xref: /linux/arch/microblaze/include/asm/pgtable.h (revision 9b0d551bcc05fa4786689544a2845024db1d41b6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
4  * Copyright (C) 2008-2009 PetaLogix
5  * Copyright (C) 2006 Atmark Techno, Inc.
6  */
7 
8 #ifndef _ASM_MICROBLAZE_PGTABLE_H
9 #define _ASM_MICROBLAZE_PGTABLE_H
10 
11 #include <asm/setup.h>
12 
13 #ifndef __ASSEMBLER__
14 extern int mem_init_done;
15 #endif
16 
17 #include <asm-generic/pgtable-nopmd.h>
18 
19 #ifdef __KERNEL__
20 #ifndef __ASSEMBLER__
21 
22 #include <linux/sched.h>
23 #include <linux/threads.h>
24 #include <asm/processor.h>		/* For TASK_SIZE */
25 #include <asm/mmu.h>
26 #include <asm/page.h>
27 
28 extern unsigned long va_to_phys(unsigned long address);
29 extern pte_t *va_to_pte(unsigned long address);
30 
31 /*
32  * The following only work if pte_present() is true.
33  * Undefined behaviour if not..
34  */
35 
36 /* Start and end of the vmalloc area. */
37 /* Make sure to map the vmalloc area above the pinned kernel memory area
38    of 32Mb.  */
39 #define VMALLOC_START	(CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
40 #define VMALLOC_END	ioremap_bot
41 
42 #endif /* __ASSEMBLER__ */
43 
44 /*
45  * Macro to mark a page protection value as "uncacheable".
46  */
47 
48 #define _PAGE_CACHE_CTL	(_PAGE_GUARDED | _PAGE_NO_CACHE | \
49 							_PAGE_WRITETHRU)
50 
51 #define pgprot_noncached(prot) \
52 			(__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
53 					_PAGE_NO_CACHE | _PAGE_GUARDED))
54 
55 #define pgprot_noncached_wc(prot) \
56 			 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
57 							_PAGE_NO_CACHE))
58 
59 /*
60  * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
61  * table containing PTEs, together with a set of 16 segment registers, to
62  * define the virtual to physical address mapping.
63  *
64  * We use the hash table as an extended TLB, i.e. a cache of currently
65  * active mappings.  We maintain a two-level page table tree, much
66  * like that used by the i386, for the sake of the Linux memory
67  * management code.  Low-level assembler code in hashtable.S
68  * (procedure hash_page) is responsible for extracting ptes from the
69  * tree and putting them into the hash table when necessary, and
70  * updating the accessed and modified bits in the page table tree.
71  */
72 
73 /*
74  * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
75  * instruction and data sides share a unified, 64-entry, semi-associative
76  * TLB which is maintained totally under software control. In addition, the
77  * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
78  * TLB which serves as a first level to the shared TLB. These two TLBs are
79  * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
80  */
81 
82 /*
83  * The normal case is that PTEs are 32-bits and we have a 1-page
84  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
85  *
86  */
87 
88 /* PGDIR_SHIFT determines what a top-level page table entry can map */
89 #define PGDIR_SHIFT	(PAGE_SHIFT + PTE_SHIFT)
90 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
91 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
92 
93 /*
94  * entries per page directory level: our page-table tree is two-level, so
95  * we don't really have any PMD directory.
96  */
97 #define PTRS_PER_PTE	(1 << PTE_SHIFT)
98 #define PTRS_PER_PMD	1
99 #define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT))
100 
101 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
102 
103 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
104 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
105 
106 #define pte_ERROR(e) \
107 	printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
108 		__FILE__, __LINE__, pte_val(e))
109 #define pgd_ERROR(e) \
110 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
111 		__FILE__, __LINE__, pgd_val(e))
112 
113 /*
114  * Bits in a linux-style PTE.  These match the bits in the
115  * (hardware-defined) PTE as closely as possible.
116  */
117 
118 /* There are several potential gotchas here.  The hardware TLBLO
119  * field looks like this:
120  *
121  * 0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
122  * RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
123  *
124  * Where possible we make the Linux PTE bits match up with this
125  *
126  * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
127  * support down to 1k pages), this is done in the TLBMiss exception
128  * handler.
129  * - We use only zones 0 (for kernel pages) and 1 (for user pages)
130  * of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
131  * miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
132  * zone.
133  * - PRESENT *must* be in the bottom two bits because swap PTEs use the top
134  * 30 bits.  Because 4xx doesn't support SMP anyway, M is irrelevant so we
135  * borrow it for PAGE_PRESENT.  Bit 30 is cleared in the TLB miss handler
136  * before the TLB entry is loaded.
137  * - All other bits of the PTE are loaded into TLBLO without
138  *  * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
139  * software PTE bits.  We actually use bits 21, 24, 25, and
140  * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
141  * PRESENT.
142  */
143 
144 /* Definitions for MicroBlaze. */
145 #define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */
146 #define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */
147 #define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */
148 #define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */
149 #define	_PAGE_USER	0x010	/* matches one of the zone permission bits */
150 #define	_PAGE_RW	0x040	/* software: Writes permitted */
151 #define	_PAGE_DIRTY	0x080	/* software: dirty page */
152 #define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */
153 #define _PAGE_HWEXEC	0x200	/* hardware: EX permission */
154 #define _PAGE_ACCESSED	0x400	/* software: R: page referenced */
155 #define _PMD_PRESENT	PAGE_MASK
156 
157 /* We borrow bit 24 to store the exclusive marker in swap PTEs. */
158 #define _PAGE_SWP_EXCLUSIVE	_PAGE_DIRTY
159 
160 /*
161  * Some bits are unused...
162  */
163 #ifndef _PAGE_HASHPTE
164 #define _PAGE_HASHPTE	0
165 #endif
166 #ifndef _PTE_NONE_MASK
167 #define _PTE_NONE_MASK	0
168 #endif
169 #ifndef _PAGE_SHARED
170 #define _PAGE_SHARED	0
171 #endif
172 #ifndef _PAGE_EXEC
173 #define _PAGE_EXEC	0
174 #endif
175 
176 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
177 
178 /*
179  * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
180  * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
181  * to have it in the Linux PTE, and in fact the bit could be reused for
182  * another purpose.  -- paulus.
183  */
184 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED)
185 #define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
186 
187 #define _PAGE_KERNEL \
188 	(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
189 
190 #define _PAGE_IO	(_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
191 
192 #define PAGE_NONE	__pgprot(_PAGE_BASE)
193 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
194 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
195 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
196 #define PAGE_SHARED_X \
197 		__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
198 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
199 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
200 
201 #define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
202 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_SHARED)
203 #define PAGE_KERNEL_CI	__pgprot(_PAGE_IO)
204 
205 /*
206  * We consider execute permission the same as read.
207  * Also, write permissions imply read permissions.
208  */
209 
210 #ifndef __ASSEMBLER__
211 /*
212  * ZERO_PAGE is a global shared page that is always zero: used
213  * for zero-mapped memory areas etc..
214  */
215 extern unsigned long empty_zero_page[1024];
216 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
217 
218 #endif /* __ASSEMBLER__ */
219 
220 #define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
221 #define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
222 #define pte_clear(mm, addr, ptep) \
223 	do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
224 
225 #define pmd_none(pmd)		(!pmd_val(pmd))
226 #define	pmd_bad(pmd)		((pmd_val(pmd) & _PMD_PRESENT) == 0)
227 #define	pmd_present(pmd)	((pmd_val(pmd) & _PMD_PRESENT) != 0)
228 #define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0)
229 
230 #define pte_page(x)		(mem_map + (unsigned long) \
231 				((pte_val(x) - memory_start) >> PAGE_SHIFT))
232 #define PFN_PTE_SHIFT		PAGE_SHIFT
233 
234 #define pte_pfn(x)		(pte_val(x) >> PFN_PTE_SHIFT)
235 
236 #define pfn_pte(pfn, prot) \
237 	__pte(((pte_basic_t)(pfn) << PFN_PTE_SHIFT) | pgprot_val(prot))
238 
239 #ifndef __ASSEMBLER__
240 /*
241  * The following only work if pte_present() is true.
242  * Undefined behaviour if not..
243  */
pte_read(pte_t pte)244 static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; }
pte_write(pte_t pte)245 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
pte_exec(pte_t pte)246 static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
pte_dirty(pte_t pte)247 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)248 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
249 
pte_uncache(pte_t pte)250 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
pte_cache(pte_t pte)251 static inline void pte_cache(pte_t pte)   { pte_val(pte) &= ~_PAGE_NO_CACHE; }
252 
pte_rdprotect(pte_t pte)253 static inline pte_t pte_rdprotect(pte_t pte) \
254 		{ pte_val(pte) &= ~_PAGE_USER; return pte; }
pte_wrprotect(pte_t pte)255 static inline pte_t pte_wrprotect(pte_t pte) \
256 	{ pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
pte_exprotect(pte_t pte)257 static inline pte_t pte_exprotect(pte_t pte) \
258 	{ pte_val(pte) &= ~_PAGE_EXEC; return pte; }
pte_mkclean(pte_t pte)259 static inline pte_t pte_mkclean(pte_t pte) \
260 	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
pte_mkold(pte_t pte)261 static inline pte_t pte_mkold(pte_t pte) \
262 	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
263 
pte_mkread(pte_t pte)264 static inline pte_t pte_mkread(pte_t pte) \
265 	{ pte_val(pte) |= _PAGE_USER; return pte; }
pte_mkexec(pte_t pte)266 static inline pte_t pte_mkexec(pte_t pte) \
267 	{ pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
pte_mkwrite_novma(pte_t pte)268 static inline pte_t pte_mkwrite_novma(pte_t pte) \
269 	{ pte_val(pte) |= _PAGE_RW; return pte; }
pte_mkdirty(pte_t pte)270 static inline pte_t pte_mkdirty(pte_t pte) \
271 	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)272 static inline pte_t pte_mkyoung(pte_t pte) \
273 	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
274 
275 /*
276  * Conversion functions: convert a page and protection to a page entry,
277  * and a page entry and page directory to the page they refer to.
278  */
279 
mk_pte_phys(phys_addr_t physpage,pgprot_t pgprot)280 static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
281 {
282 	pte_t pte;
283 	pte_val(pte) = physpage | pgprot_val(pgprot);
284 	return pte;
285 }
286 
pte_modify(pte_t pte,pgprot_t newprot)287 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
288 {
289 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
290 	return pte;
291 }
292 
293 /*
294  * Atomic PTE updates.
295  *
296  * pte_update clears and sets bit atomically, and returns
297  * the old pte value.
298  * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
299  * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
300  */
pte_update(pte_t * p,unsigned long clr,unsigned long set)301 static inline unsigned long pte_update(pte_t *p, unsigned long clr,
302 				unsigned long set)
303 {
304 	unsigned long flags, old, tmp;
305 
306 	raw_local_irq_save(flags);
307 
308 	__asm__ __volatile__(	"lw	%0, %2, r0	\n"
309 				"andn	%1, %0, %3	\n"
310 				"or	%1, %1, %4	\n"
311 				"sw	%1, %2, r0	\n"
312 			: "=&r" (old), "=&r" (tmp)
313 			: "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
314 			: "cc");
315 
316 	raw_local_irq_restore(flags);
317 
318 	return old;
319 }
320 
321 /*
322  * set_pte stores a linux PTE into the linux page table.
323  */
set_pte(pte_t * ptep,pte_t pte)324 static inline void set_pte(pte_t *ptep, pte_t pte)
325 {
326 	*ptep = pte;
327 }
328 
329 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
330 struct vm_area_struct;
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)331 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
332 		unsigned long address, pte_t *ptep)
333 {
334 	return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
335 }
336 
ptep_test_and_clear_dirty(struct mm_struct * mm,unsigned long addr,pte_t * ptep)337 static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
338 		unsigned long addr, pte_t *ptep)
339 {
340 	return (pte_update(ptep, \
341 		(_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
342 }
343 
344 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)345 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
346 		unsigned long addr, pte_t *ptep)
347 {
348 	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
349 }
350 
351 /*static inline void ptep_set_wrprotect(struct mm_struct *mm,
352 		unsigned long addr, pte_t *ptep)
353 {
354 	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
355 }*/
356 
ptep_mkdirty(struct mm_struct * mm,unsigned long addr,pte_t * ptep)357 static inline void ptep_mkdirty(struct mm_struct *mm,
358 		unsigned long addr, pte_t *ptep)
359 {
360 	pte_update(ptep, 0, _PAGE_DIRTY);
361 }
362 
363 /*#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
364 
365 /* Convert pmd entry to page */
366 /* our pmd entry is an effective address of pte table*/
367 /* returns effective address of the pmd entry*/
pmd_page_vaddr(pmd_t pmd)368 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
369 {
370 	return ((unsigned long) (pmd_val(pmd) & PAGE_MASK));
371 }
372 
373 /* returns pfn of the pmd entry*/
374 #define pmd_pfn(pmd)	(__pa(pmd_val(pmd)) >> PAGE_SHIFT)
375 
376 /* returns struct *page of the pmd entry*/
377 #define pmd_page(pmd)	(pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
378 
379 /* Find an entry in the third-level page table.. */
380 
381 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
382 
383 /*
384  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
385  * are !pte_none() && !pte_present().
386  *
387  *                         1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
388  *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
389  *   <------------------ offset -------------------> E < type -> 0 0
390  *
391  *   E is the exclusive marker that is not stored in swap entries.
392  */
393 #define __swp_type(entry)	((entry).val & 0x1f)
394 #define __swp_offset(entry)	((entry).val >> 6)
395 #define __swp_entry(type, offset) \
396 		((swp_entry_t) { ((type) & 0x1f) | ((offset) << 6) })
397 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) >> 2 })
398 #define __swp_entry_to_pte(x)	((pte_t) { (x).val << 2 })
399 
pte_swp_exclusive(pte_t pte)400 static inline bool pte_swp_exclusive(pte_t pte)
401 {
402 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
403 }
404 
pte_swp_mkexclusive(pte_t pte)405 static inline pte_t pte_swp_mkexclusive(pte_t pte)
406 {
407 	pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
408 	return pte;
409 }
410 
pte_swp_clear_exclusive(pte_t pte)411 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
412 {
413 	pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
414 	return pte;
415 }
416 
417 extern unsigned long iopa(unsigned long addr);
418 
419 /* Values for nocacheflag and cmode */
420 /* These are not used by the APUS kernel_map, but prevents
421  * compilation errors.
422  */
423 #define	IOMAP_FULL_CACHING	0
424 #define	IOMAP_NOCACHE_SER	1
425 #define	IOMAP_NOCACHE_NONSER	2
426 #define	IOMAP_NO_COPYBACK	3
427 
428 void do_page_fault(struct pt_regs *regs, unsigned long address,
429 		   unsigned long error_code);
430 
431 void mapin_ram(void);
432 int map_page(unsigned long va, phys_addr_t pa, int flags);
433 
434 extern int mem_init_done;
435 
436 asmlinkage void __init mmu_init(void);
437 
438 #endif /* __ASSEMBLER__ */
439 #endif /* __KERNEL__ */
440 
441 #ifndef __ASSEMBLER__
442 extern unsigned long ioremap_bot, ioremap_base;
443 
444 void setup_memory(void);
445 #endif /* __ASSEMBLER__ */
446 
447 #endif /* _ASM_MICROBLAZE_PGTABLE_H */
448