1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 #include <asm/unwind.h>
20 #include <asm/cfi.h>
21
22 static bool all_callee_regs_used[4] = {true, true, true, true};
23
emit_code(u8 * ptr,u32 bytes,unsigned int len)24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
25 {
26 if (len == 1)
27 *ptr = bytes;
28 else if (len == 2)
29 *(u16 *)ptr = bytes;
30 else {
31 *(u32 *)ptr = bytes;
32 barrier();
33 }
34 return ptr + len;
35 }
36
37 #define EMIT(bytes, len) \
38 do { prog = emit_code(prog, bytes, len); } while (0)
39
40 #define EMIT1(b1) EMIT(b1, 1)
41 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
42 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
44 #define EMIT5(b1, b2, b3, b4, b5) \
45 do { EMIT1(b1); EMIT4(b2, b3, b4, b5); } while (0)
46
47 #define EMIT1_off32(b1, off) \
48 do { EMIT1(b1); EMIT(off, 4); } while (0)
49 #define EMIT2_off32(b1, b2, off) \
50 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
51 #define EMIT3_off32(b1, b2, b3, off) \
52 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
53 #define EMIT4_off32(b1, b2, b3, b4, off) \
54 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
55
56 #ifdef CONFIG_X86_KERNEL_IBT
57 #define EMIT_ENDBR() EMIT(gen_endbr(), 4)
58 #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4)
59 #else
60 #define EMIT_ENDBR()
61 #define EMIT_ENDBR_POISON()
62 #endif
63
is_imm8(int value)64 static bool is_imm8(int value)
65 {
66 return value <= 127 && value >= -128;
67 }
68
69 /*
70 * Let us limit the positive offset to be <= 123.
71 * This is to ensure eventual jit convergence For the following patterns:
72 * ...
73 * pass4, final_proglen=4391:
74 * ...
75 * 20e: 48 85 ff test rdi,rdi
76 * 211: 74 7d je 0x290
77 * 213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
78 * ...
79 * 289: 48 85 ff test rdi,rdi
80 * 28c: 74 17 je 0x2a5
81 * 28e: e9 7f ff ff ff jmp 0x212
82 * 293: bf 03 00 00 00 mov edi,0x3
83 * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
84 * and insn at 0x28e is 5-byte jmp insn with offset -129.
85 *
86 * pass5, final_proglen=4392:
87 * ...
88 * 20e: 48 85 ff test rdi,rdi
89 * 211: 0f 84 80 00 00 00 je 0x297
90 * 217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
91 * ...
92 * 28d: 48 85 ff test rdi,rdi
93 * 290: 74 1a je 0x2ac
94 * 292: eb 84 jmp 0x218
95 * 294: bf 03 00 00 00 mov edi,0x3
96 * Note that insn at 0x211 is 6-byte cond jump insn now since its offset
97 * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
98 * At the same time, insn at 0x292 is a 2-byte insn since its offset is
99 * -124.
100 *
101 * pass6 will repeat the same code as in pass4 and this will prevent
102 * eventual convergence.
103 *
104 * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
105 * cycle in the above. In the above example je offset <= 0x7c should work.
106 *
107 * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
108 * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
109 * avoid no convergence issue.
110 *
111 * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
112 * to maximum 123 (0x7b). This way, the jit pass can eventually converge.
113 */
is_imm8_jmp_offset(int value)114 static bool is_imm8_jmp_offset(int value)
115 {
116 return value <= 123 && value >= -128;
117 }
118
is_simm32(s64 value)119 static bool is_simm32(s64 value)
120 {
121 return value == (s64)(s32)value;
122 }
123
is_uimm32(u64 value)124 static bool is_uimm32(u64 value)
125 {
126 return value == (u64)(u32)value;
127 }
128
129 /* mov dst, src */
130 #define EMIT_mov(DST, SRC) \
131 do { \
132 if (DST != SRC) \
133 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
134 } while (0)
135
bpf_size_to_x86_bytes(int bpf_size)136 static int bpf_size_to_x86_bytes(int bpf_size)
137 {
138 if (bpf_size == BPF_W)
139 return 4;
140 else if (bpf_size == BPF_H)
141 return 2;
142 else if (bpf_size == BPF_B)
143 return 1;
144 else if (bpf_size == BPF_DW)
145 return 4; /* imm32 */
146 else
147 return 0;
148 }
149
150 /*
151 * List of x86 cond jumps opcodes (. + s8)
152 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
153 */
154 #define X86_JB 0x72
155 #define X86_JAE 0x73
156 #define X86_JE 0x74
157 #define X86_JNE 0x75
158 #define X86_JBE 0x76
159 #define X86_JA 0x77
160 #define X86_JL 0x7C
161 #define X86_JGE 0x7D
162 #define X86_JLE 0x7E
163 #define X86_JG 0x7F
164
165 /* Pick a register outside of BPF range for JIT internal work */
166 #define AUX_REG (MAX_BPF_JIT_REG + 1)
167 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
168 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
169
170 /*
171 * The following table maps BPF registers to x86-64 registers.
172 *
173 * x86-64 register R12 is unused, since if used as base address
174 * register in load/store instructions, it always needs an
175 * extra byte of encoding and is callee saved.
176 *
177 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
178 * trampoline. x86-64 register R10 is used for blinding (if enabled).
179 */
180 static const int reg2hex[] = {
181 [BPF_REG_0] = 0, /* RAX */
182 [BPF_REG_1] = 7, /* RDI */
183 [BPF_REG_2] = 6, /* RSI */
184 [BPF_REG_3] = 2, /* RDX */
185 [BPF_REG_4] = 1, /* RCX */
186 [BPF_REG_5] = 0, /* R8 */
187 [BPF_REG_6] = 3, /* RBX callee saved */
188 [BPF_REG_7] = 5, /* R13 callee saved */
189 [BPF_REG_8] = 6, /* R14 callee saved */
190 [BPF_REG_9] = 7, /* R15 callee saved */
191 [BPF_REG_FP] = 5, /* RBP readonly */
192 [BPF_REG_AX] = 2, /* R10 temp register */
193 [AUX_REG] = 3, /* R11 temp register */
194 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
195 [X86_REG_R12] = 4, /* R12 callee saved */
196 };
197
198 static const int reg2pt_regs[] = {
199 [BPF_REG_0] = offsetof(struct pt_regs, ax),
200 [BPF_REG_1] = offsetof(struct pt_regs, di),
201 [BPF_REG_2] = offsetof(struct pt_regs, si),
202 [BPF_REG_3] = offsetof(struct pt_regs, dx),
203 [BPF_REG_4] = offsetof(struct pt_regs, cx),
204 [BPF_REG_5] = offsetof(struct pt_regs, r8),
205 [BPF_REG_6] = offsetof(struct pt_regs, bx),
206 [BPF_REG_7] = offsetof(struct pt_regs, r13),
207 [BPF_REG_8] = offsetof(struct pt_regs, r14),
208 [BPF_REG_9] = offsetof(struct pt_regs, r15),
209 };
210
211 /*
212 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
213 * which need extra byte of encoding.
214 * rax,rcx,...,rbp have simpler encoding
215 */
is_ereg(u32 reg)216 static bool is_ereg(u32 reg)
217 {
218 return (1 << reg) & (BIT(BPF_REG_5) |
219 BIT(AUX_REG) |
220 BIT(BPF_REG_7) |
221 BIT(BPF_REG_8) |
222 BIT(BPF_REG_9) |
223 BIT(X86_REG_R9) |
224 BIT(X86_REG_R12) |
225 BIT(BPF_REG_AX));
226 }
227
228 /*
229 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
230 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
231 * of encoding. al,cl,dl,bl have simpler encoding.
232 */
is_ereg_8l(u32 reg)233 static bool is_ereg_8l(u32 reg)
234 {
235 return is_ereg(reg) ||
236 (1 << reg) & (BIT(BPF_REG_1) |
237 BIT(BPF_REG_2) |
238 BIT(BPF_REG_FP));
239 }
240
is_axreg(u32 reg)241 static bool is_axreg(u32 reg)
242 {
243 return reg == BPF_REG_0;
244 }
245
246 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
add_1mod(u8 byte,u32 reg)247 static u8 add_1mod(u8 byte, u32 reg)
248 {
249 if (is_ereg(reg))
250 byte |= 1;
251 return byte;
252 }
253
add_2mod(u8 byte,u32 r1,u32 r2)254 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
255 {
256 if (is_ereg(r1))
257 byte |= 1;
258 if (is_ereg(r2))
259 byte |= 4;
260 return byte;
261 }
262
add_3mod(u8 byte,u32 r1,u32 r2,u32 index)263 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
264 {
265 if (is_ereg(r1))
266 byte |= 1;
267 if (is_ereg(index))
268 byte |= 2;
269 if (is_ereg(r2))
270 byte |= 4;
271 return byte;
272 }
273
274 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
add_1reg(u8 byte,u32 dst_reg)275 static u8 add_1reg(u8 byte, u32 dst_reg)
276 {
277 return byte + reg2hex[dst_reg];
278 }
279
280 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
add_2reg(u8 byte,u32 dst_reg,u32 src_reg)281 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
282 {
283 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
284 }
285
286 /* Some 1-byte opcodes for binary ALU operations */
287 static u8 simple_alu_opcodes[] = {
288 [BPF_ADD] = 0x01,
289 [BPF_SUB] = 0x29,
290 [BPF_AND] = 0x21,
291 [BPF_OR] = 0x09,
292 [BPF_XOR] = 0x31,
293 [BPF_LSH] = 0xE0,
294 [BPF_RSH] = 0xE8,
295 [BPF_ARSH] = 0xF8,
296 };
297
jit_fill_hole(void * area,unsigned int size)298 static void jit_fill_hole(void *area, unsigned int size)
299 {
300 /* Fill whole space with INT3 instructions */
301 memset(area, 0xcc, size);
302 }
303
bpf_arch_text_invalidate(void * dst,size_t len)304 int bpf_arch_text_invalidate(void *dst, size_t len)
305 {
306 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
307 }
308
309 struct jit_context {
310 int cleanup_addr; /* Epilogue code offset */
311
312 /*
313 * Program specific offsets of labels in the code; these rely on the
314 * JIT doing at least 2 passes, recording the position on the first
315 * pass, only to generate the correct offset on the second pass.
316 */
317 int tail_call_direct_label;
318 int tail_call_indirect_label;
319 };
320
321 /* Maximum number of bytes emitted while JITing one eBPF insn */
322 #define BPF_MAX_INSN_SIZE 128
323 #define BPF_INSN_SAFETY 64
324
325 /* Number of bytes emit_patch() needs to generate instructions */
326 #define X86_PATCH_SIZE 5
327 /* Number of bytes that will be skipped on tailcall */
328 #define X86_TAIL_CALL_OFFSET (12 + ENDBR_INSN_SIZE)
329
push_r9(u8 ** pprog)330 static void push_r9(u8 **pprog)
331 {
332 u8 *prog = *pprog;
333
334 EMIT2(0x41, 0x51); /* push r9 */
335 *pprog = prog;
336 }
337
pop_r9(u8 ** pprog)338 static void pop_r9(u8 **pprog)
339 {
340 u8 *prog = *pprog;
341
342 EMIT2(0x41, 0x59); /* pop r9 */
343 *pprog = prog;
344 }
345
push_r12(u8 ** pprog)346 static void push_r12(u8 **pprog)
347 {
348 u8 *prog = *pprog;
349
350 EMIT2(0x41, 0x54); /* push r12 */
351 *pprog = prog;
352 }
353
push_callee_regs(u8 ** pprog,bool * callee_regs_used)354 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
355 {
356 u8 *prog = *pprog;
357
358 if (callee_regs_used[0])
359 EMIT1(0x53); /* push rbx */
360 if (callee_regs_used[1])
361 EMIT2(0x41, 0x55); /* push r13 */
362 if (callee_regs_used[2])
363 EMIT2(0x41, 0x56); /* push r14 */
364 if (callee_regs_used[3])
365 EMIT2(0x41, 0x57); /* push r15 */
366 *pprog = prog;
367 }
368
pop_r12(u8 ** pprog)369 static void pop_r12(u8 **pprog)
370 {
371 u8 *prog = *pprog;
372
373 EMIT2(0x41, 0x5C); /* pop r12 */
374 *pprog = prog;
375 }
376
pop_callee_regs(u8 ** pprog,bool * callee_regs_used)377 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
378 {
379 u8 *prog = *pprog;
380
381 if (callee_regs_used[3])
382 EMIT2(0x41, 0x5F); /* pop r15 */
383 if (callee_regs_used[2])
384 EMIT2(0x41, 0x5E); /* pop r14 */
385 if (callee_regs_used[1])
386 EMIT2(0x41, 0x5D); /* pop r13 */
387 if (callee_regs_used[0])
388 EMIT1(0x5B); /* pop rbx */
389 *pprog = prog;
390 }
391
emit_nops(u8 ** pprog,int len)392 static void emit_nops(u8 **pprog, int len)
393 {
394 u8 *prog = *pprog;
395 int i, noplen;
396
397 while (len > 0) {
398 noplen = len;
399
400 if (noplen > ASM_NOP_MAX)
401 noplen = ASM_NOP_MAX;
402
403 for (i = 0; i < noplen; i++)
404 EMIT1(x86_nops[noplen][i]);
405 len -= noplen;
406 }
407
408 *pprog = prog;
409 }
410
411 /*
412 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
413 * in arch/x86/kernel/alternative.c
414 */
415 static int emit_call(u8 **prog, void *func, void *ip);
416
emit_fineibt(u8 ** pprog,u8 * ip,u32 hash,int arity)417 static void emit_fineibt(u8 **pprog, u8 *ip, u32 hash, int arity)
418 {
419 u8 *prog = *pprog;
420
421 EMIT_ENDBR();
422 EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */
423 if (cfi_bhi) {
424 emit_call(&prog, __bhi_args[arity], ip + 11);
425 } else {
426 EMIT2(0x75, 0xf9); /* jne.d8 .-7 */
427 EMIT3(0x0f, 0x1f, 0x00); /* nop3 */
428 }
429 EMIT_ENDBR_POISON();
430
431 *pprog = prog;
432 }
433
emit_kcfi(u8 ** pprog,u32 hash)434 static void emit_kcfi(u8 **pprog, u32 hash)
435 {
436 u8 *prog = *pprog;
437
438 EMIT1_off32(0xb8, hash); /* movl $hash, %eax */
439 #ifdef CONFIG_CALL_PADDING
440 EMIT1(0x90);
441 EMIT1(0x90);
442 EMIT1(0x90);
443 EMIT1(0x90);
444 EMIT1(0x90);
445 EMIT1(0x90);
446 EMIT1(0x90);
447 EMIT1(0x90);
448 EMIT1(0x90);
449 EMIT1(0x90);
450 EMIT1(0x90);
451 #endif
452 EMIT_ENDBR();
453
454 *pprog = prog;
455 }
456
emit_cfi(u8 ** pprog,u8 * ip,u32 hash,int arity)457 static void emit_cfi(u8 **pprog, u8 *ip, u32 hash, int arity)
458 {
459 u8 *prog = *pprog;
460
461 switch (cfi_mode) {
462 case CFI_FINEIBT:
463 emit_fineibt(&prog, ip, hash, arity);
464 break;
465
466 case CFI_KCFI:
467 emit_kcfi(&prog, hash);
468 break;
469
470 default:
471 EMIT_ENDBR();
472 break;
473 }
474
475 *pprog = prog;
476 }
477
emit_prologue_tail_call(u8 ** pprog,bool is_subprog)478 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
479 {
480 u8 *prog = *pprog;
481
482 if (!is_subprog) {
483 /* cmp rax, MAX_TAIL_CALL_CNT */
484 EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
485 EMIT2(X86_JA, 6); /* ja 6 */
486 /* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
487 * case1: entry of main prog.
488 * case2: tail callee of main prog.
489 */
490 EMIT1(0x50); /* push rax */
491 /* Make rax as tail_call_cnt_ptr. */
492 EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
493 EMIT2(0xEB, 1); /* jmp 1 */
494 /* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
495 * case: tail callee of subprog.
496 */
497 EMIT1(0x50); /* push rax */
498 /* push tail_call_cnt_ptr */
499 EMIT1(0x50); /* push rax */
500 } else { /* is_subprog */
501 /* rax is tail_call_cnt_ptr. */
502 EMIT1(0x50); /* push rax */
503 EMIT1(0x50); /* push rax */
504 }
505
506 *pprog = prog;
507 }
508
509 /*
510 * Emit x86-64 prologue code for BPF program.
511 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
512 * while jumping to another program
513 */
emit_prologue(u8 ** pprog,u8 * ip,u32 stack_depth,bool ebpf_from_cbpf,bool tail_call_reachable,bool is_subprog,bool is_exception_cb)514 static void emit_prologue(u8 **pprog, u8 *ip, u32 stack_depth, bool ebpf_from_cbpf,
515 bool tail_call_reachable, bool is_subprog,
516 bool is_exception_cb)
517 {
518 u8 *prog = *pprog;
519
520 if (is_subprog) {
521 emit_cfi(&prog, ip, cfi_bpf_subprog_hash, 5);
522 } else {
523 emit_cfi(&prog, ip, cfi_bpf_hash, 1);
524 }
525 /* BPF trampoline can be made to work without these nops,
526 * but let's waste 5 bytes for now and optimize later
527 */
528 emit_nops(&prog, X86_PATCH_SIZE);
529 if (!ebpf_from_cbpf) {
530 if (tail_call_reachable && !is_subprog)
531 /* When it's the entry of the whole tailcall context,
532 * zeroing rax means initialising tail_call_cnt.
533 */
534 EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
535 else
536 /* Keep the same instruction layout. */
537 emit_nops(&prog, 3); /* nop3 */
538 }
539 /* Exception callback receives FP as third parameter */
540 if (is_exception_cb) {
541 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
542 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
543 /* The main frame must have exception_boundary as true, so we
544 * first restore those callee-saved regs from stack, before
545 * reusing the stack frame.
546 */
547 pop_callee_regs(&prog, all_callee_regs_used);
548 pop_r12(&prog);
549 /* Reset the stack frame. */
550 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
551 } else {
552 EMIT1(0x55); /* push rbp */
553 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
554 }
555
556 /* X86_TAIL_CALL_OFFSET is here */
557 EMIT_ENDBR();
558
559 /* sub rsp, rounded_stack_depth */
560 if (stack_depth)
561 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
562 if (tail_call_reachable)
563 emit_prologue_tail_call(&prog, is_subprog);
564 *pprog = prog;
565 }
566
emit_patch(u8 ** pprog,void * func,void * ip,u8 opcode)567 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
568 {
569 u8 *prog = *pprog;
570 s64 offset;
571
572 offset = func - (ip + X86_PATCH_SIZE);
573 if (!is_simm32(offset)) {
574 pr_err("Target call %p is out of range\n", func);
575 return -ERANGE;
576 }
577 EMIT1_off32(opcode, offset);
578 *pprog = prog;
579 return 0;
580 }
581
emit_call(u8 ** pprog,void * func,void * ip)582 static int emit_call(u8 **pprog, void *func, void *ip)
583 {
584 return emit_patch(pprog, func, ip, 0xE8);
585 }
586
emit_rsb_call(u8 ** pprog,void * func,void * ip)587 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
588 {
589 OPTIMIZER_HIDE_VAR(func);
590 ip += x86_call_depth_emit_accounting(pprog, func, ip);
591 return emit_patch(pprog, func, ip, 0xE8);
592 }
593
emit_jump(u8 ** pprog,void * func,void * ip)594 static int emit_jump(u8 **pprog, void *func, void *ip)
595 {
596 return emit_patch(pprog, func, ip, 0xE9);
597 }
598
__bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)599 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
600 void *old_addr, void *new_addr)
601 {
602 const u8 *nop_insn = x86_nops[5];
603 u8 old_insn[X86_PATCH_SIZE];
604 u8 new_insn[X86_PATCH_SIZE];
605 u8 *prog;
606 int ret;
607
608 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
609 if (old_addr) {
610 prog = old_insn;
611 ret = t == BPF_MOD_CALL ?
612 emit_call(&prog, old_addr, ip) :
613 emit_jump(&prog, old_addr, ip);
614 if (ret)
615 return ret;
616 }
617
618 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
619 if (new_addr) {
620 prog = new_insn;
621 ret = t == BPF_MOD_CALL ?
622 emit_call(&prog, new_addr, ip) :
623 emit_jump(&prog, new_addr, ip);
624 if (ret)
625 return ret;
626 }
627
628 ret = -EBUSY;
629 mutex_lock(&text_mutex);
630 if (memcmp(ip, old_insn, X86_PATCH_SIZE))
631 goto out;
632 ret = 1;
633 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
634 smp_text_poke_single(ip, new_insn, X86_PATCH_SIZE, NULL);
635 ret = 0;
636 }
637 out:
638 mutex_unlock(&text_mutex);
639 return ret;
640 }
641
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)642 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
643 void *old_addr, void *new_addr)
644 {
645 if (!is_kernel_text((long)ip) &&
646 !is_bpf_text_address((long)ip))
647 /* BPF poking in modules is not supported */
648 return -EINVAL;
649
650 /*
651 * See emit_prologue(), for IBT builds the trampoline hook is preceded
652 * with an ENDBR instruction.
653 */
654 if (is_endbr(ip))
655 ip += ENDBR_INSN_SIZE;
656
657 return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
658 }
659
660 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
661
emit_indirect_jump(u8 ** pprog,int reg,u8 * ip)662 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
663 {
664 u8 *prog = *pprog;
665
666 if (cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) {
667 OPTIMIZER_HIDE_VAR(reg);
668 emit_jump(&prog, its_static_thunk(reg), ip);
669 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
670 EMIT_LFENCE();
671 EMIT2(0xFF, 0xE0 + reg);
672 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
673 OPTIMIZER_HIDE_VAR(reg);
674 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
675 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
676 else
677 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
678 } else {
679 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
680 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
681 EMIT1(0xCC); /* int3 */
682 }
683
684 *pprog = prog;
685 }
686
emit_return(u8 ** pprog,u8 * ip)687 static void emit_return(u8 **pprog, u8 *ip)
688 {
689 u8 *prog = *pprog;
690
691 if (cpu_wants_rethunk()) {
692 emit_jump(&prog, x86_return_thunk, ip);
693 } else {
694 EMIT1(0xC3); /* ret */
695 if (IS_ENABLED(CONFIG_MITIGATION_SLS))
696 EMIT1(0xCC); /* int3 */
697 }
698
699 *pprog = prog;
700 }
701
702 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack) (-16 - round_up(stack, 8))
703
704 /*
705 * Generate the following code:
706 *
707 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
708 * if (index >= array->map.max_entries)
709 * goto out;
710 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
711 * goto out;
712 * prog = array->ptrs[index];
713 * if (prog == NULL)
714 * goto out;
715 * goto *(prog->bpf_func + prologue_size);
716 * out:
717 */
emit_bpf_tail_call_indirect(struct bpf_prog * bpf_prog,u8 ** pprog,bool * callee_regs_used,u32 stack_depth,u8 * ip,struct jit_context * ctx)718 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
719 u8 **pprog, bool *callee_regs_used,
720 u32 stack_depth, u8 *ip,
721 struct jit_context *ctx)
722 {
723 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
724 u8 *prog = *pprog, *start = *pprog;
725 int offset;
726
727 /*
728 * rdi - pointer to ctx
729 * rsi - pointer to bpf_array
730 * rdx - index in bpf_array
731 */
732
733 /*
734 * if (index >= array->map.max_entries)
735 * goto out;
736 */
737 EMIT2(0x89, 0xD2); /* mov edx, edx */
738 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
739 offsetof(struct bpf_array, map.max_entries));
740
741 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
742 EMIT2(X86_JBE, offset); /* jbe out */
743
744 /*
745 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
746 * goto out;
747 */
748 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
749 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
750
751 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
752 EMIT2(X86_JAE, offset); /* jae out */
753
754 /* prog = array->ptrs[index]; */
755 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
756 offsetof(struct bpf_array, ptrs));
757
758 /*
759 * if (prog == NULL)
760 * goto out;
761 */
762 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
763
764 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
765 EMIT2(X86_JE, offset); /* je out */
766
767 /* Inc tail_call_cnt if the slot is populated. */
768 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */
769
770 if (bpf_prog->aux->exception_boundary) {
771 pop_callee_regs(&prog, all_callee_regs_used);
772 pop_r12(&prog);
773 } else {
774 pop_callee_regs(&prog, callee_regs_used);
775 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
776 pop_r12(&prog);
777 }
778
779 /* Pop tail_call_cnt_ptr. */
780 EMIT1(0x58); /* pop rax */
781 /* Pop tail_call_cnt, if it's main prog.
782 * Pop tail_call_cnt_ptr, if it's subprog.
783 */
784 EMIT1(0x58); /* pop rax */
785 if (stack_depth)
786 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
787 round_up(stack_depth, 8));
788
789 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
790 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
791 offsetof(struct bpf_prog, bpf_func));
792 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
793 X86_TAIL_CALL_OFFSET);
794 /*
795 * Now we're ready to jump into next BPF program
796 * rdi == ctx (1st arg)
797 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
798 */
799 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
800
801 /* out: */
802 ctx->tail_call_indirect_label = prog - start;
803 *pprog = prog;
804 }
805
emit_bpf_tail_call_direct(struct bpf_prog * bpf_prog,struct bpf_jit_poke_descriptor * poke,u8 ** pprog,u8 * ip,bool * callee_regs_used,u32 stack_depth,struct jit_context * ctx)806 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
807 struct bpf_jit_poke_descriptor *poke,
808 u8 **pprog, u8 *ip,
809 bool *callee_regs_used, u32 stack_depth,
810 struct jit_context *ctx)
811 {
812 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
813 u8 *prog = *pprog, *start = *pprog;
814 int offset;
815
816 /*
817 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
818 * goto out;
819 */
820 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
821 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
822
823 offset = ctx->tail_call_direct_label - (prog + 2 - start);
824 EMIT2(X86_JAE, offset); /* jae out */
825
826 poke->tailcall_bypass = ip + (prog - start);
827 poke->adj_off = X86_TAIL_CALL_OFFSET;
828 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
829 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
830
831 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
832 poke->tailcall_bypass);
833
834 /* Inc tail_call_cnt if the slot is populated. */
835 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */
836
837 if (bpf_prog->aux->exception_boundary) {
838 pop_callee_regs(&prog, all_callee_regs_used);
839 pop_r12(&prog);
840 } else {
841 pop_callee_regs(&prog, callee_regs_used);
842 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
843 pop_r12(&prog);
844 }
845
846 /* Pop tail_call_cnt_ptr. */
847 EMIT1(0x58); /* pop rax */
848 /* Pop tail_call_cnt, if it's main prog.
849 * Pop tail_call_cnt_ptr, if it's subprog.
850 */
851 EMIT1(0x58); /* pop rax */
852 if (stack_depth)
853 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
854
855 emit_nops(&prog, X86_PATCH_SIZE);
856
857 /* out: */
858 ctx->tail_call_direct_label = prog - start;
859
860 *pprog = prog;
861 }
862
bpf_tail_call_direct_fixup(struct bpf_prog * prog)863 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
864 {
865 struct bpf_jit_poke_descriptor *poke;
866 struct bpf_array *array;
867 struct bpf_prog *target;
868 int i, ret;
869
870 for (i = 0; i < prog->aux->size_poke_tab; i++) {
871 poke = &prog->aux->poke_tab[i];
872 if (poke->aux && poke->aux != prog->aux)
873 continue;
874
875 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
876
877 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
878 continue;
879
880 array = container_of(poke->tail_call.map, struct bpf_array, map);
881 mutex_lock(&array->aux->poke_mutex);
882 target = array->ptrs[poke->tail_call.key];
883 if (target) {
884 ret = __bpf_arch_text_poke(poke->tailcall_target,
885 BPF_MOD_JUMP, NULL,
886 (u8 *)target->bpf_func +
887 poke->adj_off);
888 BUG_ON(ret < 0);
889 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
890 BPF_MOD_JUMP,
891 (u8 *)poke->tailcall_target +
892 X86_PATCH_SIZE, NULL);
893 BUG_ON(ret < 0);
894 }
895 WRITE_ONCE(poke->tailcall_target_stable, true);
896 mutex_unlock(&array->aux->poke_mutex);
897 }
898 }
899
emit_mov_imm32(u8 ** pprog,bool sign_propagate,u32 dst_reg,const u32 imm32)900 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
901 u32 dst_reg, const u32 imm32)
902 {
903 u8 *prog = *pprog;
904 u8 b1, b2, b3;
905
906 /*
907 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
908 * (which zero-extends imm32) to save 2 bytes.
909 */
910 if (sign_propagate && (s32)imm32 < 0) {
911 /* 'mov %rax, imm32' sign extends imm32 */
912 b1 = add_1mod(0x48, dst_reg);
913 b2 = 0xC7;
914 b3 = 0xC0;
915 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
916 goto done;
917 }
918
919 /*
920 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
921 * to save 3 bytes.
922 */
923 if (imm32 == 0) {
924 if (is_ereg(dst_reg))
925 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
926 b2 = 0x31; /* xor */
927 b3 = 0xC0;
928 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
929 goto done;
930 }
931
932 /* mov %eax, imm32 */
933 if (is_ereg(dst_reg))
934 EMIT1(add_1mod(0x40, dst_reg));
935 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
936 done:
937 *pprog = prog;
938 }
939
emit_mov_imm64(u8 ** pprog,u32 dst_reg,const u32 imm32_hi,const u32 imm32_lo)940 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
941 const u32 imm32_hi, const u32 imm32_lo)
942 {
943 u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
944 u8 *prog = *pprog;
945
946 if (is_uimm32(imm64)) {
947 /*
948 * For emitting plain u32, where sign bit must not be
949 * propagated LLVM tends to load imm64 over mov32
950 * directly, so save couple of bytes by just doing
951 * 'mov %eax, imm32' instead.
952 */
953 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
954 } else if (is_simm32(imm64)) {
955 emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
956 } else {
957 /* movabsq rax, imm64 */
958 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
959 EMIT(imm32_lo, 4);
960 EMIT(imm32_hi, 4);
961 }
962
963 *pprog = prog;
964 }
965
emit_mov_reg(u8 ** pprog,bool is64,u32 dst_reg,u32 src_reg)966 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
967 {
968 u8 *prog = *pprog;
969
970 if (is64) {
971 /* mov dst, src */
972 EMIT_mov(dst_reg, src_reg);
973 } else {
974 /* mov32 dst, src */
975 if (is_ereg(dst_reg) || is_ereg(src_reg))
976 EMIT1(add_2mod(0x40, dst_reg, src_reg));
977 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
978 }
979
980 *pprog = prog;
981 }
982
emit_movsx_reg(u8 ** pprog,int num_bits,bool is64,u32 dst_reg,u32 src_reg)983 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
984 u32 src_reg)
985 {
986 u8 *prog = *pprog;
987
988 if (is64) {
989 /* movs[b,w,l]q dst, src */
990 if (num_bits == 8)
991 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
992 add_2reg(0xC0, src_reg, dst_reg));
993 else if (num_bits == 16)
994 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
995 add_2reg(0xC0, src_reg, dst_reg));
996 else if (num_bits == 32)
997 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
998 add_2reg(0xC0, src_reg, dst_reg));
999 } else {
1000 /* movs[b,w]l dst, src */
1001 if (num_bits == 8) {
1002 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
1003 add_2reg(0xC0, src_reg, dst_reg));
1004 } else if (num_bits == 16) {
1005 if (is_ereg(dst_reg) || is_ereg(src_reg))
1006 EMIT1(add_2mod(0x40, src_reg, dst_reg));
1007 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
1008 add_2reg(0xC0, src_reg, dst_reg));
1009 }
1010 }
1011
1012 *pprog = prog;
1013 }
1014
1015 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
emit_insn_suffix(u8 ** pprog,u32 ptr_reg,u32 val_reg,int off)1016 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
1017 {
1018 u8 *prog = *pprog;
1019
1020 if (is_imm8(off)) {
1021 /* 1-byte signed displacement.
1022 *
1023 * If off == 0 we could skip this and save one extra byte, but
1024 * special case of x86 R13 which always needs an offset is not
1025 * worth the hassle
1026 */
1027 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
1028 } else {
1029 /* 4-byte signed displacement */
1030 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
1031 }
1032 *pprog = prog;
1033 }
1034
emit_insn_suffix_SIB(u8 ** pprog,u32 ptr_reg,u32 val_reg,u32 index_reg,int off)1035 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
1036 {
1037 u8 *prog = *pprog;
1038
1039 if (is_imm8(off)) {
1040 EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1041 } else {
1042 EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1043 }
1044 *pprog = prog;
1045 }
1046
1047 /*
1048 * Emit a REX byte if it will be necessary to address these registers
1049 */
maybe_emit_mod(u8 ** pprog,u32 dst_reg,u32 src_reg,bool is64)1050 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
1051 {
1052 u8 *prog = *pprog;
1053
1054 if (is64)
1055 EMIT1(add_2mod(0x48, dst_reg, src_reg));
1056 else if (is_ereg(dst_reg) || is_ereg(src_reg))
1057 EMIT1(add_2mod(0x40, dst_reg, src_reg));
1058 *pprog = prog;
1059 }
1060
1061 /*
1062 * Similar version of maybe_emit_mod() for a single register
1063 */
maybe_emit_1mod(u8 ** pprog,u32 reg,bool is64)1064 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
1065 {
1066 u8 *prog = *pprog;
1067
1068 if (is64)
1069 EMIT1(add_1mod(0x48, reg));
1070 else if (is_ereg(reg))
1071 EMIT1(add_1mod(0x40, reg));
1072 *pprog = prog;
1073 }
1074
1075 /* LDX: dst_reg = *(u8*)(src_reg + off) */
emit_ldx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1076 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1077 {
1078 u8 *prog = *pprog;
1079
1080 switch (size) {
1081 case BPF_B:
1082 /* Emit 'movzx rax, byte ptr [rax + off]' */
1083 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1084 break;
1085 case BPF_H:
1086 /* Emit 'movzx rax, word ptr [rax + off]' */
1087 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1088 break;
1089 case BPF_W:
1090 /* Emit 'mov eax, dword ptr [rax+0x14]' */
1091 if (is_ereg(dst_reg) || is_ereg(src_reg))
1092 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1093 else
1094 EMIT1(0x8B);
1095 break;
1096 case BPF_DW:
1097 /* Emit 'mov rax, qword ptr [rax+0x14]' */
1098 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1099 break;
1100 }
1101 emit_insn_suffix(&prog, src_reg, dst_reg, off);
1102 *pprog = prog;
1103 }
1104
1105 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
emit_ldsx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1106 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1107 {
1108 u8 *prog = *pprog;
1109
1110 switch (size) {
1111 case BPF_B:
1112 /* Emit 'movsx rax, byte ptr [rax + off]' */
1113 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1114 break;
1115 case BPF_H:
1116 /* Emit 'movsx rax, word ptr [rax + off]' */
1117 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1118 break;
1119 case BPF_W:
1120 /* Emit 'movsx rax, dword ptr [rax+0x14]' */
1121 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1122 break;
1123 }
1124 emit_insn_suffix(&prog, src_reg, dst_reg, off);
1125 *pprog = prog;
1126 }
1127
emit_ldx_index(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1128 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1129 {
1130 u8 *prog = *pprog;
1131
1132 switch (size) {
1133 case BPF_B:
1134 /* movzx rax, byte ptr [rax + r12 + off] */
1135 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1136 break;
1137 case BPF_H:
1138 /* movzx rax, word ptr [rax + r12 + off] */
1139 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1140 break;
1141 case BPF_W:
1142 /* mov eax, dword ptr [rax + r12 + off] */
1143 EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1144 break;
1145 case BPF_DW:
1146 /* mov rax, qword ptr [rax + r12 + off] */
1147 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1148 break;
1149 }
1150 emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1151 *pprog = prog;
1152 }
1153
emit_ldx_r12(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1154 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1155 {
1156 emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1157 }
1158
1159 /* STX: *(u8*)(dst_reg + off) = src_reg */
emit_stx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1160 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1161 {
1162 u8 *prog = *pprog;
1163
1164 switch (size) {
1165 case BPF_B:
1166 /* Emit 'mov byte ptr [rax + off], al' */
1167 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1168 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1169 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1170 else
1171 EMIT1(0x88);
1172 break;
1173 case BPF_H:
1174 if (is_ereg(dst_reg) || is_ereg(src_reg))
1175 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1176 else
1177 EMIT2(0x66, 0x89);
1178 break;
1179 case BPF_W:
1180 if (is_ereg(dst_reg) || is_ereg(src_reg))
1181 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1182 else
1183 EMIT1(0x89);
1184 break;
1185 case BPF_DW:
1186 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1187 break;
1188 }
1189 emit_insn_suffix(&prog, dst_reg, src_reg, off);
1190 *pprog = prog;
1191 }
1192
1193 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
emit_stx_index(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1194 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1195 {
1196 u8 *prog = *pprog;
1197
1198 switch (size) {
1199 case BPF_B:
1200 /* mov byte ptr [rax + r12 + off], al */
1201 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1202 break;
1203 case BPF_H:
1204 /* mov word ptr [rax + r12 + off], ax */
1205 EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1206 break;
1207 case BPF_W:
1208 /* mov dword ptr [rax + r12 + 1], eax */
1209 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1210 break;
1211 case BPF_DW:
1212 /* mov qword ptr [rax + r12 + 1], rax */
1213 EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1214 break;
1215 }
1216 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1217 *pprog = prog;
1218 }
1219
emit_stx_r12(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1220 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1221 {
1222 emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1223 }
1224
1225 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
emit_st_index(u8 ** pprog,u32 size,u32 dst_reg,u32 index_reg,int off,int imm)1226 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1227 {
1228 u8 *prog = *pprog;
1229
1230 switch (size) {
1231 case BPF_B:
1232 /* mov byte ptr [rax + r12 + off], imm8 */
1233 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1234 break;
1235 case BPF_H:
1236 /* mov word ptr [rax + r12 + off], imm16 */
1237 EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1238 break;
1239 case BPF_W:
1240 /* mov dword ptr [rax + r12 + 1], imm32 */
1241 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1242 break;
1243 case BPF_DW:
1244 /* mov qword ptr [rax + r12 + 1], imm32 */
1245 EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1246 break;
1247 }
1248 emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1249 EMIT(imm, bpf_size_to_x86_bytes(size));
1250 *pprog = prog;
1251 }
1252
emit_st_r12(u8 ** pprog,u32 size,u32 dst_reg,int off,int imm)1253 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1254 {
1255 emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1256 }
1257
emit_atomic_rmw(u8 ** pprog,u32 atomic_op,u32 dst_reg,u32 src_reg,s16 off,u8 bpf_size)1258 static int emit_atomic_rmw(u8 **pprog, u32 atomic_op,
1259 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1260 {
1261 u8 *prog = *pprog;
1262
1263 EMIT1(0xF0); /* lock prefix */
1264
1265 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1266
1267 /* emit opcode */
1268 switch (atomic_op) {
1269 case BPF_ADD:
1270 case BPF_AND:
1271 case BPF_OR:
1272 case BPF_XOR:
1273 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1274 EMIT1(simple_alu_opcodes[atomic_op]);
1275 break;
1276 case BPF_ADD | BPF_FETCH:
1277 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1278 EMIT2(0x0F, 0xC1);
1279 break;
1280 case BPF_XCHG:
1281 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1282 EMIT1(0x87);
1283 break;
1284 case BPF_CMPXCHG:
1285 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1286 EMIT2(0x0F, 0xB1);
1287 break;
1288 default:
1289 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1290 return -EFAULT;
1291 }
1292
1293 emit_insn_suffix(&prog, dst_reg, src_reg, off);
1294
1295 *pprog = prog;
1296 return 0;
1297 }
1298
emit_atomic_rmw_index(u8 ** pprog,u32 atomic_op,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1299 static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size,
1300 u32 dst_reg, u32 src_reg, u32 index_reg,
1301 int off)
1302 {
1303 u8 *prog = *pprog;
1304
1305 EMIT1(0xF0); /* lock prefix */
1306 switch (size) {
1307 case BPF_W:
1308 EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1309 break;
1310 case BPF_DW:
1311 EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1312 break;
1313 default:
1314 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
1315 return -EFAULT;
1316 }
1317
1318 /* emit opcode */
1319 switch (atomic_op) {
1320 case BPF_ADD:
1321 case BPF_AND:
1322 case BPF_OR:
1323 case BPF_XOR:
1324 /* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1325 EMIT1(simple_alu_opcodes[atomic_op]);
1326 break;
1327 case BPF_ADD | BPF_FETCH:
1328 /* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1329 EMIT2(0x0F, 0xC1);
1330 break;
1331 case BPF_XCHG:
1332 /* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1333 EMIT1(0x87);
1334 break;
1335 case BPF_CMPXCHG:
1336 /* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1337 EMIT2(0x0F, 0xB1);
1338 break;
1339 default:
1340 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1341 return -EFAULT;
1342 }
1343 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1344 *pprog = prog;
1345 return 0;
1346 }
1347
emit_atomic_ld_st(u8 ** pprog,u32 atomic_op,u32 dst_reg,u32 src_reg,s16 off,u8 bpf_size)1348 static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg,
1349 u32 src_reg, s16 off, u8 bpf_size)
1350 {
1351 switch (atomic_op) {
1352 case BPF_LOAD_ACQ:
1353 /* dst_reg = smp_load_acquire(src_reg + off16) */
1354 emit_ldx(pprog, bpf_size, dst_reg, src_reg, off);
1355 break;
1356 case BPF_STORE_REL:
1357 /* smp_store_release(dst_reg + off16, src_reg) */
1358 emit_stx(pprog, bpf_size, dst_reg, src_reg, off);
1359 break;
1360 default:
1361 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1362 atomic_op);
1363 return -EFAULT;
1364 }
1365
1366 return 0;
1367 }
1368
emit_atomic_ld_st_index(u8 ** pprog,u32 atomic_op,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1369 static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size,
1370 u32 dst_reg, u32 src_reg, u32 index_reg,
1371 int off)
1372 {
1373 switch (atomic_op) {
1374 case BPF_LOAD_ACQ:
1375 /* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */
1376 emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1377 break;
1378 case BPF_STORE_REL:
1379 /* smp_store_release(dst_reg + idx_reg + off16, src_reg) */
1380 emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1381 break;
1382 default:
1383 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1384 atomic_op);
1385 return -EFAULT;
1386 }
1387
1388 return 0;
1389 }
1390
1391 #define DONT_CLEAR 1
1392
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)1393 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1394 {
1395 u32 reg = x->fixup >> 8;
1396
1397 /* jump over faulting load and clear dest register */
1398 if (reg != DONT_CLEAR)
1399 *(unsigned long *)((void *)regs + reg) = 0;
1400 regs->ip += x->fixup & 0xff;
1401 return true;
1402 }
1403
detect_reg_usage(struct bpf_insn * insn,int insn_cnt,bool * regs_used)1404 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1405 bool *regs_used)
1406 {
1407 int i;
1408
1409 for (i = 1; i <= insn_cnt; i++, insn++) {
1410 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1411 regs_used[0] = true;
1412 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1413 regs_used[1] = true;
1414 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1415 regs_used[2] = true;
1416 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1417 regs_used[3] = true;
1418 }
1419 }
1420
1421 /* emit the 3-byte VEX prefix
1422 *
1423 * r: same as rex.r, extra bit for ModRM reg field
1424 * x: same as rex.x, extra bit for SIB index field
1425 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1426 * m: opcode map select, encoding escape bytes e.g. 0x0f38
1427 * w: same as rex.w (32 bit or 64 bit) or opcode specific
1428 * src_reg2: additional source reg (encoded as BPF reg)
1429 * l: vector length (128 bit or 256 bit) or reserved
1430 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1431 */
emit_3vex(u8 ** pprog,bool r,bool x,bool b,u8 m,bool w,u8 src_reg2,bool l,u8 pp)1432 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1433 bool w, u8 src_reg2, bool l, u8 pp)
1434 {
1435 u8 *prog = *pprog;
1436 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1437 u8 b1, b2;
1438 u8 vvvv = reg2hex[src_reg2];
1439
1440 /* reg2hex gives only the lower 3 bit of vvvv */
1441 if (is_ereg(src_reg2))
1442 vvvv |= 1 << 3;
1443
1444 /*
1445 * 2nd byte of 3-byte VEX prefix
1446 * ~ means bit inverted encoding
1447 *
1448 * 7 0
1449 * +---+---+---+---+---+---+---+---+
1450 * |~R |~X |~B | m |
1451 * +---+---+---+---+---+---+---+---+
1452 */
1453 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1454 /*
1455 * 3rd byte of 3-byte VEX prefix
1456 *
1457 * 7 0
1458 * +---+---+---+---+---+---+---+---+
1459 * | W | ~vvvv | L | pp |
1460 * +---+---+---+---+---+---+---+---+
1461 */
1462 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1463
1464 EMIT3(b0, b1, b2);
1465 *pprog = prog;
1466 }
1467
1468 /* emit BMI2 shift instruction */
emit_shiftx(u8 ** pprog,u32 dst_reg,u8 src_reg,bool is64,u8 op)1469 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1470 {
1471 u8 *prog = *pprog;
1472 bool r = is_ereg(dst_reg);
1473 u8 m = 2; /* escape code 0f38 */
1474
1475 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1476 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1477 *pprog = prog;
1478 }
1479
emit_priv_frame_ptr(u8 ** pprog,void __percpu * priv_frame_ptr)1480 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr)
1481 {
1482 u8 *prog = *pprog;
1483
1484 /* movabs r9, priv_frame_ptr */
1485 emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32,
1486 (u32) (__force long) priv_frame_ptr);
1487
1488 #ifdef CONFIG_SMP
1489 /* add <r9>, gs:[<off>] */
1490 EMIT2(0x65, 0x4c);
1491 EMIT3(0x03, 0x0c, 0x25);
1492 EMIT((u32)(unsigned long)&this_cpu_off, 4);
1493 #endif
1494
1495 *pprog = prog;
1496 }
1497
1498 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1499
1500 #define __LOAD_TCC_PTR(off) \
1501 EMIT3_off32(0x48, 0x8B, 0x85, off)
1502 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1503 #define LOAD_TAIL_CALL_CNT_PTR(stack) \
1504 __LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1505
1506 /* Memory size/value to protect private stack overflow/underflow */
1507 #define PRIV_STACK_GUARD_SZ 8
1508 #define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL
1509
emit_spectre_bhb_barrier(u8 ** pprog,u8 * ip,struct bpf_prog * bpf_prog)1510 static int emit_spectre_bhb_barrier(u8 **pprog, u8 *ip,
1511 struct bpf_prog *bpf_prog)
1512 {
1513 u8 *prog = *pprog;
1514 u8 *func;
1515
1516 if (cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP)) {
1517 /* The clearing sequence clobbers eax and ecx. */
1518 EMIT1(0x50); /* push rax */
1519 EMIT1(0x51); /* push rcx */
1520 ip += 2;
1521
1522 func = (u8 *)clear_bhb_loop;
1523 ip += x86_call_depth_emit_accounting(&prog, func, ip);
1524
1525 if (emit_call(&prog, func, ip))
1526 return -EINVAL;
1527 EMIT1(0x59); /* pop rcx */
1528 EMIT1(0x58); /* pop rax */
1529 }
1530 /* Insert IBHF instruction */
1531 if ((cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP) &&
1532 cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) ||
1533 cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_HW)) {
1534 /*
1535 * Add an Indirect Branch History Fence (IBHF). IBHF acts as a
1536 * fence preventing branch history from before the fence from
1537 * affecting indirect branches after the fence. This is
1538 * specifically used in cBPF jitted code to prevent Intra-mode
1539 * BHI attacks. The IBHF instruction is designed to be a NOP on
1540 * hardware that doesn't need or support it. The REP and REX.W
1541 * prefixes are required by the microcode, and they also ensure
1542 * that the NOP is unlikely to be used in existing code.
1543 *
1544 * IBHF is not a valid instruction in 32-bit mode.
1545 */
1546 EMIT5(0xF3, 0x48, 0x0F, 0x1E, 0xF8); /* ibhf */
1547 }
1548 *pprog = prog;
1549 return 0;
1550 }
1551
do_jit(struct bpf_prog * bpf_prog,int * addrs,u8 * image,u8 * rw_image,int oldproglen,struct jit_context * ctx,bool jmp_padding)1552 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1553 int oldproglen, struct jit_context *ctx, bool jmp_padding)
1554 {
1555 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1556 struct bpf_insn *insn = bpf_prog->insnsi;
1557 bool callee_regs_used[4] = {};
1558 int insn_cnt = bpf_prog->len;
1559 bool seen_exit = false;
1560 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1561 void __percpu *priv_frame_ptr = NULL;
1562 u64 arena_vm_start, user_vm_start;
1563 void __percpu *priv_stack_ptr;
1564 int i, excnt = 0;
1565 int ilen, proglen = 0;
1566 u8 *prog = temp;
1567 u32 stack_depth;
1568 int err;
1569
1570 stack_depth = bpf_prog->aux->stack_depth;
1571 priv_stack_ptr = bpf_prog->aux->priv_stack_ptr;
1572 if (priv_stack_ptr) {
1573 priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8);
1574 stack_depth = 0;
1575 }
1576
1577 arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1578 user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1579
1580 detect_reg_usage(insn, insn_cnt, callee_regs_used);
1581
1582 emit_prologue(&prog, image, stack_depth,
1583 bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1584 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1585 /* Exception callback will clobber callee regs for its own use, and
1586 * restore the original callee regs from main prog's stack frame.
1587 */
1588 if (bpf_prog->aux->exception_boundary) {
1589 /* We also need to save r12, which is not mapped to any BPF
1590 * register, as we throw after entry into the kernel, which may
1591 * overwrite r12.
1592 */
1593 push_r12(&prog);
1594 push_callee_regs(&prog, all_callee_regs_used);
1595 } else {
1596 if (arena_vm_start)
1597 push_r12(&prog);
1598 push_callee_regs(&prog, callee_regs_used);
1599 }
1600 if (arena_vm_start)
1601 emit_mov_imm64(&prog, X86_REG_R12,
1602 arena_vm_start >> 32, (u32) arena_vm_start);
1603
1604 if (priv_frame_ptr)
1605 emit_priv_frame_ptr(&prog, priv_frame_ptr);
1606
1607 ilen = prog - temp;
1608 if (rw_image)
1609 memcpy(rw_image + proglen, temp, ilen);
1610 proglen += ilen;
1611 addrs[0] = proglen;
1612 prog = temp;
1613
1614 for (i = 1; i <= insn_cnt; i++, insn++) {
1615 const s32 imm32 = insn->imm;
1616 u32 dst_reg = insn->dst_reg;
1617 u32 src_reg = insn->src_reg;
1618 u8 b2 = 0, b3 = 0;
1619 u8 *start_of_ldx;
1620 s64 jmp_offset;
1621 s16 insn_off;
1622 u8 jmp_cond;
1623 u8 *func;
1624 int nops;
1625
1626 if (priv_frame_ptr) {
1627 if (src_reg == BPF_REG_FP)
1628 src_reg = X86_REG_R9;
1629
1630 if (dst_reg == BPF_REG_FP)
1631 dst_reg = X86_REG_R9;
1632 }
1633
1634 switch (insn->code) {
1635 /* ALU */
1636 case BPF_ALU | BPF_ADD | BPF_X:
1637 case BPF_ALU | BPF_SUB | BPF_X:
1638 case BPF_ALU | BPF_AND | BPF_X:
1639 case BPF_ALU | BPF_OR | BPF_X:
1640 case BPF_ALU | BPF_XOR | BPF_X:
1641 case BPF_ALU64 | BPF_ADD | BPF_X:
1642 case BPF_ALU64 | BPF_SUB | BPF_X:
1643 case BPF_ALU64 | BPF_AND | BPF_X:
1644 case BPF_ALU64 | BPF_OR | BPF_X:
1645 case BPF_ALU64 | BPF_XOR | BPF_X:
1646 maybe_emit_mod(&prog, dst_reg, src_reg,
1647 BPF_CLASS(insn->code) == BPF_ALU64);
1648 b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1649 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1650 break;
1651
1652 case BPF_ALU64 | BPF_MOV | BPF_X:
1653 if (insn_is_cast_user(insn)) {
1654 if (dst_reg != src_reg)
1655 /* 32-bit mov */
1656 emit_mov_reg(&prog, false, dst_reg, src_reg);
1657 /* shl dst_reg, 32 */
1658 maybe_emit_1mod(&prog, dst_reg, true);
1659 EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1660
1661 /* or dst_reg, user_vm_start */
1662 maybe_emit_1mod(&prog, dst_reg, true);
1663 if (is_axreg(dst_reg))
1664 EMIT1_off32(0x0D, user_vm_start >> 32);
1665 else
1666 EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32);
1667
1668 /* rol dst_reg, 32 */
1669 maybe_emit_1mod(&prog, dst_reg, true);
1670 EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1671
1672 /* xor r11, r11 */
1673 EMIT3(0x4D, 0x31, 0xDB);
1674
1675 /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1676 maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1677 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1678
1679 /* cmove r11, dst_reg; if so, set dst_reg to zero */
1680 /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1681 maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1682 EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1683 break;
1684 } else if (insn_is_mov_percpu_addr(insn)) {
1685 /* mov <dst>, <src> (if necessary) */
1686 EMIT_mov(dst_reg, src_reg);
1687 #ifdef CONFIG_SMP
1688 /* add <dst>, gs:[<off>] */
1689 EMIT2(0x65, add_1mod(0x48, dst_reg));
1690 EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1691 EMIT((u32)(unsigned long)&this_cpu_off, 4);
1692 #endif
1693 break;
1694 }
1695 fallthrough;
1696 case BPF_ALU | BPF_MOV | BPF_X:
1697 if (insn->off == 0)
1698 emit_mov_reg(&prog,
1699 BPF_CLASS(insn->code) == BPF_ALU64,
1700 dst_reg, src_reg);
1701 else
1702 emit_movsx_reg(&prog, insn->off,
1703 BPF_CLASS(insn->code) == BPF_ALU64,
1704 dst_reg, src_reg);
1705 break;
1706
1707 /* neg dst */
1708 case BPF_ALU | BPF_NEG:
1709 case BPF_ALU64 | BPF_NEG:
1710 maybe_emit_1mod(&prog, dst_reg,
1711 BPF_CLASS(insn->code) == BPF_ALU64);
1712 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1713 break;
1714
1715 case BPF_ALU | BPF_ADD | BPF_K:
1716 case BPF_ALU | BPF_SUB | BPF_K:
1717 case BPF_ALU | BPF_AND | BPF_K:
1718 case BPF_ALU | BPF_OR | BPF_K:
1719 case BPF_ALU | BPF_XOR | BPF_K:
1720 case BPF_ALU64 | BPF_ADD | BPF_K:
1721 case BPF_ALU64 | BPF_SUB | BPF_K:
1722 case BPF_ALU64 | BPF_AND | BPF_K:
1723 case BPF_ALU64 | BPF_OR | BPF_K:
1724 case BPF_ALU64 | BPF_XOR | BPF_K:
1725 maybe_emit_1mod(&prog, dst_reg,
1726 BPF_CLASS(insn->code) == BPF_ALU64);
1727
1728 /*
1729 * b3 holds 'normal' opcode, b2 short form only valid
1730 * in case dst is eax/rax.
1731 */
1732 switch (BPF_OP(insn->code)) {
1733 case BPF_ADD:
1734 b3 = 0xC0;
1735 b2 = 0x05;
1736 break;
1737 case BPF_SUB:
1738 b3 = 0xE8;
1739 b2 = 0x2D;
1740 break;
1741 case BPF_AND:
1742 b3 = 0xE0;
1743 b2 = 0x25;
1744 break;
1745 case BPF_OR:
1746 b3 = 0xC8;
1747 b2 = 0x0D;
1748 break;
1749 case BPF_XOR:
1750 b3 = 0xF0;
1751 b2 = 0x35;
1752 break;
1753 }
1754
1755 if (is_imm8(imm32))
1756 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1757 else if (is_axreg(dst_reg))
1758 EMIT1_off32(b2, imm32);
1759 else
1760 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1761 break;
1762
1763 case BPF_ALU64 | BPF_MOV | BPF_K:
1764 case BPF_ALU | BPF_MOV | BPF_K:
1765 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1766 dst_reg, imm32);
1767 break;
1768
1769 case BPF_LD | BPF_IMM | BPF_DW:
1770 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1771 insn++;
1772 i++;
1773 break;
1774
1775 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1776 case BPF_ALU | BPF_MOD | BPF_X:
1777 case BPF_ALU | BPF_DIV | BPF_X:
1778 case BPF_ALU | BPF_MOD | BPF_K:
1779 case BPF_ALU | BPF_DIV | BPF_K:
1780 case BPF_ALU64 | BPF_MOD | BPF_X:
1781 case BPF_ALU64 | BPF_DIV | BPF_X:
1782 case BPF_ALU64 | BPF_MOD | BPF_K:
1783 case BPF_ALU64 | BPF_DIV | BPF_K: {
1784 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1785
1786 if (dst_reg != BPF_REG_0)
1787 EMIT1(0x50); /* push rax */
1788 if (dst_reg != BPF_REG_3)
1789 EMIT1(0x52); /* push rdx */
1790
1791 if (BPF_SRC(insn->code) == BPF_X) {
1792 if (src_reg == BPF_REG_0 ||
1793 src_reg == BPF_REG_3) {
1794 /* mov r11, src_reg */
1795 EMIT_mov(AUX_REG, src_reg);
1796 src_reg = AUX_REG;
1797 }
1798 } else {
1799 /* mov r11, imm32 */
1800 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1801 src_reg = AUX_REG;
1802 }
1803
1804 if (dst_reg != BPF_REG_0)
1805 /* mov rax, dst_reg */
1806 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1807
1808 if (insn->off == 0) {
1809 /*
1810 * xor edx, edx
1811 * equivalent to 'xor rdx, rdx', but one byte less
1812 */
1813 EMIT2(0x31, 0xd2);
1814
1815 /* div src_reg */
1816 maybe_emit_1mod(&prog, src_reg, is64);
1817 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1818 } else {
1819 if (BPF_CLASS(insn->code) == BPF_ALU)
1820 EMIT1(0x99); /* cdq */
1821 else
1822 EMIT2(0x48, 0x99); /* cqo */
1823
1824 /* idiv src_reg */
1825 maybe_emit_1mod(&prog, src_reg, is64);
1826 EMIT2(0xF7, add_1reg(0xF8, src_reg));
1827 }
1828
1829 if (BPF_OP(insn->code) == BPF_MOD &&
1830 dst_reg != BPF_REG_3)
1831 /* mov dst_reg, rdx */
1832 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1833 else if (BPF_OP(insn->code) == BPF_DIV &&
1834 dst_reg != BPF_REG_0)
1835 /* mov dst_reg, rax */
1836 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1837
1838 if (dst_reg != BPF_REG_3)
1839 EMIT1(0x5A); /* pop rdx */
1840 if (dst_reg != BPF_REG_0)
1841 EMIT1(0x58); /* pop rax */
1842 break;
1843 }
1844
1845 case BPF_ALU | BPF_MUL | BPF_K:
1846 case BPF_ALU64 | BPF_MUL | BPF_K:
1847 maybe_emit_mod(&prog, dst_reg, dst_reg,
1848 BPF_CLASS(insn->code) == BPF_ALU64);
1849
1850 if (is_imm8(imm32))
1851 /* imul dst_reg, dst_reg, imm8 */
1852 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1853 imm32);
1854 else
1855 /* imul dst_reg, dst_reg, imm32 */
1856 EMIT2_off32(0x69,
1857 add_2reg(0xC0, dst_reg, dst_reg),
1858 imm32);
1859 break;
1860
1861 case BPF_ALU | BPF_MUL | BPF_X:
1862 case BPF_ALU64 | BPF_MUL | BPF_X:
1863 maybe_emit_mod(&prog, src_reg, dst_reg,
1864 BPF_CLASS(insn->code) == BPF_ALU64);
1865
1866 /* imul dst_reg, src_reg */
1867 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1868 break;
1869
1870 /* Shifts */
1871 case BPF_ALU | BPF_LSH | BPF_K:
1872 case BPF_ALU | BPF_RSH | BPF_K:
1873 case BPF_ALU | BPF_ARSH | BPF_K:
1874 case BPF_ALU64 | BPF_LSH | BPF_K:
1875 case BPF_ALU64 | BPF_RSH | BPF_K:
1876 case BPF_ALU64 | BPF_ARSH | BPF_K:
1877 maybe_emit_1mod(&prog, dst_reg,
1878 BPF_CLASS(insn->code) == BPF_ALU64);
1879
1880 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1881 if (imm32 == 1)
1882 EMIT2(0xD1, add_1reg(b3, dst_reg));
1883 else
1884 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1885 break;
1886
1887 case BPF_ALU | BPF_LSH | BPF_X:
1888 case BPF_ALU | BPF_RSH | BPF_X:
1889 case BPF_ALU | BPF_ARSH | BPF_X:
1890 case BPF_ALU64 | BPF_LSH | BPF_X:
1891 case BPF_ALU64 | BPF_RSH | BPF_X:
1892 case BPF_ALU64 | BPF_ARSH | BPF_X:
1893 /* BMI2 shifts aren't better when shift count is already in rcx */
1894 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1895 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1896 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1897 u8 op;
1898
1899 switch (BPF_OP(insn->code)) {
1900 case BPF_LSH:
1901 op = 1; /* prefix 0x66 */
1902 break;
1903 case BPF_RSH:
1904 op = 3; /* prefix 0xf2 */
1905 break;
1906 case BPF_ARSH:
1907 op = 2; /* prefix 0xf3 */
1908 break;
1909 }
1910
1911 emit_shiftx(&prog, dst_reg, src_reg, w, op);
1912
1913 break;
1914 }
1915
1916 if (src_reg != BPF_REG_4) { /* common case */
1917 /* Check for bad case when dst_reg == rcx */
1918 if (dst_reg == BPF_REG_4) {
1919 /* mov r11, dst_reg */
1920 EMIT_mov(AUX_REG, dst_reg);
1921 dst_reg = AUX_REG;
1922 } else {
1923 EMIT1(0x51); /* push rcx */
1924 }
1925 /* mov rcx, src_reg */
1926 EMIT_mov(BPF_REG_4, src_reg);
1927 }
1928
1929 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1930 maybe_emit_1mod(&prog, dst_reg,
1931 BPF_CLASS(insn->code) == BPF_ALU64);
1932
1933 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1934 EMIT2(0xD3, add_1reg(b3, dst_reg));
1935
1936 if (src_reg != BPF_REG_4) {
1937 if (insn->dst_reg == BPF_REG_4)
1938 /* mov dst_reg, r11 */
1939 EMIT_mov(insn->dst_reg, AUX_REG);
1940 else
1941 EMIT1(0x59); /* pop rcx */
1942 }
1943
1944 break;
1945
1946 case BPF_ALU | BPF_END | BPF_FROM_BE:
1947 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1948 switch (imm32) {
1949 case 16:
1950 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1951 EMIT1(0x66);
1952 if (is_ereg(dst_reg))
1953 EMIT1(0x41);
1954 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1955
1956 /* Emit 'movzwl eax, ax' */
1957 if (is_ereg(dst_reg))
1958 EMIT3(0x45, 0x0F, 0xB7);
1959 else
1960 EMIT2(0x0F, 0xB7);
1961 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1962 break;
1963 case 32:
1964 /* Emit 'bswap eax' to swap lower 4 bytes */
1965 if (is_ereg(dst_reg))
1966 EMIT2(0x41, 0x0F);
1967 else
1968 EMIT1(0x0F);
1969 EMIT1(add_1reg(0xC8, dst_reg));
1970 break;
1971 case 64:
1972 /* Emit 'bswap rax' to swap 8 bytes */
1973 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1974 add_1reg(0xC8, dst_reg));
1975 break;
1976 }
1977 break;
1978
1979 case BPF_ALU | BPF_END | BPF_FROM_LE:
1980 switch (imm32) {
1981 case 16:
1982 /*
1983 * Emit 'movzwl eax, ax' to zero extend 16-bit
1984 * into 64 bit
1985 */
1986 if (is_ereg(dst_reg))
1987 EMIT3(0x45, 0x0F, 0xB7);
1988 else
1989 EMIT2(0x0F, 0xB7);
1990 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1991 break;
1992 case 32:
1993 /* Emit 'mov eax, eax' to clear upper 32-bits */
1994 if (is_ereg(dst_reg))
1995 EMIT1(0x45);
1996 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1997 break;
1998 case 64:
1999 /* nop */
2000 break;
2001 }
2002 break;
2003
2004 /* speculation barrier */
2005 case BPF_ST | BPF_NOSPEC:
2006 EMIT_LFENCE();
2007 break;
2008
2009 /* ST: *(u8*)(dst_reg + off) = imm */
2010 case BPF_ST | BPF_MEM | BPF_B:
2011 if (is_ereg(dst_reg))
2012 EMIT2(0x41, 0xC6);
2013 else
2014 EMIT1(0xC6);
2015 goto st;
2016 case BPF_ST | BPF_MEM | BPF_H:
2017 if (is_ereg(dst_reg))
2018 EMIT3(0x66, 0x41, 0xC7);
2019 else
2020 EMIT2(0x66, 0xC7);
2021 goto st;
2022 case BPF_ST | BPF_MEM | BPF_W:
2023 if (is_ereg(dst_reg))
2024 EMIT2(0x41, 0xC7);
2025 else
2026 EMIT1(0xC7);
2027 goto st;
2028 case BPF_ST | BPF_MEM | BPF_DW:
2029 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
2030
2031 st: if (is_imm8(insn->off))
2032 EMIT2(add_1reg(0x40, dst_reg), insn->off);
2033 else
2034 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
2035
2036 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
2037 break;
2038
2039 /* STX: *(u8*)(dst_reg + off) = src_reg */
2040 case BPF_STX | BPF_MEM | BPF_B:
2041 case BPF_STX | BPF_MEM | BPF_H:
2042 case BPF_STX | BPF_MEM | BPF_W:
2043 case BPF_STX | BPF_MEM | BPF_DW:
2044 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2045 break;
2046
2047 case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
2048 case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
2049 case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
2050 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
2051 start_of_ldx = prog;
2052 emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
2053 goto populate_extable;
2054
2055 /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
2056 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
2057 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
2058 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
2059 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
2060 case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
2061 case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
2062 case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
2063 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
2064 start_of_ldx = prog;
2065 if (BPF_CLASS(insn->code) == BPF_LDX)
2066 emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2067 else
2068 emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2069 populate_extable:
2070 {
2071 struct exception_table_entry *ex;
2072 u8 *_insn = image + proglen + (start_of_ldx - temp);
2073 s64 delta;
2074
2075 if (!bpf_prog->aux->extable)
2076 break;
2077
2078 if (excnt >= bpf_prog->aux->num_exentries) {
2079 pr_err("mem32 extable bug\n");
2080 return -EFAULT;
2081 }
2082 ex = &bpf_prog->aux->extable[excnt++];
2083
2084 delta = _insn - (u8 *)&ex->insn;
2085 /* switch ex to rw buffer for writes */
2086 ex = (void *)rw_image + ((void *)ex - (void *)image);
2087
2088 ex->insn = delta;
2089
2090 ex->data = EX_TYPE_BPF;
2091
2092 ex->fixup = (prog - start_of_ldx) |
2093 ((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8);
2094 }
2095 break;
2096
2097 /* LDX: dst_reg = *(u8*)(src_reg + off) */
2098 case BPF_LDX | BPF_MEM | BPF_B:
2099 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
2100 case BPF_LDX | BPF_MEM | BPF_H:
2101 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
2102 case BPF_LDX | BPF_MEM | BPF_W:
2103 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
2104 case BPF_LDX | BPF_MEM | BPF_DW:
2105 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
2106 /* LDXS: dst_reg = *(s8*)(src_reg + off) */
2107 case BPF_LDX | BPF_MEMSX | BPF_B:
2108 case BPF_LDX | BPF_MEMSX | BPF_H:
2109 case BPF_LDX | BPF_MEMSX | BPF_W:
2110 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
2111 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
2112 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
2113 insn_off = insn->off;
2114
2115 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2116 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2117 /* Conservatively check that src_reg + insn->off is a kernel address:
2118 * src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
2119 * and
2120 * src_reg + insn->off < VSYSCALL_ADDR
2121 */
2122
2123 u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
2124 u8 *end_of_jmp;
2125
2126 /* movabsq r10, VSYSCALL_ADDR */
2127 emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
2128 (u32)(long)VSYSCALL_ADDR);
2129
2130 /* mov src_reg, r11 */
2131 EMIT_mov(AUX_REG, src_reg);
2132
2133 if (insn->off) {
2134 /* add r11, insn->off */
2135 maybe_emit_1mod(&prog, AUX_REG, true);
2136 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
2137 }
2138
2139 /* sub r11, r10 */
2140 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2141 EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2142
2143 /* movabsq r10, limit */
2144 emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
2145 (u32)(long)limit);
2146
2147 /* cmp r10, r11 */
2148 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2149 EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2150
2151 /* if unsigned '>', goto load */
2152 EMIT2(X86_JA, 0);
2153 end_of_jmp = prog;
2154
2155 /* xor dst_reg, dst_reg */
2156 emit_mov_imm32(&prog, false, dst_reg, 0);
2157 /* jmp byte_after_ldx */
2158 EMIT2(0xEB, 0);
2159
2160 /* populate jmp_offset for JAE above to jump to start_of_ldx */
2161 start_of_ldx = prog;
2162 end_of_jmp[-1] = start_of_ldx - end_of_jmp;
2163 }
2164 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
2165 BPF_MODE(insn->code) == BPF_MEMSX)
2166 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2167 else
2168 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2169 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2170 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2171 struct exception_table_entry *ex;
2172 u8 *_insn = image + proglen + (start_of_ldx - temp);
2173 s64 delta;
2174
2175 /* populate jmp_offset for JMP above */
2176 start_of_ldx[-1] = prog - start_of_ldx;
2177
2178 if (!bpf_prog->aux->extable)
2179 break;
2180
2181 if (excnt >= bpf_prog->aux->num_exentries) {
2182 pr_err("ex gen bug\n");
2183 return -EFAULT;
2184 }
2185 ex = &bpf_prog->aux->extable[excnt++];
2186
2187 delta = _insn - (u8 *)&ex->insn;
2188 if (!is_simm32(delta)) {
2189 pr_err("extable->insn doesn't fit into 32-bit\n");
2190 return -EFAULT;
2191 }
2192 /* switch ex to rw buffer for writes */
2193 ex = (void *)rw_image + ((void *)ex - (void *)image);
2194
2195 ex->insn = delta;
2196
2197 ex->data = EX_TYPE_BPF;
2198
2199 if (dst_reg > BPF_REG_9) {
2200 pr_err("verifier error\n");
2201 return -EFAULT;
2202 }
2203 /*
2204 * Compute size of x86 insn and its target dest x86 register.
2205 * ex_handler_bpf() will use lower 8 bits to adjust
2206 * pt_regs->ip to jump over this x86 instruction
2207 * and upper bits to figure out which pt_regs to zero out.
2208 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2209 * of 4 bytes will be ignored and rbx will be zero inited.
2210 */
2211 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
2212 }
2213 break;
2214
2215 case BPF_STX | BPF_ATOMIC | BPF_B:
2216 case BPF_STX | BPF_ATOMIC | BPF_H:
2217 if (!bpf_atomic_is_load_store(insn)) {
2218 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2219 return -EFAULT;
2220 }
2221 fallthrough;
2222 case BPF_STX | BPF_ATOMIC | BPF_W:
2223 case BPF_STX | BPF_ATOMIC | BPF_DW:
2224 if (insn->imm == (BPF_AND | BPF_FETCH) ||
2225 insn->imm == (BPF_OR | BPF_FETCH) ||
2226 insn->imm == (BPF_XOR | BPF_FETCH)) {
2227 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2228 u32 real_src_reg = src_reg;
2229 u32 real_dst_reg = dst_reg;
2230 u8 *branch_target;
2231
2232 /*
2233 * Can't be implemented with a single x86 insn.
2234 * Need to do a CMPXCHG loop.
2235 */
2236
2237 /* Will need RAX as a CMPXCHG operand so save R0 */
2238 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2239 if (src_reg == BPF_REG_0)
2240 real_src_reg = BPF_REG_AX;
2241 if (dst_reg == BPF_REG_0)
2242 real_dst_reg = BPF_REG_AX;
2243
2244 branch_target = prog;
2245 /* Load old value */
2246 emit_ldx(&prog, BPF_SIZE(insn->code),
2247 BPF_REG_0, real_dst_reg, insn->off);
2248 /*
2249 * Perform the (commutative) operation locally,
2250 * put the result in the AUX_REG.
2251 */
2252 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2253 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2254 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2255 add_2reg(0xC0, AUX_REG, real_src_reg));
2256 /* Attempt to swap in new value */
2257 err = emit_atomic_rmw(&prog, BPF_CMPXCHG,
2258 real_dst_reg, AUX_REG,
2259 insn->off,
2260 BPF_SIZE(insn->code));
2261 if (WARN_ON(err))
2262 return err;
2263 /*
2264 * ZF tells us whether we won the race. If it's
2265 * cleared we need to try again.
2266 */
2267 EMIT2(X86_JNE, -(prog - branch_target) - 2);
2268 /* Return the pre-modification value */
2269 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2270 /* Restore R0 after clobbering RAX */
2271 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2272 break;
2273 }
2274
2275 if (bpf_atomic_is_load_store(insn))
2276 err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg,
2277 insn->off, BPF_SIZE(insn->code));
2278 else
2279 err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg,
2280 insn->off, BPF_SIZE(insn->code));
2281 if (err)
2282 return err;
2283 break;
2284
2285 case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
2286 case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
2287 if (!bpf_atomic_is_load_store(insn)) {
2288 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2289 return -EFAULT;
2290 }
2291 fallthrough;
2292 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2293 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2294 start_of_ldx = prog;
2295
2296 if (bpf_atomic_is_load_store(insn))
2297 err = emit_atomic_ld_st_index(&prog, insn->imm,
2298 BPF_SIZE(insn->code), dst_reg,
2299 src_reg, X86_REG_R12, insn->off);
2300 else
2301 err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code),
2302 dst_reg, src_reg, X86_REG_R12,
2303 insn->off);
2304 if (err)
2305 return err;
2306 goto populate_extable;
2307
2308 /* call */
2309 case BPF_JMP | BPF_CALL: {
2310 u8 *ip = image + addrs[i - 1];
2311
2312 func = (u8 *) __bpf_call_base + imm32;
2313 if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) {
2314 LOAD_TAIL_CALL_CNT_PTR(stack_depth);
2315 ip += 7;
2316 }
2317 if (!imm32)
2318 return -EINVAL;
2319 if (priv_frame_ptr) {
2320 push_r9(&prog);
2321 ip += 2;
2322 }
2323 ip += x86_call_depth_emit_accounting(&prog, func, ip);
2324 if (emit_call(&prog, func, ip))
2325 return -EINVAL;
2326 if (priv_frame_ptr)
2327 pop_r9(&prog);
2328 break;
2329 }
2330
2331 case BPF_JMP | BPF_TAIL_CALL:
2332 if (imm32)
2333 emit_bpf_tail_call_direct(bpf_prog,
2334 &bpf_prog->aux->poke_tab[imm32 - 1],
2335 &prog, image + addrs[i - 1],
2336 callee_regs_used,
2337 stack_depth,
2338 ctx);
2339 else
2340 emit_bpf_tail_call_indirect(bpf_prog,
2341 &prog,
2342 callee_regs_used,
2343 stack_depth,
2344 image + addrs[i - 1],
2345 ctx);
2346 break;
2347
2348 /* cond jump */
2349 case BPF_JMP | BPF_JEQ | BPF_X:
2350 case BPF_JMP | BPF_JNE | BPF_X:
2351 case BPF_JMP | BPF_JGT | BPF_X:
2352 case BPF_JMP | BPF_JLT | BPF_X:
2353 case BPF_JMP | BPF_JGE | BPF_X:
2354 case BPF_JMP | BPF_JLE | BPF_X:
2355 case BPF_JMP | BPF_JSGT | BPF_X:
2356 case BPF_JMP | BPF_JSLT | BPF_X:
2357 case BPF_JMP | BPF_JSGE | BPF_X:
2358 case BPF_JMP | BPF_JSLE | BPF_X:
2359 case BPF_JMP32 | BPF_JEQ | BPF_X:
2360 case BPF_JMP32 | BPF_JNE | BPF_X:
2361 case BPF_JMP32 | BPF_JGT | BPF_X:
2362 case BPF_JMP32 | BPF_JLT | BPF_X:
2363 case BPF_JMP32 | BPF_JGE | BPF_X:
2364 case BPF_JMP32 | BPF_JLE | BPF_X:
2365 case BPF_JMP32 | BPF_JSGT | BPF_X:
2366 case BPF_JMP32 | BPF_JSLT | BPF_X:
2367 case BPF_JMP32 | BPF_JSGE | BPF_X:
2368 case BPF_JMP32 | BPF_JSLE | BPF_X:
2369 /* cmp dst_reg, src_reg */
2370 maybe_emit_mod(&prog, dst_reg, src_reg,
2371 BPF_CLASS(insn->code) == BPF_JMP);
2372 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2373 goto emit_cond_jmp;
2374
2375 case BPF_JMP | BPF_JSET | BPF_X:
2376 case BPF_JMP32 | BPF_JSET | BPF_X:
2377 /* test dst_reg, src_reg */
2378 maybe_emit_mod(&prog, dst_reg, src_reg,
2379 BPF_CLASS(insn->code) == BPF_JMP);
2380 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2381 goto emit_cond_jmp;
2382
2383 case BPF_JMP | BPF_JSET | BPF_K:
2384 case BPF_JMP32 | BPF_JSET | BPF_K:
2385 /* test dst_reg, imm32 */
2386 maybe_emit_1mod(&prog, dst_reg,
2387 BPF_CLASS(insn->code) == BPF_JMP);
2388 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2389 goto emit_cond_jmp;
2390
2391 case BPF_JMP | BPF_JEQ | BPF_K:
2392 case BPF_JMP | BPF_JNE | BPF_K:
2393 case BPF_JMP | BPF_JGT | BPF_K:
2394 case BPF_JMP | BPF_JLT | BPF_K:
2395 case BPF_JMP | BPF_JGE | BPF_K:
2396 case BPF_JMP | BPF_JLE | BPF_K:
2397 case BPF_JMP | BPF_JSGT | BPF_K:
2398 case BPF_JMP | BPF_JSLT | BPF_K:
2399 case BPF_JMP | BPF_JSGE | BPF_K:
2400 case BPF_JMP | BPF_JSLE | BPF_K:
2401 case BPF_JMP32 | BPF_JEQ | BPF_K:
2402 case BPF_JMP32 | BPF_JNE | BPF_K:
2403 case BPF_JMP32 | BPF_JGT | BPF_K:
2404 case BPF_JMP32 | BPF_JLT | BPF_K:
2405 case BPF_JMP32 | BPF_JGE | BPF_K:
2406 case BPF_JMP32 | BPF_JLE | BPF_K:
2407 case BPF_JMP32 | BPF_JSGT | BPF_K:
2408 case BPF_JMP32 | BPF_JSLT | BPF_K:
2409 case BPF_JMP32 | BPF_JSGE | BPF_K:
2410 case BPF_JMP32 | BPF_JSLE | BPF_K:
2411 /* test dst_reg, dst_reg to save one extra byte */
2412 if (imm32 == 0) {
2413 maybe_emit_mod(&prog, dst_reg, dst_reg,
2414 BPF_CLASS(insn->code) == BPF_JMP);
2415 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2416 goto emit_cond_jmp;
2417 }
2418
2419 /* cmp dst_reg, imm8/32 */
2420 maybe_emit_1mod(&prog, dst_reg,
2421 BPF_CLASS(insn->code) == BPF_JMP);
2422
2423 if (is_imm8(imm32))
2424 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2425 else
2426 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2427
2428 emit_cond_jmp: /* Convert BPF opcode to x86 */
2429 switch (BPF_OP(insn->code)) {
2430 case BPF_JEQ:
2431 jmp_cond = X86_JE;
2432 break;
2433 case BPF_JSET:
2434 case BPF_JNE:
2435 jmp_cond = X86_JNE;
2436 break;
2437 case BPF_JGT:
2438 /* GT is unsigned '>', JA in x86 */
2439 jmp_cond = X86_JA;
2440 break;
2441 case BPF_JLT:
2442 /* LT is unsigned '<', JB in x86 */
2443 jmp_cond = X86_JB;
2444 break;
2445 case BPF_JGE:
2446 /* GE is unsigned '>=', JAE in x86 */
2447 jmp_cond = X86_JAE;
2448 break;
2449 case BPF_JLE:
2450 /* LE is unsigned '<=', JBE in x86 */
2451 jmp_cond = X86_JBE;
2452 break;
2453 case BPF_JSGT:
2454 /* Signed '>', GT in x86 */
2455 jmp_cond = X86_JG;
2456 break;
2457 case BPF_JSLT:
2458 /* Signed '<', LT in x86 */
2459 jmp_cond = X86_JL;
2460 break;
2461 case BPF_JSGE:
2462 /* Signed '>=', GE in x86 */
2463 jmp_cond = X86_JGE;
2464 break;
2465 case BPF_JSLE:
2466 /* Signed '<=', LE in x86 */
2467 jmp_cond = X86_JLE;
2468 break;
2469 default: /* to silence GCC warning */
2470 return -EFAULT;
2471 }
2472 jmp_offset = addrs[i + insn->off] - addrs[i];
2473 if (is_imm8_jmp_offset(jmp_offset)) {
2474 if (jmp_padding) {
2475 /* To keep the jmp_offset valid, the extra bytes are
2476 * padded before the jump insn, so we subtract the
2477 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2478 *
2479 * If the previous pass already emits an imm8
2480 * jmp_cond, then this BPF insn won't shrink, so
2481 * "nops" is 0.
2482 *
2483 * On the other hand, if the previous pass emits an
2484 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
2485 * keep the image from shrinking further.
2486 *
2487 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2488 * is 2 bytes, so the size difference is 4 bytes.
2489 */
2490 nops = INSN_SZ_DIFF - 2;
2491 if (nops != 0 && nops != 4) {
2492 pr_err("unexpected jmp_cond padding: %d bytes\n",
2493 nops);
2494 return -EFAULT;
2495 }
2496 emit_nops(&prog, nops);
2497 }
2498 EMIT2(jmp_cond, jmp_offset);
2499 } else if (is_simm32(jmp_offset)) {
2500 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2501 } else {
2502 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2503 return -EFAULT;
2504 }
2505
2506 break;
2507
2508 case BPF_JMP | BPF_JA:
2509 case BPF_JMP32 | BPF_JA:
2510 if (BPF_CLASS(insn->code) == BPF_JMP) {
2511 if (insn->off == -1)
2512 /* -1 jmp instructions will always jump
2513 * backwards two bytes. Explicitly handling
2514 * this case avoids wasting too many passes
2515 * when there are long sequences of replaced
2516 * dead code.
2517 */
2518 jmp_offset = -2;
2519 else
2520 jmp_offset = addrs[i + insn->off] - addrs[i];
2521 } else {
2522 if (insn->imm == -1)
2523 jmp_offset = -2;
2524 else
2525 jmp_offset = addrs[i + insn->imm] - addrs[i];
2526 }
2527
2528 if (!jmp_offset) {
2529 /*
2530 * If jmp_padding is enabled, the extra nops will
2531 * be inserted. Otherwise, optimize out nop jumps.
2532 */
2533 if (jmp_padding) {
2534 /* There are 3 possible conditions.
2535 * (1) This BPF_JA is already optimized out in
2536 * the previous run, so there is no need
2537 * to pad any extra byte (0 byte).
2538 * (2) The previous pass emits an imm8 jmp,
2539 * so we pad 2 bytes to match the previous
2540 * insn size.
2541 * (3) Similarly, the previous pass emits an
2542 * imm32 jmp, and 5 bytes is padded.
2543 */
2544 nops = INSN_SZ_DIFF;
2545 if (nops != 0 && nops != 2 && nops != 5) {
2546 pr_err("unexpected nop jump padding: %d bytes\n",
2547 nops);
2548 return -EFAULT;
2549 }
2550 emit_nops(&prog, nops);
2551 }
2552 break;
2553 }
2554 emit_jmp:
2555 if (is_imm8_jmp_offset(jmp_offset)) {
2556 if (jmp_padding) {
2557 /* To avoid breaking jmp_offset, the extra bytes
2558 * are padded before the actual jmp insn, so
2559 * 2 bytes is subtracted from INSN_SZ_DIFF.
2560 *
2561 * If the previous pass already emits an imm8
2562 * jmp, there is nothing to pad (0 byte).
2563 *
2564 * If it emits an imm32 jmp (5 bytes) previously
2565 * and now an imm8 jmp (2 bytes), then we pad
2566 * (5 - 2 = 3) bytes to stop the image from
2567 * shrinking further.
2568 */
2569 nops = INSN_SZ_DIFF - 2;
2570 if (nops != 0 && nops != 3) {
2571 pr_err("unexpected jump padding: %d bytes\n",
2572 nops);
2573 return -EFAULT;
2574 }
2575 emit_nops(&prog, INSN_SZ_DIFF - 2);
2576 }
2577 EMIT2(0xEB, jmp_offset);
2578 } else if (is_simm32(jmp_offset)) {
2579 EMIT1_off32(0xE9, jmp_offset);
2580 } else {
2581 pr_err("jmp gen bug %llx\n", jmp_offset);
2582 return -EFAULT;
2583 }
2584 break;
2585
2586 case BPF_JMP | BPF_EXIT:
2587 if (seen_exit) {
2588 jmp_offset = ctx->cleanup_addr - addrs[i];
2589 goto emit_jmp;
2590 }
2591 seen_exit = true;
2592 /* Update cleanup_addr */
2593 ctx->cleanup_addr = proglen;
2594 if (bpf_prog_was_classic(bpf_prog) &&
2595 !capable(CAP_SYS_ADMIN)) {
2596 u8 *ip = image + addrs[i - 1];
2597
2598 if (emit_spectre_bhb_barrier(&prog, ip, bpf_prog))
2599 return -EINVAL;
2600 }
2601 if (bpf_prog->aux->exception_boundary) {
2602 pop_callee_regs(&prog, all_callee_regs_used);
2603 pop_r12(&prog);
2604 } else {
2605 pop_callee_regs(&prog, callee_regs_used);
2606 if (arena_vm_start)
2607 pop_r12(&prog);
2608 }
2609 EMIT1(0xC9); /* leave */
2610 emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2611 break;
2612
2613 default:
2614 /*
2615 * By design x86-64 JIT should support all BPF instructions.
2616 * This error will be seen if new instruction was added
2617 * to the interpreter, but not to the JIT, or if there is
2618 * junk in bpf_prog.
2619 */
2620 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2621 return -EINVAL;
2622 }
2623
2624 ilen = prog - temp;
2625 if (ilen > BPF_MAX_INSN_SIZE) {
2626 pr_err("bpf_jit: fatal insn size error\n");
2627 return -EFAULT;
2628 }
2629
2630 if (image) {
2631 /*
2632 * When populating the image, assert that:
2633 *
2634 * i) We do not write beyond the allocated space, and
2635 * ii) addrs[i] did not change from the prior run, in order
2636 * to validate assumptions made for computing branch
2637 * displacements.
2638 */
2639 if (unlikely(proglen + ilen > oldproglen ||
2640 proglen + ilen != addrs[i])) {
2641 pr_err("bpf_jit: fatal error\n");
2642 return -EFAULT;
2643 }
2644 memcpy(rw_image + proglen, temp, ilen);
2645 }
2646 proglen += ilen;
2647 addrs[i] = proglen;
2648 prog = temp;
2649 }
2650
2651 if (image && excnt != bpf_prog->aux->num_exentries) {
2652 pr_err("extable is not populated\n");
2653 return -EFAULT;
2654 }
2655 return proglen;
2656 }
2657
clean_stack_garbage(const struct btf_func_model * m,u8 ** pprog,int nr_stack_slots,int stack_size)2658 static void clean_stack_garbage(const struct btf_func_model *m,
2659 u8 **pprog, int nr_stack_slots,
2660 int stack_size)
2661 {
2662 int arg_size, off;
2663 u8 *prog;
2664
2665 /* Generally speaking, the compiler will pass the arguments
2666 * on-stack with "push" instruction, which will take 8-byte
2667 * on the stack. In this case, there won't be garbage values
2668 * while we copy the arguments from origin stack frame to current
2669 * in BPF_DW.
2670 *
2671 * However, sometimes the compiler will only allocate 4-byte on
2672 * the stack for the arguments. For now, this case will only
2673 * happen if there is only one argument on-stack and its size
2674 * not more than 4 byte. In this case, there will be garbage
2675 * values on the upper 4-byte where we store the argument on
2676 * current stack frame.
2677 *
2678 * arguments on origin stack:
2679 *
2680 * stack_arg_1(4-byte) xxx(4-byte)
2681 *
2682 * what we copy:
2683 *
2684 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2685 *
2686 * and the xxx is the garbage values which we should clean here.
2687 */
2688 if (nr_stack_slots != 1)
2689 return;
2690
2691 /* the size of the last argument */
2692 arg_size = m->arg_size[m->nr_args - 1];
2693 if (arg_size <= 4) {
2694 off = -(stack_size - 4);
2695 prog = *pprog;
2696 /* mov DWORD PTR [rbp + off], 0 */
2697 if (!is_imm8(off))
2698 EMIT2_off32(0xC7, 0x85, off);
2699 else
2700 EMIT3(0xC7, 0x45, off);
2701 EMIT(0, 4);
2702 *pprog = prog;
2703 }
2704 }
2705
2706 /* get the count of the regs that are used to pass arguments */
get_nr_used_regs(const struct btf_func_model * m)2707 static int get_nr_used_regs(const struct btf_func_model *m)
2708 {
2709 int i, arg_regs, nr_used_regs = 0;
2710
2711 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2712 arg_regs = (m->arg_size[i] + 7) / 8;
2713 if (nr_used_regs + arg_regs <= 6)
2714 nr_used_regs += arg_regs;
2715
2716 if (nr_used_regs >= 6)
2717 break;
2718 }
2719
2720 return nr_used_regs;
2721 }
2722
save_args(const struct btf_func_model * m,u8 ** prog,int stack_size,bool for_call_origin)2723 static void save_args(const struct btf_func_model *m, u8 **prog,
2724 int stack_size, bool for_call_origin)
2725 {
2726 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2727 int i, j;
2728
2729 /* Store function arguments to stack.
2730 * For a function that accepts two pointers the sequence will be:
2731 * mov QWORD PTR [rbp-0x10],rdi
2732 * mov QWORD PTR [rbp-0x8],rsi
2733 */
2734 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2735 arg_regs = (m->arg_size[i] + 7) / 8;
2736
2737 /* According to the research of Yonghong, struct members
2738 * should be all in register or all on the stack.
2739 * Meanwhile, the compiler will pass the argument on regs
2740 * if the remaining regs can hold the argument.
2741 *
2742 * Disorder of the args can happen. For example:
2743 *
2744 * struct foo_struct {
2745 * long a;
2746 * int b;
2747 * };
2748 * int foo(char, char, char, char, char, struct foo_struct,
2749 * char);
2750 *
2751 * the arg1-5,arg7 will be passed by regs, and arg6 will
2752 * by stack.
2753 */
2754 if (nr_regs + arg_regs > 6) {
2755 /* copy function arguments from origin stack frame
2756 * into current stack frame.
2757 *
2758 * The starting address of the arguments on-stack
2759 * is:
2760 * rbp + 8(push rbp) +
2761 * 8(return addr of origin call) +
2762 * 8(return addr of the caller)
2763 * which means: rbp + 24
2764 */
2765 for (j = 0; j < arg_regs; j++) {
2766 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2767 nr_stack_slots * 8 + 0x18);
2768 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2769 -stack_size);
2770
2771 if (!nr_stack_slots)
2772 first_off = stack_size;
2773 stack_size -= 8;
2774 nr_stack_slots++;
2775 }
2776 } else {
2777 /* Only copy the arguments on-stack to current
2778 * 'stack_size' and ignore the regs, used to
2779 * prepare the arguments on-stack for origin call.
2780 */
2781 if (for_call_origin) {
2782 nr_regs += arg_regs;
2783 continue;
2784 }
2785
2786 /* copy the arguments from regs into stack */
2787 for (j = 0; j < arg_regs; j++) {
2788 emit_stx(prog, BPF_DW, BPF_REG_FP,
2789 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2790 -stack_size);
2791 stack_size -= 8;
2792 nr_regs++;
2793 }
2794 }
2795 }
2796
2797 clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2798 }
2799
restore_regs(const struct btf_func_model * m,u8 ** prog,int stack_size)2800 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2801 int stack_size)
2802 {
2803 int i, j, arg_regs, nr_regs = 0;
2804
2805 /* Restore function arguments from stack.
2806 * For a function that accepts two pointers the sequence will be:
2807 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2808 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2809 *
2810 * The logic here is similar to what we do in save_args()
2811 */
2812 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2813 arg_regs = (m->arg_size[i] + 7) / 8;
2814 if (nr_regs + arg_regs <= 6) {
2815 for (j = 0; j < arg_regs; j++) {
2816 emit_ldx(prog, BPF_DW,
2817 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2818 BPF_REG_FP,
2819 -stack_size);
2820 stack_size -= 8;
2821 nr_regs++;
2822 }
2823 } else {
2824 stack_size -= 8 * arg_regs;
2825 }
2826
2827 if (nr_regs >= 6)
2828 break;
2829 }
2830 }
2831
invoke_bpf_prog(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_link * l,int stack_size,int run_ctx_off,bool save_ret,void * image,void * rw_image)2832 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2833 struct bpf_tramp_link *l, int stack_size,
2834 int run_ctx_off, bool save_ret,
2835 void *image, void *rw_image)
2836 {
2837 u8 *prog = *pprog;
2838 u8 *jmp_insn;
2839 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2840 struct bpf_prog *p = l->link.prog;
2841 u64 cookie = l->cookie;
2842
2843 /* mov rdi, cookie */
2844 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2845
2846 /* Prepare struct bpf_tramp_run_ctx.
2847 *
2848 * bpf_tramp_run_ctx is already preserved by
2849 * arch_prepare_bpf_trampoline().
2850 *
2851 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2852 */
2853 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2854
2855 /* arg1: mov rdi, progs[i] */
2856 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2857 /* arg2: lea rsi, [rbp - ctx_cookie_off] */
2858 if (!is_imm8(-run_ctx_off))
2859 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2860 else
2861 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2862
2863 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2864 return -EINVAL;
2865 /* remember prog start time returned by __bpf_prog_enter */
2866 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2867
2868 /* if (__bpf_prog_enter*(prog) == 0)
2869 * goto skip_exec_of_prog;
2870 */
2871 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
2872 /* emit 2 nops that will be replaced with JE insn */
2873 jmp_insn = prog;
2874 emit_nops(&prog, 2);
2875
2876 /* arg1: lea rdi, [rbp - stack_size] */
2877 if (!is_imm8(-stack_size))
2878 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2879 else
2880 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2881 /* arg2: progs[i]->insnsi for interpreter */
2882 if (!p->jited)
2883 emit_mov_imm64(&prog, BPF_REG_2,
2884 (long) p->insnsi >> 32,
2885 (u32) (long) p->insnsi);
2886 /* call JITed bpf program or interpreter */
2887 if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2888 return -EINVAL;
2889
2890 /*
2891 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2892 * of the previous call which is then passed on the stack to
2893 * the next BPF program.
2894 *
2895 * BPF_TRAMP_FENTRY trampoline may need to return the return
2896 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2897 */
2898 if (save_ret)
2899 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2900
2901 /* replace 2 nops with JE insn, since jmp target is known */
2902 jmp_insn[0] = X86_JE;
2903 jmp_insn[1] = prog - jmp_insn - 2;
2904
2905 /* arg1: mov rdi, progs[i] */
2906 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2907 /* arg2: mov rsi, rbx <- start time in nsec */
2908 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2909 /* arg3: lea rdx, [rbp - run_ctx_off] */
2910 if (!is_imm8(-run_ctx_off))
2911 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2912 else
2913 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2914 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2915 return -EINVAL;
2916
2917 *pprog = prog;
2918 return 0;
2919 }
2920
emit_align(u8 ** pprog,u32 align)2921 static void emit_align(u8 **pprog, u32 align)
2922 {
2923 u8 *target, *prog = *pprog;
2924
2925 target = PTR_ALIGN(prog, align);
2926 if (target != prog)
2927 emit_nops(&prog, target - prog);
2928
2929 *pprog = prog;
2930 }
2931
emit_cond_near_jump(u8 ** pprog,void * func,void * ip,u8 jmp_cond)2932 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2933 {
2934 u8 *prog = *pprog;
2935 s64 offset;
2936
2937 offset = func - (ip + 2 + 4);
2938 if (!is_simm32(offset)) {
2939 pr_err("Target %p is out of range\n", func);
2940 return -EINVAL;
2941 }
2942 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2943 *pprog = prog;
2944 return 0;
2945 }
2946
invoke_bpf(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_links * tl,int stack_size,int run_ctx_off,bool save_ret,void * image,void * rw_image)2947 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2948 struct bpf_tramp_links *tl, int stack_size,
2949 int run_ctx_off, bool save_ret,
2950 void *image, void *rw_image)
2951 {
2952 int i;
2953 u8 *prog = *pprog;
2954
2955 for (i = 0; i < tl->nr_links; i++) {
2956 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2957 run_ctx_off, save_ret, image, rw_image))
2958 return -EINVAL;
2959 }
2960 *pprog = prog;
2961 return 0;
2962 }
2963
invoke_bpf_mod_ret(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_links * tl,int stack_size,int run_ctx_off,u8 ** branches,void * image,void * rw_image)2964 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2965 struct bpf_tramp_links *tl, int stack_size,
2966 int run_ctx_off, u8 **branches,
2967 void *image, void *rw_image)
2968 {
2969 u8 *prog = *pprog;
2970 int i;
2971
2972 /* The first fmod_ret program will receive a garbage return value.
2973 * Set this to 0 to avoid confusing the program.
2974 */
2975 emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2976 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2977 for (i = 0; i < tl->nr_links; i++) {
2978 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2979 image, rw_image))
2980 return -EINVAL;
2981
2982 /* mod_ret prog stored return value into [rbp - 8]. Emit:
2983 * if (*(u64 *)(rbp - 8) != 0)
2984 * goto do_fexit;
2985 */
2986 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
2987 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2988
2989 /* Save the location of the branch and Generate 6 nops
2990 * (4 bytes for an offset and 2 bytes for the jump) These nops
2991 * are replaced with a conditional jump once do_fexit (i.e. the
2992 * start of the fexit invocation) is finalized.
2993 */
2994 branches[i] = prog;
2995 emit_nops(&prog, 4 + 2);
2996 }
2997
2998 *pprog = prog;
2999 return 0;
3000 }
3001
3002 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
3003 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack) \
3004 __LOAD_TCC_PTR(-round_up(stack, 8) - 8)
3005
3006 /* Example:
3007 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
3008 * its 'struct btf_func_model' will be nr_args=2
3009 * The assembly code when eth_type_trans is executing after trampoline:
3010 *
3011 * push rbp
3012 * mov rbp, rsp
3013 * sub rsp, 16 // space for skb and dev
3014 * push rbx // temp regs to pass start time
3015 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
3016 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
3017 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
3018 * mov rbx, rax // remember start time in bpf stats are enabled
3019 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
3020 * call addr_of_jited_FENTRY_prog
3021 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3022 * mov rsi, rbx // prog start time
3023 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3024 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
3025 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
3026 * pop rbx
3027 * leave
3028 * ret
3029 *
3030 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
3031 * replaced with 'call generated_bpf_trampoline'. When it returns
3032 * eth_type_trans will continue executing with original skb and dev pointers.
3033 *
3034 * The assembly code when eth_type_trans is called from trampoline:
3035 *
3036 * push rbp
3037 * mov rbp, rsp
3038 * sub rsp, 24 // space for skb, dev, return value
3039 * push rbx // temp regs to pass start time
3040 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
3041 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
3042 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
3043 * mov rbx, rax // remember start time if bpf stats are enabled
3044 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
3045 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
3046 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3047 * mov rsi, rbx // prog start time
3048 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3049 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
3050 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
3051 * call eth_type_trans+5 // execute body of eth_type_trans
3052 * mov qword ptr [rbp - 8], rax // save return value
3053 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
3054 * mov rbx, rax // remember start time in bpf stats are enabled
3055 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
3056 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
3057 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3058 * mov rsi, rbx // prog start time
3059 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3060 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
3061 * pop rbx
3062 * leave
3063 * add rsp, 8 // skip eth_type_trans's frame
3064 * ret // return to its caller
3065 */
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * rw_image,void * rw_image_end,void * image,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)3066 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
3067 void *rw_image_end, void *image,
3068 const struct btf_func_model *m, u32 flags,
3069 struct bpf_tramp_links *tlinks,
3070 void *func_addr)
3071 {
3072 int i, ret, nr_regs = m->nr_args, stack_size = 0;
3073 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
3074 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
3075 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
3076 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
3077 void *orig_call = func_addr;
3078 u8 **branches = NULL;
3079 u8 *prog;
3080 bool save_ret;
3081
3082 /*
3083 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
3084 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
3085 * because @func_addr.
3086 */
3087 WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
3088 (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
3089
3090 /* extra registers for struct arguments */
3091 for (i = 0; i < m->nr_args; i++) {
3092 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
3093 nr_regs += (m->arg_size[i] + 7) / 8 - 1;
3094 }
3095
3096 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
3097 * are passed through regs, the remains are through stack.
3098 */
3099 if (nr_regs > MAX_BPF_FUNC_ARGS)
3100 return -ENOTSUPP;
3101
3102 /* Generated trampoline stack layout:
3103 *
3104 * RBP + 8 [ return address ]
3105 * RBP + 0 [ RBP ]
3106 *
3107 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
3108 * BPF_TRAMP_F_RET_FENTRY_RET flags
3109 *
3110 * [ reg_argN ] always
3111 * [ ... ]
3112 * RBP - regs_off [ reg_arg1 ] program's ctx pointer
3113 *
3114 * RBP - nregs_off [ regs count ] always
3115 *
3116 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
3117 *
3118 * RBP - rbx_off [ rbx value ] always
3119 *
3120 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
3121 *
3122 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
3123 * [ ... ]
3124 * [ stack_arg2 ]
3125 * RBP - arg_stack_off [ stack_arg1 ]
3126 * RSP [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
3127 */
3128
3129 /* room for return value of orig_call or fentry prog */
3130 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
3131 if (save_ret)
3132 stack_size += 8;
3133
3134 stack_size += nr_regs * 8;
3135 regs_off = stack_size;
3136
3137 /* regs count */
3138 stack_size += 8;
3139 nregs_off = stack_size;
3140
3141 if (flags & BPF_TRAMP_F_IP_ARG)
3142 stack_size += 8; /* room for IP address argument */
3143
3144 ip_off = stack_size;
3145
3146 stack_size += 8;
3147 rbx_off = stack_size;
3148
3149 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
3150 run_ctx_off = stack_size;
3151
3152 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
3153 /* the space that used to pass arguments on-stack */
3154 stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
3155 /* make sure the stack pointer is 16-byte aligned if we
3156 * need pass arguments on stack, which means
3157 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
3158 * should be 16-byte aligned. Following code depend on
3159 * that stack_size is already 8-byte aligned.
3160 */
3161 stack_size += (stack_size % 16) ? 0 : 8;
3162 }
3163
3164 arg_stack_off = stack_size;
3165
3166 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3167 /* skip patched call instruction and point orig_call to actual
3168 * body of the kernel function.
3169 */
3170 if (is_endbr(orig_call))
3171 orig_call += ENDBR_INSN_SIZE;
3172 orig_call += X86_PATCH_SIZE;
3173 }
3174
3175 prog = rw_image;
3176
3177 if (flags & BPF_TRAMP_F_INDIRECT) {
3178 /*
3179 * Indirect call for bpf_struct_ops
3180 */
3181 emit_cfi(&prog, image,
3182 cfi_get_func_hash(func_addr),
3183 cfi_get_func_arity(func_addr));
3184 } else {
3185 /*
3186 * Direct-call fentry stub, as such it needs accounting for the
3187 * __fentry__ call.
3188 */
3189 x86_call_depth_emit_accounting(&prog, NULL, image);
3190 }
3191 EMIT1(0x55); /* push rbp */
3192 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
3193 if (!is_imm8(stack_size)) {
3194 /* sub rsp, stack_size */
3195 EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
3196 } else {
3197 /* sub rsp, stack_size */
3198 EMIT4(0x48, 0x83, 0xEC, stack_size);
3199 }
3200 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
3201 EMIT1(0x50); /* push rax */
3202 /* mov QWORD PTR [rbp - rbx_off], rbx */
3203 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
3204
3205 /* Store number of argument registers of the traced function:
3206 * mov rax, nr_regs
3207 * mov QWORD PTR [rbp - nregs_off], rax
3208 */
3209 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
3210 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
3211
3212 if (flags & BPF_TRAMP_F_IP_ARG) {
3213 /* Store IP address of the traced function:
3214 * movabsq rax, func_addr
3215 * mov QWORD PTR [rbp - ip_off], rax
3216 */
3217 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
3218 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
3219 }
3220
3221 save_args(m, &prog, regs_off, false);
3222
3223 if (flags & BPF_TRAMP_F_CALL_ORIG) {
3224 /* arg1: mov rdi, im */
3225 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3226 if (emit_rsb_call(&prog, __bpf_tramp_enter,
3227 image + (prog - (u8 *)rw_image))) {
3228 ret = -EINVAL;
3229 goto cleanup;
3230 }
3231 }
3232
3233 if (fentry->nr_links) {
3234 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
3235 flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
3236 return -EINVAL;
3237 }
3238
3239 if (fmod_ret->nr_links) {
3240 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
3241 GFP_KERNEL);
3242 if (!branches)
3243 return -ENOMEM;
3244
3245 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
3246 run_ctx_off, branches, image, rw_image)) {
3247 ret = -EINVAL;
3248 goto cleanup;
3249 }
3250 }
3251
3252 if (flags & BPF_TRAMP_F_CALL_ORIG) {
3253 restore_regs(m, &prog, regs_off);
3254 save_args(m, &prog, arg_stack_off, true);
3255
3256 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3257 /* Before calling the original function, load the
3258 * tail_call_cnt_ptr from stack to rax.
3259 */
3260 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3261 }
3262
3263 if (flags & BPF_TRAMP_F_ORIG_STACK) {
3264 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3265 EMIT2(0xff, 0xd3); /* call *rbx */
3266 } else {
3267 /* call original function */
3268 if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3269 ret = -EINVAL;
3270 goto cleanup;
3271 }
3272 }
3273 /* remember return value in a stack for bpf prog to access */
3274 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3275 im->ip_after_call = image + (prog - (u8 *)rw_image);
3276 emit_nops(&prog, X86_PATCH_SIZE);
3277 }
3278
3279 if (fmod_ret->nr_links) {
3280 /* From Intel 64 and IA-32 Architectures Optimization
3281 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3282 * Coding Rule 11: All branch targets should be 16-byte
3283 * aligned.
3284 */
3285 emit_align(&prog, 16);
3286 /* Update the branches saved in invoke_bpf_mod_ret with the
3287 * aligned address of do_fexit.
3288 */
3289 for (i = 0; i < fmod_ret->nr_links; i++) {
3290 emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3291 image + (branches[i] - (u8 *)rw_image), X86_JNE);
3292 }
3293 }
3294
3295 if (fexit->nr_links) {
3296 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
3297 false, image, rw_image)) {
3298 ret = -EINVAL;
3299 goto cleanup;
3300 }
3301 }
3302
3303 if (flags & BPF_TRAMP_F_RESTORE_REGS)
3304 restore_regs(m, &prog, regs_off);
3305
3306 /* This needs to be done regardless. If there were fmod_ret programs,
3307 * the return value is only updated on the stack and still needs to be
3308 * restored to R0.
3309 */
3310 if (flags & BPF_TRAMP_F_CALL_ORIG) {
3311 im->ip_epilogue = image + (prog - (u8 *)rw_image);
3312 /* arg1: mov rdi, im */
3313 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3314 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3315 ret = -EINVAL;
3316 goto cleanup;
3317 }
3318 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3319 /* Before running the original function, load the
3320 * tail_call_cnt_ptr from stack to rax.
3321 */
3322 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3323 }
3324
3325 /* restore return value of orig_call or fentry prog back into RAX */
3326 if (save_ret)
3327 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3328
3329 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3330 EMIT1(0xC9); /* leave */
3331 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3332 /* skip our return address and return to parent */
3333 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3334 }
3335 emit_return(&prog, image + (prog - (u8 *)rw_image));
3336 /* Make sure the trampoline generation logic doesn't overflow */
3337 if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3338 ret = -EFAULT;
3339 goto cleanup;
3340 }
3341 ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3342
3343 cleanup:
3344 kfree(branches);
3345 return ret;
3346 }
3347
arch_alloc_bpf_trampoline(unsigned int size)3348 void *arch_alloc_bpf_trampoline(unsigned int size)
3349 {
3350 return bpf_prog_pack_alloc(size, jit_fill_hole);
3351 }
3352
arch_free_bpf_trampoline(void * image,unsigned int size)3353 void arch_free_bpf_trampoline(void *image, unsigned int size)
3354 {
3355 bpf_prog_pack_free(image, size);
3356 }
3357
arch_protect_bpf_trampoline(void * image,unsigned int size)3358 int arch_protect_bpf_trampoline(void *image, unsigned int size)
3359 {
3360 return 0;
3361 }
3362
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)3363 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3364 const struct btf_func_model *m, u32 flags,
3365 struct bpf_tramp_links *tlinks,
3366 void *func_addr)
3367 {
3368 void *rw_image, *tmp;
3369 int ret;
3370 u32 size = image_end - image;
3371
3372 /* rw_image doesn't need to be in module memory range, so we can
3373 * use kvmalloc.
3374 */
3375 rw_image = kvmalloc(size, GFP_KERNEL);
3376 if (!rw_image)
3377 return -ENOMEM;
3378
3379 ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3380 flags, tlinks, func_addr);
3381 if (ret < 0)
3382 goto out;
3383
3384 tmp = bpf_arch_text_copy(image, rw_image, size);
3385 if (IS_ERR(tmp))
3386 ret = PTR_ERR(tmp);
3387 out:
3388 kvfree(rw_image);
3389 return ret;
3390 }
3391
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)3392 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3393 struct bpf_tramp_links *tlinks, void *func_addr)
3394 {
3395 struct bpf_tramp_image im;
3396 void *image;
3397 int ret;
3398
3399 /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3400 * This will NOT cause fragmentation in direct map, as we do not
3401 * call set_memory_*() on this buffer.
3402 *
3403 * We cannot use kvmalloc here, because we need image to be in
3404 * module memory range.
3405 */
3406 image = bpf_jit_alloc_exec(PAGE_SIZE);
3407 if (!image)
3408 return -ENOMEM;
3409
3410 ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3411 m, flags, tlinks, func_addr);
3412 bpf_jit_free_exec(image);
3413 return ret;
3414 }
3415
emit_bpf_dispatcher(u8 ** pprog,int a,int b,s64 * progs,u8 * image,u8 * buf)3416 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3417 {
3418 u8 *jg_reloc, *prog = *pprog;
3419 int pivot, err, jg_bytes = 1;
3420 s64 jg_offset;
3421
3422 if (a == b) {
3423 /* Leaf node of recursion, i.e. not a range of indices
3424 * anymore.
3425 */
3426 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
3427 if (!is_simm32(progs[a]))
3428 return -1;
3429 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3430 progs[a]);
3431 err = emit_cond_near_jump(&prog, /* je func */
3432 (void *)progs[a], image + (prog - buf),
3433 X86_JE);
3434 if (err)
3435 return err;
3436
3437 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
3438
3439 *pprog = prog;
3440 return 0;
3441 }
3442
3443 /* Not a leaf node, so we pivot, and recursively descend into
3444 * the lower and upper ranges.
3445 */
3446 pivot = (b - a) / 2;
3447 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
3448 if (!is_simm32(progs[a + pivot]))
3449 return -1;
3450 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3451
3452 if (pivot > 2) { /* jg upper_part */
3453 /* Require near jump. */
3454 jg_bytes = 4;
3455 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3456 } else {
3457 EMIT2(X86_JG, 0);
3458 }
3459 jg_reloc = prog;
3460
3461 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
3462 progs, image, buf);
3463 if (err)
3464 return err;
3465
3466 /* From Intel 64 and IA-32 Architectures Optimization
3467 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3468 * Coding Rule 11: All branch targets should be 16-byte
3469 * aligned.
3470 */
3471 emit_align(&prog, 16);
3472 jg_offset = prog - jg_reloc;
3473 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3474
3475 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
3476 b, progs, image, buf);
3477 if (err)
3478 return err;
3479
3480 *pprog = prog;
3481 return 0;
3482 }
3483
cmp_ips(const void * a,const void * b)3484 static int cmp_ips(const void *a, const void *b)
3485 {
3486 const s64 *ipa = a;
3487 const s64 *ipb = b;
3488
3489 if (*ipa > *ipb)
3490 return 1;
3491 if (*ipa < *ipb)
3492 return -1;
3493 return 0;
3494 }
3495
arch_prepare_bpf_dispatcher(void * image,void * buf,s64 * funcs,int num_funcs)3496 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3497 {
3498 u8 *prog = buf;
3499
3500 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3501 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3502 }
3503
bpf_get_prog_name(struct bpf_prog * prog)3504 static const char *bpf_get_prog_name(struct bpf_prog *prog)
3505 {
3506 if (prog->aux->ksym.prog)
3507 return prog->aux->ksym.name;
3508 return prog->aux->name;
3509 }
3510
priv_stack_init_guard(void __percpu * priv_stack_ptr,int alloc_size)3511 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
3512 {
3513 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3514 u64 *stack_ptr;
3515
3516 for_each_possible_cpu(cpu) {
3517 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3518 stack_ptr[0] = PRIV_STACK_GUARD_VAL;
3519 stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
3520 }
3521 }
3522
priv_stack_check_guard(void __percpu * priv_stack_ptr,int alloc_size,struct bpf_prog * prog)3523 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
3524 struct bpf_prog *prog)
3525 {
3526 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3527 u64 *stack_ptr;
3528
3529 for_each_possible_cpu(cpu) {
3530 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3531 if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
3532 stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) {
3533 pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
3534 bpf_get_prog_name(prog));
3535 break;
3536 }
3537 }
3538 }
3539
3540 struct x64_jit_data {
3541 struct bpf_binary_header *rw_header;
3542 struct bpf_binary_header *header;
3543 int *addrs;
3544 u8 *image;
3545 int proglen;
3546 struct jit_context ctx;
3547 };
3548
3549 #define MAX_PASSES 20
3550 #define PADDING_PASSES (MAX_PASSES - 5)
3551
bpf_int_jit_compile(struct bpf_prog * prog)3552 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3553 {
3554 struct bpf_binary_header *rw_header = NULL;
3555 struct bpf_binary_header *header = NULL;
3556 struct bpf_prog *tmp, *orig_prog = prog;
3557 void __percpu *priv_stack_ptr = NULL;
3558 struct x64_jit_data *jit_data;
3559 int priv_stack_alloc_sz;
3560 int proglen, oldproglen = 0;
3561 struct jit_context ctx = {};
3562 bool tmp_blinded = false;
3563 bool extra_pass = false;
3564 bool padding = false;
3565 u8 *rw_image = NULL;
3566 u8 *image = NULL;
3567 int *addrs;
3568 int pass;
3569 int i;
3570
3571 if (!prog->jit_requested)
3572 return orig_prog;
3573
3574 tmp = bpf_jit_blind_constants(prog);
3575 /*
3576 * If blinding was requested and we failed during blinding,
3577 * we must fall back to the interpreter.
3578 */
3579 if (IS_ERR(tmp))
3580 return orig_prog;
3581 if (tmp != prog) {
3582 tmp_blinded = true;
3583 prog = tmp;
3584 }
3585
3586 jit_data = prog->aux->jit_data;
3587 if (!jit_data) {
3588 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3589 if (!jit_data) {
3590 prog = orig_prog;
3591 goto out;
3592 }
3593 prog->aux->jit_data = jit_data;
3594 }
3595 priv_stack_ptr = prog->aux->priv_stack_ptr;
3596 if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
3597 /* Allocate actual private stack size with verifier-calculated
3598 * stack size plus two memory guards to protect overflow and
3599 * underflow.
3600 */
3601 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3602 2 * PRIV_STACK_GUARD_SZ;
3603 priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL);
3604 if (!priv_stack_ptr) {
3605 prog = orig_prog;
3606 goto out_priv_stack;
3607 }
3608
3609 priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
3610 prog->aux->priv_stack_ptr = priv_stack_ptr;
3611 }
3612 addrs = jit_data->addrs;
3613 if (addrs) {
3614 ctx = jit_data->ctx;
3615 oldproglen = jit_data->proglen;
3616 image = jit_data->image;
3617 header = jit_data->header;
3618 rw_header = jit_data->rw_header;
3619 rw_image = (void *)rw_header + ((void *)image - (void *)header);
3620 extra_pass = true;
3621 padding = true;
3622 goto skip_init_addrs;
3623 }
3624 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3625 if (!addrs) {
3626 prog = orig_prog;
3627 goto out_addrs;
3628 }
3629
3630 /*
3631 * Before first pass, make a rough estimation of addrs[]
3632 * each BPF instruction is translated to less than 64 bytes
3633 */
3634 for (proglen = 0, i = 0; i <= prog->len; i++) {
3635 proglen += 64;
3636 addrs[i] = proglen;
3637 }
3638 ctx.cleanup_addr = proglen;
3639 skip_init_addrs:
3640
3641 /*
3642 * JITed image shrinks with every pass and the loop iterates
3643 * until the image stops shrinking. Very large BPF programs
3644 * may converge on the last pass. In such case do one more
3645 * pass to emit the final image.
3646 */
3647 for (pass = 0; pass < MAX_PASSES || image; pass++) {
3648 if (!padding && pass >= PADDING_PASSES)
3649 padding = true;
3650 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3651 if (proglen <= 0) {
3652 out_image:
3653 image = NULL;
3654 if (header) {
3655 bpf_arch_text_copy(&header->size, &rw_header->size,
3656 sizeof(rw_header->size));
3657 bpf_jit_binary_pack_free(header, rw_header);
3658 }
3659 /* Fall back to interpreter mode */
3660 prog = orig_prog;
3661 if (extra_pass) {
3662 prog->bpf_func = NULL;
3663 prog->jited = 0;
3664 prog->jited_len = 0;
3665 }
3666 goto out_addrs;
3667 }
3668 if (image) {
3669 if (proglen != oldproglen) {
3670 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3671 proglen, oldproglen);
3672 goto out_image;
3673 }
3674 break;
3675 }
3676 if (proglen == oldproglen) {
3677 /*
3678 * The number of entries in extable is the number of BPF_LDX
3679 * insns that access kernel memory via "pointer to BTF type".
3680 * The verifier changed their opcode from LDX|MEM|size
3681 * to LDX|PROBE_MEM|size to make JITing easier.
3682 */
3683 u32 align = __alignof__(struct exception_table_entry);
3684 u32 extable_size = prog->aux->num_exentries *
3685 sizeof(struct exception_table_entry);
3686
3687 /* allocate module memory for x86 insns and extable */
3688 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3689 &image, align, &rw_header, &rw_image,
3690 jit_fill_hole);
3691 if (!header) {
3692 prog = orig_prog;
3693 goto out_addrs;
3694 }
3695 prog->aux->extable = (void *) image + roundup(proglen, align);
3696 }
3697 oldproglen = proglen;
3698 cond_resched();
3699 }
3700
3701 if (bpf_jit_enable > 1)
3702 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3703
3704 if (image) {
3705 if (!prog->is_func || extra_pass) {
3706 /*
3707 * bpf_jit_binary_pack_finalize fails in two scenarios:
3708 * 1) header is not pointing to proper module memory;
3709 * 2) the arch doesn't support bpf_arch_text_copy().
3710 *
3711 * Both cases are serious bugs and justify WARN_ON.
3712 */
3713 if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3714 /* header has been freed */
3715 header = NULL;
3716 goto out_image;
3717 }
3718
3719 bpf_tail_call_direct_fixup(prog);
3720 } else {
3721 jit_data->addrs = addrs;
3722 jit_data->ctx = ctx;
3723 jit_data->proglen = proglen;
3724 jit_data->image = image;
3725 jit_data->header = header;
3726 jit_data->rw_header = rw_header;
3727 }
3728 /*
3729 * ctx.prog_offset is used when CFI preambles put code *before*
3730 * the function. See emit_cfi(). For FineIBT specifically this code
3731 * can also be executed and bpf_prog_kallsyms_add() will
3732 * generate an additional symbol to cover this, hence also
3733 * decrement proglen.
3734 */
3735 prog->bpf_func = (void *)image + cfi_get_offset();
3736 prog->jited = 1;
3737 prog->jited_len = proglen - cfi_get_offset();
3738 } else {
3739 prog = orig_prog;
3740 }
3741
3742 if (!image || !prog->is_func || extra_pass) {
3743 if (image)
3744 bpf_prog_fill_jited_linfo(prog, addrs + 1);
3745 out_addrs:
3746 kvfree(addrs);
3747 if (!image && priv_stack_ptr) {
3748 free_percpu(priv_stack_ptr);
3749 prog->aux->priv_stack_ptr = NULL;
3750 }
3751 out_priv_stack:
3752 kfree(jit_data);
3753 prog->aux->jit_data = NULL;
3754 }
3755 out:
3756 if (tmp_blinded)
3757 bpf_jit_prog_release_other(prog, prog == orig_prog ?
3758 tmp : orig_prog);
3759 return prog;
3760 }
3761
bpf_jit_supports_kfunc_call(void)3762 bool bpf_jit_supports_kfunc_call(void)
3763 {
3764 return true;
3765 }
3766
bpf_arch_text_copy(void * dst,void * src,size_t len)3767 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3768 {
3769 if (text_poke_copy(dst, src, len) == NULL)
3770 return ERR_PTR(-EINVAL);
3771 return dst;
3772 }
3773
3774 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)3775 bool bpf_jit_supports_subprog_tailcalls(void)
3776 {
3777 return true;
3778 }
3779
bpf_jit_supports_percpu_insn(void)3780 bool bpf_jit_supports_percpu_insn(void)
3781 {
3782 return true;
3783 }
3784
bpf_jit_free(struct bpf_prog * prog)3785 void bpf_jit_free(struct bpf_prog *prog)
3786 {
3787 if (prog->jited) {
3788 struct x64_jit_data *jit_data = prog->aux->jit_data;
3789 struct bpf_binary_header *hdr;
3790 void __percpu *priv_stack_ptr;
3791 int priv_stack_alloc_sz;
3792
3793 /*
3794 * If we fail the final pass of JIT (from jit_subprogs),
3795 * the program may not be finalized yet. Call finalize here
3796 * before freeing it.
3797 */
3798 if (jit_data) {
3799 bpf_jit_binary_pack_finalize(jit_data->header,
3800 jit_data->rw_header);
3801 kvfree(jit_data->addrs);
3802 kfree(jit_data);
3803 }
3804 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3805 hdr = bpf_jit_binary_pack_hdr(prog);
3806 bpf_jit_binary_pack_free(hdr, NULL);
3807 priv_stack_ptr = prog->aux->priv_stack_ptr;
3808 if (priv_stack_ptr) {
3809 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3810 2 * PRIV_STACK_GUARD_SZ;
3811 priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3812 free_percpu(prog->aux->priv_stack_ptr);
3813 }
3814 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3815 }
3816
3817 bpf_prog_unlock_free(prog);
3818 }
3819
bpf_jit_supports_exceptions(void)3820 bool bpf_jit_supports_exceptions(void)
3821 {
3822 /* We unwind through both kernel frames (starting from within bpf_throw
3823 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3824 * to walk kernel frames and reach BPF frames in the stack trace.
3825 */
3826 return IS_ENABLED(CONFIG_UNWINDER_ORC);
3827 }
3828
bpf_jit_supports_private_stack(void)3829 bool bpf_jit_supports_private_stack(void)
3830 {
3831 return true;
3832 }
3833
arch_bpf_stack_walk(bool (* consume_fn)(void * cookie,u64 ip,u64 sp,u64 bp),void * cookie)3834 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3835 {
3836 #if defined(CONFIG_UNWINDER_ORC)
3837 struct unwind_state state;
3838 unsigned long addr;
3839
3840 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3841 unwind_next_frame(&state)) {
3842 addr = unwind_get_return_address(&state);
3843 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3844 break;
3845 }
3846 return;
3847 #endif
3848 WARN(1, "verification of programs using bpf_throw should have failed\n");
3849 }
3850
bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor * poke,struct bpf_prog * new,struct bpf_prog * old)3851 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3852 struct bpf_prog *new, struct bpf_prog *old)
3853 {
3854 u8 *old_addr, *new_addr, *old_bypass_addr;
3855 int ret;
3856
3857 old_bypass_addr = old ? NULL : poke->bypass_addr;
3858 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3859 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3860
3861 /*
3862 * On program loading or teardown, the program's kallsym entry
3863 * might not be in place, so we use __bpf_arch_text_poke to skip
3864 * the kallsyms check.
3865 */
3866 if (new) {
3867 ret = __bpf_arch_text_poke(poke->tailcall_target,
3868 BPF_MOD_JUMP,
3869 old_addr, new_addr);
3870 BUG_ON(ret < 0);
3871 if (!old) {
3872 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3873 BPF_MOD_JUMP,
3874 poke->bypass_addr,
3875 NULL);
3876 BUG_ON(ret < 0);
3877 }
3878 } else {
3879 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3880 BPF_MOD_JUMP,
3881 old_bypass_addr,
3882 poke->bypass_addr);
3883 BUG_ON(ret < 0);
3884 /* let other CPUs finish the execution of program
3885 * so that it will not possible to expose them
3886 * to invalid nop, stack unwind, nop state
3887 */
3888 if (!ret)
3889 synchronize_rcu();
3890 ret = __bpf_arch_text_poke(poke->tailcall_target,
3891 BPF_MOD_JUMP,
3892 old_addr, NULL);
3893 BUG_ON(ret < 0);
3894 }
3895 }
3896
bpf_jit_supports_arena(void)3897 bool bpf_jit_supports_arena(void)
3898 {
3899 return true;
3900 }
3901
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)3902 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3903 {
3904 if (!in_arena)
3905 return true;
3906 switch (insn->code) {
3907 case BPF_STX | BPF_ATOMIC | BPF_W:
3908 case BPF_STX | BPF_ATOMIC | BPF_DW:
3909 if (insn->imm == (BPF_AND | BPF_FETCH) ||
3910 insn->imm == (BPF_OR | BPF_FETCH) ||
3911 insn->imm == (BPF_XOR | BPF_FETCH))
3912 return false;
3913 }
3914 return true;
3915 }
3916
bpf_jit_supports_ptr_xchg(void)3917 bool bpf_jit_supports_ptr_xchg(void)
3918 {
3919 return true;
3920 }
3921
3922 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */
bpf_arch_uaddress_limit(void)3923 u64 bpf_arch_uaddress_limit(void)
3924 {
3925 return 0;
3926 }
3927
bpf_jit_supports_timed_may_goto(void)3928 bool bpf_jit_supports_timed_may_goto(void)
3929 {
3930 return true;
3931 }
3932