xref: /linux/rust/kernel/list/arc.rs (revision c34e9ab9a612ee8b18273398ef75c207b01f516d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 // Copyright (C) 2024 Google LLC.
4 
5 //! A wrapper around `Arc` for linked lists.
6 
7 use crate::alloc::{AllocError, Flags};
8 use crate::prelude::*;
9 use crate::sync::{Arc, ArcBorrow, UniqueArc};
10 use core::marker::{PhantomPinned, Unsize};
11 use core::ops::Deref;
12 use core::pin::Pin;
13 use core::sync::atomic::{AtomicBool, Ordering};
14 
15 /// Declares that this type has some way to ensure that there is exactly one `ListArc` instance for
16 /// this id.
17 ///
18 /// Types that implement this trait should include some kind of logic for keeping track of whether
19 /// a [`ListArc`] exists or not. We refer to this logic as "the tracking inside `T`".
20 ///
21 /// We allow the case where the tracking inside `T` thinks that a [`ListArc`] exists, but actually,
22 /// there isn't a [`ListArc`]. However, we do not allow the opposite situation where a [`ListArc`]
23 /// exists, but the tracking thinks it doesn't. This is because the former can at most result in us
24 /// failing to create a [`ListArc`] when the operation could succeed, whereas the latter can result
25 /// in the creation of two [`ListArc`] references. Only the latter situation can lead to memory
26 /// safety issues.
27 ///
28 /// A consequence of the above is that you may implement the tracking inside `T` by not actually
29 /// keeping track of anything. To do this, you always claim that a [`ListArc`] exists, even if
30 /// there isn't one. This implementation is allowed by the above rule, but it means that
31 /// [`ListArc`] references can only be created if you have ownership of *all* references to the
32 /// refcounted object, as you otherwise have no way of knowing whether a [`ListArc`] exists.
33 pub trait ListArcSafe<const ID: u64 = 0> {
34     /// Informs the tracking inside this type that it now has a [`ListArc`] reference.
35     ///
36     /// This method may be called even if the tracking inside this type thinks that a `ListArc`
37     /// reference exists. (But only if that's not actually the case.)
38     ///
39     /// # Safety
40     ///
41     /// Must not be called if a [`ListArc`] already exist for this value.
42     unsafe fn on_create_list_arc_from_unique(self: Pin<&mut Self>);
43 
44     /// Informs the tracking inside this type that there is no [`ListArc`] reference anymore.
45     ///
46     /// # Safety
47     ///
48     /// Must only be called if there is no [`ListArc`] reference, but the tracking thinks there is.
49     unsafe fn on_drop_list_arc(&self);
50 }
51 
52 /// Declares that this type is able to safely attempt to create `ListArc`s at any time.
53 ///
54 /// # Safety
55 ///
56 /// The guarantees of `try_new_list_arc` must be upheld.
57 pub unsafe trait TryNewListArc<const ID: u64 = 0>: ListArcSafe<ID> {
58     /// Attempts to convert an `Arc<Self>` into an `ListArc<Self>`. Returns `true` if the
59     /// conversion was successful.
60     ///
61     /// This method should not be called directly. Use [`ListArc::try_from_arc`] instead.
62     ///
63     /// # Guarantees
64     ///
65     /// If this call returns `true`, then there is no [`ListArc`] pointing to this value.
66     /// Additionally, this call will have transitioned the tracking inside `Self` from not thinking
67     /// that a [`ListArc`] exists, to thinking that a [`ListArc`] exists.
68     fn try_new_list_arc(&self) -> bool;
69 }
70 
71 /// Declares that this type supports [`ListArc`].
72 ///
73 /// This macro supports a few different strategies for implementing the tracking inside the type:
74 ///
75 /// * The `untracked` strategy does not actually keep track of whether a [`ListArc`] exists. When
76 ///   using this strategy, the only way to create a [`ListArc`] is using a [`UniqueArc`].
77 /// * The `tracked_by` strategy defers the tracking to a field of the struct. The user much specify
78 ///   which field to defer the tracking to. The field must implement [`ListArcSafe`]. If the field
79 ///   implements [`TryNewListArc`], then the type will also implement [`TryNewListArc`].
80 ///
81 /// The `tracked_by` strategy is usually used by deferring to a field of type
82 /// [`AtomicTracker`]. However, it is also possible to defer the tracking to another struct
83 /// using also using this macro.
84 #[macro_export]
85 macro_rules! impl_list_arc_safe {
86     (impl$({$($generics:tt)*})? ListArcSafe<$num:tt> for $t:ty { untracked; } $($rest:tt)*) => {
87         impl$(<$($generics)*>)? $crate::list::ListArcSafe<$num> for $t {
88             unsafe fn on_create_list_arc_from_unique(self: ::core::pin::Pin<&mut Self>) {}
89             unsafe fn on_drop_list_arc(&self) {}
90         }
91         $crate::list::impl_list_arc_safe! { $($rest)* }
92     };
93 
94     (impl$({$($generics:tt)*})? ListArcSafe<$num:tt> for $t:ty {
95         tracked_by $field:ident : $fty:ty;
96     } $($rest:tt)*) => {
97         impl$(<$($generics)*>)? $crate::list::ListArcSafe<$num> for $t {
98             unsafe fn on_create_list_arc_from_unique(self: ::core::pin::Pin<&mut Self>) {
99                 $crate::assert_pinned!($t, $field, $fty, inline);
100 
101                 // SAFETY: This field is structurally pinned as per the above assertion.
102                 let field = unsafe {
103                     ::core::pin::Pin::map_unchecked_mut(self, |me| &mut me.$field)
104                 };
105                 // SAFETY: The caller promises that there is no `ListArc`.
106                 unsafe {
107                     <$fty as $crate::list::ListArcSafe<$num>>::on_create_list_arc_from_unique(field)
108                 };
109             }
110             unsafe fn on_drop_list_arc(&self) {
111                 // SAFETY: The caller promises that there is no `ListArc` reference, and also
112                 // promises that the tracking thinks there is a `ListArc` reference.
113                 unsafe { <$fty as $crate::list::ListArcSafe<$num>>::on_drop_list_arc(&self.$field) };
114             }
115         }
116         unsafe impl$(<$($generics)*>)? $crate::list::TryNewListArc<$num> for $t
117         where
118             $fty: TryNewListArc<$num>,
119         {
120             fn try_new_list_arc(&self) -> bool {
121                 <$fty as $crate::list::TryNewListArc<$num>>::try_new_list_arc(&self.$field)
122             }
123         }
124         $crate::list::impl_list_arc_safe! { $($rest)* }
125     };
126 
127     () => {};
128 }
129 pub use impl_list_arc_safe;
130 
131 /// A wrapper around [`Arc`] that's guaranteed unique for the given id.
132 ///
133 /// The `ListArc` type can be thought of as a special reference to a refcounted object that owns the
134 /// permission to manipulate the `next`/`prev` pointers stored in the refcounted object. By ensuring
135 /// that each object has only one `ListArc` reference, the owner of that reference is assured
136 /// exclusive access to the `next`/`prev` pointers. When a `ListArc` is inserted into a [`List`],
137 /// the [`List`] takes ownership of the `ListArc` reference.
138 ///
139 /// There are various strategies to ensuring that a value has only one `ListArc` reference. The
140 /// simplest is to convert a [`UniqueArc`] into a `ListArc`. However, the refcounted object could
141 /// also keep track of whether a `ListArc` exists using a boolean, which could allow for the
142 /// creation of new `ListArc` references from an [`Arc`] reference. Whatever strategy is used, the
143 /// relevant tracking is referred to as "the tracking inside `T`", and the [`ListArcSafe`] trait
144 /// (and its subtraits) are used to update the tracking when a `ListArc` is created or destroyed.
145 ///
146 /// Note that we allow the case where the tracking inside `T` thinks that a `ListArc` exists, but
147 /// actually, there isn't a `ListArc`. However, we do not allow the opposite situation where a
148 /// `ListArc` exists, but the tracking thinks it doesn't. This is because the former can at most
149 /// result in us failing to create a `ListArc` when the operation could succeed, whereas the latter
150 /// can result in the creation of two `ListArc` references.
151 ///
152 /// While this `ListArc` is unique for the given id, there still might exist normal `Arc`
153 /// references to the object.
154 ///
155 /// # Invariants
156 ///
157 /// * Each reference counted object has at most one `ListArc` for each value of `ID`.
158 /// * The tracking inside `T` is aware that a `ListArc` reference exists.
159 ///
160 /// [`List`]: crate::list::List
161 #[repr(transparent)]
162 pub struct ListArc<T, const ID: u64 = 0>
163 where
164     T: ListArcSafe<ID> + ?Sized,
165 {
166     arc: Arc<T>,
167 }
168 
169 impl<T: ListArcSafe<ID>, const ID: u64> ListArc<T, ID> {
170     /// Constructs a new reference counted instance of `T`.
171     #[inline]
172     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
173         Ok(Self::from(UniqueArc::new(contents, flags)?))
174     }
175 
176     /// Use the given initializer to in-place initialize a `T`.
177     ///
178     /// If `T: !Unpin` it will not be able to move afterwards.
179     // We don't implement `InPlaceInit` because `ListArc` is implicitly pinned. This is similar to
180     // what we do for `Arc`.
181     #[inline]
182     pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self, E>
183     where
184         E: From<AllocError>,
185     {
186         Ok(Self::from(UniqueArc::try_pin_init(init, flags)?))
187     }
188 
189     /// Use the given initializer to in-place initialize a `T`.
190     ///
191     /// This is equivalent to [`ListArc<T>::pin_init`], since a [`ListArc`] is always pinned.
192     #[inline]
193     pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
194     where
195         E: From<AllocError>,
196     {
197         Ok(Self::from(UniqueArc::try_init(init, flags)?))
198     }
199 }
200 
201 impl<T, const ID: u64> From<UniqueArc<T>> for ListArc<T, ID>
202 where
203     T: ListArcSafe<ID> + ?Sized,
204 {
205     /// Convert a [`UniqueArc`] into a [`ListArc`].
206     #[inline]
207     fn from(unique: UniqueArc<T>) -> Self {
208         Self::from(Pin::from(unique))
209     }
210 }
211 
212 impl<T, const ID: u64> From<Pin<UniqueArc<T>>> for ListArc<T, ID>
213 where
214     T: ListArcSafe<ID> + ?Sized,
215 {
216     /// Convert a pinned [`UniqueArc`] into a [`ListArc`].
217     #[inline]
218     fn from(mut unique: Pin<UniqueArc<T>>) -> Self {
219         // SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
220         unsafe { T::on_create_list_arc_from_unique(unique.as_mut()) };
221         let arc = Arc::from(unique);
222         // SAFETY: We just called `on_create_list_arc_from_unique` on an arc without a `ListArc`,
223         // so we can create a `ListArc`.
224         unsafe { Self::transmute_from_arc(arc) }
225     }
226 }
227 
228 impl<T, const ID: u64> ListArc<T, ID>
229 where
230     T: ListArcSafe<ID> + ?Sized,
231 {
232     /// Creates two `ListArc`s from a [`UniqueArc`].
233     ///
234     /// The two ids must be different.
235     #[inline]
236     pub fn pair_from_unique<const ID2: u64>(unique: UniqueArc<T>) -> (Self, ListArc<T, ID2>)
237     where
238         T: ListArcSafe<ID2>,
239     {
240         Self::pair_from_pin_unique(Pin::from(unique))
241     }
242 
243     /// Creates two `ListArc`s from a pinned [`UniqueArc`].
244     ///
245     /// The two ids must be different.
246     #[inline]
247     pub fn pair_from_pin_unique<const ID2: u64>(
248         mut unique: Pin<UniqueArc<T>>,
249     ) -> (Self, ListArc<T, ID2>)
250     where
251         T: ListArcSafe<ID2>,
252     {
253         build_assert!(ID != ID2);
254 
255         // SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
256         unsafe { <T as ListArcSafe<ID>>::on_create_list_arc_from_unique(unique.as_mut()) };
257         // SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
258         unsafe { <T as ListArcSafe<ID2>>::on_create_list_arc_from_unique(unique.as_mut()) };
259 
260         let arc1 = Arc::from(unique);
261         let arc2 = Arc::clone(&arc1);
262 
263         // SAFETY: We just called `on_create_list_arc_from_unique` on an arc without a `ListArc`
264         // for both IDs (which are different), so we can create two `ListArc`s.
265         unsafe {
266             (
267                 Self::transmute_from_arc(arc1),
268                 ListArc::transmute_from_arc(arc2),
269             )
270         }
271     }
272 
273     /// Try to create a new `ListArc`.
274     ///
275     /// This fails if this value already has a `ListArc`.
276     pub fn try_from_arc(arc: Arc<T>) -> Result<Self, Arc<T>>
277     where
278         T: TryNewListArc<ID>,
279     {
280         if arc.try_new_list_arc() {
281             // SAFETY: The `try_new_list_arc` method returned true, so we made the tracking think
282             // that a `ListArc` exists. This lets us create a `ListArc`.
283             Ok(unsafe { Self::transmute_from_arc(arc) })
284         } else {
285             Err(arc)
286         }
287     }
288 
289     /// Try to create a new `ListArc`.
290     ///
291     /// This fails if this value already has a `ListArc`.
292     pub fn try_from_arc_borrow(arc: ArcBorrow<'_, T>) -> Option<Self>
293     where
294         T: TryNewListArc<ID>,
295     {
296         if arc.try_new_list_arc() {
297             // SAFETY: The `try_new_list_arc` method returned true, so we made the tracking think
298             // that a `ListArc` exists. This lets us create a `ListArc`.
299             Some(unsafe { Self::transmute_from_arc(Arc::from(arc)) })
300         } else {
301             None
302         }
303     }
304 
305     /// Try to create a new `ListArc`.
306     ///
307     /// If it's not possible to create a new `ListArc`, then the `Arc` is dropped. This will never
308     /// run the destructor of the value.
309     pub fn try_from_arc_or_drop(arc: Arc<T>) -> Option<Self>
310     where
311         T: TryNewListArc<ID>,
312     {
313         match Self::try_from_arc(arc) {
314             Ok(list_arc) => Some(list_arc),
315             Err(arc) => Arc::into_unique_or_drop(arc).map(Self::from),
316         }
317     }
318 
319     /// Transmutes an [`Arc`] into a `ListArc` without updating the tracking inside `T`.
320     ///
321     /// # Safety
322     ///
323     /// * The value must not already have a `ListArc` reference.
324     /// * The tracking inside `T` must think that there is a `ListArc` reference.
325     #[inline]
326     unsafe fn transmute_from_arc(arc: Arc<T>) -> Self {
327         // INVARIANT: By the safety requirements, the invariants on `ListArc` are satisfied.
328         Self { arc }
329     }
330 
331     /// Transmutes a `ListArc` into an [`Arc`] without updating the tracking inside `T`.
332     ///
333     /// After this call, the tracking inside `T` will still think that there is a `ListArc`
334     /// reference.
335     #[inline]
336     fn transmute_to_arc(self) -> Arc<T> {
337         // Use a transmute to skip destructor.
338         //
339         // SAFETY: ListArc is repr(transparent).
340         unsafe { core::mem::transmute(self) }
341     }
342 
343     /// Convert ownership of this `ListArc` into a raw pointer.
344     ///
345     /// The returned pointer is indistinguishable from pointers returned by [`Arc::into_raw`]. The
346     /// tracking inside `T` will still think that a `ListArc` exists after this call.
347     #[inline]
348     pub fn into_raw(self) -> *const T {
349         Arc::into_raw(Self::transmute_to_arc(self))
350     }
351 
352     /// Take ownership of the `ListArc` from a raw pointer.
353     ///
354     /// # Safety
355     ///
356     /// * `ptr` must satisfy the safety requirements of [`Arc::from_raw`].
357     /// * The value must not already have a `ListArc` reference.
358     /// * The tracking inside `T` must think that there is a `ListArc` reference.
359     #[inline]
360     pub unsafe fn from_raw(ptr: *const T) -> Self {
361         // SAFETY: The pointer satisfies the safety requirements for `Arc::from_raw`.
362         let arc = unsafe { Arc::from_raw(ptr) };
363         // SAFETY: The value doesn't already have a `ListArc` reference, but the tracking thinks it
364         // does.
365         unsafe { Self::transmute_from_arc(arc) }
366     }
367 
368     /// Converts the `ListArc` into an [`Arc`].
369     #[inline]
370     pub fn into_arc(self) -> Arc<T> {
371         let arc = Self::transmute_to_arc(self);
372         // SAFETY: There is no longer a `ListArc`, but the tracking thinks there is.
373         unsafe { T::on_drop_list_arc(&arc) };
374         arc
375     }
376 
377     /// Clone a `ListArc` into an [`Arc`].
378     #[inline]
379     pub fn clone_arc(&self) -> Arc<T> {
380         self.arc.clone()
381     }
382 
383     /// Returns a reference to an [`Arc`] from the given [`ListArc`].
384     ///
385     /// This is useful when the argument of a function call is an [`&Arc`] (e.g., in a method
386     /// receiver), but we have a [`ListArc`] instead.
387     ///
388     /// [`&Arc`]: Arc
389     #[inline]
390     pub fn as_arc(&self) -> &Arc<T> {
391         &self.arc
392     }
393 
394     /// Returns an [`ArcBorrow`] from the given [`ListArc`].
395     ///
396     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
397     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
398     #[inline]
399     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
400         self.arc.as_arc_borrow()
401     }
402 
403     /// Compare whether two [`ListArc`] pointers reference the same underlying object.
404     #[inline]
405     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
406         Arc::ptr_eq(&this.arc, &other.arc)
407     }
408 }
409 
410 impl<T, const ID: u64> Deref for ListArc<T, ID>
411 where
412     T: ListArcSafe<ID> + ?Sized,
413 {
414     type Target = T;
415 
416     #[inline]
417     fn deref(&self) -> &Self::Target {
418         self.arc.deref()
419     }
420 }
421 
422 impl<T, const ID: u64> Drop for ListArc<T, ID>
423 where
424     T: ListArcSafe<ID> + ?Sized,
425 {
426     #[inline]
427     fn drop(&mut self) {
428         // SAFETY: There is no longer a `ListArc`, but the tracking thinks there is by the type
429         // invariants on `Self`.
430         unsafe { T::on_drop_list_arc(&self.arc) };
431     }
432 }
433 
434 impl<T, const ID: u64> AsRef<Arc<T>> for ListArc<T, ID>
435 where
436     T: ListArcSafe<ID> + ?Sized,
437 {
438     #[inline]
439     fn as_ref(&self) -> &Arc<T> {
440         self.as_arc()
441     }
442 }
443 
444 // This is to allow coercion from `ListArc<T>` to `ListArc<U>` if `T` can be converted to the
445 // dynamically-sized type (DST) `U`.
446 impl<T, U, const ID: u64> core::ops::CoerceUnsized<ListArc<U, ID>> for ListArc<T, ID>
447 where
448     T: ListArcSafe<ID> + Unsize<U> + ?Sized,
449     U: ListArcSafe<ID> + ?Sized,
450 {
451 }
452 
453 // This is to allow `ListArc<U>` to be dispatched on when `ListArc<T>` can be coerced into
454 // `ListArc<U>`.
455 impl<T, U, const ID: u64> core::ops::DispatchFromDyn<ListArc<U, ID>> for ListArc<T, ID>
456 where
457     T: ListArcSafe<ID> + Unsize<U> + ?Sized,
458     U: ListArcSafe<ID> + ?Sized,
459 {
460 }
461 
462 /// A utility for tracking whether a [`ListArc`] exists using an atomic.
463 ///
464 /// # Invariant
465 ///
466 /// If the boolean is `false`, then there is no [`ListArc`] for this value.
467 #[repr(transparent)]
468 pub struct AtomicTracker<const ID: u64 = 0> {
469     inner: AtomicBool,
470     // This value needs to be pinned to justify the INVARIANT: comment in `AtomicTracker::new`.
471     _pin: PhantomPinned,
472 }
473 
474 impl<const ID: u64> AtomicTracker<ID> {
475     /// Creates a new initializer for this type.
476     pub fn new() -> impl PinInit<Self> {
477         // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
478         // not be constructed in an `Arc` that already has a `ListArc`.
479         Self {
480             inner: AtomicBool::new(false),
481             _pin: PhantomPinned,
482         }
483     }
484 
485     fn project_inner(self: Pin<&mut Self>) -> &mut AtomicBool {
486         // SAFETY: The `inner` field is not structurally pinned, so we may obtain a mutable
487         // reference to it even if we only have a pinned reference to `self`.
488         unsafe { &mut Pin::into_inner_unchecked(self).inner }
489     }
490 }
491 
492 impl<const ID: u64> ListArcSafe<ID> for AtomicTracker<ID> {
493     unsafe fn on_create_list_arc_from_unique(self: Pin<&mut Self>) {
494         // INVARIANT: We just created a ListArc, so the boolean should be true.
495         *self.project_inner().get_mut() = true;
496     }
497 
498     unsafe fn on_drop_list_arc(&self) {
499         // INVARIANT: We just dropped a ListArc, so the boolean should be false.
500         self.inner.store(false, Ordering::Release);
501     }
502 }
503 
504 // SAFETY: If this method returns `true`, then by the type invariant there is no `ListArc` before
505 // this call, so it is okay to create a new `ListArc`.
506 //
507 // The acquire ordering will synchronize with the release store from the destruction of any
508 // previous `ListArc`, so if there was a previous `ListArc`, then the destruction of the previous
509 // `ListArc` happens-before the creation of the new `ListArc`.
510 unsafe impl<const ID: u64> TryNewListArc<ID> for AtomicTracker<ID> {
511     fn try_new_list_arc(&self) -> bool {
512         // INVARIANT: If this method returns true, then the boolean used to be false, and is no
513         // longer false, so it is okay for the caller to create a new [`ListArc`].
514         self.inner
515             .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
516             .is_ok()
517     }
518 }
519