xref: /linux/drivers/crypto/ccp/sev-dev.c (revision 85ffc6e4ed3712f8b3fedb3fbe42afae644a699c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <brijesh.singh@amd.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/spinlock_types.h>
18 #include <linux/types.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/ccp.h>
23 #include <linux/firmware.h>
24 #include <linux/panic_notifier.h>
25 #include <linux/gfp.h>
26 #include <linux/cpufeature.h>
27 #include <linux/fs.h>
28 #include <linux/fs_struct.h>
29 #include <linux/psp.h>
30 #include <linux/amd-iommu.h>
31 
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/e820/types.h>
35 #include <asm/sev.h>
36 
37 #include "psp-dev.h"
38 #include "sev-dev.h"
39 
40 #define DEVICE_NAME		"sev"
41 #define SEV_FW_FILE		"amd/sev.fw"
42 #define SEV_FW_NAME_SIZE	64
43 
44 /* Minimum firmware version required for the SEV-SNP support */
45 #define SNP_MIN_API_MAJOR	1
46 #define SNP_MIN_API_MINOR	51
47 
48 /*
49  * Maximum number of firmware-writable buffers that might be specified
50  * in the parameters of a legacy SEV command buffer.
51  */
52 #define CMD_BUF_FW_WRITABLE_MAX 2
53 
54 /* Leave room in the descriptor array for an end-of-list indicator. */
55 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
56 
57 static DEFINE_MUTEX(sev_cmd_mutex);
58 static struct sev_misc_dev *misc_dev;
59 
60 static int psp_cmd_timeout = 100;
61 module_param(psp_cmd_timeout, int, 0644);
62 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
63 
64 static int psp_probe_timeout = 5;
65 module_param(psp_probe_timeout, int, 0644);
66 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
67 
68 static char *init_ex_path;
69 module_param(init_ex_path, charp, 0444);
70 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
71 
72 static bool psp_init_on_probe = true;
73 module_param(psp_init_on_probe, bool, 0444);
74 MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
75 
76 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
78 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
80 
81 static bool psp_dead;
82 static int psp_timeout;
83 
84 /* Trusted Memory Region (TMR):
85  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
86  *   to allocate the memory, which will return aligned memory for the specified
87  *   allocation order.
88  *
89  * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
90  */
91 #define SEV_TMR_SIZE		(1024 * 1024)
92 #define SNP_TMR_SIZE		(2 * 1024 * 1024)
93 
94 static void *sev_es_tmr;
95 static size_t sev_es_tmr_size = SEV_TMR_SIZE;
96 
97 /* INIT_EX NV Storage:
98  *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
99  *   allocator to allocate the memory, which will return aligned memory for the
100  *   specified allocation order.
101  */
102 #define NV_LENGTH (32 * 1024)
103 static void *sev_init_ex_buffer;
104 
105 /*
106  * SEV_DATA_RANGE_LIST:
107  *   Array containing range of pages that firmware transitions to HV-fixed
108  *   page state.
109  */
110 static struct sev_data_range_list *snp_range_list;
111 
sev_version_greater_or_equal(u8 maj,u8 min)112 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
113 {
114 	struct sev_device *sev = psp_master->sev_data;
115 
116 	if (sev->api_major > maj)
117 		return true;
118 
119 	if (sev->api_major == maj && sev->api_minor >= min)
120 		return true;
121 
122 	return false;
123 }
124 
sev_irq_handler(int irq,void * data,unsigned int status)125 static void sev_irq_handler(int irq, void *data, unsigned int status)
126 {
127 	struct sev_device *sev = data;
128 	int reg;
129 
130 	/* Check if it is command completion: */
131 	if (!(status & SEV_CMD_COMPLETE))
132 		return;
133 
134 	/* Check if it is SEV command completion: */
135 	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
136 	if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
137 		sev->int_rcvd = 1;
138 		wake_up(&sev->int_queue);
139 	}
140 }
141 
sev_wait_cmd_ioc(struct sev_device * sev,unsigned int * reg,unsigned int timeout)142 static int sev_wait_cmd_ioc(struct sev_device *sev,
143 			    unsigned int *reg, unsigned int timeout)
144 {
145 	int ret;
146 
147 	/*
148 	 * If invoked during panic handling, local interrupts are disabled,
149 	 * so the PSP command completion interrupt can't be used. Poll for
150 	 * PSP command completion instead.
151 	 */
152 	if (irqs_disabled()) {
153 		unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
154 
155 		/* Poll for SEV command completion: */
156 		while (timeout_usecs--) {
157 			*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
158 			if (*reg & PSP_CMDRESP_RESP)
159 				return 0;
160 
161 			udelay(10);
162 		}
163 		return -ETIMEDOUT;
164 	}
165 
166 	ret = wait_event_timeout(sev->int_queue,
167 			sev->int_rcvd, timeout * HZ);
168 	if (!ret)
169 		return -ETIMEDOUT;
170 
171 	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
172 
173 	return 0;
174 }
175 
sev_cmd_buffer_len(int cmd)176 static int sev_cmd_buffer_len(int cmd)
177 {
178 	switch (cmd) {
179 	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
180 	case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
181 	case SEV_CMD_SNP_SHUTDOWN_EX:		return sizeof(struct sev_data_snp_shutdown_ex);
182 	case SEV_CMD_SNP_INIT_EX:		return sizeof(struct sev_data_snp_init_ex);
183 	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
184 	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
185 	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
186 	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
187 	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
188 	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
189 	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
190 	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
191 	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
192 	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
193 	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
194 	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
195 	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
196 	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
197 	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
198 	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
199 	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
200 	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
201 	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
202 	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
203 	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
204 	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
205 	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
206 	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
207 	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
208 	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
209 	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
210 	case SEV_CMD_SEND_CANCEL:		return sizeof(struct sev_data_send_cancel);
211 	case SEV_CMD_SNP_GCTX_CREATE:		return sizeof(struct sev_data_snp_addr);
212 	case SEV_CMD_SNP_LAUNCH_START:		return sizeof(struct sev_data_snp_launch_start);
213 	case SEV_CMD_SNP_LAUNCH_UPDATE:		return sizeof(struct sev_data_snp_launch_update);
214 	case SEV_CMD_SNP_ACTIVATE:		return sizeof(struct sev_data_snp_activate);
215 	case SEV_CMD_SNP_DECOMMISSION:		return sizeof(struct sev_data_snp_addr);
216 	case SEV_CMD_SNP_PAGE_RECLAIM:		return sizeof(struct sev_data_snp_page_reclaim);
217 	case SEV_CMD_SNP_GUEST_STATUS:		return sizeof(struct sev_data_snp_guest_status);
218 	case SEV_CMD_SNP_LAUNCH_FINISH:		return sizeof(struct sev_data_snp_launch_finish);
219 	case SEV_CMD_SNP_DBG_DECRYPT:		return sizeof(struct sev_data_snp_dbg);
220 	case SEV_CMD_SNP_DBG_ENCRYPT:		return sizeof(struct sev_data_snp_dbg);
221 	case SEV_CMD_SNP_PAGE_UNSMASH:		return sizeof(struct sev_data_snp_page_unsmash);
222 	case SEV_CMD_SNP_PLATFORM_STATUS:	return sizeof(struct sev_data_snp_addr);
223 	case SEV_CMD_SNP_GUEST_REQUEST:		return sizeof(struct sev_data_snp_guest_request);
224 	case SEV_CMD_SNP_CONFIG:		return sizeof(struct sev_user_data_snp_config);
225 	case SEV_CMD_SNP_COMMIT:		return sizeof(struct sev_data_snp_commit);
226 	default:				return 0;
227 	}
228 
229 	return 0;
230 }
231 
open_file_as_root(const char * filename,int flags,umode_t mode)232 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
233 {
234 	struct file *fp;
235 	struct path root;
236 	struct cred *cred;
237 	const struct cred *old_cred;
238 
239 	task_lock(&init_task);
240 	get_fs_root(init_task.fs, &root);
241 	task_unlock(&init_task);
242 
243 	cred = prepare_creds();
244 	if (!cred)
245 		return ERR_PTR(-ENOMEM);
246 	cred->fsuid = GLOBAL_ROOT_UID;
247 	old_cred = override_creds(cred);
248 
249 	fp = file_open_root(&root, filename, flags, mode);
250 	path_put(&root);
251 
252 	revert_creds(old_cred);
253 
254 	return fp;
255 }
256 
sev_read_init_ex_file(void)257 static int sev_read_init_ex_file(void)
258 {
259 	struct sev_device *sev = psp_master->sev_data;
260 	struct file *fp;
261 	ssize_t nread;
262 
263 	lockdep_assert_held(&sev_cmd_mutex);
264 
265 	if (!sev_init_ex_buffer)
266 		return -EOPNOTSUPP;
267 
268 	fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
269 	if (IS_ERR(fp)) {
270 		int ret = PTR_ERR(fp);
271 
272 		if (ret == -ENOENT) {
273 			dev_info(sev->dev,
274 				"SEV: %s does not exist and will be created later.\n",
275 				init_ex_path);
276 			ret = 0;
277 		} else {
278 			dev_err(sev->dev,
279 				"SEV: could not open %s for read, error %d\n",
280 				init_ex_path, ret);
281 		}
282 		return ret;
283 	}
284 
285 	nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
286 	if (nread != NV_LENGTH) {
287 		dev_info(sev->dev,
288 			"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
289 			NV_LENGTH, nread);
290 	}
291 
292 	dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
293 	filp_close(fp, NULL);
294 
295 	return 0;
296 }
297 
sev_write_init_ex_file(void)298 static int sev_write_init_ex_file(void)
299 {
300 	struct sev_device *sev = psp_master->sev_data;
301 	struct file *fp;
302 	loff_t offset = 0;
303 	ssize_t nwrite;
304 
305 	lockdep_assert_held(&sev_cmd_mutex);
306 
307 	if (!sev_init_ex_buffer)
308 		return 0;
309 
310 	fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
311 	if (IS_ERR(fp)) {
312 		int ret = PTR_ERR(fp);
313 
314 		dev_err(sev->dev,
315 			"SEV: could not open file for write, error %d\n",
316 			ret);
317 		return ret;
318 	}
319 
320 	nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
321 	vfs_fsync(fp, 0);
322 	filp_close(fp, NULL);
323 
324 	if (nwrite != NV_LENGTH) {
325 		dev_err(sev->dev,
326 			"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
327 			NV_LENGTH, nwrite);
328 		return -EIO;
329 	}
330 
331 	dev_dbg(sev->dev, "SEV: write successful to NV file\n");
332 
333 	return 0;
334 }
335 
sev_write_init_ex_file_if_required(int cmd_id)336 static int sev_write_init_ex_file_if_required(int cmd_id)
337 {
338 	lockdep_assert_held(&sev_cmd_mutex);
339 
340 	if (!sev_init_ex_buffer)
341 		return 0;
342 
343 	/*
344 	 * Only a few platform commands modify the SPI/NV area, but none of the
345 	 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
346 	 * PEK_CERT_IMPORT, and PDH_GEN do.
347 	 */
348 	switch (cmd_id) {
349 	case SEV_CMD_FACTORY_RESET:
350 	case SEV_CMD_INIT_EX:
351 	case SEV_CMD_PDH_GEN:
352 	case SEV_CMD_PEK_CERT_IMPORT:
353 	case SEV_CMD_PEK_GEN:
354 		break;
355 	default:
356 		return 0;
357 	}
358 
359 	return sev_write_init_ex_file();
360 }
361 
362 /*
363  * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
364  * needs snp_reclaim_pages(), so a forward declaration is needed.
365  */
366 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
367 
snp_reclaim_pages(unsigned long paddr,unsigned int npages,bool locked)368 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
369 {
370 	int ret, err, i;
371 
372 	paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
373 
374 	for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
375 		struct sev_data_snp_page_reclaim data = {0};
376 
377 		data.paddr = paddr;
378 
379 		if (locked)
380 			ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
381 		else
382 			ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
383 
384 		if (ret)
385 			goto cleanup;
386 
387 		ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
388 		if (ret)
389 			goto cleanup;
390 	}
391 
392 	return 0;
393 
394 cleanup:
395 	/*
396 	 * If there was a failure reclaiming the page then it is no longer safe
397 	 * to release it back to the system; leak it instead.
398 	 */
399 	snp_leak_pages(__phys_to_pfn(paddr), npages - i);
400 	return ret;
401 }
402 
rmp_mark_pages_firmware(unsigned long paddr,unsigned int npages,bool locked)403 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
404 {
405 	unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
406 	int rc, i;
407 
408 	for (i = 0; i < npages; i++, pfn++) {
409 		rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
410 		if (rc)
411 			goto cleanup;
412 	}
413 
414 	return 0;
415 
416 cleanup:
417 	/*
418 	 * Try unrolling the firmware state changes by
419 	 * reclaiming the pages which were already changed to the
420 	 * firmware state.
421 	 */
422 	snp_reclaim_pages(paddr, i, locked);
423 
424 	return rc;
425 }
426 
__snp_alloc_firmware_pages(gfp_t gfp_mask,int order)427 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order)
428 {
429 	unsigned long npages = 1ul << order, paddr;
430 	struct sev_device *sev;
431 	struct page *page;
432 
433 	if (!psp_master || !psp_master->sev_data)
434 		return NULL;
435 
436 	page = alloc_pages(gfp_mask, order);
437 	if (!page)
438 		return NULL;
439 
440 	/* If SEV-SNP is initialized then add the page in RMP table. */
441 	sev = psp_master->sev_data;
442 	if (!sev->snp_initialized)
443 		return page;
444 
445 	paddr = __pa((unsigned long)page_address(page));
446 	if (rmp_mark_pages_firmware(paddr, npages, false))
447 		return NULL;
448 
449 	return page;
450 }
451 
snp_alloc_firmware_page(gfp_t gfp_mask)452 void *snp_alloc_firmware_page(gfp_t gfp_mask)
453 {
454 	struct page *page;
455 
456 	page = __snp_alloc_firmware_pages(gfp_mask, 0);
457 
458 	return page ? page_address(page) : NULL;
459 }
460 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
461 
__snp_free_firmware_pages(struct page * page,int order,bool locked)462 static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
463 {
464 	struct sev_device *sev = psp_master->sev_data;
465 	unsigned long paddr, npages = 1ul << order;
466 
467 	if (!page)
468 		return;
469 
470 	paddr = __pa((unsigned long)page_address(page));
471 	if (sev->snp_initialized &&
472 	    snp_reclaim_pages(paddr, npages, locked))
473 		return;
474 
475 	__free_pages(page, order);
476 }
477 
snp_free_firmware_page(void * addr)478 void snp_free_firmware_page(void *addr)
479 {
480 	if (!addr)
481 		return;
482 
483 	__snp_free_firmware_pages(virt_to_page(addr), 0, false);
484 }
485 EXPORT_SYMBOL_GPL(snp_free_firmware_page);
486 
sev_fw_alloc(unsigned long len)487 static void *sev_fw_alloc(unsigned long len)
488 {
489 	struct page *page;
490 
491 	page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len));
492 	if (!page)
493 		return NULL;
494 
495 	return page_address(page);
496 }
497 
498 /**
499  * struct cmd_buf_desc - descriptors for managing legacy SEV command address
500  * parameters corresponding to buffers that may be written to by firmware.
501  *
502  * @paddr_ptr:  pointer to the address parameter in the command buffer which may
503  *              need to be saved/restored depending on whether a bounce buffer
504  *              is used. In the case of a bounce buffer, the command buffer
505  *              needs to be updated with the address of the new bounce buffer
506  *              snp_map_cmd_buf_desc() has allocated specifically for it. Must
507  *              be NULL if this descriptor is only an end-of-list indicator.
508  *
509  * @paddr_orig: storage for the original address parameter, which can be used to
510  *              restore the original value in @paddr_ptr in cases where it is
511  *              replaced with the address of a bounce buffer.
512  *
513  * @len: length of buffer located at the address originally stored at @paddr_ptr
514  *
515  * @guest_owned: true if the address corresponds to guest-owned pages, in which
516  *               case bounce buffers are not needed.
517  */
518 struct cmd_buf_desc {
519 	u64 *paddr_ptr;
520 	u64 paddr_orig;
521 	u32 len;
522 	bool guest_owned;
523 };
524 
525 /*
526  * If a legacy SEV command parameter is a memory address, those pages in
527  * turn need to be transitioned to/from firmware-owned before/after
528  * executing the firmware command.
529  *
530  * Additionally, in cases where those pages are not guest-owned, a bounce
531  * buffer is needed in place of the original memory address parameter.
532  *
533  * A set of descriptors are used to keep track of this handling, and
534  * initialized here based on the specific commands being executed.
535  */
snp_populate_cmd_buf_desc_list(int cmd,void * cmd_buf,struct cmd_buf_desc * desc_list)536 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
537 					   struct cmd_buf_desc *desc_list)
538 {
539 	switch (cmd) {
540 	case SEV_CMD_PDH_CERT_EXPORT: {
541 		struct sev_data_pdh_cert_export *data = cmd_buf;
542 
543 		desc_list[0].paddr_ptr = &data->pdh_cert_address;
544 		desc_list[0].len = data->pdh_cert_len;
545 		desc_list[1].paddr_ptr = &data->cert_chain_address;
546 		desc_list[1].len = data->cert_chain_len;
547 		break;
548 	}
549 	case SEV_CMD_GET_ID: {
550 		struct sev_data_get_id *data = cmd_buf;
551 
552 		desc_list[0].paddr_ptr = &data->address;
553 		desc_list[0].len = data->len;
554 		break;
555 	}
556 	case SEV_CMD_PEK_CSR: {
557 		struct sev_data_pek_csr *data = cmd_buf;
558 
559 		desc_list[0].paddr_ptr = &data->address;
560 		desc_list[0].len = data->len;
561 		break;
562 	}
563 	case SEV_CMD_LAUNCH_UPDATE_DATA: {
564 		struct sev_data_launch_update_data *data = cmd_buf;
565 
566 		desc_list[0].paddr_ptr = &data->address;
567 		desc_list[0].len = data->len;
568 		desc_list[0].guest_owned = true;
569 		break;
570 	}
571 	case SEV_CMD_LAUNCH_UPDATE_VMSA: {
572 		struct sev_data_launch_update_vmsa *data = cmd_buf;
573 
574 		desc_list[0].paddr_ptr = &data->address;
575 		desc_list[0].len = data->len;
576 		desc_list[0].guest_owned = true;
577 		break;
578 	}
579 	case SEV_CMD_LAUNCH_MEASURE: {
580 		struct sev_data_launch_measure *data = cmd_buf;
581 
582 		desc_list[0].paddr_ptr = &data->address;
583 		desc_list[0].len = data->len;
584 		break;
585 	}
586 	case SEV_CMD_LAUNCH_UPDATE_SECRET: {
587 		struct sev_data_launch_secret *data = cmd_buf;
588 
589 		desc_list[0].paddr_ptr = &data->guest_address;
590 		desc_list[0].len = data->guest_len;
591 		desc_list[0].guest_owned = true;
592 		break;
593 	}
594 	case SEV_CMD_DBG_DECRYPT: {
595 		struct sev_data_dbg *data = cmd_buf;
596 
597 		desc_list[0].paddr_ptr = &data->dst_addr;
598 		desc_list[0].len = data->len;
599 		desc_list[0].guest_owned = true;
600 		break;
601 	}
602 	case SEV_CMD_DBG_ENCRYPT: {
603 		struct sev_data_dbg *data = cmd_buf;
604 
605 		desc_list[0].paddr_ptr = &data->dst_addr;
606 		desc_list[0].len = data->len;
607 		desc_list[0].guest_owned = true;
608 		break;
609 	}
610 	case SEV_CMD_ATTESTATION_REPORT: {
611 		struct sev_data_attestation_report *data = cmd_buf;
612 
613 		desc_list[0].paddr_ptr = &data->address;
614 		desc_list[0].len = data->len;
615 		break;
616 	}
617 	case SEV_CMD_SEND_START: {
618 		struct sev_data_send_start *data = cmd_buf;
619 
620 		desc_list[0].paddr_ptr = &data->session_address;
621 		desc_list[0].len = data->session_len;
622 		break;
623 	}
624 	case SEV_CMD_SEND_UPDATE_DATA: {
625 		struct sev_data_send_update_data *data = cmd_buf;
626 
627 		desc_list[0].paddr_ptr = &data->hdr_address;
628 		desc_list[0].len = data->hdr_len;
629 		desc_list[1].paddr_ptr = &data->trans_address;
630 		desc_list[1].len = data->trans_len;
631 		break;
632 	}
633 	case SEV_CMD_SEND_UPDATE_VMSA: {
634 		struct sev_data_send_update_vmsa *data = cmd_buf;
635 
636 		desc_list[0].paddr_ptr = &data->hdr_address;
637 		desc_list[0].len = data->hdr_len;
638 		desc_list[1].paddr_ptr = &data->trans_address;
639 		desc_list[1].len = data->trans_len;
640 		break;
641 	}
642 	case SEV_CMD_RECEIVE_UPDATE_DATA: {
643 		struct sev_data_receive_update_data *data = cmd_buf;
644 
645 		desc_list[0].paddr_ptr = &data->guest_address;
646 		desc_list[0].len = data->guest_len;
647 		desc_list[0].guest_owned = true;
648 		break;
649 	}
650 	case SEV_CMD_RECEIVE_UPDATE_VMSA: {
651 		struct sev_data_receive_update_vmsa *data = cmd_buf;
652 
653 		desc_list[0].paddr_ptr = &data->guest_address;
654 		desc_list[0].len = data->guest_len;
655 		desc_list[0].guest_owned = true;
656 		break;
657 	}
658 	default:
659 		break;
660 	}
661 }
662 
snp_map_cmd_buf_desc(struct cmd_buf_desc * desc)663 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
664 {
665 	unsigned int npages;
666 
667 	if (!desc->len)
668 		return 0;
669 
670 	/* Allocate a bounce buffer if this isn't a guest owned page. */
671 	if (!desc->guest_owned) {
672 		struct page *page;
673 
674 		page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
675 		if (!page) {
676 			pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
677 			return -ENOMEM;
678 		}
679 
680 		desc->paddr_orig = *desc->paddr_ptr;
681 		*desc->paddr_ptr = __psp_pa(page_to_virt(page));
682 	}
683 
684 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
685 
686 	/* Transition the buffer to firmware-owned. */
687 	if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
688 		pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
689 		return -EFAULT;
690 	}
691 
692 	return 0;
693 }
694 
snp_unmap_cmd_buf_desc(struct cmd_buf_desc * desc)695 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
696 {
697 	unsigned int npages;
698 
699 	if (!desc->len)
700 		return 0;
701 
702 	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
703 
704 	/* Transition the buffers back to hypervisor-owned. */
705 	if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
706 		pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
707 		return -EFAULT;
708 	}
709 
710 	/* Copy data from bounce buffer and then free it. */
711 	if (!desc->guest_owned) {
712 		void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
713 		void *dst_buf = __va(__sme_clr(desc->paddr_orig));
714 
715 		memcpy(dst_buf, bounce_buf, desc->len);
716 		__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
717 
718 		/* Restore the original address in the command buffer. */
719 		*desc->paddr_ptr = desc->paddr_orig;
720 	}
721 
722 	return 0;
723 }
724 
snp_map_cmd_buf_desc_list(int cmd,void * cmd_buf,struct cmd_buf_desc * desc_list)725 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
726 {
727 	int i;
728 
729 	snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
730 
731 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
732 		struct cmd_buf_desc *desc = &desc_list[i];
733 
734 		if (!desc->paddr_ptr)
735 			break;
736 
737 		if (snp_map_cmd_buf_desc(desc))
738 			goto err_unmap;
739 	}
740 
741 	return 0;
742 
743 err_unmap:
744 	for (i--; i >= 0; i--)
745 		snp_unmap_cmd_buf_desc(&desc_list[i]);
746 
747 	return -EFAULT;
748 }
749 
snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc * desc_list)750 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
751 {
752 	int i, ret = 0;
753 
754 	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
755 		struct cmd_buf_desc *desc = &desc_list[i];
756 
757 		if (!desc->paddr_ptr)
758 			break;
759 
760 		if (snp_unmap_cmd_buf_desc(&desc_list[i]))
761 			ret = -EFAULT;
762 	}
763 
764 	return ret;
765 }
766 
sev_cmd_buf_writable(int cmd)767 static bool sev_cmd_buf_writable(int cmd)
768 {
769 	switch (cmd) {
770 	case SEV_CMD_PLATFORM_STATUS:
771 	case SEV_CMD_GUEST_STATUS:
772 	case SEV_CMD_LAUNCH_START:
773 	case SEV_CMD_RECEIVE_START:
774 	case SEV_CMD_LAUNCH_MEASURE:
775 	case SEV_CMD_SEND_START:
776 	case SEV_CMD_SEND_UPDATE_DATA:
777 	case SEV_CMD_SEND_UPDATE_VMSA:
778 	case SEV_CMD_PEK_CSR:
779 	case SEV_CMD_PDH_CERT_EXPORT:
780 	case SEV_CMD_GET_ID:
781 	case SEV_CMD_ATTESTATION_REPORT:
782 		return true;
783 	default:
784 		return false;
785 	}
786 }
787 
788 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
snp_legacy_handling_needed(int cmd)789 static bool snp_legacy_handling_needed(int cmd)
790 {
791 	struct sev_device *sev = psp_master->sev_data;
792 
793 	return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
794 }
795 
snp_prep_cmd_buf(int cmd,void * cmd_buf,struct cmd_buf_desc * desc_list)796 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
797 {
798 	if (!snp_legacy_handling_needed(cmd))
799 		return 0;
800 
801 	if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
802 		return -EFAULT;
803 
804 	/*
805 	 * Before command execution, the command buffer needs to be put into
806 	 * the firmware-owned state.
807 	 */
808 	if (sev_cmd_buf_writable(cmd)) {
809 		if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
810 			return -EFAULT;
811 	}
812 
813 	return 0;
814 }
815 
snp_reclaim_cmd_buf(int cmd,void * cmd_buf)816 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
817 {
818 	if (!snp_legacy_handling_needed(cmd))
819 		return 0;
820 
821 	/*
822 	 * After command completion, the command buffer needs to be put back
823 	 * into the hypervisor-owned state.
824 	 */
825 	if (sev_cmd_buf_writable(cmd))
826 		if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
827 			return -EFAULT;
828 
829 	return 0;
830 }
831 
__sev_do_cmd_locked(int cmd,void * data,int * psp_ret)832 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
833 {
834 	struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
835 	struct psp_device *psp = psp_master;
836 	struct sev_device *sev;
837 	unsigned int cmdbuff_hi, cmdbuff_lo;
838 	unsigned int phys_lsb, phys_msb;
839 	unsigned int reg, ret = 0;
840 	void *cmd_buf;
841 	int buf_len;
842 
843 	if (!psp || !psp->sev_data)
844 		return -ENODEV;
845 
846 	if (psp_dead)
847 		return -EBUSY;
848 
849 	sev = psp->sev_data;
850 
851 	buf_len = sev_cmd_buffer_len(cmd);
852 	if (WARN_ON_ONCE(!data != !buf_len))
853 		return -EINVAL;
854 
855 	/*
856 	 * Copy the incoming data to driver's scratch buffer as __pa() will not
857 	 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
858 	 * physically contiguous.
859 	 */
860 	if (data) {
861 		/*
862 		 * Commands are generally issued one at a time and require the
863 		 * sev_cmd_mutex, but there could be recursive firmware requests
864 		 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
865 		 * preparing buffers for another command. This is the only known
866 		 * case of nesting in the current code, so exactly one
867 		 * additional command buffer is available for that purpose.
868 		 */
869 		if (!sev->cmd_buf_active) {
870 			cmd_buf = sev->cmd_buf;
871 			sev->cmd_buf_active = true;
872 		} else if (!sev->cmd_buf_backup_active) {
873 			cmd_buf = sev->cmd_buf_backup;
874 			sev->cmd_buf_backup_active = true;
875 		} else {
876 			dev_err(sev->dev,
877 				"SEV: too many firmware commands in progress, no command buffers available.\n");
878 			return -EBUSY;
879 		}
880 
881 		memcpy(cmd_buf, data, buf_len);
882 
883 		/*
884 		 * The behavior of the SEV-legacy commands is altered when the
885 		 * SNP firmware is in the INIT state.
886 		 */
887 		ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
888 		if (ret) {
889 			dev_err(sev->dev,
890 				"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
891 				cmd, ret);
892 			return ret;
893 		}
894 	} else {
895 		cmd_buf = sev->cmd_buf;
896 	}
897 
898 	/* Get the physical address of the command buffer */
899 	phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
900 	phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
901 
902 	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
903 		cmd, phys_msb, phys_lsb, psp_timeout);
904 
905 	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
906 			     buf_len, false);
907 
908 	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
909 	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
910 
911 	sev->int_rcvd = 0;
912 
913 	reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
914 
915 	/*
916 	 * If invoked during panic handling, local interrupts are disabled so
917 	 * the PSP command completion interrupt can't be used.
918 	 * sev_wait_cmd_ioc() already checks for interrupts disabled and
919 	 * polls for PSP command completion.  Ensure we do not request an
920 	 * interrupt from the PSP if irqs disabled.
921 	 */
922 	if (!irqs_disabled())
923 		reg |= SEV_CMDRESP_IOC;
924 
925 	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
926 
927 	/* wait for command completion */
928 	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
929 	if (ret) {
930 		if (psp_ret)
931 			*psp_ret = 0;
932 
933 		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
934 		psp_dead = true;
935 
936 		return ret;
937 	}
938 
939 	psp_timeout = psp_cmd_timeout;
940 
941 	if (psp_ret)
942 		*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
943 
944 	if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
945 		dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
946 			cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
947 
948 		/*
949 		 * PSP firmware may report additional error information in the
950 		 * command buffer registers on error. Print contents of command
951 		 * buffer registers if they changed.
952 		 */
953 		cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
954 		cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
955 		if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
956 			dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
957 			dev_dbg(sev->dev, "  cmdbuff hi: %#010x\n", cmdbuff_hi);
958 			dev_dbg(sev->dev, "  cmdbuff lo: %#010x\n", cmdbuff_lo);
959 		}
960 		ret = -EIO;
961 	} else {
962 		ret = sev_write_init_ex_file_if_required(cmd);
963 	}
964 
965 	/*
966 	 * Copy potential output from the PSP back to data.  Do this even on
967 	 * failure in case the caller wants to glean something from the error.
968 	 */
969 	if (data) {
970 		int ret_reclaim;
971 		/*
972 		 * Restore the page state after the command completes.
973 		 */
974 		ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
975 		if (ret_reclaim) {
976 			dev_err(sev->dev,
977 				"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
978 				cmd, ret_reclaim);
979 			return ret_reclaim;
980 		}
981 
982 		memcpy(data, cmd_buf, buf_len);
983 
984 		if (sev->cmd_buf_backup_active)
985 			sev->cmd_buf_backup_active = false;
986 		else
987 			sev->cmd_buf_active = false;
988 
989 		if (snp_unmap_cmd_buf_desc_list(desc_list))
990 			return -EFAULT;
991 	}
992 
993 	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
994 			     buf_len, false);
995 
996 	return ret;
997 }
998 
sev_do_cmd(int cmd,void * data,int * psp_ret)999 int sev_do_cmd(int cmd, void *data, int *psp_ret)
1000 {
1001 	int rc;
1002 
1003 	mutex_lock(&sev_cmd_mutex);
1004 	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1005 	mutex_unlock(&sev_cmd_mutex);
1006 
1007 	return rc;
1008 }
1009 EXPORT_SYMBOL_GPL(sev_do_cmd);
1010 
__sev_init_locked(int * error)1011 static int __sev_init_locked(int *error)
1012 {
1013 	struct sev_data_init data;
1014 
1015 	memset(&data, 0, sizeof(data));
1016 	if (sev_es_tmr) {
1017 		/*
1018 		 * Do not include the encryption mask on the physical
1019 		 * address of the TMR (firmware should clear it anyway).
1020 		 */
1021 		data.tmr_address = __pa(sev_es_tmr);
1022 
1023 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1024 		data.tmr_len = sev_es_tmr_size;
1025 	}
1026 
1027 	return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1028 }
1029 
__sev_init_ex_locked(int * error)1030 static int __sev_init_ex_locked(int *error)
1031 {
1032 	struct sev_data_init_ex data;
1033 
1034 	memset(&data, 0, sizeof(data));
1035 	data.length = sizeof(data);
1036 	data.nv_address = __psp_pa(sev_init_ex_buffer);
1037 	data.nv_len = NV_LENGTH;
1038 
1039 	if (sev_es_tmr) {
1040 		/*
1041 		 * Do not include the encryption mask on the physical
1042 		 * address of the TMR (firmware should clear it anyway).
1043 		 */
1044 		data.tmr_address = __pa(sev_es_tmr);
1045 
1046 		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1047 		data.tmr_len = sev_es_tmr_size;
1048 	}
1049 
1050 	return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1051 }
1052 
__sev_do_init_locked(int * psp_ret)1053 static inline int __sev_do_init_locked(int *psp_ret)
1054 {
1055 	if (sev_init_ex_buffer)
1056 		return __sev_init_ex_locked(psp_ret);
1057 	else
1058 		return __sev_init_locked(psp_ret);
1059 }
1060 
snp_set_hsave_pa(void * arg)1061 static void snp_set_hsave_pa(void *arg)
1062 {
1063 	wrmsrl(MSR_VM_HSAVE_PA, 0);
1064 }
1065 
snp_filter_reserved_mem_regions(struct resource * rs,void * arg)1066 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1067 {
1068 	struct sev_data_range_list *range_list = arg;
1069 	struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1070 	size_t size;
1071 
1072 	/*
1073 	 * Ensure the list of HV_FIXED pages that will be passed to firmware
1074 	 * do not exceed the page-sized argument buffer.
1075 	 */
1076 	if ((range_list->num_elements * sizeof(struct sev_data_range) +
1077 	     sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1078 		return -E2BIG;
1079 
1080 	switch (rs->desc) {
1081 	case E820_TYPE_RESERVED:
1082 	case E820_TYPE_PMEM:
1083 	case E820_TYPE_ACPI:
1084 		range->base = rs->start & PAGE_MASK;
1085 		size = PAGE_ALIGN((rs->end + 1) - rs->start);
1086 		range->page_count = size >> PAGE_SHIFT;
1087 		range_list->num_elements++;
1088 		break;
1089 	default:
1090 		break;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
__sev_snp_init_locked(int * error)1096 static int __sev_snp_init_locked(int *error)
1097 {
1098 	struct psp_device *psp = psp_master;
1099 	struct sev_data_snp_init_ex data;
1100 	struct sev_device *sev;
1101 	void *arg = &data;
1102 	int cmd, rc = 0;
1103 
1104 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1105 		return -ENODEV;
1106 
1107 	sev = psp->sev_data;
1108 
1109 	if (sev->snp_initialized)
1110 		return 0;
1111 
1112 	if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1113 		dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1114 			SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1115 		return 0;
1116 	}
1117 
1118 	/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1119 	on_each_cpu(snp_set_hsave_pa, NULL, 1);
1120 
1121 	/*
1122 	 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1123 	 * of system physical address ranges to convert into HV-fixed page
1124 	 * states during the RMP initialization.  For instance, the memory that
1125 	 * UEFI reserves should be included in the that list. This allows system
1126 	 * components that occasionally write to memory (e.g. logging to UEFI
1127 	 * reserved regions) to not fail due to RMP initialization and SNP
1128 	 * enablement.
1129 	 *
1130 	 */
1131 	if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1132 		/*
1133 		 * Firmware checks that the pages containing the ranges enumerated
1134 		 * in the RANGES structure are either in the default page state or in the
1135 		 * firmware page state.
1136 		 */
1137 		snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1138 		if (!snp_range_list) {
1139 			dev_err(sev->dev,
1140 				"SEV: SNP_INIT_EX range list memory allocation failed\n");
1141 			return -ENOMEM;
1142 		}
1143 
1144 		/*
1145 		 * Retrieve all reserved memory regions from the e820 memory map
1146 		 * to be setup as HV-fixed pages.
1147 		 */
1148 		rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1149 					 snp_range_list, snp_filter_reserved_mem_regions);
1150 		if (rc) {
1151 			dev_err(sev->dev,
1152 				"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1153 			return rc;
1154 		}
1155 
1156 		memset(&data, 0, sizeof(data));
1157 		data.init_rmp = 1;
1158 		data.list_paddr_en = 1;
1159 		data.list_paddr = __psp_pa(snp_range_list);
1160 		cmd = SEV_CMD_SNP_INIT_EX;
1161 	} else {
1162 		cmd = SEV_CMD_SNP_INIT;
1163 		arg = NULL;
1164 	}
1165 
1166 	/*
1167 	 * The following sequence must be issued before launching the first SNP
1168 	 * guest to ensure all dirty cache lines are flushed, including from
1169 	 * updates to the RMP table itself via the RMPUPDATE instruction:
1170 	 *
1171 	 * - WBINVD on all running CPUs
1172 	 * - SEV_CMD_SNP_INIT[_EX] firmware command
1173 	 * - WBINVD on all running CPUs
1174 	 * - SEV_CMD_SNP_DF_FLUSH firmware command
1175 	 */
1176 	wbinvd_on_all_cpus();
1177 
1178 	rc = __sev_do_cmd_locked(cmd, arg, error);
1179 	if (rc)
1180 		return rc;
1181 
1182 	/* Prepare for first SNP guest launch after INIT. */
1183 	wbinvd_on_all_cpus();
1184 	rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1185 	if (rc)
1186 		return rc;
1187 
1188 	sev->snp_initialized = true;
1189 	dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1190 
1191 	sev_es_tmr_size = SNP_TMR_SIZE;
1192 
1193 	return rc;
1194 }
1195 
__sev_platform_init_handle_tmr(struct sev_device * sev)1196 static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1197 {
1198 	if (sev_es_tmr)
1199 		return;
1200 
1201 	/* Obtain the TMR memory area for SEV-ES use */
1202 	sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1203 	if (sev_es_tmr) {
1204 		/* Must flush the cache before giving it to the firmware */
1205 		if (!sev->snp_initialized)
1206 			clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1207 	} else {
1208 			dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1209 	}
1210 }
1211 
1212 /*
1213  * If an init_ex_path is provided allocate a buffer for the file and
1214  * read in the contents. Additionally, if SNP is initialized, convert
1215  * the buffer pages to firmware pages.
1216  */
__sev_platform_init_handle_init_ex_path(struct sev_device * sev)1217 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1218 {
1219 	struct page *page;
1220 	int rc;
1221 
1222 	if (!init_ex_path)
1223 		return 0;
1224 
1225 	if (sev_init_ex_buffer)
1226 		return 0;
1227 
1228 	page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1229 	if (!page) {
1230 		dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1231 		return -ENOMEM;
1232 	}
1233 
1234 	sev_init_ex_buffer = page_address(page);
1235 
1236 	rc = sev_read_init_ex_file();
1237 	if (rc)
1238 		return rc;
1239 
1240 	/* If SEV-SNP is initialized, transition to firmware page. */
1241 	if (sev->snp_initialized) {
1242 		unsigned long npages;
1243 
1244 		npages = 1UL << get_order(NV_LENGTH);
1245 		if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1246 			dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1247 			return -ENOMEM;
1248 		}
1249 	}
1250 
1251 	return 0;
1252 }
1253 
__sev_platform_init_locked(int * error)1254 static int __sev_platform_init_locked(int *error)
1255 {
1256 	int rc, psp_ret = SEV_RET_NO_FW_CALL;
1257 	struct sev_device *sev;
1258 
1259 	if (!psp_master || !psp_master->sev_data)
1260 		return -ENODEV;
1261 
1262 	sev = psp_master->sev_data;
1263 
1264 	if (sev->state == SEV_STATE_INIT)
1265 		return 0;
1266 
1267 	__sev_platform_init_handle_tmr(sev);
1268 
1269 	rc = __sev_platform_init_handle_init_ex_path(sev);
1270 	if (rc)
1271 		return rc;
1272 
1273 	rc = __sev_do_init_locked(&psp_ret);
1274 	if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1275 		/*
1276 		 * Initialization command returned an integrity check failure
1277 		 * status code, meaning that firmware load and validation of SEV
1278 		 * related persistent data has failed. Retrying the
1279 		 * initialization function should succeed by replacing the state
1280 		 * with a reset state.
1281 		 */
1282 		dev_err(sev->dev,
1283 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1284 		rc = __sev_do_init_locked(&psp_ret);
1285 	}
1286 
1287 	if (error)
1288 		*error = psp_ret;
1289 
1290 	if (rc)
1291 		return rc;
1292 
1293 	sev->state = SEV_STATE_INIT;
1294 
1295 	/* Prepare for first SEV guest launch after INIT */
1296 	wbinvd_on_all_cpus();
1297 	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error);
1298 	if (rc)
1299 		return rc;
1300 
1301 	dev_dbg(sev->dev, "SEV firmware initialized\n");
1302 
1303 	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1304 		 sev->api_minor, sev->build);
1305 
1306 	return 0;
1307 }
1308 
_sev_platform_init_locked(struct sev_platform_init_args * args)1309 static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1310 {
1311 	struct sev_device *sev;
1312 	int rc;
1313 
1314 	if (!psp_master || !psp_master->sev_data)
1315 		return -ENODEV;
1316 
1317 	sev = psp_master->sev_data;
1318 
1319 	if (sev->state == SEV_STATE_INIT)
1320 		return 0;
1321 
1322 	/*
1323 	 * Legacy guests cannot be running while SNP_INIT(_EX) is executing,
1324 	 * so perform SEV-SNP initialization at probe time.
1325 	 */
1326 	rc = __sev_snp_init_locked(&args->error);
1327 	if (rc && rc != -ENODEV) {
1328 		/*
1329 		 * Don't abort the probe if SNP INIT failed,
1330 		 * continue to initialize the legacy SEV firmware.
1331 		 */
1332 		dev_err(sev->dev, "SEV-SNP: failed to INIT rc %d, error %#x\n",
1333 			rc, args->error);
1334 	}
1335 
1336 	/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1337 	if (args->probe && !psp_init_on_probe)
1338 		return 0;
1339 
1340 	return __sev_platform_init_locked(&args->error);
1341 }
1342 
sev_platform_init(struct sev_platform_init_args * args)1343 int sev_platform_init(struct sev_platform_init_args *args)
1344 {
1345 	int rc;
1346 
1347 	mutex_lock(&sev_cmd_mutex);
1348 	rc = _sev_platform_init_locked(args);
1349 	mutex_unlock(&sev_cmd_mutex);
1350 
1351 	return rc;
1352 }
1353 EXPORT_SYMBOL_GPL(sev_platform_init);
1354 
__sev_platform_shutdown_locked(int * error)1355 static int __sev_platform_shutdown_locked(int *error)
1356 {
1357 	struct psp_device *psp = psp_master;
1358 	struct sev_device *sev;
1359 	int ret;
1360 
1361 	if (!psp || !psp->sev_data)
1362 		return 0;
1363 
1364 	sev = psp->sev_data;
1365 
1366 	if (sev->state == SEV_STATE_UNINIT)
1367 		return 0;
1368 
1369 	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1370 	if (ret)
1371 		return ret;
1372 
1373 	sev->state = SEV_STATE_UNINIT;
1374 	dev_dbg(sev->dev, "SEV firmware shutdown\n");
1375 
1376 	return ret;
1377 }
1378 
sev_get_platform_state(int * state,int * error)1379 static int sev_get_platform_state(int *state, int *error)
1380 {
1381 	struct sev_user_data_status data;
1382 	int rc;
1383 
1384 	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1385 	if (rc)
1386 		return rc;
1387 
1388 	*state = data.state;
1389 	return rc;
1390 }
1391 
sev_ioctl_do_reset(struct sev_issue_cmd * argp,bool writable)1392 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1393 {
1394 	int state, rc;
1395 
1396 	if (!writable)
1397 		return -EPERM;
1398 
1399 	/*
1400 	 * The SEV spec requires that FACTORY_RESET must be issued in
1401 	 * UNINIT state. Before we go further lets check if any guest is
1402 	 * active.
1403 	 *
1404 	 * If FW is in WORKING state then deny the request otherwise issue
1405 	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1406 	 *
1407 	 */
1408 	rc = sev_get_platform_state(&state, &argp->error);
1409 	if (rc)
1410 		return rc;
1411 
1412 	if (state == SEV_STATE_WORKING)
1413 		return -EBUSY;
1414 
1415 	if (state == SEV_STATE_INIT) {
1416 		rc = __sev_platform_shutdown_locked(&argp->error);
1417 		if (rc)
1418 			return rc;
1419 	}
1420 
1421 	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1422 }
1423 
sev_ioctl_do_platform_status(struct sev_issue_cmd * argp)1424 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1425 {
1426 	struct sev_user_data_status data;
1427 	int ret;
1428 
1429 	memset(&data, 0, sizeof(data));
1430 
1431 	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1432 	if (ret)
1433 		return ret;
1434 
1435 	if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1436 		ret = -EFAULT;
1437 
1438 	return ret;
1439 }
1440 
sev_ioctl_do_pek_pdh_gen(int cmd,struct sev_issue_cmd * argp,bool writable)1441 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1442 {
1443 	struct sev_device *sev = psp_master->sev_data;
1444 	int rc;
1445 
1446 	if (!writable)
1447 		return -EPERM;
1448 
1449 	if (sev->state == SEV_STATE_UNINIT) {
1450 		rc = __sev_platform_init_locked(&argp->error);
1451 		if (rc)
1452 			return rc;
1453 	}
1454 
1455 	return __sev_do_cmd_locked(cmd, NULL, &argp->error);
1456 }
1457 
sev_ioctl_do_pek_csr(struct sev_issue_cmd * argp,bool writable)1458 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1459 {
1460 	struct sev_device *sev = psp_master->sev_data;
1461 	struct sev_user_data_pek_csr input;
1462 	struct sev_data_pek_csr data;
1463 	void __user *input_address;
1464 	void *blob = NULL;
1465 	int ret;
1466 
1467 	if (!writable)
1468 		return -EPERM;
1469 
1470 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1471 		return -EFAULT;
1472 
1473 	memset(&data, 0, sizeof(data));
1474 
1475 	/* userspace wants to query CSR length */
1476 	if (!input.address || !input.length)
1477 		goto cmd;
1478 
1479 	/* allocate a physically contiguous buffer to store the CSR blob */
1480 	input_address = (void __user *)input.address;
1481 	if (input.length > SEV_FW_BLOB_MAX_SIZE)
1482 		return -EFAULT;
1483 
1484 	blob = kzalloc(input.length, GFP_KERNEL);
1485 	if (!blob)
1486 		return -ENOMEM;
1487 
1488 	data.address = __psp_pa(blob);
1489 	data.len = input.length;
1490 
1491 cmd:
1492 	if (sev->state == SEV_STATE_UNINIT) {
1493 		ret = __sev_platform_init_locked(&argp->error);
1494 		if (ret)
1495 			goto e_free_blob;
1496 	}
1497 
1498 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1499 
1500 	 /* If we query the CSR length, FW responded with expected data. */
1501 	input.length = data.len;
1502 
1503 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1504 		ret = -EFAULT;
1505 		goto e_free_blob;
1506 	}
1507 
1508 	if (blob) {
1509 		if (copy_to_user(input_address, blob, input.length))
1510 			ret = -EFAULT;
1511 	}
1512 
1513 e_free_blob:
1514 	kfree(blob);
1515 	return ret;
1516 }
1517 
psp_copy_user_blob(u64 uaddr,u32 len)1518 void *psp_copy_user_blob(u64 uaddr, u32 len)
1519 {
1520 	if (!uaddr || !len)
1521 		return ERR_PTR(-EINVAL);
1522 
1523 	/* verify that blob length does not exceed our limit */
1524 	if (len > SEV_FW_BLOB_MAX_SIZE)
1525 		return ERR_PTR(-EINVAL);
1526 
1527 	return memdup_user((void __user *)uaddr, len);
1528 }
1529 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1530 
sev_get_api_version(void)1531 static int sev_get_api_version(void)
1532 {
1533 	struct sev_device *sev = psp_master->sev_data;
1534 	struct sev_user_data_status status;
1535 	int error = 0, ret;
1536 
1537 	ret = sev_platform_status(&status, &error);
1538 	if (ret) {
1539 		dev_err(sev->dev,
1540 			"SEV: failed to get status. Error: %#x\n", error);
1541 		return 1;
1542 	}
1543 
1544 	sev->api_major = status.api_major;
1545 	sev->api_minor = status.api_minor;
1546 	sev->build = status.build;
1547 	sev->state = status.state;
1548 
1549 	return 0;
1550 }
1551 
sev_get_firmware(struct device * dev,const struct firmware ** firmware)1552 static int sev_get_firmware(struct device *dev,
1553 			    const struct firmware **firmware)
1554 {
1555 	char fw_name_specific[SEV_FW_NAME_SIZE];
1556 	char fw_name_subset[SEV_FW_NAME_SIZE];
1557 
1558 	snprintf(fw_name_specific, sizeof(fw_name_specific),
1559 		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1560 		 boot_cpu_data.x86, boot_cpu_data.x86_model);
1561 
1562 	snprintf(fw_name_subset, sizeof(fw_name_subset),
1563 		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1564 		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1565 
1566 	/* Check for SEV FW for a particular model.
1567 	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1568 	 *
1569 	 * or
1570 	 *
1571 	 * Check for SEV FW common to a subset of models.
1572 	 * Ex. amd_sev_fam17h_model0xh.sbin for
1573 	 *     Family 17h Model 00h -- Family 17h Model 0Fh
1574 	 *
1575 	 * or
1576 	 *
1577 	 * Fall-back to using generic name: sev.fw
1578 	 */
1579 	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1580 	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1581 	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1582 		return 0;
1583 
1584 	return -ENOENT;
1585 }
1586 
1587 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
sev_update_firmware(struct device * dev)1588 static int sev_update_firmware(struct device *dev)
1589 {
1590 	struct sev_data_download_firmware *data;
1591 	const struct firmware *firmware;
1592 	int ret, error, order;
1593 	struct page *p;
1594 	u64 data_size;
1595 
1596 	if (!sev_version_greater_or_equal(0, 15)) {
1597 		dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1598 		return -1;
1599 	}
1600 
1601 	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1602 		dev_dbg(dev, "No SEV firmware file present\n");
1603 		return -1;
1604 	}
1605 
1606 	/*
1607 	 * SEV FW expects the physical address given to it to be 32
1608 	 * byte aligned. Memory allocated has structure placed at the
1609 	 * beginning followed by the firmware being passed to the SEV
1610 	 * FW. Allocate enough memory for data structure + alignment
1611 	 * padding + SEV FW.
1612 	 */
1613 	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1614 
1615 	order = get_order(firmware->size + data_size);
1616 	p = alloc_pages(GFP_KERNEL, order);
1617 	if (!p) {
1618 		ret = -1;
1619 		goto fw_err;
1620 	}
1621 
1622 	/*
1623 	 * Copy firmware data to a kernel allocated contiguous
1624 	 * memory region.
1625 	 */
1626 	data = page_address(p);
1627 	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1628 
1629 	data->address = __psp_pa(page_address(p) + data_size);
1630 	data->len = firmware->size;
1631 
1632 	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1633 
1634 	/*
1635 	 * A quirk for fixing the committed TCB version, when upgrading from
1636 	 * earlier firmware version than 1.50.
1637 	 */
1638 	if (!ret && !sev_version_greater_or_equal(1, 50))
1639 		ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1640 
1641 	if (ret)
1642 		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1643 
1644 	__free_pages(p, order);
1645 
1646 fw_err:
1647 	release_firmware(firmware);
1648 
1649 	return ret;
1650 }
1651 
__sev_snp_shutdown_locked(int * error,bool panic)1652 static int __sev_snp_shutdown_locked(int *error, bool panic)
1653 {
1654 	struct psp_device *psp = psp_master;
1655 	struct sev_device *sev;
1656 	struct sev_data_snp_shutdown_ex data;
1657 	int ret;
1658 
1659 	if (!psp || !psp->sev_data)
1660 		return 0;
1661 
1662 	sev = psp->sev_data;
1663 
1664 	if (!sev->snp_initialized)
1665 		return 0;
1666 
1667 	memset(&data, 0, sizeof(data));
1668 	data.len = sizeof(data);
1669 	data.iommu_snp_shutdown = 1;
1670 
1671 	/*
1672 	 * If invoked during panic handling, local interrupts are disabled
1673 	 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1674 	 * In that case, a wbinvd() is done on remote CPUs via the NMI
1675 	 * callback, so only a local wbinvd() is needed here.
1676 	 */
1677 	if (!panic)
1678 		wbinvd_on_all_cpus();
1679 	else
1680 		wbinvd();
1681 
1682 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1683 	/* SHUTDOWN may require DF_FLUSH */
1684 	if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1685 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, NULL);
1686 		if (ret) {
1687 			dev_err(sev->dev, "SEV-SNP DF_FLUSH failed\n");
1688 			return ret;
1689 		}
1690 		/* reissue the shutdown command */
1691 		ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1692 					  error);
1693 	}
1694 	if (ret) {
1695 		dev_err(sev->dev, "SEV-SNP firmware shutdown failed\n");
1696 		return ret;
1697 	}
1698 
1699 	/*
1700 	 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1701 	 * enforcement by the IOMMU and also transitions all pages
1702 	 * associated with the IOMMU to the Reclaim state.
1703 	 * Firmware was transitioning the IOMMU pages to Hypervisor state
1704 	 * before version 1.53. But, accounting for the number of assigned
1705 	 * 4kB pages in a 2M page was done incorrectly by not transitioning
1706 	 * to the Reclaim state. This resulted in RMP #PF when later accessing
1707 	 * the 2M page containing those pages during kexec boot. Hence, the
1708 	 * firmware now transitions these pages to Reclaim state and hypervisor
1709 	 * needs to transition these pages to shared state. SNP Firmware
1710 	 * version 1.53 and above are needed for kexec boot.
1711 	 */
1712 	ret = amd_iommu_snp_disable();
1713 	if (ret) {
1714 		dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1715 		return ret;
1716 	}
1717 
1718 	sev->snp_initialized = false;
1719 	dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1720 
1721 	return ret;
1722 }
1723 
sev_ioctl_do_pek_import(struct sev_issue_cmd * argp,bool writable)1724 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1725 {
1726 	struct sev_device *sev = psp_master->sev_data;
1727 	struct sev_user_data_pek_cert_import input;
1728 	struct sev_data_pek_cert_import data;
1729 	void *pek_blob, *oca_blob;
1730 	int ret;
1731 
1732 	if (!writable)
1733 		return -EPERM;
1734 
1735 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1736 		return -EFAULT;
1737 
1738 	/* copy PEK certificate blobs from userspace */
1739 	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1740 	if (IS_ERR(pek_blob))
1741 		return PTR_ERR(pek_blob);
1742 
1743 	data.reserved = 0;
1744 	data.pek_cert_address = __psp_pa(pek_blob);
1745 	data.pek_cert_len = input.pek_cert_len;
1746 
1747 	/* copy PEK certificate blobs from userspace */
1748 	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1749 	if (IS_ERR(oca_blob)) {
1750 		ret = PTR_ERR(oca_blob);
1751 		goto e_free_pek;
1752 	}
1753 
1754 	data.oca_cert_address = __psp_pa(oca_blob);
1755 	data.oca_cert_len = input.oca_cert_len;
1756 
1757 	/* If platform is not in INIT state then transition it to INIT */
1758 	if (sev->state != SEV_STATE_INIT) {
1759 		ret = __sev_platform_init_locked(&argp->error);
1760 		if (ret)
1761 			goto e_free_oca;
1762 	}
1763 
1764 	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
1765 
1766 e_free_oca:
1767 	kfree(oca_blob);
1768 e_free_pek:
1769 	kfree(pek_blob);
1770 	return ret;
1771 }
1772 
sev_ioctl_do_get_id2(struct sev_issue_cmd * argp)1773 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1774 {
1775 	struct sev_user_data_get_id2 input;
1776 	struct sev_data_get_id data;
1777 	void __user *input_address;
1778 	void *id_blob = NULL;
1779 	int ret;
1780 
1781 	/* SEV GET_ID is available from SEV API v0.16 and up */
1782 	if (!sev_version_greater_or_equal(0, 16))
1783 		return -ENOTSUPP;
1784 
1785 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1786 		return -EFAULT;
1787 
1788 	input_address = (void __user *)input.address;
1789 
1790 	if (input.address && input.length) {
1791 		/*
1792 		 * The length of the ID shouldn't be assumed by software since
1793 		 * it may change in the future.  The allocation size is limited
1794 		 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1795 		 * If the allocation fails, simply return ENOMEM rather than
1796 		 * warning in the kernel log.
1797 		 */
1798 		id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
1799 		if (!id_blob)
1800 			return -ENOMEM;
1801 
1802 		data.address = __psp_pa(id_blob);
1803 		data.len = input.length;
1804 	} else {
1805 		data.address = 0;
1806 		data.len = 0;
1807 	}
1808 
1809 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
1810 
1811 	/*
1812 	 * Firmware will return the length of the ID value (either the minimum
1813 	 * required length or the actual length written), return it to the user.
1814 	 */
1815 	input.length = data.len;
1816 
1817 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1818 		ret = -EFAULT;
1819 		goto e_free;
1820 	}
1821 
1822 	if (id_blob) {
1823 		if (copy_to_user(input_address, id_blob, data.len)) {
1824 			ret = -EFAULT;
1825 			goto e_free;
1826 		}
1827 	}
1828 
1829 e_free:
1830 	kfree(id_blob);
1831 
1832 	return ret;
1833 }
1834 
sev_ioctl_do_get_id(struct sev_issue_cmd * argp)1835 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
1836 {
1837 	struct sev_data_get_id *data;
1838 	u64 data_size, user_size;
1839 	void *id_blob, *mem;
1840 	int ret;
1841 
1842 	/* SEV GET_ID available from SEV API v0.16 and up */
1843 	if (!sev_version_greater_or_equal(0, 16))
1844 		return -ENOTSUPP;
1845 
1846 	/* SEV FW expects the buffer it fills with the ID to be
1847 	 * 8-byte aligned. Memory allocated should be enough to
1848 	 * hold data structure + alignment padding + memory
1849 	 * where SEV FW writes the ID.
1850 	 */
1851 	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
1852 	user_size = sizeof(struct sev_user_data_get_id);
1853 
1854 	mem = kzalloc(data_size + user_size, GFP_KERNEL);
1855 	if (!mem)
1856 		return -ENOMEM;
1857 
1858 	data = mem;
1859 	id_blob = mem + data_size;
1860 
1861 	data->address = __psp_pa(id_blob);
1862 	data->len = user_size;
1863 
1864 	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
1865 	if (!ret) {
1866 		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
1867 			ret = -EFAULT;
1868 	}
1869 
1870 	kfree(mem);
1871 
1872 	return ret;
1873 }
1874 
sev_ioctl_do_pdh_export(struct sev_issue_cmd * argp,bool writable)1875 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
1876 {
1877 	struct sev_device *sev = psp_master->sev_data;
1878 	struct sev_user_data_pdh_cert_export input;
1879 	void *pdh_blob = NULL, *cert_blob = NULL;
1880 	struct sev_data_pdh_cert_export data;
1881 	void __user *input_cert_chain_address;
1882 	void __user *input_pdh_cert_address;
1883 	int ret;
1884 
1885 	/* If platform is not in INIT state then transition it to INIT. */
1886 	if (sev->state != SEV_STATE_INIT) {
1887 		if (!writable)
1888 			return -EPERM;
1889 
1890 		ret = __sev_platform_init_locked(&argp->error);
1891 		if (ret)
1892 			return ret;
1893 	}
1894 
1895 	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1896 		return -EFAULT;
1897 
1898 	memset(&data, 0, sizeof(data));
1899 
1900 	/* Userspace wants to query the certificate length. */
1901 	if (!input.pdh_cert_address ||
1902 	    !input.pdh_cert_len ||
1903 	    !input.cert_chain_address)
1904 		goto cmd;
1905 
1906 	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
1907 	input_cert_chain_address = (void __user *)input.cert_chain_address;
1908 
1909 	/* Allocate a physically contiguous buffer to store the PDH blob. */
1910 	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
1911 		return -EFAULT;
1912 
1913 	/* Allocate a physically contiguous buffer to store the cert chain blob. */
1914 	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
1915 		return -EFAULT;
1916 
1917 	pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
1918 	if (!pdh_blob)
1919 		return -ENOMEM;
1920 
1921 	data.pdh_cert_address = __psp_pa(pdh_blob);
1922 	data.pdh_cert_len = input.pdh_cert_len;
1923 
1924 	cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
1925 	if (!cert_blob) {
1926 		ret = -ENOMEM;
1927 		goto e_free_pdh;
1928 	}
1929 
1930 	data.cert_chain_address = __psp_pa(cert_blob);
1931 	data.cert_chain_len = input.cert_chain_len;
1932 
1933 cmd:
1934 	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
1935 
1936 	/* If we query the length, FW responded with expected data. */
1937 	input.cert_chain_len = data.cert_chain_len;
1938 	input.pdh_cert_len = data.pdh_cert_len;
1939 
1940 	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1941 		ret = -EFAULT;
1942 		goto e_free_cert;
1943 	}
1944 
1945 	if (pdh_blob) {
1946 		if (copy_to_user(input_pdh_cert_address,
1947 				 pdh_blob, input.pdh_cert_len)) {
1948 			ret = -EFAULT;
1949 			goto e_free_cert;
1950 		}
1951 	}
1952 
1953 	if (cert_blob) {
1954 		if (copy_to_user(input_cert_chain_address,
1955 				 cert_blob, input.cert_chain_len))
1956 			ret = -EFAULT;
1957 	}
1958 
1959 e_free_cert:
1960 	kfree(cert_blob);
1961 e_free_pdh:
1962 	kfree(pdh_blob);
1963 	return ret;
1964 }
1965 
sev_ioctl_do_snp_platform_status(struct sev_issue_cmd * argp)1966 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
1967 {
1968 	struct sev_device *sev = psp_master->sev_data;
1969 	struct sev_data_snp_addr buf;
1970 	struct page *status_page;
1971 	void *data;
1972 	int ret;
1973 
1974 	if (!sev->snp_initialized || !argp->data)
1975 		return -EINVAL;
1976 
1977 	status_page = alloc_page(GFP_KERNEL_ACCOUNT);
1978 	if (!status_page)
1979 		return -ENOMEM;
1980 
1981 	data = page_address(status_page);
1982 
1983 	/*
1984 	 * Firmware expects status page to be in firmware-owned state, otherwise
1985 	 * it will report firmware error code INVALID_PAGE_STATE (0x1A).
1986 	 */
1987 	if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
1988 		ret = -EFAULT;
1989 		goto cleanup;
1990 	}
1991 
1992 	buf.address = __psp_pa(data);
1993 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
1994 
1995 	/*
1996 	 * Status page will be transitioned to Reclaim state upon success, or
1997 	 * left in Firmware state in failure. Use snp_reclaim_pages() to
1998 	 * transition either case back to Hypervisor-owned state.
1999 	 */
2000 	if (snp_reclaim_pages(__pa(data), 1, true))
2001 		return -EFAULT;
2002 
2003 	if (ret)
2004 		goto cleanup;
2005 
2006 	if (copy_to_user((void __user *)argp->data, data,
2007 			 sizeof(struct sev_user_data_snp_status)))
2008 		ret = -EFAULT;
2009 
2010 cleanup:
2011 	__free_pages(status_page, 0);
2012 	return ret;
2013 }
2014 
sev_ioctl_do_snp_commit(struct sev_issue_cmd * argp)2015 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2016 {
2017 	struct sev_device *sev = psp_master->sev_data;
2018 	struct sev_data_snp_commit buf;
2019 
2020 	if (!sev->snp_initialized)
2021 		return -EINVAL;
2022 
2023 	buf.len = sizeof(buf);
2024 
2025 	return __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2026 }
2027 
sev_ioctl_do_snp_set_config(struct sev_issue_cmd * argp,bool writable)2028 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2029 {
2030 	struct sev_device *sev = psp_master->sev_data;
2031 	struct sev_user_data_snp_config config;
2032 
2033 	if (!sev->snp_initialized || !argp->data)
2034 		return -EINVAL;
2035 
2036 	if (!writable)
2037 		return -EPERM;
2038 
2039 	if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2040 		return -EFAULT;
2041 
2042 	return __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2043 }
2044 
sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd * argp,bool writable)2045 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2046 {
2047 	struct sev_device *sev = psp_master->sev_data;
2048 	struct sev_user_data_snp_vlek_load input;
2049 	void *blob;
2050 	int ret;
2051 
2052 	if (!sev->snp_initialized || !argp->data)
2053 		return -EINVAL;
2054 
2055 	if (!writable)
2056 		return -EPERM;
2057 
2058 	if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2059 		return -EFAULT;
2060 
2061 	if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2062 		return -EINVAL;
2063 
2064 	blob = psp_copy_user_blob(input.vlek_wrapped_address,
2065 				  sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2066 	if (IS_ERR(blob))
2067 		return PTR_ERR(blob);
2068 
2069 	input.vlek_wrapped_address = __psp_pa(blob);
2070 
2071 	ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2072 
2073 	kfree(blob);
2074 
2075 	return ret;
2076 }
2077 
sev_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)2078 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2079 {
2080 	void __user *argp = (void __user *)arg;
2081 	struct sev_issue_cmd input;
2082 	int ret = -EFAULT;
2083 	bool writable = file->f_mode & FMODE_WRITE;
2084 
2085 	if (!psp_master || !psp_master->sev_data)
2086 		return -ENODEV;
2087 
2088 	if (ioctl != SEV_ISSUE_CMD)
2089 		return -EINVAL;
2090 
2091 	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2092 		return -EFAULT;
2093 
2094 	if (input.cmd > SEV_MAX)
2095 		return -EINVAL;
2096 
2097 	mutex_lock(&sev_cmd_mutex);
2098 
2099 	switch (input.cmd) {
2100 
2101 	case SEV_FACTORY_RESET:
2102 		ret = sev_ioctl_do_reset(&input, writable);
2103 		break;
2104 	case SEV_PLATFORM_STATUS:
2105 		ret = sev_ioctl_do_platform_status(&input);
2106 		break;
2107 	case SEV_PEK_GEN:
2108 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2109 		break;
2110 	case SEV_PDH_GEN:
2111 		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2112 		break;
2113 	case SEV_PEK_CSR:
2114 		ret = sev_ioctl_do_pek_csr(&input, writable);
2115 		break;
2116 	case SEV_PEK_CERT_IMPORT:
2117 		ret = sev_ioctl_do_pek_import(&input, writable);
2118 		break;
2119 	case SEV_PDH_CERT_EXPORT:
2120 		ret = sev_ioctl_do_pdh_export(&input, writable);
2121 		break;
2122 	case SEV_GET_ID:
2123 		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2124 		ret = sev_ioctl_do_get_id(&input);
2125 		break;
2126 	case SEV_GET_ID2:
2127 		ret = sev_ioctl_do_get_id2(&input);
2128 		break;
2129 	case SNP_PLATFORM_STATUS:
2130 		ret = sev_ioctl_do_snp_platform_status(&input);
2131 		break;
2132 	case SNP_COMMIT:
2133 		ret = sev_ioctl_do_snp_commit(&input);
2134 		break;
2135 	case SNP_SET_CONFIG:
2136 		ret = sev_ioctl_do_snp_set_config(&input, writable);
2137 		break;
2138 	case SNP_VLEK_LOAD:
2139 		ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2140 		break;
2141 	default:
2142 		ret = -EINVAL;
2143 		goto out;
2144 	}
2145 
2146 	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2147 		ret = -EFAULT;
2148 out:
2149 	mutex_unlock(&sev_cmd_mutex);
2150 
2151 	return ret;
2152 }
2153 
2154 static const struct file_operations sev_fops = {
2155 	.owner	= THIS_MODULE,
2156 	.unlocked_ioctl = sev_ioctl,
2157 };
2158 
sev_platform_status(struct sev_user_data_status * data,int * error)2159 int sev_platform_status(struct sev_user_data_status *data, int *error)
2160 {
2161 	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2162 }
2163 EXPORT_SYMBOL_GPL(sev_platform_status);
2164 
sev_guest_deactivate(struct sev_data_deactivate * data,int * error)2165 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2166 {
2167 	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2168 }
2169 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2170 
sev_guest_activate(struct sev_data_activate * data,int * error)2171 int sev_guest_activate(struct sev_data_activate *data, int *error)
2172 {
2173 	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2174 }
2175 EXPORT_SYMBOL_GPL(sev_guest_activate);
2176 
sev_guest_decommission(struct sev_data_decommission * data,int * error)2177 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2178 {
2179 	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2180 }
2181 EXPORT_SYMBOL_GPL(sev_guest_decommission);
2182 
sev_guest_df_flush(int * error)2183 int sev_guest_df_flush(int *error)
2184 {
2185 	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2186 }
2187 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2188 
sev_exit(struct kref * ref)2189 static void sev_exit(struct kref *ref)
2190 {
2191 	misc_deregister(&misc_dev->misc);
2192 	kfree(misc_dev);
2193 	misc_dev = NULL;
2194 }
2195 
sev_misc_init(struct sev_device * sev)2196 static int sev_misc_init(struct sev_device *sev)
2197 {
2198 	struct device *dev = sev->dev;
2199 	int ret;
2200 
2201 	/*
2202 	 * SEV feature support can be detected on multiple devices but the SEV
2203 	 * FW commands must be issued on the master. During probe, we do not
2204 	 * know the master hence we create /dev/sev on the first device probe.
2205 	 * sev_do_cmd() finds the right master device to which to issue the
2206 	 * command to the firmware.
2207 	 */
2208 	if (!misc_dev) {
2209 		struct miscdevice *misc;
2210 
2211 		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2212 		if (!misc_dev)
2213 			return -ENOMEM;
2214 
2215 		misc = &misc_dev->misc;
2216 		misc->minor = MISC_DYNAMIC_MINOR;
2217 		misc->name = DEVICE_NAME;
2218 		misc->fops = &sev_fops;
2219 
2220 		ret = misc_register(misc);
2221 		if (ret)
2222 			return ret;
2223 
2224 		kref_init(&misc_dev->refcount);
2225 	} else {
2226 		kref_get(&misc_dev->refcount);
2227 	}
2228 
2229 	init_waitqueue_head(&sev->int_queue);
2230 	sev->misc = misc_dev;
2231 	dev_dbg(dev, "registered SEV device\n");
2232 
2233 	return 0;
2234 }
2235 
sev_dev_init(struct psp_device * psp)2236 int sev_dev_init(struct psp_device *psp)
2237 {
2238 	struct device *dev = psp->dev;
2239 	struct sev_device *sev;
2240 	int ret = -ENOMEM;
2241 
2242 	if (!boot_cpu_has(X86_FEATURE_SEV)) {
2243 		dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2244 		return 0;
2245 	}
2246 
2247 	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2248 	if (!sev)
2249 		goto e_err;
2250 
2251 	sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2252 	if (!sev->cmd_buf)
2253 		goto e_sev;
2254 
2255 	sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2256 
2257 	psp->sev_data = sev;
2258 
2259 	sev->dev = dev;
2260 	sev->psp = psp;
2261 
2262 	sev->io_regs = psp->io_regs;
2263 
2264 	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2265 	if (!sev->vdata) {
2266 		ret = -ENODEV;
2267 		dev_err(dev, "sev: missing driver data\n");
2268 		goto e_buf;
2269 	}
2270 
2271 	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2272 
2273 	ret = sev_misc_init(sev);
2274 	if (ret)
2275 		goto e_irq;
2276 
2277 	dev_notice(dev, "sev enabled\n");
2278 
2279 	return 0;
2280 
2281 e_irq:
2282 	psp_clear_sev_irq_handler(psp);
2283 e_buf:
2284 	devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2285 e_sev:
2286 	devm_kfree(dev, sev);
2287 e_err:
2288 	psp->sev_data = NULL;
2289 
2290 	dev_notice(dev, "sev initialization failed\n");
2291 
2292 	return ret;
2293 }
2294 
__sev_firmware_shutdown(struct sev_device * sev,bool panic)2295 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2296 {
2297 	int error;
2298 
2299 	__sev_platform_shutdown_locked(NULL);
2300 
2301 	if (sev_es_tmr) {
2302 		/*
2303 		 * The TMR area was encrypted, flush it from the cache.
2304 		 *
2305 		 * If invoked during panic handling, local interrupts are
2306 		 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2307 		 * can't be used. In that case, wbinvd() is done on remote CPUs
2308 		 * via the NMI callback, and done for this CPU later during
2309 		 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2310 		 */
2311 		if (!panic)
2312 			wbinvd_on_all_cpus();
2313 
2314 		__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2315 					  get_order(sev_es_tmr_size),
2316 					  true);
2317 		sev_es_tmr = NULL;
2318 	}
2319 
2320 	if (sev_init_ex_buffer) {
2321 		__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2322 					  get_order(NV_LENGTH),
2323 					  true);
2324 		sev_init_ex_buffer = NULL;
2325 	}
2326 
2327 	if (snp_range_list) {
2328 		kfree(snp_range_list);
2329 		snp_range_list = NULL;
2330 	}
2331 
2332 	__sev_snp_shutdown_locked(&error, panic);
2333 }
2334 
sev_firmware_shutdown(struct sev_device * sev)2335 static void sev_firmware_shutdown(struct sev_device *sev)
2336 {
2337 	mutex_lock(&sev_cmd_mutex);
2338 	__sev_firmware_shutdown(sev, false);
2339 	mutex_unlock(&sev_cmd_mutex);
2340 }
2341 
sev_dev_destroy(struct psp_device * psp)2342 void sev_dev_destroy(struct psp_device *psp)
2343 {
2344 	struct sev_device *sev = psp->sev_data;
2345 
2346 	if (!sev)
2347 		return;
2348 
2349 	sev_firmware_shutdown(sev);
2350 
2351 	if (sev->misc)
2352 		kref_put(&misc_dev->refcount, sev_exit);
2353 
2354 	psp_clear_sev_irq_handler(psp);
2355 }
2356 
snp_shutdown_on_panic(struct notifier_block * nb,unsigned long reason,void * arg)2357 static int snp_shutdown_on_panic(struct notifier_block *nb,
2358 				 unsigned long reason, void *arg)
2359 {
2360 	struct sev_device *sev = psp_master->sev_data;
2361 
2362 	/*
2363 	 * If sev_cmd_mutex is already acquired, then it's likely
2364 	 * another PSP command is in flight and issuing a shutdown
2365 	 * would fail in unexpected ways. Rather than create even
2366 	 * more confusion during a panic, just bail out here.
2367 	 */
2368 	if (mutex_is_locked(&sev_cmd_mutex))
2369 		return NOTIFY_DONE;
2370 
2371 	__sev_firmware_shutdown(sev, true);
2372 
2373 	return NOTIFY_DONE;
2374 }
2375 
2376 static struct notifier_block snp_panic_notifier = {
2377 	.notifier_call = snp_shutdown_on_panic,
2378 };
2379 
sev_issue_cmd_external_user(struct file * filep,unsigned int cmd,void * data,int * error)2380 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2381 				void *data, int *error)
2382 {
2383 	if (!filep || filep->f_op != &sev_fops)
2384 		return -EBADF;
2385 
2386 	return sev_do_cmd(cmd, data, error);
2387 }
2388 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2389 
sev_pci_init(void)2390 void sev_pci_init(void)
2391 {
2392 	struct sev_device *sev = psp_master->sev_data;
2393 	struct sev_platform_init_args args = {0};
2394 	u8 api_major, api_minor, build;
2395 	int rc;
2396 
2397 	if (!sev)
2398 		return;
2399 
2400 	psp_timeout = psp_probe_timeout;
2401 
2402 	if (sev_get_api_version())
2403 		goto err;
2404 
2405 	api_major = sev->api_major;
2406 	api_minor = sev->api_minor;
2407 	build     = sev->build;
2408 
2409 	if (sev_update_firmware(sev->dev) == 0)
2410 		sev_get_api_version();
2411 
2412 	if (api_major != sev->api_major || api_minor != sev->api_minor ||
2413 	    build != sev->build)
2414 		dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2415 			 api_major, api_minor, build,
2416 			 sev->api_major, sev->api_minor, sev->build);
2417 
2418 	/* Initialize the platform */
2419 	args.probe = true;
2420 	rc = sev_platform_init(&args);
2421 	if (rc)
2422 		dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n",
2423 			args.error, rc);
2424 
2425 	dev_info(sev->dev, "SEV%s API:%d.%d build:%d\n", sev->snp_initialized ?
2426 		"-SNP" : "", sev->api_major, sev->api_minor, sev->build);
2427 
2428 	atomic_notifier_chain_register(&panic_notifier_list,
2429 				       &snp_panic_notifier);
2430 	return;
2431 
2432 err:
2433 	sev_dev_destroy(psp_master);
2434 
2435 	psp_master->sev_data = NULL;
2436 }
2437 
sev_pci_exit(void)2438 void sev_pci_exit(void)
2439 {
2440 	struct sev_device *sev = psp_master->sev_data;
2441 
2442 	if (!sev)
2443 		return;
2444 
2445 	sev_firmware_shutdown(sev);
2446 
2447 	atomic_notifier_chain_unregister(&panic_notifier_list,
2448 					 &snp_panic_notifier);
2449 }
2450