1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/memory-tiers.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77 #include <linux/sched/sysctl.h>
78
79 #include <trace/events/kmem.h>
80
81 #include <asm/io.h>
82 #include <asm/mmu_context.h>
83 #include <asm/pgalloc.h>
84 #include <linux/uaccess.h>
85 #include <asm/tlb.h>
86 #include <asm/tlbflush.h>
87
88 #include "pgalloc-track.h"
89 #include "internal.h"
90 #include "swap.h"
91
92 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
93 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
94 #endif
95
96 static vm_fault_t do_fault(struct vm_fault *vmf);
97 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
98 static bool vmf_pte_changed(struct vm_fault *vmf);
99
100 /*
101 * Return true if the original pte was a uffd-wp pte marker (so the pte was
102 * wr-protected).
103 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)104 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
105 {
106 if (!userfaultfd_wp(vmf->vma))
107 return false;
108 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
109 return false;
110
111 return pte_marker_uffd_wp(vmf->orig_pte);
112 }
113
114 /*
115 * Randomize the address space (stacks, mmaps, brk, etc.).
116 *
117 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
118 * as ancient (libc5 based) binaries can segfault. )
119 */
120 int randomize_va_space __read_mostly =
121 #ifdef CONFIG_COMPAT_BRK
122 1;
123 #else
124 2;
125 #endif
126
127 static const struct ctl_table mmu_sysctl_table[] = {
128 {
129 .procname = "randomize_va_space",
130 .data = &randomize_va_space,
131 .maxlen = sizeof(int),
132 .mode = 0644,
133 .proc_handler = proc_dointvec,
134 },
135 };
136
init_mm_sysctl(void)137 static int __init init_mm_sysctl(void)
138 {
139 register_sysctl_init("kernel", mmu_sysctl_table);
140 return 0;
141 }
142
143 subsys_initcall(init_mm_sysctl);
144
145 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148 /*
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
152 */
153 return false;
154 }
155 #endif
156
disable_randmaps(char * s)157 static int __init disable_randmaps(char *s)
158 {
159 randomize_va_space = 0;
160 return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166
167 unsigned long highest_memmap_pfn __read_mostly;
168
169 /*
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 */
init_zero_pfn(void)172 static int __init init_zero_pfn(void)
173 {
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 return 0;
176 }
177 early_initcall(init_zero_pfn);
178
mm_trace_rss_stat(struct mm_struct * mm,int member)179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181 trace_rss_stat(mm, member);
182 }
183
184 /*
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
187 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 unsigned long addr)
190 {
191 pgtable_t token = pmd_pgtable(*pmd);
192 pmd_clear(pmd);
193 pte_free_tlb(tlb, token, addr);
194 mm_dec_nr_ptes(tlb->mm);
195 }
196
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
200 {
201 pmd_t *pmd;
202 unsigned long next;
203 unsigned long start;
204
205 start = addr;
206 pmd = pmd_offset(pud, addr);
207 do {
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
210 continue;
211 free_pte_range(tlb, pmd, addr);
212 } while (pmd++, addr = next, addr != end);
213
214 start &= PUD_MASK;
215 if (start < floor)
216 return;
217 if (ceiling) {
218 ceiling &= PUD_MASK;
219 if (!ceiling)
220 return;
221 }
222 if (end - 1 > ceiling - 1)
223 return;
224
225 pmd = pmd_offset(pud, start);
226 pud_clear(pud);
227 pmd_free_tlb(tlb, pmd, start);
228 mm_dec_nr_pmds(tlb->mm);
229 }
230
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
234 {
235 pud_t *pud;
236 unsigned long next;
237 unsigned long start;
238
239 start = addr;
240 pud = pud_offset(p4d, addr);
241 do {
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
244 continue;
245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 } while (pud++, addr = next, addr != end);
247
248 start &= P4D_MASK;
249 if (start < floor)
250 return;
251 if (ceiling) {
252 ceiling &= P4D_MASK;
253 if (!ceiling)
254 return;
255 }
256 if (end - 1 > ceiling - 1)
257 return;
258
259 pud = pud_offset(p4d, start);
260 p4d_clear(p4d);
261 pud_free_tlb(tlb, pud, start);
262 mm_dec_nr_puds(tlb->mm);
263 }
264
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268 {
269 p4d_t *p4d;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 p4d = p4d_offset(pgd, addr);
275 do {
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
278 continue;
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
281
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
289 }
290 if (end - 1 > ceiling - 1)
291 return;
292
293 p4d = p4d_offset(pgd, start);
294 pgd_clear(pgd);
295 p4d_free_tlb(tlb, p4d, start);
296 }
297
298 /**
299 * free_pgd_range - Unmap and free page tables in the range
300 * @tlb: the mmu_gather containing pending TLB flush info
301 * @addr: virtual address start
302 * @end: virtual address end
303 * @floor: lowest address boundary
304 * @ceiling: highest address boundary
305 *
306 * This function tears down all user-level page tables in the
307 * specified virtual address range [@addr..@end). It is part of
308 * the memory unmap flow.
309 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)310 void free_pgd_range(struct mmu_gather *tlb,
311 unsigned long addr, unsigned long end,
312 unsigned long floor, unsigned long ceiling)
313 {
314 pgd_t *pgd;
315 unsigned long next;
316
317 /*
318 * The next few lines have given us lots of grief...
319 *
320 * Why are we testing PMD* at this top level? Because often
321 * there will be no work to do at all, and we'd prefer not to
322 * go all the way down to the bottom just to discover that.
323 *
324 * Why all these "- 1"s? Because 0 represents both the bottom
325 * of the address space and the top of it (using -1 for the
326 * top wouldn't help much: the masks would do the wrong thing).
327 * The rule is that addr 0 and floor 0 refer to the bottom of
328 * the address space, but end 0 and ceiling 0 refer to the top
329 * Comparisons need to use "end - 1" and "ceiling - 1" (though
330 * that end 0 case should be mythical).
331 *
332 * Wherever addr is brought up or ceiling brought down, we must
333 * be careful to reject "the opposite 0" before it confuses the
334 * subsequent tests. But what about where end is brought down
335 * by PMD_SIZE below? no, end can't go down to 0 there.
336 *
337 * Whereas we round start (addr) and ceiling down, by different
338 * masks at different levels, in order to test whether a table
339 * now has no other vmas using it, so can be freed, we don't
340 * bother to round floor or end up - the tests don't need that.
341 */
342
343 addr &= PMD_MASK;
344 if (addr < floor) {
345 addr += PMD_SIZE;
346 if (!addr)
347 return;
348 }
349 if (ceiling) {
350 ceiling &= PMD_MASK;
351 if (!ceiling)
352 return;
353 }
354 if (end - 1 > ceiling - 1)
355 end -= PMD_SIZE;
356 if (addr > end - 1)
357 return;
358 /*
359 * We add page table cache pages with PAGE_SIZE,
360 * (see pte_free_tlb()), flush the tlb if we need
361 */
362 tlb_change_page_size(tlb, PAGE_SIZE);
363 pgd = pgd_offset(tlb->mm, addr);
364 do {
365 next = pgd_addr_end(addr, end);
366 if (pgd_none_or_clear_bad(pgd))
367 continue;
368 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
369 } while (pgd++, addr = next, addr != end);
370 }
371
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)372 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
373 struct vm_area_struct *vma, unsigned long floor,
374 unsigned long ceiling, bool mm_wr_locked)
375 {
376 struct unlink_vma_file_batch vb;
377
378 tlb_free_vmas(tlb);
379
380 do {
381 unsigned long addr = vma->vm_start;
382 struct vm_area_struct *next;
383
384 /*
385 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
386 * be 0. This will underflow and is okay.
387 */
388 next = mas_find(mas, ceiling - 1);
389 if (unlikely(xa_is_zero(next)))
390 next = NULL;
391
392 /*
393 * Hide vma from rmap and truncate_pagecache before freeing
394 * pgtables
395 */
396 if (mm_wr_locked)
397 vma_start_write(vma);
398 unlink_anon_vmas(vma);
399
400 unlink_file_vma_batch_init(&vb);
401 unlink_file_vma_batch_add(&vb, vma);
402
403 /*
404 * Optimization: gather nearby vmas into one call down
405 */
406 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
407 vma = next;
408 next = mas_find(mas, ceiling - 1);
409 if (unlikely(xa_is_zero(next)))
410 next = NULL;
411 if (mm_wr_locked)
412 vma_start_write(vma);
413 unlink_anon_vmas(vma);
414 unlink_file_vma_batch_add(&vb, vma);
415 }
416 unlink_file_vma_batch_final(&vb);
417
418 free_pgd_range(tlb, addr, vma->vm_end,
419 floor, next ? next->vm_start : ceiling);
420 vma = next;
421 } while (vma);
422 }
423
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)424 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
425 {
426 spinlock_t *ptl = pmd_lock(mm, pmd);
427
428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
429 mm_inc_nr_ptes(mm);
430 /*
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
434 *
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_rmb() barriers in page table walking code.
442 */
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444 pmd_populate(mm, pmd, *pte);
445 *pte = NULL;
446 }
447 spin_unlock(ptl);
448 }
449
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)450 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
451 {
452 pgtable_t new = pte_alloc_one(mm);
453 if (!new)
454 return -ENOMEM;
455
456 pmd_install(mm, pmd, &new);
457 if (new)
458 pte_free(mm, new);
459 return 0;
460 }
461
__pte_alloc_kernel(pmd_t * pmd)462 int __pte_alloc_kernel(pmd_t *pmd)
463 {
464 pte_t *new = pte_alloc_one_kernel(&init_mm);
465 if (!new)
466 return -ENOMEM;
467
468 spin_lock(&init_mm.page_table_lock);
469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
470 smp_wmb(); /* See comment in pmd_install() */
471 pmd_populate_kernel(&init_mm, pmd, new);
472 new = NULL;
473 }
474 spin_unlock(&init_mm.page_table_lock);
475 if (new)
476 pte_free_kernel(&init_mm, new);
477 return 0;
478 }
479
init_rss_vec(int * rss)480 static inline void init_rss_vec(int *rss)
481 {
482 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
483 }
484
add_mm_rss_vec(struct mm_struct * mm,int * rss)485 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
486 {
487 int i;
488
489 for (i = 0; i < NR_MM_COUNTERS; i++)
490 if (rss[i])
491 add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495 * This function is called to print an error when a bad pte
496 * is found. For example, we might have a PFN-mapped pte in
497 * a region that doesn't allow it.
498 *
499 * The calling function must still handle the error.
500 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 pte_t pte, struct page *page)
503 {
504 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505 p4d_t *p4d = p4d_offset(pgd, addr);
506 pud_t *pud = pud_offset(p4d, addr);
507 pmd_t *pmd = pmd_offset(pud, addr);
508 struct address_space *mapping;
509 pgoff_t index;
510 static unsigned long resume;
511 static unsigned long nr_shown;
512 static unsigned long nr_unshown;
513
514 /*
515 * Allow a burst of 60 reports, then keep quiet for that minute;
516 * or allow a steady drip of one report per second.
517 */
518 if (nr_shown == 60) {
519 if (time_before(jiffies, resume)) {
520 nr_unshown++;
521 return;
522 }
523 if (nr_unshown) {
524 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 nr_unshown);
526 nr_unshown = 0;
527 }
528 nr_shown = 0;
529 }
530 if (nr_shown++ == 0)
531 resume = jiffies + 60 * HZ;
532
533 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 index = linear_page_index(vma, addr);
535
536 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
537 current->comm,
538 (long long)pte_val(pte), (long long)pmd_val(*pmd));
539 if (page)
540 dump_page(page, "bad pte");
541 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n",
544 vma->vm_file,
545 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL,
548 mapping ? mapping->a_ops->read_folio : NULL);
549 dump_stack();
550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552
553 /*
554 * vm_normal_page -- This function gets the "struct page" associated with a pte.
555 *
556 * "Special" mappings do not wish to be associated with a "struct page" (either
557 * it doesn't exist, or it exists but they don't want to touch it). In this
558 * case, NULL is returned here. "Normal" mappings do have a struct page.
559 *
560 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561 * pte bit, in which case this function is trivial. Secondly, an architecture
562 * may not have a spare pte bit, which requires a more complicated scheme,
563 * described below.
564 *
565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566 * special mapping (even if there are underlying and valid "struct pages").
567 * COWed pages of a VM_PFNMAP are always normal.
568 *
569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572 * mapping will always honor the rule
573 *
574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575 *
576 * And for normal mappings this is false.
577 *
578 * This restricts such mappings to be a linear translation from virtual address
579 * to pfn. To get around this restriction, we allow arbitrary mappings so long
580 * as the vma is not a COW mapping; in that case, we know that all ptes are
581 * special (because none can have been COWed).
582 *
583 *
584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585 *
586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587 * page" backing, however the difference is that _all_ pages with a struct
588 * page (that is, those where pfn_valid is true) are refcounted and considered
589 * normal pages by the VM. The only exception are zeropages, which are
590 * *never* refcounted.
591 *
592 * The disadvantage is that pages are refcounted (which can be slower and
593 * simply not an option for some PFNMAP users). The advantage is that we
594 * don't have to follow the strict linearity rule of PFNMAP mappings in
595 * order to support COWable mappings.
596 *
597 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)598 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
599 pte_t pte)
600 {
601 unsigned long pfn = pte_pfn(pte);
602
603 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
604 if (likely(!pte_special(pte)))
605 goto check_pfn;
606 if (vma->vm_ops && vma->vm_ops->find_special_page)
607 return vma->vm_ops->find_special_page(vma, addr);
608 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
609 return NULL;
610 if (is_zero_pfn(pfn))
611 return NULL;
612
613 print_bad_pte(vma, addr, pte, NULL);
614 return NULL;
615 }
616
617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 if (is_zero_pfn(pfn))
624 return NULL;
625 goto out;
626 } else {
627 unsigned long off;
628 off = (addr - vma->vm_start) >> PAGE_SHIFT;
629 if (pfn == vma->vm_pgoff + off)
630 return NULL;
631 if (!is_cow_mapping(vma->vm_flags))
632 return NULL;
633 }
634 }
635
636 if (is_zero_pfn(pfn))
637 return NULL;
638
639 check_pfn:
640 if (unlikely(pfn > highest_memmap_pfn)) {
641 print_bad_pte(vma, addr, pte, NULL);
642 return NULL;
643 }
644
645 /*
646 * NOTE! We still have PageReserved() pages in the page tables.
647 * eg. VDSO mappings can cause them to exist.
648 */
649 out:
650 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
651 return pfn_to_page(pfn);
652 }
653
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)654 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
655 pte_t pte)
656 {
657 struct page *page = vm_normal_page(vma, addr, pte);
658
659 if (page)
660 return page_folio(page);
661 return NULL;
662 }
663
664 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666 pmd_t pmd)
667 {
668 unsigned long pfn = pmd_pfn(pmd);
669
670 /* Currently it's only used for huge pfnmaps */
671 if (unlikely(pmd_special(pmd)))
672 return NULL;
673
674 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
675 if (vma->vm_flags & VM_MIXEDMAP) {
676 if (!pfn_valid(pfn))
677 return NULL;
678 goto out;
679 } else {
680 unsigned long off;
681 off = (addr - vma->vm_start) >> PAGE_SHIFT;
682 if (pfn == vma->vm_pgoff + off)
683 return NULL;
684 if (!is_cow_mapping(vma->vm_flags))
685 return NULL;
686 }
687 }
688
689 if (is_huge_zero_pfn(pfn))
690 return NULL;
691 if (unlikely(pfn > highest_memmap_pfn))
692 return NULL;
693
694 /*
695 * NOTE! We still have PageReserved() pages in the page tables.
696 * eg. VDSO mappings can cause them to exist.
697 */
698 out:
699 return pfn_to_page(pfn);
700 }
701
vm_normal_folio_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)702 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
703 unsigned long addr, pmd_t pmd)
704 {
705 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
706
707 if (page)
708 return page_folio(page);
709 return NULL;
710 }
711 #endif
712
713 /**
714 * restore_exclusive_pte - Restore a device-exclusive entry
715 * @vma: VMA covering @address
716 * @folio: the mapped folio
717 * @page: the mapped folio page
718 * @address: the virtual address
719 * @ptep: pte pointer into the locked page table mapping the folio page
720 * @orig_pte: pte value at @ptep
721 *
722 * Restore a device-exclusive non-swap entry to an ordinary present pte.
723 *
724 * The folio and the page table must be locked, and MMU notifiers must have
725 * been called to invalidate any (exclusive) device mappings.
726 *
727 * Locking the folio makes sure that anybody who just converted the pte to
728 * a device-exclusive entry can map it into the device to make forward
729 * progress without others converting it back until the folio was unlocked.
730 *
731 * If the folio lock ever becomes an issue, we can stop relying on the folio
732 * lock; it might make some scenarios with heavy thrashing less likely to
733 * make forward progress, but these scenarios might not be valid use cases.
734 *
735 * Note that the folio lock does not protect against all cases of concurrent
736 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers
737 * must use MMU notifiers to sync against any concurrent changes.
738 */
restore_exclusive_pte(struct vm_area_struct * vma,struct folio * folio,struct page * page,unsigned long address,pte_t * ptep,pte_t orig_pte)739 static void restore_exclusive_pte(struct vm_area_struct *vma,
740 struct folio *folio, struct page *page, unsigned long address,
741 pte_t *ptep, pte_t orig_pte)
742 {
743 pte_t pte;
744
745 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
746
747 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
748 if (pte_swp_soft_dirty(orig_pte))
749 pte = pte_mksoft_dirty(pte);
750
751 if (pte_swp_uffd_wp(orig_pte))
752 pte = pte_mkuffd_wp(pte);
753
754 if ((vma->vm_flags & VM_WRITE) &&
755 can_change_pte_writable(vma, address, pte)) {
756 if (folio_test_dirty(folio))
757 pte = pte_mkdirty(pte);
758 pte = pte_mkwrite(pte, vma);
759 }
760 set_pte_at(vma->vm_mm, address, ptep, pte);
761
762 /*
763 * No need to invalidate - it was non-present before. However
764 * secondary CPUs may have mappings that need invalidating.
765 */
766 update_mmu_cache(vma, address, ptep);
767 }
768
769 /*
770 * Tries to restore an exclusive pte if the page lock can be acquired without
771 * sleeping.
772 */
try_restore_exclusive_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t orig_pte)773 static int try_restore_exclusive_pte(struct vm_area_struct *vma,
774 unsigned long addr, pte_t *ptep, pte_t orig_pte)
775 {
776 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte));
777 struct folio *folio = page_folio(page);
778
779 if (folio_trylock(folio)) {
780 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte);
781 folio_unlock(folio);
782 return 0;
783 }
784
785 return -EBUSY;
786 }
787
788 /*
789 * copy one vm_area from one task to the other. Assumes the page tables
790 * already present in the new task to be cleared in the whole range
791 * covered by this vma.
792 */
793
794 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)795 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
796 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
797 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
798 {
799 vm_flags_t vm_flags = dst_vma->vm_flags;
800 pte_t orig_pte = ptep_get(src_pte);
801 pte_t pte = orig_pte;
802 struct folio *folio;
803 struct page *page;
804 swp_entry_t entry = pte_to_swp_entry(orig_pte);
805
806 if (likely(!non_swap_entry(entry))) {
807 if (swap_duplicate(entry) < 0)
808 return -EIO;
809
810 /* make sure dst_mm is on swapoff's mmlist. */
811 if (unlikely(list_empty(&dst_mm->mmlist))) {
812 spin_lock(&mmlist_lock);
813 if (list_empty(&dst_mm->mmlist))
814 list_add(&dst_mm->mmlist,
815 &src_mm->mmlist);
816 spin_unlock(&mmlist_lock);
817 }
818 /* Mark the swap entry as shared. */
819 if (pte_swp_exclusive(orig_pte)) {
820 pte = pte_swp_clear_exclusive(orig_pte);
821 set_pte_at(src_mm, addr, src_pte, pte);
822 }
823 rss[MM_SWAPENTS]++;
824 } else if (is_migration_entry(entry)) {
825 folio = pfn_swap_entry_folio(entry);
826
827 rss[mm_counter(folio)]++;
828
829 if (!is_readable_migration_entry(entry) &&
830 is_cow_mapping(vm_flags)) {
831 /*
832 * COW mappings require pages in both parent and child
833 * to be set to read. A previously exclusive entry is
834 * now shared.
835 */
836 entry = make_readable_migration_entry(
837 swp_offset(entry));
838 pte = swp_entry_to_pte(entry);
839 if (pte_swp_soft_dirty(orig_pte))
840 pte = pte_swp_mksoft_dirty(pte);
841 if (pte_swp_uffd_wp(orig_pte))
842 pte = pte_swp_mkuffd_wp(pte);
843 set_pte_at(src_mm, addr, src_pte, pte);
844 }
845 } else if (is_device_private_entry(entry)) {
846 page = pfn_swap_entry_to_page(entry);
847 folio = page_folio(page);
848
849 /*
850 * Update rss count even for unaddressable pages, as
851 * they should treated just like normal pages in this
852 * respect.
853 *
854 * We will likely want to have some new rss counters
855 * for unaddressable pages, at some point. But for now
856 * keep things as they are.
857 */
858 folio_get(folio);
859 rss[mm_counter(folio)]++;
860 /* Cannot fail as these pages cannot get pinned. */
861 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma);
862
863 /*
864 * We do not preserve soft-dirty information, because so
865 * far, checkpoint/restore is the only feature that
866 * requires that. And checkpoint/restore does not work
867 * when a device driver is involved (you cannot easily
868 * save and restore device driver state).
869 */
870 if (is_writable_device_private_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
872 entry = make_readable_device_private_entry(
873 swp_offset(entry));
874 pte = swp_entry_to_pte(entry);
875 if (pte_swp_uffd_wp(orig_pte))
876 pte = pte_swp_mkuffd_wp(pte);
877 set_pte_at(src_mm, addr, src_pte, pte);
878 }
879 } else if (is_device_exclusive_entry(entry)) {
880 /*
881 * Make device exclusive entries present by restoring the
882 * original entry then copying as for a present pte. Device
883 * exclusive entries currently only support private writable
884 * (ie. COW) mappings.
885 */
886 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
887 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte))
888 return -EBUSY;
889 return -ENOENT;
890 } else if (is_pte_marker_entry(entry)) {
891 pte_marker marker = copy_pte_marker(entry, dst_vma);
892
893 if (marker)
894 set_pte_at(dst_mm, addr, dst_pte,
895 make_pte_marker(marker));
896 return 0;
897 }
898 if (!userfaultfd_wp(dst_vma))
899 pte = pte_swp_clear_uffd_wp(pte);
900 set_pte_at(dst_mm, addr, dst_pte, pte);
901 return 0;
902 }
903
904 /*
905 * Copy a present and normal page.
906 *
907 * NOTE! The usual case is that this isn't required;
908 * instead, the caller can just increase the page refcount
909 * and re-use the pte the traditional way.
910 *
911 * And if we need a pre-allocated page but don't yet have
912 * one, return a negative error to let the preallocation
913 * code know so that it can do so outside the page table
914 * lock.
915 */
916 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)917 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
918 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
919 struct folio **prealloc, struct page *page)
920 {
921 struct folio *new_folio;
922 pte_t pte;
923
924 new_folio = *prealloc;
925 if (!new_folio)
926 return -EAGAIN;
927
928 /*
929 * We have a prealloc page, all good! Take it
930 * over and copy the page & arm it.
931 */
932
933 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
934 return -EHWPOISON;
935
936 *prealloc = NULL;
937 __folio_mark_uptodate(new_folio);
938 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
939 folio_add_lru_vma(new_folio, dst_vma);
940 rss[MM_ANONPAGES]++;
941
942 /* All done, just insert the new page copy in the child */
943 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot);
944 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
945 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
946 /* Uffd-wp needs to be delivered to dest pte as well */
947 pte = pte_mkuffd_wp(pte);
948 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
949 return 0;
950 }
951
__copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int nr)952 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
953 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
954 pte_t pte, unsigned long addr, int nr)
955 {
956 struct mm_struct *src_mm = src_vma->vm_mm;
957
958 /* If it's a COW mapping, write protect it both processes. */
959 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
960 wrprotect_ptes(src_mm, addr, src_pte, nr);
961 pte = pte_wrprotect(pte);
962 }
963
964 /* If it's a shared mapping, mark it clean in the child. */
965 if (src_vma->vm_flags & VM_SHARED)
966 pte = pte_mkclean(pte);
967 pte = pte_mkold(pte);
968
969 if (!userfaultfd_wp(dst_vma))
970 pte = pte_clear_uffd_wp(pte);
971
972 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
973 }
974
975 /*
976 * Copy one present PTE, trying to batch-process subsequent PTEs that map
977 * consecutive pages of the same folio by copying them as well.
978 *
979 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
980 * Otherwise, returns the number of copied PTEs (at least 1).
981 */
982 static inline int
copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int max_nr,int * rss,struct folio ** prealloc)983 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
984 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
985 int max_nr, int *rss, struct folio **prealloc)
986 {
987 fpb_t flags = FPB_MERGE_WRITE;
988 struct page *page;
989 struct folio *folio;
990 int err, nr;
991
992 page = vm_normal_page(src_vma, addr, pte);
993 if (unlikely(!page))
994 goto copy_pte;
995
996 folio = page_folio(page);
997
998 /*
999 * If we likely have to copy, just don't bother with batching. Make
1000 * sure that the common "small folio" case is as fast as possible
1001 * by keeping the batching logic separate.
1002 */
1003 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1004 if (!(src_vma->vm_flags & VM_SHARED))
1005 flags |= FPB_RESPECT_DIRTY;
1006 if (vma_soft_dirty_enabled(src_vma))
1007 flags |= FPB_RESPECT_SOFT_DIRTY;
1008
1009 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags);
1010 folio_ref_add(folio, nr);
1011 if (folio_test_anon(folio)) {
1012 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1013 nr, dst_vma, src_vma))) {
1014 folio_ref_sub(folio, nr);
1015 return -EAGAIN;
1016 }
1017 rss[MM_ANONPAGES] += nr;
1018 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1019 } else {
1020 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma);
1021 rss[mm_counter_file(folio)] += nr;
1022 }
1023 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1024 addr, nr);
1025 return nr;
1026 }
1027
1028 folio_get(folio);
1029 if (folio_test_anon(folio)) {
1030 /*
1031 * If this page may have been pinned by the parent process,
1032 * copy the page immediately for the child so that we'll always
1033 * guarantee the pinned page won't be randomly replaced in the
1034 * future.
1035 */
1036 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) {
1037 /* Page may be pinned, we have to copy. */
1038 folio_put(folio);
1039 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1040 addr, rss, prealloc, page);
1041 return err ? err : 1;
1042 }
1043 rss[MM_ANONPAGES]++;
1044 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1045 } else {
1046 folio_dup_file_rmap_pte(folio, page, dst_vma);
1047 rss[mm_counter_file(folio)]++;
1048 }
1049
1050 copy_pte:
1051 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1052 return 1;
1053 }
1054
folio_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr,bool need_zero)1055 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1056 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1057 {
1058 struct folio *new_folio;
1059
1060 if (need_zero)
1061 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1062 else
1063 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1064
1065 if (!new_folio)
1066 return NULL;
1067
1068 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1069 folio_put(new_folio);
1070 return NULL;
1071 }
1072 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1073
1074 return new_folio;
1075 }
1076
1077 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1078 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1080 unsigned long end)
1081 {
1082 struct mm_struct *dst_mm = dst_vma->vm_mm;
1083 struct mm_struct *src_mm = src_vma->vm_mm;
1084 pte_t *orig_src_pte, *orig_dst_pte;
1085 pte_t *src_pte, *dst_pte;
1086 pmd_t dummy_pmdval;
1087 pte_t ptent;
1088 spinlock_t *src_ptl, *dst_ptl;
1089 int progress, max_nr, ret = 0;
1090 int rss[NR_MM_COUNTERS];
1091 swp_entry_t entry = (swp_entry_t){0};
1092 struct folio *prealloc = NULL;
1093 int nr;
1094
1095 again:
1096 progress = 0;
1097 init_rss_vec(rss);
1098
1099 /*
1100 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1101 * error handling here, assume that exclusive mmap_lock on dst and src
1102 * protects anon from unexpected THP transitions; with shmem and file
1103 * protected by mmap_lock-less collapse skipping areas with anon_vma
1104 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1105 * can remove such assumptions later, but this is good enough for now.
1106 */
1107 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1108 if (!dst_pte) {
1109 ret = -ENOMEM;
1110 goto out;
1111 }
1112
1113 /*
1114 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1115 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1116 * the PTE page is stable, and there is no need to get pmdval and do
1117 * pmd_same() check.
1118 */
1119 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1120 &src_ptl);
1121 if (!src_pte) {
1122 pte_unmap_unlock(dst_pte, dst_ptl);
1123 /* ret == 0 */
1124 goto out;
1125 }
1126 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1127 orig_src_pte = src_pte;
1128 orig_dst_pte = dst_pte;
1129 arch_enter_lazy_mmu_mode();
1130
1131 do {
1132 nr = 1;
1133
1134 /*
1135 * We are holding two locks at this point - either of them
1136 * could generate latencies in another task on another CPU.
1137 */
1138 if (progress >= 32) {
1139 progress = 0;
1140 if (need_resched() ||
1141 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1142 break;
1143 }
1144 ptent = ptep_get(src_pte);
1145 if (pte_none(ptent)) {
1146 progress++;
1147 continue;
1148 }
1149 if (unlikely(!pte_present(ptent))) {
1150 ret = copy_nonpresent_pte(dst_mm, src_mm,
1151 dst_pte, src_pte,
1152 dst_vma, src_vma,
1153 addr, rss);
1154 if (ret == -EIO) {
1155 entry = pte_to_swp_entry(ptep_get(src_pte));
1156 break;
1157 } else if (ret == -EBUSY) {
1158 break;
1159 } else if (!ret) {
1160 progress += 8;
1161 continue;
1162 }
1163 ptent = ptep_get(src_pte);
1164 VM_WARN_ON_ONCE(!pte_present(ptent));
1165
1166 /*
1167 * Device exclusive entry restored, continue by copying
1168 * the now present pte.
1169 */
1170 WARN_ON_ONCE(ret != -ENOENT);
1171 }
1172 /* copy_present_ptes() will clear `*prealloc' if consumed */
1173 max_nr = (end - addr) / PAGE_SIZE;
1174 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1175 ptent, addr, max_nr, rss, &prealloc);
1176 /*
1177 * If we need a pre-allocated page for this pte, drop the
1178 * locks, allocate, and try again.
1179 * If copy failed due to hwpoison in source page, break out.
1180 */
1181 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1182 break;
1183 if (unlikely(prealloc)) {
1184 /*
1185 * pre-alloc page cannot be reused by next time so as
1186 * to strictly follow mempolicy (e.g., alloc_page_vma()
1187 * will allocate page according to address). This
1188 * could only happen if one pinned pte changed.
1189 */
1190 folio_put(prealloc);
1191 prealloc = NULL;
1192 }
1193 nr = ret;
1194 progress += 8 * nr;
1195 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1196 addr != end);
1197
1198 arch_leave_lazy_mmu_mode();
1199 pte_unmap_unlock(orig_src_pte, src_ptl);
1200 add_mm_rss_vec(dst_mm, rss);
1201 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1202 cond_resched();
1203
1204 if (ret == -EIO) {
1205 VM_WARN_ON_ONCE(!entry.val);
1206 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1207 ret = -ENOMEM;
1208 goto out;
1209 }
1210 entry.val = 0;
1211 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1212 goto out;
1213 } else if (ret == -EAGAIN) {
1214 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1215 if (!prealloc)
1216 return -ENOMEM;
1217 } else if (ret < 0) {
1218 VM_WARN_ON_ONCE(1);
1219 }
1220
1221 /* We've captured and resolved the error. Reset, try again. */
1222 ret = 0;
1223
1224 if (addr != end)
1225 goto again;
1226 out:
1227 if (unlikely(prealloc))
1228 folio_put(prealloc);
1229 return ret;
1230 }
1231
1232 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1233 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1234 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1235 unsigned long end)
1236 {
1237 struct mm_struct *dst_mm = dst_vma->vm_mm;
1238 struct mm_struct *src_mm = src_vma->vm_mm;
1239 pmd_t *src_pmd, *dst_pmd;
1240 unsigned long next;
1241
1242 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1243 if (!dst_pmd)
1244 return -ENOMEM;
1245 src_pmd = pmd_offset(src_pud, addr);
1246 do {
1247 next = pmd_addr_end(addr, end);
1248 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)) {
1249 int err;
1250 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1251 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1252 addr, dst_vma, src_vma);
1253 if (err == -ENOMEM)
1254 return -ENOMEM;
1255 if (!err)
1256 continue;
1257 /* fall through */
1258 }
1259 if (pmd_none_or_clear_bad(src_pmd))
1260 continue;
1261 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1262 addr, next))
1263 return -ENOMEM;
1264 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1265 return 0;
1266 }
1267
1268 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1270 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1271 unsigned long end)
1272 {
1273 struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 struct mm_struct *src_mm = src_vma->vm_mm;
1275 pud_t *src_pud, *dst_pud;
1276 unsigned long next;
1277
1278 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1279 if (!dst_pud)
1280 return -ENOMEM;
1281 src_pud = pud_offset(src_p4d, addr);
1282 do {
1283 next = pud_addr_end(addr, end);
1284 if (pud_trans_huge(*src_pud)) {
1285 int err;
1286
1287 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1288 err = copy_huge_pud(dst_mm, src_mm,
1289 dst_pud, src_pud, addr, src_vma);
1290 if (err == -ENOMEM)
1291 return -ENOMEM;
1292 if (!err)
1293 continue;
1294 /* fall through */
1295 }
1296 if (pud_none_or_clear_bad(src_pud))
1297 continue;
1298 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1299 addr, next))
1300 return -ENOMEM;
1301 } while (dst_pud++, src_pud++, addr = next, addr != end);
1302 return 0;
1303 }
1304
1305 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1307 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1308 unsigned long end)
1309 {
1310 struct mm_struct *dst_mm = dst_vma->vm_mm;
1311 p4d_t *src_p4d, *dst_p4d;
1312 unsigned long next;
1313
1314 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1315 if (!dst_p4d)
1316 return -ENOMEM;
1317 src_p4d = p4d_offset(src_pgd, addr);
1318 do {
1319 next = p4d_addr_end(addr, end);
1320 if (p4d_none_or_clear_bad(src_p4d))
1321 continue;
1322 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1323 addr, next))
1324 return -ENOMEM;
1325 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1326 return 0;
1327 }
1328
1329 /*
1330 * Return true if the vma needs to copy the pgtable during this fork(). Return
1331 * false when we can speed up fork() by allowing lazy page faults later until
1332 * when the child accesses the memory range.
1333 */
1334 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1336 {
1337 /*
1338 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1339 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1340 * contains uffd-wp protection information, that's something we can't
1341 * retrieve from page cache, and skip copying will lose those info.
1342 */
1343 if (userfaultfd_wp(dst_vma))
1344 return true;
1345
1346 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1347 return true;
1348
1349 if (src_vma->anon_vma)
1350 return true;
1351
1352 /*
1353 * Don't copy ptes where a page fault will fill them correctly. Fork
1354 * becomes much lighter when there are big shared or private readonly
1355 * mappings. The tradeoff is that copy_page_range is more efficient
1356 * than faulting.
1357 */
1358 return false;
1359 }
1360
1361 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1363 {
1364 pgd_t *src_pgd, *dst_pgd;
1365 unsigned long addr = src_vma->vm_start;
1366 unsigned long end = src_vma->vm_end;
1367 struct mm_struct *dst_mm = dst_vma->vm_mm;
1368 struct mm_struct *src_mm = src_vma->vm_mm;
1369 struct mmu_notifier_range range;
1370 unsigned long next;
1371 bool is_cow;
1372 int ret;
1373
1374 if (!vma_needs_copy(dst_vma, src_vma))
1375 return 0;
1376
1377 if (is_vm_hugetlb_page(src_vma))
1378 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1379
1380 /*
1381 * We need to invalidate the secondary MMU mappings only when
1382 * there could be a permission downgrade on the ptes of the
1383 * parent mm. And a permission downgrade will only happen if
1384 * is_cow_mapping() returns true.
1385 */
1386 is_cow = is_cow_mapping(src_vma->vm_flags);
1387
1388 if (is_cow) {
1389 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1390 0, src_mm, addr, end);
1391 mmu_notifier_invalidate_range_start(&range);
1392 /*
1393 * Disabling preemption is not needed for the write side, as
1394 * the read side doesn't spin, but goes to the mmap_lock.
1395 *
1396 * Use the raw variant of the seqcount_t write API to avoid
1397 * lockdep complaining about preemptibility.
1398 */
1399 vma_assert_write_locked(src_vma);
1400 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1401 }
1402
1403 ret = 0;
1404 dst_pgd = pgd_offset(dst_mm, addr);
1405 src_pgd = pgd_offset(src_mm, addr);
1406 do {
1407 next = pgd_addr_end(addr, end);
1408 if (pgd_none_or_clear_bad(src_pgd))
1409 continue;
1410 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1411 addr, next))) {
1412 ret = -ENOMEM;
1413 break;
1414 }
1415 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1416
1417 if (is_cow) {
1418 raw_write_seqcount_end(&src_mm->write_protect_seq);
1419 mmu_notifier_invalidate_range_end(&range);
1420 }
1421 return ret;
1422 }
1423
1424 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1425 static inline bool should_zap_cows(struct zap_details *details)
1426 {
1427 /* By default, zap all pages */
1428 if (!details || details->reclaim_pt)
1429 return true;
1430
1431 /* Or, we zap COWed pages only if the caller wants to */
1432 return details->even_cows;
1433 }
1434
1435 /* Decides whether we should zap this folio with the folio pointer specified */
should_zap_folio(struct zap_details * details,struct folio * folio)1436 static inline bool should_zap_folio(struct zap_details *details,
1437 struct folio *folio)
1438 {
1439 /* If we can make a decision without *folio.. */
1440 if (should_zap_cows(details))
1441 return true;
1442
1443 /* Otherwise we should only zap non-anon folios */
1444 return !folio_test_anon(folio);
1445 }
1446
zap_drop_markers(struct zap_details * details)1447 static inline bool zap_drop_markers(struct zap_details *details)
1448 {
1449 if (!details)
1450 return false;
1451
1452 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1453 }
1454
1455 /*
1456 * This function makes sure that we'll replace the none pte with an uffd-wp
1457 * swap special pte marker when necessary. Must be with the pgtable lock held.
1458 *
1459 * Returns true if uffd-wp ptes was installed, false otherwise.
1460 */
1461 static inline bool
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,int nr,struct zap_details * details,pte_t pteval)1462 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1463 unsigned long addr, pte_t *pte, int nr,
1464 struct zap_details *details, pte_t pteval)
1465 {
1466 bool was_installed = false;
1467
1468 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1469 /* Zap on anonymous always means dropping everything */
1470 if (vma_is_anonymous(vma))
1471 return false;
1472
1473 if (zap_drop_markers(details))
1474 return false;
1475
1476 for (;;) {
1477 /* the PFN in the PTE is irrelevant. */
1478 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1479 was_installed = true;
1480 if (--nr == 0)
1481 break;
1482 pte++;
1483 addr += PAGE_SIZE;
1484 }
1485 #endif
1486 return was_installed;
1487 }
1488
zap_present_folio_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,struct folio * folio,struct page * page,pte_t * pte,pte_t ptent,unsigned int nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1489 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1490 struct vm_area_struct *vma, struct folio *folio,
1491 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1492 unsigned long addr, struct zap_details *details, int *rss,
1493 bool *force_flush, bool *force_break, bool *any_skipped)
1494 {
1495 struct mm_struct *mm = tlb->mm;
1496 bool delay_rmap = false;
1497
1498 if (!folio_test_anon(folio)) {
1499 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1500 if (pte_dirty(ptent)) {
1501 folio_mark_dirty(folio);
1502 if (tlb_delay_rmap(tlb)) {
1503 delay_rmap = true;
1504 *force_flush = true;
1505 }
1506 }
1507 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1508 folio_mark_accessed(folio);
1509 rss[mm_counter(folio)] -= nr;
1510 } else {
1511 /* We don't need up-to-date accessed/dirty bits. */
1512 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1513 rss[MM_ANONPAGES] -= nr;
1514 }
1515 /* Checking a single PTE in a batch is sufficient. */
1516 arch_check_zapped_pte(vma, ptent);
1517 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1518 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1519 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1520 nr, details, ptent);
1521
1522 if (!delay_rmap) {
1523 folio_remove_rmap_ptes(folio, page, nr, vma);
1524
1525 if (unlikely(folio_mapcount(folio) < 0))
1526 print_bad_pte(vma, addr, ptent, page);
1527 }
1528 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1529 *force_flush = true;
1530 *force_break = true;
1531 }
1532 }
1533
1534 /*
1535 * Zap or skip at least one present PTE, trying to batch-process subsequent
1536 * PTEs that map consecutive pages of the same folio.
1537 *
1538 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1539 */
zap_present_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1540 static inline int zap_present_ptes(struct mmu_gather *tlb,
1541 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1542 unsigned int max_nr, unsigned long addr,
1543 struct zap_details *details, int *rss, bool *force_flush,
1544 bool *force_break, bool *any_skipped)
1545 {
1546 struct mm_struct *mm = tlb->mm;
1547 struct folio *folio;
1548 struct page *page;
1549 int nr;
1550
1551 page = vm_normal_page(vma, addr, ptent);
1552 if (!page) {
1553 /* We don't need up-to-date accessed/dirty bits. */
1554 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1555 arch_check_zapped_pte(vma, ptent);
1556 tlb_remove_tlb_entry(tlb, pte, addr);
1557 if (userfaultfd_pte_wp(vma, ptent))
1558 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1559 pte, 1, details, ptent);
1560 ksm_might_unmap_zero_page(mm, ptent);
1561 return 1;
1562 }
1563
1564 folio = page_folio(page);
1565 if (unlikely(!should_zap_folio(details, folio))) {
1566 *any_skipped = true;
1567 return 1;
1568 }
1569
1570 /*
1571 * Make sure that the common "small folio" case is as fast as possible
1572 * by keeping the batching logic separate.
1573 */
1574 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1575 nr = folio_pte_batch(folio, pte, ptent, max_nr);
1576 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1577 addr, details, rss, force_flush,
1578 force_break, any_skipped);
1579 return nr;
1580 }
1581 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1582 details, rss, force_flush, force_break, any_skipped);
1583 return 1;
1584 }
1585
zap_nonpresent_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * any_skipped)1586 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1587 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1588 unsigned int max_nr, unsigned long addr,
1589 struct zap_details *details, int *rss, bool *any_skipped)
1590 {
1591 swp_entry_t entry;
1592 int nr = 1;
1593
1594 *any_skipped = true;
1595 entry = pte_to_swp_entry(ptent);
1596 if (is_device_private_entry(entry) ||
1597 is_device_exclusive_entry(entry)) {
1598 struct page *page = pfn_swap_entry_to_page(entry);
1599 struct folio *folio = page_folio(page);
1600
1601 if (unlikely(!should_zap_folio(details, folio)))
1602 return 1;
1603 /*
1604 * Both device private/exclusive mappings should only
1605 * work with anonymous page so far, so we don't need to
1606 * consider uffd-wp bit when zap. For more information,
1607 * see zap_install_uffd_wp_if_needed().
1608 */
1609 WARN_ON_ONCE(!vma_is_anonymous(vma));
1610 rss[mm_counter(folio)]--;
1611 folio_remove_rmap_pte(folio, page, vma);
1612 folio_put(folio);
1613 } else if (!non_swap_entry(entry)) {
1614 /* Genuine swap entries, hence a private anon pages */
1615 if (!should_zap_cows(details))
1616 return 1;
1617
1618 nr = swap_pte_batch(pte, max_nr, ptent);
1619 rss[MM_SWAPENTS] -= nr;
1620 free_swap_and_cache_nr(entry, nr);
1621 } else if (is_migration_entry(entry)) {
1622 struct folio *folio = pfn_swap_entry_folio(entry);
1623
1624 if (!should_zap_folio(details, folio))
1625 return 1;
1626 rss[mm_counter(folio)]--;
1627 } else if (pte_marker_entry_uffd_wp(entry)) {
1628 /*
1629 * For anon: always drop the marker; for file: only
1630 * drop the marker if explicitly requested.
1631 */
1632 if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1633 return 1;
1634 } else if (is_guard_swp_entry(entry)) {
1635 /*
1636 * Ordinary zapping should not remove guard PTE
1637 * markers. Only do so if we should remove PTE markers
1638 * in general.
1639 */
1640 if (!zap_drop_markers(details))
1641 return 1;
1642 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
1643 if (!should_zap_cows(details))
1644 return 1;
1645 } else {
1646 /* We should have covered all the swap entry types */
1647 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1648 WARN_ON_ONCE(1);
1649 }
1650 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1651 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1652
1653 return nr;
1654 }
1655
do_zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,unsigned long addr,unsigned long end,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1656 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1657 struct vm_area_struct *vma, pte_t *pte,
1658 unsigned long addr, unsigned long end,
1659 struct zap_details *details, int *rss,
1660 bool *force_flush, bool *force_break,
1661 bool *any_skipped)
1662 {
1663 pte_t ptent = ptep_get(pte);
1664 int max_nr = (end - addr) / PAGE_SIZE;
1665 int nr = 0;
1666
1667 /* Skip all consecutive none ptes */
1668 if (pte_none(ptent)) {
1669 for (nr = 1; nr < max_nr; nr++) {
1670 ptent = ptep_get(pte + nr);
1671 if (!pte_none(ptent))
1672 break;
1673 }
1674 max_nr -= nr;
1675 if (!max_nr)
1676 return nr;
1677 pte += nr;
1678 addr += nr * PAGE_SIZE;
1679 }
1680
1681 if (pte_present(ptent))
1682 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1683 details, rss, force_flush, force_break,
1684 any_skipped);
1685 else
1686 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1687 details, rss, any_skipped);
1688
1689 return nr;
1690 }
1691
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1692 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1693 struct vm_area_struct *vma, pmd_t *pmd,
1694 unsigned long addr, unsigned long end,
1695 struct zap_details *details)
1696 {
1697 bool force_flush = false, force_break = false;
1698 struct mm_struct *mm = tlb->mm;
1699 int rss[NR_MM_COUNTERS];
1700 spinlock_t *ptl;
1701 pte_t *start_pte;
1702 pte_t *pte;
1703 pmd_t pmdval;
1704 unsigned long start = addr;
1705 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1706 bool direct_reclaim = true;
1707 int nr;
1708
1709 retry:
1710 tlb_change_page_size(tlb, PAGE_SIZE);
1711 init_rss_vec(rss);
1712 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1713 if (!pte)
1714 return addr;
1715
1716 flush_tlb_batched_pending(mm);
1717 arch_enter_lazy_mmu_mode();
1718 do {
1719 bool any_skipped = false;
1720
1721 if (need_resched()) {
1722 direct_reclaim = false;
1723 break;
1724 }
1725
1726 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1727 &force_flush, &force_break, &any_skipped);
1728 if (any_skipped)
1729 can_reclaim_pt = false;
1730 if (unlikely(force_break)) {
1731 addr += nr * PAGE_SIZE;
1732 direct_reclaim = false;
1733 break;
1734 }
1735 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1736
1737 /*
1738 * Fast path: try to hold the pmd lock and unmap the PTE page.
1739 *
1740 * If the pte lock was released midway (retry case), or if the attempt
1741 * to hold the pmd lock failed, then we need to recheck all pte entries
1742 * to ensure they are still none, thereby preventing the pte entries
1743 * from being repopulated by another thread.
1744 */
1745 if (can_reclaim_pt && direct_reclaim && addr == end)
1746 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1747
1748 add_mm_rss_vec(mm, rss);
1749 arch_leave_lazy_mmu_mode();
1750
1751 /* Do the actual TLB flush before dropping ptl */
1752 if (force_flush) {
1753 tlb_flush_mmu_tlbonly(tlb);
1754 tlb_flush_rmaps(tlb, vma);
1755 }
1756 pte_unmap_unlock(start_pte, ptl);
1757
1758 /*
1759 * If we forced a TLB flush (either due to running out of
1760 * batch buffers or because we needed to flush dirty TLB
1761 * entries before releasing the ptl), free the batched
1762 * memory too. Come back again if we didn't do everything.
1763 */
1764 if (force_flush)
1765 tlb_flush_mmu(tlb);
1766
1767 if (addr != end) {
1768 cond_resched();
1769 force_flush = false;
1770 force_break = false;
1771 goto retry;
1772 }
1773
1774 if (can_reclaim_pt) {
1775 if (direct_reclaim)
1776 free_pte(mm, start, tlb, pmdval);
1777 else
1778 try_to_free_pte(mm, pmd, start, tlb);
1779 }
1780
1781 return addr;
1782 }
1783
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1784 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1785 struct vm_area_struct *vma, pud_t *pud,
1786 unsigned long addr, unsigned long end,
1787 struct zap_details *details)
1788 {
1789 pmd_t *pmd;
1790 unsigned long next;
1791
1792 pmd = pmd_offset(pud, addr);
1793 do {
1794 next = pmd_addr_end(addr, end);
1795 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)) {
1796 if (next - addr != HPAGE_PMD_SIZE)
1797 __split_huge_pmd(vma, pmd, addr, false);
1798 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1799 addr = next;
1800 continue;
1801 }
1802 /* fall through */
1803 } else if (details && details->single_folio &&
1804 folio_test_pmd_mappable(details->single_folio) &&
1805 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1806 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1807 /*
1808 * Take and drop THP pmd lock so that we cannot return
1809 * prematurely, while zap_huge_pmd() has cleared *pmd,
1810 * but not yet decremented compound_mapcount().
1811 */
1812 spin_unlock(ptl);
1813 }
1814 if (pmd_none(*pmd)) {
1815 addr = next;
1816 continue;
1817 }
1818 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1819 if (addr != next)
1820 pmd--;
1821 } while (pmd++, cond_resched(), addr != end);
1822
1823 return addr;
1824 }
1825
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1826 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1827 struct vm_area_struct *vma, p4d_t *p4d,
1828 unsigned long addr, unsigned long end,
1829 struct zap_details *details)
1830 {
1831 pud_t *pud;
1832 unsigned long next;
1833
1834 pud = pud_offset(p4d, addr);
1835 do {
1836 next = pud_addr_end(addr, end);
1837 if (pud_trans_huge(*pud)) {
1838 if (next - addr != HPAGE_PUD_SIZE) {
1839 mmap_assert_locked(tlb->mm);
1840 split_huge_pud(vma, pud, addr);
1841 } else if (zap_huge_pud(tlb, vma, pud, addr))
1842 goto next;
1843 /* fall through */
1844 }
1845 if (pud_none_or_clear_bad(pud))
1846 continue;
1847 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1848 next:
1849 cond_resched();
1850 } while (pud++, addr = next, addr != end);
1851
1852 return addr;
1853 }
1854
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1855 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1856 struct vm_area_struct *vma, pgd_t *pgd,
1857 unsigned long addr, unsigned long end,
1858 struct zap_details *details)
1859 {
1860 p4d_t *p4d;
1861 unsigned long next;
1862
1863 p4d = p4d_offset(pgd, addr);
1864 do {
1865 next = p4d_addr_end(addr, end);
1866 if (p4d_none_or_clear_bad(p4d))
1867 continue;
1868 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1869 } while (p4d++, addr = next, addr != end);
1870
1871 return addr;
1872 }
1873
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1874 void unmap_page_range(struct mmu_gather *tlb,
1875 struct vm_area_struct *vma,
1876 unsigned long addr, unsigned long end,
1877 struct zap_details *details)
1878 {
1879 pgd_t *pgd;
1880 unsigned long next;
1881
1882 BUG_ON(addr >= end);
1883 tlb_start_vma(tlb, vma);
1884 pgd = pgd_offset(vma->vm_mm, addr);
1885 do {
1886 next = pgd_addr_end(addr, end);
1887 if (pgd_none_or_clear_bad(pgd))
1888 continue;
1889 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1890 } while (pgd++, addr = next, addr != end);
1891 tlb_end_vma(tlb, vma);
1892 }
1893
1894
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1895 static void unmap_single_vma(struct mmu_gather *tlb,
1896 struct vm_area_struct *vma, unsigned long start_addr,
1897 unsigned long end_addr,
1898 struct zap_details *details, bool mm_wr_locked)
1899 {
1900 unsigned long start = max(vma->vm_start, start_addr);
1901 unsigned long end;
1902
1903 if (start >= vma->vm_end)
1904 return;
1905 end = min(vma->vm_end, end_addr);
1906 if (end <= vma->vm_start)
1907 return;
1908
1909 if (vma->vm_file)
1910 uprobe_munmap(vma, start, end);
1911
1912 if (start != end) {
1913 if (unlikely(is_vm_hugetlb_page(vma))) {
1914 /*
1915 * It is undesirable to test vma->vm_file as it
1916 * should be non-null for valid hugetlb area.
1917 * However, vm_file will be NULL in the error
1918 * cleanup path of mmap_region. When
1919 * hugetlbfs ->mmap method fails,
1920 * mmap_region() nullifies vma->vm_file
1921 * before calling this function to clean up.
1922 * Since no pte has actually been setup, it is
1923 * safe to do nothing in this case.
1924 */
1925 if (vma->vm_file) {
1926 zap_flags_t zap_flags = details ?
1927 details->zap_flags : 0;
1928 __unmap_hugepage_range(tlb, vma, start, end,
1929 NULL, zap_flags);
1930 }
1931 } else
1932 unmap_page_range(tlb, vma, start, end, details);
1933 }
1934 }
1935
1936 /**
1937 * unmap_vmas - unmap a range of memory covered by a list of vma's
1938 * @tlb: address of the caller's struct mmu_gather
1939 * @mas: the maple state
1940 * @vma: the starting vma
1941 * @start_addr: virtual address at which to start unmapping
1942 * @end_addr: virtual address at which to end unmapping
1943 * @tree_end: The maximum index to check
1944 * @mm_wr_locked: lock flag
1945 *
1946 * Unmap all pages in the vma list.
1947 *
1948 * Only addresses between `start' and `end' will be unmapped.
1949 *
1950 * The VMA list must be sorted in ascending virtual address order.
1951 *
1952 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1953 * range after unmap_vmas() returns. So the only responsibility here is to
1954 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1955 * drops the lock and schedules.
1956 */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1957 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1958 struct vm_area_struct *vma, unsigned long start_addr,
1959 unsigned long end_addr, unsigned long tree_end,
1960 bool mm_wr_locked)
1961 {
1962 struct mmu_notifier_range range;
1963 struct zap_details details = {
1964 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1965 /* Careful - we need to zap private pages too! */
1966 .even_cows = true,
1967 };
1968
1969 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1970 start_addr, end_addr);
1971 mmu_notifier_invalidate_range_start(&range);
1972 do {
1973 unsigned long start = start_addr;
1974 unsigned long end = end_addr;
1975 hugetlb_zap_begin(vma, &start, &end);
1976 unmap_single_vma(tlb, vma, start, end, &details,
1977 mm_wr_locked);
1978 hugetlb_zap_end(vma, &details);
1979 vma = mas_find(mas, tree_end - 1);
1980 } while (vma && likely(!xa_is_zero(vma)));
1981 mmu_notifier_invalidate_range_end(&range);
1982 }
1983
1984 /**
1985 * zap_page_range_single_batched - remove user pages in a given range
1986 * @tlb: pointer to the caller's struct mmu_gather
1987 * @vma: vm_area_struct holding the applicable pages
1988 * @address: starting address of pages to remove
1989 * @size: number of bytes to remove
1990 * @details: details of shared cache invalidation
1991 *
1992 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for
1993 * hugetlb, @tlb is flushed and re-initialized by this function.
1994 */
zap_page_range_single_batched(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1995 void zap_page_range_single_batched(struct mmu_gather *tlb,
1996 struct vm_area_struct *vma, unsigned long address,
1997 unsigned long size, struct zap_details *details)
1998 {
1999 const unsigned long end = address + size;
2000 struct mmu_notifier_range range;
2001
2002 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm);
2003
2004 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2005 address, end);
2006 hugetlb_zap_begin(vma, &range.start, &range.end);
2007 update_hiwater_rss(vma->vm_mm);
2008 mmu_notifier_invalidate_range_start(&range);
2009 /*
2010 * unmap 'address-end' not 'range.start-range.end' as range
2011 * could have been expanded for hugetlb pmd sharing.
2012 */
2013 unmap_single_vma(tlb, vma, address, end, details, false);
2014 mmu_notifier_invalidate_range_end(&range);
2015 if (is_vm_hugetlb_page(vma)) {
2016 /*
2017 * flush tlb and free resources before hugetlb_zap_end(), to
2018 * avoid concurrent page faults' allocation failure.
2019 */
2020 tlb_finish_mmu(tlb);
2021 hugetlb_zap_end(vma, details);
2022 tlb_gather_mmu(tlb, vma->vm_mm);
2023 }
2024 }
2025
2026 /**
2027 * zap_page_range_single - remove user pages in a given range
2028 * @vma: vm_area_struct holding the applicable pages
2029 * @address: starting address of pages to zap
2030 * @size: number of bytes to zap
2031 * @details: details of shared cache invalidation
2032 *
2033 * The range must fit into one VMA.
2034 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2035 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2036 unsigned long size, struct zap_details *details)
2037 {
2038 struct mmu_gather tlb;
2039
2040 tlb_gather_mmu(&tlb, vma->vm_mm);
2041 zap_page_range_single_batched(&tlb, vma, address, size, details);
2042 tlb_finish_mmu(&tlb);
2043 }
2044
2045 /**
2046 * zap_vma_ptes - remove ptes mapping the vma
2047 * @vma: vm_area_struct holding ptes to be zapped
2048 * @address: starting address of pages to zap
2049 * @size: number of bytes to zap
2050 *
2051 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2052 *
2053 * The entire address range must be fully contained within the vma.
2054 *
2055 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)2056 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2057 unsigned long size)
2058 {
2059 if (!range_in_vma(vma, address, address + size) ||
2060 !(vma->vm_flags & VM_PFNMAP))
2061 return;
2062
2063 zap_page_range_single(vma, address, size, NULL);
2064 }
2065 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2066
walk_to_pmd(struct mm_struct * mm,unsigned long addr)2067 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2068 {
2069 pgd_t *pgd;
2070 p4d_t *p4d;
2071 pud_t *pud;
2072 pmd_t *pmd;
2073
2074 pgd = pgd_offset(mm, addr);
2075 p4d = p4d_alloc(mm, pgd, addr);
2076 if (!p4d)
2077 return NULL;
2078 pud = pud_alloc(mm, p4d, addr);
2079 if (!pud)
2080 return NULL;
2081 pmd = pmd_alloc(mm, pud, addr);
2082 if (!pmd)
2083 return NULL;
2084
2085 VM_BUG_ON(pmd_trans_huge(*pmd));
2086 return pmd;
2087 }
2088
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2089 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2090 spinlock_t **ptl)
2091 {
2092 pmd_t *pmd = walk_to_pmd(mm, addr);
2093
2094 if (!pmd)
2095 return NULL;
2096 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2097 }
2098
vm_mixed_zeropage_allowed(struct vm_area_struct * vma)2099 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2100 {
2101 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2102 /*
2103 * Whoever wants to forbid the zeropage after some zeropages
2104 * might already have been mapped has to scan the page tables and
2105 * bail out on any zeropages. Zeropages in COW mappings can
2106 * be unshared using FAULT_FLAG_UNSHARE faults.
2107 */
2108 if (mm_forbids_zeropage(vma->vm_mm))
2109 return false;
2110 /* zeropages in COW mappings are common and unproblematic. */
2111 if (is_cow_mapping(vma->vm_flags))
2112 return true;
2113 /* Mappings that do not allow for writable PTEs are unproblematic. */
2114 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2115 return true;
2116 /*
2117 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2118 * find the shared zeropage and longterm-pin it, which would
2119 * be problematic as soon as the zeropage gets replaced by a different
2120 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2121 * now differ to what GUP looked up. FSDAX is incompatible to
2122 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2123 * check_vma_flags).
2124 */
2125 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2126 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2127 }
2128
validate_page_before_insert(struct vm_area_struct * vma,struct page * page)2129 static int validate_page_before_insert(struct vm_area_struct *vma,
2130 struct page *page)
2131 {
2132 struct folio *folio = page_folio(page);
2133
2134 if (!folio_ref_count(folio))
2135 return -EINVAL;
2136 if (unlikely(is_zero_folio(folio))) {
2137 if (!vm_mixed_zeropage_allowed(vma))
2138 return -EINVAL;
2139 return 0;
2140 }
2141 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2142 page_has_type(page))
2143 return -EINVAL;
2144 flush_dcache_folio(folio);
2145 return 0;
2146 }
2147
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2148 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2149 unsigned long addr, struct page *page,
2150 pgprot_t prot, bool mkwrite)
2151 {
2152 struct folio *folio = page_folio(page);
2153 pte_t pteval = ptep_get(pte);
2154
2155 if (!pte_none(pteval)) {
2156 if (!mkwrite)
2157 return -EBUSY;
2158
2159 /* see insert_pfn(). */
2160 if (pte_pfn(pteval) != page_to_pfn(page)) {
2161 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval)));
2162 return -EFAULT;
2163 }
2164 pteval = maybe_mkwrite(pteval, vma);
2165 pteval = pte_mkyoung(pteval);
2166 if (ptep_set_access_flags(vma, addr, pte, pteval, 1))
2167 update_mmu_cache(vma, addr, pte);
2168 return 0;
2169 }
2170
2171 /* Ok, finally just insert the thing.. */
2172 pteval = mk_pte(page, prot);
2173 if (unlikely(is_zero_folio(folio))) {
2174 pteval = pte_mkspecial(pteval);
2175 } else {
2176 folio_get(folio);
2177 pteval = mk_pte(page, prot);
2178 if (mkwrite) {
2179 pteval = pte_mkyoung(pteval);
2180 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma);
2181 }
2182 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2183 folio_add_file_rmap_pte(folio, page, vma);
2184 }
2185 set_pte_at(vma->vm_mm, addr, pte, pteval);
2186 return 0;
2187 }
2188
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2189 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2190 struct page *page, pgprot_t prot, bool mkwrite)
2191 {
2192 int retval;
2193 pte_t *pte;
2194 spinlock_t *ptl;
2195
2196 retval = validate_page_before_insert(vma, page);
2197 if (retval)
2198 goto out;
2199 retval = -ENOMEM;
2200 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2201 if (!pte)
2202 goto out;
2203 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot,
2204 mkwrite);
2205 pte_unmap_unlock(pte, ptl);
2206 out:
2207 return retval;
2208 }
2209
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2210 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2211 unsigned long addr, struct page *page, pgprot_t prot)
2212 {
2213 int err;
2214
2215 err = validate_page_before_insert(vma, page);
2216 if (err)
2217 return err;
2218 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false);
2219 }
2220
2221 /* insert_pages() amortizes the cost of spinlock operations
2222 * when inserting pages in a loop.
2223 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)2224 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2225 struct page **pages, unsigned long *num, pgprot_t prot)
2226 {
2227 pmd_t *pmd = NULL;
2228 pte_t *start_pte, *pte;
2229 spinlock_t *pte_lock;
2230 struct mm_struct *const mm = vma->vm_mm;
2231 unsigned long curr_page_idx = 0;
2232 unsigned long remaining_pages_total = *num;
2233 unsigned long pages_to_write_in_pmd;
2234 int ret;
2235 more:
2236 ret = -EFAULT;
2237 pmd = walk_to_pmd(mm, addr);
2238 if (!pmd)
2239 goto out;
2240
2241 pages_to_write_in_pmd = min_t(unsigned long,
2242 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2243
2244 /* Allocate the PTE if necessary; takes PMD lock once only. */
2245 ret = -ENOMEM;
2246 if (pte_alloc(mm, pmd))
2247 goto out;
2248
2249 while (pages_to_write_in_pmd) {
2250 int pte_idx = 0;
2251 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2252
2253 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2254 if (!start_pte) {
2255 ret = -EFAULT;
2256 goto out;
2257 }
2258 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2259 int err = insert_page_in_batch_locked(vma, pte,
2260 addr, pages[curr_page_idx], prot);
2261 if (unlikely(err)) {
2262 pte_unmap_unlock(start_pte, pte_lock);
2263 ret = err;
2264 remaining_pages_total -= pte_idx;
2265 goto out;
2266 }
2267 addr += PAGE_SIZE;
2268 ++curr_page_idx;
2269 }
2270 pte_unmap_unlock(start_pte, pte_lock);
2271 pages_to_write_in_pmd -= batch_size;
2272 remaining_pages_total -= batch_size;
2273 }
2274 if (remaining_pages_total)
2275 goto more;
2276 ret = 0;
2277 out:
2278 *num = remaining_pages_total;
2279 return ret;
2280 }
2281
2282 /**
2283 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2284 * @vma: user vma to map to
2285 * @addr: target start user address of these pages
2286 * @pages: source kernel pages
2287 * @num: in: number of pages to map. out: number of pages that were *not*
2288 * mapped. (0 means all pages were successfully mapped).
2289 *
2290 * Preferred over vm_insert_page() when inserting multiple pages.
2291 *
2292 * In case of error, we may have mapped a subset of the provided
2293 * pages. It is the caller's responsibility to account for this case.
2294 *
2295 * The same restrictions apply as in vm_insert_page().
2296 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)2297 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2298 struct page **pages, unsigned long *num)
2299 {
2300 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2301
2302 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2303 return -EFAULT;
2304 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2305 BUG_ON(mmap_read_trylock(vma->vm_mm));
2306 BUG_ON(vma->vm_flags & VM_PFNMAP);
2307 vm_flags_set(vma, VM_MIXEDMAP);
2308 }
2309 /* Defer page refcount checking till we're about to map that page. */
2310 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2311 }
2312 EXPORT_SYMBOL(vm_insert_pages);
2313
2314 /**
2315 * vm_insert_page - insert single page into user vma
2316 * @vma: user vma to map to
2317 * @addr: target user address of this page
2318 * @page: source kernel page
2319 *
2320 * This allows drivers to insert individual pages they've allocated
2321 * into a user vma. The zeropage is supported in some VMAs,
2322 * see vm_mixed_zeropage_allowed().
2323 *
2324 * The page has to be a nice clean _individual_ kernel allocation.
2325 * If you allocate a compound page, you need to have marked it as
2326 * such (__GFP_COMP), or manually just split the page up yourself
2327 * (see split_page()).
2328 *
2329 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2330 * took an arbitrary page protection parameter. This doesn't allow
2331 * that. Your vma protection will have to be set up correctly, which
2332 * means that if you want a shared writable mapping, you'd better
2333 * ask for a shared writable mapping!
2334 *
2335 * The page does not need to be reserved.
2336 *
2337 * Usually this function is called from f_op->mmap() handler
2338 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2339 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2340 * function from other places, for example from page-fault handler.
2341 *
2342 * Return: %0 on success, negative error code otherwise.
2343 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2344 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2345 struct page *page)
2346 {
2347 if (addr < vma->vm_start || addr >= vma->vm_end)
2348 return -EFAULT;
2349 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2350 BUG_ON(mmap_read_trylock(vma->vm_mm));
2351 BUG_ON(vma->vm_flags & VM_PFNMAP);
2352 vm_flags_set(vma, VM_MIXEDMAP);
2353 }
2354 return insert_page(vma, addr, page, vma->vm_page_prot, false);
2355 }
2356 EXPORT_SYMBOL(vm_insert_page);
2357
2358 /*
2359 * __vm_map_pages - maps range of kernel pages into user vma
2360 * @vma: user vma to map to
2361 * @pages: pointer to array of source kernel pages
2362 * @num: number of pages in page array
2363 * @offset: user's requested vm_pgoff
2364 *
2365 * This allows drivers to map range of kernel pages into a user vma.
2366 * The zeropage is supported in some VMAs, see
2367 * vm_mixed_zeropage_allowed().
2368 *
2369 * Return: 0 on success and error code otherwise.
2370 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2371 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2372 unsigned long num, unsigned long offset)
2373 {
2374 unsigned long count = vma_pages(vma);
2375 unsigned long uaddr = vma->vm_start;
2376 int ret, i;
2377
2378 /* Fail if the user requested offset is beyond the end of the object */
2379 if (offset >= num)
2380 return -ENXIO;
2381
2382 /* Fail if the user requested size exceeds available object size */
2383 if (count > num - offset)
2384 return -ENXIO;
2385
2386 for (i = 0; i < count; i++) {
2387 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2388 if (ret < 0)
2389 return ret;
2390 uaddr += PAGE_SIZE;
2391 }
2392
2393 return 0;
2394 }
2395
2396 /**
2397 * vm_map_pages - maps range of kernel pages starts with non zero offset
2398 * @vma: user vma to map to
2399 * @pages: pointer to array of source kernel pages
2400 * @num: number of pages in page array
2401 *
2402 * Maps an object consisting of @num pages, catering for the user's
2403 * requested vm_pgoff
2404 *
2405 * If we fail to insert any page into the vma, the function will return
2406 * immediately leaving any previously inserted pages present. Callers
2407 * from the mmap handler may immediately return the error as their caller
2408 * will destroy the vma, removing any successfully inserted pages. Other
2409 * callers should make their own arrangements for calling unmap_region().
2410 *
2411 * Context: Process context. Called by mmap handlers.
2412 * Return: 0 on success and error code otherwise.
2413 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2414 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2415 unsigned long num)
2416 {
2417 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2418 }
2419 EXPORT_SYMBOL(vm_map_pages);
2420
2421 /**
2422 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2423 * @vma: user vma to map to
2424 * @pages: pointer to array of source kernel pages
2425 * @num: number of pages in page array
2426 *
2427 * Similar to vm_map_pages(), except that it explicitly sets the offset
2428 * to 0. This function is intended for the drivers that did not consider
2429 * vm_pgoff.
2430 *
2431 * Context: Process context. Called by mmap handlers.
2432 * Return: 0 on success and error code otherwise.
2433 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2434 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2435 unsigned long num)
2436 {
2437 return __vm_map_pages(vma, pages, num, 0);
2438 }
2439 EXPORT_SYMBOL(vm_map_pages_zero);
2440
insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot,bool mkwrite)2441 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2442 unsigned long pfn, pgprot_t prot, bool mkwrite)
2443 {
2444 struct mm_struct *mm = vma->vm_mm;
2445 pte_t *pte, entry;
2446 spinlock_t *ptl;
2447
2448 pte = get_locked_pte(mm, addr, &ptl);
2449 if (!pte)
2450 return VM_FAULT_OOM;
2451 entry = ptep_get(pte);
2452 if (!pte_none(entry)) {
2453 if (mkwrite) {
2454 /*
2455 * For read faults on private mappings the PFN passed
2456 * in may not match the PFN we have mapped if the
2457 * mapped PFN is a writeable COW page. In the mkwrite
2458 * case we are creating a writable PTE for a shared
2459 * mapping and we expect the PFNs to match. If they
2460 * don't match, we are likely racing with block
2461 * allocation and mapping invalidation so just skip the
2462 * update.
2463 */
2464 if (pte_pfn(entry) != pfn) {
2465 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2466 goto out_unlock;
2467 }
2468 entry = pte_mkyoung(entry);
2469 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2470 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2471 update_mmu_cache(vma, addr, pte);
2472 }
2473 goto out_unlock;
2474 }
2475
2476 /* Ok, finally just insert the thing.. */
2477 entry = pte_mkspecial(pfn_pte(pfn, prot));
2478
2479 if (mkwrite) {
2480 entry = pte_mkyoung(entry);
2481 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2482 }
2483
2484 set_pte_at(mm, addr, pte, entry);
2485 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2486
2487 out_unlock:
2488 pte_unmap_unlock(pte, ptl);
2489 return VM_FAULT_NOPAGE;
2490 }
2491
2492 /**
2493 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2494 * @vma: user vma to map to
2495 * @addr: target user address of this page
2496 * @pfn: source kernel pfn
2497 * @pgprot: pgprot flags for the inserted page
2498 *
2499 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2500 * to override pgprot on a per-page basis.
2501 *
2502 * This only makes sense for IO mappings, and it makes no sense for
2503 * COW mappings. In general, using multiple vmas is preferable;
2504 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2505 * impractical.
2506 *
2507 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2508 * caching- and encryption bits different than those of @vma->vm_page_prot,
2509 * because the caching- or encryption mode may not be known at mmap() time.
2510 *
2511 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2512 * to set caching and encryption bits for those vmas (except for COW pages).
2513 * This is ensured by core vm only modifying these page table entries using
2514 * functions that don't touch caching- or encryption bits, using pte_modify()
2515 * if needed. (See for example mprotect()).
2516 *
2517 * Also when new page-table entries are created, this is only done using the
2518 * fault() callback, and never using the value of vma->vm_page_prot,
2519 * except for page-table entries that point to anonymous pages as the result
2520 * of COW.
2521 *
2522 * Context: Process context. May allocate using %GFP_KERNEL.
2523 * Return: vm_fault_t value.
2524 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2525 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2526 unsigned long pfn, pgprot_t pgprot)
2527 {
2528 /*
2529 * Technically, architectures with pte_special can avoid all these
2530 * restrictions (same for remap_pfn_range). However we would like
2531 * consistency in testing and feature parity among all, so we should
2532 * try to keep these invariants in place for everybody.
2533 */
2534 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2535 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2536 (VM_PFNMAP|VM_MIXEDMAP));
2537 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2538 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2539
2540 if (addr < vma->vm_start || addr >= vma->vm_end)
2541 return VM_FAULT_SIGBUS;
2542
2543 if (!pfn_modify_allowed(pfn, pgprot))
2544 return VM_FAULT_SIGBUS;
2545
2546 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2547
2548 return insert_pfn(vma, addr, pfn, pgprot, false);
2549 }
2550 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2551
2552 /**
2553 * vmf_insert_pfn - insert single pfn into user vma
2554 * @vma: user vma to map to
2555 * @addr: target user address of this page
2556 * @pfn: source kernel pfn
2557 *
2558 * Similar to vm_insert_page, this allows drivers to insert individual pages
2559 * they've allocated into a user vma. Same comments apply.
2560 *
2561 * This function should only be called from a vm_ops->fault handler, and
2562 * in that case the handler should return the result of this function.
2563 *
2564 * vma cannot be a COW mapping.
2565 *
2566 * As this is called only for pages that do not currently exist, we
2567 * do not need to flush old virtual caches or the TLB.
2568 *
2569 * Context: Process context. May allocate using %GFP_KERNEL.
2570 * Return: vm_fault_t value.
2571 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2572 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2573 unsigned long pfn)
2574 {
2575 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2576 }
2577 EXPORT_SYMBOL(vmf_insert_pfn);
2578
vm_mixed_ok(struct vm_area_struct * vma,unsigned long pfn,bool mkwrite)2579 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn,
2580 bool mkwrite)
2581 {
2582 if (unlikely(is_zero_pfn(pfn)) &&
2583 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2584 return false;
2585 /* these checks mirror the abort conditions in vm_normal_page */
2586 if (vma->vm_flags & VM_MIXEDMAP)
2587 return true;
2588 if (is_zero_pfn(pfn))
2589 return true;
2590 return false;
2591 }
2592
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,bool mkwrite)2593 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2594 unsigned long addr, unsigned long pfn, bool mkwrite)
2595 {
2596 pgprot_t pgprot = vma->vm_page_prot;
2597 int err;
2598
2599 if (!vm_mixed_ok(vma, pfn, mkwrite))
2600 return VM_FAULT_SIGBUS;
2601
2602 if (addr < vma->vm_start || addr >= vma->vm_end)
2603 return VM_FAULT_SIGBUS;
2604
2605 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2606
2607 if (!pfn_modify_allowed(pfn, pgprot))
2608 return VM_FAULT_SIGBUS;
2609
2610 /*
2611 * If we don't have pte special, then we have to use the pfn_valid()
2612 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2613 * refcount the page if pfn_valid is true (hence insert_page rather
2614 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2615 * without pte special, it would there be refcounted as a normal page.
2616 */
2617 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) {
2618 struct page *page;
2619
2620 /*
2621 * At this point we are committed to insert_page()
2622 * regardless of whether the caller specified flags that
2623 * result in pfn_t_has_page() == false.
2624 */
2625 page = pfn_to_page(pfn);
2626 err = insert_page(vma, addr, page, pgprot, mkwrite);
2627 } else {
2628 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2629 }
2630
2631 if (err == -ENOMEM)
2632 return VM_FAULT_OOM;
2633 if (err < 0 && err != -EBUSY)
2634 return VM_FAULT_SIGBUS;
2635
2636 return VM_FAULT_NOPAGE;
2637 }
2638
vmf_insert_page_mkwrite(struct vm_fault * vmf,struct page * page,bool write)2639 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
2640 bool write)
2641 {
2642 pgprot_t pgprot = vmf->vma->vm_page_prot;
2643 unsigned long addr = vmf->address;
2644 int err;
2645
2646 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end)
2647 return VM_FAULT_SIGBUS;
2648
2649 err = insert_page(vmf->vma, addr, page, pgprot, write);
2650 if (err == -ENOMEM)
2651 return VM_FAULT_OOM;
2652 if (err < 0 && err != -EBUSY)
2653 return VM_FAULT_SIGBUS;
2654
2655 return VM_FAULT_NOPAGE;
2656 }
2657 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite);
2658
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2659 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2660 unsigned long pfn)
2661 {
2662 return __vm_insert_mixed(vma, addr, pfn, false);
2663 }
2664 EXPORT_SYMBOL(vmf_insert_mixed);
2665
2666 /*
2667 * If the insertion of PTE failed because someone else already added a
2668 * different entry in the mean time, we treat that as success as we assume
2669 * the same entry was actually inserted.
2670 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2671 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2672 unsigned long addr, unsigned long pfn)
2673 {
2674 return __vm_insert_mixed(vma, addr, pfn, true);
2675 }
2676
2677 /*
2678 * maps a range of physical memory into the requested pages. the old
2679 * mappings are removed. any references to nonexistent pages results
2680 * in null mappings (currently treated as "copy-on-access")
2681 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2682 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2683 unsigned long addr, unsigned long end,
2684 unsigned long pfn, pgprot_t prot)
2685 {
2686 pte_t *pte, *mapped_pte;
2687 spinlock_t *ptl;
2688 int err = 0;
2689
2690 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2691 if (!pte)
2692 return -ENOMEM;
2693 arch_enter_lazy_mmu_mode();
2694 do {
2695 BUG_ON(!pte_none(ptep_get(pte)));
2696 if (!pfn_modify_allowed(pfn, prot)) {
2697 err = -EACCES;
2698 break;
2699 }
2700 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2701 pfn++;
2702 } while (pte++, addr += PAGE_SIZE, addr != end);
2703 arch_leave_lazy_mmu_mode();
2704 pte_unmap_unlock(mapped_pte, ptl);
2705 return err;
2706 }
2707
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2708 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2709 unsigned long addr, unsigned long end,
2710 unsigned long pfn, pgprot_t prot)
2711 {
2712 pmd_t *pmd;
2713 unsigned long next;
2714 int err;
2715
2716 pfn -= addr >> PAGE_SHIFT;
2717 pmd = pmd_alloc(mm, pud, addr);
2718 if (!pmd)
2719 return -ENOMEM;
2720 VM_BUG_ON(pmd_trans_huge(*pmd));
2721 do {
2722 next = pmd_addr_end(addr, end);
2723 err = remap_pte_range(mm, pmd, addr, next,
2724 pfn + (addr >> PAGE_SHIFT), prot);
2725 if (err)
2726 return err;
2727 } while (pmd++, addr = next, addr != end);
2728 return 0;
2729 }
2730
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2731 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2732 unsigned long addr, unsigned long end,
2733 unsigned long pfn, pgprot_t prot)
2734 {
2735 pud_t *pud;
2736 unsigned long next;
2737 int err;
2738
2739 pfn -= addr >> PAGE_SHIFT;
2740 pud = pud_alloc(mm, p4d, addr);
2741 if (!pud)
2742 return -ENOMEM;
2743 do {
2744 next = pud_addr_end(addr, end);
2745 err = remap_pmd_range(mm, pud, addr, next,
2746 pfn + (addr >> PAGE_SHIFT), prot);
2747 if (err)
2748 return err;
2749 } while (pud++, addr = next, addr != end);
2750 return 0;
2751 }
2752
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2753 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2754 unsigned long addr, unsigned long end,
2755 unsigned long pfn, pgprot_t prot)
2756 {
2757 p4d_t *p4d;
2758 unsigned long next;
2759 int err;
2760
2761 pfn -= addr >> PAGE_SHIFT;
2762 p4d = p4d_alloc(mm, pgd, addr);
2763 if (!p4d)
2764 return -ENOMEM;
2765 do {
2766 next = p4d_addr_end(addr, end);
2767 err = remap_pud_range(mm, p4d, addr, next,
2768 pfn + (addr >> PAGE_SHIFT), prot);
2769 if (err)
2770 return err;
2771 } while (p4d++, addr = next, addr != end);
2772 return 0;
2773 }
2774
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2775 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2776 unsigned long pfn, unsigned long size, pgprot_t prot)
2777 {
2778 pgd_t *pgd;
2779 unsigned long next;
2780 unsigned long end = addr + PAGE_ALIGN(size);
2781 struct mm_struct *mm = vma->vm_mm;
2782 int err;
2783
2784 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2785 return -EINVAL;
2786
2787 /*
2788 * Physically remapped pages are special. Tell the
2789 * rest of the world about it:
2790 * VM_IO tells people not to look at these pages
2791 * (accesses can have side effects).
2792 * VM_PFNMAP tells the core MM that the base pages are just
2793 * raw PFN mappings, and do not have a "struct page" associated
2794 * with them.
2795 * VM_DONTEXPAND
2796 * Disable vma merging and expanding with mremap().
2797 * VM_DONTDUMP
2798 * Omit vma from core dump, even when VM_IO turned off.
2799 *
2800 * There's a horrible special case to handle copy-on-write
2801 * behaviour that some programs depend on. We mark the "original"
2802 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2803 * See vm_normal_page() for details.
2804 */
2805 if (is_cow_mapping(vma->vm_flags)) {
2806 if (addr != vma->vm_start || end != vma->vm_end)
2807 return -EINVAL;
2808 vma->vm_pgoff = pfn;
2809 }
2810
2811 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2812
2813 BUG_ON(addr >= end);
2814 pfn -= addr >> PAGE_SHIFT;
2815 pgd = pgd_offset(mm, addr);
2816 flush_cache_range(vma, addr, end);
2817 do {
2818 next = pgd_addr_end(addr, end);
2819 err = remap_p4d_range(mm, pgd, addr, next,
2820 pfn + (addr >> PAGE_SHIFT), prot);
2821 if (err)
2822 return err;
2823 } while (pgd++, addr = next, addr != end);
2824
2825 return 0;
2826 }
2827
2828 /*
2829 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2830 * must have pre-validated the caching bits of the pgprot_t.
2831 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2832 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2833 unsigned long pfn, unsigned long size, pgprot_t prot)
2834 {
2835 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2836
2837 if (!error)
2838 return 0;
2839
2840 /*
2841 * A partial pfn range mapping is dangerous: it does not
2842 * maintain page reference counts, and callers may free
2843 * pages due to the error. So zap it early.
2844 */
2845 zap_page_range_single(vma, addr, size, NULL);
2846 return error;
2847 }
2848
2849 #ifdef __HAVE_PFNMAP_TRACKING
pfnmap_track_ctx_alloc(unsigned long pfn,unsigned long size,pgprot_t * prot)2850 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn,
2851 unsigned long size, pgprot_t *prot)
2852 {
2853 struct pfnmap_track_ctx *ctx;
2854
2855 if (pfnmap_track(pfn, size, prot))
2856 return ERR_PTR(-EINVAL);
2857
2858 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
2859 if (unlikely(!ctx)) {
2860 pfnmap_untrack(pfn, size);
2861 return ERR_PTR(-ENOMEM);
2862 }
2863
2864 ctx->pfn = pfn;
2865 ctx->size = size;
2866 kref_init(&ctx->kref);
2867 return ctx;
2868 }
2869
pfnmap_track_ctx_release(struct kref * ref)2870 void pfnmap_track_ctx_release(struct kref *ref)
2871 {
2872 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref);
2873
2874 pfnmap_untrack(ctx->pfn, ctx->size);
2875 kfree(ctx);
2876 }
2877 #endif /* __HAVE_PFNMAP_TRACKING */
2878
2879 /**
2880 * remap_pfn_range - remap kernel memory to userspace
2881 * @vma: user vma to map to
2882 * @addr: target page aligned user address to start at
2883 * @pfn: page frame number of kernel physical memory address
2884 * @size: size of mapping area
2885 * @prot: page protection flags for this mapping
2886 *
2887 * Note: this is only safe if the mm semaphore is held when called.
2888 *
2889 * Return: %0 on success, negative error code otherwise.
2890 */
2891 #ifdef __HAVE_PFNMAP_TRACKING
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2892 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2893 unsigned long pfn, unsigned long size, pgprot_t prot)
2894 {
2895 struct pfnmap_track_ctx *ctx = NULL;
2896 int err;
2897
2898 size = PAGE_ALIGN(size);
2899
2900 /*
2901 * If we cover the full VMA, we'll perform actual tracking, and
2902 * remember to untrack when the last reference to our tracking
2903 * context from a VMA goes away. We'll keep tracking the whole pfn
2904 * range even during VMA splits and partial unmapping.
2905 *
2906 * If we only cover parts of the VMA, we'll only setup the cachemode
2907 * in the pgprot for the pfn range.
2908 */
2909 if (addr == vma->vm_start && addr + size == vma->vm_end) {
2910 if (vma->pfnmap_track_ctx)
2911 return -EINVAL;
2912 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot);
2913 if (IS_ERR(ctx))
2914 return PTR_ERR(ctx);
2915 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) {
2916 return -EINVAL;
2917 }
2918
2919 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2920 if (ctx) {
2921 if (err)
2922 kref_put(&ctx->kref, pfnmap_track_ctx_release);
2923 else
2924 vma->pfnmap_track_ctx = ctx;
2925 }
2926 return err;
2927 }
2928
2929 #else
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2930 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2931 unsigned long pfn, unsigned long size, pgprot_t prot)
2932 {
2933 return remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2934 }
2935 #endif
2936 EXPORT_SYMBOL(remap_pfn_range);
2937
2938 /**
2939 * vm_iomap_memory - remap memory to userspace
2940 * @vma: user vma to map to
2941 * @start: start of the physical memory to be mapped
2942 * @len: size of area
2943 *
2944 * This is a simplified io_remap_pfn_range() for common driver use. The
2945 * driver just needs to give us the physical memory range to be mapped,
2946 * we'll figure out the rest from the vma information.
2947 *
2948 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2949 * whatever write-combining details or similar.
2950 *
2951 * Return: %0 on success, negative error code otherwise.
2952 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2953 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2954 {
2955 unsigned long vm_len, pfn, pages;
2956
2957 /* Check that the physical memory area passed in looks valid */
2958 if (start + len < start)
2959 return -EINVAL;
2960 /*
2961 * You *really* shouldn't map things that aren't page-aligned,
2962 * but we've historically allowed it because IO memory might
2963 * just have smaller alignment.
2964 */
2965 len += start & ~PAGE_MASK;
2966 pfn = start >> PAGE_SHIFT;
2967 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2968 if (pfn + pages < pfn)
2969 return -EINVAL;
2970
2971 /* We start the mapping 'vm_pgoff' pages into the area */
2972 if (vma->vm_pgoff > pages)
2973 return -EINVAL;
2974 pfn += vma->vm_pgoff;
2975 pages -= vma->vm_pgoff;
2976
2977 /* Can we fit all of the mapping? */
2978 vm_len = vma->vm_end - vma->vm_start;
2979 if (vm_len >> PAGE_SHIFT > pages)
2980 return -EINVAL;
2981
2982 /* Ok, let it rip */
2983 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2984 }
2985 EXPORT_SYMBOL(vm_iomap_memory);
2986
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2987 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2988 unsigned long addr, unsigned long end,
2989 pte_fn_t fn, void *data, bool create,
2990 pgtbl_mod_mask *mask)
2991 {
2992 pte_t *pte, *mapped_pte;
2993 int err = 0;
2994 spinlock_t *ptl;
2995
2996 if (create) {
2997 mapped_pte = pte = (mm == &init_mm) ?
2998 pte_alloc_kernel_track(pmd, addr, mask) :
2999 pte_alloc_map_lock(mm, pmd, addr, &ptl);
3000 if (!pte)
3001 return -ENOMEM;
3002 } else {
3003 mapped_pte = pte = (mm == &init_mm) ?
3004 pte_offset_kernel(pmd, addr) :
3005 pte_offset_map_lock(mm, pmd, addr, &ptl);
3006 if (!pte)
3007 return -EINVAL;
3008 }
3009
3010 arch_enter_lazy_mmu_mode();
3011
3012 if (fn) {
3013 do {
3014 if (create || !pte_none(ptep_get(pte))) {
3015 err = fn(pte, addr, data);
3016 if (err)
3017 break;
3018 }
3019 } while (pte++, addr += PAGE_SIZE, addr != end);
3020 }
3021 *mask |= PGTBL_PTE_MODIFIED;
3022
3023 arch_leave_lazy_mmu_mode();
3024
3025 if (mm != &init_mm)
3026 pte_unmap_unlock(mapped_pte, ptl);
3027 return err;
3028 }
3029
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3030 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
3031 unsigned long addr, unsigned long end,
3032 pte_fn_t fn, void *data, bool create,
3033 pgtbl_mod_mask *mask)
3034 {
3035 pmd_t *pmd;
3036 unsigned long next;
3037 int err = 0;
3038
3039 BUG_ON(pud_leaf(*pud));
3040
3041 if (create) {
3042 pmd = pmd_alloc_track(mm, pud, addr, mask);
3043 if (!pmd)
3044 return -ENOMEM;
3045 } else {
3046 pmd = pmd_offset(pud, addr);
3047 }
3048 do {
3049 next = pmd_addr_end(addr, end);
3050 if (pmd_none(*pmd) && !create)
3051 continue;
3052 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
3053 return -EINVAL;
3054 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
3055 if (!create)
3056 continue;
3057 pmd_clear_bad(pmd);
3058 }
3059 err = apply_to_pte_range(mm, pmd, addr, next,
3060 fn, data, create, mask);
3061 if (err)
3062 break;
3063 } while (pmd++, addr = next, addr != end);
3064
3065 return err;
3066 }
3067
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3068 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
3069 unsigned long addr, unsigned long end,
3070 pte_fn_t fn, void *data, bool create,
3071 pgtbl_mod_mask *mask)
3072 {
3073 pud_t *pud;
3074 unsigned long next;
3075 int err = 0;
3076
3077 if (create) {
3078 pud = pud_alloc_track(mm, p4d, addr, mask);
3079 if (!pud)
3080 return -ENOMEM;
3081 } else {
3082 pud = pud_offset(p4d, addr);
3083 }
3084 do {
3085 next = pud_addr_end(addr, end);
3086 if (pud_none(*pud) && !create)
3087 continue;
3088 if (WARN_ON_ONCE(pud_leaf(*pud)))
3089 return -EINVAL;
3090 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
3091 if (!create)
3092 continue;
3093 pud_clear_bad(pud);
3094 }
3095 err = apply_to_pmd_range(mm, pud, addr, next,
3096 fn, data, create, mask);
3097 if (err)
3098 break;
3099 } while (pud++, addr = next, addr != end);
3100
3101 return err;
3102 }
3103
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3104 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
3105 unsigned long addr, unsigned long end,
3106 pte_fn_t fn, void *data, bool create,
3107 pgtbl_mod_mask *mask)
3108 {
3109 p4d_t *p4d;
3110 unsigned long next;
3111 int err = 0;
3112
3113 if (create) {
3114 p4d = p4d_alloc_track(mm, pgd, addr, mask);
3115 if (!p4d)
3116 return -ENOMEM;
3117 } else {
3118 p4d = p4d_offset(pgd, addr);
3119 }
3120 do {
3121 next = p4d_addr_end(addr, end);
3122 if (p4d_none(*p4d) && !create)
3123 continue;
3124 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3125 return -EINVAL;
3126 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3127 if (!create)
3128 continue;
3129 p4d_clear_bad(p4d);
3130 }
3131 err = apply_to_pud_range(mm, p4d, addr, next,
3132 fn, data, create, mask);
3133 if (err)
3134 break;
3135 } while (p4d++, addr = next, addr != end);
3136
3137 return err;
3138 }
3139
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)3140 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3141 unsigned long size, pte_fn_t fn,
3142 void *data, bool create)
3143 {
3144 pgd_t *pgd;
3145 unsigned long start = addr, next;
3146 unsigned long end = addr + size;
3147 pgtbl_mod_mask mask = 0;
3148 int err = 0;
3149
3150 if (WARN_ON(addr >= end))
3151 return -EINVAL;
3152
3153 pgd = pgd_offset(mm, addr);
3154 do {
3155 next = pgd_addr_end(addr, end);
3156 if (pgd_none(*pgd) && !create)
3157 continue;
3158 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3159 err = -EINVAL;
3160 break;
3161 }
3162 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3163 if (!create)
3164 continue;
3165 pgd_clear_bad(pgd);
3166 }
3167 err = apply_to_p4d_range(mm, pgd, addr, next,
3168 fn, data, create, &mask);
3169 if (err)
3170 break;
3171 } while (pgd++, addr = next, addr != end);
3172
3173 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3174 arch_sync_kernel_mappings(start, start + size);
3175
3176 return err;
3177 }
3178
3179 /*
3180 * Scan a region of virtual memory, filling in page tables as necessary
3181 * and calling a provided function on each leaf page table.
3182 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3183 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3184 unsigned long size, pte_fn_t fn, void *data)
3185 {
3186 return __apply_to_page_range(mm, addr, size, fn, data, true);
3187 }
3188 EXPORT_SYMBOL_GPL(apply_to_page_range);
3189
3190 /*
3191 * Scan a region of virtual memory, calling a provided function on
3192 * each leaf page table where it exists.
3193 *
3194 * Unlike apply_to_page_range, this does _not_ fill in page tables
3195 * where they are absent.
3196 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3197 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3198 unsigned long size, pte_fn_t fn, void *data)
3199 {
3200 return __apply_to_page_range(mm, addr, size, fn, data, false);
3201 }
3202
3203 /*
3204 * handle_pte_fault chooses page fault handler according to an entry which was
3205 * read non-atomically. Before making any commitment, on those architectures
3206 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3207 * parts, do_swap_page must check under lock before unmapping the pte and
3208 * proceeding (but do_wp_page is only called after already making such a check;
3209 * and do_anonymous_page can safely check later on).
3210 */
pte_unmap_same(struct vm_fault * vmf)3211 static inline int pte_unmap_same(struct vm_fault *vmf)
3212 {
3213 int same = 1;
3214 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3215 if (sizeof(pte_t) > sizeof(unsigned long)) {
3216 spin_lock(vmf->ptl);
3217 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3218 spin_unlock(vmf->ptl);
3219 }
3220 #endif
3221 pte_unmap(vmf->pte);
3222 vmf->pte = NULL;
3223 return same;
3224 }
3225
3226 /*
3227 * Return:
3228 * 0: copied succeeded
3229 * -EHWPOISON: copy failed due to hwpoison in source page
3230 * -EAGAIN: copied failed (some other reason)
3231 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)3232 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3233 struct vm_fault *vmf)
3234 {
3235 int ret;
3236 void *kaddr;
3237 void __user *uaddr;
3238 struct vm_area_struct *vma = vmf->vma;
3239 struct mm_struct *mm = vma->vm_mm;
3240 unsigned long addr = vmf->address;
3241
3242 if (likely(src)) {
3243 if (copy_mc_user_highpage(dst, src, addr, vma))
3244 return -EHWPOISON;
3245 return 0;
3246 }
3247
3248 /*
3249 * If the source page was a PFN mapping, we don't have
3250 * a "struct page" for it. We do a best-effort copy by
3251 * just copying from the original user address. If that
3252 * fails, we just zero-fill it. Live with it.
3253 */
3254 kaddr = kmap_local_page(dst);
3255 pagefault_disable();
3256 uaddr = (void __user *)(addr & PAGE_MASK);
3257
3258 /*
3259 * On architectures with software "accessed" bits, we would
3260 * take a double page fault, so mark it accessed here.
3261 */
3262 vmf->pte = NULL;
3263 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3264 pte_t entry;
3265
3266 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3267 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3268 /*
3269 * Other thread has already handled the fault
3270 * and update local tlb only
3271 */
3272 if (vmf->pte)
3273 update_mmu_tlb(vma, addr, vmf->pte);
3274 ret = -EAGAIN;
3275 goto pte_unlock;
3276 }
3277
3278 entry = pte_mkyoung(vmf->orig_pte);
3279 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3280 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3281 }
3282
3283 /*
3284 * This really shouldn't fail, because the page is there
3285 * in the page tables. But it might just be unreadable,
3286 * in which case we just give up and fill the result with
3287 * zeroes.
3288 */
3289 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3290 if (vmf->pte)
3291 goto warn;
3292
3293 /* Re-validate under PTL if the page is still mapped */
3294 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3295 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3296 /* The PTE changed under us, update local tlb */
3297 if (vmf->pte)
3298 update_mmu_tlb(vma, addr, vmf->pte);
3299 ret = -EAGAIN;
3300 goto pte_unlock;
3301 }
3302
3303 /*
3304 * The same page can be mapped back since last copy attempt.
3305 * Try to copy again under PTL.
3306 */
3307 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3308 /*
3309 * Give a warn in case there can be some obscure
3310 * use-case
3311 */
3312 warn:
3313 WARN_ON_ONCE(1);
3314 clear_page(kaddr);
3315 }
3316 }
3317
3318 ret = 0;
3319
3320 pte_unlock:
3321 if (vmf->pte)
3322 pte_unmap_unlock(vmf->pte, vmf->ptl);
3323 pagefault_enable();
3324 kunmap_local(kaddr);
3325 flush_dcache_page(dst);
3326
3327 return ret;
3328 }
3329
__get_fault_gfp_mask(struct vm_area_struct * vma)3330 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3331 {
3332 struct file *vm_file = vma->vm_file;
3333
3334 if (vm_file)
3335 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3336
3337 /*
3338 * Special mappings (e.g. VDSO) do not have any file so fake
3339 * a default GFP_KERNEL for them.
3340 */
3341 return GFP_KERNEL;
3342 }
3343
3344 /*
3345 * Notify the address space that the page is about to become writable so that
3346 * it can prohibit this or wait for the page to get into an appropriate state.
3347 *
3348 * We do this without the lock held, so that it can sleep if it needs to.
3349 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)3350 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3351 {
3352 vm_fault_t ret;
3353 unsigned int old_flags = vmf->flags;
3354
3355 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3356
3357 if (vmf->vma->vm_file &&
3358 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3359 return VM_FAULT_SIGBUS;
3360
3361 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3362 /* Restore original flags so that caller is not surprised */
3363 vmf->flags = old_flags;
3364 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3365 return ret;
3366 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3367 folio_lock(folio);
3368 if (!folio->mapping) {
3369 folio_unlock(folio);
3370 return 0; /* retry */
3371 }
3372 ret |= VM_FAULT_LOCKED;
3373 } else
3374 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3375 return ret;
3376 }
3377
3378 /*
3379 * Handle dirtying of a page in shared file mapping on a write fault.
3380 *
3381 * The function expects the page to be locked and unlocks it.
3382 */
fault_dirty_shared_page(struct vm_fault * vmf)3383 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3384 {
3385 struct vm_area_struct *vma = vmf->vma;
3386 struct address_space *mapping;
3387 struct folio *folio = page_folio(vmf->page);
3388 bool dirtied;
3389 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3390
3391 dirtied = folio_mark_dirty(folio);
3392 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3393 /*
3394 * Take a local copy of the address_space - folio.mapping may be zeroed
3395 * by truncate after folio_unlock(). The address_space itself remains
3396 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3397 * release semantics to prevent the compiler from undoing this copying.
3398 */
3399 mapping = folio_raw_mapping(folio);
3400 folio_unlock(folio);
3401
3402 if (!page_mkwrite)
3403 file_update_time(vma->vm_file);
3404
3405 /*
3406 * Throttle page dirtying rate down to writeback speed.
3407 *
3408 * mapping may be NULL here because some device drivers do not
3409 * set page.mapping but still dirty their pages
3410 *
3411 * Drop the mmap_lock before waiting on IO, if we can. The file
3412 * is pinning the mapping, as per above.
3413 */
3414 if ((dirtied || page_mkwrite) && mapping) {
3415 struct file *fpin;
3416
3417 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3418 balance_dirty_pages_ratelimited(mapping);
3419 if (fpin) {
3420 fput(fpin);
3421 return VM_FAULT_COMPLETED;
3422 }
3423 }
3424
3425 return 0;
3426 }
3427
3428 /*
3429 * Handle write page faults for pages that can be reused in the current vma
3430 *
3431 * This can happen either due to the mapping being with the VM_SHARED flag,
3432 * or due to us being the last reference standing to the page. In either
3433 * case, all we need to do here is to mark the page as writable and update
3434 * any related book-keeping.
3435 */
wp_page_reuse(struct vm_fault * vmf,struct folio * folio)3436 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3437 __releases(vmf->ptl)
3438 {
3439 struct vm_area_struct *vma = vmf->vma;
3440 pte_t entry;
3441
3442 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3443 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3444
3445 if (folio) {
3446 VM_BUG_ON(folio_test_anon(folio) &&
3447 !PageAnonExclusive(vmf->page));
3448 /*
3449 * Clear the folio's cpupid information as the existing
3450 * information potentially belongs to a now completely
3451 * unrelated process.
3452 */
3453 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3454 }
3455
3456 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3457 entry = pte_mkyoung(vmf->orig_pte);
3458 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3459 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3460 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3461 pte_unmap_unlock(vmf->pte, vmf->ptl);
3462 count_vm_event(PGREUSE);
3463 }
3464
3465 /*
3466 * We could add a bitflag somewhere, but for now, we know that all
3467 * vm_ops that have a ->map_pages have been audited and don't need
3468 * the mmap_lock to be held.
3469 */
vmf_can_call_fault(const struct vm_fault * vmf)3470 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3471 {
3472 struct vm_area_struct *vma = vmf->vma;
3473
3474 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3475 return 0;
3476 vma_end_read(vma);
3477 return VM_FAULT_RETRY;
3478 }
3479
3480 /**
3481 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3482 * @vmf: The vm_fault descriptor passed from the fault handler.
3483 *
3484 * When preparing to insert an anonymous page into a VMA from a
3485 * fault handler, call this function rather than anon_vma_prepare().
3486 * If this vma does not already have an associated anon_vma and we are
3487 * only protected by the per-VMA lock, the caller must retry with the
3488 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3489 * determine if this VMA can share its anon_vma, and that's not safe to
3490 * do with only the per-VMA lock held for this VMA.
3491 *
3492 * Return: 0 if fault handling can proceed. Any other value should be
3493 * returned to the caller.
3494 */
__vmf_anon_prepare(struct vm_fault * vmf)3495 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3496 {
3497 struct vm_area_struct *vma = vmf->vma;
3498 vm_fault_t ret = 0;
3499
3500 if (likely(vma->anon_vma))
3501 return 0;
3502 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3503 if (!mmap_read_trylock(vma->vm_mm))
3504 return VM_FAULT_RETRY;
3505 }
3506 if (__anon_vma_prepare(vma))
3507 ret = VM_FAULT_OOM;
3508 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3509 mmap_read_unlock(vma->vm_mm);
3510 return ret;
3511 }
3512
3513 /*
3514 * Handle the case of a page which we actually need to copy to a new page,
3515 * either due to COW or unsharing.
3516 *
3517 * Called with mmap_lock locked and the old page referenced, but
3518 * without the ptl held.
3519 *
3520 * High level logic flow:
3521 *
3522 * - Allocate a page, copy the content of the old page to the new one.
3523 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3524 * - Take the PTL. If the pte changed, bail out and release the allocated page
3525 * - If the pte is still the way we remember it, update the page table and all
3526 * relevant references. This includes dropping the reference the page-table
3527 * held to the old page, as well as updating the rmap.
3528 * - In any case, unlock the PTL and drop the reference we took to the old page.
3529 */
wp_page_copy(struct vm_fault * vmf)3530 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3531 {
3532 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3533 struct vm_area_struct *vma = vmf->vma;
3534 struct mm_struct *mm = vma->vm_mm;
3535 struct folio *old_folio = NULL;
3536 struct folio *new_folio = NULL;
3537 pte_t entry;
3538 int page_copied = 0;
3539 struct mmu_notifier_range range;
3540 vm_fault_t ret;
3541 bool pfn_is_zero;
3542
3543 delayacct_wpcopy_start();
3544
3545 if (vmf->page)
3546 old_folio = page_folio(vmf->page);
3547 ret = vmf_anon_prepare(vmf);
3548 if (unlikely(ret))
3549 goto out;
3550
3551 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3552 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3553 if (!new_folio)
3554 goto oom;
3555
3556 if (!pfn_is_zero) {
3557 int err;
3558
3559 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3560 if (err) {
3561 /*
3562 * COW failed, if the fault was solved by other,
3563 * it's fine. If not, userspace would re-fault on
3564 * the same address and we will handle the fault
3565 * from the second attempt.
3566 * The -EHWPOISON case will not be retried.
3567 */
3568 folio_put(new_folio);
3569 if (old_folio)
3570 folio_put(old_folio);
3571
3572 delayacct_wpcopy_end();
3573 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3574 }
3575 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3576 }
3577
3578 __folio_mark_uptodate(new_folio);
3579
3580 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3581 vmf->address & PAGE_MASK,
3582 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3583 mmu_notifier_invalidate_range_start(&range);
3584
3585 /*
3586 * Re-check the pte - we dropped the lock
3587 */
3588 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3589 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3590 if (old_folio) {
3591 if (!folio_test_anon(old_folio)) {
3592 dec_mm_counter(mm, mm_counter_file(old_folio));
3593 inc_mm_counter(mm, MM_ANONPAGES);
3594 }
3595 } else {
3596 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3597 inc_mm_counter(mm, MM_ANONPAGES);
3598 }
3599 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3600 entry = folio_mk_pte(new_folio, vma->vm_page_prot);
3601 entry = pte_sw_mkyoung(entry);
3602 if (unlikely(unshare)) {
3603 if (pte_soft_dirty(vmf->orig_pte))
3604 entry = pte_mksoft_dirty(entry);
3605 if (pte_uffd_wp(vmf->orig_pte))
3606 entry = pte_mkuffd_wp(entry);
3607 } else {
3608 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3609 }
3610
3611 /*
3612 * Clear the pte entry and flush it first, before updating the
3613 * pte with the new entry, to keep TLBs on different CPUs in
3614 * sync. This code used to set the new PTE then flush TLBs, but
3615 * that left a window where the new PTE could be loaded into
3616 * some TLBs while the old PTE remains in others.
3617 */
3618 ptep_clear_flush(vma, vmf->address, vmf->pte);
3619 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3620 folio_add_lru_vma(new_folio, vma);
3621 BUG_ON(unshare && pte_write(entry));
3622 set_pte_at(mm, vmf->address, vmf->pte, entry);
3623 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3624 if (old_folio) {
3625 /*
3626 * Only after switching the pte to the new page may
3627 * we remove the mapcount here. Otherwise another
3628 * process may come and find the rmap count decremented
3629 * before the pte is switched to the new page, and
3630 * "reuse" the old page writing into it while our pte
3631 * here still points into it and can be read by other
3632 * threads.
3633 *
3634 * The critical issue is to order this
3635 * folio_remove_rmap_pte() with the ptp_clear_flush
3636 * above. Those stores are ordered by (if nothing else,)
3637 * the barrier present in the atomic_add_negative
3638 * in folio_remove_rmap_pte();
3639 *
3640 * Then the TLB flush in ptep_clear_flush ensures that
3641 * no process can access the old page before the
3642 * decremented mapcount is visible. And the old page
3643 * cannot be reused until after the decremented
3644 * mapcount is visible. So transitively, TLBs to
3645 * old page will be flushed before it can be reused.
3646 */
3647 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3648 }
3649
3650 /* Free the old page.. */
3651 new_folio = old_folio;
3652 page_copied = 1;
3653 pte_unmap_unlock(vmf->pte, vmf->ptl);
3654 } else if (vmf->pte) {
3655 update_mmu_tlb(vma, vmf->address, vmf->pte);
3656 pte_unmap_unlock(vmf->pte, vmf->ptl);
3657 }
3658
3659 mmu_notifier_invalidate_range_end(&range);
3660
3661 if (new_folio)
3662 folio_put(new_folio);
3663 if (old_folio) {
3664 if (page_copied)
3665 free_swap_cache(old_folio);
3666 folio_put(old_folio);
3667 }
3668
3669 delayacct_wpcopy_end();
3670 return 0;
3671 oom:
3672 ret = VM_FAULT_OOM;
3673 out:
3674 if (old_folio)
3675 folio_put(old_folio);
3676
3677 delayacct_wpcopy_end();
3678 return ret;
3679 }
3680
3681 /**
3682 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3683 * writeable once the page is prepared
3684 *
3685 * @vmf: structure describing the fault
3686 * @folio: the folio of vmf->page
3687 *
3688 * This function handles all that is needed to finish a write page fault in a
3689 * shared mapping due to PTE being read-only once the mapped page is prepared.
3690 * It handles locking of PTE and modifying it.
3691 *
3692 * The function expects the page to be locked or other protection against
3693 * concurrent faults / writeback (such as DAX radix tree locks).
3694 *
3695 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3696 * we acquired PTE lock.
3697 */
finish_mkwrite_fault(struct vm_fault * vmf,struct folio * folio)3698 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3699 {
3700 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3701 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3702 &vmf->ptl);
3703 if (!vmf->pte)
3704 return VM_FAULT_NOPAGE;
3705 /*
3706 * We might have raced with another page fault while we released the
3707 * pte_offset_map_lock.
3708 */
3709 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3710 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3711 pte_unmap_unlock(vmf->pte, vmf->ptl);
3712 return VM_FAULT_NOPAGE;
3713 }
3714 wp_page_reuse(vmf, folio);
3715 return 0;
3716 }
3717
3718 /*
3719 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3720 * mapping
3721 */
wp_pfn_shared(struct vm_fault * vmf)3722 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3723 {
3724 struct vm_area_struct *vma = vmf->vma;
3725
3726 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3727 vm_fault_t ret;
3728
3729 pte_unmap_unlock(vmf->pte, vmf->ptl);
3730 ret = vmf_can_call_fault(vmf);
3731 if (ret)
3732 return ret;
3733
3734 vmf->flags |= FAULT_FLAG_MKWRITE;
3735 ret = vma->vm_ops->pfn_mkwrite(vmf);
3736 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3737 return ret;
3738 return finish_mkwrite_fault(vmf, NULL);
3739 }
3740 wp_page_reuse(vmf, NULL);
3741 return 0;
3742 }
3743
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3744 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3745 __releases(vmf->ptl)
3746 {
3747 struct vm_area_struct *vma = vmf->vma;
3748 vm_fault_t ret = 0;
3749
3750 folio_get(folio);
3751
3752 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3753 vm_fault_t tmp;
3754
3755 pte_unmap_unlock(vmf->pte, vmf->ptl);
3756 tmp = vmf_can_call_fault(vmf);
3757 if (tmp) {
3758 folio_put(folio);
3759 return tmp;
3760 }
3761
3762 tmp = do_page_mkwrite(vmf, folio);
3763 if (unlikely(!tmp || (tmp &
3764 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3765 folio_put(folio);
3766 return tmp;
3767 }
3768 tmp = finish_mkwrite_fault(vmf, folio);
3769 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3770 folio_unlock(folio);
3771 folio_put(folio);
3772 return tmp;
3773 }
3774 } else {
3775 wp_page_reuse(vmf, folio);
3776 folio_lock(folio);
3777 }
3778 ret |= fault_dirty_shared_page(vmf);
3779 folio_put(folio);
3780
3781 return ret;
3782 }
3783
3784 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)3785 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
3786 struct vm_area_struct *vma)
3787 {
3788 bool exclusive = false;
3789
3790 /* Let's just free up a large folio if only a single page is mapped. */
3791 if (folio_large_mapcount(folio) <= 1)
3792 return false;
3793
3794 /*
3795 * The assumption for anonymous folios is that each page can only get
3796 * mapped once into each MM. The only exception are KSM folios, which
3797 * are always small.
3798 *
3799 * Each taken mapcount must be paired with exactly one taken reference,
3800 * whereby the refcount must be incremented before the mapcount when
3801 * mapping a page, and the refcount must be decremented after the
3802 * mapcount when unmapping a page.
3803 *
3804 * If all folio references are from mappings, and all mappings are in
3805 * the page tables of this MM, then this folio is exclusive to this MM.
3806 */
3807 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3808 return false;
3809
3810 VM_WARN_ON_ONCE(folio_test_ksm(folio));
3811
3812 if (unlikely(folio_test_swapcache(folio))) {
3813 /*
3814 * Note: freeing up the swapcache will fail if some PTEs are
3815 * still swap entries.
3816 */
3817 if (!folio_trylock(folio))
3818 return false;
3819 folio_free_swap(folio);
3820 folio_unlock(folio);
3821 }
3822
3823 if (folio_large_mapcount(folio) != folio_ref_count(folio))
3824 return false;
3825
3826 /* Stabilize the mapcount vs. refcount and recheck. */
3827 folio_lock_large_mapcount(folio);
3828 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio);
3829
3830 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3831 goto unlock;
3832 if (folio_large_mapcount(folio) != folio_ref_count(folio))
3833 goto unlock;
3834
3835 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio);
3836 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio);
3837 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id &&
3838 folio_mm_id(folio, 1) != vma->vm_mm->mm_id);
3839
3840 /*
3841 * Do we need the folio lock? Likely not. If there would have been
3842 * references from page migration/swapout, we would have detected
3843 * an additional folio reference and never ended up here.
3844 */
3845 exclusive = true;
3846 unlock:
3847 folio_unlock_large_mapcount(folio);
3848 return exclusive;
3849 }
3850 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)3851 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
3852 struct vm_area_struct *vma)
3853 {
3854 BUILD_BUG();
3855 }
3856 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3857
wp_can_reuse_anon_folio(struct folio * folio,struct vm_area_struct * vma)3858 static bool wp_can_reuse_anon_folio(struct folio *folio,
3859 struct vm_area_struct *vma)
3860 {
3861 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio))
3862 return __wp_can_reuse_large_anon_folio(folio, vma);
3863
3864 /*
3865 * We have to verify under folio lock: these early checks are
3866 * just an optimization to avoid locking the folio and freeing
3867 * the swapcache if there is little hope that we can reuse.
3868 *
3869 * KSM doesn't necessarily raise the folio refcount.
3870 */
3871 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3872 return false;
3873 if (!folio_test_lru(folio))
3874 /*
3875 * We cannot easily detect+handle references from
3876 * remote LRU caches or references to LRU folios.
3877 */
3878 lru_add_drain();
3879 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3880 return false;
3881 if (!folio_trylock(folio))
3882 return false;
3883 if (folio_test_swapcache(folio))
3884 folio_free_swap(folio);
3885 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3886 folio_unlock(folio);
3887 return false;
3888 }
3889 /*
3890 * Ok, we've got the only folio reference from our mapping
3891 * and the folio is locked, it's dark out, and we're wearing
3892 * sunglasses. Hit it.
3893 */
3894 folio_move_anon_rmap(folio, vma);
3895 folio_unlock(folio);
3896 return true;
3897 }
3898
3899 /*
3900 * This routine handles present pages, when
3901 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3902 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3903 * (FAULT_FLAG_UNSHARE)
3904 *
3905 * It is done by copying the page to a new address and decrementing the
3906 * shared-page counter for the old page.
3907 *
3908 * Note that this routine assumes that the protection checks have been
3909 * done by the caller (the low-level page fault routine in most cases).
3910 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3911 * done any necessary COW.
3912 *
3913 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3914 * though the page will change only once the write actually happens. This
3915 * avoids a few races, and potentially makes it more efficient.
3916 *
3917 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3918 * but allow concurrent faults), with pte both mapped and locked.
3919 * We return with mmap_lock still held, but pte unmapped and unlocked.
3920 */
do_wp_page(struct vm_fault * vmf)3921 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3922 __releases(vmf->ptl)
3923 {
3924 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3925 struct vm_area_struct *vma = vmf->vma;
3926 struct folio *folio = NULL;
3927 pte_t pte;
3928
3929 if (likely(!unshare)) {
3930 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3931 if (!userfaultfd_wp_async(vma)) {
3932 pte_unmap_unlock(vmf->pte, vmf->ptl);
3933 return handle_userfault(vmf, VM_UFFD_WP);
3934 }
3935
3936 /*
3937 * Nothing needed (cache flush, TLB invalidations,
3938 * etc.) because we're only removing the uffd-wp bit,
3939 * which is completely invisible to the user.
3940 */
3941 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3942
3943 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3944 /*
3945 * Update this to be prepared for following up CoW
3946 * handling
3947 */
3948 vmf->orig_pte = pte;
3949 }
3950
3951 /*
3952 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3953 * is flushed in this case before copying.
3954 */
3955 if (unlikely(userfaultfd_wp(vmf->vma) &&
3956 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3957 flush_tlb_page(vmf->vma, vmf->address);
3958 }
3959
3960 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3961
3962 if (vmf->page)
3963 folio = page_folio(vmf->page);
3964
3965 /*
3966 * Shared mapping: we are guaranteed to have VM_WRITE and
3967 * FAULT_FLAG_WRITE set at this point.
3968 */
3969 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3970 /*
3971 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3972 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called.
3973 *
3974 * We should not cow pages in a shared writeable mapping.
3975 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3976 */
3977 if (!vmf->page || is_fsdax_page(vmf->page)) {
3978 vmf->page = NULL;
3979 return wp_pfn_shared(vmf);
3980 }
3981 return wp_page_shared(vmf, folio);
3982 }
3983
3984 /*
3985 * Private mapping: create an exclusive anonymous page copy if reuse
3986 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3987 *
3988 * If we encounter a page that is marked exclusive, we must reuse
3989 * the page without further checks.
3990 */
3991 if (folio && folio_test_anon(folio) &&
3992 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3993 if (!PageAnonExclusive(vmf->page))
3994 SetPageAnonExclusive(vmf->page);
3995 if (unlikely(unshare)) {
3996 pte_unmap_unlock(vmf->pte, vmf->ptl);
3997 return 0;
3998 }
3999 wp_page_reuse(vmf, folio);
4000 return 0;
4001 }
4002 /*
4003 * Ok, we need to copy. Oh, well..
4004 */
4005 if (folio)
4006 folio_get(folio);
4007
4008 pte_unmap_unlock(vmf->pte, vmf->ptl);
4009 #ifdef CONFIG_KSM
4010 if (folio && folio_test_ksm(folio))
4011 count_vm_event(COW_KSM);
4012 #endif
4013 return wp_page_copy(vmf);
4014 }
4015
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)4016 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
4017 unsigned long start_addr, unsigned long end_addr,
4018 struct zap_details *details)
4019 {
4020 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
4021 }
4022
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)4023 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
4024 pgoff_t first_index,
4025 pgoff_t last_index,
4026 struct zap_details *details)
4027 {
4028 struct vm_area_struct *vma;
4029 pgoff_t vba, vea, zba, zea;
4030
4031 vma_interval_tree_foreach(vma, root, first_index, last_index) {
4032 vba = vma->vm_pgoff;
4033 vea = vba + vma_pages(vma) - 1;
4034 zba = max(first_index, vba);
4035 zea = min(last_index, vea);
4036
4037 unmap_mapping_range_vma(vma,
4038 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
4039 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
4040 details);
4041 }
4042 }
4043
4044 /**
4045 * unmap_mapping_folio() - Unmap single folio from processes.
4046 * @folio: The locked folio to be unmapped.
4047 *
4048 * Unmap this folio from any userspace process which still has it mmaped.
4049 * Typically, for efficiency, the range of nearby pages has already been
4050 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
4051 * truncation or invalidation holds the lock on a folio, it may find that
4052 * the page has been remapped again: and then uses unmap_mapping_folio()
4053 * to unmap it finally.
4054 */
unmap_mapping_folio(struct folio * folio)4055 void unmap_mapping_folio(struct folio *folio)
4056 {
4057 struct address_space *mapping = folio->mapping;
4058 struct zap_details details = { };
4059 pgoff_t first_index;
4060 pgoff_t last_index;
4061
4062 VM_BUG_ON(!folio_test_locked(folio));
4063
4064 first_index = folio->index;
4065 last_index = folio_next_index(folio) - 1;
4066
4067 details.even_cows = false;
4068 details.single_folio = folio;
4069 details.zap_flags = ZAP_FLAG_DROP_MARKER;
4070
4071 i_mmap_lock_read(mapping);
4072 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4073 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4074 last_index, &details);
4075 i_mmap_unlock_read(mapping);
4076 }
4077
4078 /**
4079 * unmap_mapping_pages() - Unmap pages from processes.
4080 * @mapping: The address space containing pages to be unmapped.
4081 * @start: Index of first page to be unmapped.
4082 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
4083 * @even_cows: Whether to unmap even private COWed pages.
4084 *
4085 * Unmap the pages in this address space from any userspace process which
4086 * has them mmaped. Generally, you want to remove COWed pages as well when
4087 * a file is being truncated, but not when invalidating pages from the page
4088 * cache.
4089 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)4090 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
4091 pgoff_t nr, bool even_cows)
4092 {
4093 struct zap_details details = { };
4094 pgoff_t first_index = start;
4095 pgoff_t last_index = start + nr - 1;
4096
4097 details.even_cows = even_cows;
4098 if (last_index < first_index)
4099 last_index = ULONG_MAX;
4100
4101 i_mmap_lock_read(mapping);
4102 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4103 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4104 last_index, &details);
4105 i_mmap_unlock_read(mapping);
4106 }
4107 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
4108
4109 /**
4110 * unmap_mapping_range - unmap the portion of all mmaps in the specified
4111 * address_space corresponding to the specified byte range in the underlying
4112 * file.
4113 *
4114 * @mapping: the address space containing mmaps to be unmapped.
4115 * @holebegin: byte in first page to unmap, relative to the start of
4116 * the underlying file. This will be rounded down to a PAGE_SIZE
4117 * boundary. Note that this is different from truncate_pagecache(), which
4118 * must keep the partial page. In contrast, we must get rid of
4119 * partial pages.
4120 * @holelen: size of prospective hole in bytes. This will be rounded
4121 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
4122 * end of the file.
4123 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
4124 * but 0 when invalidating pagecache, don't throw away private data.
4125 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)4126 void unmap_mapping_range(struct address_space *mapping,
4127 loff_t const holebegin, loff_t const holelen, int even_cows)
4128 {
4129 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
4130 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
4131
4132 /* Check for overflow. */
4133 if (sizeof(holelen) > sizeof(hlen)) {
4134 long long holeend =
4135 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
4136 if (holeend & ~(long long)ULONG_MAX)
4137 hlen = ULONG_MAX - hba + 1;
4138 }
4139
4140 unmap_mapping_pages(mapping, hba, hlen, even_cows);
4141 }
4142 EXPORT_SYMBOL(unmap_mapping_range);
4143
4144 /*
4145 * Restore a potential device exclusive pte to a working pte entry
4146 */
remove_device_exclusive_entry(struct vm_fault * vmf)4147 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
4148 {
4149 struct folio *folio = page_folio(vmf->page);
4150 struct vm_area_struct *vma = vmf->vma;
4151 struct mmu_notifier_range range;
4152 vm_fault_t ret;
4153
4154 /*
4155 * We need a reference to lock the folio because we don't hold
4156 * the PTL so a racing thread can remove the device-exclusive
4157 * entry and unmap it. If the folio is free the entry must
4158 * have been removed already. If it happens to have already
4159 * been re-allocated after being freed all we do is lock and
4160 * unlock it.
4161 */
4162 if (!folio_try_get(folio))
4163 return 0;
4164
4165 ret = folio_lock_or_retry(folio, vmf);
4166 if (ret) {
4167 folio_put(folio);
4168 return ret;
4169 }
4170 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0,
4171 vma->vm_mm, vmf->address & PAGE_MASK,
4172 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
4173 mmu_notifier_invalidate_range_start(&range);
4174
4175 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4176 &vmf->ptl);
4177 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4178 restore_exclusive_pte(vma, folio, vmf->page, vmf->address,
4179 vmf->pte, vmf->orig_pte);
4180
4181 if (vmf->pte)
4182 pte_unmap_unlock(vmf->pte, vmf->ptl);
4183 folio_unlock(folio);
4184 folio_put(folio);
4185
4186 mmu_notifier_invalidate_range_end(&range);
4187 return 0;
4188 }
4189
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)4190 static inline bool should_try_to_free_swap(struct folio *folio,
4191 struct vm_area_struct *vma,
4192 unsigned int fault_flags)
4193 {
4194 if (!folio_test_swapcache(folio))
4195 return false;
4196 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4197 folio_test_mlocked(folio))
4198 return true;
4199 /*
4200 * If we want to map a page that's in the swapcache writable, we
4201 * have to detect via the refcount if we're really the exclusive
4202 * user. Try freeing the swapcache to get rid of the swapcache
4203 * reference only in case it's likely that we'll be the exlusive user.
4204 */
4205 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4206 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4207 }
4208
pte_marker_clear(struct vm_fault * vmf)4209 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4210 {
4211 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4212 vmf->address, &vmf->ptl);
4213 if (!vmf->pte)
4214 return 0;
4215 /*
4216 * Be careful so that we will only recover a special uffd-wp pte into a
4217 * none pte. Otherwise it means the pte could have changed, so retry.
4218 *
4219 * This should also cover the case where e.g. the pte changed
4220 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4221 * So is_pte_marker() check is not enough to safely drop the pte.
4222 */
4223 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4224 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4225 pte_unmap_unlock(vmf->pte, vmf->ptl);
4226 return 0;
4227 }
4228
do_pte_missing(struct vm_fault * vmf)4229 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4230 {
4231 if (vma_is_anonymous(vmf->vma))
4232 return do_anonymous_page(vmf);
4233 else
4234 return do_fault(vmf);
4235 }
4236
4237 /*
4238 * This is actually a page-missing access, but with uffd-wp special pte
4239 * installed. It means this pte was wr-protected before being unmapped.
4240 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)4241 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4242 {
4243 /*
4244 * Just in case there're leftover special ptes even after the region
4245 * got unregistered - we can simply clear them.
4246 */
4247 if (unlikely(!userfaultfd_wp(vmf->vma)))
4248 return pte_marker_clear(vmf);
4249
4250 return do_pte_missing(vmf);
4251 }
4252
handle_pte_marker(struct vm_fault * vmf)4253 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4254 {
4255 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4256 unsigned long marker = pte_marker_get(entry);
4257
4258 /*
4259 * PTE markers should never be empty. If anything weird happened,
4260 * the best thing to do is to kill the process along with its mm.
4261 */
4262 if (WARN_ON_ONCE(!marker))
4263 return VM_FAULT_SIGBUS;
4264
4265 /* Higher priority than uffd-wp when data corrupted */
4266 if (marker & PTE_MARKER_POISONED)
4267 return VM_FAULT_HWPOISON;
4268
4269 /* Hitting a guard page is always a fatal condition. */
4270 if (marker & PTE_MARKER_GUARD)
4271 return VM_FAULT_SIGSEGV;
4272
4273 if (pte_marker_entry_uffd_wp(entry))
4274 return pte_marker_handle_uffd_wp(vmf);
4275
4276 /* This is an unknown pte marker */
4277 return VM_FAULT_SIGBUS;
4278 }
4279
__alloc_swap_folio(struct vm_fault * vmf)4280 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4281 {
4282 struct vm_area_struct *vma = vmf->vma;
4283 struct folio *folio;
4284 swp_entry_t entry;
4285
4286 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4287 if (!folio)
4288 return NULL;
4289
4290 entry = pte_to_swp_entry(vmf->orig_pte);
4291 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4292 GFP_KERNEL, entry)) {
4293 folio_put(folio);
4294 return NULL;
4295 }
4296
4297 return folio;
4298 }
4299
4300 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4301 /*
4302 * Check if the PTEs within a range are contiguous swap entries
4303 * and have consistent swapcache, zeromap.
4304 */
can_swapin_thp(struct vm_fault * vmf,pte_t * ptep,int nr_pages)4305 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4306 {
4307 unsigned long addr;
4308 swp_entry_t entry;
4309 int idx;
4310 pte_t pte;
4311
4312 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4313 idx = (vmf->address - addr) / PAGE_SIZE;
4314 pte = ptep_get(ptep);
4315
4316 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4317 return false;
4318 entry = pte_to_swp_entry(pte);
4319 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4320 return false;
4321
4322 /*
4323 * swap_read_folio() can't handle the case a large folio is hybridly
4324 * from different backends. And they are likely corner cases. Similar
4325 * things might be added once zswap support large folios.
4326 */
4327 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4328 return false;
4329 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4330 return false;
4331
4332 return true;
4333 }
4334
thp_swap_suitable_orders(pgoff_t swp_offset,unsigned long addr,unsigned long orders)4335 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4336 unsigned long addr,
4337 unsigned long orders)
4338 {
4339 int order, nr;
4340
4341 order = highest_order(orders);
4342
4343 /*
4344 * To swap in a THP with nr pages, we require that its first swap_offset
4345 * is aligned with that number, as it was when the THP was swapped out.
4346 * This helps filter out most invalid entries.
4347 */
4348 while (orders) {
4349 nr = 1 << order;
4350 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4351 break;
4352 order = next_order(&orders, order);
4353 }
4354
4355 return orders;
4356 }
4357
alloc_swap_folio(struct vm_fault * vmf)4358 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4359 {
4360 struct vm_area_struct *vma = vmf->vma;
4361 unsigned long orders;
4362 struct folio *folio;
4363 unsigned long addr;
4364 swp_entry_t entry;
4365 spinlock_t *ptl;
4366 pte_t *pte;
4367 gfp_t gfp;
4368 int order;
4369
4370 /*
4371 * If uffd is active for the vma we need per-page fault fidelity to
4372 * maintain the uffd semantics.
4373 */
4374 if (unlikely(userfaultfd_armed(vma)))
4375 goto fallback;
4376
4377 /*
4378 * A large swapped out folio could be partially or fully in zswap. We
4379 * lack handling for such cases, so fallback to swapping in order-0
4380 * folio.
4381 */
4382 if (!zswap_never_enabled())
4383 goto fallback;
4384
4385 entry = pte_to_swp_entry(vmf->orig_pte);
4386 /*
4387 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4388 * and suitable for swapping THP.
4389 */
4390 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4391 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4392 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4393 orders = thp_swap_suitable_orders(swp_offset(entry),
4394 vmf->address, orders);
4395
4396 if (!orders)
4397 goto fallback;
4398
4399 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4400 vmf->address & PMD_MASK, &ptl);
4401 if (unlikely(!pte))
4402 goto fallback;
4403
4404 /*
4405 * For do_swap_page, find the highest order where the aligned range is
4406 * completely swap entries with contiguous swap offsets.
4407 */
4408 order = highest_order(orders);
4409 while (orders) {
4410 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4411 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4412 break;
4413 order = next_order(&orders, order);
4414 }
4415
4416 pte_unmap_unlock(pte, ptl);
4417
4418 /* Try allocating the highest of the remaining orders. */
4419 gfp = vma_thp_gfp_mask(vma);
4420 while (orders) {
4421 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4422 folio = vma_alloc_folio(gfp, order, vma, addr);
4423 if (folio) {
4424 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4425 gfp, entry))
4426 return folio;
4427 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4428 folio_put(folio);
4429 }
4430 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4431 order = next_order(&orders, order);
4432 }
4433
4434 fallback:
4435 return __alloc_swap_folio(vmf);
4436 }
4437 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
alloc_swap_folio(struct vm_fault * vmf)4438 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4439 {
4440 return __alloc_swap_folio(vmf);
4441 }
4442 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4443
4444 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4445
4446 /*
4447 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4448 * but allow concurrent faults), and pte mapped but not yet locked.
4449 * We return with pte unmapped and unlocked.
4450 *
4451 * We return with the mmap_lock locked or unlocked in the same cases
4452 * as does filemap_fault().
4453 */
do_swap_page(struct vm_fault * vmf)4454 vm_fault_t do_swap_page(struct vm_fault *vmf)
4455 {
4456 struct vm_area_struct *vma = vmf->vma;
4457 struct folio *swapcache, *folio = NULL;
4458 DECLARE_WAITQUEUE(wait, current);
4459 struct page *page;
4460 struct swap_info_struct *si = NULL;
4461 rmap_t rmap_flags = RMAP_NONE;
4462 bool need_clear_cache = false;
4463 bool exclusive = false;
4464 swp_entry_t entry;
4465 pte_t pte;
4466 vm_fault_t ret = 0;
4467 void *shadow = NULL;
4468 int nr_pages;
4469 unsigned long page_idx;
4470 unsigned long address;
4471 pte_t *ptep;
4472
4473 if (!pte_unmap_same(vmf))
4474 goto out;
4475
4476 entry = pte_to_swp_entry(vmf->orig_pte);
4477 if (unlikely(non_swap_entry(entry))) {
4478 if (is_migration_entry(entry)) {
4479 migration_entry_wait(vma->vm_mm, vmf->pmd,
4480 vmf->address);
4481 } else if (is_device_exclusive_entry(entry)) {
4482 vmf->page = pfn_swap_entry_to_page(entry);
4483 ret = remove_device_exclusive_entry(vmf);
4484 } else if (is_device_private_entry(entry)) {
4485 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4486 /*
4487 * migrate_to_ram is not yet ready to operate
4488 * under VMA lock.
4489 */
4490 vma_end_read(vma);
4491 ret = VM_FAULT_RETRY;
4492 goto out;
4493 }
4494
4495 vmf->page = pfn_swap_entry_to_page(entry);
4496 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4497 vmf->address, &vmf->ptl);
4498 if (unlikely(!vmf->pte ||
4499 !pte_same(ptep_get(vmf->pte),
4500 vmf->orig_pte)))
4501 goto unlock;
4502
4503 /*
4504 * Get a page reference while we know the page can't be
4505 * freed.
4506 */
4507 if (trylock_page(vmf->page)) {
4508 struct dev_pagemap *pgmap;
4509
4510 get_page(vmf->page);
4511 pte_unmap_unlock(vmf->pte, vmf->ptl);
4512 pgmap = page_pgmap(vmf->page);
4513 ret = pgmap->ops->migrate_to_ram(vmf);
4514 unlock_page(vmf->page);
4515 put_page(vmf->page);
4516 } else {
4517 pte_unmap_unlock(vmf->pte, vmf->ptl);
4518 }
4519 } else if (is_hwpoison_entry(entry)) {
4520 ret = VM_FAULT_HWPOISON;
4521 } else if (is_pte_marker_entry(entry)) {
4522 ret = handle_pte_marker(vmf);
4523 } else {
4524 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4525 ret = VM_FAULT_SIGBUS;
4526 }
4527 goto out;
4528 }
4529
4530 /* Prevent swapoff from happening to us. */
4531 si = get_swap_device(entry);
4532 if (unlikely(!si))
4533 goto out;
4534
4535 folio = swap_cache_get_folio(entry, vma, vmf->address);
4536 if (folio)
4537 page = folio_file_page(folio, swp_offset(entry));
4538 swapcache = folio;
4539
4540 if (!folio) {
4541 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4542 __swap_count(entry) == 1) {
4543 /* skip swapcache */
4544 folio = alloc_swap_folio(vmf);
4545 if (folio) {
4546 __folio_set_locked(folio);
4547 __folio_set_swapbacked(folio);
4548
4549 nr_pages = folio_nr_pages(folio);
4550 if (folio_test_large(folio))
4551 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4552 /*
4553 * Prevent parallel swapin from proceeding with
4554 * the cache flag. Otherwise, another thread
4555 * may finish swapin first, free the entry, and
4556 * swapout reusing the same entry. It's
4557 * undetectable as pte_same() returns true due
4558 * to entry reuse.
4559 */
4560 if (swapcache_prepare(entry, nr_pages)) {
4561 /*
4562 * Relax a bit to prevent rapid
4563 * repeated page faults.
4564 */
4565 add_wait_queue(&swapcache_wq, &wait);
4566 schedule_timeout_uninterruptible(1);
4567 remove_wait_queue(&swapcache_wq, &wait);
4568 goto out_page;
4569 }
4570 need_clear_cache = true;
4571
4572 memcg1_swapin(entry, nr_pages);
4573
4574 shadow = get_shadow_from_swap_cache(entry);
4575 if (shadow)
4576 workingset_refault(folio, shadow);
4577
4578 folio_add_lru(folio);
4579
4580 /* To provide entry to swap_read_folio() */
4581 folio->swap = entry;
4582 swap_read_folio(folio, NULL);
4583 folio->private = NULL;
4584 }
4585 } else {
4586 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4587 vmf);
4588 swapcache = folio;
4589 }
4590
4591 if (!folio) {
4592 /*
4593 * Back out if somebody else faulted in this pte
4594 * while we released the pte lock.
4595 */
4596 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4597 vmf->address, &vmf->ptl);
4598 if (likely(vmf->pte &&
4599 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4600 ret = VM_FAULT_OOM;
4601 goto unlock;
4602 }
4603
4604 /* Had to read the page from swap area: Major fault */
4605 ret = VM_FAULT_MAJOR;
4606 count_vm_event(PGMAJFAULT);
4607 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4608 page = folio_file_page(folio, swp_offset(entry));
4609 } else if (PageHWPoison(page)) {
4610 /*
4611 * hwpoisoned dirty swapcache pages are kept for killing
4612 * owner processes (which may be unknown at hwpoison time)
4613 */
4614 ret = VM_FAULT_HWPOISON;
4615 goto out_release;
4616 }
4617
4618 ret |= folio_lock_or_retry(folio, vmf);
4619 if (ret & VM_FAULT_RETRY)
4620 goto out_release;
4621
4622 if (swapcache) {
4623 /*
4624 * Make sure folio_free_swap() or swapoff did not release the
4625 * swapcache from under us. The page pin, and pte_same test
4626 * below, are not enough to exclude that. Even if it is still
4627 * swapcache, we need to check that the page's swap has not
4628 * changed.
4629 */
4630 if (unlikely(!folio_test_swapcache(folio) ||
4631 page_swap_entry(page).val != entry.val))
4632 goto out_page;
4633
4634 /*
4635 * KSM sometimes has to copy on read faults, for example, if
4636 * folio->index of non-ksm folios would be nonlinear inside the
4637 * anon VMA -- the ksm flag is lost on actual swapout.
4638 */
4639 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4640 if (unlikely(!folio)) {
4641 ret = VM_FAULT_OOM;
4642 folio = swapcache;
4643 goto out_page;
4644 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4645 ret = VM_FAULT_HWPOISON;
4646 folio = swapcache;
4647 goto out_page;
4648 }
4649 if (folio != swapcache)
4650 page = folio_page(folio, 0);
4651
4652 /*
4653 * If we want to map a page that's in the swapcache writable, we
4654 * have to detect via the refcount if we're really the exclusive
4655 * owner. Try removing the extra reference from the local LRU
4656 * caches if required.
4657 */
4658 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4659 !folio_test_ksm(folio) && !folio_test_lru(folio))
4660 lru_add_drain();
4661 }
4662
4663 folio_throttle_swaprate(folio, GFP_KERNEL);
4664
4665 /*
4666 * Back out if somebody else already faulted in this pte.
4667 */
4668 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4669 &vmf->ptl);
4670 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4671 goto out_nomap;
4672
4673 if (unlikely(!folio_test_uptodate(folio))) {
4674 ret = VM_FAULT_SIGBUS;
4675 goto out_nomap;
4676 }
4677
4678 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4679 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4680 unsigned long nr = folio_nr_pages(folio);
4681 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4682 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4683 pte_t *folio_ptep = vmf->pte - idx;
4684 pte_t folio_pte = ptep_get(folio_ptep);
4685
4686 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4687 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4688 goto out_nomap;
4689
4690 page_idx = idx;
4691 address = folio_start;
4692 ptep = folio_ptep;
4693 goto check_folio;
4694 }
4695
4696 nr_pages = 1;
4697 page_idx = 0;
4698 address = vmf->address;
4699 ptep = vmf->pte;
4700 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4701 int nr = folio_nr_pages(folio);
4702 unsigned long idx = folio_page_idx(folio, page);
4703 unsigned long folio_start = address - idx * PAGE_SIZE;
4704 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4705 pte_t *folio_ptep;
4706 pte_t folio_pte;
4707
4708 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4709 goto check_folio;
4710 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4711 goto check_folio;
4712
4713 folio_ptep = vmf->pte - idx;
4714 folio_pte = ptep_get(folio_ptep);
4715 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4716 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4717 goto check_folio;
4718
4719 page_idx = idx;
4720 address = folio_start;
4721 ptep = folio_ptep;
4722 nr_pages = nr;
4723 entry = folio->swap;
4724 page = &folio->page;
4725 }
4726
4727 check_folio:
4728 /*
4729 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4730 * must never point at an anonymous page in the swapcache that is
4731 * PG_anon_exclusive. Sanity check that this holds and especially, that
4732 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4733 * check after taking the PT lock and making sure that nobody
4734 * concurrently faulted in this page and set PG_anon_exclusive.
4735 */
4736 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4737 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4738
4739 /*
4740 * Check under PT lock (to protect against concurrent fork() sharing
4741 * the swap entry concurrently) for certainly exclusive pages.
4742 */
4743 if (!folio_test_ksm(folio)) {
4744 exclusive = pte_swp_exclusive(vmf->orig_pte);
4745 if (folio != swapcache) {
4746 /*
4747 * We have a fresh page that is not exposed to the
4748 * swapcache -> certainly exclusive.
4749 */
4750 exclusive = true;
4751 } else if (exclusive && folio_test_writeback(folio) &&
4752 data_race(si->flags & SWP_STABLE_WRITES)) {
4753 /*
4754 * This is tricky: not all swap backends support
4755 * concurrent page modifications while under writeback.
4756 *
4757 * So if we stumble over such a page in the swapcache
4758 * we must not set the page exclusive, otherwise we can
4759 * map it writable without further checks and modify it
4760 * while still under writeback.
4761 *
4762 * For these problematic swap backends, simply drop the
4763 * exclusive marker: this is perfectly fine as we start
4764 * writeback only if we fully unmapped the page and
4765 * there are no unexpected references on the page after
4766 * unmapping succeeded. After fully unmapped, no
4767 * further GUP references (FOLL_GET and FOLL_PIN) can
4768 * appear, so dropping the exclusive marker and mapping
4769 * it only R/O is fine.
4770 */
4771 exclusive = false;
4772 }
4773 }
4774
4775 /*
4776 * Some architectures may have to restore extra metadata to the page
4777 * when reading from swap. This metadata may be indexed by swap entry
4778 * so this must be called before swap_free().
4779 */
4780 arch_swap_restore(folio_swap(entry, folio), folio);
4781
4782 /*
4783 * Remove the swap entry and conditionally try to free up the swapcache.
4784 * We're already holding a reference on the page but haven't mapped it
4785 * yet.
4786 */
4787 swap_free_nr(entry, nr_pages);
4788 if (should_try_to_free_swap(folio, vma, vmf->flags))
4789 folio_free_swap(folio);
4790
4791 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4792 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4793 pte = mk_pte(page, vma->vm_page_prot);
4794 if (pte_swp_soft_dirty(vmf->orig_pte))
4795 pte = pte_mksoft_dirty(pte);
4796 if (pte_swp_uffd_wp(vmf->orig_pte))
4797 pte = pte_mkuffd_wp(pte);
4798
4799 /*
4800 * Same logic as in do_wp_page(); however, optimize for pages that are
4801 * certainly not shared either because we just allocated them without
4802 * exposing them to the swapcache or because the swap entry indicates
4803 * exclusivity.
4804 */
4805 if (!folio_test_ksm(folio) &&
4806 (exclusive || folio_ref_count(folio) == 1)) {
4807 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4808 !pte_needs_soft_dirty_wp(vma, pte)) {
4809 pte = pte_mkwrite(pte, vma);
4810 if (vmf->flags & FAULT_FLAG_WRITE) {
4811 pte = pte_mkdirty(pte);
4812 vmf->flags &= ~FAULT_FLAG_WRITE;
4813 }
4814 }
4815 rmap_flags |= RMAP_EXCLUSIVE;
4816 }
4817 folio_ref_add(folio, nr_pages - 1);
4818 flush_icache_pages(vma, page, nr_pages);
4819 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4820
4821 /* ksm created a completely new copy */
4822 if (unlikely(folio != swapcache && swapcache)) {
4823 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4824 folio_add_lru_vma(folio, vma);
4825 } else if (!folio_test_anon(folio)) {
4826 /*
4827 * We currently only expect small !anon folios which are either
4828 * fully exclusive or fully shared, or new allocated large
4829 * folios which are fully exclusive. If we ever get large
4830 * folios within swapcache here, we have to be careful.
4831 */
4832 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4833 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4834 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4835 } else {
4836 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4837 rmap_flags);
4838 }
4839
4840 VM_BUG_ON(!folio_test_anon(folio) ||
4841 (pte_write(pte) && !PageAnonExclusive(page)));
4842 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4843 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4844 pte, pte, nr_pages);
4845
4846 folio_unlock(folio);
4847 if (folio != swapcache && swapcache) {
4848 /*
4849 * Hold the lock to avoid the swap entry to be reused
4850 * until we take the PT lock for the pte_same() check
4851 * (to avoid false positives from pte_same). For
4852 * further safety release the lock after the swap_free
4853 * so that the swap count won't change under a
4854 * parallel locked swapcache.
4855 */
4856 folio_unlock(swapcache);
4857 folio_put(swapcache);
4858 }
4859
4860 if (vmf->flags & FAULT_FLAG_WRITE) {
4861 ret |= do_wp_page(vmf);
4862 if (ret & VM_FAULT_ERROR)
4863 ret &= VM_FAULT_ERROR;
4864 goto out;
4865 }
4866
4867 /* No need to invalidate - it was non-present before */
4868 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4869 unlock:
4870 if (vmf->pte)
4871 pte_unmap_unlock(vmf->pte, vmf->ptl);
4872 out:
4873 /* Clear the swap cache pin for direct swapin after PTL unlock */
4874 if (need_clear_cache) {
4875 swapcache_clear(si, entry, nr_pages);
4876 if (waitqueue_active(&swapcache_wq))
4877 wake_up(&swapcache_wq);
4878 }
4879 if (si)
4880 put_swap_device(si);
4881 return ret;
4882 out_nomap:
4883 if (vmf->pte)
4884 pte_unmap_unlock(vmf->pte, vmf->ptl);
4885 out_page:
4886 folio_unlock(folio);
4887 out_release:
4888 folio_put(folio);
4889 if (folio != swapcache && swapcache) {
4890 folio_unlock(swapcache);
4891 folio_put(swapcache);
4892 }
4893 if (need_clear_cache) {
4894 swapcache_clear(si, entry, nr_pages);
4895 if (waitqueue_active(&swapcache_wq))
4896 wake_up(&swapcache_wq);
4897 }
4898 if (si)
4899 put_swap_device(si);
4900 return ret;
4901 }
4902
pte_range_none(pte_t * pte,int nr_pages)4903 static bool pte_range_none(pte_t *pte, int nr_pages)
4904 {
4905 int i;
4906
4907 for (i = 0; i < nr_pages; i++) {
4908 if (!pte_none(ptep_get_lockless(pte + i)))
4909 return false;
4910 }
4911
4912 return true;
4913 }
4914
alloc_anon_folio(struct vm_fault * vmf)4915 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4916 {
4917 struct vm_area_struct *vma = vmf->vma;
4918 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4919 unsigned long orders;
4920 struct folio *folio;
4921 unsigned long addr;
4922 pte_t *pte;
4923 gfp_t gfp;
4924 int order;
4925
4926 /*
4927 * If uffd is active for the vma we need per-page fault fidelity to
4928 * maintain the uffd semantics.
4929 */
4930 if (unlikely(userfaultfd_armed(vma)))
4931 goto fallback;
4932
4933 /*
4934 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4935 * for this vma. Then filter out the orders that can't be allocated over
4936 * the faulting address and still be fully contained in the vma.
4937 */
4938 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4939 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4940 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4941
4942 if (!orders)
4943 goto fallback;
4944
4945 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4946 if (!pte)
4947 return ERR_PTR(-EAGAIN);
4948
4949 /*
4950 * Find the highest order where the aligned range is completely
4951 * pte_none(). Note that all remaining orders will be completely
4952 * pte_none().
4953 */
4954 order = highest_order(orders);
4955 while (orders) {
4956 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4957 if (pte_range_none(pte + pte_index(addr), 1 << order))
4958 break;
4959 order = next_order(&orders, order);
4960 }
4961
4962 pte_unmap(pte);
4963
4964 if (!orders)
4965 goto fallback;
4966
4967 /* Try allocating the highest of the remaining orders. */
4968 gfp = vma_thp_gfp_mask(vma);
4969 while (orders) {
4970 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4971 folio = vma_alloc_folio(gfp, order, vma, addr);
4972 if (folio) {
4973 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4974 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4975 folio_put(folio);
4976 goto next;
4977 }
4978 folio_throttle_swaprate(folio, gfp);
4979 /*
4980 * When a folio is not zeroed during allocation
4981 * (__GFP_ZERO not used) or user folios require special
4982 * handling, folio_zero_user() is used to make sure
4983 * that the page corresponding to the faulting address
4984 * will be hot in the cache after zeroing.
4985 */
4986 if (user_alloc_needs_zeroing())
4987 folio_zero_user(folio, vmf->address);
4988 return folio;
4989 }
4990 next:
4991 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4992 order = next_order(&orders, order);
4993 }
4994
4995 fallback:
4996 #endif
4997 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4998 }
4999
5000 /*
5001 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5002 * but allow concurrent faults), and pte mapped but not yet locked.
5003 * We return with mmap_lock still held, but pte unmapped and unlocked.
5004 */
do_anonymous_page(struct vm_fault * vmf)5005 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
5006 {
5007 struct vm_area_struct *vma = vmf->vma;
5008 unsigned long addr = vmf->address;
5009 struct folio *folio;
5010 vm_fault_t ret = 0;
5011 int nr_pages = 1;
5012 pte_t entry;
5013
5014 /* File mapping without ->vm_ops ? */
5015 if (vma->vm_flags & VM_SHARED)
5016 return VM_FAULT_SIGBUS;
5017
5018 /*
5019 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
5020 * be distinguished from a transient failure of pte_offset_map().
5021 */
5022 if (pte_alloc(vma->vm_mm, vmf->pmd))
5023 return VM_FAULT_OOM;
5024
5025 /* Use the zero-page for reads */
5026 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
5027 !mm_forbids_zeropage(vma->vm_mm)) {
5028 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
5029 vma->vm_page_prot));
5030 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5031 vmf->address, &vmf->ptl);
5032 if (!vmf->pte)
5033 goto unlock;
5034 if (vmf_pte_changed(vmf)) {
5035 update_mmu_tlb(vma, vmf->address, vmf->pte);
5036 goto unlock;
5037 }
5038 ret = check_stable_address_space(vma->vm_mm);
5039 if (ret)
5040 goto unlock;
5041 /* Deliver the page fault to userland, check inside PT lock */
5042 if (userfaultfd_missing(vma)) {
5043 pte_unmap_unlock(vmf->pte, vmf->ptl);
5044 return handle_userfault(vmf, VM_UFFD_MISSING);
5045 }
5046 goto setpte;
5047 }
5048
5049 /* Allocate our own private page. */
5050 ret = vmf_anon_prepare(vmf);
5051 if (ret)
5052 return ret;
5053 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
5054 folio = alloc_anon_folio(vmf);
5055 if (IS_ERR(folio))
5056 return 0;
5057 if (!folio)
5058 goto oom;
5059
5060 nr_pages = folio_nr_pages(folio);
5061 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
5062
5063 /*
5064 * The memory barrier inside __folio_mark_uptodate makes sure that
5065 * preceding stores to the page contents become visible before
5066 * the set_pte_at() write.
5067 */
5068 __folio_mark_uptodate(folio);
5069
5070 entry = folio_mk_pte(folio, vma->vm_page_prot);
5071 entry = pte_sw_mkyoung(entry);
5072 if (vma->vm_flags & VM_WRITE)
5073 entry = pte_mkwrite(pte_mkdirty(entry), vma);
5074
5075 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
5076 if (!vmf->pte)
5077 goto release;
5078 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
5079 update_mmu_tlb(vma, addr, vmf->pte);
5080 goto release;
5081 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5082 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5083 goto release;
5084 }
5085
5086 ret = check_stable_address_space(vma->vm_mm);
5087 if (ret)
5088 goto release;
5089
5090 /* Deliver the page fault to userland, check inside PT lock */
5091 if (userfaultfd_missing(vma)) {
5092 pte_unmap_unlock(vmf->pte, vmf->ptl);
5093 folio_put(folio);
5094 return handle_userfault(vmf, VM_UFFD_MISSING);
5095 }
5096
5097 folio_ref_add(folio, nr_pages - 1);
5098 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
5099 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
5100 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5101 folio_add_lru_vma(folio, vma);
5102 setpte:
5103 if (vmf_orig_pte_uffd_wp(vmf))
5104 entry = pte_mkuffd_wp(entry);
5105 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
5106
5107 /* No need to invalidate - it was non-present before */
5108 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
5109 unlock:
5110 if (vmf->pte)
5111 pte_unmap_unlock(vmf->pte, vmf->ptl);
5112 return ret;
5113 release:
5114 folio_put(folio);
5115 goto unlock;
5116 oom:
5117 return VM_FAULT_OOM;
5118 }
5119
5120 /*
5121 * The mmap_lock must have been held on entry, and may have been
5122 * released depending on flags and vma->vm_ops->fault() return value.
5123 * See filemap_fault() and __lock_page_retry().
5124 */
__do_fault(struct vm_fault * vmf)5125 static vm_fault_t __do_fault(struct vm_fault *vmf)
5126 {
5127 struct vm_area_struct *vma = vmf->vma;
5128 struct folio *folio;
5129 vm_fault_t ret;
5130
5131 /*
5132 * Preallocate pte before we take page_lock because this might lead to
5133 * deadlocks for memcg reclaim which waits for pages under writeback:
5134 * lock_page(A)
5135 * SetPageWriteback(A)
5136 * unlock_page(A)
5137 * lock_page(B)
5138 * lock_page(B)
5139 * pte_alloc_one
5140 * shrink_folio_list
5141 * wait_on_page_writeback(A)
5142 * SetPageWriteback(B)
5143 * unlock_page(B)
5144 * # flush A, B to clear the writeback
5145 */
5146 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
5147 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5148 if (!vmf->prealloc_pte)
5149 return VM_FAULT_OOM;
5150 }
5151
5152 ret = vma->vm_ops->fault(vmf);
5153 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
5154 VM_FAULT_DONE_COW)))
5155 return ret;
5156
5157 folio = page_folio(vmf->page);
5158 if (unlikely(PageHWPoison(vmf->page))) {
5159 vm_fault_t poisonret = VM_FAULT_HWPOISON;
5160 if (ret & VM_FAULT_LOCKED) {
5161 if (page_mapped(vmf->page))
5162 unmap_mapping_folio(folio);
5163 /* Retry if a clean folio was removed from the cache. */
5164 if (mapping_evict_folio(folio->mapping, folio))
5165 poisonret = VM_FAULT_NOPAGE;
5166 folio_unlock(folio);
5167 }
5168 folio_put(folio);
5169 vmf->page = NULL;
5170 return poisonret;
5171 }
5172
5173 if (unlikely(!(ret & VM_FAULT_LOCKED)))
5174 folio_lock(folio);
5175 else
5176 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5177
5178 return ret;
5179 }
5180
5181 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)5182 static void deposit_prealloc_pte(struct vm_fault *vmf)
5183 {
5184 struct vm_area_struct *vma = vmf->vma;
5185
5186 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5187 /*
5188 * We are going to consume the prealloc table,
5189 * count that as nr_ptes.
5190 */
5191 mm_inc_nr_ptes(vma->vm_mm);
5192 vmf->prealloc_pte = NULL;
5193 }
5194
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5195 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5196 {
5197 struct vm_area_struct *vma = vmf->vma;
5198 bool write = vmf->flags & FAULT_FLAG_WRITE;
5199 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5200 pmd_t entry;
5201 vm_fault_t ret = VM_FAULT_FALLBACK;
5202
5203 /*
5204 * It is too late to allocate a small folio, we already have a large
5205 * folio in the pagecache: especially s390 KVM cannot tolerate any
5206 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5207 * PMD mappings if THPs are disabled.
5208 */
5209 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
5210 return ret;
5211
5212 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5213 return ret;
5214
5215 if (folio_order(folio) != HPAGE_PMD_ORDER)
5216 return ret;
5217 page = &folio->page;
5218
5219 /*
5220 * Just backoff if any subpage of a THP is corrupted otherwise
5221 * the corrupted page may mapped by PMD silently to escape the
5222 * check. This kind of THP just can be PTE mapped. Access to
5223 * the corrupted subpage should trigger SIGBUS as expected.
5224 */
5225 if (unlikely(folio_test_has_hwpoisoned(folio)))
5226 return ret;
5227
5228 /*
5229 * Archs like ppc64 need additional space to store information
5230 * related to pte entry. Use the preallocated table for that.
5231 */
5232 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5233 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5234 if (!vmf->prealloc_pte)
5235 return VM_FAULT_OOM;
5236 }
5237
5238 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5239 if (unlikely(!pmd_none(*vmf->pmd)))
5240 goto out;
5241
5242 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5243
5244 entry = folio_mk_pmd(folio, vma->vm_page_prot);
5245 if (write)
5246 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5247
5248 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5249 folio_add_file_rmap_pmd(folio, page, vma);
5250
5251 /*
5252 * deposit and withdraw with pmd lock held
5253 */
5254 if (arch_needs_pgtable_deposit())
5255 deposit_prealloc_pte(vmf);
5256
5257 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5258
5259 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5260
5261 /* fault is handled */
5262 ret = 0;
5263 count_vm_event(THP_FILE_MAPPED);
5264 out:
5265 spin_unlock(vmf->ptl);
5266 return ret;
5267 }
5268 #else
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5269 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5270 {
5271 return VM_FAULT_FALLBACK;
5272 }
5273 #endif
5274
5275 /**
5276 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5277 * @vmf: Fault decription.
5278 * @folio: The folio that contains @page.
5279 * @page: The first page to create a PTE for.
5280 * @nr: The number of PTEs to create.
5281 * @addr: The first address to create a PTE for.
5282 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)5283 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5284 struct page *page, unsigned int nr, unsigned long addr)
5285 {
5286 struct vm_area_struct *vma = vmf->vma;
5287 bool write = vmf->flags & FAULT_FLAG_WRITE;
5288 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5289 pte_t entry;
5290
5291 flush_icache_pages(vma, page, nr);
5292 entry = mk_pte(page, vma->vm_page_prot);
5293
5294 if (prefault && arch_wants_old_prefaulted_pte())
5295 entry = pte_mkold(entry);
5296 else
5297 entry = pte_sw_mkyoung(entry);
5298
5299 if (write)
5300 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5301 else if (pte_write(entry) && folio_test_dirty(folio))
5302 entry = pte_mkdirty(entry);
5303 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5304 entry = pte_mkuffd_wp(entry);
5305 /* copy-on-write page */
5306 if (write && !(vma->vm_flags & VM_SHARED)) {
5307 VM_BUG_ON_FOLIO(nr != 1, folio);
5308 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5309 folio_add_lru_vma(folio, vma);
5310 } else {
5311 folio_add_file_rmap_ptes(folio, page, nr, vma);
5312 }
5313 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5314
5315 /* no need to invalidate: a not-present page won't be cached */
5316 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5317 }
5318
vmf_pte_changed(struct vm_fault * vmf)5319 static bool vmf_pte_changed(struct vm_fault *vmf)
5320 {
5321 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5322 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5323
5324 return !pte_none(ptep_get(vmf->pte));
5325 }
5326
5327 /**
5328 * finish_fault - finish page fault once we have prepared the page to fault
5329 *
5330 * @vmf: structure describing the fault
5331 *
5332 * This function handles all that is needed to finish a page fault once the
5333 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5334 * given page, adds reverse page mapping, handles memcg charges and LRU
5335 * addition.
5336 *
5337 * The function expects the page to be locked and on success it consumes a
5338 * reference of a page being mapped (for the PTE which maps it).
5339 *
5340 * Return: %0 on success, %VM_FAULT_ code in case of error.
5341 */
finish_fault(struct vm_fault * vmf)5342 vm_fault_t finish_fault(struct vm_fault *vmf)
5343 {
5344 struct vm_area_struct *vma = vmf->vma;
5345 struct page *page;
5346 struct folio *folio;
5347 vm_fault_t ret;
5348 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5349 !(vma->vm_flags & VM_SHARED);
5350 int type, nr_pages;
5351 unsigned long addr;
5352 bool needs_fallback = false;
5353
5354 fallback:
5355 addr = vmf->address;
5356
5357 /* Did we COW the page? */
5358 if (is_cow)
5359 page = vmf->cow_page;
5360 else
5361 page = vmf->page;
5362
5363 folio = page_folio(page);
5364 /*
5365 * check even for read faults because we might have lost our CoWed
5366 * page
5367 */
5368 if (!(vma->vm_flags & VM_SHARED)) {
5369 ret = check_stable_address_space(vma->vm_mm);
5370 if (ret)
5371 return ret;
5372 }
5373
5374 if (pmd_none(*vmf->pmd)) {
5375 if (folio_test_pmd_mappable(folio)) {
5376 ret = do_set_pmd(vmf, folio, page);
5377 if (ret != VM_FAULT_FALLBACK)
5378 return ret;
5379 }
5380
5381 if (vmf->prealloc_pte)
5382 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5383 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5384 return VM_FAULT_OOM;
5385 }
5386
5387 nr_pages = folio_nr_pages(folio);
5388
5389 /*
5390 * Using per-page fault to maintain the uffd semantics, and same
5391 * approach also applies to non shmem/tmpfs faults to avoid
5392 * inflating the RSS of the process.
5393 */
5394 if (!vma_is_shmem(vma) || unlikely(userfaultfd_armed(vma)) ||
5395 unlikely(needs_fallback)) {
5396 nr_pages = 1;
5397 } else if (nr_pages > 1) {
5398 pgoff_t idx = folio_page_idx(folio, page);
5399 /* The page offset of vmf->address within the VMA. */
5400 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5401 /* The index of the entry in the pagetable for fault page. */
5402 pgoff_t pte_off = pte_index(vmf->address);
5403
5404 /*
5405 * Fallback to per-page fault in case the folio size in page
5406 * cache beyond the VMA limits and PMD pagetable limits.
5407 */
5408 if (unlikely(vma_off < idx ||
5409 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5410 pte_off < idx ||
5411 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5412 nr_pages = 1;
5413 } else {
5414 /* Now we can set mappings for the whole large folio. */
5415 addr = vmf->address - idx * PAGE_SIZE;
5416 page = &folio->page;
5417 }
5418 }
5419
5420 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5421 addr, &vmf->ptl);
5422 if (!vmf->pte)
5423 return VM_FAULT_NOPAGE;
5424
5425 /* Re-check under ptl */
5426 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5427 update_mmu_tlb(vma, addr, vmf->pte);
5428 ret = VM_FAULT_NOPAGE;
5429 goto unlock;
5430 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5431 needs_fallback = true;
5432 pte_unmap_unlock(vmf->pte, vmf->ptl);
5433 goto fallback;
5434 }
5435
5436 folio_ref_add(folio, nr_pages - 1);
5437 set_pte_range(vmf, folio, page, nr_pages, addr);
5438 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5439 add_mm_counter(vma->vm_mm, type, nr_pages);
5440 ret = 0;
5441
5442 unlock:
5443 pte_unmap_unlock(vmf->pte, vmf->ptl);
5444 return ret;
5445 }
5446
5447 static unsigned long fault_around_pages __read_mostly =
5448 65536 >> PAGE_SHIFT;
5449
5450 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)5451 static int fault_around_bytes_get(void *data, u64 *val)
5452 {
5453 *val = fault_around_pages << PAGE_SHIFT;
5454 return 0;
5455 }
5456
5457 /*
5458 * fault_around_bytes must be rounded down to the nearest page order as it's
5459 * what do_fault_around() expects to see.
5460 */
fault_around_bytes_set(void * data,u64 val)5461 static int fault_around_bytes_set(void *data, u64 val)
5462 {
5463 if (val / PAGE_SIZE > PTRS_PER_PTE)
5464 return -EINVAL;
5465
5466 /*
5467 * The minimum value is 1 page, however this results in no fault-around
5468 * at all. See should_fault_around().
5469 */
5470 val = max(val, PAGE_SIZE);
5471 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5472
5473 return 0;
5474 }
5475 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5476 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5477
fault_around_debugfs(void)5478 static int __init fault_around_debugfs(void)
5479 {
5480 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5481 &fault_around_bytes_fops);
5482 return 0;
5483 }
5484 late_initcall(fault_around_debugfs);
5485 #endif
5486
5487 /*
5488 * do_fault_around() tries to map few pages around the fault address. The hope
5489 * is that the pages will be needed soon and this will lower the number of
5490 * faults to handle.
5491 *
5492 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5493 * not ready to be mapped: not up-to-date, locked, etc.
5494 *
5495 * This function doesn't cross VMA or page table boundaries, in order to call
5496 * map_pages() and acquire a PTE lock only once.
5497 *
5498 * fault_around_pages defines how many pages we'll try to map.
5499 * do_fault_around() expects it to be set to a power of two less than or equal
5500 * to PTRS_PER_PTE.
5501 *
5502 * The virtual address of the area that we map is naturally aligned to
5503 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5504 * (and therefore to page order). This way it's easier to guarantee
5505 * that we don't cross page table boundaries.
5506 */
do_fault_around(struct vm_fault * vmf)5507 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5508 {
5509 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5510 pgoff_t pte_off = pte_index(vmf->address);
5511 /* The page offset of vmf->address within the VMA. */
5512 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5513 pgoff_t from_pte, to_pte;
5514 vm_fault_t ret;
5515
5516 /* The PTE offset of the start address, clamped to the VMA. */
5517 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5518 pte_off - min(pte_off, vma_off));
5519
5520 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5521 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5522 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5523
5524 if (pmd_none(*vmf->pmd)) {
5525 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5526 if (!vmf->prealloc_pte)
5527 return VM_FAULT_OOM;
5528 }
5529
5530 rcu_read_lock();
5531 ret = vmf->vma->vm_ops->map_pages(vmf,
5532 vmf->pgoff + from_pte - pte_off,
5533 vmf->pgoff + to_pte - pte_off);
5534 rcu_read_unlock();
5535
5536 return ret;
5537 }
5538
5539 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)5540 static inline bool should_fault_around(struct vm_fault *vmf)
5541 {
5542 /* No ->map_pages? No way to fault around... */
5543 if (!vmf->vma->vm_ops->map_pages)
5544 return false;
5545
5546 if (uffd_disable_fault_around(vmf->vma))
5547 return false;
5548
5549 /* A single page implies no faulting 'around' at all. */
5550 return fault_around_pages > 1;
5551 }
5552
do_read_fault(struct vm_fault * vmf)5553 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5554 {
5555 vm_fault_t ret = 0;
5556 struct folio *folio;
5557
5558 /*
5559 * Let's call ->map_pages() first and use ->fault() as fallback
5560 * if page by the offset is not ready to be mapped (cold cache or
5561 * something).
5562 */
5563 if (should_fault_around(vmf)) {
5564 ret = do_fault_around(vmf);
5565 if (ret)
5566 return ret;
5567 }
5568
5569 ret = vmf_can_call_fault(vmf);
5570 if (ret)
5571 return ret;
5572
5573 ret = __do_fault(vmf);
5574 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5575 return ret;
5576
5577 ret |= finish_fault(vmf);
5578 folio = page_folio(vmf->page);
5579 folio_unlock(folio);
5580 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5581 folio_put(folio);
5582 return ret;
5583 }
5584
do_cow_fault(struct vm_fault * vmf)5585 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5586 {
5587 struct vm_area_struct *vma = vmf->vma;
5588 struct folio *folio;
5589 vm_fault_t ret;
5590
5591 ret = vmf_can_call_fault(vmf);
5592 if (!ret)
5593 ret = vmf_anon_prepare(vmf);
5594 if (ret)
5595 return ret;
5596
5597 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5598 if (!folio)
5599 return VM_FAULT_OOM;
5600
5601 vmf->cow_page = &folio->page;
5602
5603 ret = __do_fault(vmf);
5604 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5605 goto uncharge_out;
5606 if (ret & VM_FAULT_DONE_COW)
5607 return ret;
5608
5609 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5610 ret = VM_FAULT_HWPOISON;
5611 goto unlock;
5612 }
5613 __folio_mark_uptodate(folio);
5614
5615 ret |= finish_fault(vmf);
5616 unlock:
5617 unlock_page(vmf->page);
5618 put_page(vmf->page);
5619 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5620 goto uncharge_out;
5621 return ret;
5622 uncharge_out:
5623 folio_put(folio);
5624 return ret;
5625 }
5626
do_shared_fault(struct vm_fault * vmf)5627 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5628 {
5629 struct vm_area_struct *vma = vmf->vma;
5630 vm_fault_t ret, tmp;
5631 struct folio *folio;
5632
5633 ret = vmf_can_call_fault(vmf);
5634 if (ret)
5635 return ret;
5636
5637 ret = __do_fault(vmf);
5638 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5639 return ret;
5640
5641 folio = page_folio(vmf->page);
5642
5643 /*
5644 * Check if the backing address space wants to know that the page is
5645 * about to become writable
5646 */
5647 if (vma->vm_ops->page_mkwrite) {
5648 folio_unlock(folio);
5649 tmp = do_page_mkwrite(vmf, folio);
5650 if (unlikely(!tmp ||
5651 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5652 folio_put(folio);
5653 return tmp;
5654 }
5655 }
5656
5657 ret |= finish_fault(vmf);
5658 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5659 VM_FAULT_RETRY))) {
5660 folio_unlock(folio);
5661 folio_put(folio);
5662 return ret;
5663 }
5664
5665 ret |= fault_dirty_shared_page(vmf);
5666 return ret;
5667 }
5668
5669 /*
5670 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5671 * but allow concurrent faults).
5672 * The mmap_lock may have been released depending on flags and our
5673 * return value. See filemap_fault() and __folio_lock_or_retry().
5674 * If mmap_lock is released, vma may become invalid (for example
5675 * by other thread calling munmap()).
5676 */
do_fault(struct vm_fault * vmf)5677 static vm_fault_t do_fault(struct vm_fault *vmf)
5678 {
5679 struct vm_area_struct *vma = vmf->vma;
5680 struct mm_struct *vm_mm = vma->vm_mm;
5681 vm_fault_t ret;
5682
5683 /*
5684 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5685 */
5686 if (!vma->vm_ops->fault) {
5687 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5688 vmf->address, &vmf->ptl);
5689 if (unlikely(!vmf->pte))
5690 ret = VM_FAULT_SIGBUS;
5691 else {
5692 /*
5693 * Make sure this is not a temporary clearing of pte
5694 * by holding ptl and checking again. A R/M/W update
5695 * of pte involves: take ptl, clearing the pte so that
5696 * we don't have concurrent modification by hardware
5697 * followed by an update.
5698 */
5699 if (unlikely(pte_none(ptep_get(vmf->pte))))
5700 ret = VM_FAULT_SIGBUS;
5701 else
5702 ret = VM_FAULT_NOPAGE;
5703
5704 pte_unmap_unlock(vmf->pte, vmf->ptl);
5705 }
5706 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5707 ret = do_read_fault(vmf);
5708 else if (!(vma->vm_flags & VM_SHARED))
5709 ret = do_cow_fault(vmf);
5710 else
5711 ret = do_shared_fault(vmf);
5712
5713 /* preallocated pagetable is unused: free it */
5714 if (vmf->prealloc_pte) {
5715 pte_free(vm_mm, vmf->prealloc_pte);
5716 vmf->prealloc_pte = NULL;
5717 }
5718 return ret;
5719 }
5720
numa_migrate_check(struct folio * folio,struct vm_fault * vmf,unsigned long addr,int * flags,bool writable,int * last_cpupid)5721 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5722 unsigned long addr, int *flags,
5723 bool writable, int *last_cpupid)
5724 {
5725 struct vm_area_struct *vma = vmf->vma;
5726
5727 /*
5728 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5729 * much anyway since they can be in shared cache state. This misses
5730 * the case where a mapping is writable but the process never writes
5731 * to it but pte_write gets cleared during protection updates and
5732 * pte_dirty has unpredictable behaviour between PTE scan updates,
5733 * background writeback, dirty balancing and application behaviour.
5734 */
5735 if (!writable)
5736 *flags |= TNF_NO_GROUP;
5737
5738 /*
5739 * Flag if the folio is shared between multiple address spaces. This
5740 * is later used when determining whether to group tasks together
5741 */
5742 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5743 *flags |= TNF_SHARED;
5744 /*
5745 * For memory tiering mode, cpupid of slow memory page is used
5746 * to record page access time. So use default value.
5747 */
5748 if (folio_use_access_time(folio))
5749 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5750 else
5751 *last_cpupid = folio_last_cpupid(folio);
5752
5753 /* Record the current PID acceesing VMA */
5754 vma_set_access_pid_bit(vma);
5755
5756 count_vm_numa_event(NUMA_HINT_FAULTS);
5757 #ifdef CONFIG_NUMA_BALANCING
5758 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5759 #endif
5760 if (folio_nid(folio) == numa_node_id()) {
5761 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5762 *flags |= TNF_FAULT_LOCAL;
5763 }
5764
5765 return mpol_misplaced(folio, vmf, addr);
5766 }
5767
numa_rebuild_single_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long fault_addr,pte_t * fault_pte,bool writable)5768 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5769 unsigned long fault_addr, pte_t *fault_pte,
5770 bool writable)
5771 {
5772 pte_t pte, old_pte;
5773
5774 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5775 pte = pte_modify(old_pte, vma->vm_page_prot);
5776 pte = pte_mkyoung(pte);
5777 if (writable)
5778 pte = pte_mkwrite(pte, vma);
5779 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5780 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5781 }
5782
numa_rebuild_large_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,struct folio * folio,pte_t fault_pte,bool ignore_writable,bool pte_write_upgrade)5783 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5784 struct folio *folio, pte_t fault_pte,
5785 bool ignore_writable, bool pte_write_upgrade)
5786 {
5787 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5788 unsigned long start, end, addr = vmf->address;
5789 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5790 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5791 pte_t *start_ptep;
5792
5793 /* Stay within the VMA and within the page table. */
5794 start = max3(addr_start, pt_start, vma->vm_start);
5795 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5796 vma->vm_end);
5797 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5798
5799 /* Restore all PTEs' mapping of the large folio */
5800 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5801 pte_t ptent = ptep_get(start_ptep);
5802 bool writable = false;
5803
5804 if (!pte_present(ptent) || !pte_protnone(ptent))
5805 continue;
5806
5807 if (pfn_folio(pte_pfn(ptent)) != folio)
5808 continue;
5809
5810 if (!ignore_writable) {
5811 ptent = pte_modify(ptent, vma->vm_page_prot);
5812 writable = pte_write(ptent);
5813 if (!writable && pte_write_upgrade &&
5814 can_change_pte_writable(vma, addr, ptent))
5815 writable = true;
5816 }
5817
5818 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5819 }
5820 }
5821
do_numa_page(struct vm_fault * vmf)5822 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5823 {
5824 struct vm_area_struct *vma = vmf->vma;
5825 struct folio *folio = NULL;
5826 int nid = NUMA_NO_NODE;
5827 bool writable = false, ignore_writable = false;
5828 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5829 int last_cpupid;
5830 int target_nid;
5831 pte_t pte, old_pte;
5832 int flags = 0, nr_pages;
5833
5834 /*
5835 * The pte cannot be used safely until we verify, while holding the page
5836 * table lock, that its contents have not changed during fault handling.
5837 */
5838 spin_lock(vmf->ptl);
5839 /* Read the live PTE from the page tables: */
5840 old_pte = ptep_get(vmf->pte);
5841
5842 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5843 pte_unmap_unlock(vmf->pte, vmf->ptl);
5844 return 0;
5845 }
5846
5847 pte = pte_modify(old_pte, vma->vm_page_prot);
5848
5849 /*
5850 * Detect now whether the PTE could be writable; this information
5851 * is only valid while holding the PT lock.
5852 */
5853 writable = pte_write(pte);
5854 if (!writable && pte_write_upgrade &&
5855 can_change_pte_writable(vma, vmf->address, pte))
5856 writable = true;
5857
5858 folio = vm_normal_folio(vma, vmf->address, pte);
5859 if (!folio || folio_is_zone_device(folio))
5860 goto out_map;
5861
5862 nid = folio_nid(folio);
5863 nr_pages = folio_nr_pages(folio);
5864
5865 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5866 writable, &last_cpupid);
5867 if (target_nid == NUMA_NO_NODE)
5868 goto out_map;
5869 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5870 flags |= TNF_MIGRATE_FAIL;
5871 goto out_map;
5872 }
5873 /* The folio is isolated and isolation code holds a folio reference. */
5874 pte_unmap_unlock(vmf->pte, vmf->ptl);
5875 writable = false;
5876 ignore_writable = true;
5877
5878 /* Migrate to the requested node */
5879 if (!migrate_misplaced_folio(folio, target_nid)) {
5880 nid = target_nid;
5881 flags |= TNF_MIGRATED;
5882 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5883 return 0;
5884 }
5885
5886 flags |= TNF_MIGRATE_FAIL;
5887 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5888 vmf->address, &vmf->ptl);
5889 if (unlikely(!vmf->pte))
5890 return 0;
5891 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5892 pte_unmap_unlock(vmf->pte, vmf->ptl);
5893 return 0;
5894 }
5895 out_map:
5896 /*
5897 * Make it present again, depending on how arch implements
5898 * non-accessible ptes, some can allow access by kernel mode.
5899 */
5900 if (folio && folio_test_large(folio))
5901 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5902 pte_write_upgrade);
5903 else
5904 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5905 writable);
5906 pte_unmap_unlock(vmf->pte, vmf->ptl);
5907
5908 if (nid != NUMA_NO_NODE)
5909 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5910 return 0;
5911 }
5912
create_huge_pmd(struct vm_fault * vmf)5913 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5914 {
5915 struct vm_area_struct *vma = vmf->vma;
5916 if (vma_is_anonymous(vma))
5917 return do_huge_pmd_anonymous_page(vmf);
5918 if (vma->vm_ops->huge_fault)
5919 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5920 return VM_FAULT_FALLBACK;
5921 }
5922
5923 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)5924 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5925 {
5926 struct vm_area_struct *vma = vmf->vma;
5927 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5928 vm_fault_t ret;
5929
5930 if (vma_is_anonymous(vma)) {
5931 if (likely(!unshare) &&
5932 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5933 if (userfaultfd_wp_async(vmf->vma))
5934 goto split;
5935 return handle_userfault(vmf, VM_UFFD_WP);
5936 }
5937 return do_huge_pmd_wp_page(vmf);
5938 }
5939
5940 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5941 if (vma->vm_ops->huge_fault) {
5942 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5943 if (!(ret & VM_FAULT_FALLBACK))
5944 return ret;
5945 }
5946 }
5947
5948 split:
5949 /* COW or write-notify handled on pte level: split pmd. */
5950 __split_huge_pmd(vma, vmf->pmd, vmf->address, false);
5951
5952 return VM_FAULT_FALLBACK;
5953 }
5954
create_huge_pud(struct vm_fault * vmf)5955 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5956 {
5957 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5958 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5959 struct vm_area_struct *vma = vmf->vma;
5960 /* No support for anonymous transparent PUD pages yet */
5961 if (vma_is_anonymous(vma))
5962 return VM_FAULT_FALLBACK;
5963 if (vma->vm_ops->huge_fault)
5964 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5965 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5966 return VM_FAULT_FALLBACK;
5967 }
5968
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)5969 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5970 {
5971 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5972 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5973 struct vm_area_struct *vma = vmf->vma;
5974 vm_fault_t ret;
5975
5976 /* No support for anonymous transparent PUD pages yet */
5977 if (vma_is_anonymous(vma))
5978 goto split;
5979 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5980 if (vma->vm_ops->huge_fault) {
5981 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5982 if (!(ret & VM_FAULT_FALLBACK))
5983 return ret;
5984 }
5985 }
5986 split:
5987 /* COW or write-notify not handled on PUD level: split pud.*/
5988 __split_huge_pud(vma, vmf->pud, vmf->address);
5989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5990 return VM_FAULT_FALLBACK;
5991 }
5992
5993 /*
5994 * These routines also need to handle stuff like marking pages dirty
5995 * and/or accessed for architectures that don't do it in hardware (most
5996 * RISC architectures). The early dirtying is also good on the i386.
5997 *
5998 * There is also a hook called "update_mmu_cache()" that architectures
5999 * with external mmu caches can use to update those (ie the Sparc or
6000 * PowerPC hashed page tables that act as extended TLBs).
6001 *
6002 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
6003 * concurrent faults).
6004 *
6005 * The mmap_lock may have been released depending on flags and our return value.
6006 * See filemap_fault() and __folio_lock_or_retry().
6007 */
handle_pte_fault(struct vm_fault * vmf)6008 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
6009 {
6010 pte_t entry;
6011
6012 if (unlikely(pmd_none(*vmf->pmd))) {
6013 /*
6014 * Leave __pte_alloc() until later: because vm_ops->fault may
6015 * want to allocate huge page, and if we expose page table
6016 * for an instant, it will be difficult to retract from
6017 * concurrent faults and from rmap lookups.
6018 */
6019 vmf->pte = NULL;
6020 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
6021 } else {
6022 pmd_t dummy_pmdval;
6023
6024 /*
6025 * A regular pmd is established and it can't morph into a huge
6026 * pmd by anon khugepaged, since that takes mmap_lock in write
6027 * mode; but shmem or file collapse to THP could still morph
6028 * it into a huge pmd: just retry later if so.
6029 *
6030 * Use the maywrite version to indicate that vmf->pte may be
6031 * modified, but since we will use pte_same() to detect the
6032 * change of the !pte_none() entry, there is no need to recheck
6033 * the pmdval. Here we chooes to pass a dummy variable instead
6034 * of NULL, which helps new user think about why this place is
6035 * special.
6036 */
6037 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
6038 vmf->address, &dummy_pmdval,
6039 &vmf->ptl);
6040 if (unlikely(!vmf->pte))
6041 return 0;
6042 vmf->orig_pte = ptep_get_lockless(vmf->pte);
6043 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
6044
6045 if (pte_none(vmf->orig_pte)) {
6046 pte_unmap(vmf->pte);
6047 vmf->pte = NULL;
6048 }
6049 }
6050
6051 if (!vmf->pte)
6052 return do_pte_missing(vmf);
6053
6054 if (!pte_present(vmf->orig_pte))
6055 return do_swap_page(vmf);
6056
6057 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
6058 return do_numa_page(vmf);
6059
6060 spin_lock(vmf->ptl);
6061 entry = vmf->orig_pte;
6062 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
6063 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
6064 goto unlock;
6065 }
6066 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6067 if (!pte_write(entry))
6068 return do_wp_page(vmf);
6069 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
6070 entry = pte_mkdirty(entry);
6071 }
6072 entry = pte_mkyoung(entry);
6073 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
6074 vmf->flags & FAULT_FLAG_WRITE)) {
6075 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
6076 vmf->pte, 1);
6077 } else {
6078 /* Skip spurious TLB flush for retried page fault */
6079 if (vmf->flags & FAULT_FLAG_TRIED)
6080 goto unlock;
6081 /*
6082 * This is needed only for protection faults but the arch code
6083 * is not yet telling us if this is a protection fault or not.
6084 * This still avoids useless tlb flushes for .text page faults
6085 * with threads.
6086 */
6087 if (vmf->flags & FAULT_FLAG_WRITE)
6088 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
6089 vmf->pte);
6090 }
6091 unlock:
6092 pte_unmap_unlock(vmf->pte, vmf->ptl);
6093 return 0;
6094 }
6095
6096 /*
6097 * On entry, we hold either the VMA lock or the mmap_lock
6098 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
6099 * the result, the mmap_lock is not held on exit. See filemap_fault()
6100 * and __folio_lock_or_retry().
6101 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)6102 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
6103 unsigned long address, unsigned int flags)
6104 {
6105 struct vm_fault vmf = {
6106 .vma = vma,
6107 .address = address & PAGE_MASK,
6108 .real_address = address,
6109 .flags = flags,
6110 .pgoff = linear_page_index(vma, address),
6111 .gfp_mask = __get_fault_gfp_mask(vma),
6112 };
6113 struct mm_struct *mm = vma->vm_mm;
6114 vm_flags_t vm_flags = vma->vm_flags;
6115 pgd_t *pgd;
6116 p4d_t *p4d;
6117 vm_fault_t ret;
6118
6119 pgd = pgd_offset(mm, address);
6120 p4d = p4d_alloc(mm, pgd, address);
6121 if (!p4d)
6122 return VM_FAULT_OOM;
6123
6124 vmf.pud = pud_alloc(mm, p4d, address);
6125 if (!vmf.pud)
6126 return VM_FAULT_OOM;
6127 retry_pud:
6128 if (pud_none(*vmf.pud) &&
6129 thp_vma_allowable_order(vma, vm_flags,
6130 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
6131 ret = create_huge_pud(&vmf);
6132 if (!(ret & VM_FAULT_FALLBACK))
6133 return ret;
6134 } else {
6135 pud_t orig_pud = *vmf.pud;
6136
6137 barrier();
6138 if (pud_trans_huge(orig_pud)) {
6139
6140 /*
6141 * TODO once we support anonymous PUDs: NUMA case and
6142 * FAULT_FLAG_UNSHARE handling.
6143 */
6144 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
6145 ret = wp_huge_pud(&vmf, orig_pud);
6146 if (!(ret & VM_FAULT_FALLBACK))
6147 return ret;
6148 } else {
6149 huge_pud_set_accessed(&vmf, orig_pud);
6150 return 0;
6151 }
6152 }
6153 }
6154
6155 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
6156 if (!vmf.pmd)
6157 return VM_FAULT_OOM;
6158
6159 /* Huge pud page fault raced with pmd_alloc? */
6160 if (pud_trans_unstable(vmf.pud))
6161 goto retry_pud;
6162
6163 if (pmd_none(*vmf.pmd) &&
6164 thp_vma_allowable_order(vma, vm_flags,
6165 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
6166 ret = create_huge_pmd(&vmf);
6167 if (!(ret & VM_FAULT_FALLBACK))
6168 return ret;
6169 } else {
6170 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6171
6172 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
6173 VM_BUG_ON(thp_migration_supported() &&
6174 !is_pmd_migration_entry(vmf.orig_pmd));
6175 if (is_pmd_migration_entry(vmf.orig_pmd))
6176 pmd_migration_entry_wait(mm, vmf.pmd);
6177 return 0;
6178 }
6179 if (pmd_trans_huge(vmf.orig_pmd)) {
6180 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6181 return do_huge_pmd_numa_page(&vmf);
6182
6183 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6184 !pmd_write(vmf.orig_pmd)) {
6185 ret = wp_huge_pmd(&vmf);
6186 if (!(ret & VM_FAULT_FALLBACK))
6187 return ret;
6188 } else {
6189 huge_pmd_set_accessed(&vmf);
6190 return 0;
6191 }
6192 }
6193 }
6194
6195 return handle_pte_fault(&vmf);
6196 }
6197
6198 /**
6199 * mm_account_fault - Do page fault accounting
6200 * @mm: mm from which memcg should be extracted. It can be NULL.
6201 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
6202 * of perf event counters, but we'll still do the per-task accounting to
6203 * the task who triggered this page fault.
6204 * @address: the faulted address.
6205 * @flags: the fault flags.
6206 * @ret: the fault retcode.
6207 *
6208 * This will take care of most of the page fault accounting. Meanwhile, it
6209 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6210 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6211 * still be in per-arch page fault handlers at the entry of page fault.
6212 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)6213 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6214 unsigned long address, unsigned int flags,
6215 vm_fault_t ret)
6216 {
6217 bool major;
6218
6219 /* Incomplete faults will be accounted upon completion. */
6220 if (ret & VM_FAULT_RETRY)
6221 return;
6222
6223 /*
6224 * To preserve the behavior of older kernels, PGFAULT counters record
6225 * both successful and failed faults, as opposed to perf counters,
6226 * which ignore failed cases.
6227 */
6228 count_vm_event(PGFAULT);
6229 count_memcg_event_mm(mm, PGFAULT);
6230
6231 /*
6232 * Do not account for unsuccessful faults (e.g. when the address wasn't
6233 * valid). That includes arch_vma_access_permitted() failing before
6234 * reaching here. So this is not a "this many hardware page faults"
6235 * counter. We should use the hw profiling for that.
6236 */
6237 if (ret & VM_FAULT_ERROR)
6238 return;
6239
6240 /*
6241 * We define the fault as a major fault when the final successful fault
6242 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6243 * handle it immediately previously).
6244 */
6245 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6246
6247 if (major)
6248 current->maj_flt++;
6249 else
6250 current->min_flt++;
6251
6252 /*
6253 * If the fault is done for GUP, regs will be NULL. We only do the
6254 * accounting for the per thread fault counters who triggered the
6255 * fault, and we skip the perf event updates.
6256 */
6257 if (!regs)
6258 return;
6259
6260 if (major)
6261 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6262 else
6263 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6264 }
6265
6266 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)6267 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6268 {
6269 /* the LRU algorithm only applies to accesses with recency */
6270 current->in_lru_fault = vma_has_recency(vma);
6271 }
6272
lru_gen_exit_fault(void)6273 static void lru_gen_exit_fault(void)
6274 {
6275 current->in_lru_fault = false;
6276 }
6277 #else
lru_gen_enter_fault(struct vm_area_struct * vma)6278 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6279 {
6280 }
6281
lru_gen_exit_fault(void)6282 static void lru_gen_exit_fault(void)
6283 {
6284 }
6285 #endif /* CONFIG_LRU_GEN */
6286
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)6287 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6288 unsigned int *flags)
6289 {
6290 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6291 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6292 return VM_FAULT_SIGSEGV;
6293 /*
6294 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6295 * just treat it like an ordinary read-fault otherwise.
6296 */
6297 if (!is_cow_mapping(vma->vm_flags))
6298 *flags &= ~FAULT_FLAG_UNSHARE;
6299 } else if (*flags & FAULT_FLAG_WRITE) {
6300 /* Write faults on read-only mappings are impossible ... */
6301 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6302 return VM_FAULT_SIGSEGV;
6303 /* ... and FOLL_FORCE only applies to COW mappings. */
6304 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6305 !is_cow_mapping(vma->vm_flags)))
6306 return VM_FAULT_SIGSEGV;
6307 }
6308 #ifdef CONFIG_PER_VMA_LOCK
6309 /*
6310 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6311 * the assumption that lock is dropped on VM_FAULT_RETRY.
6312 */
6313 if (WARN_ON_ONCE((*flags &
6314 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6315 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6316 return VM_FAULT_SIGSEGV;
6317 #endif
6318
6319 return 0;
6320 }
6321
6322 /*
6323 * By the time we get here, we already hold either the VMA lock or the
6324 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6325 *
6326 * The mmap_lock may have been released depending on flags and our
6327 * return value. See filemap_fault() and __folio_lock_or_retry().
6328 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)6329 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6330 unsigned int flags, struct pt_regs *regs)
6331 {
6332 /* If the fault handler drops the mmap_lock, vma may be freed */
6333 struct mm_struct *mm = vma->vm_mm;
6334 vm_fault_t ret;
6335 bool is_droppable;
6336
6337 __set_current_state(TASK_RUNNING);
6338
6339 ret = sanitize_fault_flags(vma, &flags);
6340 if (ret)
6341 goto out;
6342
6343 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6344 flags & FAULT_FLAG_INSTRUCTION,
6345 flags & FAULT_FLAG_REMOTE)) {
6346 ret = VM_FAULT_SIGSEGV;
6347 goto out;
6348 }
6349
6350 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6351
6352 /*
6353 * Enable the memcg OOM handling for faults triggered in user
6354 * space. Kernel faults are handled more gracefully.
6355 */
6356 if (flags & FAULT_FLAG_USER)
6357 mem_cgroup_enter_user_fault();
6358
6359 lru_gen_enter_fault(vma);
6360
6361 if (unlikely(is_vm_hugetlb_page(vma)))
6362 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6363 else
6364 ret = __handle_mm_fault(vma, address, flags);
6365
6366 /*
6367 * Warning: It is no longer safe to dereference vma-> after this point,
6368 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6369 * vma might be destroyed from underneath us.
6370 */
6371
6372 lru_gen_exit_fault();
6373
6374 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6375 if (is_droppable)
6376 ret &= ~VM_FAULT_OOM;
6377
6378 if (flags & FAULT_FLAG_USER) {
6379 mem_cgroup_exit_user_fault();
6380 /*
6381 * The task may have entered a memcg OOM situation but
6382 * if the allocation error was handled gracefully (no
6383 * VM_FAULT_OOM), there is no need to kill anything.
6384 * Just clean up the OOM state peacefully.
6385 */
6386 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6387 mem_cgroup_oom_synchronize(false);
6388 }
6389 out:
6390 mm_account_fault(mm, regs, address, flags, ret);
6391
6392 return ret;
6393 }
6394 EXPORT_SYMBOL_GPL(handle_mm_fault);
6395
6396 #ifndef __PAGETABLE_P4D_FOLDED
6397 /*
6398 * Allocate p4d page table.
6399 * We've already handled the fast-path in-line.
6400 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)6401 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6402 {
6403 p4d_t *new = p4d_alloc_one(mm, address);
6404 if (!new)
6405 return -ENOMEM;
6406
6407 spin_lock(&mm->page_table_lock);
6408 if (pgd_present(*pgd)) { /* Another has populated it */
6409 p4d_free(mm, new);
6410 } else {
6411 smp_wmb(); /* See comment in pmd_install() */
6412 pgd_populate(mm, pgd, new);
6413 }
6414 spin_unlock(&mm->page_table_lock);
6415 return 0;
6416 }
6417 #endif /* __PAGETABLE_P4D_FOLDED */
6418
6419 #ifndef __PAGETABLE_PUD_FOLDED
6420 /*
6421 * Allocate page upper directory.
6422 * We've already handled the fast-path in-line.
6423 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)6424 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6425 {
6426 pud_t *new = pud_alloc_one(mm, address);
6427 if (!new)
6428 return -ENOMEM;
6429
6430 spin_lock(&mm->page_table_lock);
6431 if (!p4d_present(*p4d)) {
6432 mm_inc_nr_puds(mm);
6433 smp_wmb(); /* See comment in pmd_install() */
6434 p4d_populate(mm, p4d, new);
6435 } else /* Another has populated it */
6436 pud_free(mm, new);
6437 spin_unlock(&mm->page_table_lock);
6438 return 0;
6439 }
6440 #endif /* __PAGETABLE_PUD_FOLDED */
6441
6442 #ifndef __PAGETABLE_PMD_FOLDED
6443 /*
6444 * Allocate page middle directory.
6445 * We've already handled the fast-path in-line.
6446 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)6447 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6448 {
6449 spinlock_t *ptl;
6450 pmd_t *new = pmd_alloc_one(mm, address);
6451 if (!new)
6452 return -ENOMEM;
6453
6454 ptl = pud_lock(mm, pud);
6455 if (!pud_present(*pud)) {
6456 mm_inc_nr_pmds(mm);
6457 smp_wmb(); /* See comment in pmd_install() */
6458 pud_populate(mm, pud, new);
6459 } else { /* Another has populated it */
6460 pmd_free(mm, new);
6461 }
6462 spin_unlock(ptl);
6463 return 0;
6464 }
6465 #endif /* __PAGETABLE_PMD_FOLDED */
6466
pfnmap_args_setup(struct follow_pfnmap_args * args,spinlock_t * lock,pte_t * ptep,pgprot_t pgprot,unsigned long pfn_base,unsigned long addr_mask,bool writable,bool special)6467 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6468 spinlock_t *lock, pte_t *ptep,
6469 pgprot_t pgprot, unsigned long pfn_base,
6470 unsigned long addr_mask, bool writable,
6471 bool special)
6472 {
6473 args->lock = lock;
6474 args->ptep = ptep;
6475 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6476 args->addr_mask = addr_mask;
6477 args->pgprot = pgprot;
6478 args->writable = writable;
6479 args->special = special;
6480 }
6481
pfnmap_lockdep_assert(struct vm_area_struct * vma)6482 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6483 {
6484 #ifdef CONFIG_LOCKDEP
6485 struct file *file = vma->vm_file;
6486 struct address_space *mapping = file ? file->f_mapping : NULL;
6487
6488 if (mapping)
6489 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6490 lockdep_is_held(&vma->vm_mm->mmap_lock));
6491 else
6492 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6493 #endif
6494 }
6495
6496 /**
6497 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6498 * @args: Pointer to struct @follow_pfnmap_args
6499 *
6500 * The caller needs to setup args->vma and args->address to point to the
6501 * virtual address as the target of such lookup. On a successful return,
6502 * the results will be put into other output fields.
6503 *
6504 * After the caller finished using the fields, the caller must invoke
6505 * another follow_pfnmap_end() to proper releases the locks and resources
6506 * of such look up request.
6507 *
6508 * During the start() and end() calls, the results in @args will be valid
6509 * as proper locks will be held. After the end() is called, all the fields
6510 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6511 * use of such information after end() may require proper synchronizations
6512 * by the caller with page table updates, otherwise it can create a
6513 * security bug.
6514 *
6515 * If the PTE maps a refcounted page, callers are responsible to protect
6516 * against invalidation with MMU notifiers; otherwise access to the PFN at
6517 * a later point in time can trigger use-after-free.
6518 *
6519 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6520 * should be taken for read, and the mmap semaphore cannot be released
6521 * before the end() is invoked.
6522 *
6523 * This function must not be used to modify PTE content.
6524 *
6525 * Return: zero on success, negative otherwise.
6526 */
follow_pfnmap_start(struct follow_pfnmap_args * args)6527 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6528 {
6529 struct vm_area_struct *vma = args->vma;
6530 unsigned long address = args->address;
6531 struct mm_struct *mm = vma->vm_mm;
6532 spinlock_t *lock;
6533 pgd_t *pgdp;
6534 p4d_t *p4dp, p4d;
6535 pud_t *pudp, pud;
6536 pmd_t *pmdp, pmd;
6537 pte_t *ptep, pte;
6538
6539 pfnmap_lockdep_assert(vma);
6540
6541 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6542 goto out;
6543
6544 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6545 goto out;
6546 retry:
6547 pgdp = pgd_offset(mm, address);
6548 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6549 goto out;
6550
6551 p4dp = p4d_offset(pgdp, address);
6552 p4d = READ_ONCE(*p4dp);
6553 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6554 goto out;
6555
6556 pudp = pud_offset(p4dp, address);
6557 pud = READ_ONCE(*pudp);
6558 if (pud_none(pud))
6559 goto out;
6560 if (pud_leaf(pud)) {
6561 lock = pud_lock(mm, pudp);
6562 if (!unlikely(pud_leaf(pud))) {
6563 spin_unlock(lock);
6564 goto retry;
6565 }
6566 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6567 pud_pfn(pud), PUD_MASK, pud_write(pud),
6568 pud_special(pud));
6569 return 0;
6570 }
6571
6572 pmdp = pmd_offset(pudp, address);
6573 pmd = pmdp_get_lockless(pmdp);
6574 if (pmd_leaf(pmd)) {
6575 lock = pmd_lock(mm, pmdp);
6576 if (!unlikely(pmd_leaf(pmd))) {
6577 spin_unlock(lock);
6578 goto retry;
6579 }
6580 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6581 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6582 pmd_special(pmd));
6583 return 0;
6584 }
6585
6586 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6587 if (!ptep)
6588 goto out;
6589 pte = ptep_get(ptep);
6590 if (!pte_present(pte))
6591 goto unlock;
6592 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6593 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6594 pte_special(pte));
6595 return 0;
6596 unlock:
6597 pte_unmap_unlock(ptep, lock);
6598 out:
6599 return -EINVAL;
6600 }
6601 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6602
6603 /**
6604 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6605 * @args: Pointer to struct @follow_pfnmap_args
6606 *
6607 * Must be used in pair of follow_pfnmap_start(). See the start() function
6608 * above for more information.
6609 */
follow_pfnmap_end(struct follow_pfnmap_args * args)6610 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6611 {
6612 if (args->lock)
6613 spin_unlock(args->lock);
6614 if (args->ptep)
6615 pte_unmap(args->ptep);
6616 }
6617 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6618
6619 #ifdef CONFIG_HAVE_IOREMAP_PROT
6620 /**
6621 * generic_access_phys - generic implementation for iomem mmap access
6622 * @vma: the vma to access
6623 * @addr: userspace address, not relative offset within @vma
6624 * @buf: buffer to read/write
6625 * @len: length of transfer
6626 * @write: set to FOLL_WRITE when writing, otherwise reading
6627 *
6628 * This is a generic implementation for &vm_operations_struct.access for an
6629 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6630 * not page based.
6631 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)6632 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6633 void *buf, int len, int write)
6634 {
6635 resource_size_t phys_addr;
6636 pgprot_t prot = __pgprot(0);
6637 void __iomem *maddr;
6638 int offset = offset_in_page(addr);
6639 int ret = -EINVAL;
6640 bool writable;
6641 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6642
6643 retry:
6644 if (follow_pfnmap_start(&args))
6645 return -EINVAL;
6646 prot = args.pgprot;
6647 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6648 writable = args.writable;
6649 follow_pfnmap_end(&args);
6650
6651 if ((write & FOLL_WRITE) && !writable)
6652 return -EINVAL;
6653
6654 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6655 if (!maddr)
6656 return -ENOMEM;
6657
6658 if (follow_pfnmap_start(&args))
6659 goto out_unmap;
6660
6661 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) ||
6662 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6663 (writable != args.writable)) {
6664 follow_pfnmap_end(&args);
6665 iounmap(maddr);
6666 goto retry;
6667 }
6668
6669 if (write)
6670 memcpy_toio(maddr + offset, buf, len);
6671 else
6672 memcpy_fromio(buf, maddr + offset, len);
6673 ret = len;
6674 follow_pfnmap_end(&args);
6675 out_unmap:
6676 iounmap(maddr);
6677
6678 return ret;
6679 }
6680 EXPORT_SYMBOL_GPL(generic_access_phys);
6681 #endif
6682
6683 /*
6684 * Access another process' address space as given in mm.
6685 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6686 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6687 void *buf, int len, unsigned int gup_flags)
6688 {
6689 void *old_buf = buf;
6690 int write = gup_flags & FOLL_WRITE;
6691
6692 if (mmap_read_lock_killable(mm))
6693 return 0;
6694
6695 /* Untag the address before looking up the VMA */
6696 addr = untagged_addr_remote(mm, addr);
6697
6698 /* Avoid triggering the temporary warning in __get_user_pages */
6699 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6700 return 0;
6701
6702 /* ignore errors, just check how much was successfully transferred */
6703 while (len) {
6704 int bytes, offset;
6705 void *maddr;
6706 struct folio *folio;
6707 struct vm_area_struct *vma = NULL;
6708 struct page *page = get_user_page_vma_remote(mm, addr,
6709 gup_flags, &vma);
6710
6711 if (IS_ERR(page)) {
6712 /* We might need to expand the stack to access it */
6713 vma = vma_lookup(mm, addr);
6714 if (!vma) {
6715 vma = expand_stack(mm, addr);
6716
6717 /* mmap_lock was dropped on failure */
6718 if (!vma)
6719 return buf - old_buf;
6720
6721 /* Try again if stack expansion worked */
6722 continue;
6723 }
6724
6725 /*
6726 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6727 * we can access using slightly different code.
6728 */
6729 bytes = 0;
6730 #ifdef CONFIG_HAVE_IOREMAP_PROT
6731 if (vma->vm_ops && vma->vm_ops->access)
6732 bytes = vma->vm_ops->access(vma, addr, buf,
6733 len, write);
6734 #endif
6735 if (bytes <= 0)
6736 break;
6737 } else {
6738 folio = page_folio(page);
6739 bytes = len;
6740 offset = addr & (PAGE_SIZE-1);
6741 if (bytes > PAGE_SIZE-offset)
6742 bytes = PAGE_SIZE-offset;
6743
6744 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
6745 if (write) {
6746 copy_to_user_page(vma, page, addr,
6747 maddr + offset, buf, bytes);
6748 folio_mark_dirty_lock(folio);
6749 } else {
6750 copy_from_user_page(vma, page, addr,
6751 buf, maddr + offset, bytes);
6752 }
6753 folio_release_kmap(folio, maddr);
6754 }
6755 len -= bytes;
6756 buf += bytes;
6757 addr += bytes;
6758 }
6759 mmap_read_unlock(mm);
6760
6761 return buf - old_buf;
6762 }
6763
6764 /**
6765 * access_remote_vm - access another process' address space
6766 * @mm: the mm_struct of the target address space
6767 * @addr: start address to access
6768 * @buf: source or destination buffer
6769 * @len: number of bytes to transfer
6770 * @gup_flags: flags modifying lookup behaviour
6771 *
6772 * The caller must hold a reference on @mm.
6773 *
6774 * Return: number of bytes copied from source to destination.
6775 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6776 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6777 void *buf, int len, unsigned int gup_flags)
6778 {
6779 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6780 }
6781
6782 /*
6783 * Access another process' address space.
6784 * Source/target buffer must be kernel space,
6785 * Do not walk the page table directly, use get_user_pages
6786 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)6787 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6788 void *buf, int len, unsigned int gup_flags)
6789 {
6790 struct mm_struct *mm;
6791 int ret;
6792
6793 mm = get_task_mm(tsk);
6794 if (!mm)
6795 return 0;
6796
6797 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6798
6799 mmput(mm);
6800
6801 return ret;
6802 }
6803 EXPORT_SYMBOL_GPL(access_process_vm);
6804
6805 #ifdef CONFIG_BPF_SYSCALL
6806 /*
6807 * Copy a string from another process's address space as given in mm.
6808 * If there is any error return -EFAULT.
6809 */
__copy_remote_vm_str(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6810 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
6811 void *buf, int len, unsigned int gup_flags)
6812 {
6813 void *old_buf = buf;
6814 int err = 0;
6815
6816 *(char *)buf = '\0';
6817
6818 if (mmap_read_lock_killable(mm))
6819 return -EFAULT;
6820
6821 addr = untagged_addr_remote(mm, addr);
6822
6823 /* Avoid triggering the temporary warning in __get_user_pages */
6824 if (!vma_lookup(mm, addr)) {
6825 err = -EFAULT;
6826 goto out;
6827 }
6828
6829 while (len) {
6830 int bytes, offset, retval;
6831 void *maddr;
6832 struct folio *folio;
6833 struct page *page;
6834 struct vm_area_struct *vma = NULL;
6835
6836 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma);
6837 if (IS_ERR(page)) {
6838 /*
6839 * Treat as a total failure for now until we decide how
6840 * to handle the CONFIG_HAVE_IOREMAP_PROT case and
6841 * stack expansion.
6842 */
6843 *(char *)buf = '\0';
6844 err = -EFAULT;
6845 goto out;
6846 }
6847
6848 folio = page_folio(page);
6849 bytes = len;
6850 offset = addr & (PAGE_SIZE - 1);
6851 if (bytes > PAGE_SIZE - offset)
6852 bytes = PAGE_SIZE - offset;
6853
6854 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
6855 retval = strscpy(buf, maddr + offset, bytes);
6856 if (retval >= 0) {
6857 /* Found the end of the string */
6858 buf += retval;
6859 folio_release_kmap(folio, maddr);
6860 break;
6861 }
6862
6863 buf += bytes - 1;
6864 /*
6865 * Because strscpy always NUL terminates we need to
6866 * copy the last byte in the page if we are going to
6867 * load more pages
6868 */
6869 if (bytes != len) {
6870 addr += bytes - 1;
6871 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1);
6872 buf += 1;
6873 addr += 1;
6874 }
6875 len -= bytes;
6876
6877 folio_release_kmap(folio, maddr);
6878 }
6879
6880 out:
6881 mmap_read_unlock(mm);
6882 if (err)
6883 return err;
6884 return buf - old_buf;
6885 }
6886
6887 /**
6888 * copy_remote_vm_str - copy a string from another process's address space.
6889 * @tsk: the task of the target address space
6890 * @addr: start address to read from
6891 * @buf: destination buffer
6892 * @len: number of bytes to copy
6893 * @gup_flags: flags modifying lookup behaviour
6894 *
6895 * The caller must hold a reference on @mm.
6896 *
6897 * Return: number of bytes copied from @addr (source) to @buf (destination);
6898 * not including the trailing NUL. Always guaranteed to leave NUL-terminated
6899 * buffer. On any error, return -EFAULT.
6900 */
copy_remote_vm_str(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)6901 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
6902 void *buf, int len, unsigned int gup_flags)
6903 {
6904 struct mm_struct *mm;
6905 int ret;
6906
6907 if (unlikely(len == 0))
6908 return 0;
6909
6910 mm = get_task_mm(tsk);
6911 if (!mm) {
6912 *(char *)buf = '\0';
6913 return -EFAULT;
6914 }
6915
6916 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags);
6917
6918 mmput(mm);
6919
6920 return ret;
6921 }
6922 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
6923 #endif /* CONFIG_BPF_SYSCALL */
6924
6925 /*
6926 * Print the name of a VMA.
6927 */
print_vma_addr(char * prefix,unsigned long ip)6928 void print_vma_addr(char *prefix, unsigned long ip)
6929 {
6930 struct mm_struct *mm = current->mm;
6931 struct vm_area_struct *vma;
6932
6933 /*
6934 * we might be running from an atomic context so we cannot sleep
6935 */
6936 if (!mmap_read_trylock(mm))
6937 return;
6938
6939 vma = vma_lookup(mm, ip);
6940 if (vma && vma->vm_file) {
6941 struct file *f = vma->vm_file;
6942 ip -= vma->vm_start;
6943 ip += vma->vm_pgoff << PAGE_SHIFT;
6944 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6945 vma->vm_start,
6946 vma->vm_end - vma->vm_start);
6947 }
6948 mmap_read_unlock(mm);
6949 }
6950
6951 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)6952 void __might_fault(const char *file, int line)
6953 {
6954 if (pagefault_disabled())
6955 return;
6956 __might_sleep(file, line);
6957 if (current->mm)
6958 might_lock_read(¤t->mm->mmap_lock);
6959 }
6960 EXPORT_SYMBOL(__might_fault);
6961 #endif
6962
6963 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6964 /*
6965 * Process all subpages of the specified huge page with the specified
6966 * operation. The target subpage will be processed last to keep its
6967 * cache lines hot.
6968 */
process_huge_page(unsigned long addr_hint,unsigned int nr_pages,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)6969 static inline int process_huge_page(
6970 unsigned long addr_hint, unsigned int nr_pages,
6971 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6972 void *arg)
6973 {
6974 int i, n, base, l, ret;
6975 unsigned long addr = addr_hint &
6976 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6977
6978 /* Process target subpage last to keep its cache lines hot */
6979 might_sleep();
6980 n = (addr_hint - addr) / PAGE_SIZE;
6981 if (2 * n <= nr_pages) {
6982 /* If target subpage in first half of huge page */
6983 base = 0;
6984 l = n;
6985 /* Process subpages at the end of huge page */
6986 for (i = nr_pages - 1; i >= 2 * n; i--) {
6987 cond_resched();
6988 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6989 if (ret)
6990 return ret;
6991 }
6992 } else {
6993 /* If target subpage in second half of huge page */
6994 base = nr_pages - 2 * (nr_pages - n);
6995 l = nr_pages - n;
6996 /* Process subpages at the begin of huge page */
6997 for (i = 0; i < base; i++) {
6998 cond_resched();
6999 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7000 if (ret)
7001 return ret;
7002 }
7003 }
7004 /*
7005 * Process remaining subpages in left-right-left-right pattern
7006 * towards the target subpage
7007 */
7008 for (i = 0; i < l; i++) {
7009 int left_idx = base + i;
7010 int right_idx = base + 2 * l - 1 - i;
7011
7012 cond_resched();
7013 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
7014 if (ret)
7015 return ret;
7016 cond_resched();
7017 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
7018 if (ret)
7019 return ret;
7020 }
7021 return 0;
7022 }
7023
clear_gigantic_page(struct folio * folio,unsigned long addr_hint,unsigned int nr_pages)7024 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
7025 unsigned int nr_pages)
7026 {
7027 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
7028 int i;
7029
7030 might_sleep();
7031 for (i = 0; i < nr_pages; i++) {
7032 cond_resched();
7033 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
7034 }
7035 }
7036
clear_subpage(unsigned long addr,int idx,void * arg)7037 static int clear_subpage(unsigned long addr, int idx, void *arg)
7038 {
7039 struct folio *folio = arg;
7040
7041 clear_user_highpage(folio_page(folio, idx), addr);
7042 return 0;
7043 }
7044
7045 /**
7046 * folio_zero_user - Zero a folio which will be mapped to userspace.
7047 * @folio: The folio to zero.
7048 * @addr_hint: The address will be accessed or the base address if uncelar.
7049 */
folio_zero_user(struct folio * folio,unsigned long addr_hint)7050 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
7051 {
7052 unsigned int nr_pages = folio_nr_pages(folio);
7053
7054 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7055 clear_gigantic_page(folio, addr_hint, nr_pages);
7056 else
7057 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
7058 }
7059
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int nr_pages)7060 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
7061 unsigned long addr_hint,
7062 struct vm_area_struct *vma,
7063 unsigned int nr_pages)
7064 {
7065 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
7066 struct page *dst_page;
7067 struct page *src_page;
7068 int i;
7069
7070 for (i = 0; i < nr_pages; i++) {
7071 dst_page = folio_page(dst, i);
7072 src_page = folio_page(src, i);
7073
7074 cond_resched();
7075 if (copy_mc_user_highpage(dst_page, src_page,
7076 addr + i*PAGE_SIZE, vma))
7077 return -EHWPOISON;
7078 }
7079 return 0;
7080 }
7081
7082 struct copy_subpage_arg {
7083 struct folio *dst;
7084 struct folio *src;
7085 struct vm_area_struct *vma;
7086 };
7087
copy_subpage(unsigned long addr,int idx,void * arg)7088 static int copy_subpage(unsigned long addr, int idx, void *arg)
7089 {
7090 struct copy_subpage_arg *copy_arg = arg;
7091 struct page *dst = folio_page(copy_arg->dst, idx);
7092 struct page *src = folio_page(copy_arg->src, idx);
7093
7094 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
7095 return -EHWPOISON;
7096 return 0;
7097 }
7098
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)7099 int copy_user_large_folio(struct folio *dst, struct folio *src,
7100 unsigned long addr_hint, struct vm_area_struct *vma)
7101 {
7102 unsigned int nr_pages = folio_nr_pages(dst);
7103 struct copy_subpage_arg arg = {
7104 .dst = dst,
7105 .src = src,
7106 .vma = vma,
7107 };
7108
7109 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7110 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7111
7112 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7113 }
7114
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)7115 long copy_folio_from_user(struct folio *dst_folio,
7116 const void __user *usr_src,
7117 bool allow_pagefault)
7118 {
7119 void *kaddr;
7120 unsigned long i, rc = 0;
7121 unsigned int nr_pages = folio_nr_pages(dst_folio);
7122 unsigned long ret_val = nr_pages * PAGE_SIZE;
7123 struct page *subpage;
7124
7125 for (i = 0; i < nr_pages; i++) {
7126 subpage = folio_page(dst_folio, i);
7127 kaddr = kmap_local_page(subpage);
7128 if (!allow_pagefault)
7129 pagefault_disable();
7130 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7131 if (!allow_pagefault)
7132 pagefault_enable();
7133 kunmap_local(kaddr);
7134
7135 ret_val -= (PAGE_SIZE - rc);
7136 if (rc)
7137 break;
7138
7139 flush_dcache_page(subpage);
7140
7141 cond_resched();
7142 }
7143 return ret_val;
7144 }
7145 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7146
7147 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7148
7149 static struct kmem_cache *page_ptl_cachep;
7150
ptlock_cache_init(void)7151 void __init ptlock_cache_init(void)
7152 {
7153 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7154 SLAB_PANIC, NULL);
7155 }
7156
ptlock_alloc(struct ptdesc * ptdesc)7157 bool ptlock_alloc(struct ptdesc *ptdesc)
7158 {
7159 spinlock_t *ptl;
7160
7161 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7162 if (!ptl)
7163 return false;
7164 ptdesc->ptl = ptl;
7165 return true;
7166 }
7167
ptlock_free(struct ptdesc * ptdesc)7168 void ptlock_free(struct ptdesc *ptdesc)
7169 {
7170 if (ptdesc->ptl)
7171 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7172 }
7173 #endif
7174
vma_pgtable_walk_begin(struct vm_area_struct * vma)7175 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7176 {
7177 if (is_vm_hugetlb_page(vma))
7178 hugetlb_vma_lock_read(vma);
7179 }
7180
vma_pgtable_walk_end(struct vm_area_struct * vma)7181 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7182 {
7183 if (is_vm_hugetlb_page(vma))
7184 hugetlb_vma_unlock_read(vma);
7185 }
7186