1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Page table support for the Hexagon architecture
4 *
5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6 */
7
8 #ifndef _ASM_PGTABLE_H
9 #define _ASM_PGTABLE_H
10
11 /*
12 * Page table definitions for Qualcomm Hexagon processor.
13 */
14 #include <asm/page.h>
15 #include <asm-generic/pgtable-nopmd.h>
16
17 /* A handy thing to have if one has the RAM. Declared in head.S */
18 extern unsigned long empty_zero_page;
19
20 /*
21 * The PTE model described here is that of the Hexagon Virtual Machine,
22 * which autonomously walks 2-level page tables. At a lower level, we
23 * also describe the RISCish software-loaded TLB entry structure of
24 * the underlying Hexagon processor. A kernel built to run on the
25 * virtual machine has no need to know about the underlying hardware.
26 */
27 #include <asm/vm_mmu.h>
28
29 /*
30 * To maximize the comfort level for the PTE manipulation macros,
31 * define the "well known" architecture-specific bits.
32 */
33 #define _PAGE_READ __HVM_PTE_R
34 #define _PAGE_WRITE __HVM_PTE_W
35 #define _PAGE_EXECUTE __HVM_PTE_X
36 #define _PAGE_USER __HVM_PTE_U
37
38 /*
39 * We have a total of 4 "soft" bits available in the abstract PTE.
40 * The two mandatory software bits are Dirty and Accessed.
41 * To make nonlinear swap work according to the more recent
42 * model, we want a low order "Present" bit to indicate whether
43 * the PTE describes MMU programming or swap space.
44 */
45 #define _PAGE_PRESENT (1<<0)
46 #define _PAGE_DIRTY (1<<1)
47 #define _PAGE_ACCESSED (1<<2)
48
49 /*
50 * For now, let's say that Valid and Present are the same thing.
51 * Alternatively, we could say that it's the "or" of R, W, and X
52 * permissions.
53 */
54 #define _PAGE_VALID _PAGE_PRESENT
55
56 /*
57 * We're not defining _PAGE_GLOBAL here, since there's no concept
58 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
59 * and we want to use the same page table structures and macros in
60 * the native kernel as we do in the virtual machine kernel.
61 * So we'll put up with a bit of inefficiency for now...
62 */
63
64 /* We borrow bit 6 to store the exclusive marker in swap PTEs. */
65 #define _PAGE_SWP_EXCLUSIVE (1<<6)
66
67 /*
68 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
69 * only the second from the bottom, pgd and pud both being collapsed.
70 * Each entry represents 4MB of virtual address space, 4K of table
71 * thus maps the full 4GB.
72 */
73 #define PGDIR_SHIFT 22
74 #define PTRS_PER_PGD 1024
75
76 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
77 #define PGDIR_MASK (~(PGDIR_SIZE-1))
78
79 #ifdef CONFIG_PAGE_SIZE_4KB
80 #define PTRS_PER_PTE 1024
81 #endif
82
83 #ifdef CONFIG_PAGE_SIZE_16KB
84 #define PTRS_PER_PTE 256
85 #endif
86
87 #ifdef CONFIG_PAGE_SIZE_64KB
88 #define PTRS_PER_PTE 64
89 #endif
90
91 #ifdef CONFIG_PAGE_SIZE_256KB
92 #define PTRS_PER_PTE 16
93 #endif
94
95 #ifdef CONFIG_PAGE_SIZE_1MB
96 #define PTRS_PER_PTE 4
97 #endif
98
99 /* Any bigger and the PTE disappears. */
100 #define pgd_ERROR(e) \
101 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
102 pgd_val(e))
103
104 /*
105 * Page Protection Constants. Includes (in this variant) cache attributes.
106 */
107 extern unsigned long _dflt_cache_att;
108
109 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \
110 _dflt_cache_att)
111 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
112 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
113 #define PAGE_COPY PAGE_READONLY
114 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
115 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
116 #define PAGE_COPY_EXEC PAGE_EXEC
117 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
118 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
119 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \
120 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
121
122
123 /*
124 * Aliases for mapping mmap() protection bits to page protections.
125 * These get used for static initialization, so using the _dflt_cache_att
126 * variable for the default cache attribute isn't workable. If the
127 * default gets changed at boot time, the boot option code has to
128 * update data structures like the protaction_map[] array.
129 */
130 #define CACHEDEF (CACHE_DEFAULT << 6)
131
132 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */
133
134 /* HUGETLB not working currently */
135 #ifdef CONFIG_HUGETLB_PAGE
136 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
137 #endif
138
139 /*
140 * For now, assume that higher-level code will do TLB/MMU invalidations
141 * and don't insert that overhead into this low-level function.
142 */
143 extern void sync_icache_dcache(pte_t pte);
144
145 #define pte_present_exec_user(pte) \
146 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
147 (_PAGE_EXECUTE | _PAGE_USER))
148
set_pte(pte_t * ptep,pte_t pteval)149 static inline void set_pte(pte_t *ptep, pte_t pteval)
150 {
151 /* should really be using pte_exec, if it weren't declared later. */
152 if (pte_present_exec_user(pteval))
153 sync_icache_dcache(pteval);
154
155 *ptep = pteval;
156 }
157
158 /*
159 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
160 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
161 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7
162 * as a universal null entry, but some of those least significant bits
163 * are interpreted by software.
164 */
165 #define _NULL_PMD 0x7
166 #define _NULL_PTE 0x0
167
pmd_clear(pmd_t * pmd_entry_ptr)168 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
169 {
170 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
171 }
172
173 /*
174 * Conveniently, a null PTE value is invalid.
175 */
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)176 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
177 pte_t *ptep)
178 {
179 pte_val(*ptep) = _NULL_PTE;
180 }
181
182 /**
183 * pmd_none - check if pmd_entry is mapped
184 * @pmd_entry: pmd entry
185 *
186 * MIPS checks it against that "invalid pte table" thing.
187 */
pmd_none(pmd_t pmd)188 static inline int pmd_none(pmd_t pmd)
189 {
190 return pmd_val(pmd) == _NULL_PMD;
191 }
192
193 /**
194 * pmd_present - is there a page table behind this?
195 * Essentially the inverse of pmd_none. We maybe
196 * save an inline instruction by defining it this
197 * way, instead of simply "!pmd_none".
198 */
pmd_present(pmd_t pmd)199 static inline int pmd_present(pmd_t pmd)
200 {
201 return pmd_val(pmd) != (unsigned long)_NULL_PMD;
202 }
203
204 /**
205 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
206 * As we have no known cause of badness, it's null, as it is for many
207 * architectures.
208 */
pmd_bad(pmd_t pmd)209 static inline int pmd_bad(pmd_t pmd)
210 {
211 return 0;
212 }
213
214 /*
215 * pmd_pfn - converts a PMD entry to a page frame number
216 */
217 #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
218
219 /*
220 * pmd_page - converts a PMD entry to a page pointer
221 */
222 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
223
224 /**
225 * pte_none - check if pte is mapped
226 * @pte: pte_t entry
227 */
pte_none(pte_t pte)228 static inline int pte_none(pte_t pte)
229 {
230 return pte_val(pte) == _NULL_PTE;
231 };
232
233 /*
234 * pte_present - check if page is present
235 */
pte_present(pte_t pte)236 static inline int pte_present(pte_t pte)
237 {
238 return pte_val(pte) & _PAGE_PRESENT;
239 }
240
241 /* mk_pte - make a PTE out of a page pointer and protection bits */
242 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
243
244 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
245 #define pte_page(x) pfn_to_page(pte_pfn(x))
246
247 /* pte_mkold - mark PTE as not recently accessed */
pte_mkold(pte_t pte)248 static inline pte_t pte_mkold(pte_t pte)
249 {
250 pte_val(pte) &= ~_PAGE_ACCESSED;
251 return pte;
252 }
253
254 /* pte_mkyoung - mark PTE as recently accessed */
pte_mkyoung(pte_t pte)255 static inline pte_t pte_mkyoung(pte_t pte)
256 {
257 pte_val(pte) |= _PAGE_ACCESSED;
258 return pte;
259 }
260
261 /* pte_mkclean - mark page as in sync with backing store */
pte_mkclean(pte_t pte)262 static inline pte_t pte_mkclean(pte_t pte)
263 {
264 pte_val(pte) &= ~_PAGE_DIRTY;
265 return pte;
266 }
267
268 /* pte_mkdirty - mark page as modified */
pte_mkdirty(pte_t pte)269 static inline pte_t pte_mkdirty(pte_t pte)
270 {
271 pte_val(pte) |= _PAGE_DIRTY;
272 return pte;
273 }
274
275 /* pte_young - "is PTE marked as accessed"? */
pte_young(pte_t pte)276 static inline int pte_young(pte_t pte)
277 {
278 return pte_val(pte) & _PAGE_ACCESSED;
279 }
280
281 /* pte_dirty - "is PTE dirty?" */
pte_dirty(pte_t pte)282 static inline int pte_dirty(pte_t pte)
283 {
284 return pte_val(pte) & _PAGE_DIRTY;
285 }
286
287 /* pte_modify - set protection bits on PTE */
pte_modify(pte_t pte,pgprot_t prot)288 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
289 {
290 pte_val(pte) &= PAGE_MASK;
291 pte_val(pte) |= pgprot_val(prot);
292 return pte;
293 }
294
295 /* pte_wrprotect - mark page as not writable */
pte_wrprotect(pte_t pte)296 static inline pte_t pte_wrprotect(pte_t pte)
297 {
298 pte_val(pte) &= ~_PAGE_WRITE;
299 return pte;
300 }
301
302 /* pte_mkwrite - mark page as writable */
pte_mkwrite_novma(pte_t pte)303 static inline pte_t pte_mkwrite_novma(pte_t pte)
304 {
305 pte_val(pte) |= _PAGE_WRITE;
306 return pte;
307 }
308
309 /* pte_mkexec - mark PTE as executable */
pte_mkexec(pte_t pte)310 static inline pte_t pte_mkexec(pte_t pte)
311 {
312 pte_val(pte) |= _PAGE_EXECUTE;
313 return pte;
314 }
315
316 /* pte_read - "is PTE marked as readable?" */
pte_read(pte_t pte)317 static inline int pte_read(pte_t pte)
318 {
319 return pte_val(pte) & _PAGE_READ;
320 }
321
322 /* pte_write - "is PTE marked as writable?" */
pte_write(pte_t pte)323 static inline int pte_write(pte_t pte)
324 {
325 return pte_val(pte) & _PAGE_WRITE;
326 }
327
328
329 /* pte_exec - "is PTE marked as executable?" */
pte_exec(pte_t pte)330 static inline int pte_exec(pte_t pte)
331 {
332 return pte_val(pte) & _PAGE_EXECUTE;
333 }
334
335 /* __pte_to_swp_entry - extract swap entry from PTE */
336 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
337
338 /* __swp_entry_to_pte - extract PTE from swap entry */
339 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
340
341 #define PFN_PTE_SHIFT PAGE_SHIFT
342 /* pfn_pte - convert page number and protection value to page table entry */
343 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
344
345 /* pte_pfn - convert pte to page frame number */
346 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
347 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
348
pmd_page_vaddr(pmd_t pmd)349 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
350 {
351 return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK);
352 }
353
354 /* ZERO_PAGE - returns the globally shared zero page */
355 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
356
357 /*
358 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
359 * are !pte_none() && !pte_present().
360 *
361 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is
362 * interpreted as swap information. The remaining free bits are interpreted as
363 * listed below. Rather than have the TLB fill handler test
364 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
365 * all zeros for swap entries, which speeds up the miss handler at the cost of
366 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon
367 * processor architecture and target applications suggest a lot of TLB misses
368 * and not much swap space.
369 *
370 * Format of swap PTE:
371 * bit 0: Present (zero)
372 * bits 1-5: swap type (arch independent layer uses 5 bits max)
373 * bit 6: exclusive marker
374 * bits 7-9: bits 2:0 of offset
375 * bits 10-12: effectively _PAGE_PROTNONE (all zero)
376 * bits 13-31: bits 21:3 of swap offset
377 *
378 * The split offset makes some of the following macros a little gnarly,
379 * but there's plenty of precedent for this sort of thing.
380 */
381
382 /* Used for swap PTEs */
383 #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f)
384
385 #define __swp_offset(swp_pte) \
386 ((((swp_pte).val >> 7) & 0x7) | (((swp_pte).val >> 10) & 0x3ffff8))
387
388 #define __swp_entry(type, offset) \
389 ((swp_entry_t) { \
390 (((type & 0x1f) << 1) | \
391 ((offset & 0x3ffff8) << 10) | ((offset & 0x7) << 7)) })
392
pte_swp_exclusive(pte_t pte)393 static inline int pte_swp_exclusive(pte_t pte)
394 {
395 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
396 }
397
pte_swp_mkexclusive(pte_t pte)398 static inline pte_t pte_swp_mkexclusive(pte_t pte)
399 {
400 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
401 return pte;
402 }
403
pte_swp_clear_exclusive(pte_t pte)404 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
405 {
406 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
407 return pte;
408 }
409
410 #endif
411