xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision 8934827db5403eae57d4537114a9ff88b0a8460f)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 #include "amdgpu_reset.h"
39 
40 struct mm_struct;
41 
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_svm.h"
45 #include "kfd_smi_events.h"
46 #include "kfd_debug.h"
47 
48 /*
49  * List of struct kfd_process (field kfd_process).
50  * Unique/indexed by mm_struct*
51  */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 DEFINE_MUTEX(kfd_processes_mutex);
54 
55 DEFINE_SRCU(kfd_processes_srcu);
56 
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59 
60 /* Ordered, single-threaded workqueue for restoring evicted
61  * processes. Restoring multiple processes concurrently under memory
62  * pressure can lead to processes blocking each other from validating
63  * their BOs and result in a live-lock situation where processes
64  * remain evicted indefinitely.
65  */
66 static struct workqueue_struct *kfd_restore_wq;
67 
68 static struct kfd_process *find_process(const struct task_struct *thread,
69 					bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
kfd_sdma_activity_worker(struct work_struct * work)99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc_obj(struct temp_sdma_queue_list, GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_node *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 	int i;
274 	struct kfd_cu_occupancy *cu_occupancy;
275 	u32 queue_format;
276 
277 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
278 	dev = pdd->dev;
279 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
280 		return -EINVAL;
281 
282 	cu_cnt = 0;
283 	proc = pdd->process;
284 	if (pdd->qpd.queue_count == 0) {
285 		pr_debug("Gpu-Id: %d has no active queues for process pid %d\n",
286 			 dev->id, (int)proc->lead_thread->pid);
287 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
288 	}
289 
290 	/* Collect wave count from device if it supports */
291 	wave_cnt = 0;
292 	max_waves_per_cu = 0;
293 
294 	cu_occupancy = kzalloc_objs(*cu_occupancy, AMDGPU_MAX_QUEUES,
295 				    GFP_KERNEL);
296 	if (!cu_occupancy)
297 		return -ENOMEM;
298 
299 	/*
300 	 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
301 	 * For AQL queues, because of cooperative dispatch we multiply the wave count
302 	 * by number of XCCs in the partition to get the total wave counts across all
303 	 * XCCs in the partition.
304 	 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
305 	 */
306 	dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
307 			&max_waves_per_cu, ffs(dev->xcc_mask) - 1);
308 
309 	for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
310 		if (cu_occupancy[i].wave_cnt != 0 &&
311 		    kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
312 						cu_occupancy[i].doorbell_off,
313 						&queue_format)) {
314 			if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
315 				wave_cnt += cu_occupancy[i].wave_cnt;
316 			else
317 				wave_cnt += (NUM_XCC(dev->xcc_mask) *
318 						cu_occupancy[i].wave_cnt);
319 		}
320 	}
321 
322 	/* Translate wave count to number of compute units */
323 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
324 	kfree(cu_occupancy);
325 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
326 }
327 
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)328 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
329 			       char *buffer)
330 {
331 	if (strcmp(attr->name, "pasid") == 0)
332 		return snprintf(buffer, PAGE_SIZE, "%d\n", 0);
333 	else if (strncmp(attr->name, "vram_", 5) == 0) {
334 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
335 							      attr_vram);
336 		return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
337 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
338 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
339 							      attr_sdma);
340 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
341 
342 		INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
343 				  kfd_sdma_activity_worker);
344 
345 		sdma_activity_work_handler.pdd = pdd;
346 		sdma_activity_work_handler.sdma_activity_counter = 0;
347 
348 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
349 
350 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
351 		destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
352 
353 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
354 				(sdma_activity_work_handler.sdma_activity_counter)/
355 				 SDMA_ACTIVITY_DIVISOR);
356 	} else {
357 		pr_err("Invalid attribute");
358 		return -EINVAL;
359 	}
360 
361 	return 0;
362 }
363 
kfd_procfs_kobj_release(struct kobject * kobj)364 static void kfd_procfs_kobj_release(struct kobject *kobj)
365 {
366 	kfree(kobj);
367 }
368 
369 static const struct sysfs_ops kfd_procfs_ops = {
370 	.show = kfd_procfs_show,
371 };
372 
373 static const struct kobj_type procfs_type = {
374 	.release = kfd_procfs_kobj_release,
375 	.sysfs_ops = &kfd_procfs_ops,
376 };
377 
kfd_procfs_init(void)378 void kfd_procfs_init(void)
379 {
380 	int ret = 0;
381 
382 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
383 	if (!procfs.kobj)
384 		return;
385 
386 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
387 				   &kfd_device->kobj, "proc");
388 	if (ret) {
389 		pr_warn("Could not create procfs proc folder");
390 		/* If we fail to create the procfs, clean up */
391 		kfd_procfs_shutdown();
392 	}
393 }
394 
kfd_procfs_shutdown(void)395 void kfd_procfs_shutdown(void)
396 {
397 	if (procfs.kobj) {
398 		kobject_del(procfs.kobj);
399 		kobject_put(procfs.kobj);
400 		procfs.kobj = NULL;
401 	}
402 }
403 
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)404 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
405 				     struct attribute *attr, char *buffer)
406 {
407 	struct queue *q = container_of(kobj, struct queue, kobj);
408 
409 	if (!strcmp(attr->name, "size"))
410 		return snprintf(buffer, PAGE_SIZE, "%llu",
411 				q->properties.queue_size);
412 	else if (!strcmp(attr->name, "type"))
413 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
414 	else if (!strcmp(attr->name, "gpuid"))
415 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
416 	else
417 		pr_err("Invalid attribute");
418 
419 	return 0;
420 }
421 
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)422 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
423 				     struct attribute *attr, char *buffer)
424 {
425 	if (strcmp(attr->name, "evicted_ms") == 0) {
426 		struct kfd_process_device *pdd = container_of(attr,
427 				struct kfd_process_device,
428 				attr_evict);
429 		uint64_t evict_jiffies;
430 
431 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
432 
433 		return snprintf(buffer,
434 				PAGE_SIZE,
435 				"%llu\n",
436 				jiffies64_to_msecs(evict_jiffies));
437 
438 	/* Sysfs handle that gets CU occupancy is per device */
439 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
440 		return kfd_get_cu_occupancy(attr, buffer);
441 	} else {
442 		pr_err("Invalid attribute");
443 	}
444 
445 	return 0;
446 }
447 
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)448 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
449 				       struct attribute *attr, char *buf)
450 {
451 	struct kfd_process_device *pdd;
452 
453 	if (!strcmp(attr->name, "faults")) {
454 		pdd = container_of(attr, struct kfd_process_device,
455 				   attr_faults);
456 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
457 	}
458 	if (!strcmp(attr->name, "page_in")) {
459 		pdd = container_of(attr, struct kfd_process_device,
460 				   attr_page_in);
461 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
462 	}
463 	if (!strcmp(attr->name, "page_out")) {
464 		pdd = container_of(attr, struct kfd_process_device,
465 				   attr_page_out);
466 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
467 	}
468 	return 0;
469 }
470 
471 static struct attribute attr_queue_size = {
472 	.name = "size",
473 	.mode = KFD_SYSFS_FILE_MODE
474 };
475 
476 static struct attribute attr_queue_type = {
477 	.name = "type",
478 	.mode = KFD_SYSFS_FILE_MODE
479 };
480 
481 static struct attribute attr_queue_gpuid = {
482 	.name = "gpuid",
483 	.mode = KFD_SYSFS_FILE_MODE
484 };
485 
486 static struct attribute *procfs_queue_attrs[] = {
487 	&attr_queue_size,
488 	&attr_queue_type,
489 	&attr_queue_gpuid,
490 	NULL
491 };
492 ATTRIBUTE_GROUPS(procfs_queue);
493 
494 static const struct sysfs_ops procfs_queue_ops = {
495 	.show = kfd_procfs_queue_show,
496 };
497 
498 static const struct kobj_type procfs_queue_type = {
499 	.sysfs_ops = &procfs_queue_ops,
500 	.default_groups = procfs_queue_groups,
501 };
502 
503 static const struct sysfs_ops procfs_stats_ops = {
504 	.show = kfd_procfs_stats_show,
505 };
506 
507 static const struct kobj_type procfs_stats_type = {
508 	.sysfs_ops = &procfs_stats_ops,
509 	.release = kfd_procfs_kobj_release,
510 };
511 
512 static const struct sysfs_ops sysfs_counters_ops = {
513 	.show = kfd_sysfs_counters_show,
514 };
515 
516 static const struct kobj_type sysfs_counters_type = {
517 	.sysfs_ops = &sysfs_counters_ops,
518 	.release = kfd_procfs_kobj_release,
519 };
520 
kfd_procfs_add_queue(struct queue * q)521 int kfd_procfs_add_queue(struct queue *q)
522 {
523 	struct kfd_process *proc;
524 	int ret;
525 
526 	if (!q || !q->process)
527 		return -EINVAL;
528 	proc = q->process;
529 
530 	/* Create proc/<pid>/queues/<queue id> folder */
531 	if (!proc->kobj_queues)
532 		return -EFAULT;
533 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
534 			proc->kobj_queues, "%u", q->properties.queue_id);
535 	if (ret < 0) {
536 		pr_warn("Creating proc/<pid>/queues/%u failed",
537 			q->properties.queue_id);
538 		kobject_put(&q->kobj);
539 		return ret;
540 	}
541 
542 	return 0;
543 }
544 
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)545 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
546 				 char *name)
547 {
548 	int ret;
549 
550 	if (!kobj || !attr || !name)
551 		return;
552 
553 	attr->name = name;
554 	attr->mode = KFD_SYSFS_FILE_MODE;
555 	sysfs_attr_init(attr);
556 
557 	ret = sysfs_create_file(kobj, attr);
558 	if (ret)
559 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
560 }
561 
kfd_procfs_add_sysfs_stats(struct kfd_process * p)562 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
563 {
564 	int ret;
565 	int i;
566 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
567 
568 	if (!p || !p->kobj)
569 		return;
570 
571 	/*
572 	 * Create sysfs files for each GPU:
573 	 * - proc/<pid>/stats_<gpuid>/
574 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
575 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
576 	 */
577 	for (i = 0; i < p->n_pdds; i++) {
578 		struct kfd_process_device *pdd = p->pdds[i];
579 
580 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
581 				"stats_%u", pdd->dev->id);
582 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
583 		if (!pdd->kobj_stats)
584 			return;
585 
586 		ret = kobject_init_and_add(pdd->kobj_stats,
587 					   &procfs_stats_type,
588 					   p->kobj,
589 					   stats_dir_filename);
590 
591 		if (ret) {
592 			pr_warn("Creating KFD proc/stats_%s folder failed",
593 				stats_dir_filename);
594 			kobject_put(pdd->kobj_stats);
595 			pdd->kobj_stats = NULL;
596 			return;
597 		}
598 
599 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
600 				      "evicted_ms");
601 		/* Add sysfs file to report compute unit occupancy */
602 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
603 			kfd_sysfs_create_file(pdd->kobj_stats,
604 					      &pdd->attr_cu_occupancy,
605 					      "cu_occupancy");
606 	}
607 }
608 
kfd_procfs_add_sysfs_counters(struct kfd_process * p)609 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
610 {
611 	int ret = 0;
612 	int i;
613 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
614 
615 	if (!p || !p->kobj)
616 		return;
617 
618 	/*
619 	 * Create sysfs files for each GPU which supports SVM
620 	 * - proc/<pid>/counters_<gpuid>/
621 	 * - proc/<pid>/counters_<gpuid>/faults
622 	 * - proc/<pid>/counters_<gpuid>/page_in
623 	 * - proc/<pid>/counters_<gpuid>/page_out
624 	 */
625 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
626 		struct kfd_process_device *pdd = p->pdds[i];
627 		struct kobject *kobj_counters;
628 
629 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
630 			"counters_%u", pdd->dev->id);
631 		kobj_counters = kfd_alloc_struct(kobj_counters);
632 		if (!kobj_counters)
633 			return;
634 
635 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
636 					   p->kobj, counters_dir_filename);
637 		if (ret) {
638 			pr_warn("Creating KFD proc/%s folder failed",
639 				counters_dir_filename);
640 			kobject_put(kobj_counters);
641 			return;
642 		}
643 
644 		pdd->kobj_counters = kobj_counters;
645 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
646 				      "faults");
647 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
648 				      "page_in");
649 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
650 				      "page_out");
651 	}
652 }
653 
kfd_procfs_add_sysfs_files(struct kfd_process * p)654 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
655 {
656 	int i;
657 
658 	if (!p || !p->kobj)
659 		return;
660 
661 	/*
662 	 * Create sysfs files for each GPU:
663 	 * - proc/<pid>/vram_<gpuid>
664 	 * - proc/<pid>/sdma_<gpuid>
665 	 */
666 	for (i = 0; i < p->n_pdds; i++) {
667 		struct kfd_process_device *pdd = p->pdds[i];
668 
669 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
670 			 pdd->dev->id);
671 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
672 				      pdd->vram_filename);
673 
674 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
675 			 pdd->dev->id);
676 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
677 					    pdd->sdma_filename);
678 	}
679 }
680 
kfd_procfs_del_queue(struct queue * q)681 void kfd_procfs_del_queue(struct queue *q)
682 {
683 	if (!q)
684 		return;
685 
686 	kobject_del(&q->kobj);
687 	kobject_put(&q->kobj);
688 }
689 
kfd_process_create_wq(void)690 int kfd_process_create_wq(void)
691 {
692 	if (!kfd_process_wq)
693 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
694 	if (!kfd_restore_wq)
695 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
696 							 WQ_FREEZABLE);
697 
698 	if (!kfd_process_wq || !kfd_restore_wq) {
699 		kfd_process_destroy_wq();
700 		return -ENOMEM;
701 	}
702 
703 	return 0;
704 }
705 
kfd_process_destroy_wq(void)706 void kfd_process_destroy_wq(void)
707 {
708 	if (kfd_process_wq) {
709 		destroy_workqueue(kfd_process_wq);
710 		kfd_process_wq = NULL;
711 	}
712 	if (kfd_restore_wq) {
713 		destroy_workqueue(kfd_restore_wq);
714 		kfd_restore_wq = NULL;
715 	}
716 }
717 
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void ** kptr)718 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
719 			struct kfd_process_device *pdd, void **kptr)
720 {
721 	struct kfd_node *dev = pdd->dev;
722 
723 	if (kptr && *kptr) {
724 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
725 		*kptr = NULL;
726 	}
727 
728 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
729 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
730 					       NULL);
731 }
732 
733 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
734  *	This function should be only called right after the process
735  *	is created and when kfd_processes_mutex is still being held
736  *	to avoid concurrency. Because of that exclusiveness, we do
737  *	not need to take p->mutex.
738  */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)739 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
740 				   uint64_t gpu_va, uint32_t size,
741 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
742 {
743 	struct kfd_node *kdev = pdd->dev;
744 	int err;
745 
746 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
747 						 pdd->drm_priv, mem, NULL,
748 						 flags, false);
749 	if (err)
750 		goto err_alloc_mem;
751 
752 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
753 			pdd->drm_priv);
754 	if (err)
755 		goto err_map_mem;
756 
757 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
758 	if (err) {
759 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
760 		goto sync_memory_failed;
761 	}
762 
763 	if (kptr) {
764 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
765 				(struct kgd_mem *)*mem, kptr, NULL);
766 		if (err) {
767 			pr_debug("Map GTT BO to kernel failed\n");
768 			goto sync_memory_failed;
769 		}
770 	}
771 
772 	return err;
773 
774 sync_memory_failed:
775 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
776 
777 err_map_mem:
778 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
779 					       NULL);
780 err_alloc_mem:
781 	*mem = NULL;
782 	*kptr = NULL;
783 	return err;
784 }
785 
786 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
787  *	process for IB usage The memory reserved is for KFD to submit
788  *	IB to AMDGPU from kernel.  If the memory is reserved
789  *	successfully, ib_kaddr will have the CPU/kernel
790  *	address. Check ib_kaddr before accessing the memory.
791  */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)792 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
793 {
794 	struct qcm_process_device *qpd = &pdd->qpd;
795 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
796 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
797 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
798 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
799 	struct kgd_mem *mem;
800 	void *kaddr;
801 	int ret;
802 
803 	if (qpd->ib_kaddr || !qpd->ib_base)
804 		return 0;
805 
806 	/* ib_base is only set for dGPU */
807 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
808 				      &mem, &kaddr);
809 	if (ret)
810 		return ret;
811 
812 	qpd->ib_mem = mem;
813 	qpd->ib_kaddr = kaddr;
814 
815 	return 0;
816 }
817 
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)818 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
819 {
820 	struct qcm_process_device *qpd = &pdd->qpd;
821 
822 	if (!qpd->ib_kaddr || !qpd->ib_base)
823 		return;
824 
825 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
826 }
827 
kfd_create_process_sysfs(struct kfd_process * process)828 int kfd_create_process_sysfs(struct kfd_process *process)
829 {
830 	struct kfd_process *primary_process;
831 	int ret;
832 
833 	if (process->kobj) {
834 		pr_warn("kobject already exists for the kfd_process\n");
835 		return -EINVAL;
836 	}
837 
838 	process->kobj = kfd_alloc_struct(process->kobj);
839 	if (!process->kobj) {
840 		pr_warn("Creating procfs kobject failed");
841 		return -ENOMEM;
842 	}
843 
844 	if (process->context_id == KFD_CONTEXT_ID_PRIMARY)
845 		ret = kobject_init_and_add(process->kobj, &procfs_type,
846 					   procfs.kobj, "%d",
847 					   (int)process->lead_thread->pid);
848 	else {
849 		primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm);
850 		if (!primary_process)
851 			return -ESRCH;
852 
853 		ret = kobject_init_and_add(process->kobj, &procfs_type,
854 					   primary_process->kobj, "context_%u",
855 					   process->context_id);
856 		kfd_unref_process(primary_process);
857 	}
858 
859 	if (ret) {
860 		pr_warn("Creating procfs pid directory failed");
861 		kobject_put(process->kobj);
862 		return ret;
863 	}
864 
865 	kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
866 			      "pasid");
867 
868 	process->kobj_queues = kobject_create_and_add("queues",
869 						process->kobj);
870 	if (!process->kobj_queues)
871 		pr_warn("Creating KFD proc/queues folder failed");
872 
873 	kfd_procfs_add_sysfs_stats(process);
874 	kfd_procfs_add_sysfs_files(process);
875 	kfd_procfs_add_sysfs_counters(process);
876 
877 	return 0;
878 }
879 
kfd_process_alloc_id(struct kfd_process * process)880 static int kfd_process_alloc_id(struct kfd_process *process)
881 {
882 	int ret;
883 	struct kfd_process *primary_process;
884 
885 	/* already assign 0xFFFF when create */
886 	if (process->context_id == KFD_CONTEXT_ID_PRIMARY)
887 		return 0;
888 
889 	primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm);
890 	if (!primary_process)
891 		return -ESRCH;
892 
893 	/* id range: KFD_CONTEXT_ID_MIN to 0xFFFE */
894 	ret = ida_alloc_range(&primary_process->id_table, KFD_CONTEXT_ID_MIN,
895 	      KFD_CONTEXT_ID_PRIMARY - 1, GFP_KERNEL);
896 	if (ret < 0)
897 		goto out;
898 
899 	process->context_id = ret;
900 	ret = 0;
901 
902 out:
903 	kfd_unref_process(primary_process);
904 
905 	return ret;
906 }
907 
kfd_process_free_id(struct kfd_process * process)908 static void kfd_process_free_id(struct kfd_process *process)
909 {
910 	struct kfd_process *primary_process;
911 
912 	if (process->context_id != KFD_CONTEXT_ID_PRIMARY)
913 		return;
914 
915 	primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm);
916 	if (!primary_process)
917 		return;
918 
919 	ida_free(&primary_process->id_table, process->context_id);
920 
921 	kfd_unref_process(primary_process);
922 }
923 
kfd_create_process(struct task_struct * thread)924 struct kfd_process *kfd_create_process(struct task_struct *thread)
925 {
926 	struct kfd_process *process;
927 	int ret;
928 
929 	if (!(thread->mm && mmget_not_zero(thread->mm)))
930 		return ERR_PTR(-EINVAL);
931 
932 	/* If the process just called exec(3), it is possible that the
933 	 * cleanup of the kfd_process (following the release of the mm
934 	 * of the old process image) is still in the cleanup work queue.
935 	 * Make sure to drain any job before trying to recreate any
936 	 * resource for this process.
937 	 */
938 	flush_workqueue(kfd_process_wq);
939 
940 	/*
941 	 * take kfd processes mutex before starting of process creation
942 	 * so there won't be a case where two threads of the same process
943 	 * create two kfd_process structures
944 	 */
945 	mutex_lock(&kfd_processes_mutex);
946 
947 	if (kfd_gpu_node_num() <= 0) {
948 		pr_warn("no gpu node! Cannot create KFD process");
949 		process = ERR_PTR(-EINVAL);
950 		goto out;
951 	}
952 
953 	if (kfd_is_locked(NULL)) {
954 		pr_debug("KFD is locked! Cannot create process");
955 		process = ERR_PTR(-EINVAL);
956 		goto out;
957 	}
958 
959 	/* A prior open of /dev/kfd could have already created the process.
960 	 * find_process will increase process kref in this case
961 	 */
962 	process = find_process(thread, true);
963 	if (process) {
964 		pr_debug("Process already found\n");
965 	} else {
966 		process = create_process(thread, true);
967 		if (IS_ERR(process))
968 			goto out;
969 
970 		if (!procfs.kobj)
971 			goto out;
972 
973 		ret = kfd_create_process_sysfs(process);
974 		if (ret)
975 			pr_warn("Failed to create sysfs entry for the kfd_process");
976 
977 		kfd_debugfs_add_process(process);
978 
979 		init_waitqueue_head(&process->wait_irq_drain);
980 	}
981 out:
982 	mutex_unlock(&kfd_processes_mutex);
983 	mmput(thread->mm);
984 
985 	return process;
986 }
987 
find_process_by_mm(const struct mm_struct * mm)988 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
989 {
990 	struct kfd_process *process;
991 
992 	hash_for_each_possible_rcu(kfd_processes_table, process,
993 					kfd_processes, (uintptr_t)mm)
994 		if (process->mm == mm && process->context_id == KFD_CONTEXT_ID_PRIMARY)
995 			return process;
996 
997 	return NULL;
998 }
999 
find_process(const struct task_struct * thread,bool ref)1000 static struct kfd_process *find_process(const struct task_struct *thread,
1001 					bool ref)
1002 {
1003 	struct kfd_process *p;
1004 	int idx;
1005 
1006 	idx = srcu_read_lock(&kfd_processes_srcu);
1007 	p = find_process_by_mm(thread->mm);
1008 	if (p && ref)
1009 		kref_get(&p->ref);
1010 	srcu_read_unlock(&kfd_processes_srcu, idx);
1011 
1012 	return p;
1013 }
1014 
kfd_unref_process(struct kfd_process * p)1015 void kfd_unref_process(struct kfd_process *p)
1016 {
1017 	kref_put(&p->ref, kfd_process_ref_release);
1018 }
1019 
1020 /* This increments the process->ref counter. */
kfd_lookup_process_by_pid(struct pid * pid)1021 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
1022 {
1023 	struct task_struct *task = NULL;
1024 	struct kfd_process *p    = NULL;
1025 
1026 	if (!pid) {
1027 		task = current;
1028 		get_task_struct(task);
1029 	} else {
1030 		task = get_pid_task(pid, PIDTYPE_PID);
1031 	}
1032 
1033 	if (task) {
1034 		p = find_process(task, true);
1035 		put_task_struct(task);
1036 	}
1037 
1038 	return p;
1039 }
1040 
kfd_process_device_free_bos(struct kfd_process_device * pdd)1041 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
1042 {
1043 	struct kfd_process *p = pdd->process;
1044 	void *mem;
1045 	int id;
1046 	int i;
1047 
1048 	/*
1049 	 * Remove all handles from idr and release appropriate
1050 	 * local memory object
1051 	 */
1052 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1053 
1054 		for (i = 0; i < p->n_pdds; i++) {
1055 			struct kfd_process_device *peer_pdd = p->pdds[i];
1056 
1057 			if (!peer_pdd->drm_priv)
1058 				continue;
1059 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1060 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1061 		}
1062 
1063 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1064 						       pdd->drm_priv, NULL);
1065 		kfd_process_device_remove_obj_handle(pdd, id);
1066 	}
1067 }
1068 
1069 /*
1070  * Just kunmap and unpin signal BO here. It will be freed in
1071  * kfd_process_free_outstanding_kfd_bos()
1072  */
kfd_process_kunmap_signal_bo(struct kfd_process * p)1073 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1074 {
1075 	struct kfd_process_device *pdd;
1076 	struct kfd_node *kdev;
1077 	void *mem;
1078 
1079 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1080 	if (!kdev)
1081 		return;
1082 
1083 	mutex_lock(&p->mutex);
1084 
1085 	pdd = kfd_get_process_device_data(kdev, p);
1086 	if (!pdd)
1087 		goto out;
1088 
1089 	mem = kfd_process_device_translate_handle(
1090 		pdd, GET_IDR_HANDLE(p->signal_handle));
1091 	if (!mem)
1092 		goto out;
1093 
1094 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1095 
1096 out:
1097 	mutex_unlock(&p->mutex);
1098 }
1099 
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)1100 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1101 {
1102 	int i;
1103 
1104 	for (i = 0; i < p->n_pdds; i++)
1105 		kfd_process_device_free_bos(p->pdds[i]);
1106 }
1107 
kfd_process_destroy_pdds(struct kfd_process * p)1108 static void kfd_process_destroy_pdds(struct kfd_process *p)
1109 {
1110 	int i;
1111 
1112 	for (i = 0; i < p->n_pdds; i++) {
1113 		struct kfd_process_device *pdd = p->pdds[i];
1114 
1115 		kfd_smi_event_process(pdd, false);
1116 
1117 		pr_debug("Releasing pdd (topology id %d, for pid %d)\n",
1118 			pdd->dev->id, p->lead_thread->pid);
1119 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1120 		kfd_process_device_destroy_ib_mem(pdd);
1121 
1122 		if (pdd->drm_file)
1123 			fput(pdd->drm_file);
1124 
1125 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1126 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1127 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1128 
1129 		idr_destroy(&pdd->alloc_idr);
1130 
1131 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1132 
1133 		if (pdd->dev->kfd->shared_resources.enable_mes &&
1134 			pdd->proc_ctx_cpu_ptr)
1135 			amdgpu_amdkfd_free_kernel_mem(pdd->dev->adev,
1136 						   &pdd->proc_ctx_bo);
1137 		/*
1138 		 * before destroying pdd, make sure to report availability
1139 		 * for auto suspend
1140 		 */
1141 		if (pdd->runtime_inuse) {
1142 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1143 			pdd->runtime_inuse = false;
1144 		}
1145 
1146 		atomic_dec(&pdd->dev->kfd->kfd_processes_count);
1147 
1148 		kfree(pdd);
1149 		p->pdds[i] = NULL;
1150 	}
1151 	p->n_pdds = 0;
1152 }
1153 
kfd_process_remove_sysfs(struct kfd_process * p)1154 static void kfd_process_remove_sysfs(struct kfd_process *p)
1155 {
1156 	struct kfd_process_device *pdd;
1157 	int i;
1158 
1159 	if (!p->kobj)
1160 		return;
1161 
1162 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1163 	kobject_del(p->kobj_queues);
1164 	kobject_put(p->kobj_queues);
1165 	p->kobj_queues = NULL;
1166 
1167 	for (i = 0; i < p->n_pdds; i++) {
1168 		pdd = p->pdds[i];
1169 
1170 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1171 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1172 
1173 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1174 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1175 			sysfs_remove_file(pdd->kobj_stats,
1176 					  &pdd->attr_cu_occupancy);
1177 		kobject_del(pdd->kobj_stats);
1178 		kobject_put(pdd->kobj_stats);
1179 		pdd->kobj_stats = NULL;
1180 	}
1181 
1182 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1183 		pdd = p->pdds[i];
1184 
1185 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1186 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1187 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1188 		kobject_del(pdd->kobj_counters);
1189 		kobject_put(pdd->kobj_counters);
1190 		pdd->kobj_counters = NULL;
1191 	}
1192 
1193 	kobject_del(p->kobj);
1194 	kobject_put(p->kobj);
1195 	p->kobj = NULL;
1196 }
1197 
1198 /*
1199  * If any GPU is ongoing reset, wait for reset complete.
1200  */
kfd_process_wait_gpu_reset_complete(struct kfd_process * p)1201 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p)
1202 {
1203 	int i;
1204 
1205 	for (i = 0; i < p->n_pdds; i++)
1206 		flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq);
1207 }
1208 
1209 /* No process locking is needed in this function, because the process
1210  * is not findable any more. We must assume that no other thread is
1211  * using it any more, otherwise we couldn't safely free the process
1212  * structure in the end.
1213  */
kfd_process_wq_release(struct work_struct * work)1214 static void kfd_process_wq_release(struct work_struct *work)
1215 {
1216 	struct kfd_process *p = container_of(work, struct kfd_process,
1217 					     release_work);
1218 	struct dma_fence *ef;
1219 
1220 	/*
1221 	 * If GPU in reset, user queues may still running, wait for reset complete.
1222 	 */
1223 	kfd_process_wait_gpu_reset_complete(p);
1224 
1225 	/* Signal the eviction fence after user mode queues are
1226 	 * destroyed. This allows any BOs to be freed without
1227 	 * triggering pointless evictions or waiting for fences.
1228 	 */
1229 	synchronize_rcu();
1230 	ef = rcu_access_pointer(p->ef);
1231 	if (ef)
1232 		dma_fence_signal(ef);
1233 
1234 	if (p->context_id != KFD_CONTEXT_ID_PRIMARY)
1235 		kfd_process_free_id(p);
1236 	else
1237 		ida_destroy(&p->id_table);
1238 
1239 	kfd_debugfs_remove_process(p);
1240 
1241 	kfd_process_kunmap_signal_bo(p);
1242 	kfd_process_free_outstanding_kfd_bos(p);
1243 	svm_range_list_fini(p);
1244 
1245 	kfd_process_destroy_pdds(p);
1246 	dma_fence_put(ef);
1247 
1248 	kfd_event_free_process(p);
1249 
1250 	mutex_destroy(&p->mutex);
1251 
1252 	put_task_struct(p->lead_thread);
1253 
1254 	/* the last step is removing process entries under /sys
1255 	 * to indicate the process has been terminated.
1256 	 */
1257 	kfd_process_remove_sysfs(p);
1258 
1259 	kfree(p);
1260 }
1261 
kfd_process_ref_release(struct kref * ref)1262 static void kfd_process_ref_release(struct kref *ref)
1263 {
1264 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1265 
1266 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1267 	queue_work(kfd_process_wq, &p->release_work);
1268 }
1269 
kfd_process_alloc_notifier(struct mm_struct * mm)1270 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1271 {
1272 	/* This increments p->ref counter if kfd process p exists */
1273 	struct kfd_process *p = kfd_lookup_process_by_mm(mm);
1274 
1275 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1276 }
1277 
kfd_process_free_notifier(struct mmu_notifier * mn)1278 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1279 {
1280 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1281 }
1282 
kfd_process_table_remove(struct kfd_process * p)1283 static void kfd_process_table_remove(struct kfd_process *p)
1284 {
1285 	mutex_lock(&kfd_processes_mutex);
1286 	/*
1287 	 * Do early return if table is empty.
1288 	 *
1289 	 * This could potentially happen if this function is called concurrently
1290 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1291 	 *
1292 	 */
1293 	if (hash_empty(kfd_processes_table)) {
1294 		mutex_unlock(&kfd_processes_mutex);
1295 		return;
1296 	}
1297 	hash_del_rcu(&p->kfd_processes);
1298 	mutex_unlock(&kfd_processes_mutex);
1299 	synchronize_srcu(&kfd_processes_srcu);
1300 }
1301 
kfd_process_notifier_release_internal(struct kfd_process * p)1302 void kfd_process_notifier_release_internal(struct kfd_process *p)
1303 {
1304 	int i;
1305 
1306 	kfd_process_table_remove(p);
1307 	cancel_delayed_work_sync(&p->eviction_work);
1308 	cancel_delayed_work_sync(&p->restore_work);
1309 
1310 	/*
1311 	 * Dequeue and destroy user queues, it is not safe for GPU to access
1312 	 * system memory after mmu release notifier callback returns because
1313 	 * exit_mmap free process memory afterwards.
1314 	 */
1315 	kfd_process_dequeue_from_all_devices(p);
1316 	pqm_uninit(&p->pqm);
1317 
1318 	for (i = 0; i < p->n_pdds; i++) {
1319 		struct kfd_process_device *pdd = p->pdds[i];
1320 
1321 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1322 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1323 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1324 	}
1325 
1326 	/* Indicate to other users that MM is no longer valid */
1327 	p->mm = NULL;
1328 	kfd_dbg_trap_disable(p);
1329 
1330 	if (atomic_read(&p->debugged_process_count) > 0) {
1331 		struct kfd_process *target;
1332 		unsigned int temp;
1333 		int idx = srcu_read_lock(&kfd_processes_srcu);
1334 
1335 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1336 			if (target->debugger_process && target->debugger_process == p) {
1337 				mutex_lock_nested(&target->mutex, 1);
1338 				kfd_dbg_trap_disable(target);
1339 				mutex_unlock(&target->mutex);
1340 				if (atomic_read(&p->debugged_process_count) == 0)
1341 					break;
1342 			}
1343 		}
1344 
1345 		srcu_read_unlock(&kfd_processes_srcu, idx);
1346 	}
1347 
1348 	if (p->context_id == KFD_CONTEXT_ID_PRIMARY)
1349 		mmu_notifier_put(&p->mmu_notifier);
1350 }
1351 
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1352 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1353 					struct mm_struct *mm)
1354 {
1355 	struct kfd_process *p;
1356 
1357 	/*
1358 	 * The kfd_process structure can not be free because the
1359 	 * mmu_notifier srcu is read locked
1360 	 */
1361 	p = container_of(mn, struct kfd_process, mmu_notifier);
1362 	if (WARN_ON(p->mm != mm))
1363 		return;
1364 
1365 	kfd_process_notifier_release_internal(p);
1366 }
1367 
1368 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1369 	.release = kfd_process_notifier_release,
1370 	.alloc_notifier = kfd_process_alloc_notifier,
1371 	.free_notifier = kfd_process_free_notifier,
1372 };
1373 
1374 /*
1375  * This code handles the case when driver is being unloaded before all
1376  * mm_struct are released.  We need to safely free the kfd_process and
1377  * avoid race conditions with mmu_notifier that might try to free them.
1378  *
1379  */
kfd_cleanup_processes(void)1380 void kfd_cleanup_processes(void)
1381 {
1382 	struct kfd_process *p;
1383 	struct hlist_node *p_temp;
1384 	unsigned int temp;
1385 	HLIST_HEAD(cleanup_list);
1386 
1387 	/*
1388 	 * Move all remaining kfd_process from the process table to a
1389 	 * temp list for processing.   Once done, callback from mmu_notifier
1390 	 * release will not see the kfd_process in the table and do early return,
1391 	 * avoiding double free issues.
1392 	 */
1393 	mutex_lock(&kfd_processes_mutex);
1394 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1395 		hash_del_rcu(&p->kfd_processes);
1396 		synchronize_srcu(&kfd_processes_srcu);
1397 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1398 	}
1399 	mutex_unlock(&kfd_processes_mutex);
1400 
1401 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1402 		kfd_process_notifier_release_internal(p);
1403 
1404 	/*
1405 	 * Ensures that all outstanding free_notifier get called, triggering
1406 	 * the release of the kfd_process struct.
1407 	 */
1408 	mmu_notifier_synchronize();
1409 }
1410 
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1411 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1412 {
1413 	unsigned long  offset;
1414 	int i;
1415 
1416 	if (p->has_cwsr)
1417 		return 0;
1418 
1419 	for (i = 0; i < p->n_pdds; i++) {
1420 		struct kfd_node *dev = p->pdds[i]->dev;
1421 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1422 
1423 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1424 			continue;
1425 
1426 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1427 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1428 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1429 			MAP_SHARED, offset);
1430 
1431 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1432 			int err = qpd->tba_addr;
1433 
1434 			dev_err(dev->adev->dev,
1435 				"Failure to set tba address. error %d.\n", err);
1436 			qpd->tba_addr = 0;
1437 			qpd->cwsr_kaddr = NULL;
1438 			return err;
1439 		}
1440 
1441 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1442 
1443 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1444 
1445 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1446 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1447 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1448 	}
1449 
1450 	p->has_cwsr = true;
1451 
1452 	return 0;
1453 }
1454 
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1455 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1456 {
1457 	struct kfd_node *dev = pdd->dev;
1458 	struct qcm_process_device *qpd = &pdd->qpd;
1459 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1460 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1461 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1462 	struct kgd_mem *mem;
1463 	void *kaddr;
1464 	int ret;
1465 
1466 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1467 		return 0;
1468 
1469 	/* cwsr_base is only set for dGPU */
1470 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1471 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1472 	if (ret)
1473 		return ret;
1474 
1475 	qpd->cwsr_mem = mem;
1476 	qpd->cwsr_kaddr = kaddr;
1477 	qpd->tba_addr = qpd->cwsr_base;
1478 
1479 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1480 
1481 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1482 					pdd->process->debug_trap_enabled);
1483 
1484 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1485 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1486 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1487 
1488 	return 0;
1489 }
1490 
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1491 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1492 {
1493 	struct kfd_node *dev = pdd->dev;
1494 	struct qcm_process_device *qpd = &pdd->qpd;
1495 
1496 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1497 		return;
1498 
1499 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1500 }
1501 
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1502 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1503 				  uint64_t tba_addr,
1504 				  uint64_t tma_addr)
1505 {
1506 	if (qpd->cwsr_kaddr) {
1507 		/* KFD trap handler is bound, record as second-level TBA/TMA
1508 		 * in first-level TMA. First-level trap will jump to second.
1509 		 */
1510 		uint64_t *tma =
1511 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1512 		tma[0] = tba_addr;
1513 		tma[1] = tma_addr;
1514 	} else {
1515 		/* No trap handler bound, bind as first-level TBA/TMA. */
1516 		qpd->tba_addr = tba_addr;
1517 		qpd->tma_addr = tma_addr;
1518 	}
1519 }
1520 
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1521 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1522 {
1523 	int i;
1524 
1525 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1526 	 * boot time retry setting. Mixing processes with different
1527 	 * XNACK/retry settings can hang the GPU.
1528 	 *
1529 	 * Different GPUs can have different noretry settings depending
1530 	 * on HW bugs or limitations. We need to find at least one
1531 	 * XNACK mode for this process that's compatible with all GPUs.
1532 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1533 	 * built for XNACK-off. On GFXv9 it may perform slower.
1534 	 *
1535 	 * Therefore applications built for XNACK-off can always be
1536 	 * supported and will be our fallback if any GPU does not
1537 	 * support retry.
1538 	 */
1539 	for (i = 0; i < p->n_pdds; i++) {
1540 		struct kfd_node *dev = p->pdds[i]->dev;
1541 
1542 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1543 		 * support the SVM APIs and don't need to be considered
1544 		 * for the XNACK mode selection.
1545 		 */
1546 		if (!KFD_IS_SOC15(dev))
1547 			continue;
1548 		/* Aldebaran can always support XNACK because it can support
1549 		 * per-process XNACK mode selection. But let the dev->noretry
1550 		 * setting still influence the default XNACK mode.
1551 		 */
1552 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1553 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1554 				pr_debug("SRIOV platform xnack not supported\n");
1555 				return false;
1556 			}
1557 			continue;
1558 		}
1559 
1560 		/* GFXv10 and later GPUs do not support shader preemption
1561 		 * during page faults. This can lead to poor QoS for queue
1562 		 * management and memory-manager-related preemptions or
1563 		 * even deadlocks.
1564 		 */
1565 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1) &&
1566 		    KFD_GC_VERSION(dev) < IP_VERSION(12, 1, 0))
1567 			return false;
1568 
1569 		if (dev->kfd->noretry)
1570 			return false;
1571 	}
1572 
1573 	return true;
1574 }
1575 
kfd_process_set_trap_debug_flag(struct qcm_process_device * qpd,bool enabled)1576 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1577 				     bool enabled)
1578 {
1579 	if (qpd->cwsr_kaddr) {
1580 		uint64_t *tma =
1581 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1582 		tma[2] = enabled;
1583 	}
1584 }
1585 
1586 /*
1587  * On return the kfd_process is fully operational and will be freed when the
1588  * mm is released
1589  */
create_process(const struct task_struct * thread,bool primary)1590 struct kfd_process *create_process(const struct task_struct *thread, bool primary)
1591 {
1592 	struct kfd_process *process;
1593 	struct mmu_notifier *mn;
1594 	int err = -ENOMEM;
1595 
1596 	process = kzalloc_obj(*process, GFP_KERNEL);
1597 	if (!process)
1598 		goto err_alloc_process;
1599 
1600 	kref_init(&process->ref);
1601 	mutex_init(&process->mutex);
1602 	process->mm = thread->mm;
1603 	process->lead_thread = thread->group_leader;
1604 	process->n_pdds = 0;
1605 	process->queues_paused = false;
1606 
1607 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1608 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1609 	process->last_restore_timestamp = get_jiffies_64();
1610 	err = kfd_event_init_process(process);
1611 	if (err)
1612 		goto err_event_init;
1613 	process->is_32bit_user_mode = in_compat_syscall();
1614 	process->debug_trap_enabled = false;
1615 	process->debugger_process = NULL;
1616 	process->exception_enable_mask = 0;
1617 	atomic_set(&process->debugged_process_count, 0);
1618 	sema_init(&process->runtime_enable_sema, 0);
1619 
1620 	err = pqm_init(&process->pqm, process);
1621 	if (err != 0)
1622 		goto err_process_pqm_init;
1623 
1624 	/* init process apertures*/
1625 	err = kfd_init_apertures(process);
1626 	if (err != 0)
1627 		goto err_init_apertures;
1628 
1629 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1630 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1631 
1632 	err = svm_range_list_init(process);
1633 	if (err)
1634 		goto err_init_svm_range_list;
1635 
1636 	/* alloc_notifier needs to find the process in the hash table */
1637 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1638 			(uintptr_t)process->mm);
1639 
1640 	/* Avoid free_notifier to start kfd_process_wq_release if
1641 	 * mmu_notifier_get failed because of pending signal.
1642 	 */
1643 	kref_get(&process->ref);
1644 
1645 	/* MMU notifier registration must be the last call that can fail
1646 	 * because after this point we cannot unwind the process creation.
1647 	 * After this point, mmu_notifier_put will trigger the cleanup by
1648 	 * dropping the last process reference in the free_notifier.
1649 	 */
1650 	if (primary) {
1651 		process->context_id = KFD_CONTEXT_ID_PRIMARY;
1652 		mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1653 		if (IS_ERR(mn)) {
1654 			err = PTR_ERR(mn);
1655 			goto err_register_notifier;
1656 		}
1657 		BUG_ON(mn != &process->mmu_notifier);
1658 		ida_init(&process->id_table);
1659 	}
1660 
1661 	err = kfd_process_alloc_id(process);
1662 	if (err) {
1663 		pr_err("Creating kfd process: failed to alloc an id\n");
1664 		goto err_alloc_id;
1665 	}
1666 
1667 	kfd_unref_process(process);
1668 	get_task_struct(process->lead_thread);
1669 
1670 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1671 
1672 	return process;
1673 
1674 err_alloc_id:
1675 	kfd_process_free_id(process);
1676 err_register_notifier:
1677 	hash_del_rcu(&process->kfd_processes);
1678 	svm_range_list_fini(process);
1679 err_init_svm_range_list:
1680 	kfd_process_free_outstanding_kfd_bos(process);
1681 	kfd_process_destroy_pdds(process);
1682 err_init_apertures:
1683 	pqm_uninit(&process->pqm);
1684 err_process_pqm_init:
1685 	kfd_event_free_process(process);
1686 err_event_init:
1687 	mutex_destroy(&process->mutex);
1688 	kfree(process);
1689 err_alloc_process:
1690 	return ERR_PTR(err);
1691 }
1692 
kfd_get_process_device_data(struct kfd_node * dev,struct kfd_process * p)1693 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1694 							struct kfd_process *p)
1695 {
1696 	int i;
1697 
1698 	for (i = 0; i < p->n_pdds; i++)
1699 		if (p->pdds[i]->dev == dev)
1700 			return p->pdds[i];
1701 
1702 	return NULL;
1703 }
1704 
kfd_create_process_device_data(struct kfd_node * dev,struct kfd_process * p)1705 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1706 							struct kfd_process *p)
1707 {
1708 	struct kfd_process_device *pdd = NULL;
1709 
1710 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1711 		return NULL;
1712 	pdd = kzalloc_obj(*pdd, GFP_KERNEL);
1713 	if (!pdd)
1714 		return NULL;
1715 
1716 	pdd->dev = dev;
1717 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1718 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1719 	pdd->qpd.dqm = dev->dqm;
1720 	pdd->qpd.pqm = &p->pqm;
1721 	pdd->qpd.evicted = 0;
1722 	pdd->qpd.mapped_gws_queue = false;
1723 	pdd->process = p;
1724 	pdd->bound = PDD_UNBOUND;
1725 	pdd->already_dequeued = false;
1726 	pdd->runtime_inuse = false;
1727 	atomic64_set(&pdd->vram_usage, 0);
1728 	pdd->sdma_past_activity_counter = 0;
1729 	pdd->user_gpu_id = dev->id;
1730 	atomic64_set(&pdd->evict_duration_counter, 0);
1731 
1732 	p->pdds[p->n_pdds++] = pdd;
1733 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1734 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1735 							pdd->dev->adev,
1736 							false,
1737 							0);
1738 
1739 	/* Init idr used for memory handle translation */
1740 	idr_init(&pdd->alloc_idr);
1741 
1742 	atomic_inc(&dev->kfd->kfd_processes_count);
1743 
1744 	return pdd;
1745 }
1746 
1747 /**
1748  * kfd_process_device_init_vm - Initialize a VM for a process-device
1749  *
1750  * @pdd: The process-device
1751  * @drm_file: Optional pointer to a DRM file descriptor
1752  *
1753  * If @drm_file is specified, it will be used to acquire the VM from
1754  * that file descriptor. If successful, the @pdd takes ownership of
1755  * the file descriptor.
1756  *
1757  * If @drm_file is NULL, a new VM is created.
1758  *
1759  * Returns 0 on success, -errno on failure.
1760  */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1761 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1762 			       struct file *drm_file)
1763 {
1764 	struct amdgpu_fpriv *drv_priv;
1765 	struct amdgpu_vm *avm;
1766 	struct kfd_process *p;
1767 	struct dma_fence *ef;
1768 	struct kfd_node *dev;
1769 	int ret;
1770 
1771 	if (pdd->drm_priv)
1772 		return -EBUSY;
1773 
1774 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1775 	if (ret)
1776 		return ret;
1777 	avm = &drv_priv->vm;
1778 
1779 	p = pdd->process;
1780 	dev = pdd->dev;
1781 
1782 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1783 						     &p->kgd_process_info,
1784 						     p->ef ? NULL : &ef);
1785 	if (ret) {
1786 		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1787 		return ret;
1788 	}
1789 
1790 	if (!p->ef)
1791 		RCU_INIT_POINTER(p->ef, ef);
1792 
1793 	pdd->drm_priv = drm_file->private_data;
1794 
1795 	ret = kfd_process_device_reserve_ib_mem(pdd);
1796 	if (ret)
1797 		goto err_reserve_ib_mem;
1798 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1799 	if (ret)
1800 		goto err_init_cwsr;
1801 
1802 	if (unlikely(!avm->pasid)) {
1803 		dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated",
1804 				 avm);
1805 		ret = -EINVAL;
1806 		goto err_get_pasid;
1807 	}
1808 
1809 	pdd->pasid = avm->pasid;
1810 	pdd->drm_file = drm_file;
1811 
1812 	kfd_smi_event_process(pdd, true);
1813 
1814 	return 0;
1815 
1816 err_get_pasid:
1817 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1818 err_init_cwsr:
1819 	kfd_process_device_destroy_ib_mem(pdd);
1820 err_reserve_ib_mem:
1821 	pdd->drm_priv = NULL;
1822 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1823 
1824 	return ret;
1825 }
1826 
1827 /*
1828  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1829  * to the device.
1830  * Unbinding occurs when the process dies or the device is removed.
1831  *
1832  * Assumes that the process lock is held.
1833  */
kfd_bind_process_to_device(struct kfd_node * dev,struct kfd_process * p)1834 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1835 							struct kfd_process *p)
1836 {
1837 	struct kfd_process_device *pdd;
1838 	int err;
1839 
1840 	pdd = kfd_get_process_device_data(dev, p);
1841 	if (!pdd) {
1842 		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1843 		return ERR_PTR(-ENOMEM);
1844 	}
1845 
1846 	if (!pdd->drm_priv)
1847 		return ERR_PTR(-ENODEV);
1848 
1849 	/*
1850 	 * signal runtime-pm system to auto resume and prevent
1851 	 * further runtime suspend once device pdd is created until
1852 	 * pdd is destroyed.
1853 	 */
1854 	if (!pdd->runtime_inuse) {
1855 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1856 		if (err < 0) {
1857 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1858 			return ERR_PTR(err);
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * make sure that runtime_usage counter is incremented just once
1864 	 * per pdd
1865 	 */
1866 	pdd->runtime_inuse = true;
1867 
1868 	return pdd;
1869 }
1870 
1871 /* Create specific handle mapped to mem from process local memory idr
1872  * Assumes that the process lock is held.
1873  */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1874 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1875 					void *mem)
1876 {
1877 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1878 }
1879 
1880 /* Translate specific handle from process local memory idr
1881  * Assumes that the process lock is held.
1882  */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1883 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1884 					int handle)
1885 {
1886 	if (handle < 0)
1887 		return NULL;
1888 
1889 	return idr_find(&pdd->alloc_idr, handle);
1890 }
1891 
1892 /* Remove specific handle from process local memory idr
1893  * Assumes that the process lock is held.
1894  */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1895 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1896 					int handle)
1897 {
1898 	if (handle >= 0)
1899 		idr_remove(&pdd->alloc_idr, handle);
1900 }
1901 
kfd_lookup_process_device_by_pasid(u32 pasid)1902 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid)
1903 {
1904 	struct kfd_process_device *ret_p = NULL;
1905 	struct kfd_process *p;
1906 	unsigned int temp;
1907 	int i;
1908 
1909 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1910 		for (i = 0; i < p->n_pdds; i++) {
1911 			if (p->pdds[i]->pasid == pasid) {
1912 				ret_p = p->pdds[i];
1913 				break;
1914 			}
1915 		}
1916 		if (ret_p)
1917 			break;
1918 	}
1919 	return ret_p;
1920 }
1921 
1922 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid,struct kfd_process_device ** pdd)1923 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid,
1924 						struct kfd_process_device **pdd)
1925 {
1926 	struct kfd_process_device *ret_p;
1927 
1928 	int idx = srcu_read_lock(&kfd_processes_srcu);
1929 
1930 	ret_p = kfd_lookup_process_device_by_pasid(pasid);
1931 	if (ret_p) {
1932 		if (pdd)
1933 			*pdd = ret_p;
1934 		kref_get(&ret_p->process->ref);
1935 
1936 		srcu_read_unlock(&kfd_processes_srcu, idx);
1937 		return ret_p->process;
1938 	}
1939 
1940 	srcu_read_unlock(&kfd_processes_srcu, idx);
1941 
1942 	if (pdd)
1943 		*pdd = NULL;
1944 
1945 	return NULL;
1946 }
1947 
1948 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1949 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1950 {
1951 	struct kfd_process *p;
1952 
1953 	int idx = srcu_read_lock(&kfd_processes_srcu);
1954 
1955 	p = find_process_by_mm(mm);
1956 	if (p)
1957 		kref_get(&p->ref);
1958 
1959 	srcu_read_unlock(&kfd_processes_srcu, idx);
1960 
1961 	return p;
1962 }
1963 
1964 /* This increments the process->ref counter. */
kfd_lookup_process_by_id(const struct mm_struct * mm,u16 id)1965 struct kfd_process *kfd_lookup_process_by_id(const struct mm_struct *mm, u16 id)
1966 {
1967 	struct kfd_process *p, *ret_p = NULL;
1968 	unsigned int temp;
1969 
1970 	int idx = srcu_read_lock(&kfd_processes_srcu);
1971 
1972 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1973 		if (p->mm == mm && p->context_id == id) {
1974 			kref_get(&p->ref);
1975 			ret_p = p;
1976 			break;
1977 		}
1978 	}
1979 
1980 	srcu_read_unlock(&kfd_processes_srcu, idx);
1981 
1982 	return ret_p;
1983 }
1984 
1985 /* kfd_process_evict_queues - Evict all user queues of a process
1986  *
1987  * Eviction is reference-counted per process-device. This means multiple
1988  * evictions from different sources can be nested safely.
1989  */
kfd_process_evict_queues(struct kfd_process * p,uint32_t trigger)1990 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1991 {
1992 	int r = 0;
1993 	int i;
1994 	unsigned int n_evicted = 0;
1995 
1996 	for (i = 0; i < p->n_pdds; i++) {
1997 		struct kfd_process_device *pdd = p->pdds[i];
1998 		struct device *dev = pdd->dev->adev->dev;
1999 
2000 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
2001 					     trigger);
2002 
2003 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
2004 							    &pdd->qpd);
2005 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
2006 		 * we would like to set all the queues to be in evicted state to prevent
2007 		 * them been add back since they actually not be saved right now.
2008 		 */
2009 		if (r && r != -EIO) {
2010 			dev_err(dev, "Failed to evict process queues\n");
2011 			goto fail;
2012 		}
2013 		n_evicted++;
2014 
2015 		pdd->dev->dqm->is_hws_hang = false;
2016 	}
2017 
2018 	return r;
2019 
2020 fail:
2021 	/* To keep state consistent, roll back partial eviction by
2022 	 * restoring queues
2023 	 */
2024 	for (i = 0; i < p->n_pdds; i++) {
2025 		struct kfd_process_device *pdd = p->pdds[i];
2026 
2027 		if (n_evicted == 0)
2028 			break;
2029 
2030 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
2031 
2032 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
2033 							      &pdd->qpd))
2034 			dev_err(pdd->dev->adev->dev,
2035 				"Failed to restore queues\n");
2036 
2037 		n_evicted--;
2038 	}
2039 
2040 	return r;
2041 }
2042 
2043 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)2044 int kfd_process_restore_queues(struct kfd_process *p)
2045 {
2046 	int r, ret = 0;
2047 	int i;
2048 
2049 	for (i = 0; i < p->n_pdds; i++) {
2050 		struct kfd_process_device *pdd = p->pdds[i];
2051 		struct device *dev = pdd->dev->adev->dev;
2052 
2053 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
2054 
2055 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
2056 							      &pdd->qpd);
2057 		if (r) {
2058 			dev_err(dev, "Failed to restore process queues\n");
2059 			if (!ret)
2060 				ret = r;
2061 		}
2062 	}
2063 
2064 	return ret;
2065 }
2066 
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)2067 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
2068 {
2069 	int i;
2070 
2071 	for (i = 0; i < p->n_pdds; i++)
2072 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
2073 			return i;
2074 	return -EINVAL;
2075 }
2076 
2077 int
kfd_process_gpuid_from_node(struct kfd_process * p,struct kfd_node * node,uint32_t * gpuid,uint32_t * gpuidx)2078 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
2079 			    uint32_t *gpuid, uint32_t *gpuidx)
2080 {
2081 	int i;
2082 
2083 	for (i = 0; i < p->n_pdds; i++)
2084 		if (p->pdds[i] && p->pdds[i]->dev == node) {
2085 			*gpuid = p->pdds[i]->user_gpu_id;
2086 			*gpuidx = i;
2087 			return 0;
2088 		}
2089 	return -EINVAL;
2090 }
2091 
signal_eviction_fence(struct kfd_process * p)2092 static bool signal_eviction_fence(struct kfd_process *p)
2093 {
2094 	struct dma_fence *ef;
2095 	bool ret;
2096 
2097 	rcu_read_lock();
2098 	ef = dma_fence_get_rcu_safe(&p->ef);
2099 	rcu_read_unlock();
2100 	if (!ef)
2101 		return true;
2102 
2103 	ret = dma_fence_check_and_signal(ef);
2104 	dma_fence_put(ef);
2105 
2106 	return ret;
2107 }
2108 
evict_process_worker(struct work_struct * work)2109 static void evict_process_worker(struct work_struct *work)
2110 {
2111 	int ret;
2112 	struct kfd_process *p;
2113 	struct delayed_work *dwork;
2114 
2115 	dwork = to_delayed_work(work);
2116 
2117 	/* Process termination destroys this worker thread. So during the
2118 	 * lifetime of this thread, kfd_process p will be valid
2119 	 */
2120 	p = container_of(dwork, struct kfd_process, eviction_work);
2121 
2122 	pr_debug("Started evicting process pid %d\n", p->lead_thread->pid);
2123 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
2124 	if (!ret) {
2125 		/* If another thread already signaled the eviction fence,
2126 		 * they are responsible stopping the queues and scheduling
2127 		 * the restore work.
2128 		 */
2129 		if (signal_eviction_fence(p) ||
2130 		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
2131 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2132 			kfd_process_restore_queues(p);
2133 
2134 		pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid);
2135 	} else
2136 		pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid);
2137 }
2138 
restore_process_helper(struct kfd_process * p)2139 static int restore_process_helper(struct kfd_process *p)
2140 {
2141 	int ret = 0;
2142 
2143 	/* VMs may not have been acquired yet during debugging. */
2144 	if (p->kgd_process_info) {
2145 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2146 			p->kgd_process_info, &p->ef);
2147 		if (ret)
2148 			return ret;
2149 	}
2150 
2151 	ret = kfd_process_restore_queues(p);
2152 	if (!ret)
2153 		pr_debug("Finished restoring process pid %d\n",
2154 			p->lead_thread->pid);
2155 	else
2156 		pr_err("Failed to restore queues of process pid %d\n",
2157 		      p->lead_thread->pid);
2158 
2159 	return ret;
2160 }
2161 
restore_process_worker(struct work_struct * work)2162 static void restore_process_worker(struct work_struct *work)
2163 {
2164 	struct delayed_work *dwork;
2165 	struct kfd_process *p;
2166 	int ret = 0;
2167 
2168 	dwork = to_delayed_work(work);
2169 
2170 	/* Process termination destroys this worker thread. So during the
2171 	 * lifetime of this thread, kfd_process p will be valid
2172 	 */
2173 	p = container_of(dwork, struct kfd_process, restore_work);
2174 	pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid);
2175 
2176 	/* Setting last_restore_timestamp before successful restoration.
2177 	 * Otherwise this would have to be set by KGD (restore_process_bos)
2178 	 * before KFD BOs are unreserved. If not, the process can be evicted
2179 	 * again before the timestamp is set.
2180 	 * If restore fails, the timestamp will be set again in the next
2181 	 * attempt. This would mean that the minimum GPU quanta would be
2182 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2183 	 * functions)
2184 	 */
2185 
2186 	p->last_restore_timestamp = get_jiffies_64();
2187 
2188 	ret = restore_process_helper(p);
2189 	if (ret) {
2190 		pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n",
2191 			 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS);
2192 		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2193 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2194 			kfd_process_restore_queues(p);
2195 	}
2196 }
2197 
kfd_suspend_all_processes(void)2198 void kfd_suspend_all_processes(void)
2199 {
2200 	struct kfd_process *p;
2201 	unsigned int temp;
2202 	int idx = srcu_read_lock(&kfd_processes_srcu);
2203 
2204 	WARN(debug_evictions, "Evicting all processes");
2205 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2206 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2207 			pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid);
2208 		signal_eviction_fence(p);
2209 	}
2210 	srcu_read_unlock(&kfd_processes_srcu, idx);
2211 }
2212 
kfd_resume_all_processes(void)2213 int kfd_resume_all_processes(void)
2214 {
2215 	struct kfd_process *p;
2216 	unsigned int temp;
2217 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2218 
2219 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2220 		if (restore_process_helper(p)) {
2221 			pr_err("Restore process pid %d failed during resume\n",
2222 			      p->lead_thread->pid);
2223 			ret = -EFAULT;
2224 		}
2225 	}
2226 	srcu_read_unlock(&kfd_processes_srcu, idx);
2227 	return ret;
2228 }
2229 
kfd_reserved_mem_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)2230 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2231 			  struct vm_area_struct *vma)
2232 {
2233 	struct kfd_process_device *pdd;
2234 	struct qcm_process_device *qpd;
2235 
2236 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2237 		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2238 		return -EINVAL;
2239 	}
2240 
2241 	pdd = kfd_get_process_device_data(dev, process);
2242 	if (!pdd)
2243 		return -EINVAL;
2244 	qpd = &pdd->qpd;
2245 
2246 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2247 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2248 	if (!qpd->cwsr_kaddr) {
2249 		dev_err(dev->adev->dev,
2250 			"Error allocating per process CWSR buffer.\n");
2251 		return -ENOMEM;
2252 	}
2253 
2254 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2255 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2256 	/* Mapping pages to user process */
2257 	return remap_pfn_range(vma, vma->vm_start,
2258 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2259 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2260 }
2261 
2262 /* assumes caller holds process lock. */
kfd_process_drain_interrupts(struct kfd_process_device * pdd)2263 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2264 {
2265 	uint32_t irq_drain_fence[8];
2266 	uint8_t node_id = 0;
2267 	int r = 0;
2268 
2269 	if (!KFD_IS_SOC15(pdd->dev))
2270 		return 0;
2271 
2272 	pdd->process->irq_drain_is_open = true;
2273 
2274 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2275 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2276 							KFD_IRQ_FENCE_CLIENTID;
2277 	irq_drain_fence[3] = pdd->pasid;
2278 
2279 	/*
2280 	 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3]
2281 	 */
2282 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2283 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) ||
2284 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0) ||
2285 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(12, 1, 0)) {
2286 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2287 		irq_drain_fence[3] |= node_id << 16;
2288 	}
2289 
2290 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2291 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2292 						     irq_drain_fence)) {
2293 		pdd->process->irq_drain_is_open = false;
2294 		return 0;
2295 	}
2296 
2297 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2298 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2299 	if (r)
2300 		pdd->process->irq_drain_is_open = false;
2301 
2302 	return r;
2303 }
2304 
kfd_process_close_interrupt_drain(unsigned int pasid)2305 void kfd_process_close_interrupt_drain(unsigned int pasid)
2306 {
2307 	struct kfd_process *p;
2308 
2309 	p = kfd_lookup_process_by_pasid(pasid, NULL);
2310 
2311 	if (!p)
2312 		return;
2313 
2314 	WRITE_ONCE(p->irq_drain_is_open, false);
2315 	wake_up_all(&p->wait_irq_drain);
2316 	kfd_unref_process(p);
2317 }
2318 
2319 struct send_exception_work_handler_workarea {
2320 	struct work_struct work;
2321 	struct kfd_process *p;
2322 	unsigned int queue_id;
2323 	uint64_t error_reason;
2324 };
2325 
send_exception_work_handler(struct work_struct * work)2326 static void send_exception_work_handler(struct work_struct *work)
2327 {
2328 	struct send_exception_work_handler_workarea *workarea;
2329 	struct kfd_process *p;
2330 	struct queue *q;
2331 	struct mm_struct *mm;
2332 	struct kfd_context_save_area_header __user *csa_header;
2333 	uint64_t __user *err_payload_ptr;
2334 	uint64_t cur_err;
2335 	uint32_t ev_id;
2336 
2337 	workarea = container_of(work,
2338 				struct send_exception_work_handler_workarea,
2339 				work);
2340 	p = workarea->p;
2341 
2342 	mm = get_task_mm(p->lead_thread);
2343 
2344 	if (!mm)
2345 		return;
2346 
2347 	kthread_use_mm(mm);
2348 
2349 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2350 
2351 	if (!q)
2352 		goto out;
2353 
2354 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2355 
2356 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2357 	get_user(cur_err, err_payload_ptr);
2358 	cur_err |= workarea->error_reason;
2359 	put_user(cur_err, err_payload_ptr);
2360 	get_user(ev_id, &csa_header->err_event_id);
2361 
2362 	kfd_set_event(p, ev_id);
2363 
2364 out:
2365 	kthread_unuse_mm(mm);
2366 	mmput(mm);
2367 }
2368 
kfd_send_exception_to_runtime(struct kfd_process * p,unsigned int queue_id,uint64_t error_reason)2369 int kfd_send_exception_to_runtime(struct kfd_process *p,
2370 			unsigned int queue_id,
2371 			uint64_t error_reason)
2372 {
2373 	struct send_exception_work_handler_workarea worker;
2374 
2375 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2376 
2377 	worker.p = p;
2378 	worker.queue_id = queue_id;
2379 	worker.error_reason = error_reason;
2380 
2381 	schedule_work(&worker.work);
2382 	flush_work(&worker.work);
2383 	destroy_work_on_stack(&worker.work);
2384 
2385 	return 0;
2386 }
2387 
kfd_process_device_data_by_id(struct kfd_process * p,uint32_t gpu_id)2388 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2389 {
2390 	int i;
2391 
2392 	if (gpu_id) {
2393 		for (i = 0; i < p->n_pdds; i++) {
2394 			struct kfd_process_device *pdd = p->pdds[i];
2395 
2396 			if (pdd->user_gpu_id == gpu_id)
2397 				return pdd;
2398 		}
2399 	}
2400 	return NULL;
2401 }
2402 
kfd_process_get_user_gpu_id(struct kfd_process * p,uint32_t actual_gpu_id)2403 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2404 {
2405 	int i;
2406 
2407 	if (!actual_gpu_id)
2408 		return 0;
2409 
2410 	for (i = 0; i < p->n_pdds; i++) {
2411 		struct kfd_process_device *pdd = p->pdds[i];
2412 
2413 		if (pdd->dev->id == actual_gpu_id)
2414 			return pdd->user_gpu_id;
2415 	}
2416 	return -EINVAL;
2417 }
2418 
2419 #if defined(CONFIG_DEBUG_FS)
2420 
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)2421 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2422 {
2423 	struct kfd_process *p;
2424 	unsigned int temp;
2425 	int r = 0;
2426 
2427 	int idx = srcu_read_lock(&kfd_processes_srcu);
2428 
2429 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2430 		seq_printf(m, "Process %d PASID %d:\n",
2431 			   p->lead_thread->tgid, p->lead_thread->pid);
2432 
2433 		mutex_lock(&p->mutex);
2434 		r = pqm_debugfs_mqds(m, &p->pqm);
2435 		mutex_unlock(&p->mutex);
2436 
2437 		if (r)
2438 			break;
2439 	}
2440 
2441 	srcu_read_unlock(&kfd_processes_srcu, idx);
2442 
2443 	return r;
2444 }
2445 
2446 #endif
2447