xref: /linux/mm/pgtable-generic.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  mm/pgtable-generic.c
4  *
5  *  Generic pgtable methods declared in linux/pgtable.h
6  *
7  *  Copyright (C) 2010  Linus Torvalds
8  */
9 
10 #include <linux/pagemap.h>
11 #include <linux/hugetlb.h>
12 #include <linux/pgtable.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mm_inline.h>
16 #include <linux/iommu.h>
17 #include <linux/pgalloc.h>
18 
19 #include <asm/tlb.h>
20 
21 /*
22  * If a p?d_bad entry is found while walking page tables, report
23  * the error, before resetting entry to p?d_none.  Usually (but
24  * very seldom) called out from the p?d_none_or_clear_bad macros.
25  */
26 
pgd_clear_bad(pgd_t * pgd)27 void pgd_clear_bad(pgd_t *pgd)
28 {
29 	pgd_ERROR(*pgd);
30 	pgd_clear(pgd);
31 }
32 
33 #ifndef __PAGETABLE_P4D_FOLDED
p4d_clear_bad(p4d_t * p4d)34 void p4d_clear_bad(p4d_t *p4d)
35 {
36 	p4d_ERROR(*p4d);
37 	p4d_clear(p4d);
38 }
39 #endif
40 
41 #ifndef __PAGETABLE_PUD_FOLDED
pud_clear_bad(pud_t * pud)42 void pud_clear_bad(pud_t *pud)
43 {
44 	pud_ERROR(*pud);
45 	pud_clear(pud);
46 }
47 #endif
48 
49 /*
50  * Note that the pmd variant below can't be stub'ed out just as for p4d/pud
51  * above. pmd folding is special and typically pmd_* macros refer to upper
52  * level even when folded
53  */
pmd_clear_bad(pmd_t * pmd)54 void pmd_clear_bad(pmd_t *pmd)
55 {
56 	pmd_ERROR(*pmd);
57 	pmd_clear(pmd);
58 }
59 
60 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
61 /*
62  * Only sets the access flags (dirty, accessed), as well as write
63  * permission. Furthermore, we know it always gets set to a "more
64  * permissive" setting, which allows most architectures to optimize
65  * this. We return whether the PTE actually changed, which in turn
66  * instructs the caller to do things like update__mmu_cache.  This
67  * used to be done in the caller, but sparc needs minor faults to
68  * force that call on sun4c so we changed this macro slightly
69  */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)70 int ptep_set_access_flags(struct vm_area_struct *vma,
71 			  unsigned long address, pte_t *ptep,
72 			  pte_t entry, int dirty)
73 {
74 	int changed = !pte_same(ptep_get(ptep), entry);
75 	if (changed) {
76 		set_pte_at(vma->vm_mm, address, ptep, entry);
77 		flush_tlb_fix_spurious_fault(vma, address, ptep);
78 	}
79 	return changed;
80 }
81 #endif
82 
83 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)84 int ptep_clear_flush_young(struct vm_area_struct *vma,
85 			   unsigned long address, pte_t *ptep)
86 {
87 	int young;
88 	young = ptep_test_and_clear_young(vma, address, ptep);
89 	if (young)
90 		flush_tlb_page(vma, address);
91 	return young;
92 }
93 #endif
94 
95 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)96 pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address,
97 		       pte_t *ptep)
98 {
99 	struct mm_struct *mm = (vma)->vm_mm;
100 	pte_t pte;
101 	pte = ptep_get_and_clear(mm, address, ptep);
102 	if (pte_accessible(mm, pte))
103 		flush_tlb_page(vma, address);
104 	return pte;
105 }
106 #endif
107 
108 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
109 
110 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)111 int pmdp_set_access_flags(struct vm_area_struct *vma,
112 			  unsigned long address, pmd_t *pmdp,
113 			  pmd_t entry, int dirty)
114 {
115 	int changed = !pmd_same(*pmdp, entry);
116 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
117 	if (changed) {
118 		set_pmd_at(vma->vm_mm, address, pmdp, entry);
119 		flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
120 	}
121 	return changed;
122 }
123 #endif
124 
125 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)126 int pmdp_clear_flush_young(struct vm_area_struct *vma,
127 			   unsigned long address, pmd_t *pmdp)
128 {
129 	int young;
130 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
131 	young = pmdp_test_and_clear_young(vma, address, pmdp);
132 	if (young)
133 		flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
134 	return young;
135 }
136 #endif
137 
138 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)139 pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address,
140 			    pmd_t *pmdp)
141 {
142 	pmd_t pmd;
143 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
144 	VM_BUG_ON(pmd_present(*pmdp) && !pmd_trans_huge(*pmdp));
145 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
146 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
147 	return pmd;
148 }
149 
150 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_huge_clear_flush(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)151 pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address,
152 			    pud_t *pudp)
153 {
154 	pud_t pud;
155 
156 	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
157 	VM_BUG_ON(!pud_trans_huge(*pudp));
158 	pud = pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
159 	flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
160 	return pud;
161 }
162 #endif
163 #endif
164 
165 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)166 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
167 				pgtable_t pgtable)
168 {
169 	assert_spin_locked(pmd_lockptr(mm, pmdp));
170 
171 	/* FIFO */
172 	if (!pmd_huge_pte(mm, pmdp))
173 		INIT_LIST_HEAD(&pgtable->lru);
174 	else
175 		list_add(&pgtable->lru, &pmd_huge_pte(mm, pmdp)->lru);
176 	pmd_huge_pte(mm, pmdp) = pgtable;
177 }
178 #endif
179 
180 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
181 /* no "address" argument so destroys page coloring of some arch */
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)182 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
183 {
184 	pgtable_t pgtable;
185 
186 	assert_spin_locked(pmd_lockptr(mm, pmdp));
187 
188 	/* FIFO */
189 	pgtable = pmd_huge_pte(mm, pmdp);
190 	pmd_huge_pte(mm, pmdp) = list_first_entry_or_null(&pgtable->lru,
191 							  struct page, lru);
192 	if (pmd_huge_pte(mm, pmdp))
193 		list_del(&pgtable->lru);
194 	return pgtable;
195 }
196 #endif
197 
198 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)199 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
200 		     pmd_t *pmdp)
201 {
202 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
203 	pmd_t old = pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
204 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
205 	return old;
206 }
207 #endif
208 
209 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
pmdp_invalidate_ad(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)210 pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
211 			 pmd_t *pmdp)
212 {
213 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
214 	return pmdp_invalidate(vma, address, pmdp);
215 }
216 #endif
217 
218 #ifndef pmdp_collapse_flush
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)219 pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
220 			  pmd_t *pmdp)
221 {
222 	/*
223 	 * pmd and hugepage pte format are same. So we could
224 	 * use the same function.
225 	 */
226 	pmd_t pmd;
227 
228 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
229 	VM_BUG_ON(pmd_trans_huge(*pmdp));
230 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
231 
232 	/* collapse entails shooting down ptes not pmd */
233 	flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
234 	return pmd;
235 }
236 #endif
237 
238 /* arch define pte_free_defer in asm/pgalloc.h for its own implementation */
239 #ifndef pte_free_defer
pte_free_now(struct rcu_head * head)240 static void pte_free_now(struct rcu_head *head)
241 {
242 	struct page *page;
243 
244 	page = container_of(head, struct page, rcu_head);
245 	pte_free(NULL /* mm not passed and not used */, (pgtable_t)page);
246 }
247 
pte_free_defer(struct mm_struct * mm,pgtable_t pgtable)248 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
249 {
250 	struct page *page;
251 
252 	page = pgtable;
253 	call_rcu(&page->rcu_head, pte_free_now);
254 }
255 #endif /* pte_free_defer */
256 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
257 
258 #if defined(CONFIG_GUP_GET_PXX_LOW_HIGH) && \
259 	(defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RCU))
260 /*
261  * See the comment above ptep_get_lockless() in include/linux/pgtable.h:
262  * the barriers in pmdp_get_lockless() cannot guarantee that the value in
263  * pmd_high actually belongs with the value in pmd_low; but holding interrupts
264  * off blocks the TLB flush between present updates, which guarantees that a
265  * successful __pte_offset_map() points to a page from matched halves.
266  */
pmdp_get_lockless_start(void)267 static unsigned long pmdp_get_lockless_start(void)
268 {
269 	unsigned long irqflags;
270 
271 	local_irq_save(irqflags);
272 	return irqflags;
273 }
pmdp_get_lockless_end(unsigned long irqflags)274 static void pmdp_get_lockless_end(unsigned long irqflags)
275 {
276 	local_irq_restore(irqflags);
277 }
278 #else
pmdp_get_lockless_start(void)279 static unsigned long pmdp_get_lockless_start(void) { return 0; }
pmdp_get_lockless_end(unsigned long irqflags)280 static void pmdp_get_lockless_end(unsigned long irqflags) { }
281 #endif
282 
___pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)283 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp)
284 {
285 	unsigned long irqflags;
286 	pmd_t pmdval;
287 
288 	rcu_read_lock();
289 	irqflags = pmdp_get_lockless_start();
290 	pmdval = pmdp_get_lockless(pmd);
291 	pmdp_get_lockless_end(irqflags);
292 
293 	if (pmdvalp)
294 		*pmdvalp = pmdval;
295 	if (unlikely(pmd_none(pmdval) || !pmd_present(pmdval)))
296 		goto nomap;
297 	if (unlikely(pmd_trans_huge(pmdval)))
298 		goto nomap;
299 	if (unlikely(pmd_bad(pmdval))) {
300 		pmd_clear_bad(pmd);
301 		goto nomap;
302 	}
303 	return __pte_map(&pmdval, addr);
304 nomap:
305 	rcu_read_unlock();
306 	return NULL;
307 }
308 
pte_offset_map_ro_nolock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)309 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
310 				unsigned long addr, spinlock_t **ptlp)
311 {
312 	pmd_t pmdval;
313 	pte_t *pte;
314 
315 	pte = __pte_offset_map(pmd, addr, &pmdval);
316 	if (likely(pte))
317 		*ptlp = pte_lockptr(mm, &pmdval);
318 	return pte;
319 }
320 
pte_offset_map_rw_nolock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp,spinlock_t ** ptlp)321 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
322 				unsigned long addr, pmd_t *pmdvalp,
323 				spinlock_t **ptlp)
324 {
325 	pte_t *pte;
326 
327 	VM_WARN_ON_ONCE(!pmdvalp);
328 	pte = __pte_offset_map(pmd, addr, pmdvalp);
329 	if (likely(pte))
330 		*ptlp = pte_lockptr(mm, pmdvalp);
331 	return pte;
332 }
333 
334 /*
335  * pte_offset_map_lock(mm, pmd, addr, ptlp), and its internal implementation
336  * __pte_offset_map_lock() below, is usually called with the pmd pointer for
337  * addr, reached by walking down the mm's pgd, p4d, pud for addr: either while
338  * holding mmap_lock or vma lock for read or for write; or in truncate or rmap
339  * context, while holding file's i_mmap_lock or anon_vma lock for read (or for
340  * write). In a few cases, it may be used with pmd pointing to a pmd_t already
341  * copied to or constructed on the stack.
342  *
343  * When successful, it returns the pte pointer for addr, with its page table
344  * kmapped if necessary (when CONFIG_HIGHPTE), and locked against concurrent
345  * modification by software, with a pointer to that spinlock in ptlp (in some
346  * configs mm->page_table_lock, in SPLIT_PTLOCK configs a spinlock in table's
347  * struct page).  pte_unmap_unlock(pte, ptl) to unlock and unmap afterwards.
348  *
349  * But it is unsuccessful, returning NULL with *ptlp unchanged, if there is no
350  * page table at *pmd: if, for example, the page table has just been removed,
351  * or replaced by the huge pmd of a THP.  (When successful, *pmd is rechecked
352  * after acquiring the ptlock, and retried internally if it changed: so that a
353  * page table can be safely removed or replaced by THP while holding its lock.)
354  *
355  * pte_offset_map(pmd, addr), and its internal helper __pte_offset_map() above,
356  * just returns the pte pointer for addr, its page table kmapped if necessary;
357  * or NULL if there is no page table at *pmd.  It does not attempt to lock the
358  * page table, so cannot normally be used when the page table is to be updated,
359  * or when entries read must be stable.  But it does take rcu_read_lock(): so
360  * that even when page table is racily removed, it remains a valid though empty
361  * and disconnected table.  Until pte_unmap(pte) unmaps and rcu_read_unlock()s
362  * afterwards.
363  *
364  * pte_offset_map_ro_nolock(mm, pmd, addr, ptlp), above, is like pte_offset_map();
365  * but when successful, it also outputs a pointer to the spinlock in ptlp - as
366  * pte_offset_map_lock() does, but in this case without locking it.  This helps
367  * the caller to avoid a later pte_lockptr(mm, *pmd), which might by that time
368  * act on a changed *pmd: pte_offset_map_ro_nolock() provides the correct spinlock
369  * pointer for the page table that it returns. Even after grabbing the spinlock,
370  * we might be looking either at a page table that is still mapped or one that
371  * was unmapped and is about to get freed. But for R/O access this is sufficient.
372  * So it is only applicable for read-only cases where any modification operations
373  * to the page table are not allowed even if the corresponding spinlock is held
374  * afterwards.
375  *
376  * pte_offset_map_rw_nolock(mm, pmd, addr, pmdvalp, ptlp), above, is like
377  * pte_offset_map_ro_nolock(); but when successful, it also outputs the pdmval.
378  * It is applicable for may-write cases where any modification operations to the
379  * page table may happen after the corresponding spinlock is held afterwards.
380  * But the users should make sure the page table is stable like checking pte_same()
381  * or checking pmd_same() by using the output pmdval before performing the write
382  * operations.
383  *
384  * Note: "RO" / "RW" expresses the intended semantics, not that the *kmap* will
385  * be read-only/read-write protected.
386  *
387  * Note that free_pgtables(), used after unmapping detached vmas, or when
388  * exiting the whole mm, does not take page table lock before freeing a page
389  * table, and may not use RCU at all: "outsiders" like khugepaged should avoid
390  * pte_offset_map() and co once the vma is detached from mm or mm_users is zero.
391  */
__pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)392 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
393 			     unsigned long addr, spinlock_t **ptlp)
394 {
395 	spinlock_t *ptl;
396 	pmd_t pmdval;
397 	pte_t *pte;
398 again:
399 	pte = __pte_offset_map(pmd, addr, &pmdval);
400 	if (unlikely(!pte))
401 		return pte;
402 	ptl = pte_lockptr(mm, &pmdval);
403 	spin_lock(ptl);
404 	if (likely(pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
405 		*ptlp = ptl;
406 		return pte;
407 	}
408 	pte_unmap_unlock(pte, ptl);
409 	goto again;
410 }
411 
412 #ifdef CONFIG_ASYNC_KERNEL_PGTABLE_FREE
413 static void kernel_pgtable_work_func(struct work_struct *work);
414 
415 static struct {
416 	struct list_head list;
417 	/* protect above ptdesc lists */
418 	spinlock_t lock;
419 	struct work_struct work;
420 } kernel_pgtable_work = {
421 	.list = LIST_HEAD_INIT(kernel_pgtable_work.list),
422 	.lock = __SPIN_LOCK_UNLOCKED(kernel_pgtable_work.lock),
423 	.work = __WORK_INITIALIZER(kernel_pgtable_work.work, kernel_pgtable_work_func),
424 };
425 
kernel_pgtable_work_func(struct work_struct * work)426 static void kernel_pgtable_work_func(struct work_struct *work)
427 {
428 	struct ptdesc *pt, *next;
429 	LIST_HEAD(page_list);
430 
431 	spin_lock(&kernel_pgtable_work.lock);
432 	list_splice_tail_init(&kernel_pgtable_work.list, &page_list);
433 	spin_unlock(&kernel_pgtable_work.lock);
434 
435 	iommu_sva_invalidate_kva_range(PAGE_OFFSET, TLB_FLUSH_ALL);
436 	list_for_each_entry_safe(pt, next, &page_list, pt_list)
437 		__pagetable_free(pt);
438 }
439 
pagetable_free_kernel(struct ptdesc * pt)440 void pagetable_free_kernel(struct ptdesc *pt)
441 {
442 	spin_lock(&kernel_pgtable_work.lock);
443 	list_add(&pt->pt_list, &kernel_pgtable_work.list);
444 	spin_unlock(&kernel_pgtable_work.lock);
445 
446 	schedule_work(&kernel_pgtable_work.work);
447 }
448 #endif
449