->has_reset_queue = true;
2141 	if (q->properties.is_active) {
2142 		q->properties.is_active = false;
2143 		decrement_queue_count(dqm, qpd, q);
2144 	}
2145 }
2146 
detect_queue_hang(struct device_queue_manager * dqm)2147 static int detect_queue_hang(struct device_queue_manager *dqm)
2148 {
2149 	int i;
2150 
2151 	/* detect should be used only in dqm locked queue reset */
2152 	if (WARN_ON(dqm->detect_hang_count > 0))
2153 		return 0;
2154 
2155 	memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2156 
2157 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2158 		uint32_t mec, pipe, queue;
2159 		int xcc_id;
2160 
2161 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2162 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2163 
2164 		if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2165 			continue;
2166 
2167 		amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2168 
2169 		for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2170 			uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2171 						dqm->dev->adev, pipe, queue, xcc_id);
2172 			struct dqm_detect_hang_info hang_info;
2173 
2174 			if (!queue_addr)
2175 				continue;
2176 
2177 			hang_info.pipe_id = pipe;
2178 			hang_info.queue_id = queue;
2179 			hang_info.xcc_id = xcc_id;
2180 			hang_info.queue_address = queue_addr;
2181 
2182 			dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2183 			dqm->detect_hang_count++;
2184 		}
2185 	}
2186 
2187 	return dqm->detect_hang_count;
2188 }
2189 
find_queue_by_address(struct device_queue_manager * dqm,uint64_t queue_address)2190 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2191 {
2192 	struct device_process_node *cur;
2193 	struct qcm_process_device *qpd;
2194 	struct queue *q;
2195 
2196 	list_for_each_entry(cur, &dqm->queues, list) {
2197 		qpd = cur->qpd;
2198 		list_for_each_entry(q, &qpd->queues_list, list) {
2199 			if (queue_address == q->properties.queue_address)
2200 				return q;
2201 		}
2202 	}
2203 
2204 	return NULL;
2205 }
2206 
reset_hung_queues(struct device_queue_manager * dqm)2207 static int reset_hung_queues(struct device_queue_manager *dqm)
2208 {
2209 	int r = 0, reset_count = 0, i;
2210 
2211 	if (!dqm->detect_hang_info || dqm->is_hws_hang)
2212 		return -EIO;
2213 
2214 	/* assume dqm locked. */
2215 	if (!detect_queue_hang(dqm))
2216 		return -ENOTRECOVERABLE;
2217 
2218 	for (i = 0; i < dqm->detect_hang_count; i++) {
2219 		struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2220 		struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2221 		struct kfd_process_device *pdd;
2222 		uint64_t queue_addr = 0;
2223 
2224 		if (!q) {
2225 			r = -ENOTRECOVERABLE;
2226 			goto reset_fail;
2227 		}
2228 
2229 		pdd = kfd_get_process_device_data(dqm->dev, q->process);
2230 		if (!pdd) {
2231 			r = -ENOTRECOVERABLE;
2232 			goto reset_fail;
2233 		}
2234 
2235 		queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2236 				hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2237 				KFD_UNMAP_LATENCY_MS);
2238 
2239 		/* either reset failed or we reset an unexpected queue. */
2240 		if (queue_addr != q->properties.queue_address) {
2241 			r = -ENOTRECOVERABLE;
2242 			goto reset_fail;
2243 		}
2244 
2245 		set_queue_as_reset(dqm, q, &pdd->qpd);
2246 		reset_count++;
2247 	}
2248 
2249 	if (reset_count == dqm->detect_hang_count)
2250 		kfd_signal_reset_event(dqm->dev);
2251 	else
2252 		r = -ENOTRECOVERABLE;
2253 
2254 reset_fail:
2255 	dqm->detect_hang_count = 0;
2256 
2257 	return r;
2258 }
2259 
sdma_has_hang(struct device_queue_manager * dqm)2260 static bool sdma_has_hang(struct device_queue_manager *dqm)
2261 {
2262 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2263 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2264 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2265 	int i, j;
2266 
2267 	for (i = engine_start; i < engine_end; i++) {
2268 		for (j = 0; j < num_queues_per_eng; j++) {
2269 			if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j))
2270 				continue;
2271 
2272 			return true;
2273 		}
2274 	}
2275 
2276 	return false;
2277 }
2278 
set_sdma_queue_as_reset(struct device_queue_manager * dqm,uint32_t doorbell_off)2279 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm,
2280 				    uint32_t doorbell_off)
2281 {
2282 	struct device_process_node *cur;
2283 	struct qcm_process_device *qpd;
2284 	struct queue *q;
2285 
2286 	list_for_each_entry(cur, &dqm->queues, list) {
2287 		qpd = cur->qpd;
2288 		list_for_each_entry(q, &qpd->queues_list, list) {
2289 			if ((q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2290 			     q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) &&
2291 			     q->properties.doorbell_off == doorbell_off) {
2292 				set_queue_as_reset(dqm, q, qpd);
2293 				return true;
2294 			}
2295 		}
2296 	}
2297 
2298 	return false;
2299 }
2300 
reset_hung_queues_sdma(struct device_queue_manager * dqm)2301 static int reset_hung_queues_sdma(struct device_queue_manager *dqm)
2302 {
2303 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2304 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2305 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2306 	int r = 0, i, j;
2307 
2308 	if (dqm->is_hws_hang)
2309 		return -EIO;
2310 
2311 	/* Scan for hung HW queues and reset engine. */
2312 	dqm->detect_hang_count = 0;
2313 	for (i = engine_start; i < engine_end; i++) {
2314 		for (j = 0; j < num_queues_per_eng; j++) {
2315 			uint32_t doorbell_off =
2316 				dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j);
2317 
2318 			if (!doorbell_off)
2319 				continue;
2320 
2321 			/* Reset engine and check. */
2322 			if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) ||
2323 			    dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) ||
2324 			    !set_sdma_queue_as_reset(dqm, doorbell_off)) {
2325 				r = -ENOTRECOVERABLE;
2326 				goto reset_fail;
2327 			}
2328 
2329 			/* Should only expect one queue active per engine */
2330 			dqm->detect_hang_count++;
2331 			break;
2332 		}
2333 	}
2334 
2335 	/* Signal process reset */
2336 	if (dqm->detect_hang_count)
2337 		kfd_signal_reset_event(dqm->dev);
2338 	else
2339 		r = -ENOTRECOVERABLE;
2340 
2341 reset_fail:
2342 	dqm->detect_hang_count = 0;
2343 
2344 	return r;
2345 }
2346 
reset_queues_on_hws_hang(struct device_queue_manager * dqm,bool is_sdma)2347 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma)
2348 {
2349 	struct amdgpu_device *adev = dqm->dev->adev;
2350 
2351 	while (halt_if_hws_hang)
2352 		schedule();
2353 
2354 	if (adev->debug_disable_gpu_ring_reset) {
2355 		dev_info_once(adev->dev,
2356 			      "%s queue hung, but ring reset disabled",
2357 			      is_sdma ? "sdma" : "compute");
2358 
2359 		return -EPERM;
2360 	}
2361 	if (!amdgpu_gpu_recovery)
2362 		return -ENOTRECOVERABLE;
2363 
2364 	return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm);
2365 }
2366 
2367 /* dqm->lock mutex has to be locked before calling this function
2368  *
2369  * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time
2370  *   for context switch latency. Lower values are used by debugger
2371  *   since context switching are triggered at high frequency.
2372  *   This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE
2373  *
2374  */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)2375 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2376 				enum kfd_unmap_queues_filter filter,
2377 				uint32_t filter_param,
2378 				uint32_t grace_period,
2379 				bool reset)
2380 {
2381 	struct device *dev = dqm->dev->adev->dev;
2382 	struct mqd_manager *mqd_mgr;
2383 	int retval;
2384 
2385 	if (!dqm->sched_running)
2386 		return 0;
2387 	if (!dqm->active_runlist)
2388 		return 0;
2389 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2390 		return -EIO;
2391 
2392 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2393 		retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2394 				KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period);
2395 		if (retval)
2396 			goto out;
2397 	}
2398 
2399 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2400 	if (retval)
2401 		goto out;
2402 
2403 	*dqm->fence_addr = KFD_FENCE_INIT;
2404 	mb();
2405 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2406 				KFD_FENCE_COMPLETED);
2407 	/* should be timed out */
2408 	retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2409 					   queue_preemption_timeout_ms);
2410 	if (retval) {
2411 		dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2412 		kfd_hws_hang(dqm);
2413 		goto out;
2414 	}
2415 
2416 	/* In the current MEC firmware implementation, if compute queue
2417 	 * doesn't response to the preemption request in time, HIQ will
2418 	 * abandon the unmap request without returning any timeout error
2419 	 * to driver. Instead, MEC firmware will log the doorbell of the
2420 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2421 	 * To make sure the queue unmap was successful, driver need to
2422 	 * check those fields
2423 	 */
2424 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2425 	if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) &&
2426 	    reset_queues_on_hws_hang(dqm, false))
2427 		goto reset_fail;
2428 
2429 	/* Check for SDMA hang and attempt SDMA reset */
2430 	if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true))
2431 		goto reset_fail;
2432 
2433 	/* We need to reset the grace period value for this device */
2434 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2435 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2436 				KFD_DEQUEUE_WAIT_RESET, 0 /* unused */))
2437 			dev_err(dev, "Failed to reset grace period\n");
2438 	}
2439 
2440 	pm_release_ib(&dqm->packet_mgr);
2441 	dqm->active_runlist = false;
2442 out:
2443 	up_read(&dqm->dev->adev->reset_domain->sem);
2444 	return retval;
2445 
2446 reset_fail:
2447 	dqm->is_hws_hang = true;
2448 	kfd_hws_hang(dqm);
2449 	up_read(&dqm->dev->adev->reset_domain->sem);
2450 	return -ETIME;
2451 }
2452 
2453 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)2454 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2455 {
2456 	int retval;
2457 
2458 	dqm_lock(dqm);
2459 
2460 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2461 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2462 
2463 	dqm_unlock(dqm);
2464 	return retval;
2465 }
2466 
2467 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2468 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2469 				enum kfd_unmap_queues_filter filter,
2470 				uint32_t filter_param,
2471 				uint32_t grace_period)
2472 {
2473 	int retval;
2474 
2475 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2476 		return -EIO;
2477 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2478 	if (!retval)
2479 		retval = map_queues_cpsch(dqm);
2480 	up_read(&dqm->dev->adev->reset_domain->sem);
2481 	return retval;
2482 }
2483 
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2484 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2485 				 struct queue *q)
2486 {
2487 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2488 								q->process);
2489 	int ret = 0;
2490 
2491 	if (WARN_ON(!pdd))
2492 		return ret;
2493 
2494 	if (pdd->qpd.is_debug)
2495 		return ret;
2496 
2497 	q->properties.is_being_destroyed = true;
2498 
2499 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2500 		dqm_unlock(dqm);
2501 		mutex_unlock(&q->process->mutex);
2502 		ret = wait_event_interruptible(dqm->destroy_wait,
2503 						!q->properties.is_suspended);
2504 
2505 		mutex_lock(&q->process->mutex);
2506 		dqm_lock(dqm);
2507 	}
2508 
2509 	return ret;
2510 }
2511 
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2512 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2513 				struct qcm_process_device *qpd,
2514 				struct queue *q)
2515 {
2516 	int retval;
2517 	struct mqd_manager *mqd_mgr;
2518 	uint64_t sdma_val = 0;
2519 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2520 	struct device *dev = dqm->dev->adev->dev;
2521 
2522 	/* Get the SDMA queue stats */
2523 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2524 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2525 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2526 							&sdma_val);
2527 		if (retval)
2528 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2529 				q->properties.queue_id);
2530 	}
2531 
2532 	/* remove queue from list to prevent rescheduling after preemption */
2533 	dqm_lock(dqm);
2534 
2535 	retval = wait_on_destroy_queue(dqm, q);
2536 
2537 	if (retval) {
2538 		dqm_unlock(dqm);
2539 		return retval;
2540 	}
2541 
2542 	if (qpd->is_debug) {
2543 		/*
2544 		 * error, currently we do not allow to destroy a queue
2545 		 * of a currently debugged process
2546 		 */
2547 		retval = -EBUSY;
2548 		goto failed_try_destroy_debugged_queue;
2549 
2550 	}
2551 
2552 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2553 			q->properties.type)];
2554 
2555 	deallocate_doorbell(qpd, q);
2556 
2557 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2558 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2559 		deallocate_sdma_queue(dqm, q);
2560 		pdd->sdma_past_activity_counter += sdma_val;
2561 	}
2562 
2563 	if (q->properties.is_active) {
2564 		decrement_queue_count(dqm, qpd, q);
2565 		q->properties.is_active = false;
2566 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2567 			retval = execute_queues_cpsch(dqm,
2568 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2569 						      USE_DEFAULT_GRACE_PERIOD);
2570 			if (retval == -ETIME)
2571 				qpd->reset_wavefronts = true;
2572 		} else {
2573 			retval = remove_queue_mes(dqm, q, qpd);
2574 		}
2575 	}
2576 	list_del(&q->list);
2577 	qpd->queue_count--;
2578 
2579 	/*
2580 	 * Unconditionally decrement this counter, regardless of the queue's
2581 	 * type
2582 	 */
2583 	dqm->total_queue_count--;
2584 	pr_debug("Total of %d queues are accountable so far\n",
2585 			dqm->total_queue_count);
2586 
2587 	dqm_unlock(dqm);
2588 
2589 	/*
2590 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2591 	 * circular locking
2592 	 */
2593 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2594 				qpd->pqm->process, q->device,
2595 				-1, false, NULL, 0);
2596 
2597 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2598 
2599 	return retval;
2600 
2601 failed_try_destroy_debugged_queue:
2602 
2603 	dqm_unlock(dqm);
2604 	return retval;
2605 }
2606 
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size,u32 misc_process_properties)2607 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2608 				   struct qcm_process_device *qpd,
2609 				   enum cache_policy default_policy,
2610 				   enum cache_policy alternate_policy,
2611 				   void __user *alternate_aperture_base,
2612 				   uint64_t alternate_aperture_size,
2613 				   u32 misc_process_properties)
2614 {
2615 	bool retval = true;
2616 
2617 	if (!dqm->asic_ops.set_cache_memory_policy)
2618 		return retval;
2619 
2620 	dqm_lock(dqm);
2621 
2622 	retval = dqm->asic_ops.set_cache_memory_policy(
2623 			dqm,
2624 			qpd,
2625 			default_policy,
2626 			alternate_policy,
2627 			alternate_aperture_base,
2628 			alternate_aperture_size,
2629 			misc_process_properties);
2630 
2631 	if (retval)
2632 		goto out;
2633 
2634 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2635 		program_sh_mem_settings(dqm, qpd);
2636 
2637 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2638 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2639 		qpd->sh_mem_ape1_limit);
2640 
2641 out:
2642 	dqm_unlock(dqm);
2643 	return retval;
2644 }
2645 
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2646 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2647 		struct qcm_process_device *qpd)
2648 {
2649 	struct queue *q;
2650 	struct device_process_node *cur, *next_dpn;
2651 	int retval = 0;
2652 	bool found = false;
2653 
2654 	dqm_lock(dqm);
2655 
2656 	/* Clear all user mode queues */
2657 	while (!list_empty(&qpd->queues_list)) {
2658 		struct mqd_manager *mqd_mgr;
2659 		int ret;
2660 
2661 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2662 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2663 				q->properties.type)];
2664 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2665 		if (ret)
2666 			retval = ret;
2667 		dqm_unlock(dqm);
2668 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2669 		dqm_lock(dqm);
2670 	}
2671 
2672 	/* Unregister process */
2673 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2674 		if (qpd == cur->qpd) {
2675 			list_del(&cur->list);
2676 			kfree(cur);
2677 			dqm->processes_count--;
2678 			found = true;
2679 			break;
2680 		}
2681 	}
2682 
2683 	dqm_unlock(dqm);
2684 
2685 	/* Outside the DQM lock because under the DQM lock we can't do
2686 	 * reclaim or take other locks that others hold while reclaiming.
2687 	 */
2688 	if (found)
2689 		kfd_dec_compute_active(dqm->dev);
2690 
2691 	return retval;
2692 }
2693 
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2694 static int get_wave_state(struct device_queue_manager *dqm,
2695 			  struct queue *q,
2696 			  void __user *ctl_stack,
2697 			  u32 *ctl_stack_used_size,
2698 			  u32 *save_area_used_size)
2699 {
2700 	struct mqd_manager *mqd_mgr;
2701 
2702 	dqm_lock(dqm);
2703 
2704 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2705 
2706 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2707 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2708 	    !mqd_mgr->get_wave_state) {
2709 		dqm_unlock(dqm);
2710 		return -EINVAL;
2711 	}
2712 
2713 	dqm_unlock(dqm);
2714 
2715 	/*
2716 	 * get_wave_state is outside the dqm lock to prevent circular locking
2717 	 * and the queue should be protected against destruction by the process
2718 	 * lock.
2719 	 */
2720 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2721 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2722 }
2723 
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2724 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2725 			const struct queue *q,
2726 			u32 *mqd_size,
2727 			u32 *ctl_stack_size)
2728 {
2729 	struct mqd_manager *mqd_mgr;
2730 	enum KFD_MQD_TYPE mqd_type =
2731 			get_mqd_type_from_queue_type(q->properties.type);
2732 
2733 	dqm_lock(dqm);
2734 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2735 	*mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask);
2736 	*ctl_stack_size = 0;
2737 
2738 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2739 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2740 
2741 	dqm_unlock(dqm);
2742 }
2743 
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2744 static int checkpoint_mqd(struct device_queue_manager *dqm,
2745 			  const struct queue *q,
2746 			  void *mqd,
2747 			  void *ctl_stack)
2748 {
2749 	struct mqd_manager *mqd_mgr;
2750 	int r = 0;
2751 	enum KFD_MQD_TYPE mqd_type =
2752 			get_mqd_type_from_queue_type(q->properties.type);
2753 
2754 	dqm_lock(dqm);
2755 
2756 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2757 		r = -EINVAL;
2758 		goto dqm_unlock;
2759 	}
2760 
2761 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2762 	if (!mqd_mgr->checkpoint_mqd) {
2763 		r = -EOPNOTSUPP;
2764 		goto dqm_unlock;
2765 	}
2766 
2767 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2768 
2769 dqm_unlock:
2770 	dqm_unlock(dqm);
2771 	return r;
2772 }
2773 
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2774 static int process_termination_cpsch(struct device_queue_manager *dqm,
2775 		struct qcm_process_device *qpd)
2776 {
2777 	int retval;
2778 	struct queue *q;
2779 	struct device *dev = dqm->dev->adev->dev;
2780 	struct kernel_queue *kq, *kq_next;
2781 	struct mqd_manager *mqd_mgr;
2782 	struct device_process_node *cur, *next_dpn;
2783 	enum kfd_unmap_queues_filter filter =
2784 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2785 	bool found = false;
2786 
2787 	retval = 0;
2788 
2789 	dqm_lock(dqm);
2790 
2791 	/* Clean all kernel queues */
2792 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2793 		list_del(&kq->list);
2794 		decrement_queue_count(dqm, qpd, kq->queue);
2795 		qpd->is_debug = false;
2796 		dqm->total_queue_count--;
2797 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2798 	}
2799 
2800 	/* Clear all user mode queues */
2801 	list_for_each_entry(q, &qpd->queues_list, list) {
2802 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2803 			deallocate_sdma_queue(dqm, q);
2804 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2805 			deallocate_sdma_queue(dqm, q);
2806 
2807 		if (q->properties.is_active) {
2808 			decrement_queue_count(dqm, qpd, q);
2809 
2810 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2811 				retval = remove_queue_mes(dqm, q, qpd);
2812 				if (retval)
2813 					dev_err(dev, "Failed to remove queue %d\n",
2814 						q->properties.queue_id);
2815 			}
2816 		}
2817 
2818 		dqm->total_queue_count--;
2819 	}
2820 
2821 	/* Unregister process */
2822 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2823 		if (qpd == cur->qpd) {
2824 			list_del(&cur->list);
2825 			kfree(cur);
2826 			dqm->processes_count--;
2827 			found = true;
2828 			break;
2829 		}
2830 	}
2831 
2832 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2833 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2834 
2835 	if ((retval || qpd->reset_wavefronts) &&
2836 	    down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2837 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2838 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2839 		qpd->reset_wavefronts = false;
2840 		up_read(&dqm->dev->adev->reset_domain->sem);
2841 	}
2842 
2843 	/* Lastly, free mqd resources.
2844 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2845 	 */
2846 	while (!list_empty(&qpd->queues_list)) {
2847 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2848 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2849 				q->properties.type)];
2850 		list_del(&q->list);
2851 		qpd->queue_count--;
2852 		dqm_unlock(dqm);
2853 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2854 		dqm_lock(dqm);
2855 	}
2856 	dqm_unlock(dqm);
2857 
2858 	/* Outside the DQM lock because under the DQM lock we can't do
2859 	 * reclaim or take other locks that others hold while reclaiming.
2860 	 */
2861 	if (found)
2862 		kfd_dec_compute_active(dqm->dev);
2863 
2864 	return retval;
2865 }
2866 
init_mqd_managers(struct device_queue_manager * dqm)2867 static int init_mqd_managers(struct device_queue_manager *dqm)
2868 {
2869 	int i, j;
2870 	struct device *dev = dqm->dev->adev->dev;
2871 	struct mqd_manager *mqd_mgr;
2872 
2873 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2874 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2875 		if (!mqd_mgr) {
2876 			dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2877 			goto out_free;
2878 		}
2879 		dqm->mqd_mgrs[i] = mqd_mgr;
2880 	}
2881 
2882 	return 0;
2883 
2884 out_free:
2885 	for (j = 0; j < i; j++) {
2886 		kfree(dqm->mqd_mgrs[j]);
2887 		dqm->mqd_mgrs[j] = NULL;
2888 	}
2889 
2890 	return -ENOMEM;
2891 }
2892 
2893 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2894 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2895 {
2896 	int retval;
2897 	struct kfd_node *dev = dqm->dev;
2898 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2899 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2900 		get_num_all_sdma_engines(dqm) *
2901 		dev->kfd->device_info.num_sdma_queues_per_engine +
2902 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2903 		NUM_XCC(dqm->dev->xcc_mask));
2904 
2905 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2906 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2907 		(void *)&(mem_obj->cpu_ptr), false);
2908 
2909 	return retval;
2910 }
2911 
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)2912 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2913 				    struct kfd_mem_obj *mqd)
2914 {
2915 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2916 
2917 	amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
2918 }
2919 
device_queue_manager_init(struct kfd_node * dev)2920 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2921 {
2922 	struct device_queue_manager *dqm;
2923 
2924 	pr_debug("Loading device queue manager\n");
2925 
2926 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2927 	if (!dqm)
2928 		return NULL;
2929 
2930 	switch (dev->adev->asic_type) {
2931 	/* HWS is not available on Hawaii. */
2932 	case CHIP_HAWAII:
2933 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2934 	 * available on Tonga.
2935 	 *
2936 	 * FIXME: This argument also applies to Kaveri.
2937 	 */
2938 	case CHIP_TONGA:
2939 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2940 		break;
2941 	default:
2942 		dqm->sched_policy = sched_policy;
2943 		break;
2944 	}
2945 
2946 	dqm->dev = dev;
2947 	switch (dqm->sched_policy) {
2948 	case KFD_SCHED_POLICY_HWS:
2949 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2950 		/* initialize dqm for cp scheduling */
2951 		dqm->ops.create_queue = create_queue_cpsch;
2952 		dqm->ops.initialize = initialize_cpsch;
2953 		dqm->ops.start = start_cpsch;
2954 		dqm->ops.stop = stop_cpsch;
2955 		dqm->ops.halt = halt_cpsch;
2956 		dqm->ops.unhalt = unhalt_cpsch;
2957 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2958 		dqm->ops.update_queue = update_queue;
2959 		dqm->ops.register_process = register_process;
2960 		dqm->ops.unregister_process = unregister_process;
2961 		dqm->ops.uninitialize = uninitialize;
2962 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2963 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2964 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2965 		dqm->ops.process_termination = process_termination_cpsch;
2966 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2967 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2968 		dqm->ops.get_wave_state = get_wave_state;
2969 		dqm->ops.reset_queues = reset_queues_cpsch;
2970 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2971 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2972 		break;
2973 	case KFD_SCHED_POLICY_NO_HWS:
2974 		/* initialize dqm for no cp scheduling */
2975 		dqm->ops.start = start_nocpsch;
2976 		dqm->ops.stop = stop_nocpsch;
2977 		dqm->ops.create_queue = create_queue_nocpsch;
2978 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2979 		dqm->ops.update_queue = update_queue;
2980 		dqm->ops.register_process = register_process;
2981 		dqm->ops.unregister_process = unregister_process;
2982 		dqm->ops.initialize = initialize_nocpsch;
2983 		dqm->ops.uninitialize = uninitialize;
2984 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2985 		dqm->ops.process_termination = process_termination_nocpsch;
2986 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2987 		dqm->ops.restore_process_queues =
2988 			restore_process_queues_nocpsch;
2989 		dqm->ops.get_wave_state = get_wave_state;
2990 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2991 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2992 		break;
2993 	default:
2994 		dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2995 		goto out_free;
2996 	}
2997 
2998 	switch (dev->adev->asic_type) {
2999 	case CHIP_KAVERI:
3000 	case CHIP_HAWAII:
3001 		device_queue_manager_init_cik(&dqm->asic_ops);
3002 		break;
3003 
3004 	case CHIP_CARRIZO:
3005 	case CHIP_TONGA:
3006 	case CHIP_FIJI:
3007 	case CHIP_POLARIS10:
3008 	case CHIP_POLARIS11:
3009 	case CHIP_POLARIS12:
3010 	case CHIP_VEGAM:
3011 		device_queue_manager_init_vi(&dqm->asic_ops);
3012 		break;
3013 
3014 	default:
3015 		if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
3016 			device_queue_manager_init_v12(&dqm->asic_ops);
3017 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
3018 			device_queue_manager_init_v11(&dqm->asic_ops);
3019 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
3020 			device_queue_manager_init_v10(&dqm->asic_ops);
3021 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
3022 			device_queue_manager_init_v9(&dqm->asic_ops);
3023 		else {
3024 			WARN(1, "Unexpected ASIC family %u",
3025 			     dev->adev->asic_type);
3026 			goto out_free;
3027 		}
3028 	}
3029 
3030 	if (init_mqd_managers(dqm))
3031 		goto out_free;
3032 
3033 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
3034 		dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
3035 		goto out_free;
3036 	}
3037 
3038 	if (!dqm->ops.initialize(dqm)) {
3039 		init_waitqueue_head(&dqm->destroy_wait);
3040 		return dqm;
3041 	}
3042 
3043 	if (!dev->kfd->shared_resources.enable_mes)
3044 		deallocate_hiq_sdma_mqd(dev, &dqm->hiq_sdma_mqd);
3045 
3046 out_free:
3047 	kfree(dqm);
3048 	return NULL;
3049 }
3050 
device_queue_manager_uninit(struct device_queue_manager * dqm)3051 void device_queue_manager_uninit(struct device_queue_manager *dqm)
3052 {
3053 	dqm->ops.stop(dqm);
3054 	dqm->ops.uninitialize(dqm);
3055 	if (!dqm->dev->kfd->shared_resources.enable_mes)
3056 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
3057 	kfree(dqm);
3058 }
3059 
kfd_dqm_suspend_bad_queue_mes(struct kfd_node * knode,u32 pasid,u32 doorbell_id)3060 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
3061 {
3062 	struct kfd_process_device *pdd = NULL;
3063 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
3064 	struct device_queue_manager *dqm = knode->dqm;
3065 	struct device *dev = dqm->dev->adev->dev;
3066 	struct qcm_process_device *qpd;
3067 	struct queue *q = NULL;
3068 	int ret = 0;
3069 
3070 	if (!pdd)
3071 		return -EINVAL;
3072 
3073 	dqm_lock(dqm);
3074 
3075 	if (pdd) {
3076 		qpd = &pdd->qpd;
3077 
3078 		list_for_each_entry(q, &qpd->queues_list, list) {
3079 			if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3080 				ret = suspend_all_queues_mes(dqm);
3081 				if (ret) {
3082 					dev_err(dev, "Suspending all queues failed");
3083 					goto out;
3084 				}
3085 
3086 				q->properties.is_evicted = true;
3087 				q->properties.is_active = false;
3088 				decrement_queue_count(dqm, qpd, q);
3089 
3090 				ret = remove_queue_mes(dqm, q, qpd);
3091 				if (ret) {
3092 					dev_err(dev, "Removing bad queue failed");
3093 					goto out;
3094 				}
3095 
3096 				ret = resume_all_queues_mes(dqm);
3097 				if (ret)
3098 					dev_err(dev, "Resuming all queues failed");
3099 
3100 				break;
3101 			}
3102 		}
3103 	}
3104 
3105 out:
3106 	dqm_unlock(dqm);
3107 	kfd_unref_process(p);
3108 	return ret;
3109 }
3110 
kfd_evict_process_device(struct kfd_process_device * pdd)3111 int kfd_evict_process_device(struct kfd_process_device *pdd)
3112 {
3113 	struct device_queue_manager *dqm;
3114 	struct kfd_process *p;
3115 
3116 	p = pdd->process;
3117 	dqm = pdd->dev->dqm;
3118 
3119 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3120 
3121 	return dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3122 }
3123 
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3124 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3125 				struct qcm_process_device *qpd)
3126 {
3127 	int r;
3128 	struct device *dev = dqm->dev->adev->dev;
3129 	int updated_vmid_mask;
3130 
3131 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3132 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3133 		return -EINVAL;
3134 	}
3135 
3136 	dqm_lock(dqm);
3137 
3138 	if (dqm->trap_debug_vmid != 0) {
3139 		dev_err(dev, "Trap debug id already reserved\n");
3140 		r = -EBUSY;
3141 		goto out_unlock;
3142 	}
3143 
3144 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3145 			USE_DEFAULT_GRACE_PERIOD, false);
3146 	if (r)
3147 		goto out_unlock;
3148 
3149 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3150 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3151 
3152 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3153 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3154 	r = set_sched_resources(dqm);
3155 	if (r)
3156 		goto out_unlock;
3157 
3158 	r = map_queues_cpsch(dqm);
3159 	if (r)
3160 		goto out_unlock;
3161 
3162 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3163 
3164 out_unlock:
3165 	dqm_unlock(dqm);
3166 	return r;
3167 }
3168 
3169 /*
3170  * Releases vmid for the trap debugger
3171  */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3172 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3173 			struct qcm_process_device *qpd)
3174 {
3175 	struct device *dev = dqm->dev->adev->dev;
3176 	int r;
3177 	int updated_vmid_mask;
3178 	uint32_t trap_debug_vmid;
3179 
3180 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3181 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3182 		return -EINVAL;
3183 	}
3184 
3185 	dqm_lock(dqm);
3186 	trap_debug_vmid = dqm->trap_debug_vmid;
3187 	if (dqm->trap_debug_vmid == 0) {
3188 		dev_err(dev, "Trap debug id is not reserved\n");
3189 		r = -EINVAL;
3190 		goto out_unlock;
3191 	}
3192 
3193 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3194 			USE_DEFAULT_GRACE_PERIOD, false);
3195 	if (r)
3196 		goto out_unlock;
3197 
3198 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3199 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3200 
3201 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3202 	dqm->trap_debug_vmid = 0;
3203 	r = set_sched_resources(dqm);
3204 	if (r)
3205 		goto out_unlock;
3206 
3207 	r = map_queues_cpsch(dqm);
3208 	if (r)
3209 		goto out_unlock;
3210 
3211 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3212 
3213 out_unlock:
3214 	dqm_unlock(dqm);
3215 	return r;
3216 }
3217 
3218 #define QUEUE_NOT_FOUND		-1
3219 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)3220 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3221 {
3222 	int i;
3223 
3224 	for (i = 0; i < num_queues; i++)
3225 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3226 }
3227 
3228 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)3229 static int q_array_get_index(unsigned int queue_id,
3230 		uint32_t num_queues,
3231 		uint32_t *queue_ids)
3232 {
3233 	int i;
3234 
3235 	for (i = 0; i < num_queues; i++)
3236 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3237 			return i;
3238 
3239 	return QUEUE_NOT_FOUND;
3240 }
3241 
3242 struct copy_context_work_handler_workarea {
3243 	struct work_struct copy_context_work;
3244 	struct kfd_process *p;
3245 };
3246 
copy_context_work_handler(struct work_struct * work)3247 static void copy_context_work_handler(struct work_struct *work)
3248 {
3249 	struct copy_context_work_handler_workarea *workarea;
3250 	struct mqd_manager *mqd_mgr;
3251 	struct queue *q;
3252 	struct mm_struct *mm;
3253 	struct kfd_process *p;
3254 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3255 	int i;
3256 
3257 	workarea = container_of(work,
3258 			struct copy_context_work_handler_workarea,
3259 			copy_context_work);
3260 
3261 	p = workarea->p;
3262 	mm = get_task_mm(p->lead_thread);
3263 
3264 	if (!mm)
3265 		return;
3266 
3267 	kthread_use_mm(mm);
3268 	for (i = 0; i < p->n_pdds; i++) {
3269 		struct kfd_process_device *pdd = p->pdds[i];
3270 		struct device_queue_manager *dqm = pdd->dev->dqm;
3271 		struct qcm_process_device *qpd = &pdd->qpd;
3272 
3273 		list_for_each_entry(q, &qpd->queues_list, list) {
3274 			if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3275 				continue;
3276 
3277 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3278 
3279 			/* We ignore the return value from get_wave_state
3280 			 * because
3281 			 * i) right now, it always returns 0, and
3282 			 * ii) if we hit an error, we would continue to the
3283 			 *      next queue anyway.
3284 			 */
3285 			mqd_mgr->get_wave_state(mqd_mgr,
3286 					q->mqd,
3287 					&q->properties,
3288 					(void __user *)	q->properties.ctx_save_restore_area_address,
3289 					&tmp_ctl_stack_used_size,
3290 					&tmp_save_area_used_size);
3291 		}
3292 	}
3293 	kthread_unuse_mm(mm);
3294 	mmput(mm);
3295 }
3296 
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)3297 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3298 {
3299 	size_t array_size = num_queues * sizeof(uint32_t);
3300 
3301 	if (!usr_queue_id_array)
3302 		return NULL;
3303 
3304 	return memdup_user(usr_queue_id_array, array_size);
3305 }
3306 
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)3307 int resume_queues(struct kfd_process *p,
3308 		uint32_t num_queues,
3309 		uint32_t *usr_queue_id_array)
3310 {
3311 	uint32_t *queue_ids = NULL;
3312 	int total_resumed = 0;
3313 	int i;
3314 
3315 	if (usr_queue_id_array) {
3316 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3317 
3318 		if (IS_ERR(queue_ids))
3319 			return PTR_ERR(queue_ids);
3320 
3321 		/* mask all queues as invalid.  unmask per successful request */
3322 		q_array_invalidate(num_queues, queue_ids);
3323 	}
3324 
3325 	for (i = 0; i < p->n_pdds; i++) {
3326 		struct kfd_process_device *pdd = p->pdds[i];
3327 		struct device_queue_manager *dqm = pdd->dev->dqm;
3328 		struct device *dev = dqm->dev->adev->dev;
3329 		struct qcm_process_device *qpd = &pdd->qpd;
3330 		struct queue *q;
3331 		int r, per_device_resumed = 0;
3332 
3333 		dqm_lock(dqm);
3334 
3335 		/* unmask queues that resume or already resumed as valid */
3336 		list_for_each_entry(q, &qpd->queues_list, list) {
3337 			int q_idx = QUEUE_NOT_FOUND;
3338 
3339 			if (queue_ids)
3340 				q_idx = q_array_get_index(
3341 						q->properties.queue_id,
3342 						num_queues,
3343 						queue_ids);
3344 
3345 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3346 				int err = resume_single_queue(dqm, &pdd->qpd, q);
3347 
3348 				if (queue_ids) {
3349 					if (!err) {
3350 						queue_ids[q_idx] &=
3351 							~KFD_DBG_QUEUE_INVALID_MASK;
3352 					} else {
3353 						queue_ids[q_idx] |=
3354 							KFD_DBG_QUEUE_ERROR_MASK;
3355 						break;
3356 					}
3357 				}
3358 
3359 				if (dqm->dev->kfd->shared_resources.enable_mes) {
3360 					wake_up_all(&dqm->destroy_wait);
3361 					if (!err)
3362 						total_resumed++;
3363 				} else {
3364 					per_device_resumed++;
3365 				}
3366 			}
3367 		}
3368 
3369 		if (!per_device_resumed) {
3370 			dqm_unlock(dqm);
3371 			continue;
3372 		}
3373 
3374 		r = execute_queues_cpsch(dqm,
3375 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3376 					0,
3377 					USE_DEFAULT_GRACE_PERIOD);
3378 		if (r) {
3379 			dev_err(dev, "Failed to resume process queues\n");
3380 			if (queue_ids) {
3381 				list_for_each_entry(q, &qpd->queues_list, list) {
3382 					int q_idx = q_array_get_index(
3383 							q->properties.queue_id,
3384 							num_queues,
3385 							queue_ids);
3386 
3387 					/* mask queue as error on resume fail */
3388 					if (q_idx != QUEUE_NOT_FOUND)
3389 						queue_ids[q_idx] |=
3390 							KFD_DBG_QUEUE_ERROR_MASK;
3391 				}
3392 			}
3393 		} else {
3394 			wake_up_all(&dqm->destroy_wait);
3395 			total_resumed += per_device_resumed;
3396 		}
3397 
3398 		dqm_unlock(dqm);
3399 	}
3400 
3401 	if (queue_ids) {
3402 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3403 				num_queues * sizeof(uint32_t)))
3404 			pr_err("copy_to_user failed on queue resume\n");
3405 
3406 		kfree(queue_ids);
3407 	}
3408 
3409 	return total_resumed;
3410 }
3411 
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)3412 int suspend_queues(struct kfd_process *p,
3413 			uint32_t num_queues,
3414 			uint32_t grace_period,
3415 			uint64_t exception_clear_mask,
3416 			uint32_t *usr_queue_id_array)
3417 {
3418 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3419 	int total_suspended = 0;
3420 	int i;
3421 
3422 	if (IS_ERR(queue_ids))
3423 		return PTR_ERR(queue_ids);
3424 
3425 	/* mask all queues as invalid.  umask on successful request */
3426 	q_array_invalidate(num_queues, queue_ids);
3427 
3428 	for (i = 0; i < p->n_pdds; i++) {
3429 		struct kfd_process_device *pdd = p->pdds[i];
3430 		struct device_queue_manager *dqm = pdd->dev->dqm;
3431 		struct device *dev = dqm->dev->adev->dev;
3432 		struct qcm_process_device *qpd = &pdd->qpd;
3433 		struct queue *q;
3434 		int r, per_device_suspended = 0;
3435 
3436 		mutex_lock(&p->event_mutex);
3437 		dqm_lock(dqm);
3438 
3439 		/* unmask queues that suspend or already suspended */
3440 		list_for_each_entry(q, &qpd->queues_list, list) {
3441 			int q_idx = q_array_get_index(q->properties.queue_id,
3442 							num_queues,
3443 							queue_ids);
3444 
3445 			if (q_idx != QUEUE_NOT_FOUND) {
3446 				int err = suspend_single_queue(dqm, pdd, q);
3447 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3448 
3449 				if (!err) {
3450 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3451 					if (exception_clear_mask && is_mes)
3452 						q->properties.exception_status &=
3453 							~exception_clear_mask;
3454 
3455 					if (is_mes)
3456 						total_suspended++;
3457 					else
3458 						per_device_suspended++;
3459 				} else if (err != -EBUSY) {
3460 					r = err;
3461 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3462 					break;
3463 				}
3464 			}
3465 		}
3466 
3467 		if (!per_device_suspended) {
3468 			dqm_unlock(dqm);
3469 			mutex_unlock(&p->event_mutex);
3470 			if (total_suspended)
3471 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3472 			continue;
3473 		}
3474 
3475 		r = execute_queues_cpsch(dqm,
3476 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3477 			grace_period);
3478 
3479 		if (r)
3480 			dev_err(dev, "Failed to suspend process queues.\n");
3481 		else
3482 			total_suspended += per_device_suspended;
3483 
3484 		list_for_each_entry(q, &qpd->queues_list, list) {
3485 			int q_idx = q_array_get_index(q->properties.queue_id,
3486 						num_queues, queue_ids);
3487 
3488 			if (q_idx == QUEUE_NOT_FOUND)
3489 				continue;
3490 
3491 			/* mask queue as error on suspend fail */
3492 			if (r)
3493 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3494 			else if (exception_clear_mask)
3495 				q->properties.exception_status &=
3496 							~exception_clear_mask;
3497 		}
3498 
3499 		dqm_unlock(dqm);
3500 		mutex_unlock(&p->event_mutex);
3501 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3502 	}
3503 
3504 	if (total_suspended) {
3505 		struct copy_context_work_handler_workarea copy_context_worker;
3506 
3507 		INIT_WORK_ONSTACK(
3508 				&copy_context_worker.copy_context_work,
3509 				copy_context_work_handler);
3510 
3511 		copy_context_worker.p = p;
3512 
3513 		schedule_work(&copy_context_worker.copy_context_work);
3514 
3515 
3516 		flush_work(&copy_context_worker.copy_context_work);
3517 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3518 	}
3519 
3520 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3521 			num_queues * sizeof(uint32_t)))
3522 		pr_err("copy_to_user failed on queue suspend\n");
3523 
3524 	kfree(queue_ids);
3525 
3526 	return total_suspended;
3527 }
3528 
set_queue_type_for_user(struct queue_properties * q_props)3529 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3530 {
3531 	switch (q_props->type) {
3532 	case KFD_QUEUE_TYPE_COMPUTE:
3533 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3534 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3535 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3536 	case KFD_QUEUE_TYPE_SDMA:
3537 		return KFD_IOC_QUEUE_TYPE_SDMA;
3538 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3539 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3540 	default:
3541 		WARN_ONCE(true, "queue type not recognized!");
3542 		return 0xffffffff;
3543 	};
3544 }
3545 
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3546 void set_queue_snapshot_entry(struct queue *q,
3547 			      uint64_t exception_clear_mask,
3548 			      struct kfd_queue_snapshot_entry *qss_entry)
3549 {
3550 	qss_entry->ring_base_address = q->properties.queue_address;
3551 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3552 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3553 	qss_entry->ctx_save_restore_address =
3554 				q->properties.ctx_save_restore_area_address;
3555 	qss_entry->ctx_save_restore_area_size =
3556 				q->properties.ctx_save_restore_area_size;
3557 	qss_entry->exception_status = q->properties.exception_status;
3558 	qss_entry->queue_id = q->properties.queue_id;
3559 	qss_entry->gpu_id = q->device->id;
3560 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3561 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3562 	q->properties.exception_status &= ~exception_clear_mask;
3563 }
3564 
debug_lock_and_unmap(struct device_queue_manager * dqm)3565 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3566 {
3567 	struct device *dev = dqm->dev->adev->dev;
3568 	int r;
3569 
3570 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3571 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3572 		return -EINVAL;
3573 	}
3574 
3575 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3576 		return 0;
3577 
3578 	dqm_lock(dqm);
3579 
3580 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3581 	if (r)
3582 		dqm_unlock(dqm);
3583 
3584 	return r;
3585 }
3586 
debug_map_and_unlock(struct device_queue_manager * dqm)3587 int debug_map_and_unlock(struct device_queue_manager *dqm)
3588 {
3589 	struct device *dev = dqm->dev->adev->dev;
3590 	int r;
3591 
3592 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3593 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3594 		return -EINVAL;
3595 	}
3596 
3597 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3598 		return 0;
3599 
3600 	r = map_queues_cpsch(dqm);
3601 
3602 	dqm_unlock(dqm);
3603 
3604 	return r;
3605 }
3606 
debug_refresh_runlist(struct device_queue_manager * dqm)3607 int debug_refresh_runlist(struct device_queue_manager *dqm)
3608 {
3609 	int r = debug_lock_and_unmap(dqm);
3610 
3611 	if (r)
3612 		return r;
3613 
3614 	return debug_map_and_unlock(dqm);
3615 }
3616 
kfd_dqm_is_queue_in_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd,int doorbell_off,u32 * queue_format)3617 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3618 				 struct qcm_process_device *qpd,
3619 				 int doorbell_off, u32 *queue_format)
3620 {
3621 	struct queue *q;
3622 	bool r = false;
3623 
3624 	if (!queue_format)
3625 		return r;
3626 
3627 	dqm_lock(dqm);
3628 
3629 	list_for_each_entry(q, &qpd->queues_list, list) {
3630 		if (q->properties.doorbell_off == doorbell_off) {
3631 			*queue_format = q->properties.format;
3632 			r = true;
3633 			goto out;
3634 		}
3635 	}
3636 
3637 out:
3638 	dqm_unlock(dqm);
3639 	return r;
3640 }
3641 #if defined(CONFIG_DEBUG_FS)
3642 
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3643 static void seq_reg_dump(struct seq_file *m,
3644 			 uint32_t (*dump)[2], uint32_t n_regs)
3645 {
3646 	uint32_t i, count;
3647 
3648 	for (i = 0, count = 0; i < n_regs; i++) {
3649 		if (count == 0 ||
3650 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3651 			seq_printf(m, "%s    %08x: %08x",
3652 				   i ? "\n" : "",
3653 				   dump[i][0], dump[i][1]);
3654 			count = 7;
3655 		} else {
3656 			seq_printf(m, " %08x", dump[i][1]);
3657 			count--;
3658 		}
3659 	}
3660 
3661 	seq_puts(m, "\n");
3662 }
3663 
dqm_debugfs_hqds(struct seq_file * m,void * data)3664 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3665 {
3666 	struct device_queue_manager *dqm = data;
3667 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3668 	uint32_t (*dump)[2], n_regs;
3669 	int pipe, queue;
3670 	int r = 0, xcc_id;
3671 	uint32_t sdma_engine_start;
3672 
3673 	if (!dqm->sched_running) {
3674 		seq_puts(m, " Device is stopped\n");
3675 		return 0;
3676 	}
3677 
3678 	for_each_inst(xcc_id, xcc_mask) {
3679 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3680 						KFD_CIK_HIQ_PIPE,
3681 						KFD_CIK_HIQ_QUEUE, &dump,
3682 						&n_regs, xcc_id);
3683 		if (!r) {
3684 			seq_printf(
3685 				m,
3686 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3687 				xcc_id,
3688 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3689 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3690 				KFD_CIK_HIQ_QUEUE);
3691 			seq_reg_dump(m, dump, n_regs);
3692 
3693 			kfree(dump);
3694 		}
3695 
3696 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3697 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3698 
3699 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3700 				if (!test_bit(pipe_offset + queue,
3701 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3702 					continue;
3703 
3704 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3705 								pipe, queue,
3706 								&dump, &n_regs,
3707 								xcc_id);
3708 				if (r)
3709 					break;
3710 
3711 				seq_printf(m,
3712 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3713 					   xcc_id, pipe, queue);
3714 				seq_reg_dump(m, dump, n_regs);
3715 
3716 				kfree(dump);
3717 			}
3718 		}
3719 	}
3720 
3721 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3722 	for (pipe = sdma_engine_start;
3723 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3724 	     pipe++) {
3725 		for (queue = 0;
3726 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3727 		     queue++) {
3728 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3729 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3730 			if (r)
3731 				break;
3732 
3733 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3734 				  pipe, queue);
3735 			seq_reg_dump(m, dump, n_regs);
3736 
3737 			kfree(dump);
3738 		}
3739 	}
3740 
3741 	return r;
3742 }
3743 
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3744 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3745 {
3746 	int r = 0;
3747 
3748 	dqm_lock(dqm);
3749 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3750 	if (r) {
3751 		dqm_unlock(dqm);
3752 		return r;
3753 	}
3754 	dqm->active_runlist = true;
3755 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3756 				0, USE_DEFAULT_GRACE_PERIOD);
3757 	dqm_unlock(dqm);
3758 
3759 	return r;
3760 }
3761 
3762 #endif
3763