xref: /freebsd/crypto/krb5/src/util/profile/prof_tree.c (revision f1c4c3daccbaf3820f0e2224de53df12fc952fcc)
1 /* -*- mode: c; c-basic-offset: 4; indent-tabs-mode: nil -*- */
2 /*
3  * prof_tree.c --- these routines maintain the parse tree of the
4  *      config file.
5  *
6  * All of the details of how the tree is stored is abstracted away in
7  * this file; all of the other profile routines build, access, and
8  * modify the tree via the accessor functions found in this file.
9  *
10  * Each node may represent either a relation or a section header.
11  *
12  * A section header must have its value field be null, and may have one
13  * or more child nodes, pointed to by first_child.
14  *
15  * A relation has as its value a pointer to allocated memory
16  * containing a string.  Its first_child pointer must be null.
17  *
18  */
19 
20 
21 #include "prof_int.h"
22 
23 #include <stdio.h>
24 #include <string.h>
25 #ifdef HAVE_STDLIB_H
26 #include <stdlib.h>
27 #endif
28 #include <errno.h>
29 #include <ctype.h>
30 
31 struct profile_node {
32     errcode_t       magic;
33     char *name;
34     char *value;
35     int group_level;
36     unsigned int final:1;           /* Indicate don't search next file */
37     unsigned int deleted:1;
38     struct profile_node *first_child;
39     struct profile_node *parent;
40     struct profile_node *next, *prev;
41 };
42 
43 #define CHECK_MAGIC(node)                       \
44     if ((node)->magic != PROF_MAGIC_NODE)       \
45         return PROF_MAGIC_NODE;
46 
47 /*
48  * Free a node, and any children
49  */
profile_free_node(struct profile_node * node)50 void profile_free_node(struct profile_node *node)
51 {
52     struct profile_node *child, *next;
53 
54     if (node->magic != PROF_MAGIC_NODE)
55         return;
56 
57     if (node->name)
58         free(node->name);
59     if (node->value)
60         free(node->value);
61 
62     for (child=node->first_child; child; child = next) {
63         next = child->next;
64         profile_free_node(child);
65     }
66     node->magic = 0;
67 
68     free(node);
69 }
70 
71 #ifndef HAVE_STRDUP
72 #undef strdup
73 #define strdup MYstrdup
MYstrdup(const char * s)74 static char *MYstrdup (const char *s)
75 {
76     size_t sz = strlen(s) + 1;
77     char *p = malloc(sz);
78     if (p != 0)
79         memcpy(p, s, sz);
80     return p;
81 }
82 #endif
83 
84 /*
85  * Create a node
86  */
profile_create_node(const char * name,const char * value,struct profile_node ** ret_node)87 errcode_t profile_create_node(const char *name, const char *value,
88                               struct profile_node **ret_node)
89 {
90     struct profile_node *new;
91 
92     new = malloc(sizeof(struct profile_node));
93     if (!new)
94         return ENOMEM;
95     memset(new, 0, sizeof(struct profile_node));
96     /* Set magic here so profile_free_node will free memory */
97     new->magic = PROF_MAGIC_NODE;
98     new->name = strdup(name);
99     if (new->name == 0) {
100         profile_free_node(new);
101         return ENOMEM;
102     }
103     if (value) {
104         new->value = strdup(value);
105         if (new->value == 0) {
106             profile_free_node(new);
107             return ENOMEM;
108         }
109     }
110 
111     *ret_node = new;
112     return 0;
113 }
114 
115 /* Return a copy of oldnode.  Recursively copy oldnode's children, but leave
116  * the parent, next, and prev pointers as null. */
profile_copy_node(struct profile_node * oldnode)117 struct profile_node *profile_copy_node(struct profile_node *oldnode)
118 {
119     struct profile_node *node = NULL, *p, *q, **nextp, *last;
120 
121     if (oldnode->magic != PROF_MAGIC_NODE)
122         return NULL;
123 
124     node = calloc(1, sizeof(*node));
125     node->magic = PROF_MAGIC_NODE;
126     node->name = strdup(oldnode->name);
127     if (node->name == NULL)
128         goto errout;
129     if (oldnode->value != NULL) {
130         node->value = strdup(oldnode->value);
131         if (oldnode->value == NULL)
132             goto errout;
133     }
134     node->group_level = oldnode->group_level;
135     node->final = oldnode->final;
136     node->deleted = oldnode->deleted;
137 
138     nextp = &node->first_child;
139     last = NULL;
140     for (p = oldnode->first_child; p != NULL; p = p->next) {
141         q = profile_copy_node(p);
142         if (q == NULL)
143             goto errout;
144 
145         /* Link in the new child and prepare for the next. */
146         q->parent = node;
147         q->prev = last;
148         last = q;
149         *nextp = q;
150         nextp = &q->next;
151     }
152 
153     return node;
154 
155 errout:
156     profile_free_node(node);
157     return NULL;
158 }
159 
160 /*
161  * This function verifies that all of the representation invariants of
162  * the profile are true.  If not, we have a programming bug somewhere,
163  * probably in this file.
164  */
profile_verify_node(struct profile_node * node)165 errcode_t profile_verify_node(struct profile_node *node)
166 {
167     struct profile_node *p, *last;
168     errcode_t       retval;
169 
170     CHECK_MAGIC(node);
171 
172     if (node->value && node->first_child)
173         return PROF_SECTION_WITH_VALUE;
174 
175     last = 0;
176     for (p = node->first_child; p; last = p, p = p->next) {
177         if (p->prev != last)
178             return PROF_BAD_LINK_LIST;
179         if (last && (last->next != p))
180             return PROF_BAD_LINK_LIST;
181         if (node->group_level+1 != p->group_level)
182             return PROF_BAD_GROUP_LVL;
183         if (p->parent != node)
184             return PROF_BAD_PARENT_PTR;
185         retval = profile_verify_node(p);
186         if (retval)
187             return retval;
188     }
189     return 0;
190 }
191 
192 /*
193  * Add a node to a particular section.  If check_final is true, don't add the
194  * node if we find a final node for the same name.
195  */
profile_add_node(struct profile_node * section,const char * name,const char * value,int check_final,struct profile_node ** ret_node)196 errcode_t profile_add_node(struct profile_node *section, const char *name,
197                            const char *value, int check_final,
198                            struct profile_node **ret_node)
199 {
200     errcode_t retval;
201     struct profile_node *p, *last, *new;
202 
203     CHECK_MAGIC(section);
204 
205     if (section->value)
206         return PROF_ADD_NOT_SECTION;
207 
208     /*
209      * Find the place to insert the new node.  If we are adding a subsection
210      * and already have a subsection with that name, merge them.  Otherwise,
211      * we look for the place *after* the last match of the node name, since
212      * order matters.
213      */
214     for (p=section->first_child, last = 0; p; last = p, p = p->next) {
215         int cmp;
216         cmp = strcmp(p->name, name);
217         if (cmp > 0) {
218             break;
219         } else if (value == NULL && cmp == 0 &&
220                    p->value == NULL && p->deleted != 1) {
221             /* Found duplicate subsection, so don't make a new one. */
222             if (ret_node)
223                 *ret_node = p;
224             return 0;
225         } else if (check_final && cmp == 0 && p->final) {
226             /* This key already exists with the final flag and we were asked
227              * to check it, so don't add this node. */
228             if (ret_node)
229                 *ret_node = NULL;
230             return 0;
231         }
232     }
233     retval = profile_create_node(name, value, &new);
234     if (retval)
235         return retval;
236     new->group_level = section->group_level+1;
237     new->deleted = 0;
238     new->parent = section;
239     new->prev = last;
240     new->next = p;
241     if (p)
242         p->prev = new;
243     if (last)
244         last->next = new;
245     else
246         section->first_child = new;
247     if (ret_node)
248         *ret_node = new;
249     return 0;
250 }
251 
252 /*
253  * Set the final flag on a particular node.
254  */
profile_make_node_final(struct profile_node * node)255 errcode_t profile_make_node_final(struct profile_node *node)
256 {
257     CHECK_MAGIC(node);
258 
259     node->final = 1;
260     return 0;
261 }
262 
263 /*
264  * Check the final flag on a node
265  */
profile_is_node_final(struct profile_node * node)266 int profile_is_node_final(struct profile_node *node)
267 {
268     return (node->final != 0);
269 }
270 
271 /*
272  * Return the name of a node.  (Note: this is for internal functions
273  * only; if the name needs to be returned from an exported function,
274  * strdup it first!)
275  */
profile_get_node_name(struct profile_node * node)276 const char *profile_get_node_name(struct profile_node *node)
277 {
278     return node->name;
279 }
280 
281 /*
282  * Return the value of a node.  (Note: this is for internal functions
283  * only; if the name needs to be returned from an exported function,
284  * strdup it first!)
285  */
profile_get_node_value(struct profile_node * node)286 const char *profile_get_node_value(struct profile_node *node)
287 {
288     return node->value;
289 }
290 
291 /*
292  * Iterate through the section, returning the nodes which match
293  * the given name.  If name is NULL, then iterate through all the
294  * nodes in the section.  If section_flag is non-zero, only return the
295  * section which matches the name; don't return relations.  If value
296  * is non-NULL, then only return relations which match the requested
297  * value.  (The value argument is ignored if section_flag is non-zero.)
298  *
299  * The first time this routine is called, the state pointer must be
300  * null.  When this profile_find_node_relation() returns, if the state
301  * pointer is non-NULL, then this routine should be called again.
302  * (This won't happen if section_flag is non-zero, obviously.)
303  *
304  */
profile_find_node(struct profile_node * section,const char * name,const char * value,int section_flag,void ** state,struct profile_node ** node)305 errcode_t profile_find_node(struct profile_node *section, const char *name,
306                             const char *value, int section_flag, void **state,
307                             struct profile_node **node)
308 {
309     struct profile_node *p;
310 
311     CHECK_MAGIC(section);
312     p = *state;
313     if (p) {
314         CHECK_MAGIC(p);
315     } else
316         p = section->first_child;
317 
318     for (; p; p = p->next) {
319         if (name && (strcmp(p->name, name)))
320             continue;
321         if (section_flag) {
322             if (p->value)
323                 continue;
324         } else {
325             if (!p->value)
326                 continue;
327             if (value && (strcmp(p->value, value)))
328                 continue;
329         }
330         if (p->deleted)
331             continue;
332         /* A match! */
333         if (node)
334             *node = p;
335         break;
336     }
337     if (p == 0) {
338         *state = 0;
339         return section_flag ? PROF_NO_SECTION : PROF_NO_RELATION;
340     }
341     /*
342      * OK, we've found one match; now let's try to find another
343      * one.  This way, if we return a non-zero state pointer,
344      * there's guaranteed to be another match that's returned.
345      */
346     for (p = p->next; p; p = p->next) {
347         if (name && (strcmp(p->name, name)))
348             continue;
349         if (section_flag) {
350             if (p->value)
351                 continue;
352         } else {
353             if (!p->value)
354                 continue;
355             if (value && (strcmp(p->value, value)))
356                 continue;
357         }
358         if (p->deleted)
359             continue;
360         /* A match! */
361         break;
362     }
363     *state = p;
364     return 0;
365 }
366 
367 
368 /*
369  * Iterate through the section, returning the relations which match
370  * the given name.  If name is NULL, then iterate through all the
371  * relations in the section.  The first time this routine is called,
372  * the state pointer must be null.  When this profile_find_node_relation()
373  * returns, if the state pointer is non-NULL, then this routine should
374  * be called again.
375  *
376  * The returned character string in value points to the stored
377  * character string in the parse string.  Before this string value is
378  * returned to a calling application (profile_find_node_relation is not an
379  * exported interface), it should be strdup()'ed.
380  */
profile_find_node_relation(struct profile_node * section,const char * name,void ** state,char ** ret_name,char ** value,int * ret_final)381 errcode_t profile_find_node_relation(struct profile_node *section,
382                                      const char *name, void **state,
383                                      char **ret_name, char **value,
384                                      int *ret_final)
385 {
386     struct profile_node *p;
387     errcode_t       retval;
388 
389     retval = profile_find_node(section, name, 0, 0, state, &p);
390     if (retval)
391         return retval;
392 
393     if (p) {
394         if (value)
395             *value = p->value;
396         if (ret_name)
397             *ret_name = p->name;
398         if (ret_final)
399             *ret_final = p->final;
400     }
401     return 0;
402 }
403 
404 /*
405  * Iterate through the section, returning the subsections which match
406  * the given name.  If name is NULL, then iterate through all the
407  * subsections in the section.  The first time this routine is called,
408  * the state pointer must be null.  When this profile_find_node_subsection()
409  * returns, if the state pointer is non-NULL, then this routine should
410  * be called again.
411  *
412  * This is (plus accessor functions for the name and value given a
413  * profile node) makes this function mostly syntactic sugar for
414  * profile_find_node.
415  */
profile_find_node_subsection(struct profile_node * section,const char * name,void ** state,char ** ret_name,struct profile_node ** subsection)416 errcode_t profile_find_node_subsection(struct profile_node *section,
417                                        const char *name, void **state,
418                                        char **ret_name,
419                                        struct profile_node **subsection)
420 {
421     struct profile_node *p;
422     errcode_t       retval;
423 
424     retval = profile_find_node(section, name, 0, 1, state, &p);
425     if (retval)
426         return retval;
427 
428     if (p) {
429         if (subsection)
430             *subsection = p;
431         if (ret_name)
432             *ret_name = p->name;
433     }
434     return 0;
435 }
436 
437 /*
438  * This function returns the parent of a particular node.
439  */
profile_get_node_parent(struct profile_node * section,struct profile_node ** parent)440 errcode_t profile_get_node_parent(struct profile_node *section,
441                                   struct profile_node **parent)
442 {
443     *parent = section->parent;
444     return 0;
445 }
446 
447 /*
448  * This is a general-purpose iterator for returning all nodes that
449  * match the specified name array.
450  */
451 struct profile_node_iterator {
452     prf_magic_t             magic;
453     int                     flags;
454     const char              *const *names;
455     const char              *name;
456     prf_file_t              file;
457     int                     file_serial;
458     int                     done_idx;
459     struct profile_node     *node;
460     int                     num;
461 };
462 
profile_node_iterator_create(profile_t profile,const char * const * names,int flags,void ** ret_iter)463 errcode_t profile_node_iterator_create(profile_t profile,
464                                        const char *const *names, int flags,
465                                        void **ret_iter)
466 {
467     struct profile_node_iterator *iter;
468     int     done_idx = 0;
469 
470     if (profile == 0)
471         return PROF_NO_PROFILE;
472     if (profile->magic != PROF_MAGIC_PROFILE)
473         return PROF_MAGIC_PROFILE;
474     if (!names)
475         return PROF_BAD_NAMESET;
476     if (!(flags & PROFILE_ITER_LIST_SECTION)) {
477         if (!names[0])
478             return PROF_BAD_NAMESET;
479         done_idx = 1;
480     }
481 
482     iter = malloc(sizeof(*iter));
483     if (iter == NULL)
484         return ENOMEM;
485 
486     iter->magic = PROF_MAGIC_NODE_ITERATOR;
487     iter->names = names;
488     iter->flags = flags;
489     iter->file = profile->first_file;
490     iter->done_idx = done_idx;
491     iter->node = 0;
492     iter->num = 0;
493     *ret_iter = iter;
494     return 0;
495 }
496 
profile_node_iterator_free(void ** iter_p)497 void profile_node_iterator_free(void **iter_p)
498 {
499     struct profile_node_iterator *iter;
500 
501     if (!iter_p)
502         return;
503     iter = *iter_p;
504     if (!iter || iter->magic != PROF_MAGIC_NODE_ITERATOR)
505         return;
506     free(iter);
507     *iter_p = 0;
508 }
509 
510 /*
511  * Note: the returned character strings in ret_name and ret_value
512  * points to the stored character string in the parse string.  Before
513  * this string value is returned to a calling application
514  * (profile_node_iterator is not an exported interface), it should be
515  * strdup()'ed.
516  */
profile_node_iterator(void ** iter_p,struct profile_node ** ret_node,char ** ret_name,char ** ret_value)517 errcode_t profile_node_iterator(void **iter_p,
518                                 struct profile_node **ret_node,
519                                 char **ret_name, char **ret_value)
520 {
521     struct profile_node_iterator    *iter = *iter_p;
522     struct profile_node             *section, *p;
523     const char                      *const *cpp;
524     errcode_t                       retval;
525     int                             skip_num = 0;
526 
527     if (!iter || iter->magic != PROF_MAGIC_NODE_ITERATOR)
528         return PROF_MAGIC_NODE_ITERATOR;
529     if (iter->file && iter->file->magic != PROF_MAGIC_FILE)
530         return PROF_MAGIC_FILE;
531     if (iter->file && iter->file->data->magic != PROF_MAGIC_FILE_DATA)
532         return PROF_MAGIC_FILE_DATA;
533     /*
534      * If the file has changed, then the node pointer is invalid,
535      * so we'll have search the file again looking for it.
536      */
537     if (iter->file)
538         k5_mutex_lock(&iter->file->data->lock);
539     if (iter->node && (iter->file->data->upd_serial != iter->file_serial)) {
540         iter->flags &= ~PROFILE_ITER_FINAL_SEEN;
541         skip_num = iter->num;
542         iter->node = 0;
543     }
544     if (iter->node && iter->node->magic != PROF_MAGIC_NODE) {
545         if (iter->file)
546             k5_mutex_unlock(&iter->file->data->lock);
547         return PROF_MAGIC_NODE;
548     }
549 get_new_file:
550     if (iter->node == 0) {
551         if (iter->file == 0 ||
552             (iter->flags & PROFILE_ITER_FINAL_SEEN)) {
553             if (iter->file)
554                 k5_mutex_unlock(&iter->file->data->lock);
555             profile_node_iterator_free(iter_p);
556             if (ret_node)
557                 *ret_node = 0;
558             if (ret_name)
559                 *ret_name = 0;
560             if (ret_value)
561                 *ret_value =0;
562             return 0;
563         }
564         if ((retval = profile_update_file_locked(iter->file, NULL))) {
565             k5_mutex_unlock(&iter->file->data->lock);
566             if (retval == ENOENT || retval == EACCES) {
567                 /* XXX memory leak? */
568                 iter->file = iter->file->next;
569                 if (iter->file)
570                     k5_mutex_lock(&iter->file->data->lock);
571                 skip_num = 0;
572                 retval = 0;
573                 goto get_new_file;
574             } else {
575                 profile_node_iterator_free(iter_p);
576                 return retval;
577             }
578         }
579         iter->file_serial = iter->file->data->upd_serial;
580         /*
581          * Find the section to list if we are a LIST_SECTION,
582          * or find the containing section if not.
583          */
584         section = iter->file->data->root;
585         assert(section != NULL);
586         for (cpp = iter->names; cpp[iter->done_idx]; cpp++) {
587             for (p=section->first_child; p; p = p->next) {
588                 if (!strcmp(p->name, *cpp) && !p->value && !p->deleted)
589                     break;
590             }
591             if (!p) {
592                 section = 0;
593                 break;
594             }
595             section = p;
596             if (p->final)
597                 iter->flags |= PROFILE_ITER_FINAL_SEEN;
598         }
599         if (!section) {
600             k5_mutex_unlock(&iter->file->data->lock);
601             iter->file = iter->file->next;
602             if (iter->file)
603                 k5_mutex_lock(&iter->file->data->lock);
604             skip_num = 0;
605             goto get_new_file;
606         }
607         iter->name = *cpp;
608         iter->node = section->first_child;
609     }
610     /*
611      * OK, now we know iter->node is set up correctly.  Let's do
612      * the search.
613      */
614     for (p = iter->node; p; p = p->next) {
615         if (iter->name && strcmp(p->name, iter->name))
616             continue;
617         if ((iter->flags & PROFILE_ITER_SECTIONS_ONLY) &&
618             p->value)
619             continue;
620         if ((iter->flags & PROFILE_ITER_RELATIONS_ONLY) &&
621             !p->value)
622             continue;
623         if (skip_num > 0) {
624             skip_num--;
625             continue;
626         }
627         if (p->deleted)
628             continue;
629         if (p->final)
630             iter->flags |= PROFILE_ITER_FINAL_SEEN;
631         break;
632     }
633     iter->num++;
634     if (!p) {
635         k5_mutex_unlock(&iter->file->data->lock);
636         iter->file = iter->file->next;
637         if (iter->file)
638             k5_mutex_lock(&iter->file->data->lock);
639         iter->node = 0;
640         skip_num = 0;
641         goto get_new_file;
642     }
643     k5_mutex_unlock(&iter->file->data->lock);
644     if ((iter->node = p->next) == NULL)
645         iter->file = iter->file->next;
646     if (ret_node)
647         *ret_node = p;
648     if (ret_name)
649         *ret_name = p->name;
650     if (ret_value)
651         *ret_value = p->value;
652     return 0;
653 }
654 
655 /*
656  * Remove a particular node.
657  *
658  * TYT, 2/25/99
659  */
profile_remove_node(struct profile_node * node)660 errcode_t profile_remove_node(struct profile_node *node)
661 {
662     CHECK_MAGIC(node);
663 
664     if (node->parent == 0)
665         return PROF_EINVAL; /* Can't remove the root! */
666 
667     node->deleted = 1;
668 
669     return 0;
670 }
671 
672 /*
673  * Set the value of a specific node containing a relation.
674  *
675  * TYT, 2/25/99
676  */
profile_set_relation_value(struct profile_node * node,const char * new_value)677 errcode_t profile_set_relation_value(struct profile_node *node,
678                                      const char *new_value)
679 {
680     char    *cp;
681 
682     CHECK_MAGIC(node);
683 
684     if (!node->value)
685         return PROF_SET_SECTION_VALUE;
686 
687     cp = strdup(new_value);
688     if (!cp)
689         return ENOMEM;
690 
691     free(node->value);
692     node->value = cp;
693 
694     return 0;
695 }
696 
697 /*
698  * Rename a specific node
699  *
700  * TYT 2/25/99
701  */
profile_rename_node(struct profile_node * node,const char * new_name)702 errcode_t profile_rename_node(struct profile_node *node, const char *new_name)
703 {
704     char                    *new_string;
705     struct profile_node     *p, *last;
706 
707     CHECK_MAGIC(node);
708 
709     if (strcmp(new_name, node->name) == 0)
710         return 0;       /* It's the same name, return */
711 
712     /*
713      * Make sure we can allocate memory for the new name, first!
714      */
715     new_string = strdup(new_name);
716     if (!new_string)
717         return ENOMEM;
718 
719     /*
720      * Find the place to where the new node should go.  We look
721      * for the place *after* the last match of the node name,
722      * since order matters.
723      */
724     for (p=node->parent->first_child, last = 0; p; last = p, p = p->next) {
725         if (strcmp(p->name, new_name) > 0)
726             break;
727     }
728 
729     /*
730      * If we need to move the node, do it now.
731      */
732     if ((p != node) && (last != node)) {
733         /*
734          * OK, let's detach the node
735          */
736         if (node->prev)
737             node->prev->next = node->next;
738         else
739             node->parent->first_child = node->next;
740         if (node->next)
741             node->next->prev = node->prev;
742 
743         /*
744          * Now let's reattach it in the right place.
745          */
746         if (p)
747             p->prev = node;
748         if (last)
749             last->next = node;
750         else
751             node->parent->first_child = node;
752         node->next = p;
753         node->prev = last;
754     }
755 
756     free(node->name);
757     node->name = new_string;
758     return 0;
759 }
760