1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * kernel/cpuset.c
4 *
5 * Processor and Memory placement constraints for sets of tasks.
6 *
7 * Copyright (C) 2003 BULL SA.
8 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
9 * Copyright (C) 2006 Google, Inc
10 *
11 * Portions derived from Patrick Mochel's sysfs code.
12 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 *
14 * 2003-10-10 Written by Simon Derr.
15 * 2003-10-22 Updates by Stephen Hemminger.
16 * 2004 May-July Rework by Paul Jackson.
17 * 2006 Rework by Paul Menage to use generic cgroups
18 * 2008 Rework of the scheduler domains and CPU hotplug handling
19 * by Max Krasnyansky
20 */
21 #include "cpuset-internal.h"
22
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mm.h>
28 #include <linux/memory.h>
29 #include <linux/export.h>
30 #include <linux/rcupdate.h>
31 #include <linux/sched.h>
32 #include <linux/sched/deadline.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/task.h>
35 #include <linux/security.h>
36 #include <linux/oom.h>
37 #include <linux/sched/isolation.h>
38 #include <linux/wait.h>
39 #include <linux/workqueue.h>
40 #include <linux/task_work.h>
41
42 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
43 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
44
45 /*
46 * There could be abnormal cpuset configurations for cpu or memory
47 * node binding, add this key to provide a quick low-cost judgment
48 * of the situation.
49 */
50 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
51
52 static const char * const perr_strings[] = {
53 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive",
54 [PERR_INVPARENT] = "Parent is an invalid partition root",
55 [PERR_NOTPART] = "Parent is not a partition root",
56 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
57 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
58 [PERR_HOTPLUG] = "No cpu available due to hotplug",
59 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
60 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup",
61 [PERR_ACCESS] = "Enable partition not permitted",
62 [PERR_REMOTE] = "Have remote partition underneath",
63 };
64
65 /*
66 * For local partitions, update to subpartitions_cpus & isolated_cpus is done
67 * in update_parent_effective_cpumask(). For remote partitions, it is done in
68 * the remote_partition_*() and remote_cpus_update() helpers.
69 */
70 /*
71 * Exclusive CPUs distributed out to local or remote sub-partitions of
72 * top_cpuset
73 */
74 static cpumask_var_t subpartitions_cpus;
75
76 /*
77 * Exclusive CPUs in isolated partitions
78 */
79 static cpumask_var_t isolated_cpus;
80
81 /*
82 * isolated_cpus updating flag (protected by cpuset_mutex)
83 * Set if isolated_cpus is going to be updated in the current
84 * cpuset_mutex crtical section.
85 */
86 static bool isolated_cpus_updating;
87
88 /*
89 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
90 */
91 static cpumask_var_t boot_hk_cpus;
92 static bool have_boot_isolcpus;
93
94 /*
95 * A flag to force sched domain rebuild at the end of an operation.
96 * It can be set in
97 * - update_partition_sd_lb()
98 * - update_cpumasks_hier()
99 * - cpuset_update_flag()
100 * - cpuset_hotplug_update_tasks()
101 * - cpuset_handle_hotplug()
102 *
103 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
104 *
105 * Note that update_relax_domain_level() in cpuset-v1.c can still call
106 * rebuild_sched_domains_locked() directly without using this flag.
107 */
108 static bool force_sd_rebuild;
109
110 /*
111 * Partition root states:
112 *
113 * 0 - member (not a partition root)
114 * 1 - partition root
115 * 2 - partition root without load balancing (isolated)
116 * -1 - invalid partition root
117 * -2 - invalid isolated partition root
118 *
119 * There are 2 types of partitions - local or remote. Local partitions are
120 * those whose parents are partition root themselves. Setting of
121 * cpuset.cpus.exclusive are optional in setting up local partitions.
122 * Remote partitions are those whose parents are not partition roots. Passing
123 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
124 * nodes are mandatory in creating a remote partition.
125 *
126 * For simplicity, a local partition can be created under a local or remote
127 * partition but a remote partition cannot have any partition root in its
128 * ancestor chain except the cgroup root.
129 */
130 #define PRS_MEMBER 0
131 #define PRS_ROOT 1
132 #define PRS_ISOLATED 2
133 #define PRS_INVALID_ROOT -1
134 #define PRS_INVALID_ISOLATED -2
135
136 /*
137 * Temporary cpumasks for working with partitions that are passed among
138 * functions to avoid memory allocation in inner functions.
139 */
140 struct tmpmasks {
141 cpumask_var_t addmask, delmask; /* For partition root */
142 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
143 };
144
inc_dl_tasks_cs(struct task_struct * p)145 void inc_dl_tasks_cs(struct task_struct *p)
146 {
147 struct cpuset *cs = task_cs(p);
148
149 cs->nr_deadline_tasks++;
150 }
151
dec_dl_tasks_cs(struct task_struct * p)152 void dec_dl_tasks_cs(struct task_struct *p)
153 {
154 struct cpuset *cs = task_cs(p);
155
156 cs->nr_deadline_tasks--;
157 }
158
is_partition_valid(const struct cpuset * cs)159 static inline bool is_partition_valid(const struct cpuset *cs)
160 {
161 return cs->partition_root_state > 0;
162 }
163
is_partition_invalid(const struct cpuset * cs)164 static inline bool is_partition_invalid(const struct cpuset *cs)
165 {
166 return cs->partition_root_state < 0;
167 }
168
cs_is_member(const struct cpuset * cs)169 static inline bool cs_is_member(const struct cpuset *cs)
170 {
171 return cs->partition_root_state == PRS_MEMBER;
172 }
173
174 /*
175 * Callers should hold callback_lock to modify partition_root_state.
176 */
make_partition_invalid(struct cpuset * cs)177 static inline void make_partition_invalid(struct cpuset *cs)
178 {
179 if (cs->partition_root_state > 0)
180 cs->partition_root_state = -cs->partition_root_state;
181 }
182
183 /*
184 * Send notification event of whenever partition_root_state changes.
185 */
notify_partition_change(struct cpuset * cs,int old_prs)186 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
187 {
188 if (old_prs == cs->partition_root_state)
189 return;
190 cgroup_file_notify(&cs->partition_file);
191
192 /* Reset prs_err if not invalid */
193 if (is_partition_valid(cs))
194 WRITE_ONCE(cs->prs_err, PERR_NONE);
195 }
196
197 /*
198 * The top_cpuset is always synchronized to cpu_active_mask and we should avoid
199 * using cpu_online_mask as much as possible. An active CPU is always an online
200 * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ
201 * during hotplug operations. A CPU is marked active at the last stage of CPU
202 * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code
203 * will be called to update the sched domains so that the scheduler can move
204 * a normal task to a newly active CPU or remove tasks away from a newly
205 * inactivated CPU. The online bit is set much earlier in the CPU bringup
206 * process and cleared much later in CPU teardown.
207 *
208 * If cpu_online_mask is used while a hotunplug operation is happening in
209 * parallel, we may leave an offline CPU in cpu_allowed or some other masks.
210 */
211 static struct cpuset top_cpuset = {
212 .flags = BIT(CS_CPU_EXCLUSIVE) |
213 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
214 .partition_root_state = PRS_ROOT,
215 .relax_domain_level = -1,
216 .remote_partition = false,
217 };
218
219 /*
220 * There are two global locks guarding cpuset structures - cpuset_mutex and
221 * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
222 * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
223 * structures. Note that cpuset_mutex needs to be a mutex as it is used in
224 * paths that rely on priority inheritance (e.g. scheduler - on RT) for
225 * correctness.
226 *
227 * A task must hold both locks to modify cpusets. If a task holds
228 * cpuset_mutex, it blocks others, ensuring that it is the only task able to
229 * also acquire callback_lock and be able to modify cpusets. It can perform
230 * various checks on the cpuset structure first, knowing nothing will change.
231 * It can also allocate memory while just holding cpuset_mutex. While it is
232 * performing these checks, various callback routines can briefly acquire
233 * callback_lock to query cpusets. Once it is ready to make the changes, it
234 * takes callback_lock, blocking everyone else.
235 *
236 * Calls to the kernel memory allocator can not be made while holding
237 * callback_lock, as that would risk double tripping on callback_lock
238 * from one of the callbacks into the cpuset code from within
239 * __alloc_pages().
240 *
241 * If a task is only holding callback_lock, then it has read-only
242 * access to cpusets.
243 *
244 * Now, the task_struct fields mems_allowed and mempolicy may be changed
245 * by other task, we use alloc_lock in the task_struct fields to protect
246 * them.
247 *
248 * The cpuset_common_seq_show() handlers only hold callback_lock across
249 * small pieces of code, such as when reading out possibly multi-word
250 * cpumasks and nodemasks.
251 */
252
253 static DEFINE_MUTEX(cpuset_mutex);
254
255 /**
256 * cpuset_lock - Acquire the global cpuset mutex
257 *
258 * This locks the global cpuset mutex to prevent modifications to cpuset
259 * hierarchy and configurations. This helper is not enough to make modification.
260 */
cpuset_lock(void)261 void cpuset_lock(void)
262 {
263 mutex_lock(&cpuset_mutex);
264 }
265
cpuset_unlock(void)266 void cpuset_unlock(void)
267 {
268 mutex_unlock(&cpuset_mutex);
269 }
270
271 /**
272 * cpuset_full_lock - Acquire full protection for cpuset modification
273 *
274 * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex
275 * to safely modify cpuset data.
276 */
cpuset_full_lock(void)277 void cpuset_full_lock(void)
278 {
279 cpus_read_lock();
280 mutex_lock(&cpuset_mutex);
281 }
282
cpuset_full_unlock(void)283 void cpuset_full_unlock(void)
284 {
285 mutex_unlock(&cpuset_mutex);
286 cpus_read_unlock();
287 }
288
289 static DEFINE_SPINLOCK(callback_lock);
290
cpuset_callback_lock_irq(void)291 void cpuset_callback_lock_irq(void)
292 {
293 spin_lock_irq(&callback_lock);
294 }
295
cpuset_callback_unlock_irq(void)296 void cpuset_callback_unlock_irq(void)
297 {
298 spin_unlock_irq(&callback_lock);
299 }
300
301 static struct workqueue_struct *cpuset_migrate_mm_wq;
302
303 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
304
check_insane_mems_config(nodemask_t * nodes)305 static inline void check_insane_mems_config(nodemask_t *nodes)
306 {
307 if (!cpusets_insane_config() &&
308 movable_only_nodes(nodes)) {
309 static_branch_enable_cpuslocked(&cpusets_insane_config_key);
310 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
311 "Cpuset allocations might fail even with a lot of memory available.\n",
312 nodemask_pr_args(nodes));
313 }
314 }
315
316 /*
317 * decrease cs->attach_in_progress.
318 * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
319 */
dec_attach_in_progress_locked(struct cpuset * cs)320 static inline void dec_attach_in_progress_locked(struct cpuset *cs)
321 {
322 lockdep_assert_held(&cpuset_mutex);
323
324 cs->attach_in_progress--;
325 if (!cs->attach_in_progress)
326 wake_up(&cpuset_attach_wq);
327 }
328
dec_attach_in_progress(struct cpuset * cs)329 static inline void dec_attach_in_progress(struct cpuset *cs)
330 {
331 mutex_lock(&cpuset_mutex);
332 dec_attach_in_progress_locked(cs);
333 mutex_unlock(&cpuset_mutex);
334 }
335
cpuset_v2(void)336 static inline bool cpuset_v2(void)
337 {
338 return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
339 cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
340 }
341
342 /*
343 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
344 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
345 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
346 * With v2 behavior, "cpus" and "mems" are always what the users have
347 * requested and won't be changed by hotplug events. Only the effective
348 * cpus or mems will be affected.
349 */
is_in_v2_mode(void)350 static inline bool is_in_v2_mode(void)
351 {
352 return cpuset_v2() ||
353 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
354 }
355
cpuset_is_populated(struct cpuset * cs)356 static inline bool cpuset_is_populated(struct cpuset *cs)
357 {
358 lockdep_assert_held(&cpuset_mutex);
359
360 /* Cpusets in the process of attaching should be considered as populated */
361 return cgroup_is_populated(cs->css.cgroup) ||
362 cs->attach_in_progress;
363 }
364
365 /**
366 * partition_is_populated - check if partition has tasks
367 * @cs: partition root to be checked
368 * @excluded_child: a child cpuset to be excluded in task checking
369 * Return: true if there are tasks, false otherwise
370 *
371 * @cs should be a valid partition root or going to become a partition root.
372 * @excluded_child should be non-NULL when this cpuset is going to become a
373 * partition itself.
374 *
375 * Note that a remote partition is not allowed underneath a valid local
376 * or remote partition. So if a non-partition root child is populated,
377 * the whole partition is considered populated.
378 */
partition_is_populated(struct cpuset * cs,struct cpuset * excluded_child)379 static inline bool partition_is_populated(struct cpuset *cs,
380 struct cpuset *excluded_child)
381 {
382 struct cpuset *cp;
383 struct cgroup_subsys_state *pos_css;
384
385 /*
386 * We cannot call cs_is_populated(cs) directly, as
387 * nr_populated_domain_children may include populated
388 * csets from descendants that are partitions.
389 */
390 if (cs->css.cgroup->nr_populated_csets ||
391 cs->attach_in_progress)
392 return true;
393
394 rcu_read_lock();
395 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
396 if (cp == cs || cp == excluded_child)
397 continue;
398
399 if (is_partition_valid(cp)) {
400 pos_css = css_rightmost_descendant(pos_css);
401 continue;
402 }
403
404 if (cpuset_is_populated(cp)) {
405 rcu_read_unlock();
406 return true;
407 }
408 }
409 rcu_read_unlock();
410 return false;
411 }
412
413 /*
414 * Return in pmask the portion of a task's cpusets's cpus_allowed that
415 * are online and are capable of running the task. If none are found,
416 * walk up the cpuset hierarchy until we find one that does have some
417 * appropriate cpus.
418 *
419 * One way or another, we guarantee to return some non-empty subset
420 * of cpu_active_mask.
421 *
422 * Call with callback_lock or cpuset_mutex held.
423 */
guarantee_active_cpus(struct task_struct * tsk,struct cpumask * pmask)424 static void guarantee_active_cpus(struct task_struct *tsk,
425 struct cpumask *pmask)
426 {
427 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
428 struct cpuset *cs;
429
430 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
431 cpumask_copy(pmask, cpu_active_mask);
432
433 rcu_read_lock();
434 cs = task_cs(tsk);
435
436 while (!cpumask_intersects(cs->effective_cpus, pmask))
437 cs = parent_cs(cs);
438
439 cpumask_and(pmask, pmask, cs->effective_cpus);
440 rcu_read_unlock();
441 }
442
443 /*
444 * Return in *pmask the portion of a cpusets's mems_allowed that
445 * are online, with memory. If none are online with memory, walk
446 * up the cpuset hierarchy until we find one that does have some
447 * online mems. The top cpuset always has some mems online.
448 *
449 * One way or another, we guarantee to return some non-empty subset
450 * of node_states[N_MEMORY].
451 *
452 * Call with callback_lock or cpuset_mutex held.
453 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)454 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
455 {
456 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
457 cs = parent_cs(cs);
458 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
459 }
460
461 /**
462 * alloc_cpumasks - Allocate an array of cpumask variables
463 * @pmasks: Pointer to array of cpumask_var_t pointers
464 * @size: Number of cpumasks to allocate
465 * Return: 0 if successful, -ENOMEM otherwise.
466 *
467 * Allocates @size cpumasks and initializes them to empty. Returns 0 on
468 * success, -ENOMEM on allocation failure. On failure, any previously
469 * allocated cpumasks are freed.
470 */
alloc_cpumasks(cpumask_var_t * pmasks[],u32 size)471 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size)
472 {
473 int i;
474
475 for (i = 0; i < size; i++) {
476 if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) {
477 while (--i >= 0)
478 free_cpumask_var(*pmasks[i]);
479 return -ENOMEM;
480 }
481 }
482 return 0;
483 }
484
485 /**
486 * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations.
487 * @tmp: Pointer to tmpmasks structure to populate
488 * Return: 0 on success, -ENOMEM on allocation failure
489 */
alloc_tmpmasks(struct tmpmasks * tmp)490 static inline int alloc_tmpmasks(struct tmpmasks *tmp)
491 {
492 /*
493 * Array of pointers to the three cpumask_var_t fields in tmpmasks.
494 * Note: Array size must match actual number of masks (3)
495 */
496 cpumask_var_t *pmask[3] = {
497 &tmp->new_cpus,
498 &tmp->addmask,
499 &tmp->delmask
500 };
501
502 return alloc_cpumasks(pmask, ARRAY_SIZE(pmask));
503 }
504
505 /**
506 * free_tmpmasks - free cpumasks in a tmpmasks structure
507 * @tmp: the tmpmasks structure pointer
508 */
free_tmpmasks(struct tmpmasks * tmp)509 static inline void free_tmpmasks(struct tmpmasks *tmp)
510 {
511 if (!tmp)
512 return;
513
514 free_cpumask_var(tmp->new_cpus);
515 free_cpumask_var(tmp->addmask);
516 free_cpumask_var(tmp->delmask);
517 }
518
519 /**
520 * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset
521 * @cs: Source cpuset to duplicate (NULL for a fresh allocation)
522 *
523 * Creates a new cpuset by either:
524 * 1. Duplicating an existing cpuset (if @cs is non-NULL), or
525 * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL)
526 *
527 * Return: Pointer to newly allocated cpuset on success, NULL on failure
528 */
dup_or_alloc_cpuset(struct cpuset * cs)529 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs)
530 {
531 struct cpuset *trial;
532
533 /* Allocate base structure */
534 trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) :
535 kzalloc(sizeof(*cs), GFP_KERNEL);
536 if (!trial)
537 return NULL;
538
539 /* Setup cpumask pointer array */
540 cpumask_var_t *pmask[4] = {
541 &trial->cpus_allowed,
542 &trial->effective_cpus,
543 &trial->effective_xcpus,
544 &trial->exclusive_cpus
545 };
546
547 if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) {
548 kfree(trial);
549 return NULL;
550 }
551
552 /* Copy masks if duplicating */
553 if (cs) {
554 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
555 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
556 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
557 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
558 }
559
560 return trial;
561 }
562
563 /**
564 * free_cpuset - free the cpuset
565 * @cs: the cpuset to be freed
566 */
free_cpuset(struct cpuset * cs)567 static inline void free_cpuset(struct cpuset *cs)
568 {
569 free_cpumask_var(cs->cpus_allowed);
570 free_cpumask_var(cs->effective_cpus);
571 free_cpumask_var(cs->effective_xcpus);
572 free_cpumask_var(cs->exclusive_cpus);
573 kfree(cs);
574 }
575
576 /* Return user specified exclusive CPUs */
user_xcpus(struct cpuset * cs)577 static inline struct cpumask *user_xcpus(struct cpuset *cs)
578 {
579 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
580 : cs->exclusive_cpus;
581 }
582
xcpus_empty(struct cpuset * cs)583 static inline bool xcpus_empty(struct cpuset *cs)
584 {
585 return cpumask_empty(cs->cpus_allowed) &&
586 cpumask_empty(cs->exclusive_cpus);
587 }
588
589 /*
590 * cpusets_are_exclusive() - check if two cpusets are exclusive
591 *
592 * Return true if exclusive, false if not
593 */
cpusets_are_exclusive(struct cpuset * cs1,struct cpuset * cs2)594 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
595 {
596 struct cpumask *xcpus1 = user_xcpus(cs1);
597 struct cpumask *xcpus2 = user_xcpus(cs2);
598
599 if (cpumask_intersects(xcpus1, xcpus2))
600 return false;
601 return true;
602 }
603
604 /**
605 * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts
606 * @cs1: first cpuset to check
607 * @cs2: second cpuset to check
608 *
609 * Returns: true if CPU exclusivity conflict exists, false otherwise
610 *
611 * Conflict detection rules:
612 * 1. If either cpuset is CPU exclusive, they must be mutually exclusive
613 * 2. exclusive_cpus masks cannot intersect between cpusets
614 * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs
615 */
cpus_excl_conflict(struct cpuset * cs1,struct cpuset * cs2)616 static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
617 {
618 /* If either cpuset is exclusive, check if they are mutually exclusive */
619 if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2))
620 return !cpusets_are_exclusive(cs1, cs2);
621
622 /* Exclusive_cpus cannot intersect */
623 if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus))
624 return true;
625
626 /* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */
627 if (!cpumask_empty(cs1->cpus_allowed) &&
628 cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus))
629 return true;
630
631 if (!cpumask_empty(cs2->cpus_allowed) &&
632 cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus))
633 return true;
634
635 return false;
636 }
637
mems_excl_conflict(struct cpuset * cs1,struct cpuset * cs2)638 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2)
639 {
640 if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2)))
641 return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
642 return false;
643 }
644
645 /*
646 * validate_change() - Used to validate that any proposed cpuset change
647 * follows the structural rules for cpusets.
648 *
649 * If we replaced the flag and mask values of the current cpuset
650 * (cur) with those values in the trial cpuset (trial), would
651 * our various subset and exclusive rules still be valid? Presumes
652 * cpuset_mutex held.
653 *
654 * 'cur' is the address of an actual, in-use cpuset. Operations
655 * such as list traversal that depend on the actual address of the
656 * cpuset in the list must use cur below, not trial.
657 *
658 * 'trial' is the address of bulk structure copy of cur, with
659 * perhaps one or more of the fields cpus_allowed, mems_allowed,
660 * or flags changed to new, trial values.
661 *
662 * Return 0 if valid, -errno if not.
663 */
664
validate_change(struct cpuset * cur,struct cpuset * trial)665 static int validate_change(struct cpuset *cur, struct cpuset *trial)
666 {
667 struct cgroup_subsys_state *css;
668 struct cpuset *c, *par;
669 int ret = 0;
670
671 rcu_read_lock();
672
673 if (!is_in_v2_mode())
674 ret = cpuset1_validate_change(cur, trial);
675 if (ret)
676 goto out;
677
678 /* Remaining checks don't apply to root cpuset */
679 if (cur == &top_cpuset)
680 goto out;
681
682 par = parent_cs(cur);
683
684 /*
685 * Cpusets with tasks - existing or newly being attached - can't
686 * be changed to have empty cpus_allowed or mems_allowed.
687 */
688 ret = -ENOSPC;
689 if (cpuset_is_populated(cur)) {
690 if (!cpumask_empty(cur->cpus_allowed) &&
691 cpumask_empty(trial->cpus_allowed))
692 goto out;
693 if (!nodes_empty(cur->mems_allowed) &&
694 nodes_empty(trial->mems_allowed))
695 goto out;
696 }
697
698 /*
699 * We can't shrink if we won't have enough room for SCHED_DEADLINE
700 * tasks. This check is not done when scheduling is disabled as the
701 * users should know what they are doing.
702 *
703 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
704 * cpus_allowed.
705 *
706 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
707 * for non-isolated partition root. At this point, the target
708 * effective_cpus isn't computed yet. user_xcpus() is the best
709 * approximation.
710 *
711 * TBD: May need to precompute the real effective_cpus here in case
712 * incorrect scheduling of SCHED_DEADLINE tasks in a partition
713 * becomes an issue.
714 */
715 ret = -EBUSY;
716 if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
717 !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
718 goto out;
719
720 /*
721 * If either I or some sibling (!= me) is exclusive, we can't
722 * overlap. exclusive_cpus cannot overlap with each other if set.
723 */
724 ret = -EINVAL;
725 cpuset_for_each_child(c, css, par) {
726 if (c == cur)
727 continue;
728 if (cpus_excl_conflict(trial, c))
729 goto out;
730 if (mems_excl_conflict(trial, c))
731 goto out;
732 }
733
734 ret = 0;
735 out:
736 rcu_read_unlock();
737 return ret;
738 }
739
740 #ifdef CONFIG_SMP
741 /*
742 * Helper routine for generate_sched_domains().
743 * Do cpusets a, b have overlapping effective cpus_allowed masks?
744 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)745 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
746 {
747 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
748 }
749
750 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)751 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
752 {
753 if (dattr->relax_domain_level < c->relax_domain_level)
754 dattr->relax_domain_level = c->relax_domain_level;
755 return;
756 }
757
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)758 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
759 struct cpuset *root_cs)
760 {
761 struct cpuset *cp;
762 struct cgroup_subsys_state *pos_css;
763
764 rcu_read_lock();
765 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
766 /* skip the whole subtree if @cp doesn't have any CPU */
767 if (cpumask_empty(cp->cpus_allowed)) {
768 pos_css = css_rightmost_descendant(pos_css);
769 continue;
770 }
771
772 if (is_sched_load_balance(cp))
773 update_domain_attr(dattr, cp);
774 }
775 rcu_read_unlock();
776 }
777
778 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)779 static inline int nr_cpusets(void)
780 {
781 /* jump label reference count + the top-level cpuset */
782 return static_key_count(&cpusets_enabled_key.key) + 1;
783 }
784
785 /*
786 * generate_sched_domains()
787 *
788 * This function builds a partial partition of the systems CPUs
789 * A 'partial partition' is a set of non-overlapping subsets whose
790 * union is a subset of that set.
791 * The output of this function needs to be passed to kernel/sched/core.c
792 * partition_sched_domains() routine, which will rebuild the scheduler's
793 * load balancing domains (sched domains) as specified by that partial
794 * partition.
795 *
796 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
797 * for a background explanation of this.
798 *
799 * Does not return errors, on the theory that the callers of this
800 * routine would rather not worry about failures to rebuild sched
801 * domains when operating in the severe memory shortage situations
802 * that could cause allocation failures below.
803 *
804 * Must be called with cpuset_mutex held.
805 *
806 * The three key local variables below are:
807 * cp - cpuset pointer, used (together with pos_css) to perform a
808 * top-down scan of all cpusets. For our purposes, rebuilding
809 * the schedulers sched domains, we can ignore !is_sched_load_
810 * balance cpusets.
811 * csa - (for CpuSet Array) Array of pointers to all the cpusets
812 * that need to be load balanced, for convenient iterative
813 * access by the subsequent code that finds the best partition,
814 * i.e the set of domains (subsets) of CPUs such that the
815 * cpus_allowed of every cpuset marked is_sched_load_balance
816 * is a subset of one of these domains, while there are as
817 * many such domains as possible, each as small as possible.
818 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
819 * the kernel/sched/core.c routine partition_sched_domains() in a
820 * convenient format, that can be easily compared to the prior
821 * value to determine what partition elements (sched domains)
822 * were changed (added or removed.)
823 *
824 * Finding the best partition (set of domains):
825 * The double nested loops below over i, j scan over the load
826 * balanced cpusets (using the array of cpuset pointers in csa[])
827 * looking for pairs of cpusets that have overlapping cpus_allowed
828 * and merging them using a union-find algorithm.
829 *
830 * The union of the cpus_allowed masks from the set of all cpusets
831 * having the same root then form the one element of the partition
832 * (one sched domain) to be passed to partition_sched_domains().
833 *
834 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)835 static int generate_sched_domains(cpumask_var_t **domains,
836 struct sched_domain_attr **attributes)
837 {
838 struct cpuset *cp; /* top-down scan of cpusets */
839 struct cpuset **csa; /* array of all cpuset ptrs */
840 int csn; /* how many cpuset ptrs in csa so far */
841 int i, j; /* indices for partition finding loops */
842 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
843 struct sched_domain_attr *dattr; /* attributes for custom domains */
844 int ndoms = 0; /* number of sched domains in result */
845 int nslot; /* next empty doms[] struct cpumask slot */
846 struct cgroup_subsys_state *pos_css;
847 bool root_load_balance = is_sched_load_balance(&top_cpuset);
848 bool cgrpv2 = cpuset_v2();
849 int nslot_update;
850
851 doms = NULL;
852 dattr = NULL;
853 csa = NULL;
854
855 /* Special case for the 99% of systems with one, full, sched domain */
856 if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
857 single_root_domain:
858 ndoms = 1;
859 doms = alloc_sched_domains(ndoms);
860 if (!doms)
861 goto done;
862
863 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
864 if (dattr) {
865 *dattr = SD_ATTR_INIT;
866 update_domain_attr_tree(dattr, &top_cpuset);
867 }
868 cpumask_and(doms[0], top_cpuset.effective_cpus,
869 housekeeping_cpumask(HK_TYPE_DOMAIN));
870
871 goto done;
872 }
873
874 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
875 if (!csa)
876 goto done;
877 csn = 0;
878
879 rcu_read_lock();
880 if (root_load_balance)
881 csa[csn++] = &top_cpuset;
882 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
883 if (cp == &top_cpuset)
884 continue;
885
886 if (cgrpv2)
887 goto v2;
888
889 /*
890 * v1:
891 * Continue traversing beyond @cp iff @cp has some CPUs and
892 * isn't load balancing. The former is obvious. The
893 * latter: All child cpusets contain a subset of the
894 * parent's cpus, so just skip them, and then we call
895 * update_domain_attr_tree() to calc relax_domain_level of
896 * the corresponding sched domain.
897 */
898 if (!cpumask_empty(cp->cpus_allowed) &&
899 !(is_sched_load_balance(cp) &&
900 cpumask_intersects(cp->cpus_allowed,
901 housekeeping_cpumask(HK_TYPE_DOMAIN))))
902 continue;
903
904 if (is_sched_load_balance(cp) &&
905 !cpumask_empty(cp->effective_cpus))
906 csa[csn++] = cp;
907
908 /* skip @cp's subtree */
909 pos_css = css_rightmost_descendant(pos_css);
910 continue;
911
912 v2:
913 /*
914 * Only valid partition roots that are not isolated and with
915 * non-empty effective_cpus will be saved into csn[].
916 */
917 if ((cp->partition_root_state == PRS_ROOT) &&
918 !cpumask_empty(cp->effective_cpus))
919 csa[csn++] = cp;
920
921 /*
922 * Skip @cp's subtree if not a partition root and has no
923 * exclusive CPUs to be granted to child cpusets.
924 */
925 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
926 pos_css = css_rightmost_descendant(pos_css);
927 }
928 rcu_read_unlock();
929
930 /*
931 * If there are only isolated partitions underneath the cgroup root,
932 * we can optimize out unneeded sched domains scanning.
933 */
934 if (root_load_balance && (csn == 1))
935 goto single_root_domain;
936
937 for (i = 0; i < csn; i++)
938 uf_node_init(&csa[i]->node);
939
940 /* Merge overlapping cpusets */
941 for (i = 0; i < csn; i++) {
942 for (j = i + 1; j < csn; j++) {
943 if (cpusets_overlap(csa[i], csa[j])) {
944 /*
945 * Cgroup v2 shouldn't pass down overlapping
946 * partition root cpusets.
947 */
948 WARN_ON_ONCE(cgrpv2);
949 uf_union(&csa[i]->node, &csa[j]->node);
950 }
951 }
952 }
953
954 /* Count the total number of domains */
955 for (i = 0; i < csn; i++) {
956 if (uf_find(&csa[i]->node) == &csa[i]->node)
957 ndoms++;
958 }
959
960 /*
961 * Now we know how many domains to create.
962 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
963 */
964 doms = alloc_sched_domains(ndoms);
965 if (!doms)
966 goto done;
967
968 /*
969 * The rest of the code, including the scheduler, can deal with
970 * dattr==NULL case. No need to abort if alloc fails.
971 */
972 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
973 GFP_KERNEL);
974
975 /*
976 * Cgroup v2 doesn't support domain attributes, just set all of them
977 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
978 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
979 */
980 if (cgrpv2) {
981 for (i = 0; i < ndoms; i++) {
982 /*
983 * The top cpuset may contain some boot time isolated
984 * CPUs that need to be excluded from the sched domain.
985 */
986 if (csa[i] == &top_cpuset)
987 cpumask_and(doms[i], csa[i]->effective_cpus,
988 housekeeping_cpumask(HK_TYPE_DOMAIN));
989 else
990 cpumask_copy(doms[i], csa[i]->effective_cpus);
991 if (dattr)
992 dattr[i] = SD_ATTR_INIT;
993 }
994 goto done;
995 }
996
997 for (nslot = 0, i = 0; i < csn; i++) {
998 nslot_update = 0;
999 for (j = i; j < csn; j++) {
1000 if (uf_find(&csa[j]->node) == &csa[i]->node) {
1001 struct cpumask *dp = doms[nslot];
1002
1003 if (i == j) {
1004 nslot_update = 1;
1005 cpumask_clear(dp);
1006 if (dattr)
1007 *(dattr + nslot) = SD_ATTR_INIT;
1008 }
1009 cpumask_or(dp, dp, csa[j]->effective_cpus);
1010 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1011 if (dattr)
1012 update_domain_attr_tree(dattr + nslot, csa[j]);
1013 }
1014 }
1015 if (nslot_update)
1016 nslot++;
1017 }
1018 BUG_ON(nslot != ndoms);
1019
1020 done:
1021 kfree(csa);
1022
1023 /*
1024 * Fallback to the default domain if kmalloc() failed.
1025 * See comments in partition_sched_domains().
1026 */
1027 if (doms == NULL)
1028 ndoms = 1;
1029
1030 *domains = doms;
1031 *attributes = dattr;
1032 return ndoms;
1033 }
1034
dl_update_tasks_root_domain(struct cpuset * cs)1035 static void dl_update_tasks_root_domain(struct cpuset *cs)
1036 {
1037 struct css_task_iter it;
1038 struct task_struct *task;
1039
1040 if (cs->nr_deadline_tasks == 0)
1041 return;
1042
1043 css_task_iter_start(&cs->css, 0, &it);
1044
1045 while ((task = css_task_iter_next(&it)))
1046 dl_add_task_root_domain(task);
1047
1048 css_task_iter_end(&it);
1049 }
1050
dl_rebuild_rd_accounting(void)1051 void dl_rebuild_rd_accounting(void)
1052 {
1053 struct cpuset *cs = NULL;
1054 struct cgroup_subsys_state *pos_css;
1055 int cpu;
1056 u64 cookie = ++dl_cookie;
1057
1058 lockdep_assert_held(&cpuset_mutex);
1059 lockdep_assert_cpus_held();
1060 lockdep_assert_held(&sched_domains_mutex);
1061
1062 rcu_read_lock();
1063
1064 for_each_possible_cpu(cpu) {
1065 if (dl_bw_visited(cpu, cookie))
1066 continue;
1067
1068 dl_clear_root_domain_cpu(cpu);
1069 }
1070
1071 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1072
1073 if (cpumask_empty(cs->effective_cpus)) {
1074 pos_css = css_rightmost_descendant(pos_css);
1075 continue;
1076 }
1077
1078 css_get(&cs->css);
1079
1080 rcu_read_unlock();
1081
1082 dl_update_tasks_root_domain(cs);
1083
1084 rcu_read_lock();
1085 css_put(&cs->css);
1086 }
1087 rcu_read_unlock();
1088 }
1089
1090 /*
1091 * Rebuild scheduler domains.
1092 *
1093 * If the flag 'sched_load_balance' of any cpuset with non-empty
1094 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1095 * which has that flag enabled, or if any cpuset with a non-empty
1096 * 'cpus' is removed, then call this routine to rebuild the
1097 * scheduler's dynamic sched domains.
1098 *
1099 * Call with cpuset_mutex held. Takes cpus_read_lock().
1100 */
rebuild_sched_domains_locked(void)1101 void rebuild_sched_domains_locked(void)
1102 {
1103 struct cgroup_subsys_state *pos_css;
1104 struct sched_domain_attr *attr;
1105 cpumask_var_t *doms;
1106 struct cpuset *cs;
1107 int ndoms;
1108
1109 lockdep_assert_cpus_held();
1110 lockdep_assert_held(&cpuset_mutex);
1111 force_sd_rebuild = false;
1112
1113 /*
1114 * If we have raced with CPU hotplug, return early to avoid
1115 * passing doms with offlined cpu to partition_sched_domains().
1116 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1117 *
1118 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1119 * should be the same as the active CPUs, so checking only top_cpuset
1120 * is enough to detect racing CPU offlines.
1121 */
1122 if (cpumask_empty(subpartitions_cpus) &&
1123 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1124 return;
1125
1126 /*
1127 * With subpartition CPUs, however, the effective CPUs of a partition
1128 * root should be only a subset of the active CPUs. Since a CPU in any
1129 * partition root could be offlined, all must be checked.
1130 */
1131 if (!cpumask_empty(subpartitions_cpus)) {
1132 rcu_read_lock();
1133 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1134 if (!is_partition_valid(cs)) {
1135 pos_css = css_rightmost_descendant(pos_css);
1136 continue;
1137 }
1138 if (!cpumask_subset(cs->effective_cpus,
1139 cpu_active_mask)) {
1140 rcu_read_unlock();
1141 return;
1142 }
1143 }
1144 rcu_read_unlock();
1145 }
1146
1147 /* Generate domain masks and attrs */
1148 ndoms = generate_sched_domains(&doms, &attr);
1149
1150 /* Have scheduler rebuild the domains */
1151 partition_sched_domains(ndoms, doms, attr);
1152 }
1153 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1154 void rebuild_sched_domains_locked(void)
1155 {
1156 }
1157 #endif /* CONFIG_SMP */
1158
rebuild_sched_domains_cpuslocked(void)1159 static void rebuild_sched_domains_cpuslocked(void)
1160 {
1161 mutex_lock(&cpuset_mutex);
1162 rebuild_sched_domains_locked();
1163 mutex_unlock(&cpuset_mutex);
1164 }
1165
rebuild_sched_domains(void)1166 void rebuild_sched_domains(void)
1167 {
1168 cpus_read_lock();
1169 rebuild_sched_domains_cpuslocked();
1170 cpus_read_unlock();
1171 }
1172
cpuset_reset_sched_domains(void)1173 void cpuset_reset_sched_domains(void)
1174 {
1175 mutex_lock(&cpuset_mutex);
1176 partition_sched_domains(1, NULL, NULL);
1177 mutex_unlock(&cpuset_mutex);
1178 }
1179
1180 /**
1181 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1182 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1183 * @new_cpus: the temp variable for the new effective_cpus mask
1184 *
1185 * Iterate through each task of @cs updating its cpus_allowed to the
1186 * effective cpuset's. As this function is called with cpuset_mutex held,
1187 * cpuset membership stays stable.
1188 *
1189 * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus
1190 * to make sure all offline CPUs are also included as hotplug code won't
1191 * update cpumasks for tasks in top_cpuset.
1192 *
1193 * As task_cpu_possible_mask() can be task dependent in arm64, we have to
1194 * do cpu masking per task instead of doing it once for all.
1195 */
cpuset_update_tasks_cpumask(struct cpuset * cs,struct cpumask * new_cpus)1196 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1197 {
1198 struct css_task_iter it;
1199 struct task_struct *task;
1200 bool top_cs = cs == &top_cpuset;
1201
1202 css_task_iter_start(&cs->css, 0, &it);
1203 while ((task = css_task_iter_next(&it))) {
1204 const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1205
1206 if (top_cs) {
1207 /*
1208 * PF_NO_SETAFFINITY tasks are ignored.
1209 * All per cpu kthreads should have PF_NO_SETAFFINITY
1210 * flag set, see kthread_set_per_cpu().
1211 */
1212 if (task->flags & PF_NO_SETAFFINITY)
1213 continue;
1214 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1215 } else {
1216 cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1217 }
1218 set_cpus_allowed_ptr(task, new_cpus);
1219 }
1220 css_task_iter_end(&it);
1221 }
1222
1223 /**
1224 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1225 * @new_cpus: the temp variable for the new effective_cpus mask
1226 * @cs: the cpuset the need to recompute the new effective_cpus mask
1227 * @parent: the parent cpuset
1228 *
1229 * The result is valid only if the given cpuset isn't a partition root.
1230 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1231 static void compute_effective_cpumask(struct cpumask *new_cpus,
1232 struct cpuset *cs, struct cpuset *parent)
1233 {
1234 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1235 }
1236
1237 /*
1238 * Commands for update_parent_effective_cpumask
1239 */
1240 enum partition_cmd {
1241 partcmd_enable, /* Enable partition root */
1242 partcmd_enablei, /* Enable isolated partition root */
1243 partcmd_disable, /* Disable partition root */
1244 partcmd_update, /* Update parent's effective_cpus */
1245 partcmd_invalidate, /* Make partition invalid */
1246 };
1247
1248 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1249 struct tmpmasks *tmp);
1250
1251 /*
1252 * Update partition exclusive flag
1253 *
1254 * Return: 0 if successful, an error code otherwise
1255 */
update_partition_exclusive_flag(struct cpuset * cs,int new_prs)1256 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs)
1257 {
1258 bool exclusive = (new_prs > PRS_MEMBER);
1259
1260 if (exclusive && !is_cpu_exclusive(cs)) {
1261 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1262 return PERR_NOTEXCL;
1263 } else if (!exclusive && is_cpu_exclusive(cs)) {
1264 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1265 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1266 }
1267 return 0;
1268 }
1269
1270 /*
1271 * Update partition load balance flag and/or rebuild sched domain
1272 *
1273 * Changing load balance flag will automatically call
1274 * rebuild_sched_domains_locked().
1275 * This function is for cgroup v2 only.
1276 */
update_partition_sd_lb(struct cpuset * cs,int old_prs)1277 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1278 {
1279 int new_prs = cs->partition_root_state;
1280 bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1281 bool new_lb;
1282
1283 /*
1284 * If cs is not a valid partition root, the load balance state
1285 * will follow its parent.
1286 */
1287 if (new_prs > 0) {
1288 new_lb = (new_prs != PRS_ISOLATED);
1289 } else {
1290 new_lb = is_sched_load_balance(parent_cs(cs));
1291 }
1292 if (new_lb != !!is_sched_load_balance(cs)) {
1293 rebuild_domains = true;
1294 if (new_lb)
1295 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1296 else
1297 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1298 }
1299
1300 if (rebuild_domains)
1301 cpuset_force_rebuild();
1302 }
1303
1304 /*
1305 * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1306 */
tasks_nocpu_error(struct cpuset * parent,struct cpuset * cs,struct cpumask * xcpus)1307 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1308 struct cpumask *xcpus)
1309 {
1310 /*
1311 * A populated partition (cs or parent) can't have empty effective_cpus
1312 */
1313 return (cpumask_subset(parent->effective_cpus, xcpus) &&
1314 partition_is_populated(parent, cs)) ||
1315 (!cpumask_intersects(xcpus, cpu_active_mask) &&
1316 partition_is_populated(cs, NULL));
1317 }
1318
reset_partition_data(struct cpuset * cs)1319 static void reset_partition_data(struct cpuset *cs)
1320 {
1321 struct cpuset *parent = parent_cs(cs);
1322
1323 if (!cpuset_v2())
1324 return;
1325
1326 lockdep_assert_held(&callback_lock);
1327
1328 if (cpumask_empty(cs->exclusive_cpus)) {
1329 cpumask_clear(cs->effective_xcpus);
1330 if (is_cpu_exclusive(cs))
1331 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1332 }
1333 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1334 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1335 }
1336
1337 /*
1338 * isolated_cpus_update - Update the isolated_cpus mask
1339 * @old_prs: old partition_root_state
1340 * @new_prs: new partition_root_state
1341 * @xcpus: exclusive CPUs with state change
1342 */
isolated_cpus_update(int old_prs,int new_prs,struct cpumask * xcpus)1343 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus)
1344 {
1345 WARN_ON_ONCE(old_prs == new_prs);
1346 if (new_prs == PRS_ISOLATED)
1347 cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1348 else
1349 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1350
1351 isolated_cpus_updating = true;
1352 }
1353
1354 /*
1355 * partition_xcpus_add - Add new exclusive CPUs to partition
1356 * @new_prs: new partition_root_state
1357 * @parent: parent cpuset
1358 * @xcpus: exclusive CPUs to be added
1359 *
1360 * Remote partition if parent == NULL
1361 */
partition_xcpus_add(int new_prs,struct cpuset * parent,struct cpumask * xcpus)1362 static void partition_xcpus_add(int new_prs, struct cpuset *parent,
1363 struct cpumask *xcpus)
1364 {
1365 WARN_ON_ONCE(new_prs < 0);
1366 lockdep_assert_held(&callback_lock);
1367 if (!parent)
1368 parent = &top_cpuset;
1369
1370
1371 if (parent == &top_cpuset)
1372 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1373
1374 if (new_prs != parent->partition_root_state)
1375 isolated_cpus_update(parent->partition_root_state, new_prs,
1376 xcpus);
1377
1378 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1379 }
1380
1381 /*
1382 * partition_xcpus_del - Remove exclusive CPUs from partition
1383 * @old_prs: old partition_root_state
1384 * @parent: parent cpuset
1385 * @xcpus: exclusive CPUs to be removed
1386 *
1387 * Remote partition if parent == NULL
1388 */
partition_xcpus_del(int old_prs,struct cpuset * parent,struct cpumask * xcpus)1389 static void partition_xcpus_del(int old_prs, struct cpuset *parent,
1390 struct cpumask *xcpus)
1391 {
1392 WARN_ON_ONCE(old_prs < 0);
1393 lockdep_assert_held(&callback_lock);
1394 if (!parent)
1395 parent = &top_cpuset;
1396
1397 if (parent == &top_cpuset)
1398 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1399
1400 if (old_prs != parent->partition_root_state)
1401 isolated_cpus_update(old_prs, parent->partition_root_state,
1402 xcpus);
1403
1404 cpumask_and(xcpus, xcpus, cpu_active_mask);
1405 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1406 }
1407
1408 /*
1409 * isolated_cpus_can_update - check for isolated & nohz_full conflicts
1410 * @add_cpus: cpu mask for cpus that are going to be isolated
1411 * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL
1412 * Return: false if there is conflict, true otherwise
1413 *
1414 * If nohz_full is enabled and we have isolated CPUs, their combination must
1415 * still leave housekeeping CPUs.
1416 *
1417 * TBD: Should consider merging this function into
1418 * prstate_housekeeping_conflict().
1419 */
isolated_cpus_can_update(struct cpumask * add_cpus,struct cpumask * del_cpus)1420 static bool isolated_cpus_can_update(struct cpumask *add_cpus,
1421 struct cpumask *del_cpus)
1422 {
1423 cpumask_var_t full_hk_cpus;
1424 int res = true;
1425
1426 if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE))
1427 return true;
1428
1429 if (del_cpus && cpumask_weight_and(del_cpus,
1430 housekeeping_cpumask(HK_TYPE_KERNEL_NOISE)))
1431 return true;
1432
1433 if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL))
1434 return false;
1435
1436 cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE),
1437 housekeeping_cpumask(HK_TYPE_DOMAIN));
1438 cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus);
1439 cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask);
1440 if (!cpumask_weight_andnot(full_hk_cpus, add_cpus))
1441 res = false;
1442
1443 free_cpumask_var(full_hk_cpus);
1444 return res;
1445 }
1446
1447 /*
1448 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1449 * @prstate: partition root state to be checked
1450 * @new_cpus: cpu mask
1451 * Return: true if there is conflict, false otherwise
1452 *
1453 * CPUs outside of boot_hk_cpus, if defined, can only be used in an
1454 * isolated partition.
1455 */
prstate_housekeeping_conflict(int prstate,struct cpumask * new_cpus)1456 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1457 {
1458 if (!have_boot_isolcpus)
1459 return false;
1460
1461 if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1462 return true;
1463
1464 return false;
1465 }
1466
1467 /*
1468 * update_isolation_cpumasks - Update external isolation related CPU masks
1469 *
1470 * The following external CPU masks will be updated if necessary:
1471 * - workqueue unbound cpumask
1472 */
update_isolation_cpumasks(void)1473 static void update_isolation_cpumasks(void)
1474 {
1475 int ret;
1476
1477 if (!isolated_cpus_updating)
1478 return;
1479
1480 lockdep_assert_cpus_held();
1481
1482 ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1483 WARN_ON_ONCE(ret < 0);
1484
1485 ret = tmigr_isolated_exclude_cpumask(isolated_cpus);
1486 WARN_ON_ONCE(ret < 0);
1487
1488 isolated_cpus_updating = false;
1489 }
1490
1491 /**
1492 * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1493 * @cpu: the CPU number to be checked
1494 * Return: true if CPU is used in an isolated partition, false otherwise
1495 */
cpuset_cpu_is_isolated(int cpu)1496 bool cpuset_cpu_is_isolated(int cpu)
1497 {
1498 return cpumask_test_cpu(cpu, isolated_cpus);
1499 }
1500 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1501
1502 /**
1503 * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets
1504 * @parent: Parent cpuset containing all siblings
1505 * @cs: Current cpuset (will be skipped)
1506 * @excpus: exclusive effective CPU mask to modify
1507 *
1508 * This function ensures the given @excpus mask doesn't include any CPUs that
1509 * are exclusively allocated to sibling cpusets. It walks through all siblings
1510 * of @cs under @parent and removes their exclusive CPUs from @excpus.
1511 */
rm_siblings_excl_cpus(struct cpuset * parent,struct cpuset * cs,struct cpumask * excpus)1512 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs,
1513 struct cpumask *excpus)
1514 {
1515 struct cgroup_subsys_state *css;
1516 struct cpuset *sibling;
1517 int retval = 0;
1518
1519 if (cpumask_empty(excpus))
1520 return retval;
1521
1522 /*
1523 * Exclude exclusive CPUs from siblings
1524 */
1525 rcu_read_lock();
1526 cpuset_for_each_child(sibling, css, parent) {
1527 if (sibling == cs)
1528 continue;
1529
1530 if (cpumask_intersects(excpus, sibling->exclusive_cpus)) {
1531 cpumask_andnot(excpus, excpus, sibling->exclusive_cpus);
1532 retval++;
1533 continue;
1534 }
1535 if (cpumask_intersects(excpus, sibling->effective_xcpus)) {
1536 cpumask_andnot(excpus, excpus, sibling->effective_xcpus);
1537 retval++;
1538 }
1539 }
1540 rcu_read_unlock();
1541
1542 return retval;
1543 }
1544
1545 /*
1546 * compute_excpus - compute effective exclusive CPUs
1547 * @cs: cpuset
1548 * @xcpus: effective exclusive CPUs value to be set
1549 * Return: 0 if there is no sibling conflict, > 0 otherwise
1550 *
1551 * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets
1552 * and exclude their exclusive_cpus or effective_xcpus as well.
1553 */
compute_excpus(struct cpuset * cs,struct cpumask * excpus)1554 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus)
1555 {
1556 struct cpuset *parent = parent_cs(cs);
1557
1558 cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus);
1559
1560 if (!cpumask_empty(cs->exclusive_cpus))
1561 return 0;
1562
1563 return rm_siblings_excl_cpus(parent, cs, excpus);
1564 }
1565
1566 /*
1567 * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset
1568 * @trialcs: The trial cpuset containing the proposed new configuration
1569 * @cs: The original cpuset that the trial configuration is based on
1570 * Return: 0 if successful with no sibling conflict, >0 if a conflict is found
1571 *
1572 * Computes the effective_xcpus for a trial configuration. @cs is provided to represent
1573 * the real cs.
1574 */
compute_trialcs_excpus(struct cpuset * trialcs,struct cpuset * cs)1575 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs)
1576 {
1577 struct cpuset *parent = parent_cs(trialcs);
1578 struct cpumask *excpus = trialcs->effective_xcpus;
1579
1580 /* trialcs is member, cpuset.cpus has no impact to excpus */
1581 if (cs_is_member(cs))
1582 cpumask_and(excpus, trialcs->exclusive_cpus,
1583 parent->effective_xcpus);
1584 else
1585 cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus);
1586
1587 return rm_siblings_excl_cpus(parent, cs, excpus);
1588 }
1589
is_remote_partition(struct cpuset * cs)1590 static inline bool is_remote_partition(struct cpuset *cs)
1591 {
1592 return cs->remote_partition;
1593 }
1594
is_local_partition(struct cpuset * cs)1595 static inline bool is_local_partition(struct cpuset *cs)
1596 {
1597 return is_partition_valid(cs) && !is_remote_partition(cs);
1598 }
1599
1600 /*
1601 * remote_partition_enable - Enable current cpuset as a remote partition root
1602 * @cs: the cpuset to update
1603 * @new_prs: new partition_root_state
1604 * @tmp: temporary masks
1605 * Return: 0 if successful, errcode if error
1606 *
1607 * Enable the current cpuset to become a remote partition root taking CPUs
1608 * directly from the top cpuset. cpuset_mutex must be held by the caller.
1609 */
remote_partition_enable(struct cpuset * cs,int new_prs,struct tmpmasks * tmp)1610 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1611 struct tmpmasks *tmp)
1612 {
1613 /*
1614 * The user must have sysadmin privilege.
1615 */
1616 if (!capable(CAP_SYS_ADMIN))
1617 return PERR_ACCESS;
1618
1619 /*
1620 * The requested exclusive_cpus must not be allocated to other
1621 * partitions and it can't use up all the root's effective_cpus.
1622 *
1623 * The effective_xcpus mask can contain offline CPUs, but there must
1624 * be at least one or more online CPUs present before it can be enabled.
1625 *
1626 * Note that creating a remote partition with any local partition root
1627 * above it or remote partition root underneath it is not allowed.
1628 */
1629 compute_excpus(cs, tmp->new_cpus);
1630 WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus));
1631 if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) ||
1632 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1633 return PERR_INVCPUS;
1634 if (((new_prs == PRS_ISOLATED) &&
1635 !isolated_cpus_can_update(tmp->new_cpus, NULL)) ||
1636 prstate_housekeeping_conflict(new_prs, tmp->new_cpus))
1637 return PERR_HKEEPING;
1638
1639 spin_lock_irq(&callback_lock);
1640 partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1641 cs->remote_partition = true;
1642 cpumask_copy(cs->effective_xcpus, tmp->new_cpus);
1643 spin_unlock_irq(&callback_lock);
1644 update_isolation_cpumasks();
1645 cpuset_force_rebuild();
1646 cs->prs_err = 0;
1647
1648 /*
1649 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1650 */
1651 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1652 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1653 return 0;
1654 }
1655
1656 /*
1657 * remote_partition_disable - Remove current cpuset from remote partition list
1658 * @cs: the cpuset to update
1659 * @tmp: temporary masks
1660 *
1661 * The effective_cpus is also updated.
1662 *
1663 * cpuset_mutex must be held by the caller.
1664 */
remote_partition_disable(struct cpuset * cs,struct tmpmasks * tmp)1665 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1666 {
1667 WARN_ON_ONCE(!is_remote_partition(cs));
1668 /*
1669 * When a CPU is offlined, top_cpuset may end up with no available CPUs,
1670 * which should clear subpartitions_cpus. We should not emit a warning for this
1671 * scenario: the hierarchy is updated from top to bottom, so subpartitions_cpus
1672 * may already be cleared when disabling the partition.
1673 */
1674 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus) &&
1675 !cpumask_empty(subpartitions_cpus));
1676
1677 spin_lock_irq(&callback_lock);
1678 cs->remote_partition = false;
1679 partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus);
1680 if (cs->prs_err)
1681 cs->partition_root_state = -cs->partition_root_state;
1682 else
1683 cs->partition_root_state = PRS_MEMBER;
1684
1685 /* effective_xcpus may need to be changed */
1686 compute_excpus(cs, cs->effective_xcpus);
1687 reset_partition_data(cs);
1688 spin_unlock_irq(&callback_lock);
1689 update_isolation_cpumasks();
1690 cpuset_force_rebuild();
1691
1692 /*
1693 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1694 */
1695 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1696 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1697 }
1698
1699 /*
1700 * remote_cpus_update - cpus_exclusive change of remote partition
1701 * @cs: the cpuset to be updated
1702 * @xcpus: the new exclusive_cpus mask, if non-NULL
1703 * @excpus: the new effective_xcpus mask
1704 * @tmp: temporary masks
1705 *
1706 * top_cpuset and subpartitions_cpus will be updated or partition can be
1707 * invalidated.
1708 */
remote_cpus_update(struct cpuset * cs,struct cpumask * xcpus,struct cpumask * excpus,struct tmpmasks * tmp)1709 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus,
1710 struct cpumask *excpus, struct tmpmasks *tmp)
1711 {
1712 bool adding, deleting;
1713 int prs = cs->partition_root_state;
1714
1715 if (WARN_ON_ONCE(!is_remote_partition(cs)))
1716 return;
1717
1718 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1719
1720 if (cpumask_empty(excpus)) {
1721 cs->prs_err = PERR_CPUSEMPTY;
1722 goto invalidate;
1723 }
1724
1725 adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus);
1726 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus);
1727
1728 /*
1729 * Additions of remote CPUs is only allowed if those CPUs are
1730 * not allocated to other partitions and there are effective_cpus
1731 * left in the top cpuset.
1732 */
1733 if (adding) {
1734 WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus));
1735 if (!capable(CAP_SYS_ADMIN))
1736 cs->prs_err = PERR_ACCESS;
1737 else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1738 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
1739 cs->prs_err = PERR_NOCPUS;
1740 else if ((prs == PRS_ISOLATED) &&
1741 !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1742 cs->prs_err = PERR_HKEEPING;
1743 if (cs->prs_err)
1744 goto invalidate;
1745 }
1746
1747 spin_lock_irq(&callback_lock);
1748 if (adding)
1749 partition_xcpus_add(prs, NULL, tmp->addmask);
1750 if (deleting)
1751 partition_xcpus_del(prs, NULL, tmp->delmask);
1752 /*
1753 * Need to update effective_xcpus and exclusive_cpus now as
1754 * update_sibling_cpumasks() below may iterate back to the same cs.
1755 */
1756 cpumask_copy(cs->effective_xcpus, excpus);
1757 if (xcpus)
1758 cpumask_copy(cs->exclusive_cpus, xcpus);
1759 spin_unlock_irq(&callback_lock);
1760 update_isolation_cpumasks();
1761 if (adding || deleting)
1762 cpuset_force_rebuild();
1763
1764 /*
1765 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1766 */
1767 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1768 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1769 return;
1770
1771 invalidate:
1772 remote_partition_disable(cs, tmp);
1773 }
1774
1775 /**
1776 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1777 * @cs: The cpuset that requests change in partition root state
1778 * @cmd: Partition root state change command
1779 * @newmask: Optional new cpumask for partcmd_update
1780 * @tmp: Temporary addmask and delmask
1781 * Return: 0 or a partition root state error code
1782 *
1783 * For partcmd_enable*, the cpuset is being transformed from a non-partition
1784 * root to a partition root. The effective_xcpus (cpus_allowed if
1785 * effective_xcpus not set) mask of the given cpuset will be taken away from
1786 * parent's effective_cpus. The function will return 0 if all the CPUs listed
1787 * in effective_xcpus can be granted or an error code will be returned.
1788 *
1789 * For partcmd_disable, the cpuset is being transformed from a partition
1790 * root back to a non-partition root. Any CPUs in effective_xcpus will be
1791 * given back to parent's effective_cpus. 0 will always be returned.
1792 *
1793 * For partcmd_update, if the optional newmask is specified, the cpu list is
1794 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1795 * assumed to remain the same. The cpuset should either be a valid or invalid
1796 * partition root. The partition root state may change from valid to invalid
1797 * or vice versa. An error code will be returned if transitioning from
1798 * invalid to valid violates the exclusivity rule.
1799 *
1800 * For partcmd_invalidate, the current partition will be made invalid.
1801 *
1802 * The partcmd_enable* and partcmd_disable commands are used by
1803 * update_prstate(). An error code may be returned and the caller will check
1804 * for error.
1805 *
1806 * The partcmd_update command is used by update_cpumasks_hier() with newmask
1807 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1808 * by update_cpumask() with NULL newmask. In both cases, the callers won't
1809 * check for error and so partition_root_state and prs_err will be updated
1810 * directly.
1811 */
update_parent_effective_cpumask(struct cpuset * cs,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1812 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1813 struct cpumask *newmask,
1814 struct tmpmasks *tmp)
1815 {
1816 struct cpuset *parent = parent_cs(cs);
1817 int adding; /* Adding cpus to parent's effective_cpus */
1818 int deleting; /* Deleting cpus from parent's effective_cpus */
1819 int old_prs, new_prs;
1820 int part_error = PERR_NONE; /* Partition error? */
1821 struct cpumask *xcpus = user_xcpus(cs);
1822 int parent_prs = parent->partition_root_state;
1823 bool nocpu;
1824
1825 lockdep_assert_held(&cpuset_mutex);
1826 WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */
1827
1828 /*
1829 * new_prs will only be changed for the partcmd_update and
1830 * partcmd_invalidate commands.
1831 */
1832 adding = deleting = false;
1833 old_prs = new_prs = cs->partition_root_state;
1834
1835 if (cmd == partcmd_invalidate) {
1836 if (is_partition_invalid(cs))
1837 return 0;
1838
1839 /*
1840 * Make the current partition invalid.
1841 */
1842 if (is_partition_valid(parent))
1843 adding = cpumask_and(tmp->addmask,
1844 xcpus, parent->effective_xcpus);
1845 if (old_prs > 0)
1846 new_prs = -old_prs;
1847
1848 goto write_error;
1849 }
1850
1851 /*
1852 * The parent must be a partition root.
1853 * The new cpumask, if present, or the current cpus_allowed must
1854 * not be empty.
1855 */
1856 if (!is_partition_valid(parent)) {
1857 return is_partition_invalid(parent)
1858 ? PERR_INVPARENT : PERR_NOTPART;
1859 }
1860 if (!newmask && xcpus_empty(cs))
1861 return PERR_CPUSEMPTY;
1862
1863 nocpu = tasks_nocpu_error(parent, cs, xcpus);
1864
1865 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1866 /*
1867 * Need to call compute_excpus() in case
1868 * exclusive_cpus not set. Sibling conflict should only happen
1869 * if exclusive_cpus isn't set.
1870 */
1871 xcpus = tmp->delmask;
1872 if (compute_excpus(cs, xcpus))
1873 WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus));
1874 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1875
1876 /*
1877 * Enabling partition root is not allowed if its
1878 * effective_xcpus is empty.
1879 */
1880 if (cpumask_empty(xcpus))
1881 return PERR_INVCPUS;
1882
1883 if (prstate_housekeeping_conflict(new_prs, xcpus))
1884 return PERR_HKEEPING;
1885
1886 if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) &&
1887 !isolated_cpus_can_update(xcpus, NULL))
1888 return PERR_HKEEPING;
1889
1890 if (tasks_nocpu_error(parent, cs, xcpus))
1891 return PERR_NOCPUS;
1892
1893 /*
1894 * This function will only be called when all the preliminary
1895 * checks have passed. At this point, the following condition
1896 * should hold.
1897 *
1898 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus
1899 *
1900 * Warn if it is not the case.
1901 */
1902 cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask);
1903 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1904
1905 deleting = true;
1906 } else if (cmd == partcmd_disable) {
1907 /*
1908 * May need to add cpus back to parent's effective_cpus
1909 * (and maybe removed from subpartitions_cpus/isolated_cpus)
1910 * for valid partition root. xcpus may contain CPUs that
1911 * shouldn't be removed from the two global cpumasks.
1912 */
1913 if (is_partition_valid(cs)) {
1914 cpumask_copy(tmp->addmask, cs->effective_xcpus);
1915 adding = true;
1916 }
1917 new_prs = PRS_MEMBER;
1918 } else if (newmask) {
1919 /*
1920 * Empty cpumask is not allowed
1921 */
1922 if (cpumask_empty(newmask)) {
1923 part_error = PERR_CPUSEMPTY;
1924 goto write_error;
1925 }
1926
1927 /* Check newmask again, whether cpus are available for parent/cs */
1928 nocpu |= tasks_nocpu_error(parent, cs, newmask);
1929
1930 /*
1931 * partcmd_update with newmask:
1932 *
1933 * Compute add/delete mask to/from effective_cpus
1934 *
1935 * For valid partition:
1936 * addmask = exclusive_cpus & ~newmask
1937 * & parent->effective_xcpus
1938 * delmask = newmask & ~exclusive_cpus
1939 * & parent->effective_xcpus
1940 *
1941 * For invalid partition:
1942 * delmask = newmask & parent->effective_xcpus
1943 * The partition may become valid soon.
1944 */
1945 if (is_partition_invalid(cs)) {
1946 adding = false;
1947 deleting = cpumask_and(tmp->delmask,
1948 newmask, parent->effective_xcpus);
1949 } else {
1950 cpumask_andnot(tmp->addmask, xcpus, newmask);
1951 adding = cpumask_and(tmp->addmask, tmp->addmask,
1952 parent->effective_xcpus);
1953
1954 cpumask_andnot(tmp->delmask, newmask, xcpus);
1955 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1956 parent->effective_xcpus);
1957 }
1958
1959 /*
1960 * TBD: Invalidate a currently valid child root partition may
1961 * still break isolated_cpus_can_update() rule if parent is an
1962 * isolated partition.
1963 */
1964 if (is_partition_valid(cs) && (old_prs != parent_prs)) {
1965 if ((parent_prs == PRS_ROOT) &&
1966 /* Adding to parent means removing isolated CPUs */
1967 !isolated_cpus_can_update(tmp->delmask, tmp->addmask))
1968 part_error = PERR_HKEEPING;
1969 if ((parent_prs == PRS_ISOLATED) &&
1970 /* Adding to parent means adding isolated CPUs */
1971 !isolated_cpus_can_update(tmp->addmask, tmp->delmask))
1972 part_error = PERR_HKEEPING;
1973 }
1974
1975 /*
1976 * The new CPUs to be removed from parent's effective CPUs
1977 * must be present.
1978 */
1979 if (deleting) {
1980 cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask);
1981 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1982 }
1983
1984 /*
1985 * Make partition invalid if parent's effective_cpus could
1986 * become empty and there are tasks in the parent.
1987 */
1988 if (nocpu && (!adding ||
1989 !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1990 part_error = PERR_NOCPUS;
1991 deleting = false;
1992 adding = cpumask_and(tmp->addmask,
1993 xcpus, parent->effective_xcpus);
1994 }
1995 } else {
1996 /*
1997 * partcmd_update w/o newmask
1998 *
1999 * delmask = effective_xcpus & parent->effective_cpus
2000 *
2001 * This can be called from:
2002 * 1) update_cpumasks_hier()
2003 * 2) cpuset_hotplug_update_tasks()
2004 *
2005 * Check to see if it can be transitioned from valid to
2006 * invalid partition or vice versa.
2007 *
2008 * A partition error happens when parent has tasks and all
2009 * its effective CPUs will have to be distributed out.
2010 */
2011 if (nocpu) {
2012 part_error = PERR_NOCPUS;
2013 if (is_partition_valid(cs))
2014 adding = cpumask_and(tmp->addmask,
2015 xcpus, parent->effective_xcpus);
2016 } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
2017 cpumask_subset(xcpus, parent->effective_xcpus)) {
2018 struct cgroup_subsys_state *css;
2019 struct cpuset *child;
2020 bool exclusive = true;
2021
2022 /*
2023 * Convert invalid partition to valid has to
2024 * pass the cpu exclusivity test.
2025 */
2026 rcu_read_lock();
2027 cpuset_for_each_child(child, css, parent) {
2028 if (child == cs)
2029 continue;
2030 if (!cpusets_are_exclusive(cs, child)) {
2031 exclusive = false;
2032 break;
2033 }
2034 }
2035 rcu_read_unlock();
2036 if (exclusive)
2037 deleting = cpumask_and(tmp->delmask,
2038 xcpus, parent->effective_cpus);
2039 else
2040 part_error = PERR_NOTEXCL;
2041 }
2042 }
2043
2044 write_error:
2045 if (part_error)
2046 WRITE_ONCE(cs->prs_err, part_error);
2047
2048 if (cmd == partcmd_update) {
2049 /*
2050 * Check for possible transition between valid and invalid
2051 * partition root.
2052 */
2053 switch (cs->partition_root_state) {
2054 case PRS_ROOT:
2055 case PRS_ISOLATED:
2056 if (part_error)
2057 new_prs = -old_prs;
2058 break;
2059 case PRS_INVALID_ROOT:
2060 case PRS_INVALID_ISOLATED:
2061 if (!part_error)
2062 new_prs = -old_prs;
2063 break;
2064 }
2065 }
2066
2067 if (!adding && !deleting && (new_prs == old_prs))
2068 return 0;
2069
2070 /*
2071 * Transitioning between invalid to valid or vice versa may require
2072 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
2073 * validate_change() has already been successfully called and
2074 * CPU lists in cs haven't been updated yet. So defer it to later.
2075 */
2076 if ((old_prs != new_prs) && (cmd != partcmd_update)) {
2077 int err = update_partition_exclusive_flag(cs, new_prs);
2078
2079 if (err)
2080 return err;
2081 }
2082
2083 /*
2084 * Change the parent's effective_cpus & effective_xcpus (top cpuset
2085 * only).
2086 *
2087 * Newly added CPUs will be removed from effective_cpus and
2088 * newly deleted ones will be added back to effective_cpus.
2089 */
2090 spin_lock_irq(&callback_lock);
2091 if (old_prs != new_prs)
2092 cs->partition_root_state = new_prs;
2093
2094 /*
2095 * Adding to parent's effective_cpus means deletion CPUs from cs
2096 * and vice versa.
2097 */
2098 if (adding)
2099 partition_xcpus_del(old_prs, parent, tmp->addmask);
2100 if (deleting)
2101 partition_xcpus_add(new_prs, parent, tmp->delmask);
2102
2103 spin_unlock_irq(&callback_lock);
2104 update_isolation_cpumasks();
2105
2106 if ((old_prs != new_prs) && (cmd == partcmd_update))
2107 update_partition_exclusive_flag(cs, new_prs);
2108
2109 if (adding || deleting) {
2110 cpuset_update_tasks_cpumask(parent, tmp->addmask);
2111 update_sibling_cpumasks(parent, cs, tmp);
2112 }
2113
2114 /*
2115 * For partcmd_update without newmask, it is being called from
2116 * cpuset_handle_hotplug(). Update the load balance flag and
2117 * scheduling domain accordingly.
2118 */
2119 if ((cmd == partcmd_update) && !newmask)
2120 update_partition_sd_lb(cs, old_prs);
2121
2122 notify_partition_change(cs, old_prs);
2123 return 0;
2124 }
2125
2126 /**
2127 * compute_partition_effective_cpumask - compute effective_cpus for partition
2128 * @cs: partition root cpuset
2129 * @new_ecpus: previously computed effective_cpus to be updated
2130 *
2131 * Compute the effective_cpus of a partition root by scanning effective_xcpus
2132 * of child partition roots and excluding their effective_xcpus.
2133 *
2134 * This has the side effect of invalidating valid child partition roots,
2135 * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2136 * or update_cpumasks_hier() where parent and children are modified
2137 * successively, we don't need to call update_parent_effective_cpumask()
2138 * and the child's effective_cpus will be updated in later iterations.
2139 *
2140 * Note that rcu_read_lock() is assumed to be held.
2141 */
compute_partition_effective_cpumask(struct cpuset * cs,struct cpumask * new_ecpus)2142 static void compute_partition_effective_cpumask(struct cpuset *cs,
2143 struct cpumask *new_ecpus)
2144 {
2145 struct cgroup_subsys_state *css;
2146 struct cpuset *child;
2147 bool populated = partition_is_populated(cs, NULL);
2148
2149 /*
2150 * Check child partition roots to see if they should be
2151 * invalidated when
2152 * 1) child effective_xcpus not a subset of new
2153 * excluisve_cpus
2154 * 2) All the effective_cpus will be used up and cp
2155 * has tasks
2156 */
2157 compute_excpus(cs, new_ecpus);
2158 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2159
2160 rcu_read_lock();
2161 cpuset_for_each_child(child, css, cs) {
2162 if (!is_partition_valid(child))
2163 continue;
2164
2165 /*
2166 * There shouldn't be a remote partition underneath another
2167 * partition root.
2168 */
2169 WARN_ON_ONCE(is_remote_partition(child));
2170 child->prs_err = 0;
2171 if (!cpumask_subset(child->effective_xcpus,
2172 cs->effective_xcpus))
2173 child->prs_err = PERR_INVCPUS;
2174 else if (populated &&
2175 cpumask_subset(new_ecpus, child->effective_xcpus))
2176 child->prs_err = PERR_NOCPUS;
2177
2178 if (child->prs_err) {
2179 int old_prs = child->partition_root_state;
2180
2181 /*
2182 * Invalidate child partition
2183 */
2184 spin_lock_irq(&callback_lock);
2185 make_partition_invalid(child);
2186 spin_unlock_irq(&callback_lock);
2187 notify_partition_change(child, old_prs);
2188 continue;
2189 }
2190 cpumask_andnot(new_ecpus, new_ecpus,
2191 child->effective_xcpus);
2192 }
2193 rcu_read_unlock();
2194 }
2195
2196 /*
2197 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2198 * @cs: the cpuset to consider
2199 * @tmp: temp variables for calculating effective_cpus & partition setup
2200 * @force: don't skip any descendant cpusets if set
2201 *
2202 * When configured cpumask is changed, the effective cpumasks of this cpuset
2203 * and all its descendants need to be updated.
2204 *
2205 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2206 *
2207 * Called with cpuset_mutex held
2208 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp,bool force)2209 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2210 bool force)
2211 {
2212 struct cpuset *cp;
2213 struct cgroup_subsys_state *pos_css;
2214 int old_prs, new_prs;
2215
2216 rcu_read_lock();
2217 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2218 struct cpuset *parent = parent_cs(cp);
2219 bool remote = is_remote_partition(cp);
2220 bool update_parent = false;
2221
2222 old_prs = new_prs = cp->partition_root_state;
2223
2224 /*
2225 * For child remote partition root (!= cs), we need to call
2226 * remote_cpus_update() if effective_xcpus will be changed.
2227 * Otherwise, we can skip the whole subtree.
2228 *
2229 * remote_cpus_update() will reuse tmp->new_cpus only after
2230 * its value is being processed.
2231 */
2232 if (remote && (cp != cs)) {
2233 compute_excpus(cp, tmp->new_cpus);
2234 if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) {
2235 pos_css = css_rightmost_descendant(pos_css);
2236 continue;
2237 }
2238 rcu_read_unlock();
2239 remote_cpus_update(cp, NULL, tmp->new_cpus, tmp);
2240 rcu_read_lock();
2241
2242 /* Remote partition may be invalidated */
2243 new_prs = cp->partition_root_state;
2244 remote = (new_prs == old_prs);
2245 }
2246
2247 if (remote || (is_partition_valid(parent) && is_partition_valid(cp)))
2248 compute_partition_effective_cpumask(cp, tmp->new_cpus);
2249 else
2250 compute_effective_cpumask(tmp->new_cpus, cp, parent);
2251
2252 if (remote)
2253 goto get_css; /* Ready to update cpuset data */
2254
2255 /*
2256 * A partition with no effective_cpus is allowed as long as
2257 * there is no task associated with it. Call
2258 * update_parent_effective_cpumask() to check it.
2259 */
2260 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2261 update_parent = true;
2262 goto update_parent_effective;
2263 }
2264
2265 /*
2266 * If it becomes empty, inherit the effective mask of the
2267 * parent, which is guaranteed to have some CPUs unless
2268 * it is a partition root that has explicitly distributed
2269 * out all its CPUs.
2270 */
2271 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2272 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2273
2274 /*
2275 * Skip the whole subtree if
2276 * 1) the cpumask remains the same,
2277 * 2) has no partition root state,
2278 * 3) force flag not set, and
2279 * 4) for v2 load balance state same as its parent.
2280 */
2281 if (!cp->partition_root_state && !force &&
2282 cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2283 (!cpuset_v2() ||
2284 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2285 pos_css = css_rightmost_descendant(pos_css);
2286 continue;
2287 }
2288
2289 update_parent_effective:
2290 /*
2291 * update_parent_effective_cpumask() should have been called
2292 * for cs already in update_cpumask(). We should also call
2293 * cpuset_update_tasks_cpumask() again for tasks in the parent
2294 * cpuset if the parent's effective_cpus changes.
2295 */
2296 if ((cp != cs) && old_prs) {
2297 switch (parent->partition_root_state) {
2298 case PRS_ROOT:
2299 case PRS_ISOLATED:
2300 update_parent = true;
2301 break;
2302
2303 default:
2304 /*
2305 * When parent is not a partition root or is
2306 * invalid, child partition roots become
2307 * invalid too.
2308 */
2309 if (is_partition_valid(cp))
2310 new_prs = -cp->partition_root_state;
2311 WRITE_ONCE(cp->prs_err,
2312 is_partition_invalid(parent)
2313 ? PERR_INVPARENT : PERR_NOTPART);
2314 break;
2315 }
2316 }
2317 get_css:
2318 if (!css_tryget_online(&cp->css))
2319 continue;
2320 rcu_read_unlock();
2321
2322 if (update_parent) {
2323 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2324 /*
2325 * The cpuset partition_root_state may become
2326 * invalid. Capture it.
2327 */
2328 new_prs = cp->partition_root_state;
2329 }
2330
2331 spin_lock_irq(&callback_lock);
2332 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2333 cp->partition_root_state = new_prs;
2334 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs))
2335 compute_excpus(cp, cp->effective_xcpus);
2336
2337 /*
2338 * Make sure effective_xcpus is properly set for a valid
2339 * partition root.
2340 */
2341 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2342 cpumask_and(cp->effective_xcpus,
2343 cp->cpus_allowed, parent->effective_xcpus);
2344 else if (new_prs < 0)
2345 reset_partition_data(cp);
2346 spin_unlock_irq(&callback_lock);
2347
2348 notify_partition_change(cp, old_prs);
2349
2350 WARN_ON(!is_in_v2_mode() &&
2351 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2352
2353 cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2354
2355 /*
2356 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2357 * from parent if current cpuset isn't a valid partition root
2358 * and their load balance states differ.
2359 */
2360 if (cpuset_v2() && !is_partition_valid(cp) &&
2361 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2362 if (is_sched_load_balance(parent))
2363 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2364 else
2365 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2366 }
2367
2368 /*
2369 * On legacy hierarchy, if the effective cpumask of any non-
2370 * empty cpuset is changed, we need to rebuild sched domains.
2371 * On default hierarchy, the cpuset needs to be a partition
2372 * root as well.
2373 */
2374 if (!cpumask_empty(cp->cpus_allowed) &&
2375 is_sched_load_balance(cp) &&
2376 (!cpuset_v2() || is_partition_valid(cp)))
2377 cpuset_force_rebuild();
2378
2379 rcu_read_lock();
2380 css_put(&cp->css);
2381 }
2382 rcu_read_unlock();
2383 }
2384
2385 /**
2386 * update_sibling_cpumasks - Update siblings cpumasks
2387 * @parent: Parent cpuset
2388 * @cs: Current cpuset
2389 * @tmp: Temp variables
2390 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)2391 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2392 struct tmpmasks *tmp)
2393 {
2394 struct cpuset *sibling;
2395 struct cgroup_subsys_state *pos_css;
2396
2397 lockdep_assert_held(&cpuset_mutex);
2398
2399 /*
2400 * Check all its siblings and call update_cpumasks_hier()
2401 * if their effective_cpus will need to be changed.
2402 *
2403 * It is possible a change in parent's effective_cpus
2404 * due to a change in a child partition's effective_xcpus will impact
2405 * its siblings even if they do not inherit parent's effective_cpus
2406 * directly.
2407 *
2408 * The update_cpumasks_hier() function may sleep. So we have to
2409 * release the RCU read lock before calling it.
2410 */
2411 rcu_read_lock();
2412 cpuset_for_each_child(sibling, pos_css, parent) {
2413 if (sibling == cs)
2414 continue;
2415 if (!is_partition_valid(sibling)) {
2416 compute_effective_cpumask(tmp->new_cpus, sibling,
2417 parent);
2418 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2419 continue;
2420 } else if (is_remote_partition(sibling)) {
2421 /*
2422 * Change in a sibling cpuset won't affect a remote
2423 * partition root.
2424 */
2425 continue;
2426 }
2427
2428 if (!css_tryget_online(&sibling->css))
2429 continue;
2430
2431 rcu_read_unlock();
2432 update_cpumasks_hier(sibling, tmp, false);
2433 rcu_read_lock();
2434 css_put(&sibling->css);
2435 }
2436 rcu_read_unlock();
2437 }
2438
parse_cpuset_cpulist(const char * buf,struct cpumask * out_mask)2439 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask)
2440 {
2441 int retval;
2442
2443 retval = cpulist_parse(buf, out_mask);
2444 if (retval < 0)
2445 return retval;
2446 if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed))
2447 return -EINVAL;
2448
2449 return 0;
2450 }
2451
2452 /**
2453 * validate_partition - Validate a cpuset partition configuration
2454 * @cs: The cpuset to validate
2455 * @trialcs: The trial cpuset containing proposed configuration changes
2456 *
2457 * If any validation check fails, the appropriate error code is set in the
2458 * cpuset's prs_err field.
2459 *
2460 * Return: PRS error code (0 if valid, non-zero error code if invalid)
2461 */
validate_partition(struct cpuset * cs,struct cpuset * trialcs)2462 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs)
2463 {
2464 struct cpuset *parent = parent_cs(cs);
2465
2466 if (cs_is_member(trialcs))
2467 return PERR_NONE;
2468
2469 if (cpumask_empty(trialcs->effective_xcpus))
2470 return PERR_INVCPUS;
2471
2472 if (prstate_housekeeping_conflict(trialcs->partition_root_state,
2473 trialcs->effective_xcpus))
2474 return PERR_HKEEPING;
2475
2476 if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus))
2477 return PERR_NOCPUS;
2478
2479 return PERR_NONE;
2480 }
2481
cpus_allowed_validate_change(struct cpuset * cs,struct cpuset * trialcs,struct tmpmasks * tmp)2482 static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs,
2483 struct tmpmasks *tmp)
2484 {
2485 int retval;
2486 struct cpuset *parent = parent_cs(cs);
2487
2488 retval = validate_change(cs, trialcs);
2489
2490 if ((retval == -EINVAL) && cpuset_v2()) {
2491 struct cgroup_subsys_state *css;
2492 struct cpuset *cp;
2493
2494 /*
2495 * The -EINVAL error code indicates that partition sibling
2496 * CPU exclusivity rule has been violated. We still allow
2497 * the cpumask change to proceed while invalidating the
2498 * partition. However, any conflicting sibling partitions
2499 * have to be marked as invalid too.
2500 */
2501 trialcs->prs_err = PERR_NOTEXCL;
2502 rcu_read_lock();
2503 cpuset_for_each_child(cp, css, parent) {
2504 struct cpumask *xcpus = user_xcpus(trialcs);
2505
2506 if (is_partition_valid(cp) &&
2507 cpumask_intersects(xcpus, cp->effective_xcpus)) {
2508 rcu_read_unlock();
2509 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp);
2510 rcu_read_lock();
2511 }
2512 }
2513 rcu_read_unlock();
2514 retval = 0;
2515 }
2516 return retval;
2517 }
2518
2519 /**
2520 * partition_cpus_change - Handle partition state changes due to CPU mask updates
2521 * @cs: The target cpuset being modified
2522 * @trialcs: The trial cpuset containing proposed configuration changes
2523 * @tmp: Temporary masks for intermediate calculations
2524 *
2525 * This function handles partition state transitions triggered by CPU mask changes.
2526 * CPU modifications may cause a partition to be disabled or require state updates.
2527 */
partition_cpus_change(struct cpuset * cs,struct cpuset * trialcs,struct tmpmasks * tmp)2528 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs,
2529 struct tmpmasks *tmp)
2530 {
2531 enum prs_errcode prs_err;
2532
2533 if (cs_is_member(cs))
2534 return;
2535
2536 prs_err = validate_partition(cs, trialcs);
2537 if (prs_err)
2538 trialcs->prs_err = cs->prs_err = prs_err;
2539
2540 if (is_remote_partition(cs)) {
2541 if (trialcs->prs_err)
2542 remote_partition_disable(cs, tmp);
2543 else
2544 remote_cpus_update(cs, trialcs->exclusive_cpus,
2545 trialcs->effective_xcpus, tmp);
2546 } else {
2547 if (trialcs->prs_err)
2548 update_parent_effective_cpumask(cs, partcmd_invalidate,
2549 NULL, tmp);
2550 else
2551 update_parent_effective_cpumask(cs, partcmd_update,
2552 trialcs->effective_xcpus, tmp);
2553 }
2554 }
2555
2556 /**
2557 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2558 * @cs: the cpuset to consider
2559 * @trialcs: trial cpuset
2560 * @buf: buffer of cpu numbers written to this cpuset
2561 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2562 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2563 const char *buf)
2564 {
2565 int retval;
2566 struct tmpmasks tmp;
2567 bool force = false;
2568 int old_prs = cs->partition_root_state;
2569
2570 retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed);
2571 if (retval < 0)
2572 return retval;
2573
2574 /* Nothing to do if the cpus didn't change */
2575 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2576 return 0;
2577
2578 if (alloc_tmpmasks(&tmp))
2579 return -ENOMEM;
2580
2581 compute_trialcs_excpus(trialcs, cs);
2582 trialcs->prs_err = PERR_NONE;
2583
2584 retval = cpus_allowed_validate_change(cs, trialcs, &tmp);
2585 if (retval < 0)
2586 goto out_free;
2587
2588 /*
2589 * Check all the descendants in update_cpumasks_hier() if
2590 * effective_xcpus is to be changed.
2591 */
2592 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2593
2594 partition_cpus_change(cs, trialcs, &tmp);
2595
2596 spin_lock_irq(&callback_lock);
2597 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2598 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2599 if ((old_prs > 0) && !is_partition_valid(cs))
2600 reset_partition_data(cs);
2601 spin_unlock_irq(&callback_lock);
2602
2603 /* effective_cpus/effective_xcpus will be updated here */
2604 update_cpumasks_hier(cs, &tmp, force);
2605
2606 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2607 if (cs->partition_root_state)
2608 update_partition_sd_lb(cs, old_prs);
2609 out_free:
2610 free_tmpmasks(&tmp);
2611 return retval;
2612 }
2613
2614 /**
2615 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2616 * @cs: the cpuset to consider
2617 * @trialcs: trial cpuset
2618 * @buf: buffer of cpu numbers written to this cpuset
2619 *
2620 * The tasks' cpumask will be updated if cs is a valid partition root.
2621 */
update_exclusive_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2622 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2623 const char *buf)
2624 {
2625 int retval;
2626 struct tmpmasks tmp;
2627 bool force = false;
2628 int old_prs = cs->partition_root_state;
2629
2630 retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus);
2631 if (retval < 0)
2632 return retval;
2633
2634 /* Nothing to do if the CPUs didn't change */
2635 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2636 return 0;
2637
2638 /*
2639 * Reject the change if there is exclusive CPUs conflict with
2640 * the siblings.
2641 */
2642 if (compute_trialcs_excpus(trialcs, cs))
2643 return -EINVAL;
2644
2645 /*
2646 * Check all the descendants in update_cpumasks_hier() if
2647 * effective_xcpus is to be changed.
2648 */
2649 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2650
2651 retval = validate_change(cs, trialcs);
2652 if (retval)
2653 return retval;
2654
2655 if (alloc_tmpmasks(&tmp))
2656 return -ENOMEM;
2657
2658 trialcs->prs_err = PERR_NONE;
2659 partition_cpus_change(cs, trialcs, &tmp);
2660
2661 spin_lock_irq(&callback_lock);
2662 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2663 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2664 if ((old_prs > 0) && !is_partition_valid(cs))
2665 reset_partition_data(cs);
2666 spin_unlock_irq(&callback_lock);
2667
2668 /*
2669 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2670 * of the subtree when it is a valid partition root or effective_xcpus
2671 * is updated.
2672 */
2673 if (is_partition_valid(cs) || force)
2674 update_cpumasks_hier(cs, &tmp, force);
2675
2676 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2677 if (cs->partition_root_state)
2678 update_partition_sd_lb(cs, old_prs);
2679
2680 free_tmpmasks(&tmp);
2681 return 0;
2682 }
2683
2684 /*
2685 * Migrate memory region from one set of nodes to another. This is
2686 * performed asynchronously as it can be called from process migration path
2687 * holding locks involved in process management. All mm migrations are
2688 * performed in the queued order and can be waited for by flushing
2689 * cpuset_migrate_mm_wq.
2690 */
2691
2692 struct cpuset_migrate_mm_work {
2693 struct work_struct work;
2694 struct mm_struct *mm;
2695 nodemask_t from;
2696 nodemask_t to;
2697 };
2698
cpuset_migrate_mm_workfn(struct work_struct * work)2699 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2700 {
2701 struct cpuset_migrate_mm_work *mwork =
2702 container_of(work, struct cpuset_migrate_mm_work, work);
2703
2704 /* on a wq worker, no need to worry about %current's mems_allowed */
2705 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2706 mmput(mwork->mm);
2707 kfree(mwork);
2708 }
2709
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)2710 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2711 const nodemask_t *to)
2712 {
2713 struct cpuset_migrate_mm_work *mwork;
2714
2715 if (nodes_equal(*from, *to)) {
2716 mmput(mm);
2717 return;
2718 }
2719
2720 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2721 if (mwork) {
2722 mwork->mm = mm;
2723 mwork->from = *from;
2724 mwork->to = *to;
2725 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2726 queue_work(cpuset_migrate_mm_wq, &mwork->work);
2727 } else {
2728 mmput(mm);
2729 }
2730 }
2731
flush_migrate_mm_task_workfn(struct callback_head * head)2732 static void flush_migrate_mm_task_workfn(struct callback_head *head)
2733 {
2734 flush_workqueue(cpuset_migrate_mm_wq);
2735 kfree(head);
2736 }
2737
schedule_flush_migrate_mm(void)2738 static void schedule_flush_migrate_mm(void)
2739 {
2740 struct callback_head *flush_cb;
2741
2742 flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL);
2743 if (!flush_cb)
2744 return;
2745
2746 init_task_work(flush_cb, flush_migrate_mm_task_workfn);
2747
2748 if (task_work_add(current, flush_cb, TWA_RESUME))
2749 kfree(flush_cb);
2750 }
2751
2752 /*
2753 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2754 * @tsk: the task to change
2755 * @newmems: new nodes that the task will be set
2756 *
2757 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2758 * and rebind an eventual tasks' mempolicy. If the task is allocating in
2759 * parallel, it might temporarily see an empty intersection, which results in
2760 * a seqlock check and retry before OOM or allocation failure.
2761 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)2762 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2763 nodemask_t *newmems)
2764 {
2765 task_lock(tsk);
2766
2767 local_irq_disable();
2768 write_seqcount_begin(&tsk->mems_allowed_seq);
2769
2770 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2771 mpol_rebind_task(tsk, newmems);
2772 tsk->mems_allowed = *newmems;
2773
2774 write_seqcount_end(&tsk->mems_allowed_seq);
2775 local_irq_enable();
2776
2777 task_unlock(tsk);
2778 }
2779
2780 static void *cpuset_being_rebound;
2781
2782 /**
2783 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2784 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2785 *
2786 * Iterate through each task of @cs updating its mems_allowed to the
2787 * effective cpuset's. As this function is called with cpuset_mutex held,
2788 * cpuset membership stays stable.
2789 */
cpuset_update_tasks_nodemask(struct cpuset * cs)2790 void cpuset_update_tasks_nodemask(struct cpuset *cs)
2791 {
2792 static nodemask_t newmems; /* protected by cpuset_mutex */
2793 struct css_task_iter it;
2794 struct task_struct *task;
2795
2796 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
2797
2798 guarantee_online_mems(cs, &newmems);
2799
2800 /*
2801 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2802 * take while holding tasklist_lock. Forks can happen - the
2803 * mpol_dup() cpuset_being_rebound check will catch such forks,
2804 * and rebind their vma mempolicies too. Because we still hold
2805 * the global cpuset_mutex, we know that no other rebind effort
2806 * will be contending for the global variable cpuset_being_rebound.
2807 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2808 * is idempotent. Also migrate pages in each mm to new nodes.
2809 */
2810 css_task_iter_start(&cs->css, 0, &it);
2811 while ((task = css_task_iter_next(&it))) {
2812 struct mm_struct *mm;
2813 bool migrate;
2814
2815 cpuset_change_task_nodemask(task, &newmems);
2816
2817 mm = get_task_mm(task);
2818 if (!mm)
2819 continue;
2820
2821 migrate = is_memory_migrate(cs);
2822
2823 mpol_rebind_mm(mm, &cs->mems_allowed);
2824 if (migrate)
2825 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2826 else
2827 mmput(mm);
2828 }
2829 css_task_iter_end(&it);
2830
2831 /*
2832 * All the tasks' nodemasks have been updated, update
2833 * cs->old_mems_allowed.
2834 */
2835 cs->old_mems_allowed = newmems;
2836
2837 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
2838 cpuset_being_rebound = NULL;
2839 }
2840
2841 /*
2842 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2843 * @cs: the cpuset to consider
2844 * @new_mems: a temp variable for calculating new effective_mems
2845 *
2846 * When configured nodemask is changed, the effective nodemasks of this cpuset
2847 * and all its descendants need to be updated.
2848 *
2849 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2850 *
2851 * Called with cpuset_mutex held
2852 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)2853 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2854 {
2855 struct cpuset *cp;
2856 struct cgroup_subsys_state *pos_css;
2857
2858 rcu_read_lock();
2859 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2860 struct cpuset *parent = parent_cs(cp);
2861
2862 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2863
2864 /*
2865 * If it becomes empty, inherit the effective mask of the
2866 * parent, which is guaranteed to have some MEMs.
2867 */
2868 if (is_in_v2_mode() && nodes_empty(*new_mems))
2869 *new_mems = parent->effective_mems;
2870
2871 /* Skip the whole subtree if the nodemask remains the same. */
2872 if (nodes_equal(*new_mems, cp->effective_mems)) {
2873 pos_css = css_rightmost_descendant(pos_css);
2874 continue;
2875 }
2876
2877 if (!css_tryget_online(&cp->css))
2878 continue;
2879 rcu_read_unlock();
2880
2881 spin_lock_irq(&callback_lock);
2882 cp->effective_mems = *new_mems;
2883 spin_unlock_irq(&callback_lock);
2884
2885 WARN_ON(!is_in_v2_mode() &&
2886 !nodes_equal(cp->mems_allowed, cp->effective_mems));
2887
2888 cpuset_update_tasks_nodemask(cp);
2889
2890 rcu_read_lock();
2891 css_put(&cp->css);
2892 }
2893 rcu_read_unlock();
2894 }
2895
2896 /*
2897 * Handle user request to change the 'mems' memory placement
2898 * of a cpuset. Needs to validate the request, update the
2899 * cpusets mems_allowed, and for each task in the cpuset,
2900 * update mems_allowed and rebind task's mempolicy and any vma
2901 * mempolicies and if the cpuset is marked 'memory_migrate',
2902 * migrate the tasks pages to the new memory.
2903 *
2904 * Call with cpuset_mutex held. May take callback_lock during call.
2905 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2906 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2907 * their mempolicies to the cpusets new mems_allowed.
2908 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2909 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2910 const char *buf)
2911 {
2912 int retval;
2913
2914 /*
2915 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2916 * The validate_change() call ensures that cpusets with tasks have memory.
2917 */
2918 retval = nodelist_parse(buf, trialcs->mems_allowed);
2919 if (retval < 0)
2920 return retval;
2921
2922 if (!nodes_subset(trialcs->mems_allowed,
2923 top_cpuset.mems_allowed))
2924 return -EINVAL;
2925
2926 /* No change? nothing to do */
2927 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed))
2928 return 0;
2929
2930 retval = validate_change(cs, trialcs);
2931 if (retval < 0)
2932 return retval;
2933
2934 check_insane_mems_config(&trialcs->mems_allowed);
2935
2936 spin_lock_irq(&callback_lock);
2937 cs->mems_allowed = trialcs->mems_allowed;
2938 spin_unlock_irq(&callback_lock);
2939
2940 /* use trialcs->mems_allowed as a temp variable */
2941 update_nodemasks_hier(cs, &trialcs->mems_allowed);
2942 return 0;
2943 }
2944
current_cpuset_is_being_rebound(void)2945 bool current_cpuset_is_being_rebound(void)
2946 {
2947 bool ret;
2948
2949 rcu_read_lock();
2950 ret = task_cs(current) == cpuset_being_rebound;
2951 rcu_read_unlock();
2952
2953 return ret;
2954 }
2955
2956 /*
2957 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2958 * bit: the bit to update (see cpuset_flagbits_t)
2959 * cs: the cpuset to update
2960 * turning_on: whether the flag is being set or cleared
2961 *
2962 * Call with cpuset_mutex held.
2963 */
2964
cpuset_update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)2965 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2966 int turning_on)
2967 {
2968 struct cpuset *trialcs;
2969 int balance_flag_changed;
2970 int spread_flag_changed;
2971 int err;
2972
2973 trialcs = dup_or_alloc_cpuset(cs);
2974 if (!trialcs)
2975 return -ENOMEM;
2976
2977 if (turning_on)
2978 set_bit(bit, &trialcs->flags);
2979 else
2980 clear_bit(bit, &trialcs->flags);
2981
2982 err = validate_change(cs, trialcs);
2983 if (err < 0)
2984 goto out;
2985
2986 balance_flag_changed = (is_sched_load_balance(cs) !=
2987 is_sched_load_balance(trialcs));
2988
2989 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2990 || (is_spread_page(cs) != is_spread_page(trialcs)));
2991
2992 spin_lock_irq(&callback_lock);
2993 cs->flags = trialcs->flags;
2994 spin_unlock_irq(&callback_lock);
2995
2996 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
2997 if (cpuset_v2())
2998 cpuset_force_rebuild();
2999 else
3000 rebuild_sched_domains_locked();
3001 }
3002
3003 if (spread_flag_changed)
3004 cpuset1_update_tasks_flags(cs);
3005 out:
3006 free_cpuset(trialcs);
3007 return err;
3008 }
3009
3010 /**
3011 * update_prstate - update partition_root_state
3012 * @cs: the cpuset to update
3013 * @new_prs: new partition root state
3014 * Return: 0 if successful, != 0 if error
3015 *
3016 * Call with cpuset_mutex held.
3017 */
update_prstate(struct cpuset * cs,int new_prs)3018 static int update_prstate(struct cpuset *cs, int new_prs)
3019 {
3020 int err = PERR_NONE, old_prs = cs->partition_root_state;
3021 struct cpuset *parent = parent_cs(cs);
3022 struct tmpmasks tmpmask;
3023 bool isolcpus_updated = false;
3024
3025 if (old_prs == new_prs)
3026 return 0;
3027
3028 /*
3029 * Treat a previously invalid partition root as if it is a "member".
3030 */
3031 if (new_prs && is_partition_invalid(cs))
3032 old_prs = PRS_MEMBER;
3033
3034 if (alloc_tmpmasks(&tmpmask))
3035 return -ENOMEM;
3036
3037 err = update_partition_exclusive_flag(cs, new_prs);
3038 if (err)
3039 goto out;
3040
3041 if (!old_prs) {
3042 /*
3043 * cpus_allowed and exclusive_cpus cannot be both empty.
3044 */
3045 if (xcpus_empty(cs)) {
3046 err = PERR_CPUSEMPTY;
3047 goto out;
3048 }
3049
3050 /*
3051 * We don't support the creation of a new local partition with
3052 * a remote partition underneath it. This unsupported
3053 * setting can happen only if parent is the top_cpuset because
3054 * a remote partition cannot be created underneath an existing
3055 * local or remote partition.
3056 */
3057 if ((parent == &top_cpuset) &&
3058 cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
3059 err = PERR_REMOTE;
3060 goto out;
3061 }
3062
3063 /*
3064 * If parent is valid partition, enable local partiion.
3065 * Otherwise, enable a remote partition.
3066 */
3067 if (is_partition_valid(parent)) {
3068 enum partition_cmd cmd = (new_prs == PRS_ROOT)
3069 ? partcmd_enable : partcmd_enablei;
3070
3071 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3072 } else {
3073 err = remote_partition_enable(cs, new_prs, &tmpmask);
3074 }
3075 } else if (old_prs && new_prs) {
3076 /*
3077 * A change in load balance state only, no change in cpumasks.
3078 * Need to update isolated_cpus.
3079 */
3080 if (((new_prs == PRS_ISOLATED) &&
3081 !isolated_cpus_can_update(cs->effective_xcpus, NULL)) ||
3082 prstate_housekeeping_conflict(new_prs, cs->effective_xcpus))
3083 err = PERR_HKEEPING;
3084 else
3085 isolcpus_updated = true;
3086 } else {
3087 /*
3088 * Switching back to member is always allowed even if it
3089 * disables child partitions.
3090 */
3091 if (is_remote_partition(cs))
3092 remote_partition_disable(cs, &tmpmask);
3093 else
3094 update_parent_effective_cpumask(cs, partcmd_disable,
3095 NULL, &tmpmask);
3096
3097 /*
3098 * Invalidation of child partitions will be done in
3099 * update_cpumasks_hier().
3100 */
3101 }
3102 out:
3103 /*
3104 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3105 * happens.
3106 */
3107 if (err) {
3108 new_prs = -new_prs;
3109 update_partition_exclusive_flag(cs, new_prs);
3110 }
3111
3112 spin_lock_irq(&callback_lock);
3113 cs->partition_root_state = new_prs;
3114 WRITE_ONCE(cs->prs_err, err);
3115 if (!is_partition_valid(cs))
3116 reset_partition_data(cs);
3117 else if (isolcpus_updated)
3118 isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus);
3119 spin_unlock_irq(&callback_lock);
3120 update_isolation_cpumasks();
3121
3122 /* Force update if switching back to member & update effective_xcpus */
3123 update_cpumasks_hier(cs, &tmpmask, !new_prs);
3124
3125 /* A newly created partition must have effective_xcpus set */
3126 WARN_ON_ONCE(!old_prs && (new_prs > 0)
3127 && cpumask_empty(cs->effective_xcpus));
3128
3129 /* Update sched domains and load balance flag */
3130 update_partition_sd_lb(cs, old_prs);
3131
3132 notify_partition_change(cs, old_prs);
3133 if (force_sd_rebuild)
3134 rebuild_sched_domains_locked();
3135 free_tmpmasks(&tmpmask);
3136 return 0;
3137 }
3138
3139 static struct cpuset *cpuset_attach_old_cs;
3140
3141 /*
3142 * Check to see if a cpuset can accept a new task
3143 * For v1, cpus_allowed and mems_allowed can't be empty.
3144 * For v2, effective_cpus can't be empty.
3145 * Note that in v1, effective_cpus = cpus_allowed.
3146 */
cpuset_can_attach_check(struct cpuset * cs)3147 static int cpuset_can_attach_check(struct cpuset *cs)
3148 {
3149 if (cpumask_empty(cs->effective_cpus) ||
3150 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3151 return -ENOSPC;
3152 return 0;
3153 }
3154
reset_migrate_dl_data(struct cpuset * cs)3155 static void reset_migrate_dl_data(struct cpuset *cs)
3156 {
3157 cs->nr_migrate_dl_tasks = 0;
3158 cs->sum_migrate_dl_bw = 0;
3159 }
3160
3161 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)3162 static int cpuset_can_attach(struct cgroup_taskset *tset)
3163 {
3164 struct cgroup_subsys_state *css;
3165 struct cpuset *cs, *oldcs;
3166 struct task_struct *task;
3167 bool cpus_updated, mems_updated;
3168 int ret;
3169
3170 /* used later by cpuset_attach() */
3171 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3172 oldcs = cpuset_attach_old_cs;
3173 cs = css_cs(css);
3174
3175 mutex_lock(&cpuset_mutex);
3176
3177 /* Check to see if task is allowed in the cpuset */
3178 ret = cpuset_can_attach_check(cs);
3179 if (ret)
3180 goto out_unlock;
3181
3182 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3183 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3184
3185 cgroup_taskset_for_each(task, css, tset) {
3186 ret = task_can_attach(task);
3187 if (ret)
3188 goto out_unlock;
3189
3190 /*
3191 * Skip rights over task check in v2 when nothing changes,
3192 * migration permission derives from hierarchy ownership in
3193 * cgroup_procs_write_permission()).
3194 */
3195 if (!cpuset_v2() || (cpus_updated || mems_updated)) {
3196 ret = security_task_setscheduler(task);
3197 if (ret)
3198 goto out_unlock;
3199 }
3200
3201 if (dl_task(task)) {
3202 cs->nr_migrate_dl_tasks++;
3203 cs->sum_migrate_dl_bw += task->dl.dl_bw;
3204 }
3205 }
3206
3207 if (!cs->nr_migrate_dl_tasks)
3208 goto out_success;
3209
3210 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3211 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3212
3213 if (unlikely(cpu >= nr_cpu_ids)) {
3214 reset_migrate_dl_data(cs);
3215 ret = -EINVAL;
3216 goto out_unlock;
3217 }
3218
3219 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3220 if (ret) {
3221 reset_migrate_dl_data(cs);
3222 goto out_unlock;
3223 }
3224 }
3225
3226 out_success:
3227 /*
3228 * Mark attach is in progress. This makes validate_change() fail
3229 * changes which zero cpus/mems_allowed.
3230 */
3231 cs->attach_in_progress++;
3232 out_unlock:
3233 mutex_unlock(&cpuset_mutex);
3234 return ret;
3235 }
3236
cpuset_cancel_attach(struct cgroup_taskset * tset)3237 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3238 {
3239 struct cgroup_subsys_state *css;
3240 struct cpuset *cs;
3241
3242 cgroup_taskset_first(tset, &css);
3243 cs = css_cs(css);
3244
3245 mutex_lock(&cpuset_mutex);
3246 dec_attach_in_progress_locked(cs);
3247
3248 if (cs->nr_migrate_dl_tasks) {
3249 int cpu = cpumask_any(cs->effective_cpus);
3250
3251 dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3252 reset_migrate_dl_data(cs);
3253 }
3254
3255 mutex_unlock(&cpuset_mutex);
3256 }
3257
3258 /*
3259 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3260 * but we can't allocate it dynamically there. Define it global and
3261 * allocate from cpuset_init().
3262 */
3263 static cpumask_var_t cpus_attach;
3264 static nodemask_t cpuset_attach_nodemask_to;
3265
cpuset_attach_task(struct cpuset * cs,struct task_struct * task)3266 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3267 {
3268 lockdep_assert_held(&cpuset_mutex);
3269
3270 if (cs != &top_cpuset)
3271 guarantee_active_cpus(task, cpus_attach);
3272 else
3273 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3274 subpartitions_cpus);
3275 /*
3276 * can_attach beforehand should guarantee that this doesn't
3277 * fail. TODO: have a better way to handle failure here
3278 */
3279 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3280
3281 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3282 cpuset1_update_task_spread_flags(cs, task);
3283 }
3284
cpuset_attach(struct cgroup_taskset * tset)3285 static void cpuset_attach(struct cgroup_taskset *tset)
3286 {
3287 struct task_struct *task;
3288 struct task_struct *leader;
3289 struct cgroup_subsys_state *css;
3290 struct cpuset *cs;
3291 struct cpuset *oldcs = cpuset_attach_old_cs;
3292 bool cpus_updated, mems_updated;
3293 bool queue_task_work = false;
3294
3295 cgroup_taskset_first(tset, &css);
3296 cs = css_cs(css);
3297
3298 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
3299 mutex_lock(&cpuset_mutex);
3300 cpus_updated = !cpumask_equal(cs->effective_cpus,
3301 oldcs->effective_cpus);
3302 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3303
3304 /*
3305 * In the default hierarchy, enabling cpuset in the child cgroups
3306 * will trigger a number of cpuset_attach() calls with no change
3307 * in effective cpus and mems. In that case, we can optimize out
3308 * by skipping the task iteration and update.
3309 */
3310 if (cpuset_v2() && !cpus_updated && !mems_updated) {
3311 cpuset_attach_nodemask_to = cs->effective_mems;
3312 goto out;
3313 }
3314
3315 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3316
3317 cgroup_taskset_for_each(task, css, tset)
3318 cpuset_attach_task(cs, task);
3319
3320 /*
3321 * Change mm for all threadgroup leaders. This is expensive and may
3322 * sleep and should be moved outside migration path proper. Skip it
3323 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3324 * not set.
3325 */
3326 cpuset_attach_nodemask_to = cs->effective_mems;
3327 if (!is_memory_migrate(cs) && !mems_updated)
3328 goto out;
3329
3330 cgroup_taskset_for_each_leader(leader, css, tset) {
3331 struct mm_struct *mm = get_task_mm(leader);
3332
3333 if (mm) {
3334 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3335
3336 /*
3337 * old_mems_allowed is the same with mems_allowed
3338 * here, except if this task is being moved
3339 * automatically due to hotplug. In that case
3340 * @mems_allowed has been updated and is empty, so
3341 * @old_mems_allowed is the right nodesets that we
3342 * migrate mm from.
3343 */
3344 if (is_memory_migrate(cs)) {
3345 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3346 &cpuset_attach_nodemask_to);
3347 queue_task_work = true;
3348 } else
3349 mmput(mm);
3350 }
3351 }
3352
3353 out:
3354 if (queue_task_work)
3355 schedule_flush_migrate_mm();
3356 cs->old_mems_allowed = cpuset_attach_nodemask_to;
3357
3358 if (cs->nr_migrate_dl_tasks) {
3359 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3360 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3361 reset_migrate_dl_data(cs);
3362 }
3363
3364 dec_attach_in_progress_locked(cs);
3365
3366 mutex_unlock(&cpuset_mutex);
3367 }
3368
3369 /*
3370 * Common handling for a write to a "cpus" or "mems" file.
3371 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3372 ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3373 char *buf, size_t nbytes, loff_t off)
3374 {
3375 struct cpuset *cs = css_cs(of_css(of));
3376 struct cpuset *trialcs;
3377 int retval = -ENODEV;
3378
3379 /* root is read-only */
3380 if (cs == &top_cpuset)
3381 return -EACCES;
3382
3383 buf = strstrip(buf);
3384 cpuset_full_lock();
3385 if (!is_cpuset_online(cs))
3386 goto out_unlock;
3387
3388 trialcs = dup_or_alloc_cpuset(cs);
3389 if (!trialcs) {
3390 retval = -ENOMEM;
3391 goto out_unlock;
3392 }
3393
3394 switch (of_cft(of)->private) {
3395 case FILE_CPULIST:
3396 retval = update_cpumask(cs, trialcs, buf);
3397 break;
3398 case FILE_EXCLUSIVE_CPULIST:
3399 retval = update_exclusive_cpumask(cs, trialcs, buf);
3400 break;
3401 case FILE_MEMLIST:
3402 retval = update_nodemask(cs, trialcs, buf);
3403 break;
3404 default:
3405 retval = -EINVAL;
3406 break;
3407 }
3408
3409 free_cpuset(trialcs);
3410 if (force_sd_rebuild)
3411 rebuild_sched_domains_locked();
3412 out_unlock:
3413 cpuset_full_unlock();
3414 if (of_cft(of)->private == FILE_MEMLIST)
3415 schedule_flush_migrate_mm();
3416 return retval ?: nbytes;
3417 }
3418
3419 /*
3420 * These ascii lists should be read in a single call, by using a user
3421 * buffer large enough to hold the entire map. If read in smaller
3422 * chunks, there is no guarantee of atomicity. Since the display format
3423 * used, list of ranges of sequential numbers, is variable length,
3424 * and since these maps can change value dynamically, one could read
3425 * gibberish by doing partial reads while a list was changing.
3426 */
cpuset_common_seq_show(struct seq_file * sf,void * v)3427 int cpuset_common_seq_show(struct seq_file *sf, void *v)
3428 {
3429 struct cpuset *cs = css_cs(seq_css(sf));
3430 cpuset_filetype_t type = seq_cft(sf)->private;
3431 int ret = 0;
3432
3433 spin_lock_irq(&callback_lock);
3434
3435 switch (type) {
3436 case FILE_CPULIST:
3437 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3438 break;
3439 case FILE_MEMLIST:
3440 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3441 break;
3442 case FILE_EFFECTIVE_CPULIST:
3443 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3444 break;
3445 case FILE_EFFECTIVE_MEMLIST:
3446 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3447 break;
3448 case FILE_EXCLUSIVE_CPULIST:
3449 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3450 break;
3451 case FILE_EFFECTIVE_XCPULIST:
3452 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3453 break;
3454 case FILE_SUBPARTS_CPULIST:
3455 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3456 break;
3457 case FILE_ISOLATED_CPULIST:
3458 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3459 break;
3460 default:
3461 ret = -EINVAL;
3462 }
3463
3464 spin_unlock_irq(&callback_lock);
3465 return ret;
3466 }
3467
cpuset_partition_show(struct seq_file * seq,void * v)3468 static int cpuset_partition_show(struct seq_file *seq, void *v)
3469 {
3470 struct cpuset *cs = css_cs(seq_css(seq));
3471 const char *err, *type = NULL;
3472
3473 switch (cs->partition_root_state) {
3474 case PRS_ROOT:
3475 seq_puts(seq, "root\n");
3476 break;
3477 case PRS_ISOLATED:
3478 seq_puts(seq, "isolated\n");
3479 break;
3480 case PRS_MEMBER:
3481 seq_puts(seq, "member\n");
3482 break;
3483 case PRS_INVALID_ROOT:
3484 type = "root";
3485 fallthrough;
3486 case PRS_INVALID_ISOLATED:
3487 if (!type)
3488 type = "isolated";
3489 err = perr_strings[READ_ONCE(cs->prs_err)];
3490 if (err)
3491 seq_printf(seq, "%s invalid (%s)\n", type, err);
3492 else
3493 seq_printf(seq, "%s invalid\n", type);
3494 break;
3495 }
3496 return 0;
3497 }
3498
cpuset_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3499 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
3500 size_t nbytes, loff_t off)
3501 {
3502 struct cpuset *cs = css_cs(of_css(of));
3503 int val;
3504 int retval = -ENODEV;
3505
3506 buf = strstrip(buf);
3507
3508 if (!strcmp(buf, "root"))
3509 val = PRS_ROOT;
3510 else if (!strcmp(buf, "member"))
3511 val = PRS_MEMBER;
3512 else if (!strcmp(buf, "isolated"))
3513 val = PRS_ISOLATED;
3514 else
3515 return -EINVAL;
3516
3517 cpuset_full_lock();
3518 if (is_cpuset_online(cs))
3519 retval = update_prstate(cs, val);
3520 cpuset_full_unlock();
3521 return retval ?: nbytes;
3522 }
3523
3524 /*
3525 * This is currently a minimal set for the default hierarchy. It can be
3526 * expanded later on by migrating more features and control files from v1.
3527 */
3528 static struct cftype dfl_files[] = {
3529 {
3530 .name = "cpus",
3531 .seq_show = cpuset_common_seq_show,
3532 .write = cpuset_write_resmask,
3533 .max_write_len = (100U + 6 * NR_CPUS),
3534 .private = FILE_CPULIST,
3535 .flags = CFTYPE_NOT_ON_ROOT,
3536 },
3537
3538 {
3539 .name = "mems",
3540 .seq_show = cpuset_common_seq_show,
3541 .write = cpuset_write_resmask,
3542 .max_write_len = (100U + 6 * MAX_NUMNODES),
3543 .private = FILE_MEMLIST,
3544 .flags = CFTYPE_NOT_ON_ROOT,
3545 },
3546
3547 {
3548 .name = "cpus.effective",
3549 .seq_show = cpuset_common_seq_show,
3550 .private = FILE_EFFECTIVE_CPULIST,
3551 },
3552
3553 {
3554 .name = "mems.effective",
3555 .seq_show = cpuset_common_seq_show,
3556 .private = FILE_EFFECTIVE_MEMLIST,
3557 },
3558
3559 {
3560 .name = "cpus.partition",
3561 .seq_show = cpuset_partition_show,
3562 .write = cpuset_partition_write,
3563 .private = FILE_PARTITION_ROOT,
3564 .flags = CFTYPE_NOT_ON_ROOT,
3565 .file_offset = offsetof(struct cpuset, partition_file),
3566 },
3567
3568 {
3569 .name = "cpus.exclusive",
3570 .seq_show = cpuset_common_seq_show,
3571 .write = cpuset_write_resmask,
3572 .max_write_len = (100U + 6 * NR_CPUS),
3573 .private = FILE_EXCLUSIVE_CPULIST,
3574 .flags = CFTYPE_NOT_ON_ROOT,
3575 },
3576
3577 {
3578 .name = "cpus.exclusive.effective",
3579 .seq_show = cpuset_common_seq_show,
3580 .private = FILE_EFFECTIVE_XCPULIST,
3581 .flags = CFTYPE_NOT_ON_ROOT,
3582 },
3583
3584 {
3585 .name = "cpus.subpartitions",
3586 .seq_show = cpuset_common_seq_show,
3587 .private = FILE_SUBPARTS_CPULIST,
3588 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3589 },
3590
3591 {
3592 .name = "cpus.isolated",
3593 .seq_show = cpuset_common_seq_show,
3594 .private = FILE_ISOLATED_CPULIST,
3595 .flags = CFTYPE_ONLY_ON_ROOT,
3596 },
3597
3598 { } /* terminate */
3599 };
3600
3601
3602 /**
3603 * cpuset_css_alloc - Allocate a cpuset css
3604 * @parent_css: Parent css of the control group that the new cpuset will be
3605 * part of
3606 * Return: cpuset css on success, -ENOMEM on failure.
3607 *
3608 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3609 * top cpuset css otherwise.
3610 */
3611 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)3612 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3613 {
3614 struct cpuset *cs;
3615
3616 if (!parent_css)
3617 return &top_cpuset.css;
3618
3619 cs = dup_or_alloc_cpuset(NULL);
3620 if (!cs)
3621 return ERR_PTR(-ENOMEM);
3622
3623 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3624 fmeter_init(&cs->fmeter);
3625 cs->relax_domain_level = -1;
3626
3627 /* Set CS_MEMORY_MIGRATE for default hierarchy */
3628 if (cpuset_v2())
3629 __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3630
3631 return &cs->css;
3632 }
3633
cpuset_css_online(struct cgroup_subsys_state * css)3634 static int cpuset_css_online(struct cgroup_subsys_state *css)
3635 {
3636 struct cpuset *cs = css_cs(css);
3637 struct cpuset *parent = parent_cs(cs);
3638 struct cpuset *tmp_cs;
3639 struct cgroup_subsys_state *pos_css;
3640
3641 if (!parent)
3642 return 0;
3643
3644 cpuset_full_lock();
3645 if (is_spread_page(parent))
3646 set_bit(CS_SPREAD_PAGE, &cs->flags);
3647 if (is_spread_slab(parent))
3648 set_bit(CS_SPREAD_SLAB, &cs->flags);
3649 /*
3650 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3651 */
3652 if (cpuset_v2() && !is_sched_load_balance(parent))
3653 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3654
3655 cpuset_inc();
3656
3657 spin_lock_irq(&callback_lock);
3658 if (is_in_v2_mode()) {
3659 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3660 cs->effective_mems = parent->effective_mems;
3661 }
3662 spin_unlock_irq(&callback_lock);
3663
3664 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3665 goto out_unlock;
3666
3667 /*
3668 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3669 * set. This flag handling is implemented in cgroup core for
3670 * historical reasons - the flag may be specified during mount.
3671 *
3672 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3673 * refuse to clone the configuration - thereby refusing the task to
3674 * be entered, and as a result refusing the sys_unshare() or
3675 * clone() which initiated it. If this becomes a problem for some
3676 * users who wish to allow that scenario, then this could be
3677 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3678 * (and likewise for mems) to the new cgroup.
3679 */
3680 rcu_read_lock();
3681 cpuset_for_each_child(tmp_cs, pos_css, parent) {
3682 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3683 rcu_read_unlock();
3684 goto out_unlock;
3685 }
3686 }
3687 rcu_read_unlock();
3688
3689 spin_lock_irq(&callback_lock);
3690 cs->mems_allowed = parent->mems_allowed;
3691 cs->effective_mems = parent->mems_allowed;
3692 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3693 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3694 spin_unlock_irq(&callback_lock);
3695 out_unlock:
3696 cpuset_full_unlock();
3697 return 0;
3698 }
3699
3700 /*
3701 * If the cpuset being removed has its flag 'sched_load_balance'
3702 * enabled, then simulate turning sched_load_balance off, which
3703 * will call rebuild_sched_domains_locked(). That is not needed
3704 * in the default hierarchy where only changes in partition
3705 * will cause repartitioning.
3706 */
cpuset_css_offline(struct cgroup_subsys_state * css)3707 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3708 {
3709 struct cpuset *cs = css_cs(css);
3710
3711 cpuset_full_lock();
3712 if (!cpuset_v2() && is_sched_load_balance(cs))
3713 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3714
3715 cpuset_dec();
3716 cpuset_full_unlock();
3717 }
3718
3719 /*
3720 * If a dying cpuset has the 'cpus.partition' enabled, turn it off by
3721 * changing it back to member to free its exclusive CPUs back to the pool to
3722 * be used by other online cpusets.
3723 */
cpuset_css_killed(struct cgroup_subsys_state * css)3724 static void cpuset_css_killed(struct cgroup_subsys_state *css)
3725 {
3726 struct cpuset *cs = css_cs(css);
3727
3728 cpuset_full_lock();
3729 /* Reset valid partition back to member */
3730 if (is_partition_valid(cs))
3731 update_prstate(cs, PRS_MEMBER);
3732 cpuset_full_unlock();
3733 }
3734
cpuset_css_free(struct cgroup_subsys_state * css)3735 static void cpuset_css_free(struct cgroup_subsys_state *css)
3736 {
3737 struct cpuset *cs = css_cs(css);
3738
3739 free_cpuset(cs);
3740 }
3741
cpuset_bind(struct cgroup_subsys_state * root_css)3742 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3743 {
3744 mutex_lock(&cpuset_mutex);
3745 spin_lock_irq(&callback_lock);
3746
3747 if (is_in_v2_mode()) {
3748 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3749 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3750 top_cpuset.mems_allowed = node_possible_map;
3751 } else {
3752 cpumask_copy(top_cpuset.cpus_allowed,
3753 top_cpuset.effective_cpus);
3754 top_cpuset.mems_allowed = top_cpuset.effective_mems;
3755 }
3756
3757 spin_unlock_irq(&callback_lock);
3758 mutex_unlock(&cpuset_mutex);
3759 }
3760
3761 /*
3762 * In case the child is cloned into a cpuset different from its parent,
3763 * additional checks are done to see if the move is allowed.
3764 */
cpuset_can_fork(struct task_struct * task,struct css_set * cset)3765 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3766 {
3767 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3768 bool same_cs;
3769 int ret;
3770
3771 rcu_read_lock();
3772 same_cs = (cs == task_cs(current));
3773 rcu_read_unlock();
3774
3775 if (same_cs)
3776 return 0;
3777
3778 lockdep_assert_held(&cgroup_mutex);
3779 mutex_lock(&cpuset_mutex);
3780
3781 /* Check to see if task is allowed in the cpuset */
3782 ret = cpuset_can_attach_check(cs);
3783 if (ret)
3784 goto out_unlock;
3785
3786 ret = task_can_attach(task);
3787 if (ret)
3788 goto out_unlock;
3789
3790 ret = security_task_setscheduler(task);
3791 if (ret)
3792 goto out_unlock;
3793
3794 /*
3795 * Mark attach is in progress. This makes validate_change() fail
3796 * changes which zero cpus/mems_allowed.
3797 */
3798 cs->attach_in_progress++;
3799 out_unlock:
3800 mutex_unlock(&cpuset_mutex);
3801 return ret;
3802 }
3803
cpuset_cancel_fork(struct task_struct * task,struct css_set * cset)3804 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3805 {
3806 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3807 bool same_cs;
3808
3809 rcu_read_lock();
3810 same_cs = (cs == task_cs(current));
3811 rcu_read_unlock();
3812
3813 if (same_cs)
3814 return;
3815
3816 dec_attach_in_progress(cs);
3817 }
3818
3819 /*
3820 * Make sure the new task conform to the current state of its parent,
3821 * which could have been changed by cpuset just after it inherits the
3822 * state from the parent and before it sits on the cgroup's task list.
3823 */
cpuset_fork(struct task_struct * task)3824 static void cpuset_fork(struct task_struct *task)
3825 {
3826 struct cpuset *cs;
3827 bool same_cs;
3828
3829 rcu_read_lock();
3830 cs = task_cs(task);
3831 same_cs = (cs == task_cs(current));
3832 rcu_read_unlock();
3833
3834 if (same_cs) {
3835 if (cs == &top_cpuset)
3836 return;
3837
3838 set_cpus_allowed_ptr(task, current->cpus_ptr);
3839 task->mems_allowed = current->mems_allowed;
3840 return;
3841 }
3842
3843 /* CLONE_INTO_CGROUP */
3844 mutex_lock(&cpuset_mutex);
3845 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3846 cpuset_attach_task(cs, task);
3847
3848 dec_attach_in_progress_locked(cs);
3849 mutex_unlock(&cpuset_mutex);
3850 }
3851
3852 struct cgroup_subsys cpuset_cgrp_subsys = {
3853 .css_alloc = cpuset_css_alloc,
3854 .css_online = cpuset_css_online,
3855 .css_offline = cpuset_css_offline,
3856 .css_killed = cpuset_css_killed,
3857 .css_free = cpuset_css_free,
3858 .can_attach = cpuset_can_attach,
3859 .cancel_attach = cpuset_cancel_attach,
3860 .attach = cpuset_attach,
3861 .bind = cpuset_bind,
3862 .can_fork = cpuset_can_fork,
3863 .cancel_fork = cpuset_cancel_fork,
3864 .fork = cpuset_fork,
3865 #ifdef CONFIG_CPUSETS_V1
3866 .legacy_cftypes = cpuset1_files,
3867 #endif
3868 .dfl_cftypes = dfl_files,
3869 .early_init = true,
3870 .threaded = true,
3871 };
3872
3873 /**
3874 * cpuset_init - initialize cpusets at system boot
3875 *
3876 * Description: Initialize top_cpuset
3877 **/
3878
cpuset_init(void)3879 int __init cpuset_init(void)
3880 {
3881 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3882 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3883 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3884 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3885 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3886 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3887
3888 cpumask_setall(top_cpuset.cpus_allowed);
3889 nodes_setall(top_cpuset.mems_allowed);
3890 cpumask_setall(top_cpuset.effective_cpus);
3891 cpumask_setall(top_cpuset.effective_xcpus);
3892 cpumask_setall(top_cpuset.exclusive_cpus);
3893 nodes_setall(top_cpuset.effective_mems);
3894
3895 fmeter_init(&top_cpuset.fmeter);
3896
3897 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3898
3899 have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3900 if (have_boot_isolcpus) {
3901 BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3902 cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3903 cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
3904 }
3905
3906 return 0;
3907 }
3908
3909 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3910 hotplug_update_tasks(struct cpuset *cs,
3911 struct cpumask *new_cpus, nodemask_t *new_mems,
3912 bool cpus_updated, bool mems_updated)
3913 {
3914 /* A partition root is allowed to have empty effective cpus */
3915 if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3916 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3917 if (nodes_empty(*new_mems))
3918 *new_mems = parent_cs(cs)->effective_mems;
3919
3920 spin_lock_irq(&callback_lock);
3921 cpumask_copy(cs->effective_cpus, new_cpus);
3922 cs->effective_mems = *new_mems;
3923 spin_unlock_irq(&callback_lock);
3924
3925 if (cpus_updated)
3926 cpuset_update_tasks_cpumask(cs, new_cpus);
3927 if (mems_updated)
3928 cpuset_update_tasks_nodemask(cs);
3929 }
3930
cpuset_force_rebuild(void)3931 void cpuset_force_rebuild(void)
3932 {
3933 force_sd_rebuild = true;
3934 }
3935
3936 /**
3937 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3938 * @cs: cpuset in interest
3939 * @tmp: the tmpmasks structure pointer
3940 *
3941 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3942 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3943 * all its tasks are moved to the nearest ancestor with both resources.
3944 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3945 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3946 {
3947 static cpumask_t new_cpus;
3948 static nodemask_t new_mems;
3949 bool cpus_updated;
3950 bool mems_updated;
3951 bool remote;
3952 int partcmd = -1;
3953 struct cpuset *parent;
3954 retry:
3955 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3956
3957 mutex_lock(&cpuset_mutex);
3958
3959 /*
3960 * We have raced with task attaching. We wait until attaching
3961 * is finished, so we won't attach a task to an empty cpuset.
3962 */
3963 if (cs->attach_in_progress) {
3964 mutex_unlock(&cpuset_mutex);
3965 goto retry;
3966 }
3967
3968 parent = parent_cs(cs);
3969 compute_effective_cpumask(&new_cpus, cs, parent);
3970 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3971
3972 if (!tmp || !cs->partition_root_state)
3973 goto update_tasks;
3974
3975 /*
3976 * Compute effective_cpus for valid partition root, may invalidate
3977 * child partition roots if necessary.
3978 */
3979 remote = is_remote_partition(cs);
3980 if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3981 compute_partition_effective_cpumask(cs, &new_cpus);
3982
3983 if (remote && (cpumask_empty(subpartitions_cpus) ||
3984 (cpumask_empty(&new_cpus) &&
3985 partition_is_populated(cs, NULL)))) {
3986 cs->prs_err = PERR_HOTPLUG;
3987 remote_partition_disable(cs, tmp);
3988 compute_effective_cpumask(&new_cpus, cs, parent);
3989 remote = false;
3990 }
3991
3992 /*
3993 * Force the partition to become invalid if either one of
3994 * the following conditions hold:
3995 * 1) empty effective cpus but not valid empty partition.
3996 * 2) parent is invalid or doesn't grant any cpus to child
3997 * partitions.
3998 * 3) subpartitions_cpus is empty.
3999 */
4000 if (is_local_partition(cs) &&
4001 (!is_partition_valid(parent) ||
4002 tasks_nocpu_error(parent, cs, &new_cpus) ||
4003 cpumask_empty(subpartitions_cpus)))
4004 partcmd = partcmd_invalidate;
4005 /*
4006 * On the other hand, an invalid partition root may be transitioned
4007 * back to a regular one with a non-empty effective xcpus.
4008 */
4009 else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
4010 !cpumask_empty(cs->effective_xcpus))
4011 partcmd = partcmd_update;
4012
4013 if (partcmd >= 0) {
4014 update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
4015 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
4016 compute_partition_effective_cpumask(cs, &new_cpus);
4017 cpuset_force_rebuild();
4018 }
4019 }
4020
4021 update_tasks:
4022 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4023 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4024 if (!cpus_updated && !mems_updated)
4025 goto unlock; /* Hotplug doesn't affect this cpuset */
4026
4027 if (mems_updated)
4028 check_insane_mems_config(&new_mems);
4029
4030 if (is_in_v2_mode())
4031 hotplug_update_tasks(cs, &new_cpus, &new_mems,
4032 cpus_updated, mems_updated);
4033 else
4034 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
4035 cpus_updated, mems_updated);
4036
4037 unlock:
4038 mutex_unlock(&cpuset_mutex);
4039 }
4040
4041 /**
4042 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
4043 *
4044 * This function is called after either CPU or memory configuration has
4045 * changed and updates cpuset accordingly. The top_cpuset is always
4046 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4047 * order to make cpusets transparent (of no affect) on systems that are
4048 * actively using CPU hotplug but making no active use of cpusets.
4049 *
4050 * Non-root cpusets are only affected by offlining. If any CPUs or memory
4051 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4052 * all descendants.
4053 *
4054 * Note that CPU offlining during suspend is ignored. We don't modify
4055 * cpusets across suspend/resume cycles at all.
4056 *
4057 * CPU / memory hotplug is handled synchronously.
4058 */
cpuset_handle_hotplug(void)4059 static void cpuset_handle_hotplug(void)
4060 {
4061 static cpumask_t new_cpus;
4062 static nodemask_t new_mems;
4063 bool cpus_updated, mems_updated;
4064 bool on_dfl = is_in_v2_mode();
4065 struct tmpmasks tmp, *ptmp = NULL;
4066
4067 if (on_dfl && !alloc_tmpmasks(&tmp))
4068 ptmp = &tmp;
4069
4070 lockdep_assert_cpus_held();
4071 mutex_lock(&cpuset_mutex);
4072
4073 /* fetch the available cpus/mems and find out which changed how */
4074 cpumask_copy(&new_cpus, cpu_active_mask);
4075 new_mems = node_states[N_MEMORY];
4076
4077 /*
4078 * If subpartitions_cpus is populated, it is likely that the check
4079 * below will produce a false positive on cpus_updated when the cpu
4080 * list isn't changed. It is extra work, but it is better to be safe.
4081 */
4082 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4083 !cpumask_empty(subpartitions_cpus);
4084 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4085
4086 /* For v1, synchronize cpus_allowed to cpu_active_mask */
4087 if (cpus_updated) {
4088 cpuset_force_rebuild();
4089 spin_lock_irq(&callback_lock);
4090 if (!on_dfl)
4091 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4092 /*
4093 * Make sure that CPUs allocated to child partitions
4094 * do not show up in effective_cpus. If no CPU is left,
4095 * we clear the subpartitions_cpus & let the child partitions
4096 * fight for the CPUs again.
4097 */
4098 if (!cpumask_empty(subpartitions_cpus)) {
4099 if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4100 cpumask_clear(subpartitions_cpus);
4101 } else {
4102 cpumask_andnot(&new_cpus, &new_cpus,
4103 subpartitions_cpus);
4104 }
4105 }
4106 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4107 spin_unlock_irq(&callback_lock);
4108 /* we don't mess with cpumasks of tasks in top_cpuset */
4109 }
4110
4111 /* synchronize mems_allowed to N_MEMORY */
4112 if (mems_updated) {
4113 spin_lock_irq(&callback_lock);
4114 if (!on_dfl)
4115 top_cpuset.mems_allowed = new_mems;
4116 top_cpuset.effective_mems = new_mems;
4117 spin_unlock_irq(&callback_lock);
4118 cpuset_update_tasks_nodemask(&top_cpuset);
4119 }
4120
4121 mutex_unlock(&cpuset_mutex);
4122
4123 /* if cpus or mems changed, we need to propagate to descendants */
4124 if (cpus_updated || mems_updated) {
4125 struct cpuset *cs;
4126 struct cgroup_subsys_state *pos_css;
4127
4128 rcu_read_lock();
4129 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4130 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4131 continue;
4132 rcu_read_unlock();
4133
4134 cpuset_hotplug_update_tasks(cs, ptmp);
4135
4136 rcu_read_lock();
4137 css_put(&cs->css);
4138 }
4139 rcu_read_unlock();
4140 }
4141
4142 /* rebuild sched domains if necessary */
4143 if (force_sd_rebuild)
4144 rebuild_sched_domains_cpuslocked();
4145
4146 free_tmpmasks(ptmp);
4147 }
4148
cpuset_update_active_cpus(void)4149 void cpuset_update_active_cpus(void)
4150 {
4151 /*
4152 * We're inside cpu hotplug critical region which usually nests
4153 * inside cgroup synchronization. Bounce actual hotplug processing
4154 * to a work item to avoid reverse locking order.
4155 */
4156 cpuset_handle_hotplug();
4157 }
4158
4159 /*
4160 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4161 * Call this routine anytime after node_states[N_MEMORY] changes.
4162 * See cpuset_update_active_cpus() for CPU hotplug handling.
4163 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)4164 static int cpuset_track_online_nodes(struct notifier_block *self,
4165 unsigned long action, void *arg)
4166 {
4167 cpuset_handle_hotplug();
4168 return NOTIFY_OK;
4169 }
4170
4171 /**
4172 * cpuset_init_smp - initialize cpus_allowed
4173 *
4174 * Description: Finish top cpuset after cpu, node maps are initialized
4175 */
cpuset_init_smp(void)4176 void __init cpuset_init_smp(void)
4177 {
4178 /*
4179 * cpus_allowd/mems_allowed set to v2 values in the initial
4180 * cpuset_bind() call will be reset to v1 values in another
4181 * cpuset_bind() call when v1 cpuset is mounted.
4182 */
4183 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4184
4185 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4186 top_cpuset.effective_mems = node_states[N_MEMORY];
4187
4188 hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4189
4190 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4191 BUG_ON(!cpuset_migrate_mm_wq);
4192 }
4193
4194 /*
4195 * Return cpus_allowed mask from a task's cpuset.
4196 */
__cpuset_cpus_allowed_locked(struct task_struct * tsk,struct cpumask * pmask)4197 static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4198 {
4199 struct cpuset *cs;
4200
4201 cs = task_cs(tsk);
4202 if (cs != &top_cpuset)
4203 guarantee_active_cpus(tsk, pmask);
4204 /*
4205 * Tasks in the top cpuset won't get update to their cpumasks
4206 * when a hotplug online/offline event happens. So we include all
4207 * offline cpus in the allowed cpu list.
4208 */
4209 if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4210 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4211
4212 /*
4213 * We first exclude cpus allocated to partitions. If there is no
4214 * allowable online cpu left, we fall back to all possible cpus.
4215 */
4216 cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4217 if (!cpumask_intersects(pmask, cpu_active_mask))
4218 cpumask_copy(pmask, possible_mask);
4219 }
4220 }
4221
4222 /**
4223 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset.
4224 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4225 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4226 *
4227 * Similir to cpuset_cpus_allowed() except that the caller must have acquired
4228 * cpuset_mutex.
4229 */
cpuset_cpus_allowed_locked(struct task_struct * tsk,struct cpumask * pmask)4230 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
4231 {
4232 lockdep_assert_held(&cpuset_mutex);
4233 __cpuset_cpus_allowed_locked(tsk, pmask);
4234 }
4235
4236 /**
4237 * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset.
4238 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4239 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4240 *
4241 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4242 * attached to the specified @tsk. Guaranteed to return some non-empty
4243 * subset of cpu_active_mask, even if this means going outside the
4244 * tasks cpuset, except when the task is in the top cpuset.
4245 **/
4246
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)4247 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4248 {
4249 unsigned long flags;
4250
4251 spin_lock_irqsave(&callback_lock, flags);
4252 __cpuset_cpus_allowed_locked(tsk, pmask);
4253 spin_unlock_irqrestore(&callback_lock, flags);
4254 }
4255
4256 /**
4257 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4258 * @tsk: pointer to task_struct with which the scheduler is struggling
4259 *
4260 * Description: In the case that the scheduler cannot find an allowed cpu in
4261 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4262 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4263 * which will not contain a sane cpumask during cases such as cpu hotplugging.
4264 * This is the absolute last resort for the scheduler and it is only used if
4265 * _every_ other avenue has been traveled.
4266 *
4267 * Returns true if the affinity of @tsk was changed, false otherwise.
4268 **/
4269
cpuset_cpus_allowed_fallback(struct task_struct * tsk)4270 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4271 {
4272 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4273 const struct cpumask *cs_mask;
4274 bool changed = false;
4275
4276 rcu_read_lock();
4277 cs_mask = task_cs(tsk)->cpus_allowed;
4278 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4279 set_cpus_allowed_force(tsk, cs_mask);
4280 changed = true;
4281 }
4282 rcu_read_unlock();
4283
4284 /*
4285 * We own tsk->cpus_allowed, nobody can change it under us.
4286 *
4287 * But we used cs && cs->cpus_allowed lockless and thus can
4288 * race with cgroup_attach_task() or update_cpumask() and get
4289 * the wrong tsk->cpus_allowed. However, both cases imply the
4290 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4291 * which takes task_rq_lock().
4292 *
4293 * If we are called after it dropped the lock we must see all
4294 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4295 * set any mask even if it is not right from task_cs() pov,
4296 * the pending set_cpus_allowed_ptr() will fix things.
4297 *
4298 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4299 * if required.
4300 */
4301 return changed;
4302 }
4303
cpuset_init_current_mems_allowed(void)4304 void __init cpuset_init_current_mems_allowed(void)
4305 {
4306 nodes_setall(current->mems_allowed);
4307 }
4308
4309 /**
4310 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4311 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4312 *
4313 * Description: Returns the nodemask_t mems_allowed of the cpuset
4314 * attached to the specified @tsk. Guaranteed to return some non-empty
4315 * subset of node_states[N_MEMORY], even if this means going outside the
4316 * tasks cpuset.
4317 **/
4318
cpuset_mems_allowed(struct task_struct * tsk)4319 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4320 {
4321 nodemask_t mask;
4322 unsigned long flags;
4323
4324 spin_lock_irqsave(&callback_lock, flags);
4325 guarantee_online_mems(task_cs(tsk), &mask);
4326 spin_unlock_irqrestore(&callback_lock, flags);
4327
4328 return mask;
4329 }
4330
4331 /**
4332 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4333 * @nodemask: the nodemask to be checked
4334 *
4335 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4336 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)4337 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4338 {
4339 return nodes_intersects(*nodemask, current->mems_allowed);
4340 }
4341
4342 /*
4343 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4344 * mem_hardwall ancestor to the specified cpuset. Call holding
4345 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
4346 * (an unusual configuration), then returns the root cpuset.
4347 */
nearest_hardwall_ancestor(struct cpuset * cs)4348 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4349 {
4350 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4351 cs = parent_cs(cs);
4352 return cs;
4353 }
4354
4355 /*
4356 * cpuset_current_node_allowed - Can current task allocate on a memory node?
4357 * @node: is this an allowed node?
4358 * @gfp_mask: memory allocation flags
4359 *
4360 * If we're in interrupt, yes, we can always allocate. If @node is set in
4361 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
4362 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4363 * yes. If current has access to memory reserves as an oom victim, yes.
4364 * Otherwise, no.
4365 *
4366 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4367 * and do not allow allocations outside the current tasks cpuset
4368 * unless the task has been OOM killed.
4369 * GFP_KERNEL allocations are not so marked, so can escape to the
4370 * nearest enclosing hardwalled ancestor cpuset.
4371 *
4372 * Scanning up parent cpusets requires callback_lock. The
4373 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4374 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4375 * current tasks mems_allowed came up empty on the first pass over
4376 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
4377 * cpuset are short of memory, might require taking the callback_lock.
4378 *
4379 * The first call here from mm/page_alloc:get_page_from_freelist()
4380 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4381 * so no allocation on a node outside the cpuset is allowed (unless
4382 * in interrupt, of course).
4383 *
4384 * The second pass through get_page_from_freelist() doesn't even call
4385 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
4386 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4387 * in alloc_flags. That logic and the checks below have the combined
4388 * affect that:
4389 * in_interrupt - any node ok (current task context irrelevant)
4390 * GFP_ATOMIC - any node ok
4391 * tsk_is_oom_victim - any node ok
4392 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
4393 * GFP_USER - only nodes in current tasks mems allowed ok.
4394 */
cpuset_current_node_allowed(int node,gfp_t gfp_mask)4395 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask)
4396 {
4397 struct cpuset *cs; /* current cpuset ancestors */
4398 bool allowed; /* is allocation in zone z allowed? */
4399 unsigned long flags;
4400
4401 if (in_interrupt())
4402 return true;
4403 if (node_isset(node, current->mems_allowed))
4404 return true;
4405 /*
4406 * Allow tasks that have access to memory reserves because they have
4407 * been OOM killed to get memory anywhere.
4408 */
4409 if (unlikely(tsk_is_oom_victim(current)))
4410 return true;
4411 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
4412 return false;
4413
4414 if (current->flags & PF_EXITING) /* Let dying task have memory */
4415 return true;
4416
4417 /* Not hardwall and node outside mems_allowed: scan up cpusets */
4418 spin_lock_irqsave(&callback_lock, flags);
4419
4420 cs = nearest_hardwall_ancestor(task_cs(current));
4421 allowed = node_isset(node, cs->mems_allowed);
4422
4423 spin_unlock_irqrestore(&callback_lock, flags);
4424 return allowed;
4425 }
4426
cpuset_node_allowed(struct cgroup * cgroup,int nid)4427 bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
4428 {
4429 struct cgroup_subsys_state *css;
4430 struct cpuset *cs;
4431 bool allowed;
4432
4433 /*
4434 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy
4435 * and mems_allowed is likely to be empty even if we could get to it,
4436 * so return true to avoid taking a global lock on the empty check.
4437 */
4438 if (!cpuset_v2())
4439 return true;
4440
4441 css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys);
4442 if (!css)
4443 return true;
4444
4445 /*
4446 * Normally, accessing effective_mems would require the cpuset_mutex
4447 * or callback_lock - but node_isset is atomic and the reference
4448 * taken via cgroup_get_e_css is sufficient to protect css.
4449 *
4450 * Since this interface is intended for use by migration paths, we
4451 * relax locking here to avoid taking global locks - while accepting
4452 * there may be rare scenarios where the result may be innaccurate.
4453 *
4454 * Reclaim and migration are subject to these same race conditions, and
4455 * cannot make strong isolation guarantees, so this is acceptable.
4456 */
4457 cs = container_of(css, struct cpuset, css);
4458 allowed = node_isset(nid, cs->effective_mems);
4459 css_put(css);
4460 return allowed;
4461 }
4462
4463 /**
4464 * cpuset_spread_node() - On which node to begin search for a page
4465 * @rotor: round robin rotor
4466 *
4467 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4468 * tasks in a cpuset with is_spread_page or is_spread_slab set),
4469 * and if the memory allocation used cpuset_mem_spread_node()
4470 * to determine on which node to start looking, as it will for
4471 * certain page cache or slab cache pages such as used for file
4472 * system buffers and inode caches, then instead of starting on the
4473 * local node to look for a free page, rather spread the starting
4474 * node around the tasks mems_allowed nodes.
4475 *
4476 * We don't have to worry about the returned node being offline
4477 * because "it can't happen", and even if it did, it would be ok.
4478 *
4479 * The routines calling guarantee_online_mems() are careful to
4480 * only set nodes in task->mems_allowed that are online. So it
4481 * should not be possible for the following code to return an
4482 * offline node. But if it did, that would be ok, as this routine
4483 * is not returning the node where the allocation must be, only
4484 * the node where the search should start. The zonelist passed to
4485 * __alloc_pages() will include all nodes. If the slab allocator
4486 * is passed an offline node, it will fall back to the local node.
4487 * See kmem_cache_alloc_node().
4488 */
cpuset_spread_node(int * rotor)4489 static int cpuset_spread_node(int *rotor)
4490 {
4491 return *rotor = next_node_in(*rotor, current->mems_allowed);
4492 }
4493
4494 /**
4495 * cpuset_mem_spread_node() - On which node to begin search for a file page
4496 */
cpuset_mem_spread_node(void)4497 int cpuset_mem_spread_node(void)
4498 {
4499 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4500 current->cpuset_mem_spread_rotor =
4501 node_random(¤t->mems_allowed);
4502
4503 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
4504 }
4505
4506 /**
4507 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4508 * @tsk1: pointer to task_struct of some task.
4509 * @tsk2: pointer to task_struct of some other task.
4510 *
4511 * Description: Return true if @tsk1's mems_allowed intersects the
4512 * mems_allowed of @tsk2. Used by the OOM killer to determine if
4513 * one of the task's memory usage might impact the memory available
4514 * to the other.
4515 **/
4516
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)4517 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4518 const struct task_struct *tsk2)
4519 {
4520 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4521 }
4522
4523 /**
4524 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4525 *
4526 * Description: Prints current's name, cpuset name, and cached copy of its
4527 * mems_allowed to the kernel log.
4528 */
cpuset_print_current_mems_allowed(void)4529 void cpuset_print_current_mems_allowed(void)
4530 {
4531 struct cgroup *cgrp;
4532
4533 rcu_read_lock();
4534
4535 cgrp = task_cs(current)->css.cgroup;
4536 pr_cont(",cpuset=");
4537 pr_cont_cgroup_name(cgrp);
4538 pr_cont(",mems_allowed=%*pbl",
4539 nodemask_pr_args(¤t->mems_allowed));
4540
4541 rcu_read_unlock();
4542 }
4543
4544 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)4545 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4546 {
4547 seq_printf(m, "Mems_allowed:\t%*pb\n",
4548 nodemask_pr_args(&task->mems_allowed));
4549 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4550 nodemask_pr_args(&task->mems_allowed));
4551 }
4552