1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Windfarm PowerMac thermal control.
4 * Control loops for PowerMac7,2 and 7,3
5 *
6 * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
7 */
8 #include <linux/types.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/device.h>
12 #include <linux/platform_device.h>
13 #include <linux/reboot.h>
14
15 #include <asm/smu.h>
16
17 #include "windfarm.h"
18 #include "windfarm_pid.h"
19 #include "windfarm_mpu.h"
20
21 #define VERSION "1.0"
22
23 #undef DEBUG
24 #undef LOTSA_DEBUG
25
26 #ifdef DEBUG
27 #define DBG(args...) printk(args)
28 #else
29 #define DBG(args...) do { } while(0)
30 #endif
31
32 #ifdef LOTSA_DEBUG
33 #define DBG_LOTS(args...) printk(args)
34 #else
35 #define DBG_LOTS(args...) do { } while(0)
36 #endif
37
38 /* define this to force CPU overtemp to 60 degree, useful for testing
39 * the overtemp code
40 */
41 #undef HACKED_OVERTEMP
42
43 /* We currently only handle 2 chips */
44 #define NR_CHIPS 2
45 #define NR_CPU_FANS 3 * NR_CHIPS
46
47 /* Controls and sensors */
48 static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
49 static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
50 static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
51 static struct wf_sensor *backside_temp;
52 static struct wf_sensor *drives_temp;
53
54 static struct wf_control *cpu_front_fans[NR_CHIPS];
55 static struct wf_control *cpu_rear_fans[NR_CHIPS];
56 static struct wf_control *cpu_pumps[NR_CHIPS];
57 static struct wf_control *backside_fan;
58 static struct wf_control *drives_fan;
59 static struct wf_control *slots_fan;
60 static struct wf_control *cpufreq_clamp;
61
62 /* We keep a temperature history for average calculation of 180s */
63 #define CPU_TEMP_HIST_SIZE 180
64
65 /* Fixed speed for slot fan */
66 #define SLOTS_FAN_DEFAULT_PWM 40
67
68 /* Scale value for CPU intake fans */
69 #define CPU_INTAKE_SCALE 0x0000f852
70
71 /* PID loop state */
72 static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
73 static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
74 static bool cpu_pid_combined;
75 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
76 static int cpu_thist_pt;
77 static s64 cpu_thist_total;
78 static s32 cpu_all_tmax = 100 << 16;
79 static struct wf_pid_state backside_pid;
80 static int backside_tick;
81 static struct wf_pid_state drives_pid;
82 static int drives_tick;
83
84 static int nr_chips;
85 static bool have_all_controls;
86 static bool have_all_sensors;
87 static bool started;
88
89 static int failure_state;
90 #define FAILURE_SENSOR 1
91 #define FAILURE_FAN 2
92 #define FAILURE_PERM 4
93 #define FAILURE_LOW_OVERTEMP 8
94 #define FAILURE_HIGH_OVERTEMP 16
95
96 /* Overtemp values */
97 #define LOW_OVER_AVERAGE 0
98 #define LOW_OVER_IMMEDIATE (10 << 16)
99 #define LOW_OVER_CLEAR ((-10) << 16)
100 #define HIGH_OVER_IMMEDIATE (14 << 16)
101 #define HIGH_OVER_AVERAGE (10 << 16)
102 #define HIGH_OVER_IMMEDIATE (14 << 16)
103
104
cpu_max_all_fans(void)105 static void cpu_max_all_fans(void)
106 {
107 int i;
108
109 /* We max all CPU fans in case of a sensor error. We also do the
110 * cpufreq clamping now, even if it's supposedly done later by the
111 * generic code anyway, we do it earlier here to react faster
112 */
113 if (cpufreq_clamp)
114 wf_control_set_max(cpufreq_clamp);
115 for (i = 0; i < nr_chips; i++) {
116 if (cpu_front_fans[i])
117 wf_control_set_max(cpu_front_fans[i]);
118 if (cpu_rear_fans[i])
119 wf_control_set_max(cpu_rear_fans[i]);
120 if (cpu_pumps[i])
121 wf_control_set_max(cpu_pumps[i]);
122 }
123 }
124
cpu_check_overtemp(s32 temp)125 static int cpu_check_overtemp(s32 temp)
126 {
127 int new_state = 0;
128 s32 t_avg, t_old;
129 static bool first = true;
130
131 /* First check for immediate overtemps */
132 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
133 new_state |= FAILURE_LOW_OVERTEMP;
134 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
135 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
136 " temperature !\n");
137 }
138 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
139 new_state |= FAILURE_HIGH_OVERTEMP;
140 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
141 printk(KERN_ERR "windfarm: Critical overtemp due to"
142 " immediate CPU temperature !\n");
143 }
144
145 /*
146 * The first time around, initialize the array with the first
147 * temperature reading
148 */
149 if (first) {
150 int i;
151
152 cpu_thist_total = 0;
153 for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
154 cpu_thist[i] = temp;
155 cpu_thist_total += temp;
156 }
157 first = false;
158 }
159
160 /*
161 * We calculate a history of max temperatures and use that for the
162 * overtemp management
163 */
164 t_old = cpu_thist[cpu_thist_pt];
165 cpu_thist[cpu_thist_pt] = temp;
166 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
167 cpu_thist_total -= t_old;
168 cpu_thist_total += temp;
169 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
170
171 DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
172 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
173
174 /* Now check for average overtemps */
175 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
176 new_state |= FAILURE_LOW_OVERTEMP;
177 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
178 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
179 " temperature !\n");
180 }
181 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
182 new_state |= FAILURE_HIGH_OVERTEMP;
183 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
184 printk(KERN_ERR "windfarm: Critical overtemp due to"
185 " average CPU temperature !\n");
186 }
187
188 /* Now handle overtemp conditions. We don't currently use the windfarm
189 * overtemp handling core as it's not fully suited to the needs of those
190 * new machine. This will be fixed later.
191 */
192 if (new_state) {
193 /* High overtemp -> immediate shutdown */
194 if (new_state & FAILURE_HIGH_OVERTEMP)
195 machine_power_off();
196 if ((failure_state & new_state) != new_state)
197 cpu_max_all_fans();
198 failure_state |= new_state;
199 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
200 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
201 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
202 failure_state &= ~FAILURE_LOW_OVERTEMP;
203 }
204
205 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
206 }
207
read_one_cpu_vals(int cpu,s32 * temp,s32 * power)208 static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
209 {
210 s32 dtemp, volts, amps;
211 int rc;
212
213 /* Get diode temperature */
214 rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
215 if (rc) {
216 DBG(" CPU%d: temp reading error !\n", cpu);
217 return -EIO;
218 }
219 DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
220 *temp = dtemp;
221
222 /* Get voltage */
223 rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
224 if (rc) {
225 DBG(" CPU%d, volts reading error !\n", cpu);
226 return -EIO;
227 }
228 DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
229
230 /* Get current */
231 rc = wf_sensor_get(sens_cpu_amps[cpu], &s);
232 if (rc) {
233 DBG(" CPU%d, current reading error !\n", cpu);
234 return -EIO;
235 }
236 DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
237
238 /* Calculate power */
239
240 /* Scale voltage and current raw sensor values according to fixed scales
241 * obtained in Darwin and calculate power from I and V
242 */
243 *power = (((u64)volts) * ((u64)amps)) >> 16;
244
245 DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
246
247 return 0;
248
249 }
250
cpu_fans_tick_split(void)251 static void cpu_fans_tick_split(void)
252 {
253 int err, cpu;
254 s32 intake, temp, power, t_max = 0;
255
256 DBG_LOTS("* cpu fans_tick_split()\n");
257
258 for (cpu = 0; cpu < nr_chips; ++cpu) {
259 struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
260
261 /* Read current speed */
262 wf_control_get(cpu_rear_fans[cpu], &sp->target);
263
264 DBG_LOTS(" CPU%d: cur_target = %d RPM\n", cpu, sp->target);
265
266 err = read_one_cpu_vals(cpu, &temp, &power);
267 if (err) {
268 failure_state |= FAILURE_SENSOR;
269 cpu_max_all_fans();
270 return;
271 }
272
273 /* Keep track of highest temp */
274 t_max = max(t_max, temp);
275
276 /* Handle possible overtemps */
277 if (cpu_check_overtemp(t_max))
278 return;
279
280 /* Run PID */
281 wf_cpu_pid_run(sp, power, temp);
282
283 DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target);
284
285 /* Apply result directly to exhaust fan */
286 err = wf_control_set(cpu_rear_fans[cpu], sp->target);
287 if (err) {
288 pr_warn("wf_pm72: Fan %s reports error %d\n",
289 cpu_rear_fans[cpu]->name, err);
290 failure_state |= FAILURE_FAN;
291 break;
292 }
293
294 /* Scale result for intake fan */
295 intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
296 DBG_LOTS(" CPU%d: intake = %d RPM\n", cpu, intake);
297 err = wf_control_set(cpu_front_fans[cpu], intake);
298 if (err) {
299 pr_warn("wf_pm72: Fan %s reports error %d\n",
300 cpu_front_fans[cpu]->name, err);
301 failure_state |= FAILURE_FAN;
302 break;
303 }
304 }
305 }
306
cpu_fans_tick_combined(void)307 static void cpu_fans_tick_combined(void)
308 {
309 s32 temp0, power0, temp1, power1, t_max = 0;
310 s32 temp, power, intake, pump;
311 struct wf_control *pump0, *pump1;
312 struct wf_cpu_pid_state *sp = &cpu_pid[0];
313 int err, cpu;
314
315 DBG_LOTS("* cpu fans_tick_combined()\n");
316
317 /* Read current speed from cpu 0 */
318 wf_control_get(cpu_rear_fans[0], &sp->target);
319
320 DBG_LOTS(" CPUs: cur_target = %d RPM\n", sp->target);
321
322 /* Read values for both CPUs */
323 err = read_one_cpu_vals(0, &temp0, &power0);
324 if (err) {
325 failure_state |= FAILURE_SENSOR;
326 cpu_max_all_fans();
327 return;
328 }
329 err = read_one_cpu_vals(1, &temp1, &power1);
330 if (err) {
331 failure_state |= FAILURE_SENSOR;
332 cpu_max_all_fans();
333 return;
334 }
335
336 /* Keep track of highest temp */
337 t_max = max(t_max, max(temp0, temp1));
338
339 /* Handle possible overtemps */
340 if (cpu_check_overtemp(t_max))
341 return;
342
343 /* Use the max temp & power of both */
344 temp = max(temp0, temp1);
345 power = max(power0, power1);
346
347 /* Run PID */
348 wf_cpu_pid_run(sp, power, temp);
349
350 /* Scale result for intake fan */
351 intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
352
353 /* Same deal with pump speed */
354 pump0 = cpu_pumps[0];
355 pump1 = cpu_pumps[1];
356 if (!pump0) {
357 pump0 = pump1;
358 pump1 = NULL;
359 }
360 pump = (sp->target * wf_control_get_max(pump0)) /
361 cpu_mpu_data[0]->rmaxn_exhaust_fan;
362
363 DBG_LOTS(" CPUs: target = %d RPM\n", sp->target);
364 DBG_LOTS(" CPUs: intake = %d RPM\n", intake);
365 DBG_LOTS(" CPUs: pump = %d RPM\n", pump);
366
367 for (cpu = 0; cpu < nr_chips; cpu++) {
368 err = wf_control_set(cpu_rear_fans[cpu], sp->target);
369 if (err) {
370 pr_warn("wf_pm72: Fan %s reports error %d\n",
371 cpu_rear_fans[cpu]->name, err);
372 failure_state |= FAILURE_FAN;
373 }
374 err = wf_control_set(cpu_front_fans[cpu], intake);
375 if (err) {
376 pr_warn("wf_pm72: Fan %s reports error %d\n",
377 cpu_front_fans[cpu]->name, err);
378 failure_state |= FAILURE_FAN;
379 }
380 err = 0;
381 if (cpu_pumps[cpu])
382 err = wf_control_set(cpu_pumps[cpu], pump);
383 if (err) {
384 pr_warn("wf_pm72: Pump %s reports error %d\n",
385 cpu_pumps[cpu]->name, err);
386 failure_state |= FAILURE_FAN;
387 }
388 }
389 }
390
391 /* Implementation... */
cpu_setup_pid(int cpu)392 static int cpu_setup_pid(int cpu)
393 {
394 struct wf_cpu_pid_param pid;
395 const struct mpu_data *mpu = cpu_mpu_data[cpu];
396 s32 tmax, ttarget, ptarget;
397 int fmin, fmax, hsize;
398
399 /* Get PID params from the appropriate MPU EEPROM */
400 tmax = mpu->tmax << 16;
401 ttarget = mpu->ttarget << 16;
402 ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
403
404 DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
405 cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
406
407 /* We keep a global tmax for overtemp calculations */
408 if (tmax < cpu_all_tmax)
409 cpu_all_tmax = tmax;
410
411 /* Set PID min/max by using the rear fan min/max */
412 fmin = wf_control_get_min(cpu_rear_fans[cpu]);
413 fmax = wf_control_get_max(cpu_rear_fans[cpu]);
414 DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
415
416 /* History size */
417 hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
418 DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
419
420 /* Initialize PID loop */
421 pid.interval = 1; /* seconds */
422 pid.history_len = hsize;
423 pid.gd = mpu->pid_gd;
424 pid.gp = mpu->pid_gp;
425 pid.gr = mpu->pid_gr;
426 pid.tmax = tmax;
427 pid.ttarget = ttarget;
428 pid.pmaxadj = ptarget;
429 pid.min = fmin;
430 pid.max = fmax;
431
432 wf_cpu_pid_init(&cpu_pid[cpu], &pid);
433 cpu_pid[cpu].target = 1000;
434
435 return 0;
436 }
437
438 /* Backside/U3 fan */
439 static struct wf_pid_param backside_u3_param = {
440 .interval = 5,
441 .history_len = 2,
442 .gd = 40 << 20,
443 .gp = 5 << 20,
444 .gr = 0,
445 .itarget = 65 << 16,
446 .additive = 1,
447 .min = 20,
448 .max = 100,
449 };
450
451 static struct wf_pid_param backside_u3h_param = {
452 .interval = 5,
453 .history_len = 2,
454 .gd = 20 << 20,
455 .gp = 5 << 20,
456 .gr = 0,
457 .itarget = 75 << 16,
458 .additive = 1,
459 .min = 20,
460 .max = 100,
461 };
462
backside_fan_tick(void)463 static void backside_fan_tick(void)
464 {
465 s32 temp;
466 int speed;
467 int err;
468
469 if (!backside_fan || !backside_temp || !backside_tick)
470 return;
471 if (--backside_tick > 0)
472 return;
473 backside_tick = backside_pid.param.interval;
474
475 DBG_LOTS("* backside fans tick\n");
476
477 /* Update fan speed from actual fans */
478 err = wf_control_get(backside_fan, &speed);
479 if (!err)
480 backside_pid.target = speed;
481
482 err = wf_sensor_get(backside_temp, &temp);
483 if (err) {
484 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
485 err);
486 failure_state |= FAILURE_SENSOR;
487 wf_control_set_max(backside_fan);
488 return;
489 }
490 speed = wf_pid_run(&backside_pid, temp);
491
492 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
493 FIX32TOPRINT(temp), speed);
494
495 err = wf_control_set(backside_fan, speed);
496 if (err) {
497 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
498 failure_state |= FAILURE_FAN;
499 }
500 }
501
backside_setup_pid(void)502 static void backside_setup_pid(void)
503 {
504 /* first time initialize things */
505 s32 fmin = wf_control_get_min(backside_fan);
506 s32 fmax = wf_control_get_max(backside_fan);
507 struct wf_pid_param param;
508 struct device_node *u3;
509 int u3h = 1; /* conservative by default */
510
511 u3 = of_find_node_by_path("/u3@0,f8000000");
512 if (u3 != NULL) {
513 const u32 *vers = of_get_property(u3, "device-rev", NULL);
514 if (vers)
515 if (((*vers) & 0x3f) < 0x34)
516 u3h = 0;
517 of_node_put(u3);
518 }
519
520 param = u3h ? backside_u3h_param : backside_u3_param;
521
522 param.min = max(param.min, fmin);
523 param.max = min(param.max, fmax);
524 wf_pid_init(&backside_pid, ¶m);
525 backside_tick = 1;
526
527 pr_info("wf_pm72: Backside control loop started.\n");
528 }
529
530 /* Drive bay fan */
531 static const struct wf_pid_param drives_param = {
532 .interval = 5,
533 .history_len = 2,
534 .gd = 30 << 20,
535 .gp = 5 << 20,
536 .gr = 0,
537 .itarget = 40 << 16,
538 .additive = 1,
539 .min = 300,
540 .max = 4000,
541 };
542
drives_fan_tick(void)543 static void drives_fan_tick(void)
544 {
545 s32 temp;
546 int speed;
547 int err;
548
549 if (!drives_fan || !drives_temp || !drives_tick)
550 return;
551 if (--drives_tick > 0)
552 return;
553 drives_tick = drives_pid.param.interval;
554
555 DBG_LOTS("* drives fans tick\n");
556
557 /* Update fan speed from actual fans */
558 err = wf_control_get(drives_fan, &speed);
559 if (!err)
560 drives_pid.target = speed;
561
562 err = wf_sensor_get(drives_temp, &temp);
563 if (err) {
564 pr_warn("wf_pm72: drive bay temp sensor error %d\n", err);
565 failure_state |= FAILURE_SENSOR;
566 wf_control_set_max(drives_fan);
567 return;
568 }
569 speed = wf_pid_run(&drives_pid, temp);
570
571 DBG_LOTS("drives PID temp=%d.%.3d speed=%d\n",
572 FIX32TOPRINT(temp), speed);
573
574 err = wf_control_set(drives_fan, speed);
575 if (err) {
576 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
577 failure_state |= FAILURE_FAN;
578 }
579 }
580
drives_setup_pid(void)581 static void drives_setup_pid(void)
582 {
583 /* first time initialize things */
584 s32 fmin = wf_control_get_min(drives_fan);
585 s32 fmax = wf_control_get_max(drives_fan);
586 struct wf_pid_param param = drives_param;
587
588 param.min = max(param.min, fmin);
589 param.max = min(param.max, fmax);
590 wf_pid_init(&drives_pid, ¶m);
591 drives_tick = 1;
592
593 pr_info("wf_pm72: Drive bay control loop started.\n");
594 }
595
set_fail_state(void)596 static void set_fail_state(void)
597 {
598 cpu_max_all_fans();
599
600 if (backside_fan)
601 wf_control_set_max(backside_fan);
602 if (slots_fan)
603 wf_control_set_max(slots_fan);
604 if (drives_fan)
605 wf_control_set_max(drives_fan);
606 }
607
pm72_tick(void)608 static void pm72_tick(void)
609 {
610 int i, last_failure;
611
612 if (!started) {
613 started = true;
614 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
615 for (i = 0; i < nr_chips; ++i) {
616 if (cpu_setup_pid(i) < 0) {
617 failure_state = FAILURE_PERM;
618 set_fail_state();
619 break;
620 }
621 }
622 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
623
624 backside_setup_pid();
625 drives_setup_pid();
626
627 /*
628 * We don't have the right stuff to drive the PCI fan
629 * so we fix it to a default value
630 */
631 wf_control_set(slots_fan, SLOTS_FAN_DEFAULT_PWM);
632
633 #ifdef HACKED_OVERTEMP
634 cpu_all_tmax = 60 << 16;
635 #endif
636 }
637
638 /* Permanent failure, bail out */
639 if (failure_state & FAILURE_PERM)
640 return;
641
642 /*
643 * Clear all failure bits except low overtemp which will be eventually
644 * cleared by the control loop itself
645 */
646 last_failure = failure_state;
647 failure_state &= FAILURE_LOW_OVERTEMP;
648 if (cpu_pid_combined)
649 cpu_fans_tick_combined();
650 else
651 cpu_fans_tick_split();
652 backside_fan_tick();
653 drives_fan_tick();
654
655 DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n",
656 last_failure, failure_state);
657
658 /* Check for failures. Any failure causes cpufreq clamping */
659 if (failure_state && last_failure == 0 && cpufreq_clamp)
660 wf_control_set_max(cpufreq_clamp);
661 if (failure_state == 0 && last_failure && cpufreq_clamp)
662 wf_control_set_min(cpufreq_clamp);
663
664 /* That's it for now, we might want to deal with other failures
665 * differently in the future though
666 */
667 }
668
pm72_new_control(struct wf_control * ct)669 static void pm72_new_control(struct wf_control *ct)
670 {
671 bool all_controls;
672 bool had_pump = cpu_pumps[0] || cpu_pumps[1];
673
674 if (!strcmp(ct->name, "cpu-front-fan-0"))
675 cpu_front_fans[0] = ct;
676 else if (!strcmp(ct->name, "cpu-front-fan-1"))
677 cpu_front_fans[1] = ct;
678 else if (!strcmp(ct->name, "cpu-rear-fan-0"))
679 cpu_rear_fans[0] = ct;
680 else if (!strcmp(ct->name, "cpu-rear-fan-1"))
681 cpu_rear_fans[1] = ct;
682 else if (!strcmp(ct->name, "cpu-pump-0"))
683 cpu_pumps[0] = ct;
684 else if (!strcmp(ct->name, "cpu-pump-1"))
685 cpu_pumps[1] = ct;
686 else if (!strcmp(ct->name, "backside-fan"))
687 backside_fan = ct;
688 else if (!strcmp(ct->name, "slots-fan"))
689 slots_fan = ct;
690 else if (!strcmp(ct->name, "drive-bay-fan"))
691 drives_fan = ct;
692 else if (!strcmp(ct->name, "cpufreq-clamp"))
693 cpufreq_clamp = ct;
694
695 all_controls =
696 cpu_front_fans[0] &&
697 cpu_rear_fans[0] &&
698 backside_fan &&
699 slots_fan &&
700 drives_fan;
701 if (nr_chips > 1)
702 all_controls &=
703 cpu_front_fans[1] &&
704 cpu_rear_fans[1];
705 have_all_controls = all_controls;
706
707 if ((cpu_pumps[0] || cpu_pumps[1]) && !had_pump) {
708 pr_info("wf_pm72: Liquid cooling pump(s) detected,"
709 " using new algorithm !\n");
710 cpu_pid_combined = true;
711 }
712 }
713
714
pm72_new_sensor(struct wf_sensor * sr)715 static void pm72_new_sensor(struct wf_sensor *sr)
716 {
717 bool all_sensors;
718
719 if (!strcmp(sr->name, "cpu-diode-temp-0"))
720 sens_cpu_temp[0] = sr;
721 else if (!strcmp(sr->name, "cpu-diode-temp-1"))
722 sens_cpu_temp[1] = sr;
723 else if (!strcmp(sr->name, "cpu-voltage-0"))
724 sens_cpu_volts[0] = sr;
725 else if (!strcmp(sr->name, "cpu-voltage-1"))
726 sens_cpu_volts[1] = sr;
727 else if (!strcmp(sr->name, "cpu-current-0"))
728 sens_cpu_amps[0] = sr;
729 else if (!strcmp(sr->name, "cpu-current-1"))
730 sens_cpu_amps[1] = sr;
731 else if (!strcmp(sr->name, "backside-temp"))
732 backside_temp = sr;
733 else if (!strcmp(sr->name, "hd-temp"))
734 drives_temp = sr;
735
736 all_sensors =
737 sens_cpu_temp[0] &&
738 sens_cpu_volts[0] &&
739 sens_cpu_amps[0] &&
740 backside_temp &&
741 drives_temp;
742 if (nr_chips > 1)
743 all_sensors &=
744 sens_cpu_temp[1] &&
745 sens_cpu_volts[1] &&
746 sens_cpu_amps[1];
747
748 have_all_sensors = all_sensors;
749 }
750
pm72_wf_notify(struct notifier_block * self,unsigned long event,void * data)751 static int pm72_wf_notify(struct notifier_block *self,
752 unsigned long event, void *data)
753 {
754 switch (event) {
755 case WF_EVENT_NEW_SENSOR:
756 pm72_new_sensor(data);
757 break;
758 case WF_EVENT_NEW_CONTROL:
759 pm72_new_control(data);
760 break;
761 case WF_EVENT_TICK:
762 if (have_all_controls && have_all_sensors)
763 pm72_tick();
764 }
765 return 0;
766 }
767
768 static struct notifier_block pm72_events = {
769 .notifier_call = pm72_wf_notify,
770 };
771
wf_pm72_probe(struct platform_device * dev)772 static int wf_pm72_probe(struct platform_device *dev)
773 {
774 wf_register_client(&pm72_events);
775 return 0;
776 }
777
wf_pm72_remove(struct platform_device * dev)778 static void wf_pm72_remove(struct platform_device *dev)
779 {
780 wf_unregister_client(&pm72_events);
781 }
782
783 static struct platform_driver wf_pm72_driver = {
784 .probe = wf_pm72_probe,
785 .remove_new = wf_pm72_remove,
786 .driver = {
787 .name = "windfarm",
788 },
789 };
790
wf_pm72_init(void)791 static int __init wf_pm72_init(void)
792 {
793 struct device_node *cpu;
794 int i;
795
796 if (!of_machine_is_compatible("PowerMac7,2") &&
797 !of_machine_is_compatible("PowerMac7,3"))
798 return -ENODEV;
799
800 /* Count the number of CPU cores */
801 nr_chips = 0;
802 for_each_node_by_type(cpu, "cpu")
803 ++nr_chips;
804 if (nr_chips > NR_CHIPS)
805 nr_chips = NR_CHIPS;
806
807 pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
808 nr_chips);
809
810 /* Get MPU data for each CPU */
811 for (i = 0; i < nr_chips; i++) {
812 cpu_mpu_data[i] = wf_get_mpu(i);
813 if (!cpu_mpu_data[i]) {
814 pr_err("wf_pm72: Failed to find MPU data for CPU %d\n", i);
815 return -ENXIO;
816 }
817 }
818
819 #ifdef MODULE
820 request_module("windfarm_fcu_controls");
821 request_module("windfarm_lm75_sensor");
822 request_module("windfarm_ad7417_sensor");
823 request_module("windfarm_max6690_sensor");
824 request_module("windfarm_cpufreq_clamp");
825 #endif /* MODULE */
826
827 platform_driver_register(&wf_pm72_driver);
828 return 0;
829 }
830
wf_pm72_exit(void)831 static void __exit wf_pm72_exit(void)
832 {
833 platform_driver_unregister(&wf_pm72_driver);
834 }
835
836 module_init(wf_pm72_init);
837 module_exit(wf_pm72_exit);
838
839 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
840 MODULE_DESCRIPTION("Thermal control for AGP PowerMac G5s");
841 MODULE_LICENSE("GPL");
842 MODULE_ALIAS("platform:windfarm");
843