1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "amdgpu_sdma.h"
40 #include "mes_v11_api_def.h"
41 #include "kfd_debug.h"
42
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 /* See unmap_queues_cpsch() */
47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff
48
49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
50 u32 pasid, unsigned int vmid);
51
52 static int execute_queues_cpsch(struct device_queue_manager *dqm,
53 enum kfd_unmap_queues_filter filter,
54 uint32_t filter_param,
55 uint32_t grace_period);
56 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
57 enum kfd_unmap_queues_filter filter,
58 uint32_t filter_param,
59 uint32_t grace_period,
60 bool reset);
61
62 static int map_queues_cpsch(struct device_queue_manager *dqm);
63
64 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
65 struct queue *q);
66
67 static inline void deallocate_hqd(struct device_queue_manager *dqm,
68 struct queue *q);
69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
70 static int allocate_sdma_queue(struct device_queue_manager *dqm,
71 struct queue *q, const uint32_t *restore_sdma_id);
72
73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma);
74
75 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
77 {
78 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
79 return KFD_MQD_TYPE_SDMA;
80 return KFD_MQD_TYPE_CP;
81 }
82
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
84 {
85 int i;
86 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
87 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
88
89 /* queue is available for KFD usage if bit is 1 */
90 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
91 if (test_bit(pipe_offset + i,
92 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
93 return true;
94 return false;
95 }
96
get_cp_queues_num(struct device_queue_manager * dqm)97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
98 {
99 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
100 AMDGPU_MAX_QUEUES);
101 }
102
get_queues_per_pipe(struct device_queue_manager * dqm)103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
104 {
105 return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
106 }
107
get_pipes_per_mec(struct device_queue_manager * dqm)108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
109 {
110 return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
111 }
112
get_num_all_sdma_engines(struct device_queue_manager * dqm)113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
114 {
115 return kfd_get_num_sdma_engines(dqm->dev) +
116 kfd_get_num_xgmi_sdma_engines(dqm->dev);
117 }
118
get_num_sdma_queues(struct device_queue_manager * dqm)119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
120 {
121 return kfd_get_num_sdma_engines(dqm->dev) *
122 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
123 }
124
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
126 {
127 return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
128 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
129 }
130
init_sdma_bitmaps(struct device_queue_manager * dqm)131 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
132 {
133 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
134 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
135
136 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
137 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
138
139 /* Mask out the reserved queues */
140 bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
141 dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
142 KFD_MAX_SDMA_QUEUES);
143 }
144
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)145 void program_sh_mem_settings(struct device_queue_manager *dqm,
146 struct qcm_process_device *qpd)
147 {
148 uint32_t xcc_mask = dqm->dev->xcc_mask;
149 int xcc_id;
150
151 for_each_inst(xcc_id, xcc_mask)
152 dqm->dev->kfd2kgd->program_sh_mem_settings(
153 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
154 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
155 qpd->sh_mem_bases, xcc_id);
156 }
157
kfd_hws_hang(struct device_queue_manager * dqm)158 static void kfd_hws_hang(struct device_queue_manager *dqm)
159 {
160 struct device_process_node *cur;
161 struct qcm_process_device *qpd;
162 struct queue *q;
163
164 /* Mark all device queues as reset. */
165 list_for_each_entry(cur, &dqm->queues, list) {
166 qpd = cur->qpd;
167 list_for_each_entry(q, &qpd->queues_list, list) {
168 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
169
170 pdd->has_reset_queue = true;
171 }
172 }
173
174 /*
175 * Issue a GPU reset if HWS is unresponsive
176 */
177 amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
178 }
179
convert_to_mes_queue_type(int queue_type)180 static int convert_to_mes_queue_type(int queue_type)
181 {
182 int mes_queue_type;
183
184 switch (queue_type) {
185 case KFD_QUEUE_TYPE_COMPUTE:
186 mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
187 break;
188 case KFD_QUEUE_TYPE_SDMA:
189 mes_queue_type = MES_QUEUE_TYPE_SDMA;
190 break;
191 default:
192 WARN(1, "Invalid queue type %d", queue_type);
193 mes_queue_type = -EINVAL;
194 break;
195 }
196
197 return mes_queue_type;
198 }
199
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)200 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
201 struct qcm_process_device *qpd)
202 {
203 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
204 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
205 struct mes_add_queue_input queue_input;
206 int r, queue_type;
207 uint64_t wptr_addr_off;
208
209 if (!dqm->sched_running || dqm->sched_halt)
210 return 0;
211 if (!down_read_trylock(&adev->reset_domain->sem))
212 return -EIO;
213
214 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
215 queue_input.process_id = pdd->pasid;
216 queue_input.page_table_base_addr = qpd->page_table_base;
217 queue_input.process_va_start = 0;
218 queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
219 /* MES unit for quantum is 100ns */
220 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */
221 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
222 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
223 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
224 queue_input.inprocess_gang_priority = q->properties.priority;
225 queue_input.gang_global_priority_level =
226 AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
227 queue_input.doorbell_offset = q->properties.doorbell_off;
228 queue_input.mqd_addr = q->gart_mqd_addr;
229 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
230
231 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
232 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
233
234 queue_input.is_kfd_process = 1;
235 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
236 queue_input.queue_size = q->properties.queue_size >> 2;
237
238 queue_input.paging = false;
239 queue_input.tba_addr = qpd->tba_addr;
240 queue_input.tma_addr = qpd->tma_addr;
241 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
242 queue_input.skip_process_ctx_clear =
243 qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
244 (qpd->pqm->process->debug_trap_enabled ||
245 kfd_dbg_has_ttmps_always_setup(q->device));
246
247 queue_type = convert_to_mes_queue_type(q->properties.type);
248 if (queue_type < 0) {
249 dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
250 q->properties.type);
251 up_read(&adev->reset_domain->sem);
252 return -EINVAL;
253 }
254 queue_input.queue_type = (uint32_t)queue_type;
255
256 queue_input.exclusively_scheduled = q->properties.is_gws;
257
258 amdgpu_mes_lock(&adev->mes);
259 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
260 amdgpu_mes_unlock(&adev->mes);
261 up_read(&adev->reset_domain->sem);
262 if (r) {
263 dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
264 q->properties.doorbell_off);
265 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
266 kfd_hws_hang(dqm);
267 }
268
269 return r;
270 }
271
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)272 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
273 struct qcm_process_device *qpd)
274 {
275 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
276 int r;
277 struct mes_remove_queue_input queue_input;
278
279 if (!dqm->sched_running || dqm->sched_halt)
280 return 0;
281 if (!down_read_trylock(&adev->reset_domain->sem))
282 return -EIO;
283
284 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
285 queue_input.doorbell_offset = q->properties.doorbell_off;
286 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
287
288 amdgpu_mes_lock(&adev->mes);
289 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
290 amdgpu_mes_unlock(&adev->mes);
291 up_read(&adev->reset_domain->sem);
292
293 if (r) {
294 dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
295 q->properties.doorbell_off);
296 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
297 kfd_hws_hang(dqm);
298 }
299
300 return r;
301 }
302
remove_all_kfd_queues_mes(struct device_queue_manager * dqm)303 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
304 {
305 struct device_process_node *cur;
306 struct device *dev = dqm->dev->adev->dev;
307 struct qcm_process_device *qpd;
308 struct queue *q;
309 int retval = 0;
310
311 list_for_each_entry(cur, &dqm->queues, list) {
312 qpd = cur->qpd;
313 list_for_each_entry(q, &qpd->queues_list, list) {
314 if (q->properties.is_active) {
315 retval = remove_queue_mes(dqm, q, qpd);
316 if (retval) {
317 dev_err(dev, "%s: Failed to remove queue %d for dev %d",
318 __func__,
319 q->properties.queue_id,
320 dqm->dev->id);
321 return retval;
322 }
323 }
324 }
325 }
326
327 return retval;
328 }
329
add_all_kfd_queues_mes(struct device_queue_manager * dqm)330 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
331 {
332 struct device_process_node *cur;
333 struct device *dev = dqm->dev->adev->dev;
334 struct qcm_process_device *qpd;
335 struct queue *q;
336 int retval = 0;
337
338 list_for_each_entry(cur, &dqm->queues, list) {
339 qpd = cur->qpd;
340 list_for_each_entry(q, &qpd->queues_list, list) {
341 if (!q->properties.is_active)
342 continue;
343 retval = add_queue_mes(dqm, q, qpd);
344 if (retval) {
345 dev_err(dev, "%s: Failed to add queue %d for dev %d",
346 __func__,
347 q->properties.queue_id,
348 dqm->dev->id);
349 return retval;
350 }
351 }
352 }
353
354 return retval;
355 }
356
suspend_all_queues_mes(struct device_queue_manager * dqm)357 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
358 {
359 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
360 int r = 0;
361
362 if (!down_read_trylock(&adev->reset_domain->sem))
363 return -EIO;
364
365 r = amdgpu_mes_suspend(adev);
366 up_read(&adev->reset_domain->sem);
367
368 if (r) {
369 dev_err(adev->dev, "failed to suspend gangs from MES\n");
370 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
371 kfd_hws_hang(dqm);
372 }
373
374 return r;
375 }
376
resume_all_queues_mes(struct device_queue_manager * dqm)377 static int resume_all_queues_mes(struct device_queue_manager *dqm)
378 {
379 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
380 int r = 0;
381
382 if (!down_read_trylock(&adev->reset_domain->sem))
383 return -EIO;
384
385 r = amdgpu_mes_resume(adev);
386 up_read(&adev->reset_domain->sem);
387
388 if (r) {
389 dev_err(adev->dev, "failed to resume gangs from MES\n");
390 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
391 kfd_hws_hang(dqm);
392 }
393
394 return r;
395 }
396
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)397 static void increment_queue_count(struct device_queue_manager *dqm,
398 struct qcm_process_device *qpd,
399 struct queue *q)
400 {
401 dqm->active_queue_count++;
402 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
403 q->properties.type == KFD_QUEUE_TYPE_DIQ)
404 dqm->active_cp_queue_count++;
405
406 if (q->properties.is_gws) {
407 dqm->gws_queue_count++;
408 qpd->mapped_gws_queue = true;
409 }
410 }
411
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)412 static void decrement_queue_count(struct device_queue_manager *dqm,
413 struct qcm_process_device *qpd,
414 struct queue *q)
415 {
416 dqm->active_queue_count--;
417 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
418 q->properties.type == KFD_QUEUE_TYPE_DIQ)
419 dqm->active_cp_queue_count--;
420
421 if (q->properties.is_gws) {
422 dqm->gws_queue_count--;
423 qpd->mapped_gws_queue = false;
424 }
425 }
426
427 /*
428 * Allocate a doorbell ID to this queue.
429 * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
430 */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)431 static int allocate_doorbell(struct qcm_process_device *qpd,
432 struct queue *q,
433 uint32_t const *restore_id)
434 {
435 struct kfd_node *dev = qpd->dqm->dev;
436
437 if (!KFD_IS_SOC15(dev)) {
438 /* On pre-SOC15 chips we need to use the queue ID to
439 * preserve the user mode ABI.
440 */
441
442 if (restore_id && *restore_id != q->properties.queue_id)
443 return -EINVAL;
444
445 q->doorbell_id = q->properties.queue_id;
446 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
447 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
448 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
449 * doorbell assignments based on the engine and queue id.
450 * The doobell index distance between RLC (2*i) and (2*i+1)
451 * for a SDMA engine is 512.
452 */
453
454 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
455
456 /*
457 * q->properties.sdma_engine_id corresponds to the virtual
458 * sdma engine number. However, for doorbell allocation,
459 * we need the physical sdma engine id in order to get the
460 * correct doorbell offset.
461 */
462 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
463 get_num_all_sdma_engines(qpd->dqm) +
464 q->properties.sdma_engine_id]
465 + (q->properties.sdma_queue_id & 1)
466 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
467 + (q->properties.sdma_queue_id >> 1);
468
469 if (restore_id && *restore_id != valid_id)
470 return -EINVAL;
471 q->doorbell_id = valid_id;
472 } else {
473 /* For CP queues on SOC15 */
474 if (restore_id) {
475 /* make sure that ID is free */
476 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
477 return -EINVAL;
478
479 q->doorbell_id = *restore_id;
480 } else {
481 /* or reserve a free doorbell ID */
482 unsigned int found;
483
484 found = find_first_zero_bit(qpd->doorbell_bitmap,
485 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
486 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
487 pr_debug("No doorbells available");
488 return -EBUSY;
489 }
490 set_bit(found, qpd->doorbell_bitmap);
491 q->doorbell_id = found;
492 }
493 }
494
495 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
496 qpd->proc_doorbells,
497 q->doorbell_id,
498 dev->kfd->device_info.doorbell_size);
499 return 0;
500 }
501
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)502 static void deallocate_doorbell(struct qcm_process_device *qpd,
503 struct queue *q)
504 {
505 unsigned int old;
506 struct kfd_node *dev = qpd->dqm->dev;
507
508 if (!KFD_IS_SOC15(dev) ||
509 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
510 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
511 return;
512
513 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
514 WARN_ON(!old);
515 }
516
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)517 static void program_trap_handler_settings(struct device_queue_manager *dqm,
518 struct qcm_process_device *qpd)
519 {
520 uint32_t xcc_mask = dqm->dev->xcc_mask;
521 int xcc_id;
522
523 if (dqm->dev->kfd2kgd->program_trap_handler_settings)
524 for_each_inst(xcc_id, xcc_mask)
525 dqm->dev->kfd2kgd->program_trap_handler_settings(
526 dqm->dev->adev, qpd->vmid, qpd->tba_addr,
527 qpd->tma_addr, xcc_id);
528 }
529
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)530 static int allocate_vmid(struct device_queue_manager *dqm,
531 struct qcm_process_device *qpd,
532 struct queue *q)
533 {
534 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
535 struct device *dev = dqm->dev->adev->dev;
536 int allocated_vmid = -1, i;
537
538 for (i = dqm->dev->vm_info.first_vmid_kfd;
539 i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
540 if (!dqm->vmid_pasid[i]) {
541 allocated_vmid = i;
542 break;
543 }
544 }
545
546 if (allocated_vmid < 0) {
547 dev_err(dev, "no more vmid to allocate\n");
548 return -ENOSPC;
549 }
550
551 pr_debug("vmid allocated: %d\n", allocated_vmid);
552
553 dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
554
555 set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
556
557 qpd->vmid = allocated_vmid;
558 q->properties.vmid = allocated_vmid;
559
560 program_sh_mem_settings(dqm, qpd);
561
562 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
563 program_trap_handler_settings(dqm, qpd);
564
565 /* qpd->page_table_base is set earlier when register_process()
566 * is called, i.e. when the first queue is created.
567 */
568 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
569 qpd->vmid,
570 qpd->page_table_base);
571 /* invalidate the VM context after pasid and vmid mapping is set up */
572 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
573
574 if (dqm->dev->kfd2kgd->set_scratch_backing_va)
575 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
576 qpd->sh_hidden_private_base, qpd->vmid);
577
578 return 0;
579 }
580
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)581 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
582 struct qcm_process_device *qpd)
583 {
584 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
585 int ret;
586
587 if (!qpd->ib_kaddr)
588 return -ENOMEM;
589
590 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
591 if (ret)
592 return ret;
593
594 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
595 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
596 pmf->release_mem_size / sizeof(uint32_t));
597 }
598
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)599 static void deallocate_vmid(struct device_queue_manager *dqm,
600 struct qcm_process_device *qpd,
601 struct queue *q)
602 {
603 struct device *dev = dqm->dev->adev->dev;
604
605 /* On GFX v7, CP doesn't flush TC at dequeue */
606 if (q->device->adev->asic_type == CHIP_HAWAII)
607 if (flush_texture_cache_nocpsch(q->device, qpd))
608 dev_err(dev, "Failed to flush TC\n");
609
610 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
611
612 /* Release the vmid mapping */
613 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
614 dqm->vmid_pasid[qpd->vmid] = 0;
615
616 qpd->vmid = 0;
617 q->properties.vmid = 0;
618 }
619
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)620 static int create_queue_nocpsch(struct device_queue_manager *dqm,
621 struct queue *q,
622 struct qcm_process_device *qpd,
623 const struct kfd_criu_queue_priv_data *qd,
624 const void *restore_mqd, const void *restore_ctl_stack)
625 {
626 struct mqd_manager *mqd_mgr;
627 int retval;
628
629 dqm_lock(dqm);
630
631 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
632 pr_warn("Can't create new usermode queue because %d queues were already created\n",
633 dqm->total_queue_count);
634 retval = -EPERM;
635 goto out_unlock;
636 }
637
638 if (list_empty(&qpd->queues_list)) {
639 retval = allocate_vmid(dqm, qpd, q);
640 if (retval)
641 goto out_unlock;
642 }
643 q->properties.vmid = qpd->vmid;
644 /*
645 * Eviction state logic: mark all queues as evicted, even ones
646 * not currently active. Restoring inactive queues later only
647 * updates the is_evicted flag but is a no-op otherwise.
648 */
649 q->properties.is_evicted = !!qpd->evicted;
650
651 q->properties.tba_addr = qpd->tba_addr;
652 q->properties.tma_addr = qpd->tma_addr;
653
654 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
655 q->properties.type)];
656 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
657 retval = allocate_hqd(dqm, q);
658 if (retval)
659 goto deallocate_vmid;
660 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
661 q->pipe, q->queue);
662 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
663 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
664 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
665 if (retval)
666 goto deallocate_vmid;
667 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
668 }
669
670 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
671 if (retval)
672 goto out_deallocate_hqd;
673
674 /* Temporarily release dqm lock to avoid a circular lock dependency */
675 dqm_unlock(dqm);
676 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
677 dqm_lock(dqm);
678
679 if (!q->mqd_mem_obj) {
680 retval = -ENOMEM;
681 goto out_deallocate_doorbell;
682 }
683
684 if (qd)
685 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
686 &q->properties, restore_mqd, restore_ctl_stack,
687 qd->ctl_stack_size);
688 else
689 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
690 &q->gart_mqd_addr, &q->properties);
691
692 if (q->properties.is_active) {
693 if (!dqm->sched_running) {
694 WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
695 goto add_queue_to_list;
696 }
697
698 if (WARN(q->process->mm != current->mm,
699 "should only run in user thread"))
700 retval = -EFAULT;
701 else
702 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
703 q->queue, &q->properties, current->mm);
704 if (retval)
705 goto out_free_mqd;
706 }
707
708 add_queue_to_list:
709 list_add(&q->list, &qpd->queues_list);
710 qpd->queue_count++;
711 if (q->properties.is_active)
712 increment_queue_count(dqm, qpd, q);
713
714 /*
715 * Unconditionally increment this counter, regardless of the queue's
716 * type or whether the queue is active.
717 */
718 dqm->total_queue_count++;
719 pr_debug("Total of %d queues are accountable so far\n",
720 dqm->total_queue_count);
721 goto out_unlock;
722
723 out_free_mqd:
724 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
725 out_deallocate_doorbell:
726 deallocate_doorbell(qpd, q);
727 out_deallocate_hqd:
728 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
729 deallocate_hqd(dqm, q);
730 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
731 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
732 deallocate_sdma_queue(dqm, q);
733 deallocate_vmid:
734 if (list_empty(&qpd->queues_list))
735 deallocate_vmid(dqm, qpd, q);
736 out_unlock:
737 dqm_unlock(dqm);
738 return retval;
739 }
740
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)741 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
742 {
743 bool set;
744 int pipe, bit, i;
745
746 set = false;
747
748 for (pipe = dqm->next_pipe_to_allocate, i = 0;
749 i < get_pipes_per_mec(dqm);
750 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
751
752 if (!is_pipe_enabled(dqm, 0, pipe))
753 continue;
754
755 if (dqm->allocated_queues[pipe] != 0) {
756 bit = ffs(dqm->allocated_queues[pipe]) - 1;
757 dqm->allocated_queues[pipe] &= ~(1 << bit);
758 q->pipe = pipe;
759 q->queue = bit;
760 set = true;
761 break;
762 }
763 }
764
765 if (!set)
766 return -EBUSY;
767
768 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
769 /* horizontal hqd allocation */
770 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
771
772 return 0;
773 }
774
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)775 static inline void deallocate_hqd(struct device_queue_manager *dqm,
776 struct queue *q)
777 {
778 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
779 }
780
781 #define SQ_IND_CMD_CMD_KILL 0x00000003
782 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001
783
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)784 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
785 {
786 int status = 0;
787 unsigned int vmid;
788 uint16_t queried_pasid;
789 union SQ_CMD_BITS reg_sq_cmd;
790 union GRBM_GFX_INDEX_BITS reg_gfx_index;
791 struct kfd_process_device *pdd;
792 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
793 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
794 uint32_t xcc_mask = dev->xcc_mask;
795 int xcc_id;
796
797 reg_sq_cmd.u32All = 0;
798 reg_gfx_index.u32All = 0;
799
800 pr_debug("Killing all process wavefronts\n");
801
802 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
803 dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
804 return -EOPNOTSUPP;
805 }
806
807 /* taking the VMID for that process on the safe way using PDD */
808 pdd = kfd_get_process_device_data(dev, p);
809 if (!pdd)
810 return -EFAULT;
811
812 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
813 * ATC_VMID15_PASID_MAPPING
814 * to check which VMID the current process is mapped to.
815 */
816
817 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
818 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
819 (dev->adev, vmid, &queried_pasid);
820
821 if (status && queried_pasid == pdd->pasid) {
822 pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
823 vmid, p->lead_thread->pid);
824 break;
825 }
826 }
827
828 if (vmid > last_vmid_to_scan) {
829 dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
830 p->lead_thread->pid);
831 return -EFAULT;
832 }
833
834 reg_gfx_index.bits.sh_broadcast_writes = 1;
835 reg_gfx_index.bits.se_broadcast_writes = 1;
836 reg_gfx_index.bits.instance_broadcast_writes = 1;
837 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
838 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
839 reg_sq_cmd.bits.vm_id = vmid;
840
841 for_each_inst(xcc_id, xcc_mask)
842 dev->kfd2kgd->wave_control_execute(
843 dev->adev, reg_gfx_index.u32All,
844 reg_sq_cmd.u32All, xcc_id);
845
846 return 0;
847 }
848
849 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
850 * to avoid asynchronized access
851 */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)852 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
853 struct qcm_process_device *qpd,
854 struct queue *q)
855 {
856 int retval;
857 struct mqd_manager *mqd_mgr;
858
859 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
860 q->properties.type)];
861
862 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
863 deallocate_hqd(dqm, q);
864 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
865 deallocate_sdma_queue(dqm, q);
866 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
867 deallocate_sdma_queue(dqm, q);
868 else {
869 pr_debug("q->properties.type %d is invalid\n",
870 q->properties.type);
871 return -EINVAL;
872 }
873 dqm->total_queue_count--;
874
875 deallocate_doorbell(qpd, q);
876
877 if (!dqm->sched_running) {
878 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
879 return 0;
880 }
881
882 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
883 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
884 KFD_UNMAP_LATENCY_MS,
885 q->pipe, q->queue);
886 if (retval == -ETIME)
887 qpd->reset_wavefronts = true;
888
889 list_del(&q->list);
890 if (list_empty(&qpd->queues_list)) {
891 if (qpd->reset_wavefronts) {
892 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
893 dqm->dev);
894 /* dbgdev_wave_reset_wavefronts has to be called before
895 * deallocate_vmid(), i.e. when vmid is still in use.
896 */
897 dbgdev_wave_reset_wavefronts(dqm->dev,
898 qpd->pqm->process);
899 qpd->reset_wavefronts = false;
900 }
901
902 deallocate_vmid(dqm, qpd, q);
903 }
904 qpd->queue_count--;
905 if (q->properties.is_active)
906 decrement_queue_count(dqm, qpd, q);
907
908 return retval;
909 }
910
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)911 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
912 struct qcm_process_device *qpd,
913 struct queue *q)
914 {
915 int retval;
916 uint64_t sdma_val = 0;
917 struct device *dev = dqm->dev->adev->dev;
918 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
919 struct mqd_manager *mqd_mgr =
920 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
921
922 /* Get the SDMA queue stats */
923 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
924 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
925 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
926 &sdma_val);
927 if (retval)
928 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
929 q->properties.queue_id);
930 }
931
932 dqm_lock(dqm);
933 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
934 if (!retval)
935 pdd->sdma_past_activity_counter += sdma_val;
936 dqm_unlock(dqm);
937
938 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
939
940 return retval;
941 }
942
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)943 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
944 struct mqd_update_info *minfo)
945 {
946 int retval = 0;
947 struct device *dev = dqm->dev->adev->dev;
948 struct mqd_manager *mqd_mgr;
949 struct kfd_process_device *pdd;
950 bool prev_active = false;
951
952 dqm_lock(dqm);
953 pdd = kfd_get_process_device_data(q->device, q->process);
954 if (!pdd) {
955 retval = -ENODEV;
956 goto out_unlock;
957 }
958 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
959 q->properties.type)];
960
961 /* Save previous activity state for counters */
962 prev_active = q->properties.is_active;
963
964 /* Make sure the queue is unmapped before updating the MQD */
965 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
966 if (!dqm->dev->kfd->shared_resources.enable_mes)
967 retval = unmap_queues_cpsch(dqm,
968 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
969 else if (prev_active)
970 retval = remove_queue_mes(dqm, q, &pdd->qpd);
971
972 /* queue is reset so inaccessable */
973 if (pdd->has_reset_queue) {
974 retval = -EACCES;
975 goto out_unlock;
976 }
977
978 if (retval) {
979 dev_err(dev, "unmap queue failed\n");
980 goto out_unlock;
981 }
982 } else if (prev_active &&
983 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
984 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
985 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
986
987 if (!dqm->sched_running) {
988 WARN_ONCE(1, "Update non-HWS queue while stopped\n");
989 goto out_unlock;
990 }
991
992 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
993 (dqm->dev->kfd->cwsr_enabled ?
994 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
995 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
996 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
997 if (retval) {
998 dev_err(dev, "destroy mqd failed\n");
999 goto out_unlock;
1000 }
1001 }
1002
1003 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1004
1005 /*
1006 * check active state vs. the previous state and modify
1007 * counter accordingly. map_queues_cpsch uses the
1008 * dqm->active_queue_count to determine whether a new runlist must be
1009 * uploaded.
1010 */
1011 if (q->properties.is_active && !prev_active) {
1012 increment_queue_count(dqm, &pdd->qpd, q);
1013 } else if (!q->properties.is_active && prev_active) {
1014 decrement_queue_count(dqm, &pdd->qpd, q);
1015 } else if (q->gws && !q->properties.is_gws) {
1016 if (q->properties.is_active) {
1017 dqm->gws_queue_count++;
1018 pdd->qpd.mapped_gws_queue = true;
1019 }
1020 q->properties.is_gws = true;
1021 } else if (!q->gws && q->properties.is_gws) {
1022 if (q->properties.is_active) {
1023 dqm->gws_queue_count--;
1024 pdd->qpd.mapped_gws_queue = false;
1025 }
1026 q->properties.is_gws = false;
1027 }
1028
1029 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1030 if (!dqm->dev->kfd->shared_resources.enable_mes)
1031 retval = map_queues_cpsch(dqm);
1032 else if (q->properties.is_active)
1033 retval = add_queue_mes(dqm, q, &pdd->qpd);
1034 } else if (q->properties.is_active &&
1035 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1036 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1037 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1038 if (WARN(q->process->mm != current->mm,
1039 "should only run in user thread"))
1040 retval = -EFAULT;
1041 else
1042 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1043 q->pipe, q->queue,
1044 &q->properties, current->mm);
1045 }
1046
1047 out_unlock:
1048 dqm_unlock(dqm);
1049 return retval;
1050 }
1051
1052 /* suspend_single_queue does not lock the dqm like the
1053 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1054 * lock the dqm before calling, and unlock after calling.
1055 *
1056 * The reason we don't lock the dqm is because this function may be
1057 * called on multiple queues in a loop, so rather than locking/unlocking
1058 * multiple times, we will just keep the dqm locked for all of the calls.
1059 */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)1060 static int suspend_single_queue(struct device_queue_manager *dqm,
1061 struct kfd_process_device *pdd,
1062 struct queue *q)
1063 {
1064 bool is_new;
1065
1066 if (q->properties.is_suspended)
1067 return 0;
1068
1069 pr_debug("Suspending process pid %d queue [%i]\n",
1070 pdd->process->lead_thread->pid,
1071 q->properties.queue_id);
1072
1073 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1074
1075 if (is_new || q->properties.is_being_destroyed) {
1076 pr_debug("Suspend: skip %s queue id %i\n",
1077 is_new ? "new" : "destroyed",
1078 q->properties.queue_id);
1079 return -EBUSY;
1080 }
1081
1082 q->properties.is_suspended = true;
1083 if (q->properties.is_active) {
1084 if (dqm->dev->kfd->shared_resources.enable_mes) {
1085 int r = remove_queue_mes(dqm, q, &pdd->qpd);
1086
1087 if (r)
1088 return r;
1089 }
1090
1091 decrement_queue_count(dqm, &pdd->qpd, q);
1092 q->properties.is_active = false;
1093 }
1094
1095 return 0;
1096 }
1097
1098 /* resume_single_queue does not lock the dqm like the functions
1099 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1100 * lock the dqm before calling, and unlock after calling.
1101 *
1102 * The reason we don't lock the dqm is because this function may be
1103 * called on multiple queues in a loop, so rather than locking/unlocking
1104 * multiple times, we will just keep the dqm locked for all of the calls.
1105 */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1106 static int resume_single_queue(struct device_queue_manager *dqm,
1107 struct qcm_process_device *qpd,
1108 struct queue *q)
1109 {
1110 struct kfd_process_device *pdd;
1111
1112 if (!q->properties.is_suspended)
1113 return 0;
1114
1115 pdd = qpd_to_pdd(qpd);
1116
1117 pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1118 pdd->process->lead_thread->pid,
1119 q->properties.queue_id);
1120
1121 q->properties.is_suspended = false;
1122
1123 if (QUEUE_IS_ACTIVE(q->properties)) {
1124 if (dqm->dev->kfd->shared_resources.enable_mes) {
1125 int r = add_queue_mes(dqm, q, &pdd->qpd);
1126
1127 if (r)
1128 return r;
1129 }
1130
1131 q->properties.is_active = true;
1132 increment_queue_count(dqm, qpd, q);
1133 }
1134
1135 return 0;
1136 }
1137
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1138 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1139 struct qcm_process_device *qpd)
1140 {
1141 struct queue *q;
1142 struct mqd_manager *mqd_mgr;
1143 struct kfd_process_device *pdd;
1144 int retval, ret = 0;
1145
1146 dqm_lock(dqm);
1147 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1148 goto out;
1149
1150 pdd = qpd_to_pdd(qpd);
1151 pr_debug_ratelimited("Evicting process pid %d queues\n",
1152 pdd->process->lead_thread->pid);
1153
1154 pdd->last_evict_timestamp = get_jiffies_64();
1155 /* Mark all queues as evicted. Deactivate all active queues on
1156 * the qpd.
1157 */
1158 list_for_each_entry(q, &qpd->queues_list, list) {
1159 q->properties.is_evicted = true;
1160 if (!q->properties.is_active)
1161 continue;
1162
1163 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1164 q->properties.type)];
1165 q->properties.is_active = false;
1166 decrement_queue_count(dqm, qpd, q);
1167
1168 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1169 continue;
1170
1171 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1172 (dqm->dev->kfd->cwsr_enabled ?
1173 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1174 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1175 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1176 if (retval && !ret)
1177 /* Return the first error, but keep going to
1178 * maintain a consistent eviction state
1179 */
1180 ret = retval;
1181 }
1182
1183 out:
1184 dqm_unlock(dqm);
1185 return ret;
1186 }
1187
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1188 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1189 struct qcm_process_device *qpd)
1190 {
1191 struct queue *q;
1192 struct device *dev = dqm->dev->adev->dev;
1193 struct kfd_process_device *pdd;
1194 int retval = 0;
1195
1196 dqm_lock(dqm);
1197 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1198 goto out;
1199
1200 pdd = qpd_to_pdd(qpd);
1201
1202 /* The debugger creates processes that temporarily have not acquired
1203 * all VMs for all devices and has no VMs itself.
1204 * Skip queue eviction on process eviction.
1205 */
1206 if (!pdd->drm_priv)
1207 goto out;
1208
1209 pr_debug_ratelimited("Evicting process pid %d queues\n",
1210 pdd->process->lead_thread->pid);
1211
1212 if (dqm->dev->kfd->shared_resources.enable_mes)
1213 pdd->last_evict_timestamp = get_jiffies_64();
1214
1215 /* Mark all queues as evicted. Deactivate all active queues on
1216 * the qpd.
1217 */
1218 list_for_each_entry(q, &qpd->queues_list, list) {
1219 q->properties.is_evicted = true;
1220 if (!q->properties.is_active)
1221 continue;
1222
1223 q->properties.is_active = false;
1224 decrement_queue_count(dqm, qpd, q);
1225
1226 if (dqm->dev->kfd->shared_resources.enable_mes) {
1227 retval = remove_queue_mes(dqm, q, qpd);
1228 if (retval) {
1229 dev_err(dev, "Failed to evict queue %d\n",
1230 q->properties.queue_id);
1231 goto out;
1232 }
1233 }
1234 }
1235
1236 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1237 pdd->last_evict_timestamp = get_jiffies_64();
1238 retval = execute_queues_cpsch(dqm,
1239 qpd->is_debug ?
1240 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1241 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1242 USE_DEFAULT_GRACE_PERIOD);
1243 }
1244
1245 out:
1246 dqm_unlock(dqm);
1247 return retval;
1248 }
1249
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1250 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1251 struct qcm_process_device *qpd)
1252 {
1253 struct mm_struct *mm = NULL;
1254 struct queue *q;
1255 struct mqd_manager *mqd_mgr;
1256 struct kfd_process_device *pdd;
1257 uint64_t pd_base;
1258 uint64_t eviction_duration;
1259 int retval, ret = 0;
1260
1261 pdd = qpd_to_pdd(qpd);
1262 /* Retrieve PD base */
1263 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1264
1265 dqm_lock(dqm);
1266 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1267 goto out;
1268 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1269 qpd->evicted--;
1270 goto out;
1271 }
1272
1273 pr_debug_ratelimited("Restoring process pid %d queues\n",
1274 pdd->process->lead_thread->pid);
1275
1276 /* Update PD Base in QPD */
1277 qpd->page_table_base = pd_base;
1278 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1279
1280 if (!list_empty(&qpd->queues_list)) {
1281 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1282 dqm->dev->adev,
1283 qpd->vmid,
1284 qpd->page_table_base);
1285 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1286 }
1287
1288 /* Take a safe reference to the mm_struct, which may otherwise
1289 * disappear even while the kfd_process is still referenced.
1290 */
1291 mm = get_task_mm(pdd->process->lead_thread);
1292 if (!mm) {
1293 ret = -EFAULT;
1294 goto out;
1295 }
1296
1297 /* Remove the eviction flags. Activate queues that are not
1298 * inactive for other reasons.
1299 */
1300 list_for_each_entry(q, &qpd->queues_list, list) {
1301 q->properties.is_evicted = false;
1302 if (!QUEUE_IS_ACTIVE(q->properties))
1303 continue;
1304
1305 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1306 q->properties.type)];
1307 q->properties.is_active = true;
1308 increment_queue_count(dqm, qpd, q);
1309
1310 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1311 continue;
1312
1313 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1314 q->queue, &q->properties, mm);
1315 if (retval && !ret)
1316 /* Return the first error, but keep going to
1317 * maintain a consistent eviction state
1318 */
1319 ret = retval;
1320 }
1321 qpd->evicted = 0;
1322 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1323 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1324 out:
1325 if (mm)
1326 mmput(mm);
1327 dqm_unlock(dqm);
1328 return ret;
1329 }
1330
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1331 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1332 struct qcm_process_device *qpd)
1333 {
1334 struct queue *q;
1335 struct device *dev = dqm->dev->adev->dev;
1336 struct kfd_process_device *pdd;
1337 uint64_t eviction_duration;
1338 int retval = 0;
1339
1340 pdd = qpd_to_pdd(qpd);
1341
1342 dqm_lock(dqm);
1343 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1344 goto out;
1345 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1346 qpd->evicted--;
1347 goto out;
1348 }
1349
1350 /* The debugger creates processes that temporarily have not acquired
1351 * all VMs for all devices and has no VMs itself.
1352 * Skip queue restore on process restore.
1353 */
1354 if (!pdd->drm_priv)
1355 goto vm_not_acquired;
1356
1357 pr_debug_ratelimited("Restoring process pid %d queues\n",
1358 pdd->process->lead_thread->pid);
1359
1360 /* Update PD Base in QPD */
1361 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1362 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1363
1364 /* activate all active queues on the qpd */
1365 list_for_each_entry(q, &qpd->queues_list, list) {
1366 q->properties.is_evicted = false;
1367 if (!QUEUE_IS_ACTIVE(q->properties))
1368 continue;
1369
1370 q->properties.is_active = true;
1371 increment_queue_count(dqm, &pdd->qpd, q);
1372
1373 if (dqm->dev->kfd->shared_resources.enable_mes) {
1374 retval = add_queue_mes(dqm, q, qpd);
1375 if (retval) {
1376 dev_err(dev, "Failed to restore queue %d\n",
1377 q->properties.queue_id);
1378 goto out;
1379 }
1380 }
1381 }
1382 if (!dqm->dev->kfd->shared_resources.enable_mes)
1383 retval = execute_queues_cpsch(dqm,
1384 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1385 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1386 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1387 vm_not_acquired:
1388 qpd->evicted = 0;
1389 out:
1390 dqm_unlock(dqm);
1391 return retval;
1392 }
1393
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1394 static int register_process(struct device_queue_manager *dqm,
1395 struct qcm_process_device *qpd)
1396 {
1397 struct device_process_node *n;
1398 struct kfd_process_device *pdd;
1399 uint64_t pd_base;
1400 int retval;
1401
1402 n = kzalloc(sizeof(*n), GFP_KERNEL);
1403 if (!n)
1404 return -ENOMEM;
1405
1406 n->qpd = qpd;
1407
1408 pdd = qpd_to_pdd(qpd);
1409 /* Retrieve PD base */
1410 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1411
1412 dqm_lock(dqm);
1413 list_add(&n->list, &dqm->queues);
1414
1415 /* Update PD Base in QPD */
1416 qpd->page_table_base = pd_base;
1417 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1418
1419 retval = dqm->asic_ops.update_qpd(dqm, qpd);
1420
1421 dqm->processes_count++;
1422
1423 dqm_unlock(dqm);
1424
1425 /* Outside the DQM lock because under the DQM lock we can't do
1426 * reclaim or take other locks that others hold while reclaiming.
1427 */
1428 kfd_inc_compute_active(dqm->dev);
1429
1430 return retval;
1431 }
1432
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1433 static int unregister_process(struct device_queue_manager *dqm,
1434 struct qcm_process_device *qpd)
1435 {
1436 int retval;
1437 struct device_process_node *cur, *next;
1438
1439 pr_debug("qpd->queues_list is %s\n",
1440 list_empty(&qpd->queues_list) ? "empty" : "not empty");
1441
1442 retval = 0;
1443 dqm_lock(dqm);
1444
1445 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1446 if (qpd == cur->qpd) {
1447 list_del(&cur->list);
1448 kfree(cur);
1449 dqm->processes_count--;
1450 goto out;
1451 }
1452 }
1453 /* qpd not found in dqm list */
1454 retval = 1;
1455 out:
1456 dqm_unlock(dqm);
1457
1458 /* Outside the DQM lock because under the DQM lock we can't do
1459 * reclaim or take other locks that others hold while reclaiming.
1460 */
1461 if (!retval)
1462 kfd_dec_compute_active(dqm->dev);
1463
1464 return retval;
1465 }
1466
1467 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1468 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1469 unsigned int vmid)
1470 {
1471 uint32_t xcc_mask = dqm->dev->xcc_mask;
1472 int xcc_id, ret;
1473
1474 for_each_inst(xcc_id, xcc_mask) {
1475 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1476 dqm->dev->adev, pasid, vmid, xcc_id);
1477 if (ret)
1478 break;
1479 }
1480
1481 return ret;
1482 }
1483
init_interrupts(struct device_queue_manager * dqm)1484 static void init_interrupts(struct device_queue_manager *dqm)
1485 {
1486 uint32_t xcc_mask = dqm->dev->xcc_mask;
1487 unsigned int i, xcc_id;
1488
1489 for_each_inst(xcc_id, xcc_mask) {
1490 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1491 if (is_pipe_enabled(dqm, 0, i)) {
1492 dqm->dev->kfd2kgd->init_interrupts(
1493 dqm->dev->adev, i, xcc_id);
1494 }
1495 }
1496 }
1497 }
1498
initialize_nocpsch(struct device_queue_manager * dqm)1499 static int initialize_nocpsch(struct device_queue_manager *dqm)
1500 {
1501 int pipe, queue;
1502
1503 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1504
1505 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1506 sizeof(unsigned int), GFP_KERNEL);
1507 if (!dqm->allocated_queues)
1508 return -ENOMEM;
1509
1510 mutex_init(&dqm->lock_hidden);
1511 INIT_LIST_HEAD(&dqm->queues);
1512 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1513 dqm->active_cp_queue_count = 0;
1514 dqm->gws_queue_count = 0;
1515
1516 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1517 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1518
1519 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1520 if (test_bit(pipe_offset + queue,
1521 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1522 dqm->allocated_queues[pipe] |= 1 << queue;
1523 }
1524
1525 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1526
1527 init_sdma_bitmaps(dqm);
1528
1529 return 0;
1530 }
1531
uninitialize(struct device_queue_manager * dqm)1532 static void uninitialize(struct device_queue_manager *dqm)
1533 {
1534 int i;
1535
1536 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1537
1538 kfree(dqm->allocated_queues);
1539 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1540 kfree(dqm->mqd_mgrs[i]);
1541 mutex_destroy(&dqm->lock_hidden);
1542 }
1543
start_nocpsch(struct device_queue_manager * dqm)1544 static int start_nocpsch(struct device_queue_manager *dqm)
1545 {
1546 int r = 0;
1547
1548 pr_info("SW scheduler is used");
1549 init_interrupts(dqm);
1550
1551 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1552 r = pm_init(&dqm->packet_mgr, dqm);
1553 if (!r)
1554 dqm->sched_running = true;
1555
1556 return r;
1557 }
1558
stop_nocpsch(struct device_queue_manager * dqm)1559 static int stop_nocpsch(struct device_queue_manager *dqm)
1560 {
1561 dqm_lock(dqm);
1562 if (!dqm->sched_running) {
1563 dqm_unlock(dqm);
1564 return 0;
1565 }
1566
1567 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1568 pm_uninit(&dqm->packet_mgr);
1569 dqm->sched_running = false;
1570 dqm_unlock(dqm);
1571
1572 return 0;
1573 }
1574
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1575 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1576 struct queue *q, const uint32_t *restore_sdma_id)
1577 {
1578 struct device *dev = dqm->dev->adev->dev;
1579 int bit;
1580
1581 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1582 if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) {
1583 dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n",
1584 get_num_sdma_queues(dqm));
1585 return -ENOMEM;
1586 }
1587
1588 if (restore_sdma_id) {
1589 /* Re-use existing sdma_id */
1590 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1591 dev_err(dev, "SDMA queue already in use\n");
1592 return -EBUSY;
1593 }
1594 clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1595 q->sdma_id = *restore_sdma_id;
1596 } else {
1597 /* Find first available sdma_id */
1598 bit = find_first_bit(dqm->sdma_bitmap,
1599 get_num_sdma_queues(dqm));
1600 clear_bit(bit, dqm->sdma_bitmap);
1601 q->sdma_id = bit;
1602 }
1603
1604 q->properties.sdma_engine_id =
1605 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1606 q->properties.sdma_queue_id = q->sdma_id /
1607 kfd_get_num_sdma_engines(dqm->dev);
1608 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1609 if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) {
1610 dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n",
1611 get_num_xgmi_sdma_queues(dqm));
1612 return -ENOMEM;
1613 }
1614 if (restore_sdma_id) {
1615 /* Re-use existing sdma_id */
1616 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1617 dev_err(dev, "SDMA queue already in use\n");
1618 return -EBUSY;
1619 }
1620 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1621 q->sdma_id = *restore_sdma_id;
1622 } else {
1623 bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1624 get_num_xgmi_sdma_queues(dqm));
1625 clear_bit(bit, dqm->xgmi_sdma_bitmap);
1626 q->sdma_id = bit;
1627 }
1628 /* sdma_engine_id is sdma id including
1629 * both PCIe-optimized SDMAs and XGMI-
1630 * optimized SDMAs. The calculation below
1631 * assumes the first N engines are always
1632 * PCIe-optimized ones
1633 */
1634 q->properties.sdma_engine_id =
1635 kfd_get_num_sdma_engines(dqm->dev) +
1636 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1637 q->properties.sdma_queue_id = q->sdma_id /
1638 kfd_get_num_xgmi_sdma_engines(dqm->dev);
1639 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1640 int i, num_queues, num_engines, eng_offset = 0, start_engine;
1641 bool free_bit_found = false, is_xgmi = false;
1642
1643 if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1644 num_queues = get_num_sdma_queues(dqm);
1645 num_engines = kfd_get_num_sdma_engines(dqm->dev);
1646 q->properties.type = KFD_QUEUE_TYPE_SDMA;
1647 } else {
1648 num_queues = get_num_xgmi_sdma_queues(dqm);
1649 num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1650 eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1651 q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1652 is_xgmi = true;
1653 }
1654
1655 /* Scan available bit based on target engine ID. */
1656 start_engine = q->properties.sdma_engine_id - eng_offset;
1657 for (i = start_engine; i < num_queues; i += num_engines) {
1658
1659 if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1660 continue;
1661
1662 clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1663 q->sdma_id = i;
1664 q->properties.sdma_queue_id = q->sdma_id / num_engines;
1665 free_bit_found = true;
1666 break;
1667 }
1668
1669 if (!free_bit_found) {
1670 dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n",
1671 q->properties.sdma_engine_id, num_queues);
1672 return -ENOMEM;
1673 }
1674 }
1675
1676 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1677 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1678
1679 return 0;
1680 }
1681
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1682 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1683 struct queue *q)
1684 {
1685 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1686 if (q->sdma_id >= get_num_sdma_queues(dqm))
1687 return;
1688 set_bit(q->sdma_id, dqm->sdma_bitmap);
1689 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1690 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1691 return;
1692 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1693 }
1694 }
1695
1696 /*
1697 * Device Queue Manager implementation for cp scheduler
1698 */
1699
set_sched_resources(struct device_queue_manager * dqm)1700 static int set_sched_resources(struct device_queue_manager *dqm)
1701 {
1702 int i, mec;
1703 struct scheduling_resources res;
1704 struct device *dev = dqm->dev->adev->dev;
1705
1706 res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1707
1708 res.queue_mask = 0;
1709 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1710 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1711 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1712
1713 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1714 continue;
1715
1716 /* only acquire queues from the first MEC */
1717 if (mec > 0)
1718 continue;
1719
1720 /* This situation may be hit in the future if a new HW
1721 * generation exposes more than 64 queues. If so, the
1722 * definition of res.queue_mask needs updating
1723 */
1724 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1725 dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1726 break;
1727 }
1728
1729 res.queue_mask |= 1ull
1730 << amdgpu_queue_mask_bit_to_set_resource_bit(
1731 dqm->dev->adev, i);
1732 }
1733 res.gws_mask = ~0ull;
1734 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1735
1736 pr_debug("Scheduling resources:\n"
1737 "vmid mask: 0x%8X\n"
1738 "queue mask: 0x%8llX\n",
1739 res.vmid_mask, res.queue_mask);
1740
1741 return pm_send_set_resources(&dqm->packet_mgr, &res);
1742 }
1743
initialize_cpsch(struct device_queue_manager * dqm)1744 static int initialize_cpsch(struct device_queue_manager *dqm)
1745 {
1746 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1747
1748 mutex_init(&dqm->lock_hidden);
1749 INIT_LIST_HEAD(&dqm->queues);
1750 dqm->active_queue_count = dqm->processes_count = 0;
1751 dqm->active_cp_queue_count = 0;
1752 dqm->gws_queue_count = 0;
1753 dqm->active_runlist = false;
1754 dqm->trap_debug_vmid = 0;
1755
1756 init_sdma_bitmaps(dqm);
1757
1758 update_dqm_wait_times(dqm);
1759 return 0;
1760 }
1761
1762 /* halt_cpsch:
1763 * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1764 * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1765 * is called.
1766 */
halt_cpsch(struct device_queue_manager * dqm)1767 static int halt_cpsch(struct device_queue_manager *dqm)
1768 {
1769 int ret = 0;
1770
1771 dqm_lock(dqm);
1772 if (!dqm->sched_running) {
1773 dqm_unlock(dqm);
1774 return 0;
1775 }
1776
1777 WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1778
1779 if (!dqm->is_hws_hang) {
1780 if (!dqm->dev->kfd->shared_resources.enable_mes)
1781 ret = unmap_queues_cpsch(dqm,
1782 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1783 USE_DEFAULT_GRACE_PERIOD, false);
1784 else
1785 ret = remove_all_kfd_queues_mes(dqm);
1786 }
1787 dqm->sched_halt = true;
1788 dqm_unlock(dqm);
1789
1790 return ret;
1791 }
1792
1793 /* unhalt_cpsch
1794 * Unset dqm->sched_halt and map queues back to runlist
1795 */
unhalt_cpsch(struct device_queue_manager * dqm)1796 static int unhalt_cpsch(struct device_queue_manager *dqm)
1797 {
1798 int ret = 0;
1799
1800 dqm_lock(dqm);
1801 if (!dqm->sched_running || !dqm->sched_halt) {
1802 WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1803 dqm_unlock(dqm);
1804 return 0;
1805 }
1806 dqm->sched_halt = false;
1807 if (!dqm->dev->kfd->shared_resources.enable_mes)
1808 ret = execute_queues_cpsch(dqm,
1809 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1810 0, USE_DEFAULT_GRACE_PERIOD);
1811 else
1812 ret = add_all_kfd_queues_mes(dqm);
1813
1814 dqm_unlock(dqm);
1815
1816 return ret;
1817 }
1818
start_cpsch(struct device_queue_manager * dqm)1819 static int start_cpsch(struct device_queue_manager *dqm)
1820 {
1821 struct device *dev = dqm->dev->adev->dev;
1822 int retval, num_hw_queue_slots;
1823
1824 retval = 0;
1825
1826 dqm_lock(dqm);
1827
1828 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1829 retval = pm_init(&dqm->packet_mgr, dqm);
1830 if (retval)
1831 goto fail_packet_manager_init;
1832
1833 retval = set_sched_resources(dqm);
1834 if (retval)
1835 goto fail_set_sched_resources;
1836 }
1837 pr_debug("Allocating fence memory\n");
1838
1839 /* allocate fence memory on the gart */
1840 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1841 &dqm->fence_mem);
1842
1843 if (retval)
1844 goto fail_allocate_vidmem;
1845
1846 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1847 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1848
1849 init_interrupts(dqm);
1850
1851 /* clear hang status when driver try to start the hw scheduler */
1852 dqm->sched_running = true;
1853
1854 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1855 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
1856 KFD_DEQUEUE_WAIT_INIT, 0 /* unused */))
1857 dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n");
1858 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1859 }
1860
1861 /* setup per-queue reset detection buffer */
1862 num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1863 dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1864 NUM_XCC(dqm->dev->xcc_mask);
1865
1866 dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1867 dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1868
1869 if (!dqm->detect_hang_info) {
1870 retval = -ENOMEM;
1871 goto fail_detect_hang_buffer;
1872 }
1873
1874 dqm_unlock(dqm);
1875
1876 return 0;
1877 fail_detect_hang_buffer:
1878 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1879 fail_allocate_vidmem:
1880 fail_set_sched_resources:
1881 if (!dqm->dev->kfd->shared_resources.enable_mes)
1882 pm_uninit(&dqm->packet_mgr);
1883 fail_packet_manager_init:
1884 dqm_unlock(dqm);
1885 return retval;
1886 }
1887
stop_cpsch(struct device_queue_manager * dqm)1888 static int stop_cpsch(struct device_queue_manager *dqm)
1889 {
1890 int ret = 0;
1891
1892 dqm_lock(dqm);
1893 if (!dqm->sched_running) {
1894 dqm_unlock(dqm);
1895 return 0;
1896 }
1897
1898 if (!dqm->dev->kfd->shared_resources.enable_mes)
1899 ret = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
1900 0, USE_DEFAULT_GRACE_PERIOD, false);
1901 else
1902 ret = remove_all_kfd_queues_mes(dqm);
1903
1904 dqm->sched_running = false;
1905
1906 if (!dqm->dev->kfd->shared_resources.enable_mes)
1907 pm_release_ib(&dqm->packet_mgr);
1908
1909 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1910 if (!dqm->dev->kfd->shared_resources.enable_mes)
1911 pm_uninit(&dqm->packet_mgr);
1912 kfree(dqm->detect_hang_info);
1913 dqm->detect_hang_info = NULL;
1914 dqm_unlock(dqm);
1915
1916 return ret;
1917 }
1918
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1919 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1920 struct kernel_queue *kq,
1921 struct qcm_process_device *qpd)
1922 {
1923 dqm_lock(dqm);
1924 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1925 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1926 dqm->total_queue_count);
1927 dqm_unlock(dqm);
1928 return -EPERM;
1929 }
1930
1931 /*
1932 * Unconditionally increment this counter, regardless of the queue's
1933 * type or whether the queue is active.
1934 */
1935 dqm->total_queue_count++;
1936 pr_debug("Total of %d queues are accountable so far\n",
1937 dqm->total_queue_count);
1938
1939 list_add(&kq->list, &qpd->priv_queue_list);
1940 increment_queue_count(dqm, qpd, kq->queue);
1941 qpd->is_debug = true;
1942 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1943 USE_DEFAULT_GRACE_PERIOD);
1944 dqm_unlock(dqm);
1945
1946 return 0;
1947 }
1948
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1949 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1950 struct kernel_queue *kq,
1951 struct qcm_process_device *qpd)
1952 {
1953 dqm_lock(dqm);
1954 list_del(&kq->list);
1955 decrement_queue_count(dqm, qpd, kq->queue);
1956 qpd->is_debug = false;
1957 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1958 USE_DEFAULT_GRACE_PERIOD);
1959 /*
1960 * Unconditionally decrement this counter, regardless of the queue's
1961 * type.
1962 */
1963 dqm->total_queue_count--;
1964 pr_debug("Total of %d queues are accountable so far\n",
1965 dqm->total_queue_count);
1966 dqm_unlock(dqm);
1967 }
1968
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1969 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1970 struct qcm_process_device *qpd,
1971 const struct kfd_criu_queue_priv_data *qd,
1972 const void *restore_mqd, const void *restore_ctl_stack)
1973 {
1974 int retval;
1975 struct mqd_manager *mqd_mgr;
1976
1977 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1978 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1979 dqm->total_queue_count);
1980 retval = -EPERM;
1981 goto out;
1982 }
1983
1984 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1985 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1986 q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1987 dqm_lock(dqm);
1988 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1989 dqm_unlock(dqm);
1990 if (retval)
1991 goto out;
1992 }
1993
1994 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1995 if (retval)
1996 goto out_deallocate_sdma_queue;
1997
1998 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1999 q->properties.type)];
2000
2001 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2002 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2003 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2004 q->properties.tba_addr = qpd->tba_addr;
2005 q->properties.tma_addr = qpd->tma_addr;
2006 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2007 if (!q->mqd_mem_obj) {
2008 retval = -ENOMEM;
2009 goto out_deallocate_doorbell;
2010 }
2011
2012 dqm_lock(dqm);
2013 /*
2014 * Eviction state logic: mark all queues as evicted, even ones
2015 * not currently active. Restoring inactive queues later only
2016 * updates the is_evicted flag but is a no-op otherwise.
2017 */
2018 q->properties.is_evicted = !!qpd->evicted;
2019 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2020 kfd_dbg_has_cwsr_workaround(q->device);
2021
2022 if (qd)
2023 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2024 &q->properties, restore_mqd, restore_ctl_stack,
2025 qd->ctl_stack_size);
2026 else
2027 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2028 &q->gart_mqd_addr, &q->properties);
2029
2030 list_add(&q->list, &qpd->queues_list);
2031 qpd->queue_count++;
2032
2033 if (q->properties.is_active) {
2034 increment_queue_count(dqm, qpd, q);
2035
2036 if (!dqm->dev->kfd->shared_resources.enable_mes)
2037 retval = execute_queues_cpsch(dqm,
2038 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2039 else
2040 retval = add_queue_mes(dqm, q, qpd);
2041 if (retval)
2042 goto cleanup_queue;
2043 }
2044
2045 /*
2046 * Unconditionally increment this counter, regardless of the queue's
2047 * type or whether the queue is active.
2048 */
2049 dqm->total_queue_count++;
2050
2051 pr_debug("Total of %d queues are accountable so far\n",
2052 dqm->total_queue_count);
2053
2054 dqm_unlock(dqm);
2055 return retval;
2056
2057 cleanup_queue:
2058 qpd->queue_count--;
2059 list_del(&q->list);
2060 if (q->properties.is_active)
2061 decrement_queue_count(dqm, qpd, q);
2062 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2063 dqm_unlock(dqm);
2064 out_deallocate_doorbell:
2065 deallocate_doorbell(qpd, q);
2066 out_deallocate_sdma_queue:
2067 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2068 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2069 dqm_lock(dqm);
2070 deallocate_sdma_queue(dqm, q);
2071 dqm_unlock(dqm);
2072 }
2073 out:
2074 return retval;
2075 }
2076
amdkfd_fence_wait_timeout(struct device_queue_manager * dqm,uint64_t fence_value,unsigned int timeout_ms)2077 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2078 uint64_t fence_value,
2079 unsigned int timeout_ms)
2080 {
2081 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2082 struct device *dev = dqm->dev->adev->dev;
2083 uint64_t *fence_addr = dqm->fence_addr;
2084
2085 while (*fence_addr != fence_value) {
2086 /* Fatal err detected, this response won't come */
2087 if (amdgpu_amdkfd_is_fed(dqm->dev->adev) ||
2088 amdgpu_in_reset(dqm->dev->adev))
2089 return -EIO;
2090
2091 if (time_after(jiffies, end_jiffies)) {
2092 dev_err(dev, "qcm fence wait loop timeout expired\n");
2093 /* In HWS case, this is used to halt the driver thread
2094 * in order not to mess up CP states before doing
2095 * scandumps for FW debugging.
2096 */
2097 while (halt_if_hws_hang)
2098 schedule();
2099
2100 return -ETIME;
2101 }
2102 schedule();
2103 }
2104
2105 return 0;
2106 }
2107
2108 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)2109 static int map_queues_cpsch(struct device_queue_manager *dqm)
2110 {
2111 struct device *dev = dqm->dev->adev->dev;
2112 int retval;
2113
2114 if (!dqm->sched_running || dqm->sched_halt)
2115 return 0;
2116 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2117 return 0;
2118 if (dqm->active_runlist)
2119 return 0;
2120
2121 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2122 pr_debug("%s sent runlist\n", __func__);
2123 if (retval) {
2124 dev_err(dev, "failed to execute runlist\n");
2125 return retval;
2126 }
2127 dqm->active_runlist = true;
2128
2129 return retval;
2130 }
2131
set_queue_as_reset(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)2132 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2133 struct qcm_process_device *qpd)
2134 {
2135 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2136
2137 dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2138 q->properties.queue_id, pdd->process->lead_thread->pid);
2139
2140 pdd->has_reset_queue = true;
2141 if (q->properties.is_active) {
2142 q->properties.is_active = false;
2143 decrement_queue_count(dqm, qpd, q);
2144 }
2145 }
2146
detect_queue_hang(struct device_queue_manager * dqm)2147 static int detect_queue_hang(struct device_queue_manager *dqm)
2148 {
2149 int i;
2150
2151 /* detect should be used only in dqm locked queue reset */
2152 if (WARN_ON(dqm->detect_hang_count > 0))
2153 return 0;
2154
2155 memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2156
2157 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2158 uint32_t mec, pipe, queue;
2159 int xcc_id;
2160
2161 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2162 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2163
2164 if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2165 continue;
2166
2167 amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2168
2169 for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2170 uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2171 dqm->dev->adev, pipe, queue, xcc_id);
2172 struct dqm_detect_hang_info hang_info;
2173
2174 if (!queue_addr)
2175 continue;
2176
2177 hang_info.pipe_id = pipe;
2178 hang_info.queue_id = queue;
2179 hang_info.xcc_id = xcc_id;
2180 hang_info.queue_address = queue_addr;
2181
2182 dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2183 dqm->detect_hang_count++;
2184 }
2185 }
2186
2187 return dqm->detect_hang_count;
2188 }
2189
find_queue_by_address(struct device_queue_manager * dqm,uint64_t queue_address)2190 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2191 {
2192 struct device_process_node *cur;
2193 struct qcm_process_device *qpd;
2194 struct queue *q;
2195
2196 list_for_each_entry(cur, &dqm->queues, list) {
2197 qpd = cur->qpd;
2198 list_for_each_entry(q, &qpd->queues_list, list) {
2199 if (queue_address == q->properties.queue_address)
2200 return q;
2201 }
2202 }
2203
2204 return NULL;
2205 }
2206
reset_hung_queues(struct device_queue_manager * dqm)2207 static int reset_hung_queues(struct device_queue_manager *dqm)
2208 {
2209 int r = 0, reset_count = 0, i;
2210
2211 if (!dqm->detect_hang_info || dqm->is_hws_hang)
2212 return -EIO;
2213
2214 /* assume dqm locked. */
2215 if (!detect_queue_hang(dqm))
2216 return -ENOTRECOVERABLE;
2217
2218 for (i = 0; i < dqm->detect_hang_count; i++) {
2219 struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2220 struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2221 struct kfd_process_device *pdd;
2222 uint64_t queue_addr = 0;
2223
2224 if (!q) {
2225 r = -ENOTRECOVERABLE;
2226 goto reset_fail;
2227 }
2228
2229 pdd = kfd_get_process_device_data(dqm->dev, q->process);
2230 if (!pdd) {
2231 r = -ENOTRECOVERABLE;
2232 goto reset_fail;
2233 }
2234
2235 queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2236 hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2237 KFD_UNMAP_LATENCY_MS);
2238
2239 /* either reset failed or we reset an unexpected queue. */
2240 if (queue_addr != q->properties.queue_address) {
2241 r = -ENOTRECOVERABLE;
2242 goto reset_fail;
2243 }
2244
2245 set_queue_as_reset(dqm, q, &pdd->qpd);
2246 reset_count++;
2247 }
2248
2249 if (reset_count == dqm->detect_hang_count)
2250 kfd_signal_reset_event(dqm->dev);
2251 else
2252 r = -ENOTRECOVERABLE;
2253
2254 reset_fail:
2255 dqm->detect_hang_count = 0;
2256
2257 return r;
2258 }
2259
sdma_has_hang(struct device_queue_manager * dqm)2260 static bool sdma_has_hang(struct device_queue_manager *dqm)
2261 {
2262 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2263 int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2264 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2265 int i, j;
2266
2267 for (i = engine_start; i < engine_end; i++) {
2268 for (j = 0; j < num_queues_per_eng; j++) {
2269 if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j))
2270 continue;
2271
2272 return true;
2273 }
2274 }
2275
2276 return false;
2277 }
2278
set_sdma_queue_as_reset(struct device_queue_manager * dqm,uint32_t doorbell_off)2279 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm,
2280 uint32_t doorbell_off)
2281 {
2282 struct device_process_node *cur;
2283 struct qcm_process_device *qpd;
2284 struct queue *q;
2285
2286 list_for_each_entry(cur, &dqm->queues, list) {
2287 qpd = cur->qpd;
2288 list_for_each_entry(q, &qpd->queues_list, list) {
2289 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2290 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) &&
2291 q->properties.doorbell_off == doorbell_off) {
2292 set_queue_as_reset(dqm, q, qpd);
2293 return true;
2294 }
2295 }
2296 }
2297
2298 return false;
2299 }
2300
reset_hung_queues_sdma(struct device_queue_manager * dqm)2301 static int reset_hung_queues_sdma(struct device_queue_manager *dqm)
2302 {
2303 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2304 int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2305 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2306 int r = 0, i, j;
2307
2308 if (dqm->is_hws_hang)
2309 return -EIO;
2310
2311 /* Scan for hung HW queues and reset engine. */
2312 dqm->detect_hang_count = 0;
2313 for (i = engine_start; i < engine_end; i++) {
2314 for (j = 0; j < num_queues_per_eng; j++) {
2315 uint32_t doorbell_off =
2316 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j);
2317
2318 if (!doorbell_off)
2319 continue;
2320
2321 /* Reset engine and check. */
2322 if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) ||
2323 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) ||
2324 !set_sdma_queue_as_reset(dqm, doorbell_off)) {
2325 r = -ENOTRECOVERABLE;
2326 goto reset_fail;
2327 }
2328
2329 /* Should only expect one queue active per engine */
2330 dqm->detect_hang_count++;
2331 break;
2332 }
2333 }
2334
2335 /* Signal process reset */
2336 if (dqm->detect_hang_count)
2337 kfd_signal_reset_event(dqm->dev);
2338 else
2339 r = -ENOTRECOVERABLE;
2340
2341 reset_fail:
2342 dqm->detect_hang_count = 0;
2343
2344 return r;
2345 }
2346
reset_queues_on_hws_hang(struct device_queue_manager * dqm,bool is_sdma)2347 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma)
2348 {
2349 struct amdgpu_device *adev = dqm->dev->adev;
2350
2351 while (halt_if_hws_hang)
2352 schedule();
2353
2354 if (adev->debug_disable_gpu_ring_reset) {
2355 dev_info_once(adev->dev,
2356 "%s queue hung, but ring reset disabled",
2357 is_sdma ? "sdma" : "compute");
2358
2359 return -EPERM;
2360 }
2361 if (!amdgpu_gpu_recovery)
2362 return -ENOTRECOVERABLE;
2363
2364 return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm);
2365 }
2366
2367 /* dqm->lock mutex has to be locked before calling this function
2368 *
2369 * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time
2370 * for context switch latency. Lower values are used by debugger
2371 * since context switching are triggered at high frequency.
2372 * This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE
2373 *
2374 */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)2375 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2376 enum kfd_unmap_queues_filter filter,
2377 uint32_t filter_param,
2378 uint32_t grace_period,
2379 bool reset)
2380 {
2381 struct device *dev = dqm->dev->adev->dev;
2382 struct mqd_manager *mqd_mgr;
2383 int retval;
2384
2385 if (!dqm->sched_running)
2386 return 0;
2387 if (!dqm->active_runlist)
2388 return 0;
2389 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2390 return -EIO;
2391
2392 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2393 retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2394 KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period);
2395 if (retval)
2396 goto out;
2397 }
2398
2399 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2400 if (retval)
2401 goto out;
2402
2403 *dqm->fence_addr = KFD_FENCE_INIT;
2404 mb();
2405 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2406 KFD_FENCE_COMPLETED);
2407 /* should be timed out */
2408 retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2409 queue_preemption_timeout_ms);
2410 if (retval) {
2411 dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2412 kfd_hws_hang(dqm);
2413 goto out;
2414 }
2415
2416 /* In the current MEC firmware implementation, if compute queue
2417 * doesn't response to the preemption request in time, HIQ will
2418 * abandon the unmap request without returning any timeout error
2419 * to driver. Instead, MEC firmware will log the doorbell of the
2420 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2421 * To make sure the queue unmap was successful, driver need to
2422 * check those fields
2423 */
2424 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2425 if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) &&
2426 reset_queues_on_hws_hang(dqm, false))
2427 goto reset_fail;
2428
2429 /* Check for SDMA hang and attempt SDMA reset */
2430 if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true))
2431 goto reset_fail;
2432
2433 /* We need to reset the grace period value for this device */
2434 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2435 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2436 KFD_DEQUEUE_WAIT_RESET, 0 /* unused */))
2437 dev_err(dev, "Failed to reset grace period\n");
2438 }
2439
2440 pm_release_ib(&dqm->packet_mgr);
2441 dqm->active_runlist = false;
2442 out:
2443 up_read(&dqm->dev->adev->reset_domain->sem);
2444 return retval;
2445
2446 reset_fail:
2447 dqm->is_hws_hang = true;
2448 kfd_hws_hang(dqm);
2449 up_read(&dqm->dev->adev->reset_domain->sem);
2450 return -ETIME;
2451 }
2452
2453 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)2454 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2455 {
2456 int retval;
2457
2458 dqm_lock(dqm);
2459
2460 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2461 pasid, USE_DEFAULT_GRACE_PERIOD, true);
2462
2463 dqm_unlock(dqm);
2464 return retval;
2465 }
2466
2467 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2468 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2469 enum kfd_unmap_queues_filter filter,
2470 uint32_t filter_param,
2471 uint32_t grace_period)
2472 {
2473 int retval;
2474
2475 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2476 return -EIO;
2477 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2478 if (!retval)
2479 retval = map_queues_cpsch(dqm);
2480 up_read(&dqm->dev->adev->reset_domain->sem);
2481 return retval;
2482 }
2483
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2484 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2485 struct queue *q)
2486 {
2487 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2488 q->process);
2489 int ret = 0;
2490
2491 if (WARN_ON(!pdd))
2492 return ret;
2493
2494 if (pdd->qpd.is_debug)
2495 return ret;
2496
2497 q->properties.is_being_destroyed = true;
2498
2499 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2500 dqm_unlock(dqm);
2501 mutex_unlock(&q->process->mutex);
2502 ret = wait_event_interruptible(dqm->destroy_wait,
2503 !q->properties.is_suspended);
2504
2505 mutex_lock(&q->process->mutex);
2506 dqm_lock(dqm);
2507 }
2508
2509 return ret;
2510 }
2511
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2512 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2513 struct qcm_process_device *qpd,
2514 struct queue *q)
2515 {
2516 int retval;
2517 struct mqd_manager *mqd_mgr;
2518 uint64_t sdma_val = 0;
2519 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2520 struct device *dev = dqm->dev->adev->dev;
2521
2522 /* Get the SDMA queue stats */
2523 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2524 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2525 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2526 &sdma_val);
2527 if (retval)
2528 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2529 q->properties.queue_id);
2530 }
2531
2532 /* remove queue from list to prevent rescheduling after preemption */
2533 dqm_lock(dqm);
2534
2535 retval = wait_on_destroy_queue(dqm, q);
2536
2537 if (retval) {
2538 dqm_unlock(dqm);
2539 return retval;
2540 }
2541
2542 if (qpd->is_debug) {
2543 /*
2544 * error, currently we do not allow to destroy a queue
2545 * of a currently debugged process
2546 */
2547 retval = -EBUSY;
2548 goto failed_try_destroy_debugged_queue;
2549
2550 }
2551
2552 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2553 q->properties.type)];
2554
2555 deallocate_doorbell(qpd, q);
2556
2557 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2558 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2559 deallocate_sdma_queue(dqm, q);
2560 pdd->sdma_past_activity_counter += sdma_val;
2561 }
2562
2563 if (q->properties.is_active) {
2564 decrement_queue_count(dqm, qpd, q);
2565 q->properties.is_active = false;
2566 if (!dqm->dev->kfd->shared_resources.enable_mes) {
2567 retval = execute_queues_cpsch(dqm,
2568 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2569 USE_DEFAULT_GRACE_PERIOD);
2570 if (retval == -ETIME)
2571 qpd->reset_wavefronts = true;
2572 } else {
2573 retval = remove_queue_mes(dqm, q, qpd);
2574 }
2575 }
2576 list_del(&q->list);
2577 qpd->queue_count--;
2578
2579 /*
2580 * Unconditionally decrement this counter, regardless of the queue's
2581 * type
2582 */
2583 dqm->total_queue_count--;
2584 pr_debug("Total of %d queues are accountable so far\n",
2585 dqm->total_queue_count);
2586
2587 dqm_unlock(dqm);
2588
2589 /*
2590 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2591 * circular locking
2592 */
2593 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2594 qpd->pqm->process, q->device,
2595 -1, false, NULL, 0);
2596
2597 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2598
2599 return retval;
2600
2601 failed_try_destroy_debugged_queue:
2602
2603 dqm_unlock(dqm);
2604 return retval;
2605 }
2606
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size,u32 misc_process_properties)2607 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2608 struct qcm_process_device *qpd,
2609 enum cache_policy default_policy,
2610 enum cache_policy alternate_policy,
2611 void __user *alternate_aperture_base,
2612 uint64_t alternate_aperture_size,
2613 u32 misc_process_properties)
2614 {
2615 bool retval = true;
2616
2617 if (!dqm->asic_ops.set_cache_memory_policy)
2618 return retval;
2619
2620 dqm_lock(dqm);
2621
2622 retval = dqm->asic_ops.set_cache_memory_policy(
2623 dqm,
2624 qpd,
2625 default_policy,
2626 alternate_policy,
2627 alternate_aperture_base,
2628 alternate_aperture_size,
2629 misc_process_properties);
2630
2631 if (retval)
2632 goto out;
2633
2634 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2635 program_sh_mem_settings(dqm, qpd);
2636
2637 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2638 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2639 qpd->sh_mem_ape1_limit);
2640
2641 out:
2642 dqm_unlock(dqm);
2643 return retval;
2644 }
2645
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2646 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2647 struct qcm_process_device *qpd)
2648 {
2649 struct queue *q;
2650 struct device_process_node *cur, *next_dpn;
2651 int retval = 0;
2652 bool found = false;
2653
2654 dqm_lock(dqm);
2655
2656 /* Clear all user mode queues */
2657 while (!list_empty(&qpd->queues_list)) {
2658 struct mqd_manager *mqd_mgr;
2659 int ret;
2660
2661 q = list_first_entry(&qpd->queues_list, struct queue, list);
2662 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2663 q->properties.type)];
2664 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2665 if (ret)
2666 retval = ret;
2667 dqm_unlock(dqm);
2668 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2669 dqm_lock(dqm);
2670 }
2671
2672 /* Unregister process */
2673 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2674 if (qpd == cur->qpd) {
2675 list_del(&cur->list);
2676 kfree(cur);
2677 dqm->processes_count--;
2678 found = true;
2679 break;
2680 }
2681 }
2682
2683 dqm_unlock(dqm);
2684
2685 /* Outside the DQM lock because under the DQM lock we can't do
2686 * reclaim or take other locks that others hold while reclaiming.
2687 */
2688 if (found)
2689 kfd_dec_compute_active(dqm->dev);
2690
2691 return retval;
2692 }
2693
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2694 static int get_wave_state(struct device_queue_manager *dqm,
2695 struct queue *q,
2696 void __user *ctl_stack,
2697 u32 *ctl_stack_used_size,
2698 u32 *save_area_used_size)
2699 {
2700 struct mqd_manager *mqd_mgr;
2701
2702 dqm_lock(dqm);
2703
2704 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2705
2706 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2707 q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2708 !mqd_mgr->get_wave_state) {
2709 dqm_unlock(dqm);
2710 return -EINVAL;
2711 }
2712
2713 dqm_unlock(dqm);
2714
2715 /*
2716 * get_wave_state is outside the dqm lock to prevent circular locking
2717 * and the queue should be protected against destruction by the process
2718 * lock.
2719 */
2720 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2721 ctl_stack, ctl_stack_used_size, save_area_used_size);
2722 }
2723
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2724 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2725 const struct queue *q,
2726 u32 *mqd_size,
2727 u32 *ctl_stack_size)
2728 {
2729 struct mqd_manager *mqd_mgr;
2730 enum KFD_MQD_TYPE mqd_type =
2731 get_mqd_type_from_queue_type(q->properties.type);
2732
2733 dqm_lock(dqm);
2734 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2735 *mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask);
2736 *ctl_stack_size = 0;
2737
2738 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2739 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2740
2741 dqm_unlock(dqm);
2742 }
2743
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2744 static int checkpoint_mqd(struct device_queue_manager *dqm,
2745 const struct queue *q,
2746 void *mqd,
2747 void *ctl_stack)
2748 {
2749 struct mqd_manager *mqd_mgr;
2750 int r = 0;
2751 enum KFD_MQD_TYPE mqd_type =
2752 get_mqd_type_from_queue_type(q->properties.type);
2753
2754 dqm_lock(dqm);
2755
2756 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2757 r = -EINVAL;
2758 goto dqm_unlock;
2759 }
2760
2761 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2762 if (!mqd_mgr->checkpoint_mqd) {
2763 r = -EOPNOTSUPP;
2764 goto dqm_unlock;
2765 }
2766
2767 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2768
2769 dqm_unlock:
2770 dqm_unlock(dqm);
2771 return r;
2772 }
2773
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2774 static int process_termination_cpsch(struct device_queue_manager *dqm,
2775 struct qcm_process_device *qpd)
2776 {
2777 int retval;
2778 struct queue *q;
2779 struct device *dev = dqm->dev->adev->dev;
2780 struct kernel_queue *kq, *kq_next;
2781 struct mqd_manager *mqd_mgr;
2782 struct device_process_node *cur, *next_dpn;
2783 enum kfd_unmap_queues_filter filter =
2784 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2785 bool found = false;
2786
2787 retval = 0;
2788
2789 dqm_lock(dqm);
2790
2791 /* Clean all kernel queues */
2792 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2793 list_del(&kq->list);
2794 decrement_queue_count(dqm, qpd, kq->queue);
2795 qpd->is_debug = false;
2796 dqm->total_queue_count--;
2797 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2798 }
2799
2800 /* Clear all user mode queues */
2801 list_for_each_entry(q, &qpd->queues_list, list) {
2802 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2803 deallocate_sdma_queue(dqm, q);
2804 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2805 deallocate_sdma_queue(dqm, q);
2806
2807 if (q->properties.is_active) {
2808 decrement_queue_count(dqm, qpd, q);
2809
2810 if (dqm->dev->kfd->shared_resources.enable_mes) {
2811 retval = remove_queue_mes(dqm, q, qpd);
2812 if (retval)
2813 dev_err(dev, "Failed to remove queue %d\n",
2814 q->properties.queue_id);
2815 }
2816 }
2817
2818 dqm->total_queue_count--;
2819 }
2820
2821 /* Unregister process */
2822 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2823 if (qpd == cur->qpd) {
2824 list_del(&cur->list);
2825 kfree(cur);
2826 dqm->processes_count--;
2827 found = true;
2828 break;
2829 }
2830 }
2831
2832 if (!dqm->dev->kfd->shared_resources.enable_mes)
2833 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2834
2835 if ((retval || qpd->reset_wavefronts) &&
2836 down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2837 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2838 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2839 qpd->reset_wavefronts = false;
2840 up_read(&dqm->dev->adev->reset_domain->sem);
2841 }
2842
2843 /* Lastly, free mqd resources.
2844 * Do free_mqd() after dqm_unlock to avoid circular locking.
2845 */
2846 while (!list_empty(&qpd->queues_list)) {
2847 q = list_first_entry(&qpd->queues_list, struct queue, list);
2848 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2849 q->properties.type)];
2850 list_del(&q->list);
2851 qpd->queue_count--;
2852 dqm_unlock(dqm);
2853 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2854 dqm_lock(dqm);
2855 }
2856 dqm_unlock(dqm);
2857
2858 /* Outside the DQM lock because under the DQM lock we can't do
2859 * reclaim or take other locks that others hold while reclaiming.
2860 */
2861 if (found)
2862 kfd_dec_compute_active(dqm->dev);
2863
2864 return retval;
2865 }
2866
init_mqd_managers(struct device_queue_manager * dqm)2867 static int init_mqd_managers(struct device_queue_manager *dqm)
2868 {
2869 int i, j;
2870 struct device *dev = dqm->dev->adev->dev;
2871 struct mqd_manager *mqd_mgr;
2872
2873 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2874 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2875 if (!mqd_mgr) {
2876 dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2877 goto out_free;
2878 }
2879 dqm->mqd_mgrs[i] = mqd_mgr;
2880 }
2881
2882 return 0;
2883
2884 out_free:
2885 for (j = 0; j < i; j++) {
2886 kfree(dqm->mqd_mgrs[j]);
2887 dqm->mqd_mgrs[j] = NULL;
2888 }
2889
2890 return -ENOMEM;
2891 }
2892
2893 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2894 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2895 {
2896 int retval;
2897 struct kfd_node *dev = dqm->dev;
2898 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2899 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2900 get_num_all_sdma_engines(dqm) *
2901 dev->kfd->device_info.num_sdma_queues_per_engine +
2902 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2903 NUM_XCC(dqm->dev->xcc_mask));
2904
2905 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2906 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2907 (void *)&(mem_obj->cpu_ptr), false);
2908
2909 return retval;
2910 }
2911
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)2912 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2913 struct kfd_mem_obj *mqd)
2914 {
2915 WARN(!mqd, "No hiq sdma mqd trunk to free");
2916
2917 amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
2918 }
2919
device_queue_manager_init(struct kfd_node * dev)2920 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2921 {
2922 struct device_queue_manager *dqm;
2923
2924 pr_debug("Loading device queue manager\n");
2925
2926 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2927 if (!dqm)
2928 return NULL;
2929
2930 switch (dev->adev->asic_type) {
2931 /* HWS is not available on Hawaii. */
2932 case CHIP_HAWAII:
2933 /* HWS depends on CWSR for timely dequeue. CWSR is not
2934 * available on Tonga.
2935 *
2936 * FIXME: This argument also applies to Kaveri.
2937 */
2938 case CHIP_TONGA:
2939 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2940 break;
2941 default:
2942 dqm->sched_policy = sched_policy;
2943 break;
2944 }
2945
2946 dqm->dev = dev;
2947 switch (dqm->sched_policy) {
2948 case KFD_SCHED_POLICY_HWS:
2949 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2950 /* initialize dqm for cp scheduling */
2951 dqm->ops.create_queue = create_queue_cpsch;
2952 dqm->ops.initialize = initialize_cpsch;
2953 dqm->ops.start = start_cpsch;
2954 dqm->ops.stop = stop_cpsch;
2955 dqm->ops.halt = halt_cpsch;
2956 dqm->ops.unhalt = unhalt_cpsch;
2957 dqm->ops.destroy_queue = destroy_queue_cpsch;
2958 dqm->ops.update_queue = update_queue;
2959 dqm->ops.register_process = register_process;
2960 dqm->ops.unregister_process = unregister_process;
2961 dqm->ops.uninitialize = uninitialize;
2962 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2963 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2964 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2965 dqm->ops.process_termination = process_termination_cpsch;
2966 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2967 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2968 dqm->ops.get_wave_state = get_wave_state;
2969 dqm->ops.reset_queues = reset_queues_cpsch;
2970 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2971 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2972 break;
2973 case KFD_SCHED_POLICY_NO_HWS:
2974 /* initialize dqm for no cp scheduling */
2975 dqm->ops.start = start_nocpsch;
2976 dqm->ops.stop = stop_nocpsch;
2977 dqm->ops.create_queue = create_queue_nocpsch;
2978 dqm->ops.destroy_queue = destroy_queue_nocpsch;
2979 dqm->ops.update_queue = update_queue;
2980 dqm->ops.register_process = register_process;
2981 dqm->ops.unregister_process = unregister_process;
2982 dqm->ops.initialize = initialize_nocpsch;
2983 dqm->ops.uninitialize = uninitialize;
2984 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2985 dqm->ops.process_termination = process_termination_nocpsch;
2986 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2987 dqm->ops.restore_process_queues =
2988 restore_process_queues_nocpsch;
2989 dqm->ops.get_wave_state = get_wave_state;
2990 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2991 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2992 break;
2993 default:
2994 dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2995 goto out_free;
2996 }
2997
2998 switch (dev->adev->asic_type) {
2999 case CHIP_KAVERI:
3000 case CHIP_HAWAII:
3001 device_queue_manager_init_cik(&dqm->asic_ops);
3002 break;
3003
3004 case CHIP_CARRIZO:
3005 case CHIP_TONGA:
3006 case CHIP_FIJI:
3007 case CHIP_POLARIS10:
3008 case CHIP_POLARIS11:
3009 case CHIP_POLARIS12:
3010 case CHIP_VEGAM:
3011 device_queue_manager_init_vi(&dqm->asic_ops);
3012 break;
3013
3014 default:
3015 if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
3016 device_queue_manager_init_v12(&dqm->asic_ops);
3017 else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
3018 device_queue_manager_init_v11(&dqm->asic_ops);
3019 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
3020 device_queue_manager_init_v10(&dqm->asic_ops);
3021 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
3022 device_queue_manager_init_v9(&dqm->asic_ops);
3023 else {
3024 WARN(1, "Unexpected ASIC family %u",
3025 dev->adev->asic_type);
3026 goto out_free;
3027 }
3028 }
3029
3030 if (init_mqd_managers(dqm))
3031 goto out_free;
3032
3033 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
3034 dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
3035 goto out_free;
3036 }
3037
3038 if (!dqm->ops.initialize(dqm)) {
3039 init_waitqueue_head(&dqm->destroy_wait);
3040 return dqm;
3041 }
3042
3043 if (!dev->kfd->shared_resources.enable_mes)
3044 deallocate_hiq_sdma_mqd(dev, &dqm->hiq_sdma_mqd);
3045
3046 out_free:
3047 kfree(dqm);
3048 return NULL;
3049 }
3050
device_queue_manager_uninit(struct device_queue_manager * dqm)3051 void device_queue_manager_uninit(struct device_queue_manager *dqm)
3052 {
3053 dqm->ops.stop(dqm);
3054 dqm->ops.uninitialize(dqm);
3055 if (!dqm->dev->kfd->shared_resources.enable_mes)
3056 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
3057 kfree(dqm);
3058 }
3059
kfd_dqm_suspend_bad_queue_mes(struct kfd_node * knode,u32 pasid,u32 doorbell_id)3060 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
3061 {
3062 struct kfd_process_device *pdd = NULL;
3063 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
3064 struct device_queue_manager *dqm = knode->dqm;
3065 struct device *dev = dqm->dev->adev->dev;
3066 struct qcm_process_device *qpd;
3067 struct queue *q = NULL;
3068 int ret = 0;
3069
3070 if (!pdd)
3071 return -EINVAL;
3072
3073 dqm_lock(dqm);
3074
3075 if (pdd) {
3076 qpd = &pdd->qpd;
3077
3078 list_for_each_entry(q, &qpd->queues_list, list) {
3079 if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3080 ret = suspend_all_queues_mes(dqm);
3081 if (ret) {
3082 dev_err(dev, "Suspending all queues failed");
3083 goto out;
3084 }
3085
3086 q->properties.is_evicted = true;
3087 q->properties.is_active = false;
3088 decrement_queue_count(dqm, qpd, q);
3089
3090 ret = remove_queue_mes(dqm, q, qpd);
3091 if (ret) {
3092 dev_err(dev, "Removing bad queue failed");
3093 goto out;
3094 }
3095
3096 ret = resume_all_queues_mes(dqm);
3097 if (ret)
3098 dev_err(dev, "Resuming all queues failed");
3099
3100 break;
3101 }
3102 }
3103 }
3104
3105 out:
3106 dqm_unlock(dqm);
3107 kfd_unref_process(p);
3108 return ret;
3109 }
3110
kfd_evict_process_device(struct kfd_process_device * pdd)3111 int kfd_evict_process_device(struct kfd_process_device *pdd)
3112 {
3113 struct device_queue_manager *dqm;
3114 struct kfd_process *p;
3115
3116 p = pdd->process;
3117 dqm = pdd->dev->dqm;
3118
3119 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3120
3121 return dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3122 }
3123
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3124 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3125 struct qcm_process_device *qpd)
3126 {
3127 int r;
3128 struct device *dev = dqm->dev->adev->dev;
3129 int updated_vmid_mask;
3130
3131 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3132 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3133 return -EINVAL;
3134 }
3135
3136 dqm_lock(dqm);
3137
3138 if (dqm->trap_debug_vmid != 0) {
3139 dev_err(dev, "Trap debug id already reserved\n");
3140 r = -EBUSY;
3141 goto out_unlock;
3142 }
3143
3144 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3145 USE_DEFAULT_GRACE_PERIOD, false);
3146 if (r)
3147 goto out_unlock;
3148
3149 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3150 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3151
3152 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3153 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3154 r = set_sched_resources(dqm);
3155 if (r)
3156 goto out_unlock;
3157
3158 r = map_queues_cpsch(dqm);
3159 if (r)
3160 goto out_unlock;
3161
3162 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3163
3164 out_unlock:
3165 dqm_unlock(dqm);
3166 return r;
3167 }
3168
3169 /*
3170 * Releases vmid for the trap debugger
3171 */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3172 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3173 struct qcm_process_device *qpd)
3174 {
3175 struct device *dev = dqm->dev->adev->dev;
3176 int r;
3177 int updated_vmid_mask;
3178 uint32_t trap_debug_vmid;
3179
3180 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3181 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3182 return -EINVAL;
3183 }
3184
3185 dqm_lock(dqm);
3186 trap_debug_vmid = dqm->trap_debug_vmid;
3187 if (dqm->trap_debug_vmid == 0) {
3188 dev_err(dev, "Trap debug id is not reserved\n");
3189 r = -EINVAL;
3190 goto out_unlock;
3191 }
3192
3193 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3194 USE_DEFAULT_GRACE_PERIOD, false);
3195 if (r)
3196 goto out_unlock;
3197
3198 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3199 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3200
3201 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3202 dqm->trap_debug_vmid = 0;
3203 r = set_sched_resources(dqm);
3204 if (r)
3205 goto out_unlock;
3206
3207 r = map_queues_cpsch(dqm);
3208 if (r)
3209 goto out_unlock;
3210
3211 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3212
3213 out_unlock:
3214 dqm_unlock(dqm);
3215 return r;
3216 }
3217
3218 #define QUEUE_NOT_FOUND -1
3219 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)3220 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3221 {
3222 int i;
3223
3224 for (i = 0; i < num_queues; i++)
3225 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3226 }
3227
3228 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)3229 static int q_array_get_index(unsigned int queue_id,
3230 uint32_t num_queues,
3231 uint32_t *queue_ids)
3232 {
3233 int i;
3234
3235 for (i = 0; i < num_queues; i++)
3236 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3237 return i;
3238
3239 return QUEUE_NOT_FOUND;
3240 }
3241
3242 struct copy_context_work_handler_workarea {
3243 struct work_struct copy_context_work;
3244 struct kfd_process *p;
3245 };
3246
copy_context_work_handler(struct work_struct * work)3247 static void copy_context_work_handler(struct work_struct *work)
3248 {
3249 struct copy_context_work_handler_workarea *workarea;
3250 struct mqd_manager *mqd_mgr;
3251 struct queue *q;
3252 struct mm_struct *mm;
3253 struct kfd_process *p;
3254 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3255 int i;
3256
3257 workarea = container_of(work,
3258 struct copy_context_work_handler_workarea,
3259 copy_context_work);
3260
3261 p = workarea->p;
3262 mm = get_task_mm(p->lead_thread);
3263
3264 if (!mm)
3265 return;
3266
3267 kthread_use_mm(mm);
3268 for (i = 0; i < p->n_pdds; i++) {
3269 struct kfd_process_device *pdd = p->pdds[i];
3270 struct device_queue_manager *dqm = pdd->dev->dqm;
3271 struct qcm_process_device *qpd = &pdd->qpd;
3272
3273 list_for_each_entry(q, &qpd->queues_list, list) {
3274 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3275 continue;
3276
3277 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3278
3279 /* We ignore the return value from get_wave_state
3280 * because
3281 * i) right now, it always returns 0, and
3282 * ii) if we hit an error, we would continue to the
3283 * next queue anyway.
3284 */
3285 mqd_mgr->get_wave_state(mqd_mgr,
3286 q->mqd,
3287 &q->properties,
3288 (void __user *) q->properties.ctx_save_restore_area_address,
3289 &tmp_ctl_stack_used_size,
3290 &tmp_save_area_used_size);
3291 }
3292 }
3293 kthread_unuse_mm(mm);
3294 mmput(mm);
3295 }
3296
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)3297 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3298 {
3299 size_t array_size = num_queues * sizeof(uint32_t);
3300
3301 if (!usr_queue_id_array)
3302 return NULL;
3303
3304 return memdup_user(usr_queue_id_array, array_size);
3305 }
3306
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)3307 int resume_queues(struct kfd_process *p,
3308 uint32_t num_queues,
3309 uint32_t *usr_queue_id_array)
3310 {
3311 uint32_t *queue_ids = NULL;
3312 int total_resumed = 0;
3313 int i;
3314
3315 if (usr_queue_id_array) {
3316 queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3317
3318 if (IS_ERR(queue_ids))
3319 return PTR_ERR(queue_ids);
3320
3321 /* mask all queues as invalid. unmask per successful request */
3322 q_array_invalidate(num_queues, queue_ids);
3323 }
3324
3325 for (i = 0; i < p->n_pdds; i++) {
3326 struct kfd_process_device *pdd = p->pdds[i];
3327 struct device_queue_manager *dqm = pdd->dev->dqm;
3328 struct device *dev = dqm->dev->adev->dev;
3329 struct qcm_process_device *qpd = &pdd->qpd;
3330 struct queue *q;
3331 int r, per_device_resumed = 0;
3332
3333 dqm_lock(dqm);
3334
3335 /* unmask queues that resume or already resumed as valid */
3336 list_for_each_entry(q, &qpd->queues_list, list) {
3337 int q_idx = QUEUE_NOT_FOUND;
3338
3339 if (queue_ids)
3340 q_idx = q_array_get_index(
3341 q->properties.queue_id,
3342 num_queues,
3343 queue_ids);
3344
3345 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3346 int err = resume_single_queue(dqm, &pdd->qpd, q);
3347
3348 if (queue_ids) {
3349 if (!err) {
3350 queue_ids[q_idx] &=
3351 ~KFD_DBG_QUEUE_INVALID_MASK;
3352 } else {
3353 queue_ids[q_idx] |=
3354 KFD_DBG_QUEUE_ERROR_MASK;
3355 break;
3356 }
3357 }
3358
3359 if (dqm->dev->kfd->shared_resources.enable_mes) {
3360 wake_up_all(&dqm->destroy_wait);
3361 if (!err)
3362 total_resumed++;
3363 } else {
3364 per_device_resumed++;
3365 }
3366 }
3367 }
3368
3369 if (!per_device_resumed) {
3370 dqm_unlock(dqm);
3371 continue;
3372 }
3373
3374 r = execute_queues_cpsch(dqm,
3375 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3376 0,
3377 USE_DEFAULT_GRACE_PERIOD);
3378 if (r) {
3379 dev_err(dev, "Failed to resume process queues\n");
3380 if (queue_ids) {
3381 list_for_each_entry(q, &qpd->queues_list, list) {
3382 int q_idx = q_array_get_index(
3383 q->properties.queue_id,
3384 num_queues,
3385 queue_ids);
3386
3387 /* mask queue as error on resume fail */
3388 if (q_idx != QUEUE_NOT_FOUND)
3389 queue_ids[q_idx] |=
3390 KFD_DBG_QUEUE_ERROR_MASK;
3391 }
3392 }
3393 } else {
3394 wake_up_all(&dqm->destroy_wait);
3395 total_resumed += per_device_resumed;
3396 }
3397
3398 dqm_unlock(dqm);
3399 }
3400
3401 if (queue_ids) {
3402 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3403 num_queues * sizeof(uint32_t)))
3404 pr_err("copy_to_user failed on queue resume\n");
3405
3406 kfree(queue_ids);
3407 }
3408
3409 return total_resumed;
3410 }
3411
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)3412 int suspend_queues(struct kfd_process *p,
3413 uint32_t num_queues,
3414 uint32_t grace_period,
3415 uint64_t exception_clear_mask,
3416 uint32_t *usr_queue_id_array)
3417 {
3418 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3419 int total_suspended = 0;
3420 int i;
3421
3422 if (IS_ERR(queue_ids))
3423 return PTR_ERR(queue_ids);
3424
3425 /* mask all queues as invalid. umask on successful request */
3426 q_array_invalidate(num_queues, queue_ids);
3427
3428 for (i = 0; i < p->n_pdds; i++) {
3429 struct kfd_process_device *pdd = p->pdds[i];
3430 struct device_queue_manager *dqm = pdd->dev->dqm;
3431 struct device *dev = dqm->dev->adev->dev;
3432 struct qcm_process_device *qpd = &pdd->qpd;
3433 struct queue *q;
3434 int r, per_device_suspended = 0;
3435
3436 mutex_lock(&p->event_mutex);
3437 dqm_lock(dqm);
3438
3439 /* unmask queues that suspend or already suspended */
3440 list_for_each_entry(q, &qpd->queues_list, list) {
3441 int q_idx = q_array_get_index(q->properties.queue_id,
3442 num_queues,
3443 queue_ids);
3444
3445 if (q_idx != QUEUE_NOT_FOUND) {
3446 int err = suspend_single_queue(dqm, pdd, q);
3447 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3448
3449 if (!err) {
3450 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3451 if (exception_clear_mask && is_mes)
3452 q->properties.exception_status &=
3453 ~exception_clear_mask;
3454
3455 if (is_mes)
3456 total_suspended++;
3457 else
3458 per_device_suspended++;
3459 } else if (err != -EBUSY) {
3460 r = err;
3461 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3462 break;
3463 }
3464 }
3465 }
3466
3467 if (!per_device_suspended) {
3468 dqm_unlock(dqm);
3469 mutex_unlock(&p->event_mutex);
3470 if (total_suspended)
3471 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3472 continue;
3473 }
3474
3475 r = execute_queues_cpsch(dqm,
3476 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3477 grace_period);
3478
3479 if (r)
3480 dev_err(dev, "Failed to suspend process queues.\n");
3481 else
3482 total_suspended += per_device_suspended;
3483
3484 list_for_each_entry(q, &qpd->queues_list, list) {
3485 int q_idx = q_array_get_index(q->properties.queue_id,
3486 num_queues, queue_ids);
3487
3488 if (q_idx == QUEUE_NOT_FOUND)
3489 continue;
3490
3491 /* mask queue as error on suspend fail */
3492 if (r)
3493 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3494 else if (exception_clear_mask)
3495 q->properties.exception_status &=
3496 ~exception_clear_mask;
3497 }
3498
3499 dqm_unlock(dqm);
3500 mutex_unlock(&p->event_mutex);
3501 amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3502 }
3503
3504 if (total_suspended) {
3505 struct copy_context_work_handler_workarea copy_context_worker;
3506
3507 INIT_WORK_ONSTACK(
3508 ©_context_worker.copy_context_work,
3509 copy_context_work_handler);
3510
3511 copy_context_worker.p = p;
3512
3513 schedule_work(©_context_worker.copy_context_work);
3514
3515
3516 flush_work(©_context_worker.copy_context_work);
3517 destroy_work_on_stack(©_context_worker.copy_context_work);
3518 }
3519
3520 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3521 num_queues * sizeof(uint32_t)))
3522 pr_err("copy_to_user failed on queue suspend\n");
3523
3524 kfree(queue_ids);
3525
3526 return total_suspended;
3527 }
3528
set_queue_type_for_user(struct queue_properties * q_props)3529 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3530 {
3531 switch (q_props->type) {
3532 case KFD_QUEUE_TYPE_COMPUTE:
3533 return q_props->format == KFD_QUEUE_FORMAT_PM4
3534 ? KFD_IOC_QUEUE_TYPE_COMPUTE
3535 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3536 case KFD_QUEUE_TYPE_SDMA:
3537 return KFD_IOC_QUEUE_TYPE_SDMA;
3538 case KFD_QUEUE_TYPE_SDMA_XGMI:
3539 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3540 default:
3541 WARN_ONCE(true, "queue type not recognized!");
3542 return 0xffffffff;
3543 };
3544 }
3545
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3546 void set_queue_snapshot_entry(struct queue *q,
3547 uint64_t exception_clear_mask,
3548 struct kfd_queue_snapshot_entry *qss_entry)
3549 {
3550 qss_entry->ring_base_address = q->properties.queue_address;
3551 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3552 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3553 qss_entry->ctx_save_restore_address =
3554 q->properties.ctx_save_restore_area_address;
3555 qss_entry->ctx_save_restore_area_size =
3556 q->properties.ctx_save_restore_area_size;
3557 qss_entry->exception_status = q->properties.exception_status;
3558 qss_entry->queue_id = q->properties.queue_id;
3559 qss_entry->gpu_id = q->device->id;
3560 qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3561 qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3562 q->properties.exception_status &= ~exception_clear_mask;
3563 }
3564
debug_lock_and_unmap(struct device_queue_manager * dqm)3565 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3566 {
3567 struct device *dev = dqm->dev->adev->dev;
3568 int r;
3569
3570 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3571 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3572 return -EINVAL;
3573 }
3574
3575 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3576 return 0;
3577
3578 dqm_lock(dqm);
3579
3580 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3581 if (r)
3582 dqm_unlock(dqm);
3583
3584 return r;
3585 }
3586
debug_map_and_unlock(struct device_queue_manager * dqm)3587 int debug_map_and_unlock(struct device_queue_manager *dqm)
3588 {
3589 struct device *dev = dqm->dev->adev->dev;
3590 int r;
3591
3592 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3593 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3594 return -EINVAL;
3595 }
3596
3597 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3598 return 0;
3599
3600 r = map_queues_cpsch(dqm);
3601
3602 dqm_unlock(dqm);
3603
3604 return r;
3605 }
3606
debug_refresh_runlist(struct device_queue_manager * dqm)3607 int debug_refresh_runlist(struct device_queue_manager *dqm)
3608 {
3609 int r = debug_lock_and_unmap(dqm);
3610
3611 if (r)
3612 return r;
3613
3614 return debug_map_and_unlock(dqm);
3615 }
3616
kfd_dqm_is_queue_in_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd,int doorbell_off,u32 * queue_format)3617 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3618 struct qcm_process_device *qpd,
3619 int doorbell_off, u32 *queue_format)
3620 {
3621 struct queue *q;
3622 bool r = false;
3623
3624 if (!queue_format)
3625 return r;
3626
3627 dqm_lock(dqm);
3628
3629 list_for_each_entry(q, &qpd->queues_list, list) {
3630 if (q->properties.doorbell_off == doorbell_off) {
3631 *queue_format = q->properties.format;
3632 r = true;
3633 goto out;
3634 }
3635 }
3636
3637 out:
3638 dqm_unlock(dqm);
3639 return r;
3640 }
3641 #if defined(CONFIG_DEBUG_FS)
3642
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3643 static void seq_reg_dump(struct seq_file *m,
3644 uint32_t (*dump)[2], uint32_t n_regs)
3645 {
3646 uint32_t i, count;
3647
3648 for (i = 0, count = 0; i < n_regs; i++) {
3649 if (count == 0 ||
3650 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3651 seq_printf(m, "%s %08x: %08x",
3652 i ? "\n" : "",
3653 dump[i][0], dump[i][1]);
3654 count = 7;
3655 } else {
3656 seq_printf(m, " %08x", dump[i][1]);
3657 count--;
3658 }
3659 }
3660
3661 seq_puts(m, "\n");
3662 }
3663
dqm_debugfs_hqds(struct seq_file * m,void * data)3664 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3665 {
3666 struct device_queue_manager *dqm = data;
3667 uint32_t xcc_mask = dqm->dev->xcc_mask;
3668 uint32_t (*dump)[2], n_regs;
3669 int pipe, queue;
3670 int r = 0, xcc_id;
3671 uint32_t sdma_engine_start;
3672
3673 if (!dqm->sched_running) {
3674 seq_puts(m, " Device is stopped\n");
3675 return 0;
3676 }
3677
3678 for_each_inst(xcc_id, xcc_mask) {
3679 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3680 KFD_CIK_HIQ_PIPE,
3681 KFD_CIK_HIQ_QUEUE, &dump,
3682 &n_regs, xcc_id);
3683 if (!r) {
3684 seq_printf(
3685 m,
3686 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3687 xcc_id,
3688 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3689 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3690 KFD_CIK_HIQ_QUEUE);
3691 seq_reg_dump(m, dump, n_regs);
3692
3693 kfree(dump);
3694 }
3695
3696 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3697 int pipe_offset = pipe * get_queues_per_pipe(dqm);
3698
3699 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3700 if (!test_bit(pipe_offset + queue,
3701 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3702 continue;
3703
3704 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3705 pipe, queue,
3706 &dump, &n_regs,
3707 xcc_id);
3708 if (r)
3709 break;
3710
3711 seq_printf(m,
3712 " Inst %d, CP Pipe %d, Queue %d\n",
3713 xcc_id, pipe, queue);
3714 seq_reg_dump(m, dump, n_regs);
3715
3716 kfree(dump);
3717 }
3718 }
3719 }
3720
3721 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3722 for (pipe = sdma_engine_start;
3723 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3724 pipe++) {
3725 for (queue = 0;
3726 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3727 queue++) {
3728 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3729 dqm->dev->adev, pipe, queue, &dump, &n_regs);
3730 if (r)
3731 break;
3732
3733 seq_printf(m, " SDMA Engine %d, RLC %d\n",
3734 pipe, queue);
3735 seq_reg_dump(m, dump, n_regs);
3736
3737 kfree(dump);
3738 }
3739 }
3740
3741 return r;
3742 }
3743
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3744 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3745 {
3746 int r = 0;
3747
3748 dqm_lock(dqm);
3749 r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3750 if (r) {
3751 dqm_unlock(dqm);
3752 return r;
3753 }
3754 dqm->active_runlist = true;
3755 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3756 0, USE_DEFAULT_GRACE_PERIOD);
3757 dqm_unlock(dqm);
3758
3759 return r;
3760 }
3761
3762 #endif
3763