xref: /linux/drivers/video/backlight/pwm_bl.c (revision e70140ba0d2b1a30467d4af6bcfe761327b9ec95)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple PWM based backlight control, board code has to setup
4  * 1) pin configuration so PWM waveforms can output
5  * 2) platform_data being correctly configured
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/gpio/consumer.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/platform_device.h>
14 #include <linux/backlight.h>
15 #include <linux/err.h>
16 #include <linux/pwm.h>
17 #include <linux/pwm_backlight.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/slab.h>
20 
21 struct pwm_bl_data {
22 	struct pwm_device	*pwm;
23 	struct device		*dev;
24 	unsigned int		lth_brightness;
25 	unsigned int		*levels;
26 	bool			enabled;
27 	struct regulator	*power_supply;
28 	struct gpio_desc	*enable_gpio;
29 	unsigned int		scale;
30 	unsigned int		post_pwm_on_delay;
31 	unsigned int		pwm_off_delay;
32 	int			(*notify)(struct device *,
33 					  int brightness);
34 	void			(*notify_after)(struct device *,
35 					int brightness);
36 	void			(*exit)(struct device *);
37 };
38 
pwm_backlight_power_on(struct pwm_bl_data * pb)39 static void pwm_backlight_power_on(struct pwm_bl_data *pb)
40 {
41 	int err;
42 
43 	if (pb->enabled)
44 		return;
45 
46 	if (pb->power_supply) {
47 		err = regulator_enable(pb->power_supply);
48 		if (err < 0)
49 			dev_err(pb->dev, "failed to enable power supply\n");
50 	}
51 
52 	if (pb->post_pwm_on_delay)
53 		msleep(pb->post_pwm_on_delay);
54 
55 	gpiod_set_value_cansleep(pb->enable_gpio, 1);
56 
57 	pb->enabled = true;
58 }
59 
pwm_backlight_power_off(struct pwm_bl_data * pb)60 static void pwm_backlight_power_off(struct pwm_bl_data *pb)
61 {
62 	if (!pb->enabled)
63 		return;
64 
65 	gpiod_set_value_cansleep(pb->enable_gpio, 0);
66 
67 	if (pb->pwm_off_delay)
68 		msleep(pb->pwm_off_delay);
69 
70 	if (pb->power_supply)
71 		regulator_disable(pb->power_supply);
72 	pb->enabled = false;
73 }
74 
compute_duty_cycle(struct pwm_bl_data * pb,int brightness,struct pwm_state * state)75 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness, struct pwm_state *state)
76 {
77 	unsigned int lth = pb->lth_brightness;
78 	u64 duty_cycle;
79 
80 	if (pb->levels)
81 		duty_cycle = pb->levels[brightness];
82 	else
83 		duty_cycle = brightness;
84 
85 	duty_cycle *= state->period - lth;
86 	do_div(duty_cycle, pb->scale);
87 
88 	return duty_cycle + lth;
89 }
90 
pwm_backlight_update_status(struct backlight_device * bl)91 static int pwm_backlight_update_status(struct backlight_device *bl)
92 {
93 	struct pwm_bl_data *pb = bl_get_data(bl);
94 	int brightness = backlight_get_brightness(bl);
95 	struct pwm_state state;
96 
97 	if (pb->notify)
98 		brightness = pb->notify(pb->dev, brightness);
99 
100 	if (brightness > 0) {
101 		pwm_get_state(pb->pwm, &state);
102 		state.duty_cycle = compute_duty_cycle(pb, brightness, &state);
103 		state.enabled = true;
104 		pwm_apply_might_sleep(pb->pwm, &state);
105 
106 		pwm_backlight_power_on(pb);
107 	} else {
108 		pwm_backlight_power_off(pb);
109 
110 		pwm_get_state(pb->pwm, &state);
111 		state.duty_cycle = 0;
112 		/*
113 		 * We cannot assume a disabled PWM to drive its output to the
114 		 * inactive state. If we have an enable GPIO and/or a regulator
115 		 * we assume that this isn't relevant and we can disable the PWM
116 		 * to save power. If however there is neither an enable GPIO nor
117 		 * a regulator keep the PWM on be sure to get a constant
118 		 * inactive output.
119 		 */
120 		state.enabled = !pb->power_supply && !pb->enable_gpio;
121 		pwm_apply_might_sleep(pb->pwm, &state);
122 	}
123 
124 	if (pb->notify_after)
125 		pb->notify_after(pb->dev, brightness);
126 
127 	return 0;
128 }
129 
130 static const struct backlight_ops pwm_backlight_ops = {
131 	.update_status	= pwm_backlight_update_status,
132 };
133 
134 #ifdef CONFIG_OF
135 #define PWM_LUMINANCE_SHIFT	16
136 #define PWM_LUMINANCE_SCALE	(1 << PWM_LUMINANCE_SHIFT) /* luminance scale */
137 
138 /*
139  * CIE lightness to PWM conversion.
140  *
141  * The CIE 1931 lightness formula is what actually describes how we perceive
142  * light:
143  *          Y = (L* / 903.3)           if L* ≤ 8
144  *          Y = ((L* + 16) / 116)^3    if L* > 8
145  *
146  * Where Y is the luminance, the amount of light coming out of the screen, and
147  * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
148  * perceives the screen to be, and is a number between 0 and 100.
149  *
150  * The following function does the fixed point maths needed to implement the
151  * above formula.
152  */
cie1931(unsigned int lightness)153 static u64 cie1931(unsigned int lightness)
154 {
155 	u64 retval;
156 
157 	/*
158 	 * @lightness is given as a number between 0 and 1, expressed
159 	 * as a fixed-point number in scale
160 	 * PWM_LUMINANCE_SCALE. Convert to a percentage, still
161 	 * expressed as a fixed-point number, so the above formulas
162 	 * can be applied.
163 	 */
164 	lightness *= 100;
165 	if (lightness <= (8 * PWM_LUMINANCE_SCALE)) {
166 		retval = DIV_ROUND_CLOSEST(lightness * 10, 9033);
167 	} else {
168 		retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116;
169 		retval *= retval * retval;
170 		retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1);
171 		retval >>= 2*PWM_LUMINANCE_SHIFT;
172 	}
173 
174 	return retval;
175 }
176 
177 /*
178  * Create a default correction table for PWM values to create linear brightness
179  * for LED based backlights using the CIE1931 algorithm.
180  */
181 static
pwm_backlight_brightness_default(struct device * dev,struct platform_pwm_backlight_data * data,unsigned int period)182 int pwm_backlight_brightness_default(struct device *dev,
183 				     struct platform_pwm_backlight_data *data,
184 				     unsigned int period)
185 {
186 	unsigned int i;
187 	u64 retval;
188 
189 	/*
190 	 * Once we have 4096 levels there's little point going much higher...
191 	 * neither interactive sliders nor animation benefits from having
192 	 * more values in the table.
193 	 */
194 	data->max_brightness =
195 		min((int)DIV_ROUND_UP(period, fls(period)), 4096);
196 
197 	data->levels = devm_kcalloc(dev, data->max_brightness,
198 				    sizeof(*data->levels), GFP_KERNEL);
199 	if (!data->levels)
200 		return -ENOMEM;
201 
202 	/* Fill the table using the cie1931 algorithm */
203 	for (i = 0; i < data->max_brightness; i++) {
204 		retval = cie1931((i * PWM_LUMINANCE_SCALE) /
205 				 data->max_brightness) * period;
206 		retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
207 		if (retval > UINT_MAX)
208 			return -EINVAL;
209 		data->levels[i] = (unsigned int)retval;
210 	}
211 
212 	data->dft_brightness = data->max_brightness / 2;
213 	data->max_brightness--;
214 
215 	return 0;
216 }
217 
pwm_backlight_parse_dt(struct device * dev,struct platform_pwm_backlight_data * data)218 static int pwm_backlight_parse_dt(struct device *dev,
219 				  struct platform_pwm_backlight_data *data)
220 {
221 	struct device_node *node = dev->of_node;
222 	unsigned int num_levels;
223 	unsigned int num_steps = 0;
224 	struct property *prop;
225 	unsigned int *table;
226 	int length;
227 	u32 value;
228 	int ret;
229 
230 	if (!node)
231 		return -ENODEV;
232 
233 	memset(data, 0, sizeof(*data));
234 
235 	/*
236 	 * These values are optional and set as 0 by default, the out values
237 	 * are modified only if a valid u32 value can be decoded.
238 	 */
239 	of_property_read_u32(node, "post-pwm-on-delay-ms",
240 			     &data->post_pwm_on_delay);
241 	of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);
242 
243 	/*
244 	 * Determine the number of brightness levels, if this property is not
245 	 * set a default table of brightness levels will be used.
246 	 */
247 	prop = of_find_property(node, "brightness-levels", &length);
248 	if (!prop)
249 		return 0;
250 
251 	num_levels = length / sizeof(u32);
252 
253 	/* read brightness levels from DT property */
254 	if (num_levels > 0) {
255 		data->levels = devm_kcalloc(dev, num_levels,
256 					    sizeof(*data->levels), GFP_KERNEL);
257 		if (!data->levels)
258 			return -ENOMEM;
259 
260 		ret = of_property_read_u32_array(node, "brightness-levels",
261 						 data->levels,
262 						 num_levels);
263 		if (ret < 0)
264 			return ret;
265 
266 		ret = of_property_read_u32(node, "default-brightness-level",
267 					   &value);
268 		if (ret < 0)
269 			return ret;
270 
271 		data->dft_brightness = value;
272 
273 		/*
274 		 * This property is optional, if is set enables linear
275 		 * interpolation between each of the values of brightness levels
276 		 * and creates a new pre-computed table.
277 		 */
278 		of_property_read_u32(node, "num-interpolated-steps",
279 				     &num_steps);
280 
281 		/*
282 		 * Make sure that there is at least two entries in the
283 		 * brightness-levels table, otherwise we can't interpolate
284 		 * between two points.
285 		 */
286 		if (num_steps) {
287 			unsigned int num_input_levels = num_levels;
288 			unsigned int i;
289 			u32 x1, x2, x, dx;
290 			u32 y1, y2;
291 			s64 dy;
292 
293 			if (num_input_levels < 2) {
294 				dev_err(dev, "can't interpolate\n");
295 				return -EINVAL;
296 			}
297 
298 			/*
299 			 * Recalculate the number of brightness levels, now
300 			 * taking in consideration the number of interpolated
301 			 * steps between two levels.
302 			 */
303 			num_levels = (num_input_levels - 1) * num_steps + 1;
304 			dev_dbg(dev, "new number of brightness levels: %d\n",
305 				num_levels);
306 
307 			/*
308 			 * Create a new table of brightness levels with all the
309 			 * interpolated steps.
310 			 */
311 			table = devm_kcalloc(dev, num_levels, sizeof(*table),
312 					     GFP_KERNEL);
313 			if (!table)
314 				return -ENOMEM;
315 			/*
316 			 * Fill the interpolated table[x] = y
317 			 * by draw lines between each (x1, y1) to (x2, y2).
318 			 */
319 			dx = num_steps;
320 			for (i = 0; i < num_input_levels - 1; i++) {
321 				x1 = i * dx;
322 				x2 = x1 + dx;
323 				y1 = data->levels[i];
324 				y2 = data->levels[i + 1];
325 				dy = (s64)y2 - y1;
326 
327 				for (x = x1; x < x2; x++) {
328 					table[x] = y1 +
329 						div_s64(dy * (x - x1), dx);
330 				}
331 			}
332 			/* Fill in the last point, since no line starts here. */
333 			table[x2] = y2;
334 
335 			/*
336 			 * As we use interpolation lets remove current
337 			 * brightness levels table and replace for the
338 			 * new interpolated table.
339 			 */
340 			devm_kfree(dev, data->levels);
341 			data->levels = table;
342 		}
343 
344 		data->max_brightness = num_levels - 1;
345 	}
346 
347 	return 0;
348 }
349 
350 static const struct of_device_id pwm_backlight_of_match[] = {
351 	{ .compatible = "pwm-backlight" },
352 	{ }
353 };
354 
355 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
356 #else
pwm_backlight_parse_dt(struct device * dev,struct platform_pwm_backlight_data * data)357 static int pwm_backlight_parse_dt(struct device *dev,
358 				  struct platform_pwm_backlight_data *data)
359 {
360 	return -ENODEV;
361 }
362 
363 static
pwm_backlight_brightness_default(struct device * dev,struct platform_pwm_backlight_data * data,unsigned int period)364 int pwm_backlight_brightness_default(struct device *dev,
365 				     struct platform_pwm_backlight_data *data,
366 				     unsigned int period)
367 {
368 	return -ENODEV;
369 }
370 #endif
371 
pwm_backlight_is_linear(struct platform_pwm_backlight_data * data)372 static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data)
373 {
374 	unsigned int nlevels = data->max_brightness + 1;
375 	unsigned int min_val = data->levels[0];
376 	unsigned int max_val = data->levels[nlevels - 1];
377 	/*
378 	 * Multiplying by 128 means that even in pathological cases such
379 	 * as (max_val - min_val) == nlevels the error at max_val is less
380 	 * than 1%.
381 	 */
382 	unsigned int slope = (128 * (max_val - min_val)) / nlevels;
383 	unsigned int margin = (max_val - min_val) / 20; /* 5% */
384 	int i;
385 
386 	for (i = 1; i < nlevels; i++) {
387 		unsigned int linear_value = min_val + ((i * slope) / 128);
388 		unsigned int delta = abs(linear_value - data->levels[i]);
389 
390 		if (delta > margin)
391 			return false;
392 	}
393 
394 	return true;
395 }
396 
pwm_backlight_initial_power_state(const struct pwm_bl_data * pb)397 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
398 {
399 	struct device_node *node = pb->dev->of_node;
400 	bool active = true;
401 
402 	/*
403 	 * If the enable GPIO is present, observable (either as input
404 	 * or output) and off then the backlight is not currently active.
405 	 * */
406 	if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0)
407 		active = false;
408 
409 	if (pb->power_supply && !regulator_is_enabled(pb->power_supply))
410 		active = false;
411 
412 	if (!pwm_is_enabled(pb->pwm))
413 		active = false;
414 
415 	/*
416 	 * Synchronize the enable_gpio with the observed state of the
417 	 * hardware.
418 	 */
419 	gpiod_direction_output(pb->enable_gpio, active);
420 
421 	/*
422 	 * Do not change pb->enabled here! pb->enabled essentially
423 	 * tells us if we own one of the regulator's use counts and
424 	 * right now we do not.
425 	 */
426 
427 	/* Not booted with device tree or no phandle link to the node */
428 	if (!node || !node->phandle)
429 		return BACKLIGHT_POWER_ON;
430 
431 	/*
432 	 * If the driver is probed from the device tree and there is a
433 	 * phandle link pointing to the backlight node, it is safe to
434 	 * assume that another driver will enable the backlight at the
435 	 * appropriate time. Therefore, if it is disabled, keep it so.
436 	 */
437 	return active ? BACKLIGHT_POWER_ON : BACKLIGHT_POWER_OFF;
438 }
439 
pwm_backlight_probe(struct platform_device * pdev)440 static int pwm_backlight_probe(struct platform_device *pdev)
441 {
442 	struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
443 	struct platform_pwm_backlight_data defdata;
444 	struct backlight_properties props;
445 	struct backlight_device *bl;
446 	struct pwm_bl_data *pb;
447 	struct pwm_state state;
448 	unsigned int i;
449 	int ret;
450 
451 	if (!data) {
452 		ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
453 		if (ret < 0)
454 			return dev_err_probe(&pdev->dev, ret,
455 					     "failed to find platform data\n");
456 
457 		data = &defdata;
458 	}
459 
460 	if (data->init) {
461 		ret = data->init(&pdev->dev);
462 		if (ret < 0)
463 			return ret;
464 	}
465 
466 	pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
467 	if (!pb) {
468 		ret = -ENOMEM;
469 		goto err_alloc;
470 	}
471 
472 	pb->notify = data->notify;
473 	pb->notify_after = data->notify_after;
474 	pb->exit = data->exit;
475 	pb->dev = &pdev->dev;
476 	pb->enabled = false;
477 	pb->post_pwm_on_delay = data->post_pwm_on_delay;
478 	pb->pwm_off_delay = data->pwm_off_delay;
479 
480 	pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
481 						  GPIOD_ASIS);
482 	if (IS_ERR(pb->enable_gpio)) {
483 		ret = dev_err_probe(&pdev->dev, PTR_ERR(pb->enable_gpio),
484 				    "failed to acquire enable GPIO\n");
485 		goto err_alloc;
486 	}
487 
488 	pb->power_supply = devm_regulator_get_optional(&pdev->dev, "power");
489 	if (IS_ERR(pb->power_supply)) {
490 		ret = PTR_ERR(pb->power_supply);
491 		if (ret == -ENODEV) {
492 			pb->power_supply = NULL;
493 		} else {
494 			dev_err_probe(&pdev->dev, ret,
495 				      "failed to acquire power regulator\n");
496 			goto err_alloc;
497 		}
498 	}
499 
500 	pb->pwm = devm_pwm_get(&pdev->dev, NULL);
501 	if (IS_ERR(pb->pwm)) {
502 		ret = dev_err_probe(&pdev->dev, PTR_ERR(pb->pwm),
503 				    "unable to request PWM\n");
504 		goto err_alloc;
505 	}
506 
507 	dev_dbg(&pdev->dev, "got pwm for backlight\n");
508 
509 	/* Sync up PWM state. */
510 	pwm_init_state(pb->pwm, &state);
511 
512 	/*
513 	 * The DT case will set the pwm_period_ns field to 0 and store the
514 	 * period, parsed from the DT, in the PWM device. For the non-DT case,
515 	 * set the period from platform data if it has not already been set
516 	 * via the PWM lookup table.
517 	 */
518 	if (!state.period && (data->pwm_period_ns > 0))
519 		state.period = data->pwm_period_ns;
520 
521 	ret = pwm_apply_might_sleep(pb->pwm, &state);
522 	if (ret) {
523 		dev_err_probe(&pdev->dev, ret,
524 			      "failed to apply initial PWM state");
525 		goto err_alloc;
526 	}
527 
528 	memset(&props, 0, sizeof(struct backlight_properties));
529 
530 	if (data->levels) {
531 		pb->levels = data->levels;
532 
533 		/*
534 		 * For the DT case, only when brightness levels is defined
535 		 * data->levels is filled. For the non-DT case, data->levels
536 		 * can come from platform data, however is not usual.
537 		 */
538 		for (i = 0; i <= data->max_brightness; i++)
539 			if (data->levels[i] > pb->scale)
540 				pb->scale = data->levels[i];
541 
542 		if (pwm_backlight_is_linear(data))
543 			props.scale = BACKLIGHT_SCALE_LINEAR;
544 		else
545 			props.scale = BACKLIGHT_SCALE_NON_LINEAR;
546 	} else if (!data->max_brightness) {
547 		/*
548 		 * If no brightness levels are provided and max_brightness is
549 		 * not set, use the default brightness table. For the DT case,
550 		 * max_brightness is set to 0 when brightness levels is not
551 		 * specified. For the non-DT case, max_brightness is usually
552 		 * set to some value.
553 		 */
554 
555 		/* Get the PWM period (in nanoseconds) */
556 		pwm_get_state(pb->pwm, &state);
557 
558 		ret = pwm_backlight_brightness_default(&pdev->dev, data,
559 						       state.period);
560 		if (ret < 0) {
561 			dev_err_probe(&pdev->dev, ret,
562 				      "failed to setup default brightness table\n");
563 			goto err_alloc;
564 		}
565 
566 		for (i = 0; i <= data->max_brightness; i++) {
567 			if (data->levels[i] > pb->scale)
568 				pb->scale = data->levels[i];
569 
570 			pb->levels = data->levels;
571 		}
572 
573 		props.scale = BACKLIGHT_SCALE_NON_LINEAR;
574 	} else {
575 		/*
576 		 * That only happens for the non-DT case, where platform data
577 		 * sets the max_brightness value.
578 		 */
579 		pb->scale = data->max_brightness;
580 	}
581 
582 	pb->lth_brightness = data->lth_brightness * (div_u64(state.period,
583 				pb->scale));
584 
585 	props.type = BACKLIGHT_RAW;
586 	props.max_brightness = data->max_brightness;
587 	bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
588 				       &pwm_backlight_ops, &props);
589 	if (IS_ERR(bl)) {
590 		ret = dev_err_probe(&pdev->dev, PTR_ERR(bl),
591 				    "failed to register backlight\n");
592 		goto err_alloc;
593 	}
594 
595 	if (data->dft_brightness > data->max_brightness) {
596 		dev_warn(&pdev->dev,
597 			 "invalid default brightness level: %u, using %u\n",
598 			 data->dft_brightness, data->max_brightness);
599 		data->dft_brightness = data->max_brightness;
600 	}
601 
602 	bl->props.brightness = data->dft_brightness;
603 	bl->props.power = pwm_backlight_initial_power_state(pb);
604 	backlight_update_status(bl);
605 
606 	platform_set_drvdata(pdev, bl);
607 	return 0;
608 
609 err_alloc:
610 	if (data->exit)
611 		data->exit(&pdev->dev);
612 	return ret;
613 }
614 
pwm_backlight_remove(struct platform_device * pdev)615 static void pwm_backlight_remove(struct platform_device *pdev)
616 {
617 	struct backlight_device *bl = platform_get_drvdata(pdev);
618 	struct pwm_bl_data *pb = bl_get_data(bl);
619 	struct pwm_state state;
620 
621 	backlight_device_unregister(bl);
622 	pwm_backlight_power_off(pb);
623 	pwm_get_state(pb->pwm, &state);
624 	state.duty_cycle = 0;
625 	state.enabled = false;
626 	pwm_apply_might_sleep(pb->pwm, &state);
627 
628 	if (pb->exit)
629 		pb->exit(&pdev->dev);
630 }
631 
pwm_backlight_shutdown(struct platform_device * pdev)632 static void pwm_backlight_shutdown(struct platform_device *pdev)
633 {
634 	struct backlight_device *bl = platform_get_drvdata(pdev);
635 	struct pwm_bl_data *pb = bl_get_data(bl);
636 	struct pwm_state state;
637 
638 	pwm_backlight_power_off(pb);
639 	pwm_get_state(pb->pwm, &state);
640 	state.duty_cycle = 0;
641 	state.enabled = false;
642 	pwm_apply_might_sleep(pb->pwm, &state);
643 }
644 
645 #ifdef CONFIG_PM_SLEEP
pwm_backlight_suspend(struct device * dev)646 static int pwm_backlight_suspend(struct device *dev)
647 {
648 	struct backlight_device *bl = dev_get_drvdata(dev);
649 	struct pwm_bl_data *pb = bl_get_data(bl);
650 	struct pwm_state state;
651 
652 	if (pb->notify)
653 		pb->notify(pb->dev, 0);
654 
655 	pwm_backlight_power_off(pb);
656 
657 	/*
658 	 * Note that disabling the PWM doesn't guarantee that the output stays
659 	 * at its inactive state. However without the PWM disabled, the PWM
660 	 * driver refuses to suspend. So disable here even though this might
661 	 * enable the backlight on poorly designed boards.
662 	 */
663 	pwm_get_state(pb->pwm, &state);
664 	state.duty_cycle = 0;
665 	state.enabled = false;
666 	pwm_apply_might_sleep(pb->pwm, &state);
667 
668 	if (pb->notify_after)
669 		pb->notify_after(pb->dev, 0);
670 
671 	return 0;
672 }
673 
pwm_backlight_resume(struct device * dev)674 static int pwm_backlight_resume(struct device *dev)
675 {
676 	struct backlight_device *bl = dev_get_drvdata(dev);
677 
678 	backlight_update_status(bl);
679 
680 	return 0;
681 }
682 #endif
683 
684 static const struct dev_pm_ops pwm_backlight_pm_ops = {
685 #ifdef CONFIG_PM_SLEEP
686 	.suspend = pwm_backlight_suspend,
687 	.resume = pwm_backlight_resume,
688 	.poweroff = pwm_backlight_suspend,
689 	.restore = pwm_backlight_resume,
690 #endif
691 };
692 
693 static struct platform_driver pwm_backlight_driver = {
694 	.driver		= {
695 		.name		= "pwm-backlight",
696 		.pm		= &pwm_backlight_pm_ops,
697 		.of_match_table	= of_match_ptr(pwm_backlight_of_match),
698 	},
699 	.probe		= pwm_backlight_probe,
700 	.remove		= pwm_backlight_remove,
701 	.shutdown	= pwm_backlight_shutdown,
702 };
703 
704 module_platform_driver(pwm_backlight_driver);
705 
706 MODULE_DESCRIPTION("PWM based Backlight Driver");
707 MODULE_LICENSE("GPL v2");
708 MODULE_ALIAS("platform:pwm-backlight");
709