1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2011-2012 Red Hat UK.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25
26 #define DM_MSG_PREFIX "thin"
27
28 /*
29 * Tunable constants
30 */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39 "A percentage of time allocated for copy on write");
40
41 /*
42 * The block size of the device holding pool data must be
43 * between 64KB and 1GB.
44 */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47
48 /*
49 * Device id is restricted to 24 bits.
50 */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52
53 /*
54 * How do we handle breaking sharing of data blocks?
55 * =================================================
56 *
57 * We use a standard copy-on-write btree to store the mappings for the
58 * devices (note I'm talking about copy-on-write of the metadata here, not
59 * the data). When you take an internal snapshot you clone the root node
60 * of the origin btree. After this there is no concept of an origin or a
61 * snapshot. They are just two device trees that happen to point to the
62 * same data blocks.
63 *
64 * When we get a write in we decide if it's to a shared data block using
65 * some timestamp magic. If it is, we have to break sharing.
66 *
67 * Let's say we write to a shared block in what was the origin. The
68 * steps are:
69 *
70 * i) plug io further to this physical block. (see bio_prison code).
71 *
72 * ii) quiesce any read io to that shared data block. Obviously
73 * including all devices that share this block. (see dm_deferred_set code)
74 *
75 * iii) copy the data block to a newly allocate block. This step can be
76 * missed out if the io covers the block. (schedule_copy).
77 *
78 * iv) insert the new mapping into the origin's btree
79 * (process_prepared_mapping). This act of inserting breaks some
80 * sharing of btree nodes between the two devices. Breaking sharing only
81 * effects the btree of that specific device. Btrees for the other
82 * devices that share the block never change. The btree for the origin
83 * device as it was after the last commit is untouched, ie. we're using
84 * persistent data structures in the functional programming sense.
85 *
86 * v) unplug io to this physical block, including the io that triggered
87 * the breaking of sharing.
88 *
89 * Steps (ii) and (iii) occur in parallel.
90 *
91 * The metadata _doesn't_ need to be committed before the io continues. We
92 * get away with this because the io is always written to a _new_ block.
93 * If there's a crash, then:
94 *
95 * - The origin mapping will point to the old origin block (the shared
96 * one). This will contain the data as it was before the io that triggered
97 * the breaking of sharing came in.
98 *
99 * - The snap mapping still points to the old block. As it would after
100 * the commit.
101 *
102 * The downside of this scheme is the timestamp magic isn't perfect, and
103 * will continue to think that data block in the snapshot device is shared
104 * even after the write to the origin has broken sharing. I suspect data
105 * blocks will typically be shared by many different devices, so we're
106 * breaking sharing n + 1 times, rather than n, where n is the number of
107 * devices that reference this data block. At the moment I think the
108 * benefits far, far outweigh the disadvantages.
109 */
110
111 /*----------------------------------------------------------------*/
112
113 /*
114 * Key building.
115 */
116 enum lock_space {
117 VIRTUAL,
118 PHYSICAL
119 };
120
build_key(struct dm_thin_device * td,enum lock_space ls,dm_block_t b,dm_block_t e,struct dm_cell_key * key)121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124 key->virtual = (ls == VIRTUAL);
125 key->dev = dm_thin_dev_id(td);
126 key->block_begin = b;
127 key->block_end = e;
128
129 return dm_cell_key_has_valid_range(key);
130 }
131
build_data_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133 struct dm_cell_key *key)
134 {
135 (void) build_key(td, PHYSICAL, b, b + 1llu, key);
136 }
137
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139 struct dm_cell_key *key)
140 {
141 (void) build_key(td, VIRTUAL, b, b + 1llu, key);
142 }
143
144 /*----------------------------------------------------------------*/
145
146 #define THROTTLE_THRESHOLD (1 * HZ)
147
148 struct throttle {
149 struct rw_semaphore lock;
150 unsigned long threshold;
151 bool throttle_applied;
152 };
153
throttle_init(struct throttle * t)154 static void throttle_init(struct throttle *t)
155 {
156 init_rwsem(&t->lock);
157 t->throttle_applied = false;
158 }
159
throttle_work_start(struct throttle * t)160 static void throttle_work_start(struct throttle *t)
161 {
162 t->threshold = jiffies + THROTTLE_THRESHOLD;
163 }
164
throttle_work_update(struct throttle * t)165 static void throttle_work_update(struct throttle *t)
166 {
167 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168 down_write(&t->lock);
169 t->throttle_applied = true;
170 }
171 }
172
throttle_work_complete(struct throttle * t)173 static void throttle_work_complete(struct throttle *t)
174 {
175 if (t->throttle_applied) {
176 t->throttle_applied = false;
177 up_write(&t->lock);
178 }
179 }
180
throttle_lock(struct throttle * t)181 static void throttle_lock(struct throttle *t)
182 {
183 down_read(&t->lock);
184 }
185
throttle_unlock(struct throttle * t)186 static void throttle_unlock(struct throttle *t)
187 {
188 up_read(&t->lock);
189 }
190
191 /*----------------------------------------------------------------*/
192
193 /*
194 * A pool device ties together a metadata device and a data device. It
195 * also provides the interface for creating and destroying internal
196 * devices.
197 */
198 struct dm_thin_new_mapping;
199
200 /*
201 * The pool runs in various modes. Ordered in degraded order for comparisons.
202 */
203 enum pool_mode {
204 PM_WRITE, /* metadata may be changed */
205 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
206
207 /*
208 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209 */
210 PM_OUT_OF_METADATA_SPACE,
211 PM_READ_ONLY, /* metadata may not be changed */
212
213 PM_FAIL, /* all I/O fails */
214 };
215
216 struct pool_features {
217 enum pool_mode mode;
218
219 bool zero_new_blocks:1;
220 bool discard_enabled:1;
221 bool discard_passdown:1;
222 bool error_if_no_space:1;
223 };
224
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229
230 #define CELL_SORT_ARRAY_SIZE 8192
231
232 struct pool {
233 struct list_head list;
234 struct dm_target *ti; /* Only set if a pool target is bound */
235
236 struct mapped_device *pool_md;
237 struct block_device *data_dev;
238 struct block_device *md_dev;
239 struct dm_pool_metadata *pmd;
240
241 dm_block_t low_water_blocks;
242 uint32_t sectors_per_block;
243 int sectors_per_block_shift;
244
245 struct pool_features pf;
246 bool low_water_triggered:1; /* A dm event has been sent */
247 bool suspended:1;
248 bool out_of_data_space:1;
249
250 struct dm_bio_prison *prison;
251 struct dm_kcopyd_client *copier;
252
253 struct work_struct worker;
254 struct workqueue_struct *wq;
255 struct throttle throttle;
256 struct delayed_work waker;
257 struct delayed_work no_space_timeout;
258
259 unsigned long last_commit_jiffies;
260 unsigned int ref_count;
261
262 spinlock_t lock;
263 struct bio_list deferred_flush_bios;
264 struct bio_list deferred_flush_completions;
265 struct list_head prepared_mappings;
266 struct list_head prepared_discards;
267 struct list_head prepared_discards_pt2;
268 struct list_head active_thins;
269
270 struct dm_deferred_set *shared_read_ds;
271 struct dm_deferred_set *all_io_ds;
272
273 struct dm_thin_new_mapping *next_mapping;
274
275 process_bio_fn process_bio;
276 process_bio_fn process_discard;
277
278 process_cell_fn process_cell;
279 process_cell_fn process_discard_cell;
280
281 process_mapping_fn process_prepared_mapping;
282 process_mapping_fn process_prepared_discard;
283 process_mapping_fn process_prepared_discard_pt2;
284
285 struct dm_bio_prison_cell **cell_sort_array;
286
287 mempool_t mapping_pool;
288 };
289
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291
get_pool_mode(struct pool * pool)292 static enum pool_mode get_pool_mode(struct pool *pool)
293 {
294 return pool->pf.mode;
295 }
296
notify_of_pool_mode_change(struct pool * pool)297 static void notify_of_pool_mode_change(struct pool *pool)
298 {
299 static const char *descs[] = {
300 "write",
301 "out-of-data-space",
302 "read-only",
303 "read-only",
304 "fail"
305 };
306 const char *extra_desc = NULL;
307 enum pool_mode mode = get_pool_mode(pool);
308
309 if (mode == PM_OUT_OF_DATA_SPACE) {
310 if (!pool->pf.error_if_no_space)
311 extra_desc = " (queue IO)";
312 else
313 extra_desc = " (error IO)";
314 }
315
316 dm_table_event(pool->ti->table);
317 DMINFO("%s: switching pool to %s%s mode",
318 dm_device_name(pool->pool_md),
319 descs[(int)mode], extra_desc ? : "");
320 }
321
322 /*
323 * Target context for a pool.
324 */
325 struct pool_c {
326 struct dm_target *ti;
327 struct pool *pool;
328 struct dm_dev *data_dev;
329 struct dm_dev *metadata_dev;
330
331 dm_block_t low_water_blocks;
332 struct pool_features requested_pf; /* Features requested during table load */
333 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
334 };
335
336 /*
337 * Target context for a thin.
338 */
339 struct thin_c {
340 struct list_head list;
341 struct dm_dev *pool_dev;
342 struct dm_dev *origin_dev;
343 sector_t origin_size;
344 dm_thin_id dev_id;
345
346 struct pool *pool;
347 struct dm_thin_device *td;
348 struct mapped_device *thin_md;
349
350 bool requeue_mode:1;
351 spinlock_t lock;
352 struct list_head deferred_cells;
353 struct bio_list deferred_bio_list;
354 struct bio_list retry_on_resume_list;
355 struct rb_root sort_bio_list; /* sorted list of deferred bios */
356
357 /*
358 * Ensures the thin is not destroyed until the worker has finished
359 * iterating the active_thins list.
360 */
361 refcount_t refcount;
362 struct completion can_destroy;
363 };
364
365 /*----------------------------------------------------------------*/
366
block_size_is_power_of_two(struct pool * pool)367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369 return pool->sectors_per_block_shift >= 0;
370 }
371
block_to_sectors(struct pool * pool,dm_block_t b)372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374 return block_size_is_power_of_two(pool) ?
375 (b << pool->sectors_per_block_shift) :
376 (b * pool->sectors_per_block);
377 }
378
379 /*----------------------------------------------------------------*/
380
381 struct discard_op {
382 struct thin_c *tc;
383 struct blk_plug plug;
384 struct bio *parent_bio;
385 struct bio *bio;
386 };
387
begin_discard(struct discard_op * op,struct thin_c * tc,struct bio * parent)388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390 BUG_ON(!parent);
391
392 op->tc = tc;
393 blk_start_plug(&op->plug);
394 op->parent_bio = parent;
395 op->bio = NULL;
396 }
397
issue_discard(struct discard_op * op,dm_block_t data_b,dm_block_t data_e)398 static void issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400 struct thin_c *tc = op->tc;
401 sector_t s = block_to_sectors(tc->pool, data_b);
402 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403
404 __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
405 }
406
end_discard(struct discard_op * op,int r)407 static void end_discard(struct discard_op *op, int r)
408 {
409 if (op->bio) {
410 /*
411 * Even if one of the calls to issue_discard failed, we
412 * need to wait for the chain to complete.
413 */
414 bio_chain(op->bio, op->parent_bio);
415 op->bio->bi_opf = REQ_OP_DISCARD;
416 submit_bio(op->bio);
417 }
418
419 blk_finish_plug(&op->plug);
420
421 /*
422 * Even if r is set, there could be sub discards in flight that we
423 * need to wait for.
424 */
425 if (r && !op->parent_bio->bi_status)
426 op->parent_bio->bi_status = errno_to_blk_status(r);
427 bio_endio(op->parent_bio);
428 }
429
430 /*----------------------------------------------------------------*/
431
432 /*
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
435 */
wake_worker(struct pool * pool)436 static void wake_worker(struct pool *pool)
437 {
438 queue_work(pool->wq, &pool->worker);
439 }
440
441 /*----------------------------------------------------------------*/
442
bio_detain(struct pool * pool,struct dm_cell_key * key,struct bio * bio,struct dm_bio_prison_cell ** cell_result)443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 struct dm_bio_prison_cell **cell_result)
445 {
446 int r;
447 struct dm_bio_prison_cell *cell_prealloc;
448
449 /*
450 * Allocate a cell from the prison's mempool.
451 * This might block but it can't fail.
452 */
453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454
455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 if (r) {
457 /*
458 * We reused an old cell; we can get rid of
459 * the new one.
460 */
461 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462 }
463
464 return r;
465 }
466
cell_release(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)467 static void cell_release(struct pool *pool,
468 struct dm_bio_prison_cell *cell,
469 struct bio_list *bios)
470 {
471 dm_cell_release(pool->prison, cell, bios);
472 dm_bio_prison_free_cell(pool->prison, cell);
473 }
474
cell_visit_release(struct pool * pool,void (* fn)(void *,struct dm_bio_prison_cell *),void * context,struct dm_bio_prison_cell * cell)475 static void cell_visit_release(struct pool *pool,
476 void (*fn)(void *, struct dm_bio_prison_cell *),
477 void *context,
478 struct dm_bio_prison_cell *cell)
479 {
480 dm_cell_visit_release(pool->prison, fn, context, cell);
481 dm_bio_prison_free_cell(pool->prison, cell);
482 }
483
cell_release_no_holder(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)484 static void cell_release_no_holder(struct pool *pool,
485 struct dm_bio_prison_cell *cell,
486 struct bio_list *bios)
487 {
488 dm_cell_release_no_holder(pool->prison, cell, bios);
489 dm_bio_prison_free_cell(pool->prison, cell);
490 }
491
cell_error_with_code(struct pool * pool,struct dm_bio_prison_cell * cell,blk_status_t error_code)492 static void cell_error_with_code(struct pool *pool,
493 struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 {
495 dm_cell_error(pool->prison, cell, error_code);
496 dm_bio_prison_free_cell(pool->prison, cell);
497 }
498
get_pool_io_error_code(struct pool * pool)499 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 {
501 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 }
503
cell_error(struct pool * pool,struct dm_bio_prison_cell * cell)504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 {
506 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 }
508
cell_success(struct pool * pool,struct dm_bio_prison_cell * cell)509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 {
511 cell_error_with_code(pool, cell, 0);
512 }
513
cell_requeue(struct pool * pool,struct dm_bio_prison_cell * cell)514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 {
516 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 }
518
519 /*----------------------------------------------------------------*/
520
521 /*
522 * A global list of pools that uses a struct mapped_device as a key.
523 */
524 static struct dm_thin_pool_table {
525 struct mutex mutex;
526 struct list_head pools;
527 } dm_thin_pool_table;
528
pool_table_init(void)529 static void pool_table_init(void)
530 {
531 mutex_init(&dm_thin_pool_table.mutex);
532 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 }
534
pool_table_exit(void)535 static void pool_table_exit(void)
536 {
537 mutex_destroy(&dm_thin_pool_table.mutex);
538 }
539
__pool_table_insert(struct pool * pool)540 static void __pool_table_insert(struct pool *pool)
541 {
542 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543 list_add(&pool->list, &dm_thin_pool_table.pools);
544 }
545
__pool_table_remove(struct pool * pool)546 static void __pool_table_remove(struct pool *pool)
547 {
548 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549 list_del(&pool->list);
550 }
551
__pool_table_lookup(struct mapped_device * md)552 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 {
554 struct pool *pool = NULL, *tmp;
555
556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557
558 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559 if (tmp->pool_md == md) {
560 pool = tmp;
561 break;
562 }
563 }
564
565 return pool;
566 }
567
__pool_table_lookup_metadata_dev(struct block_device * md_dev)568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 {
570 struct pool *pool = NULL, *tmp;
571
572 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573
574 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575 if (tmp->md_dev == md_dev) {
576 pool = tmp;
577 break;
578 }
579 }
580
581 return pool;
582 }
583
584 /*----------------------------------------------------------------*/
585
586 struct dm_thin_endio_hook {
587 struct thin_c *tc;
588 struct dm_deferred_entry *shared_read_entry;
589 struct dm_deferred_entry *all_io_entry;
590 struct dm_thin_new_mapping *overwrite_mapping;
591 struct rb_node rb_node;
592 struct dm_bio_prison_cell *cell;
593 };
594
error_bio_list(struct bio_list * bios,blk_status_t error)595 static void error_bio_list(struct bio_list *bios, blk_status_t error)
596 {
597 struct bio *bio;
598
599 while ((bio = bio_list_pop(bios))) {
600 bio->bi_status = error;
601 bio_endio(bio);
602 }
603 }
604
error_thin_bio_list(struct thin_c * tc,struct bio_list * master,blk_status_t error)605 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
606 blk_status_t error)
607 {
608 struct bio_list bios;
609
610 bio_list_init(&bios);
611
612 spin_lock_irq(&tc->lock);
613 bio_list_merge_init(&bios, master);
614 spin_unlock_irq(&tc->lock);
615
616 error_bio_list(&bios, error);
617 }
618
requeue_deferred_cells(struct thin_c * tc)619 static void requeue_deferred_cells(struct thin_c *tc)
620 {
621 struct pool *pool = tc->pool;
622 struct list_head cells;
623 struct dm_bio_prison_cell *cell, *tmp;
624
625 INIT_LIST_HEAD(&cells);
626
627 spin_lock_irq(&tc->lock);
628 list_splice_init(&tc->deferred_cells, &cells);
629 spin_unlock_irq(&tc->lock);
630
631 list_for_each_entry_safe(cell, tmp, &cells, user_list)
632 cell_requeue(pool, cell);
633 }
634
requeue_io(struct thin_c * tc)635 static void requeue_io(struct thin_c *tc)
636 {
637 struct bio_list bios;
638
639 bio_list_init(&bios);
640
641 spin_lock_irq(&tc->lock);
642 bio_list_merge_init(&bios, &tc->deferred_bio_list);
643 bio_list_merge_init(&bios, &tc->retry_on_resume_list);
644 spin_unlock_irq(&tc->lock);
645
646 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
647 requeue_deferred_cells(tc);
648 }
649
error_retry_list_with_code(struct pool * pool,blk_status_t error)650 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
651 {
652 struct thin_c *tc;
653
654 rcu_read_lock();
655 list_for_each_entry_rcu(tc, &pool->active_thins, list)
656 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
657 rcu_read_unlock();
658 }
659
error_retry_list(struct pool * pool)660 static void error_retry_list(struct pool *pool)
661 {
662 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
663 }
664
665 /*
666 * This section of code contains the logic for processing a thin device's IO.
667 * Much of the code depends on pool object resources (lists, workqueues, etc)
668 * but most is exclusively called from the thin target rather than the thin-pool
669 * target.
670 */
671
get_bio_block(struct thin_c * tc,struct bio * bio)672 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
673 {
674 struct pool *pool = tc->pool;
675 sector_t block_nr = bio->bi_iter.bi_sector;
676
677 if (block_size_is_power_of_two(pool))
678 block_nr >>= pool->sectors_per_block_shift;
679 else
680 (void) sector_div(block_nr, pool->sectors_per_block);
681
682 return block_nr;
683 }
684
685 /*
686 * Returns the _complete_ blocks that this bio covers.
687 */
get_bio_block_range(struct thin_c * tc,struct bio * bio,dm_block_t * begin,dm_block_t * end)688 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
689 dm_block_t *begin, dm_block_t *end)
690 {
691 struct pool *pool = tc->pool;
692 sector_t b = bio->bi_iter.bi_sector;
693 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
694
695 b += pool->sectors_per_block - 1ull; /* so we round up */
696
697 if (block_size_is_power_of_two(pool)) {
698 b >>= pool->sectors_per_block_shift;
699 e >>= pool->sectors_per_block_shift;
700 } else {
701 (void) sector_div(b, pool->sectors_per_block);
702 (void) sector_div(e, pool->sectors_per_block);
703 }
704
705 if (e < b) {
706 /* Can happen if the bio is within a single block. */
707 e = b;
708 }
709
710 *begin = b;
711 *end = e;
712 }
713
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)714 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
715 {
716 struct pool *pool = tc->pool;
717 sector_t bi_sector = bio->bi_iter.bi_sector;
718
719 bio_set_dev(bio, tc->pool_dev->bdev);
720 if (block_size_is_power_of_two(pool)) {
721 bio->bi_iter.bi_sector =
722 (block << pool->sectors_per_block_shift) |
723 (bi_sector & (pool->sectors_per_block - 1));
724 } else {
725 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
726 sector_div(bi_sector, pool->sectors_per_block);
727 }
728 }
729
remap_to_origin(struct thin_c * tc,struct bio * bio)730 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
731 {
732 bio_set_dev(bio, tc->origin_dev->bdev);
733 }
734
bio_triggers_commit(struct thin_c * tc,struct bio * bio)735 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
736 {
737 return op_is_flush(bio->bi_opf) &&
738 dm_thin_changed_this_transaction(tc->td);
739 }
740
inc_all_io_entry(struct pool * pool,struct bio * bio)741 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
742 {
743 struct dm_thin_endio_hook *h;
744
745 if (bio_op(bio) == REQ_OP_DISCARD)
746 return;
747
748 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
749 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
750 }
751
issue(struct thin_c * tc,struct bio * bio)752 static void issue(struct thin_c *tc, struct bio *bio)
753 {
754 struct pool *pool = tc->pool;
755
756 if (!bio_triggers_commit(tc, bio)) {
757 dm_submit_bio_remap(bio, NULL);
758 return;
759 }
760
761 /*
762 * Complete bio with an error if earlier I/O caused changes to
763 * the metadata that can't be committed e.g, due to I/O errors
764 * on the metadata device.
765 */
766 if (dm_thin_aborted_changes(tc->td)) {
767 bio_io_error(bio);
768 return;
769 }
770
771 /*
772 * Batch together any bios that trigger commits and then issue a
773 * single commit for them in process_deferred_bios().
774 */
775 spin_lock_irq(&pool->lock);
776 bio_list_add(&pool->deferred_flush_bios, bio);
777 spin_unlock_irq(&pool->lock);
778 }
779
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)780 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
781 {
782 remap_to_origin(tc, bio);
783 issue(tc, bio);
784 }
785
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)786 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
787 dm_block_t block)
788 {
789 remap(tc, bio, block);
790 issue(tc, bio);
791 }
792
793 /*----------------------------------------------------------------*/
794
795 /*
796 * Bio endio functions.
797 */
798 struct dm_thin_new_mapping {
799 struct list_head list;
800
801 bool pass_discard:1;
802 bool maybe_shared:1;
803
804 /*
805 * Track quiescing, copying and zeroing preparation actions. When this
806 * counter hits zero the block is prepared and can be inserted into the
807 * btree.
808 */
809 atomic_t prepare_actions;
810
811 blk_status_t status;
812 struct thin_c *tc;
813 dm_block_t virt_begin, virt_end;
814 dm_block_t data_block;
815 struct dm_bio_prison_cell *cell;
816
817 /*
818 * If the bio covers the whole area of a block then we can avoid
819 * zeroing or copying. Instead this bio is hooked. The bio will
820 * still be in the cell, so care has to be taken to avoid issuing
821 * the bio twice.
822 */
823 struct bio *bio;
824 bio_end_io_t *saved_bi_end_io;
825 };
826
__complete_mapping_preparation(struct dm_thin_new_mapping * m)827 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
828 {
829 struct pool *pool = m->tc->pool;
830
831 if (atomic_dec_and_test(&m->prepare_actions)) {
832 list_add_tail(&m->list, &pool->prepared_mappings);
833 wake_worker(pool);
834 }
835 }
836
complete_mapping_preparation(struct dm_thin_new_mapping * m)837 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
838 {
839 unsigned long flags;
840 struct pool *pool = m->tc->pool;
841
842 spin_lock_irqsave(&pool->lock, flags);
843 __complete_mapping_preparation(m);
844 spin_unlock_irqrestore(&pool->lock, flags);
845 }
846
copy_complete(int read_err,unsigned long write_err,void * context)847 static void copy_complete(int read_err, unsigned long write_err, void *context)
848 {
849 struct dm_thin_new_mapping *m = context;
850
851 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
852 complete_mapping_preparation(m);
853 }
854
overwrite_endio(struct bio * bio)855 static void overwrite_endio(struct bio *bio)
856 {
857 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
858 struct dm_thin_new_mapping *m = h->overwrite_mapping;
859
860 bio->bi_end_io = m->saved_bi_end_io;
861
862 m->status = bio->bi_status;
863 complete_mapping_preparation(m);
864 }
865
866 /*----------------------------------------------------------------*/
867
868 /*
869 * Workqueue.
870 */
871
872 /*
873 * Prepared mapping jobs.
874 */
875
876 /*
877 * This sends the bios in the cell, except the original holder, back
878 * to the deferred_bios list.
879 */
cell_defer_no_holder(struct thin_c * tc,struct dm_bio_prison_cell * cell)880 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
881 {
882 struct pool *pool = tc->pool;
883 unsigned long flags;
884 struct bio_list bios;
885
886 bio_list_init(&bios);
887 cell_release_no_holder(pool, cell, &bios);
888
889 if (!bio_list_empty(&bios)) {
890 spin_lock_irqsave(&tc->lock, flags);
891 bio_list_merge(&tc->deferred_bio_list, &bios);
892 spin_unlock_irqrestore(&tc->lock, flags);
893 wake_worker(pool);
894 }
895 }
896
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898
899 struct remap_info {
900 struct thin_c *tc;
901 struct bio_list defer_bios;
902 struct bio_list issue_bios;
903 };
904
__inc_remap_and_issue_cell(void * context,struct dm_bio_prison_cell * cell)905 static void __inc_remap_and_issue_cell(void *context,
906 struct dm_bio_prison_cell *cell)
907 {
908 struct remap_info *info = context;
909 struct bio *bio;
910
911 while ((bio = bio_list_pop(&cell->bios))) {
912 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913 bio_list_add(&info->defer_bios, bio);
914 else {
915 inc_all_io_entry(info->tc->pool, bio);
916
917 /*
918 * We can't issue the bios with the bio prison lock
919 * held, so we add them to a list to issue on
920 * return from this function.
921 */
922 bio_list_add(&info->issue_bios, bio);
923 }
924 }
925 }
926
inc_remap_and_issue_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928 struct dm_bio_prison_cell *cell,
929 dm_block_t block)
930 {
931 struct bio *bio;
932 struct remap_info info;
933
934 info.tc = tc;
935 bio_list_init(&info.defer_bios);
936 bio_list_init(&info.issue_bios);
937
938 /*
939 * We have to be careful to inc any bios we're about to issue
940 * before the cell is released, and avoid a race with new bios
941 * being added to the cell.
942 */
943 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944 &info, cell);
945
946 while ((bio = bio_list_pop(&info.defer_bios)))
947 thin_defer_bio(tc, bio);
948
949 while ((bio = bio_list_pop(&info.issue_bios)))
950 remap_and_issue(info.tc, bio, block);
951 }
952
process_prepared_mapping_fail(struct dm_thin_new_mapping * m)953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955 cell_error(m->tc->pool, m->cell);
956 list_del(&m->list);
957 mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959
complete_overwrite_bio(struct thin_c * tc,struct bio * bio)960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962 struct pool *pool = tc->pool;
963
964 /*
965 * If the bio has the REQ_FUA flag set we must commit the metadata
966 * before signaling its completion.
967 */
968 if (!bio_triggers_commit(tc, bio)) {
969 bio_endio(bio);
970 return;
971 }
972
973 /*
974 * Complete bio with an error if earlier I/O caused changes to the
975 * metadata that can't be committed, e.g, due to I/O errors on the
976 * metadata device.
977 */
978 if (dm_thin_aborted_changes(tc->td)) {
979 bio_io_error(bio);
980 return;
981 }
982
983 /*
984 * Batch together any bios that trigger commits and then issue a
985 * single commit for them in process_deferred_bios().
986 */
987 spin_lock_irq(&pool->lock);
988 bio_list_add(&pool->deferred_flush_completions, bio);
989 spin_unlock_irq(&pool->lock);
990 }
991
process_prepared_mapping(struct dm_thin_new_mapping * m)992 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
993 {
994 struct thin_c *tc = m->tc;
995 struct pool *pool = tc->pool;
996 struct bio *bio = m->bio;
997 int r;
998
999 if (m->status) {
1000 cell_error(pool, m->cell);
1001 goto out;
1002 }
1003
1004 /*
1005 * Commit the prepared block into the mapping btree.
1006 * Any I/O for this block arriving after this point will get
1007 * remapped to it directly.
1008 */
1009 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010 if (r) {
1011 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012 cell_error(pool, m->cell);
1013 goto out;
1014 }
1015
1016 /*
1017 * Release any bios held while the block was being provisioned.
1018 * If we are processing a write bio that completely covers the block,
1019 * we already processed it so can ignore it now when processing
1020 * the bios in the cell.
1021 */
1022 if (bio) {
1023 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024 complete_overwrite_bio(tc, bio);
1025 } else {
1026 inc_all_io_entry(tc->pool, m->cell->holder);
1027 remap_and_issue(tc, m->cell->holder, m->data_block);
1028 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029 }
1030
1031 out:
1032 list_del(&m->list);
1033 mempool_free(m, &pool->mapping_pool);
1034 }
1035
1036 /*----------------------------------------------------------------*/
1037
free_discard_mapping(struct dm_thin_new_mapping * m)1038 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039 {
1040 struct thin_c *tc = m->tc;
1041
1042 if (m->cell)
1043 cell_defer_no_holder(tc, m->cell);
1044 mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046
process_prepared_discard_fail(struct dm_thin_new_mapping * m)1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049 bio_io_error(m->bio);
1050 free_discard_mapping(m);
1051 }
1052
process_prepared_discard_success(struct dm_thin_new_mapping * m)1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055 bio_endio(m->bio);
1056 free_discard_mapping(m);
1057 }
1058
process_prepared_discard_no_passdown(struct dm_thin_new_mapping * m)1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061 int r;
1062 struct thin_c *tc = m->tc;
1063
1064 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065 if (r) {
1066 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067 bio_io_error(m->bio);
1068 } else
1069 bio_endio(m->bio);
1070
1071 cell_defer_no_holder(tc, m->cell);
1072 mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074
1075 /*----------------------------------------------------------------*/
1076
passdown_double_checking_shared_status(struct dm_thin_new_mapping * m,struct bio * discard_parent)1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078 struct bio *discard_parent)
1079 {
1080 /*
1081 * We've already unmapped this range of blocks, but before we
1082 * passdown we have to check that these blocks are now unused.
1083 */
1084 int r = 0;
1085 bool shared = true;
1086 struct thin_c *tc = m->tc;
1087 struct pool *pool = tc->pool;
1088 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089 struct discard_op op;
1090
1091 begin_discard(&op, tc, discard_parent);
1092 while (b != end) {
1093 /* find start of unmapped run */
1094 for (; b < end; b++) {
1095 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096 if (r)
1097 goto out;
1098
1099 if (!shared)
1100 break;
1101 }
1102
1103 if (b == end)
1104 break;
1105
1106 /* find end of run */
1107 for (e = b + 1; e != end; e++) {
1108 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109 if (r)
1110 goto out;
1111
1112 if (shared)
1113 break;
1114 }
1115
1116 issue_discard(&op, b, e);
1117
1118 b = e;
1119 }
1120 out:
1121 end_discard(&op, r);
1122 }
1123
queue_passdown_pt2(struct dm_thin_new_mapping * m)1124 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125 {
1126 unsigned long flags;
1127 struct pool *pool = m->tc->pool;
1128
1129 spin_lock_irqsave(&pool->lock, flags);
1130 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131 spin_unlock_irqrestore(&pool->lock, flags);
1132 wake_worker(pool);
1133 }
1134
passdown_endio(struct bio * bio)1135 static void passdown_endio(struct bio *bio)
1136 {
1137 /*
1138 * It doesn't matter if the passdown discard failed, we still want
1139 * to unmap (we ignore err).
1140 */
1141 queue_passdown_pt2(bio->bi_private);
1142 bio_put(bio);
1143 }
1144
process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping * m)1145 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146 {
1147 int r;
1148 struct thin_c *tc = m->tc;
1149 struct pool *pool = tc->pool;
1150 struct bio *discard_parent;
1151 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152
1153 /*
1154 * Only this thread allocates blocks, so we can be sure that the
1155 * newly unmapped blocks will not be allocated before the end of
1156 * the function.
1157 */
1158 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159 if (r) {
1160 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161 bio_io_error(m->bio);
1162 cell_defer_no_holder(tc, m->cell);
1163 mempool_free(m, &pool->mapping_pool);
1164 return;
1165 }
1166
1167 /*
1168 * Increment the unmapped blocks. This prevents a race between the
1169 * passdown io and reallocation of freed blocks.
1170 */
1171 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172 if (r) {
1173 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174 bio_io_error(m->bio);
1175 cell_defer_no_holder(tc, m->cell);
1176 mempool_free(m, &pool->mapping_pool);
1177 return;
1178 }
1179
1180 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1181 discard_parent->bi_end_io = passdown_endio;
1182 discard_parent->bi_private = m;
1183 if (m->maybe_shared)
1184 passdown_double_checking_shared_status(m, discard_parent);
1185 else {
1186 struct discard_op op;
1187
1188 begin_discard(&op, tc, discard_parent);
1189 issue_discard(&op, m->data_block, data_end);
1190 end_discard(&op, 0);
1191 }
1192 }
1193
process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping * m)1194 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1195 {
1196 int r;
1197 struct thin_c *tc = m->tc;
1198 struct pool *pool = tc->pool;
1199
1200 /*
1201 * The passdown has completed, so now we can decrement all those
1202 * unmapped blocks.
1203 */
1204 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1205 m->data_block + (m->virt_end - m->virt_begin));
1206 if (r) {
1207 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1208 bio_io_error(m->bio);
1209 } else
1210 bio_endio(m->bio);
1211
1212 cell_defer_no_holder(tc, m->cell);
1213 mempool_free(m, &pool->mapping_pool);
1214 }
1215
process_prepared(struct pool * pool,struct list_head * head,process_mapping_fn * fn)1216 static void process_prepared(struct pool *pool, struct list_head *head,
1217 process_mapping_fn *fn)
1218 {
1219 struct list_head maps;
1220 struct dm_thin_new_mapping *m, *tmp;
1221
1222 INIT_LIST_HEAD(&maps);
1223 spin_lock_irq(&pool->lock);
1224 list_splice_init(head, &maps);
1225 spin_unlock_irq(&pool->lock);
1226
1227 list_for_each_entry_safe(m, tmp, &maps, list)
1228 (*fn)(m);
1229 }
1230
1231 /*
1232 * Deferred bio jobs.
1233 */
io_overlaps_block(struct pool * pool,struct bio * bio)1234 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1235 {
1236 return bio->bi_iter.bi_size ==
1237 (pool->sectors_per_block << SECTOR_SHIFT);
1238 }
1239
io_overwrites_block(struct pool * pool,struct bio * bio)1240 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1241 {
1242 return (bio_data_dir(bio) == WRITE) &&
1243 io_overlaps_block(pool, bio);
1244 }
1245
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)1246 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1247 bio_end_io_t *fn)
1248 {
1249 *save = bio->bi_end_io;
1250 bio->bi_end_io = fn;
1251 }
1252
ensure_next_mapping(struct pool * pool)1253 static int ensure_next_mapping(struct pool *pool)
1254 {
1255 if (pool->next_mapping)
1256 return 0;
1257
1258 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1259
1260 return pool->next_mapping ? 0 : -ENOMEM;
1261 }
1262
get_next_mapping(struct pool * pool)1263 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1264 {
1265 struct dm_thin_new_mapping *m = pool->next_mapping;
1266
1267 BUG_ON(!pool->next_mapping);
1268
1269 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1270 INIT_LIST_HEAD(&m->list);
1271 m->bio = NULL;
1272
1273 pool->next_mapping = NULL;
1274
1275 return m;
1276 }
1277
ll_zero(struct thin_c * tc,struct dm_thin_new_mapping * m,sector_t begin,sector_t end)1278 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1279 sector_t begin, sector_t end)
1280 {
1281 struct dm_io_region to;
1282
1283 to.bdev = tc->pool_dev->bdev;
1284 to.sector = begin;
1285 to.count = end - begin;
1286
1287 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1288 }
1289
remap_and_issue_overwrite(struct thin_c * tc,struct bio * bio,dm_block_t data_begin,struct dm_thin_new_mapping * m)1290 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1291 dm_block_t data_begin,
1292 struct dm_thin_new_mapping *m)
1293 {
1294 struct pool *pool = tc->pool;
1295 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296
1297 h->overwrite_mapping = m;
1298 m->bio = bio;
1299 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1300 inc_all_io_entry(pool, bio);
1301 remap_and_issue(tc, bio, data_begin);
1302 }
1303
1304 /*
1305 * A partial copy also needs to zero the uncopied region.
1306 */
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio,sector_t len)1307 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1308 struct dm_dev *origin, dm_block_t data_origin,
1309 dm_block_t data_dest,
1310 struct dm_bio_prison_cell *cell, struct bio *bio,
1311 sector_t len)
1312 {
1313 struct pool *pool = tc->pool;
1314 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1315
1316 m->tc = tc;
1317 m->virt_begin = virt_block;
1318 m->virt_end = virt_block + 1u;
1319 m->data_block = data_dest;
1320 m->cell = cell;
1321
1322 /*
1323 * quiesce action + copy action + an extra reference held for the
1324 * duration of this function (we may need to inc later for a
1325 * partial zero).
1326 */
1327 atomic_set(&m->prepare_actions, 3);
1328
1329 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1330 complete_mapping_preparation(m); /* already quiesced */
1331
1332 /*
1333 * IO to pool_dev remaps to the pool target's data_dev.
1334 *
1335 * If the whole block of data is being overwritten, we can issue the
1336 * bio immediately. Otherwise we use kcopyd to clone the data first.
1337 */
1338 if (io_overwrites_block(pool, bio))
1339 remap_and_issue_overwrite(tc, bio, data_dest, m);
1340 else {
1341 struct dm_io_region from, to;
1342
1343 from.bdev = origin->bdev;
1344 from.sector = data_origin * pool->sectors_per_block;
1345 from.count = len;
1346
1347 to.bdev = tc->pool_dev->bdev;
1348 to.sector = data_dest * pool->sectors_per_block;
1349 to.count = len;
1350
1351 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1352 0, copy_complete, m);
1353
1354 /*
1355 * Do we need to zero a tail region?
1356 */
1357 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1358 atomic_inc(&m->prepare_actions);
1359 ll_zero(tc, m,
1360 data_dest * pool->sectors_per_block + len,
1361 (data_dest + 1) * pool->sectors_per_block);
1362 }
1363 }
1364
1365 complete_mapping_preparation(m); /* drop our ref */
1366 }
1367
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1368 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1369 dm_block_t data_origin, dm_block_t data_dest,
1370 struct dm_bio_prison_cell *cell, struct bio *bio)
1371 {
1372 schedule_copy(tc, virt_block, tc->pool_dev,
1373 data_origin, data_dest, cell, bio,
1374 tc->pool->sectors_per_block);
1375 }
1376
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct dm_bio_prison_cell * cell,struct bio * bio)1377 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1378 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1379 struct bio *bio)
1380 {
1381 struct pool *pool = tc->pool;
1382 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1383
1384 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1385 m->tc = tc;
1386 m->virt_begin = virt_block;
1387 m->virt_end = virt_block + 1u;
1388 m->data_block = data_block;
1389 m->cell = cell;
1390
1391 /*
1392 * If the whole block of data is being overwritten or we are not
1393 * zeroing pre-existing data, we can issue the bio immediately.
1394 * Otherwise we use kcopyd to zero the data first.
1395 */
1396 if (pool->pf.zero_new_blocks) {
1397 if (io_overwrites_block(pool, bio))
1398 remap_and_issue_overwrite(tc, bio, data_block, m);
1399 else {
1400 ll_zero(tc, m, data_block * pool->sectors_per_block,
1401 (data_block + 1) * pool->sectors_per_block);
1402 }
1403 } else
1404 process_prepared_mapping(m);
1405 }
1406
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1407 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1408 dm_block_t data_dest,
1409 struct dm_bio_prison_cell *cell, struct bio *bio)
1410 {
1411 struct pool *pool = tc->pool;
1412 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1413 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1414
1415 if (virt_block_end <= tc->origin_size) {
1416 schedule_copy(tc, virt_block, tc->origin_dev,
1417 virt_block, data_dest, cell, bio,
1418 pool->sectors_per_block);
1419
1420 } else if (virt_block_begin < tc->origin_size) {
1421 schedule_copy(tc, virt_block, tc->origin_dev,
1422 virt_block, data_dest, cell, bio,
1423 tc->origin_size - virt_block_begin);
1424
1425 } else
1426 schedule_zero(tc, virt_block, data_dest, cell, bio);
1427 }
1428
1429 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1430
1431 static void requeue_bios(struct pool *pool);
1432
is_read_only_pool_mode(enum pool_mode mode)1433 static bool is_read_only_pool_mode(enum pool_mode mode)
1434 {
1435 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1436 }
1437
is_read_only(struct pool * pool)1438 static bool is_read_only(struct pool *pool)
1439 {
1440 return is_read_only_pool_mode(get_pool_mode(pool));
1441 }
1442
check_for_metadata_space(struct pool * pool)1443 static void check_for_metadata_space(struct pool *pool)
1444 {
1445 int r;
1446 const char *ooms_reason = NULL;
1447 dm_block_t nr_free;
1448
1449 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1450 if (r)
1451 ooms_reason = "Could not get free metadata blocks";
1452 else if (!nr_free)
1453 ooms_reason = "No free metadata blocks";
1454
1455 if (ooms_reason && !is_read_only(pool)) {
1456 DMERR("%s", ooms_reason);
1457 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1458 }
1459 }
1460
check_for_data_space(struct pool * pool)1461 static void check_for_data_space(struct pool *pool)
1462 {
1463 int r;
1464 dm_block_t nr_free;
1465
1466 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1467 return;
1468
1469 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1470 if (r)
1471 return;
1472
1473 if (nr_free) {
1474 set_pool_mode(pool, PM_WRITE);
1475 requeue_bios(pool);
1476 }
1477 }
1478
1479 /*
1480 * A non-zero return indicates read_only or fail_io mode.
1481 * Many callers don't care about the return value.
1482 */
commit(struct pool * pool)1483 static int commit(struct pool *pool)
1484 {
1485 int r;
1486
1487 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1488 return -EINVAL;
1489
1490 r = dm_pool_commit_metadata(pool->pmd);
1491 if (r)
1492 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1493 else {
1494 check_for_metadata_space(pool);
1495 check_for_data_space(pool);
1496 }
1497
1498 return r;
1499 }
1500
check_low_water_mark(struct pool * pool,dm_block_t free_blocks)1501 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1502 {
1503 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1504 DMWARN("%s: reached low water mark for data device: sending event.",
1505 dm_device_name(pool->pool_md));
1506 spin_lock_irq(&pool->lock);
1507 pool->low_water_triggered = true;
1508 spin_unlock_irq(&pool->lock);
1509 dm_table_event(pool->ti->table);
1510 }
1511 }
1512
alloc_data_block(struct thin_c * tc,dm_block_t * result)1513 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1514 {
1515 int r;
1516 dm_block_t free_blocks;
1517 struct pool *pool = tc->pool;
1518
1519 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1520 return -EINVAL;
1521
1522 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1523 if (r) {
1524 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1525 return r;
1526 }
1527
1528 check_low_water_mark(pool, free_blocks);
1529
1530 if (!free_blocks) {
1531 /*
1532 * Try to commit to see if that will free up some
1533 * more space.
1534 */
1535 r = commit(pool);
1536 if (r)
1537 return r;
1538
1539 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1540 if (r) {
1541 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1542 return r;
1543 }
1544
1545 if (!free_blocks) {
1546 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1547 return -ENOSPC;
1548 }
1549 }
1550
1551 r = dm_pool_alloc_data_block(pool->pmd, result);
1552 if (r) {
1553 if (r == -ENOSPC)
1554 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1555 else
1556 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1557 return r;
1558 }
1559
1560 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1561 if (r) {
1562 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1563 return r;
1564 }
1565
1566 if (!free_blocks) {
1567 /* Let's commit before we use up the metadata reserve. */
1568 r = commit(pool);
1569 if (r)
1570 return r;
1571 }
1572
1573 return 0;
1574 }
1575
1576 /*
1577 * If we have run out of space, queue bios until the device is
1578 * resumed, presumably after having been reloaded with more space.
1579 */
retry_on_resume(struct bio * bio)1580 static void retry_on_resume(struct bio *bio)
1581 {
1582 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1583 struct thin_c *tc = h->tc;
1584
1585 spin_lock_irq(&tc->lock);
1586 bio_list_add(&tc->retry_on_resume_list, bio);
1587 spin_unlock_irq(&tc->lock);
1588 }
1589
should_error_unserviceable_bio(struct pool * pool)1590 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1591 {
1592 enum pool_mode m = get_pool_mode(pool);
1593
1594 switch (m) {
1595 case PM_WRITE:
1596 /* Shouldn't get here */
1597 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1598 return BLK_STS_IOERR;
1599
1600 case PM_OUT_OF_DATA_SPACE:
1601 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1602
1603 case PM_OUT_OF_METADATA_SPACE:
1604 case PM_READ_ONLY:
1605 case PM_FAIL:
1606 return BLK_STS_IOERR;
1607 default:
1608 /* Shouldn't get here */
1609 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1610 return BLK_STS_IOERR;
1611 }
1612 }
1613
handle_unserviceable_bio(struct pool * pool,struct bio * bio)1614 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1615 {
1616 blk_status_t error = should_error_unserviceable_bio(pool);
1617
1618 if (error) {
1619 bio->bi_status = error;
1620 bio_endio(bio);
1621 } else
1622 retry_on_resume(bio);
1623 }
1624
retry_bios_on_resume(struct pool * pool,struct dm_bio_prison_cell * cell)1625 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1626 {
1627 struct bio *bio;
1628 struct bio_list bios;
1629 blk_status_t error;
1630
1631 error = should_error_unserviceable_bio(pool);
1632 if (error) {
1633 cell_error_with_code(pool, cell, error);
1634 return;
1635 }
1636
1637 bio_list_init(&bios);
1638 cell_release(pool, cell, &bios);
1639
1640 while ((bio = bio_list_pop(&bios)))
1641 retry_on_resume(bio);
1642 }
1643
process_discard_cell_no_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1644 static void process_discard_cell_no_passdown(struct thin_c *tc,
1645 struct dm_bio_prison_cell *virt_cell)
1646 {
1647 struct pool *pool = tc->pool;
1648 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1649
1650 /*
1651 * We don't need to lock the data blocks, since there's no
1652 * passdown. We only lock data blocks for allocation and breaking sharing.
1653 */
1654 m->tc = tc;
1655 m->virt_begin = virt_cell->key.block_begin;
1656 m->virt_end = virt_cell->key.block_end;
1657 m->cell = virt_cell;
1658 m->bio = virt_cell->holder;
1659
1660 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1661 pool->process_prepared_discard(m);
1662 }
1663
break_up_discard_bio(struct thin_c * tc,dm_block_t begin,dm_block_t end,struct bio * bio)1664 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1665 struct bio *bio)
1666 {
1667 struct pool *pool = tc->pool;
1668
1669 int r;
1670 bool maybe_shared;
1671 struct dm_cell_key data_key;
1672 struct dm_bio_prison_cell *data_cell;
1673 struct dm_thin_new_mapping *m;
1674 dm_block_t virt_begin, virt_end, data_begin, data_end;
1675 dm_block_t len, next_boundary;
1676
1677 while (begin != end) {
1678 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1679 &data_begin, &maybe_shared);
1680 if (r) {
1681 /*
1682 * Silently fail, letting any mappings we've
1683 * created complete.
1684 */
1685 break;
1686 }
1687
1688 data_end = data_begin + (virt_end - virt_begin);
1689
1690 /*
1691 * Make sure the data region obeys the bio prison restrictions.
1692 */
1693 while (data_begin < data_end) {
1694 r = ensure_next_mapping(pool);
1695 if (r)
1696 return; /* we did our best */
1697
1698 next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1699 << BIO_PRISON_MAX_RANGE_SHIFT;
1700 len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1701
1702 /* This key is certainly within range given the above splitting */
1703 (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1704 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1705 /* contention, we'll give up with this range */
1706 data_begin += len;
1707 continue;
1708 }
1709
1710 /*
1711 * IO may still be going to the destination block. We must
1712 * quiesce before we can do the removal.
1713 */
1714 m = get_next_mapping(pool);
1715 m->tc = tc;
1716 m->maybe_shared = maybe_shared;
1717 m->virt_begin = virt_begin;
1718 m->virt_end = virt_begin + len;
1719 m->data_block = data_begin;
1720 m->cell = data_cell;
1721 m->bio = bio;
1722
1723 /*
1724 * The parent bio must not complete before sub discard bios are
1725 * chained to it (see end_discard's bio_chain)!
1726 *
1727 * This per-mapping bi_remaining increment is paired with
1728 * the implicit decrement that occurs via bio_endio() in
1729 * end_discard().
1730 */
1731 bio_inc_remaining(bio);
1732 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1733 pool->process_prepared_discard(m);
1734
1735 virt_begin += len;
1736 data_begin += len;
1737 }
1738
1739 begin = virt_end;
1740 }
1741 }
1742
process_discard_cell_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1743 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1744 {
1745 struct bio *bio = virt_cell->holder;
1746 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1747
1748 /*
1749 * The virt_cell will only get freed once the origin bio completes.
1750 * This means it will remain locked while all the individual
1751 * passdown bios are in flight.
1752 */
1753 h->cell = virt_cell;
1754 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1755
1756 /*
1757 * We complete the bio now, knowing that the bi_remaining field
1758 * will prevent completion until the sub range discards have
1759 * completed.
1760 */
1761 bio_endio(bio);
1762 }
1763
process_discard_bio(struct thin_c * tc,struct bio * bio)1764 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1765 {
1766 dm_block_t begin, end;
1767 struct dm_cell_key virt_key;
1768 struct dm_bio_prison_cell *virt_cell;
1769
1770 get_bio_block_range(tc, bio, &begin, &end);
1771 if (begin == end) {
1772 /*
1773 * The discard covers less than a block.
1774 */
1775 bio_endio(bio);
1776 return;
1777 }
1778
1779 if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1780 DMERR_LIMIT("Discard doesn't respect bio prison limits");
1781 bio_endio(bio);
1782 return;
1783 }
1784
1785 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1786 /*
1787 * Potential starvation issue: We're relying on the
1788 * fs/application being well behaved, and not trying to
1789 * send IO to a region at the same time as discarding it.
1790 * If they do this persistently then it's possible this
1791 * cell will never be granted.
1792 */
1793 return;
1794 }
1795
1796 tc->pool->process_discard_cell(tc, virt_cell);
1797 }
1798
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_cell_key * key,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * cell)1799 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1800 struct dm_cell_key *key,
1801 struct dm_thin_lookup_result *lookup_result,
1802 struct dm_bio_prison_cell *cell)
1803 {
1804 int r;
1805 dm_block_t data_block;
1806 struct pool *pool = tc->pool;
1807
1808 r = alloc_data_block(tc, &data_block);
1809 switch (r) {
1810 case 0:
1811 schedule_internal_copy(tc, block, lookup_result->block,
1812 data_block, cell, bio);
1813 break;
1814
1815 case -ENOSPC:
1816 retry_bios_on_resume(pool, cell);
1817 break;
1818
1819 default:
1820 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1821 __func__, r);
1822 cell_error(pool, cell);
1823 break;
1824 }
1825 }
1826
__remap_and_issue_shared_cell(void * context,struct dm_bio_prison_cell * cell)1827 static void __remap_and_issue_shared_cell(void *context,
1828 struct dm_bio_prison_cell *cell)
1829 {
1830 struct remap_info *info = context;
1831 struct bio *bio;
1832
1833 while ((bio = bio_list_pop(&cell->bios))) {
1834 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1835 bio_op(bio) == REQ_OP_DISCARD)
1836 bio_list_add(&info->defer_bios, bio);
1837 else {
1838 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1839
1840 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1841 inc_all_io_entry(info->tc->pool, bio);
1842 bio_list_add(&info->issue_bios, bio);
1843 }
1844 }
1845 }
1846
remap_and_issue_shared_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)1847 static void remap_and_issue_shared_cell(struct thin_c *tc,
1848 struct dm_bio_prison_cell *cell,
1849 dm_block_t block)
1850 {
1851 struct bio *bio;
1852 struct remap_info info;
1853
1854 info.tc = tc;
1855 bio_list_init(&info.defer_bios);
1856 bio_list_init(&info.issue_bios);
1857
1858 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1859 &info, cell);
1860
1861 while ((bio = bio_list_pop(&info.defer_bios)))
1862 thin_defer_bio(tc, bio);
1863
1864 while ((bio = bio_list_pop(&info.issue_bios)))
1865 remap_and_issue(tc, bio, block);
1866 }
1867
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * virt_cell)1868 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1869 dm_block_t block,
1870 struct dm_thin_lookup_result *lookup_result,
1871 struct dm_bio_prison_cell *virt_cell)
1872 {
1873 struct dm_bio_prison_cell *data_cell;
1874 struct pool *pool = tc->pool;
1875 struct dm_cell_key key;
1876
1877 /*
1878 * If cell is already occupied, then sharing is already in the process
1879 * of being broken so we have nothing further to do here.
1880 */
1881 build_data_key(tc->td, lookup_result->block, &key);
1882 if (bio_detain(pool, &key, bio, &data_cell)) {
1883 cell_defer_no_holder(tc, virt_cell);
1884 return;
1885 }
1886
1887 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1888 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1889 cell_defer_no_holder(tc, virt_cell);
1890 } else {
1891 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1892
1893 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1894 inc_all_io_entry(pool, bio);
1895 remap_and_issue(tc, bio, lookup_result->block);
1896
1897 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1898 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1899 }
1900 }
1901
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_bio_prison_cell * cell)1902 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1903 struct dm_bio_prison_cell *cell)
1904 {
1905 int r;
1906 dm_block_t data_block;
1907 struct pool *pool = tc->pool;
1908
1909 /*
1910 * Remap empty bios (flushes) immediately, without provisioning.
1911 */
1912 if (!bio->bi_iter.bi_size) {
1913 inc_all_io_entry(pool, bio);
1914 cell_defer_no_holder(tc, cell);
1915
1916 remap_and_issue(tc, bio, 0);
1917 return;
1918 }
1919
1920 /*
1921 * Fill read bios with zeroes and complete them immediately.
1922 */
1923 if (bio_data_dir(bio) == READ) {
1924 zero_fill_bio(bio);
1925 cell_defer_no_holder(tc, cell);
1926 bio_endio(bio);
1927 return;
1928 }
1929
1930 r = alloc_data_block(tc, &data_block);
1931 switch (r) {
1932 case 0:
1933 if (tc->origin_dev)
1934 schedule_external_copy(tc, block, data_block, cell, bio);
1935 else
1936 schedule_zero(tc, block, data_block, cell, bio);
1937 break;
1938
1939 case -ENOSPC:
1940 retry_bios_on_resume(pool, cell);
1941 break;
1942
1943 default:
1944 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1945 __func__, r);
1946 cell_error(pool, cell);
1947 break;
1948 }
1949 }
1950
process_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)1951 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1952 {
1953 int r;
1954 struct pool *pool = tc->pool;
1955 struct bio *bio = cell->holder;
1956 dm_block_t block = get_bio_block(tc, bio);
1957 struct dm_thin_lookup_result lookup_result;
1958
1959 if (tc->requeue_mode) {
1960 cell_requeue(pool, cell);
1961 return;
1962 }
1963
1964 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1965 switch (r) {
1966 case 0:
1967 if (lookup_result.shared)
1968 process_shared_bio(tc, bio, block, &lookup_result, cell);
1969 else {
1970 inc_all_io_entry(pool, bio);
1971 remap_and_issue(tc, bio, lookup_result.block);
1972 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1973 }
1974 break;
1975
1976 case -ENODATA:
1977 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1978 inc_all_io_entry(pool, bio);
1979 cell_defer_no_holder(tc, cell);
1980
1981 if (bio_end_sector(bio) <= tc->origin_size)
1982 remap_to_origin_and_issue(tc, bio);
1983
1984 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1985 zero_fill_bio(bio);
1986 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1987 remap_to_origin_and_issue(tc, bio);
1988
1989 } else {
1990 zero_fill_bio(bio);
1991 bio_endio(bio);
1992 }
1993 } else
1994 provision_block(tc, bio, block, cell);
1995 break;
1996
1997 default:
1998 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1999 __func__, r);
2000 cell_defer_no_holder(tc, cell);
2001 bio_io_error(bio);
2002 break;
2003 }
2004 }
2005
process_bio(struct thin_c * tc,struct bio * bio)2006 static void process_bio(struct thin_c *tc, struct bio *bio)
2007 {
2008 struct pool *pool = tc->pool;
2009 dm_block_t block = get_bio_block(tc, bio);
2010 struct dm_bio_prison_cell *cell;
2011 struct dm_cell_key key;
2012
2013 /*
2014 * If cell is already occupied, then the block is already
2015 * being provisioned so we have nothing further to do here.
2016 */
2017 build_virtual_key(tc->td, block, &key);
2018 if (bio_detain(pool, &key, bio, &cell))
2019 return;
2020
2021 process_cell(tc, cell);
2022 }
2023
__process_bio_read_only(struct thin_c * tc,struct bio * bio,struct dm_bio_prison_cell * cell)2024 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2025 struct dm_bio_prison_cell *cell)
2026 {
2027 int r;
2028 int rw = bio_data_dir(bio);
2029 dm_block_t block = get_bio_block(tc, bio);
2030 struct dm_thin_lookup_result lookup_result;
2031
2032 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2033 switch (r) {
2034 case 0:
2035 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2036 handle_unserviceable_bio(tc->pool, bio);
2037 if (cell)
2038 cell_defer_no_holder(tc, cell);
2039 } else {
2040 inc_all_io_entry(tc->pool, bio);
2041 remap_and_issue(tc, bio, lookup_result.block);
2042 if (cell)
2043 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2044 }
2045 break;
2046
2047 case -ENODATA:
2048 if (cell)
2049 cell_defer_no_holder(tc, cell);
2050 if (rw != READ) {
2051 handle_unserviceable_bio(tc->pool, bio);
2052 break;
2053 }
2054
2055 if (tc->origin_dev) {
2056 inc_all_io_entry(tc->pool, bio);
2057 remap_to_origin_and_issue(tc, bio);
2058 break;
2059 }
2060
2061 zero_fill_bio(bio);
2062 bio_endio(bio);
2063 break;
2064
2065 default:
2066 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2067 __func__, r);
2068 if (cell)
2069 cell_defer_no_holder(tc, cell);
2070 bio_io_error(bio);
2071 break;
2072 }
2073 }
2074
process_bio_read_only(struct thin_c * tc,struct bio * bio)2075 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2076 {
2077 __process_bio_read_only(tc, bio, NULL);
2078 }
2079
process_cell_read_only(struct thin_c * tc,struct dm_bio_prison_cell * cell)2080 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2081 {
2082 __process_bio_read_only(tc, cell->holder, cell);
2083 }
2084
process_bio_success(struct thin_c * tc,struct bio * bio)2085 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2086 {
2087 bio_endio(bio);
2088 }
2089
process_bio_fail(struct thin_c * tc,struct bio * bio)2090 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2091 {
2092 bio_io_error(bio);
2093 }
2094
process_cell_success(struct thin_c * tc,struct dm_bio_prison_cell * cell)2095 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2096 {
2097 cell_success(tc->pool, cell);
2098 }
2099
process_cell_fail(struct thin_c * tc,struct dm_bio_prison_cell * cell)2100 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2101 {
2102 cell_error(tc->pool, cell);
2103 }
2104
2105 /*
2106 * FIXME: should we also commit due to size of transaction, measured in
2107 * metadata blocks?
2108 */
need_commit_due_to_time(struct pool * pool)2109 static int need_commit_due_to_time(struct pool *pool)
2110 {
2111 return !time_in_range(jiffies, pool->last_commit_jiffies,
2112 pool->last_commit_jiffies + COMMIT_PERIOD);
2113 }
2114
2115 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2116 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2117
__thin_bio_rb_add(struct thin_c * tc,struct bio * bio)2118 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2119 {
2120 struct rb_node **rbp, *parent;
2121 struct dm_thin_endio_hook *pbd;
2122 sector_t bi_sector = bio->bi_iter.bi_sector;
2123
2124 rbp = &tc->sort_bio_list.rb_node;
2125 parent = NULL;
2126 while (*rbp) {
2127 parent = *rbp;
2128 pbd = thin_pbd(parent);
2129
2130 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2131 rbp = &(*rbp)->rb_left;
2132 else
2133 rbp = &(*rbp)->rb_right;
2134 }
2135
2136 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2137 rb_link_node(&pbd->rb_node, parent, rbp);
2138 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2139 }
2140
__extract_sorted_bios(struct thin_c * tc)2141 static void __extract_sorted_bios(struct thin_c *tc)
2142 {
2143 struct rb_node *node;
2144 struct dm_thin_endio_hook *pbd;
2145 struct bio *bio;
2146
2147 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2148 pbd = thin_pbd(node);
2149 bio = thin_bio(pbd);
2150
2151 bio_list_add(&tc->deferred_bio_list, bio);
2152 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2153 }
2154
2155 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2156 }
2157
__sort_thin_deferred_bios(struct thin_c * tc)2158 static void __sort_thin_deferred_bios(struct thin_c *tc)
2159 {
2160 struct bio *bio;
2161 struct bio_list bios;
2162
2163 bio_list_init(&bios);
2164 bio_list_merge(&bios, &tc->deferred_bio_list);
2165 bio_list_init(&tc->deferred_bio_list);
2166
2167 /* Sort deferred_bio_list using rb-tree */
2168 while ((bio = bio_list_pop(&bios)))
2169 __thin_bio_rb_add(tc, bio);
2170
2171 /*
2172 * Transfer the sorted bios in sort_bio_list back to
2173 * deferred_bio_list to allow lockless submission of
2174 * all bios.
2175 */
2176 __extract_sorted_bios(tc);
2177 }
2178
process_thin_deferred_bios(struct thin_c * tc)2179 static void process_thin_deferred_bios(struct thin_c *tc)
2180 {
2181 struct pool *pool = tc->pool;
2182 struct bio *bio;
2183 struct bio_list bios;
2184 struct blk_plug plug;
2185 unsigned int count = 0;
2186
2187 if (tc->requeue_mode) {
2188 error_thin_bio_list(tc, &tc->deferred_bio_list,
2189 BLK_STS_DM_REQUEUE);
2190 return;
2191 }
2192
2193 bio_list_init(&bios);
2194
2195 spin_lock_irq(&tc->lock);
2196
2197 if (bio_list_empty(&tc->deferred_bio_list)) {
2198 spin_unlock_irq(&tc->lock);
2199 return;
2200 }
2201
2202 __sort_thin_deferred_bios(tc);
2203
2204 bio_list_merge(&bios, &tc->deferred_bio_list);
2205 bio_list_init(&tc->deferred_bio_list);
2206
2207 spin_unlock_irq(&tc->lock);
2208
2209 blk_start_plug(&plug);
2210 while ((bio = bio_list_pop(&bios))) {
2211 /*
2212 * If we've got no free new_mapping structs, and processing
2213 * this bio might require one, we pause until there are some
2214 * prepared mappings to process.
2215 */
2216 if (ensure_next_mapping(pool)) {
2217 spin_lock_irq(&tc->lock);
2218 bio_list_add(&tc->deferred_bio_list, bio);
2219 bio_list_merge(&tc->deferred_bio_list, &bios);
2220 spin_unlock_irq(&tc->lock);
2221 break;
2222 }
2223
2224 if (bio_op(bio) == REQ_OP_DISCARD)
2225 pool->process_discard(tc, bio);
2226 else
2227 pool->process_bio(tc, bio);
2228
2229 if ((count++ & 127) == 0) {
2230 throttle_work_update(&pool->throttle);
2231 dm_pool_issue_prefetches(pool->pmd);
2232 }
2233 cond_resched();
2234 }
2235 blk_finish_plug(&plug);
2236 }
2237
cmp_cells(const void * lhs,const void * rhs)2238 static int cmp_cells(const void *lhs, const void *rhs)
2239 {
2240 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2241 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2242
2243 BUG_ON(!lhs_cell->holder);
2244 BUG_ON(!rhs_cell->holder);
2245
2246 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2247 return -1;
2248
2249 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2250 return 1;
2251
2252 return 0;
2253 }
2254
sort_cells(struct pool * pool,struct list_head * cells)2255 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2256 {
2257 unsigned int count = 0;
2258 struct dm_bio_prison_cell *cell, *tmp;
2259
2260 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2261 if (count >= CELL_SORT_ARRAY_SIZE)
2262 break;
2263
2264 pool->cell_sort_array[count++] = cell;
2265 list_del(&cell->user_list);
2266 }
2267
2268 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2269
2270 return count;
2271 }
2272
process_thin_deferred_cells(struct thin_c * tc)2273 static void process_thin_deferred_cells(struct thin_c *tc)
2274 {
2275 struct pool *pool = tc->pool;
2276 struct list_head cells;
2277 struct dm_bio_prison_cell *cell;
2278 unsigned int i, j, count;
2279
2280 INIT_LIST_HEAD(&cells);
2281
2282 spin_lock_irq(&tc->lock);
2283 list_splice_init(&tc->deferred_cells, &cells);
2284 spin_unlock_irq(&tc->lock);
2285
2286 if (list_empty(&cells))
2287 return;
2288
2289 do {
2290 count = sort_cells(tc->pool, &cells);
2291
2292 for (i = 0; i < count; i++) {
2293 cell = pool->cell_sort_array[i];
2294 BUG_ON(!cell->holder);
2295
2296 /*
2297 * If we've got no free new_mapping structs, and processing
2298 * this bio might require one, we pause until there are some
2299 * prepared mappings to process.
2300 */
2301 if (ensure_next_mapping(pool)) {
2302 for (j = i; j < count; j++)
2303 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2304
2305 spin_lock_irq(&tc->lock);
2306 list_splice(&cells, &tc->deferred_cells);
2307 spin_unlock_irq(&tc->lock);
2308 return;
2309 }
2310
2311 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2312 pool->process_discard_cell(tc, cell);
2313 else
2314 pool->process_cell(tc, cell);
2315 }
2316 cond_resched();
2317 } while (!list_empty(&cells));
2318 }
2319
2320 static void thin_get(struct thin_c *tc);
2321 static void thin_put(struct thin_c *tc);
2322
2323 /*
2324 * We can't hold rcu_read_lock() around code that can block. So we
2325 * find a thin with the rcu lock held; bump a refcount; then drop
2326 * the lock.
2327 */
get_first_thin(struct pool * pool)2328 static struct thin_c *get_first_thin(struct pool *pool)
2329 {
2330 struct thin_c *tc = NULL;
2331
2332 rcu_read_lock();
2333 tc = list_first_or_null_rcu(&pool->active_thins, struct thin_c, list);
2334 if (tc)
2335 thin_get(tc);
2336 rcu_read_unlock();
2337
2338 return tc;
2339 }
2340
get_next_thin(struct pool * pool,struct thin_c * tc)2341 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2342 {
2343 struct thin_c *old_tc = tc;
2344
2345 rcu_read_lock();
2346 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2347 thin_get(tc);
2348 thin_put(old_tc);
2349 rcu_read_unlock();
2350 return tc;
2351 }
2352 thin_put(old_tc);
2353 rcu_read_unlock();
2354
2355 return NULL;
2356 }
2357
process_deferred_bios(struct pool * pool)2358 static void process_deferred_bios(struct pool *pool)
2359 {
2360 struct bio *bio;
2361 struct bio_list bios, bio_completions;
2362 struct thin_c *tc;
2363
2364 tc = get_first_thin(pool);
2365 while (tc) {
2366 process_thin_deferred_cells(tc);
2367 process_thin_deferred_bios(tc);
2368 tc = get_next_thin(pool, tc);
2369 }
2370
2371 /*
2372 * If there are any deferred flush bios, we must commit the metadata
2373 * before issuing them or signaling their completion.
2374 */
2375 bio_list_init(&bios);
2376 bio_list_init(&bio_completions);
2377
2378 spin_lock_irq(&pool->lock);
2379 bio_list_merge(&bios, &pool->deferred_flush_bios);
2380 bio_list_init(&pool->deferred_flush_bios);
2381
2382 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2383 bio_list_init(&pool->deferred_flush_completions);
2384 spin_unlock_irq(&pool->lock);
2385
2386 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2387 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2388 return;
2389
2390 if (commit(pool)) {
2391 bio_list_merge(&bios, &bio_completions);
2392
2393 while ((bio = bio_list_pop(&bios)))
2394 bio_io_error(bio);
2395 return;
2396 }
2397 pool->last_commit_jiffies = jiffies;
2398
2399 while ((bio = bio_list_pop(&bio_completions)))
2400 bio_endio(bio);
2401
2402 while ((bio = bio_list_pop(&bios))) {
2403 /*
2404 * The data device was flushed as part of metadata commit,
2405 * so complete redundant flushes immediately.
2406 */
2407 if (bio->bi_opf & REQ_PREFLUSH)
2408 bio_endio(bio);
2409 else
2410 dm_submit_bio_remap(bio, NULL);
2411 }
2412 }
2413
do_worker(struct work_struct * ws)2414 static void do_worker(struct work_struct *ws)
2415 {
2416 struct pool *pool = container_of(ws, struct pool, worker);
2417
2418 throttle_work_start(&pool->throttle);
2419 dm_pool_issue_prefetches(pool->pmd);
2420 throttle_work_update(&pool->throttle);
2421 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2422 throttle_work_update(&pool->throttle);
2423 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2424 throttle_work_update(&pool->throttle);
2425 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2426 throttle_work_update(&pool->throttle);
2427 process_deferred_bios(pool);
2428 throttle_work_complete(&pool->throttle);
2429 }
2430
2431 /*
2432 * We want to commit periodically so that not too much
2433 * unwritten data builds up.
2434 */
do_waker(struct work_struct * ws)2435 static void do_waker(struct work_struct *ws)
2436 {
2437 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2438
2439 wake_worker(pool);
2440 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2441 }
2442
2443 /*
2444 * We're holding onto IO to allow userland time to react. After the
2445 * timeout either the pool will have been resized (and thus back in
2446 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2447 */
do_no_space_timeout(struct work_struct * ws)2448 static void do_no_space_timeout(struct work_struct *ws)
2449 {
2450 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2451 no_space_timeout);
2452
2453 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2454 pool->pf.error_if_no_space = true;
2455 notify_of_pool_mode_change(pool);
2456 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2457 }
2458 }
2459
2460 /*----------------------------------------------------------------*/
2461
2462 struct pool_work {
2463 struct work_struct worker;
2464 struct completion complete;
2465 };
2466
to_pool_work(struct work_struct * ws)2467 static struct pool_work *to_pool_work(struct work_struct *ws)
2468 {
2469 return container_of(ws, struct pool_work, worker);
2470 }
2471
pool_work_complete(struct pool_work * pw)2472 static void pool_work_complete(struct pool_work *pw)
2473 {
2474 complete(&pw->complete);
2475 }
2476
pool_work_wait(struct pool_work * pw,struct pool * pool,void (* fn)(struct work_struct *))2477 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2478 void (*fn)(struct work_struct *))
2479 {
2480 INIT_WORK_ONSTACK(&pw->worker, fn);
2481 init_completion(&pw->complete);
2482 queue_work(pool->wq, &pw->worker);
2483 wait_for_completion(&pw->complete);
2484 destroy_work_on_stack(&pw->worker);
2485 }
2486
2487 /*----------------------------------------------------------------*/
2488
2489 struct noflush_work {
2490 struct pool_work pw;
2491 struct thin_c *tc;
2492 };
2493
to_noflush(struct work_struct * ws)2494 static struct noflush_work *to_noflush(struct work_struct *ws)
2495 {
2496 return container_of(to_pool_work(ws), struct noflush_work, pw);
2497 }
2498
do_noflush_start(struct work_struct * ws)2499 static void do_noflush_start(struct work_struct *ws)
2500 {
2501 struct noflush_work *w = to_noflush(ws);
2502
2503 w->tc->requeue_mode = true;
2504 requeue_io(w->tc);
2505 pool_work_complete(&w->pw);
2506 }
2507
do_noflush_stop(struct work_struct * ws)2508 static void do_noflush_stop(struct work_struct *ws)
2509 {
2510 struct noflush_work *w = to_noflush(ws);
2511
2512 w->tc->requeue_mode = false;
2513 pool_work_complete(&w->pw);
2514 }
2515
noflush_work(struct thin_c * tc,void (* fn)(struct work_struct *))2516 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2517 {
2518 struct noflush_work w;
2519
2520 w.tc = tc;
2521 pool_work_wait(&w.pw, tc->pool, fn);
2522 }
2523
2524 /*----------------------------------------------------------------*/
2525
set_discard_callbacks(struct pool * pool)2526 static void set_discard_callbacks(struct pool *pool)
2527 {
2528 struct pool_c *pt = pool->ti->private;
2529
2530 if (pt->adjusted_pf.discard_passdown) {
2531 pool->process_discard_cell = process_discard_cell_passdown;
2532 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2533 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2534 } else {
2535 pool->process_discard_cell = process_discard_cell_no_passdown;
2536 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2537 }
2538 }
2539
set_pool_mode(struct pool * pool,enum pool_mode new_mode)2540 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2541 {
2542 struct pool_c *pt = pool->ti->private;
2543 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2544 enum pool_mode old_mode = get_pool_mode(pool);
2545 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2546
2547 /*
2548 * Never allow the pool to transition to PM_WRITE mode if user
2549 * intervention is required to verify metadata and data consistency.
2550 */
2551 if (new_mode == PM_WRITE && needs_check) {
2552 DMERR("%s: unable to switch pool to write mode until repaired.",
2553 dm_device_name(pool->pool_md));
2554 if (old_mode != new_mode)
2555 new_mode = old_mode;
2556 else
2557 new_mode = PM_READ_ONLY;
2558 }
2559 /*
2560 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2561 * not going to recover without a thin_repair. So we never let the
2562 * pool move out of the old mode.
2563 */
2564 if (old_mode == PM_FAIL)
2565 new_mode = old_mode;
2566
2567 switch (new_mode) {
2568 case PM_FAIL:
2569 dm_pool_metadata_read_only(pool->pmd);
2570 pool->process_bio = process_bio_fail;
2571 pool->process_discard = process_bio_fail;
2572 pool->process_cell = process_cell_fail;
2573 pool->process_discard_cell = process_cell_fail;
2574 pool->process_prepared_mapping = process_prepared_mapping_fail;
2575 pool->process_prepared_discard = process_prepared_discard_fail;
2576
2577 error_retry_list(pool);
2578 break;
2579
2580 case PM_OUT_OF_METADATA_SPACE:
2581 case PM_READ_ONLY:
2582 dm_pool_metadata_read_only(pool->pmd);
2583 pool->process_bio = process_bio_read_only;
2584 pool->process_discard = process_bio_success;
2585 pool->process_cell = process_cell_read_only;
2586 pool->process_discard_cell = process_cell_success;
2587 pool->process_prepared_mapping = process_prepared_mapping_fail;
2588 pool->process_prepared_discard = process_prepared_discard_success;
2589
2590 error_retry_list(pool);
2591 break;
2592
2593 case PM_OUT_OF_DATA_SPACE:
2594 /*
2595 * Ideally we'd never hit this state; the low water mark
2596 * would trigger userland to extend the pool before we
2597 * completely run out of data space. However, many small
2598 * IOs to unprovisioned space can consume data space at an
2599 * alarming rate. Adjust your low water mark if you're
2600 * frequently seeing this mode.
2601 */
2602 pool->out_of_data_space = true;
2603 pool->process_bio = process_bio_read_only;
2604 pool->process_discard = process_discard_bio;
2605 pool->process_cell = process_cell_read_only;
2606 pool->process_prepared_mapping = process_prepared_mapping;
2607 set_discard_callbacks(pool);
2608
2609 if (!pool->pf.error_if_no_space && no_space_timeout)
2610 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2611 break;
2612
2613 case PM_WRITE:
2614 if (old_mode == PM_OUT_OF_DATA_SPACE)
2615 cancel_delayed_work_sync(&pool->no_space_timeout);
2616 pool->out_of_data_space = false;
2617 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2618 dm_pool_metadata_read_write(pool->pmd);
2619 pool->process_bio = process_bio;
2620 pool->process_discard = process_discard_bio;
2621 pool->process_cell = process_cell;
2622 pool->process_prepared_mapping = process_prepared_mapping;
2623 set_discard_callbacks(pool);
2624 break;
2625 }
2626
2627 pool->pf.mode = new_mode;
2628 /*
2629 * The pool mode may have changed, sync it so bind_control_target()
2630 * doesn't cause an unexpected mode transition on resume.
2631 */
2632 pt->adjusted_pf.mode = new_mode;
2633
2634 if (old_mode != new_mode)
2635 notify_of_pool_mode_change(pool);
2636 }
2637
abort_transaction(struct pool * pool)2638 static void abort_transaction(struct pool *pool)
2639 {
2640 const char *dev_name = dm_device_name(pool->pool_md);
2641
2642 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2643 if (dm_pool_abort_metadata(pool->pmd)) {
2644 DMERR("%s: failed to abort metadata transaction", dev_name);
2645 set_pool_mode(pool, PM_FAIL);
2646 }
2647
2648 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2649 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2650 set_pool_mode(pool, PM_FAIL);
2651 }
2652 }
2653
metadata_operation_failed(struct pool * pool,const char * op,int r)2654 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2655 {
2656 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2657 dm_device_name(pool->pool_md), op, r);
2658
2659 abort_transaction(pool);
2660 set_pool_mode(pool, PM_READ_ONLY);
2661 }
2662
2663 /*----------------------------------------------------------------*/
2664
2665 /*
2666 * Mapping functions.
2667 */
2668
2669 /*
2670 * Called only while mapping a thin bio to hand it over to the workqueue.
2671 */
thin_defer_bio(struct thin_c * tc,struct bio * bio)2672 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2673 {
2674 struct pool *pool = tc->pool;
2675
2676 spin_lock_irq(&tc->lock);
2677 bio_list_add(&tc->deferred_bio_list, bio);
2678 spin_unlock_irq(&tc->lock);
2679
2680 wake_worker(pool);
2681 }
2682
thin_defer_bio_with_throttle(struct thin_c * tc,struct bio * bio)2683 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2684 {
2685 struct pool *pool = tc->pool;
2686
2687 throttle_lock(&pool->throttle);
2688 thin_defer_bio(tc, bio);
2689 throttle_unlock(&pool->throttle);
2690 }
2691
thin_defer_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)2692 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2693 {
2694 struct pool *pool = tc->pool;
2695
2696 throttle_lock(&pool->throttle);
2697 spin_lock_irq(&tc->lock);
2698 list_add_tail(&cell->user_list, &tc->deferred_cells);
2699 spin_unlock_irq(&tc->lock);
2700 throttle_unlock(&pool->throttle);
2701
2702 wake_worker(pool);
2703 }
2704
thin_hook_bio(struct thin_c * tc,struct bio * bio)2705 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2706 {
2707 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2708
2709 h->tc = tc;
2710 h->shared_read_entry = NULL;
2711 h->all_io_entry = NULL;
2712 h->overwrite_mapping = NULL;
2713 h->cell = NULL;
2714 }
2715
2716 /*
2717 * Non-blocking function called from the thin target's map function.
2718 */
thin_bio_map(struct dm_target * ti,struct bio * bio)2719 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2720 {
2721 int r;
2722 struct thin_c *tc = ti->private;
2723 dm_block_t block = get_bio_block(tc, bio);
2724 struct dm_thin_device *td = tc->td;
2725 struct dm_thin_lookup_result result;
2726 struct dm_bio_prison_cell *virt_cell, *data_cell;
2727 struct dm_cell_key key;
2728
2729 thin_hook_bio(tc, bio);
2730
2731 if (tc->requeue_mode) {
2732 bio->bi_status = BLK_STS_DM_REQUEUE;
2733 bio_endio(bio);
2734 return DM_MAPIO_SUBMITTED;
2735 }
2736
2737 if (get_pool_mode(tc->pool) == PM_FAIL) {
2738 bio_io_error(bio);
2739 return DM_MAPIO_SUBMITTED;
2740 }
2741
2742 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2743 thin_defer_bio_with_throttle(tc, bio);
2744 return DM_MAPIO_SUBMITTED;
2745 }
2746
2747 /*
2748 * We must hold the virtual cell before doing the lookup, otherwise
2749 * there's a race with discard.
2750 */
2751 build_virtual_key(tc->td, block, &key);
2752 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2753 return DM_MAPIO_SUBMITTED;
2754
2755 r = dm_thin_find_block(td, block, 0, &result);
2756
2757 /*
2758 * Note that we defer readahead too.
2759 */
2760 switch (r) {
2761 case 0:
2762 if (unlikely(result.shared)) {
2763 /*
2764 * We have a race condition here between the
2765 * result.shared value returned by the lookup and
2766 * snapshot creation, which may cause new
2767 * sharing.
2768 *
2769 * To avoid this always quiesce the origin before
2770 * taking the snap. You want to do this anyway to
2771 * ensure a consistent application view
2772 * (i.e. lockfs).
2773 *
2774 * More distant ancestors are irrelevant. The
2775 * shared flag will be set in their case.
2776 */
2777 thin_defer_cell(tc, virt_cell);
2778 return DM_MAPIO_SUBMITTED;
2779 }
2780
2781 build_data_key(tc->td, result.block, &key);
2782 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2783 cell_defer_no_holder(tc, virt_cell);
2784 return DM_MAPIO_SUBMITTED;
2785 }
2786
2787 inc_all_io_entry(tc->pool, bio);
2788 cell_defer_no_holder(tc, data_cell);
2789 cell_defer_no_holder(tc, virt_cell);
2790
2791 remap(tc, bio, result.block);
2792 return DM_MAPIO_REMAPPED;
2793
2794 case -ENODATA:
2795 case -EWOULDBLOCK:
2796 thin_defer_cell(tc, virt_cell);
2797 return DM_MAPIO_SUBMITTED;
2798
2799 default:
2800 /*
2801 * Must always call bio_io_error on failure.
2802 * dm_thin_find_block can fail with -EINVAL if the
2803 * pool is switched to fail-io mode.
2804 */
2805 bio_io_error(bio);
2806 cell_defer_no_holder(tc, virt_cell);
2807 return DM_MAPIO_SUBMITTED;
2808 }
2809 }
2810
requeue_bios(struct pool * pool)2811 static void requeue_bios(struct pool *pool)
2812 {
2813 struct thin_c *tc;
2814
2815 rcu_read_lock();
2816 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2817 spin_lock_irq(&tc->lock);
2818 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2819 bio_list_init(&tc->retry_on_resume_list);
2820 spin_unlock_irq(&tc->lock);
2821 }
2822 rcu_read_unlock();
2823 }
2824
2825 /*
2826 *--------------------------------------------------------------
2827 * Binding of control targets to a pool object
2828 *--------------------------------------------------------------
2829 */
is_factor(sector_t block_size,uint32_t n)2830 static bool is_factor(sector_t block_size, uint32_t n)
2831 {
2832 return !sector_div(block_size, n);
2833 }
2834
2835 /*
2836 * If discard_passdown was enabled verify that the data device
2837 * supports discards. Disable discard_passdown if not.
2838 */
disable_discard_passdown_if_not_supported(struct pool_c * pt)2839 static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2840 {
2841 struct pool *pool = pt->pool;
2842 struct block_device *data_bdev = pt->data_dev->bdev;
2843 struct queue_limits *data_limits = bdev_limits(data_bdev);
2844 const char *reason = NULL;
2845
2846 if (!pt->adjusted_pf.discard_passdown)
2847 return;
2848
2849 if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2850 reason = "discard unsupported";
2851
2852 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2853 reason = "max discard sectors smaller than a block";
2854
2855 if (reason) {
2856 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2857 pt->adjusted_pf.discard_passdown = false;
2858 }
2859 }
2860
bind_control_target(struct pool * pool,struct dm_target * ti)2861 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2862 {
2863 struct pool_c *pt = ti->private;
2864
2865 /*
2866 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2867 */
2868 enum pool_mode old_mode = get_pool_mode(pool);
2869 enum pool_mode new_mode = pt->adjusted_pf.mode;
2870
2871 /*
2872 * Don't change the pool's mode until set_pool_mode() below.
2873 * Otherwise the pool's process_* function pointers may
2874 * not match the desired pool mode.
2875 */
2876 pt->adjusted_pf.mode = old_mode;
2877
2878 pool->ti = ti;
2879 pool->pf = pt->adjusted_pf;
2880 pool->low_water_blocks = pt->low_water_blocks;
2881
2882 set_pool_mode(pool, new_mode);
2883
2884 return 0;
2885 }
2886
unbind_control_target(struct pool * pool,struct dm_target * ti)2887 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2888 {
2889 if (pool->ti == ti)
2890 pool->ti = NULL;
2891 }
2892
2893 /*
2894 *--------------------------------------------------------------
2895 * Pool creation
2896 *--------------------------------------------------------------
2897 */
2898 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)2899 static void pool_features_init(struct pool_features *pf)
2900 {
2901 pf->mode = PM_WRITE;
2902 pf->zero_new_blocks = true;
2903 pf->discard_enabled = true;
2904 pf->discard_passdown = true;
2905 pf->error_if_no_space = false;
2906 }
2907
__pool_destroy(struct pool * pool)2908 static void __pool_destroy(struct pool *pool)
2909 {
2910 __pool_table_remove(pool);
2911
2912 vfree(pool->cell_sort_array);
2913 if (dm_pool_metadata_close(pool->pmd) < 0)
2914 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2915
2916 dm_bio_prison_destroy(pool->prison);
2917 dm_kcopyd_client_destroy(pool->copier);
2918
2919 cancel_delayed_work_sync(&pool->waker);
2920 cancel_delayed_work_sync(&pool->no_space_timeout);
2921 if (pool->wq)
2922 destroy_workqueue(pool->wq);
2923
2924 if (pool->next_mapping)
2925 mempool_free(pool->next_mapping, &pool->mapping_pool);
2926 mempool_exit(&pool->mapping_pool);
2927 dm_deferred_set_destroy(pool->shared_read_ds);
2928 dm_deferred_set_destroy(pool->all_io_ds);
2929 kfree(pool);
2930 }
2931
2932 static struct kmem_cache *_new_mapping_cache;
2933
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error)2934 static struct pool *pool_create(struct mapped_device *pool_md,
2935 struct block_device *metadata_dev,
2936 struct block_device *data_dev,
2937 unsigned long block_size,
2938 int read_only, char **error)
2939 {
2940 int r;
2941 void *err_p;
2942 struct pool *pool;
2943 struct dm_pool_metadata *pmd;
2944 bool format_device = read_only ? false : true;
2945
2946 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2947 if (IS_ERR(pmd)) {
2948 *error = "Error creating metadata object";
2949 return ERR_CAST(pmd);
2950 }
2951
2952 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2953 if (!pool) {
2954 *error = "Error allocating memory for pool";
2955 err_p = ERR_PTR(-ENOMEM);
2956 goto bad_pool;
2957 }
2958
2959 pool->pmd = pmd;
2960 pool->sectors_per_block = block_size;
2961 if (block_size & (block_size - 1))
2962 pool->sectors_per_block_shift = -1;
2963 else
2964 pool->sectors_per_block_shift = __ffs(block_size);
2965 pool->low_water_blocks = 0;
2966 pool_features_init(&pool->pf);
2967 pool->prison = dm_bio_prison_create();
2968 if (!pool->prison) {
2969 *error = "Error creating pool's bio prison";
2970 err_p = ERR_PTR(-ENOMEM);
2971 goto bad_prison;
2972 }
2973
2974 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2975 if (IS_ERR(pool->copier)) {
2976 r = PTR_ERR(pool->copier);
2977 *error = "Error creating pool's kcopyd client";
2978 err_p = ERR_PTR(r);
2979 goto bad_kcopyd_client;
2980 }
2981
2982 /*
2983 * Create singlethreaded workqueue that will service all devices
2984 * that use this metadata.
2985 */
2986 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2987 if (!pool->wq) {
2988 *error = "Error creating pool's workqueue";
2989 err_p = ERR_PTR(-ENOMEM);
2990 goto bad_wq;
2991 }
2992
2993 throttle_init(&pool->throttle);
2994 INIT_WORK(&pool->worker, do_worker);
2995 INIT_DELAYED_WORK(&pool->waker, do_waker);
2996 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2997 spin_lock_init(&pool->lock);
2998 bio_list_init(&pool->deferred_flush_bios);
2999 bio_list_init(&pool->deferred_flush_completions);
3000 INIT_LIST_HEAD(&pool->prepared_mappings);
3001 INIT_LIST_HEAD(&pool->prepared_discards);
3002 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3003 INIT_LIST_HEAD(&pool->active_thins);
3004 pool->low_water_triggered = false;
3005 pool->suspended = true;
3006 pool->out_of_data_space = false;
3007
3008 pool->shared_read_ds = dm_deferred_set_create();
3009 if (!pool->shared_read_ds) {
3010 *error = "Error creating pool's shared read deferred set";
3011 err_p = ERR_PTR(-ENOMEM);
3012 goto bad_shared_read_ds;
3013 }
3014
3015 pool->all_io_ds = dm_deferred_set_create();
3016 if (!pool->all_io_ds) {
3017 *error = "Error creating pool's all io deferred set";
3018 err_p = ERR_PTR(-ENOMEM);
3019 goto bad_all_io_ds;
3020 }
3021
3022 pool->next_mapping = NULL;
3023 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3024 _new_mapping_cache);
3025 if (r) {
3026 *error = "Error creating pool's mapping mempool";
3027 err_p = ERR_PTR(r);
3028 goto bad_mapping_pool;
3029 }
3030
3031 pool->cell_sort_array =
3032 vmalloc_array(CELL_SORT_ARRAY_SIZE,
3033 sizeof(*pool->cell_sort_array));
3034 if (!pool->cell_sort_array) {
3035 *error = "Error allocating cell sort array";
3036 err_p = ERR_PTR(-ENOMEM);
3037 goto bad_sort_array;
3038 }
3039
3040 pool->ref_count = 1;
3041 pool->last_commit_jiffies = jiffies;
3042 pool->pool_md = pool_md;
3043 pool->md_dev = metadata_dev;
3044 pool->data_dev = data_dev;
3045 __pool_table_insert(pool);
3046
3047 return pool;
3048
3049 bad_sort_array:
3050 mempool_exit(&pool->mapping_pool);
3051 bad_mapping_pool:
3052 dm_deferred_set_destroy(pool->all_io_ds);
3053 bad_all_io_ds:
3054 dm_deferred_set_destroy(pool->shared_read_ds);
3055 bad_shared_read_ds:
3056 destroy_workqueue(pool->wq);
3057 bad_wq:
3058 dm_kcopyd_client_destroy(pool->copier);
3059 bad_kcopyd_client:
3060 dm_bio_prison_destroy(pool->prison);
3061 bad_prison:
3062 kfree(pool);
3063 bad_pool:
3064 if (dm_pool_metadata_close(pmd))
3065 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3066
3067 return err_p;
3068 }
3069
__pool_inc(struct pool * pool)3070 static void __pool_inc(struct pool *pool)
3071 {
3072 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3073 pool->ref_count++;
3074 }
3075
__pool_dec(struct pool * pool)3076 static void __pool_dec(struct pool *pool)
3077 {
3078 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3079 BUG_ON(!pool->ref_count);
3080 if (!--pool->ref_count)
3081 __pool_destroy(pool);
3082 }
3083
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error,int * created)3084 static struct pool *__pool_find(struct mapped_device *pool_md,
3085 struct block_device *metadata_dev,
3086 struct block_device *data_dev,
3087 unsigned long block_size, int read_only,
3088 char **error, int *created)
3089 {
3090 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3091
3092 if (pool) {
3093 if (pool->pool_md != pool_md) {
3094 *error = "metadata device already in use by a pool";
3095 return ERR_PTR(-EBUSY);
3096 }
3097 if (pool->data_dev != data_dev) {
3098 *error = "data device already in use by a pool";
3099 return ERR_PTR(-EBUSY);
3100 }
3101 __pool_inc(pool);
3102
3103 } else {
3104 pool = __pool_table_lookup(pool_md);
3105 if (pool) {
3106 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3107 *error = "different pool cannot replace a pool";
3108 return ERR_PTR(-EINVAL);
3109 }
3110 __pool_inc(pool);
3111
3112 } else {
3113 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3114 *created = 1;
3115 }
3116 }
3117
3118 return pool;
3119 }
3120
3121 /*
3122 *--------------------------------------------------------------
3123 * Pool target methods
3124 *--------------------------------------------------------------
3125 */
pool_dtr(struct dm_target * ti)3126 static void pool_dtr(struct dm_target *ti)
3127 {
3128 struct pool_c *pt = ti->private;
3129
3130 mutex_lock(&dm_thin_pool_table.mutex);
3131
3132 unbind_control_target(pt->pool, ti);
3133 __pool_dec(pt->pool);
3134 dm_put_device(ti, pt->metadata_dev);
3135 dm_put_device(ti, pt->data_dev);
3136 kfree(pt);
3137
3138 mutex_unlock(&dm_thin_pool_table.mutex);
3139 }
3140
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)3141 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3142 struct dm_target *ti)
3143 {
3144 int r;
3145 unsigned int argc;
3146 const char *arg_name;
3147
3148 static const struct dm_arg _args[] = {
3149 {0, 4, "Invalid number of pool feature arguments"},
3150 };
3151
3152 /*
3153 * No feature arguments supplied.
3154 */
3155 if (!as->argc)
3156 return 0;
3157
3158 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3159 if (r)
3160 return -EINVAL;
3161
3162 while (argc && !r) {
3163 arg_name = dm_shift_arg(as);
3164 argc--;
3165
3166 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3167 pf->zero_new_blocks = false;
3168
3169 else if (!strcasecmp(arg_name, "ignore_discard"))
3170 pf->discard_enabled = false;
3171
3172 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3173 pf->discard_passdown = false;
3174
3175 else if (!strcasecmp(arg_name, "read_only"))
3176 pf->mode = PM_READ_ONLY;
3177
3178 else if (!strcasecmp(arg_name, "error_if_no_space"))
3179 pf->error_if_no_space = true;
3180
3181 else {
3182 ti->error = "Unrecognised pool feature requested";
3183 r = -EINVAL;
3184 break;
3185 }
3186 }
3187
3188 return r;
3189 }
3190
metadata_low_callback(void * context)3191 static void metadata_low_callback(void *context)
3192 {
3193 struct pool *pool = context;
3194
3195 DMWARN("%s: reached low water mark for metadata device: sending event.",
3196 dm_device_name(pool->pool_md));
3197
3198 dm_table_event(pool->ti->table);
3199 }
3200
3201 /*
3202 * We need to flush the data device **before** committing the metadata.
3203 *
3204 * This ensures that the data blocks of any newly inserted mappings are
3205 * properly written to non-volatile storage and won't be lost in case of a
3206 * crash.
3207 *
3208 * Failure to do so can result in data corruption in the case of internal or
3209 * external snapshots and in the case of newly provisioned blocks, when block
3210 * zeroing is enabled.
3211 */
metadata_pre_commit_callback(void * context)3212 static int metadata_pre_commit_callback(void *context)
3213 {
3214 struct pool *pool = context;
3215
3216 return blkdev_issue_flush(pool->data_dev);
3217 }
3218
get_dev_size(struct block_device * bdev)3219 static sector_t get_dev_size(struct block_device *bdev)
3220 {
3221 return bdev_nr_sectors(bdev);
3222 }
3223
warn_if_metadata_device_too_big(struct block_device * bdev)3224 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3225 {
3226 sector_t metadata_dev_size = get_dev_size(bdev);
3227
3228 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3229 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3230 bdev, THIN_METADATA_MAX_SECTORS);
3231 }
3232
get_metadata_dev_size(struct block_device * bdev)3233 static sector_t get_metadata_dev_size(struct block_device *bdev)
3234 {
3235 sector_t metadata_dev_size = get_dev_size(bdev);
3236
3237 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3238 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3239
3240 return metadata_dev_size;
3241 }
3242
get_metadata_dev_size_in_blocks(struct block_device * bdev)3243 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3244 {
3245 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3246
3247 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3248
3249 return metadata_dev_size;
3250 }
3251
3252 /*
3253 * When a metadata threshold is crossed a dm event is triggered, and
3254 * userland should respond by growing the metadata device. We could let
3255 * userland set the threshold, like we do with the data threshold, but I'm
3256 * not sure they know enough to do this well.
3257 */
calc_metadata_threshold(struct pool_c * pt)3258 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3259 {
3260 /*
3261 * 4M is ample for all ops with the possible exception of thin
3262 * device deletion which is harmless if it fails (just retry the
3263 * delete after you've grown the device).
3264 */
3265 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3266
3267 return min((dm_block_t)1024ULL /* 4M */, quarter);
3268 }
3269
3270 /*
3271 * thin-pool <metadata dev> <data dev>
3272 * <data block size (sectors)>
3273 * <low water mark (blocks)>
3274 * [<#feature args> [<arg>]*]
3275 *
3276 * Optional feature arguments are:
3277 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3278 * ignore_discard: disable discard
3279 * no_discard_passdown: don't pass discards down to the data device
3280 * read_only: Don't allow any changes to be made to the pool metadata.
3281 * error_if_no_space: error IOs, instead of queueing, if no space.
3282 */
pool_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3283 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3284 {
3285 int r, pool_created = 0;
3286 struct pool_c *pt;
3287 struct pool *pool;
3288 struct pool_features pf;
3289 struct dm_arg_set as;
3290 struct dm_dev *data_dev;
3291 unsigned long block_size;
3292 dm_block_t low_water_blocks;
3293 struct dm_dev *metadata_dev;
3294 blk_mode_t metadata_mode;
3295
3296 /*
3297 * FIXME Remove validation from scope of lock.
3298 */
3299 mutex_lock(&dm_thin_pool_table.mutex);
3300
3301 if (argc < 4) {
3302 ti->error = "Invalid argument count";
3303 r = -EINVAL;
3304 goto out_unlock;
3305 }
3306
3307 as.argc = argc;
3308 as.argv = argv;
3309
3310 /* make sure metadata and data are different devices */
3311 if (!strcmp(argv[0], argv[1])) {
3312 ti->error = "Error setting metadata or data device";
3313 r = -EINVAL;
3314 goto out_unlock;
3315 }
3316
3317 /*
3318 * Set default pool features.
3319 */
3320 pool_features_init(&pf);
3321
3322 dm_consume_args(&as, 4);
3323 r = parse_pool_features(&as, &pf, ti);
3324 if (r)
3325 goto out_unlock;
3326
3327 metadata_mode = BLK_OPEN_READ |
3328 ((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3329 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3330 if (r) {
3331 ti->error = "Error opening metadata block device";
3332 goto out_unlock;
3333 }
3334 warn_if_metadata_device_too_big(metadata_dev->bdev);
3335
3336 r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3337 if (r) {
3338 ti->error = "Error getting data device";
3339 goto out_metadata;
3340 }
3341
3342 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3343 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3344 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3345 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3346 ti->error = "Invalid block size";
3347 r = -EINVAL;
3348 goto out;
3349 }
3350
3351 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3352 ti->error = "Invalid low water mark";
3353 r = -EINVAL;
3354 goto out;
3355 }
3356
3357 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3358 if (!pt) {
3359 r = -ENOMEM;
3360 goto out;
3361 }
3362
3363 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3364 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3365 if (IS_ERR(pool)) {
3366 r = PTR_ERR(pool);
3367 goto out_free_pt;
3368 }
3369
3370 /*
3371 * 'pool_created' reflects whether this is the first table load.
3372 * Top level discard support is not allowed to be changed after
3373 * initial load. This would require a pool reload to trigger thin
3374 * device changes.
3375 */
3376 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3377 ti->error = "Discard support cannot be disabled once enabled";
3378 r = -EINVAL;
3379 goto out_flags_changed;
3380 }
3381
3382 pt->pool = pool;
3383 pt->ti = ti;
3384 pt->metadata_dev = metadata_dev;
3385 pt->data_dev = data_dev;
3386 pt->low_water_blocks = low_water_blocks;
3387 pt->adjusted_pf = pt->requested_pf = pf;
3388 ti->num_flush_bios = 1;
3389 ti->limit_swap_bios = true;
3390
3391 /*
3392 * Only need to enable discards if the pool should pass
3393 * them down to the data device. The thin device's discard
3394 * processing will cause mappings to be removed from the btree.
3395 */
3396 if (pf.discard_enabled && pf.discard_passdown) {
3397 ti->num_discard_bios = 1;
3398 /*
3399 * Setting 'discards_supported' circumvents the normal
3400 * stacking of discard limits (this keeps the pool and
3401 * thin devices' discard limits consistent).
3402 */
3403 ti->discards_supported = true;
3404 ti->max_discard_granularity = true;
3405 }
3406 ti->private = pt;
3407
3408 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3409 calc_metadata_threshold(pt),
3410 metadata_low_callback,
3411 pool);
3412 if (r) {
3413 ti->error = "Error registering metadata threshold";
3414 goto out_flags_changed;
3415 }
3416
3417 dm_pool_register_pre_commit_callback(pool->pmd,
3418 metadata_pre_commit_callback, pool);
3419
3420 mutex_unlock(&dm_thin_pool_table.mutex);
3421
3422 return 0;
3423
3424 out_flags_changed:
3425 __pool_dec(pool);
3426 out_free_pt:
3427 kfree(pt);
3428 out:
3429 dm_put_device(ti, data_dev);
3430 out_metadata:
3431 dm_put_device(ti, metadata_dev);
3432 out_unlock:
3433 mutex_unlock(&dm_thin_pool_table.mutex);
3434
3435 return r;
3436 }
3437
pool_map(struct dm_target * ti,struct bio * bio)3438 static int pool_map(struct dm_target *ti, struct bio *bio)
3439 {
3440 struct pool_c *pt = ti->private;
3441 struct pool *pool = pt->pool;
3442
3443 /*
3444 * As this is a singleton target, ti->begin is always zero.
3445 */
3446 spin_lock_irq(&pool->lock);
3447 bio_set_dev(bio, pt->data_dev->bdev);
3448 spin_unlock_irq(&pool->lock);
3449
3450 return DM_MAPIO_REMAPPED;
3451 }
3452
maybe_resize_data_dev(struct dm_target * ti,bool * need_commit)3453 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3454 {
3455 int r;
3456 struct pool_c *pt = ti->private;
3457 struct pool *pool = pt->pool;
3458 sector_t data_size = ti->len;
3459 dm_block_t sb_data_size;
3460
3461 *need_commit = false;
3462
3463 (void) sector_div(data_size, pool->sectors_per_block);
3464
3465 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3466 if (r) {
3467 DMERR("%s: failed to retrieve data device size",
3468 dm_device_name(pool->pool_md));
3469 return r;
3470 }
3471
3472 if (data_size < sb_data_size) {
3473 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3474 dm_device_name(pool->pool_md),
3475 (unsigned long long)data_size, sb_data_size);
3476 return -EINVAL;
3477
3478 } else if (data_size > sb_data_size) {
3479 if (dm_pool_metadata_needs_check(pool->pmd)) {
3480 DMERR("%s: unable to grow the data device until repaired.",
3481 dm_device_name(pool->pool_md));
3482 return 0;
3483 }
3484
3485 if (sb_data_size)
3486 DMINFO("%s: growing the data device from %llu to %llu blocks",
3487 dm_device_name(pool->pool_md),
3488 sb_data_size, (unsigned long long)data_size);
3489 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3490 if (r) {
3491 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3492 return r;
3493 }
3494
3495 *need_commit = true;
3496 }
3497
3498 return 0;
3499 }
3500
maybe_resize_metadata_dev(struct dm_target * ti,bool * need_commit)3501 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3502 {
3503 int r;
3504 struct pool_c *pt = ti->private;
3505 struct pool *pool = pt->pool;
3506 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3507
3508 *need_commit = false;
3509
3510 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3511
3512 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3513 if (r) {
3514 DMERR("%s: failed to retrieve metadata device size",
3515 dm_device_name(pool->pool_md));
3516 return r;
3517 }
3518
3519 if (metadata_dev_size < sb_metadata_dev_size) {
3520 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3521 dm_device_name(pool->pool_md),
3522 metadata_dev_size, sb_metadata_dev_size);
3523 return -EINVAL;
3524
3525 } else if (metadata_dev_size > sb_metadata_dev_size) {
3526 if (dm_pool_metadata_needs_check(pool->pmd)) {
3527 DMERR("%s: unable to grow the metadata device until repaired.",
3528 dm_device_name(pool->pool_md));
3529 return 0;
3530 }
3531
3532 warn_if_metadata_device_too_big(pool->md_dev);
3533 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3534 dm_device_name(pool->pool_md),
3535 sb_metadata_dev_size, metadata_dev_size);
3536
3537 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3538 set_pool_mode(pool, PM_WRITE);
3539
3540 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3541 if (r) {
3542 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3543 return r;
3544 }
3545
3546 *need_commit = true;
3547 }
3548
3549 return 0;
3550 }
3551
3552 /*
3553 * Retrieves the number of blocks of the data device from
3554 * the superblock and compares it to the actual device size,
3555 * thus resizing the data device in case it has grown.
3556 *
3557 * This both copes with opening preallocated data devices in the ctr
3558 * being followed by a resume
3559 * -and-
3560 * calling the resume method individually after userspace has
3561 * grown the data device in reaction to a table event.
3562 */
pool_preresume(struct dm_target * ti)3563 static int pool_preresume(struct dm_target *ti)
3564 {
3565 int r;
3566 bool need_commit1, need_commit2;
3567 struct pool_c *pt = ti->private;
3568 struct pool *pool = pt->pool;
3569
3570 /*
3571 * Take control of the pool object.
3572 */
3573 r = bind_control_target(pool, ti);
3574 if (r)
3575 goto out;
3576
3577 r = maybe_resize_data_dev(ti, &need_commit1);
3578 if (r)
3579 goto out;
3580
3581 r = maybe_resize_metadata_dev(ti, &need_commit2);
3582 if (r)
3583 goto out;
3584
3585 if (need_commit1 || need_commit2)
3586 (void) commit(pool);
3587 out:
3588 /*
3589 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3590 * bio is in deferred list. Therefore need to return 0
3591 * to allow pool_resume() to flush IO.
3592 */
3593 if (r && get_pool_mode(pool) == PM_FAIL)
3594 r = 0;
3595
3596 return r;
3597 }
3598
pool_suspend_active_thins(struct pool * pool)3599 static void pool_suspend_active_thins(struct pool *pool)
3600 {
3601 struct thin_c *tc;
3602
3603 /* Suspend all active thin devices */
3604 tc = get_first_thin(pool);
3605 while (tc) {
3606 dm_internal_suspend_noflush(tc->thin_md);
3607 tc = get_next_thin(pool, tc);
3608 }
3609 }
3610
pool_resume_active_thins(struct pool * pool)3611 static void pool_resume_active_thins(struct pool *pool)
3612 {
3613 struct thin_c *tc;
3614
3615 /* Resume all active thin devices */
3616 tc = get_first_thin(pool);
3617 while (tc) {
3618 dm_internal_resume(tc->thin_md);
3619 tc = get_next_thin(pool, tc);
3620 }
3621 }
3622
pool_resume(struct dm_target * ti)3623 static void pool_resume(struct dm_target *ti)
3624 {
3625 struct pool_c *pt = ti->private;
3626 struct pool *pool = pt->pool;
3627
3628 /*
3629 * Must requeue active_thins' bios and then resume
3630 * active_thins _before_ clearing 'suspend' flag.
3631 */
3632 requeue_bios(pool);
3633 pool_resume_active_thins(pool);
3634
3635 spin_lock_irq(&pool->lock);
3636 pool->low_water_triggered = false;
3637 pool->suspended = false;
3638 spin_unlock_irq(&pool->lock);
3639
3640 do_waker(&pool->waker.work);
3641 }
3642
pool_presuspend(struct dm_target * ti)3643 static void pool_presuspend(struct dm_target *ti)
3644 {
3645 struct pool_c *pt = ti->private;
3646 struct pool *pool = pt->pool;
3647
3648 spin_lock_irq(&pool->lock);
3649 pool->suspended = true;
3650 spin_unlock_irq(&pool->lock);
3651
3652 pool_suspend_active_thins(pool);
3653 }
3654
pool_presuspend_undo(struct dm_target * ti)3655 static void pool_presuspend_undo(struct dm_target *ti)
3656 {
3657 struct pool_c *pt = ti->private;
3658 struct pool *pool = pt->pool;
3659
3660 pool_resume_active_thins(pool);
3661
3662 spin_lock_irq(&pool->lock);
3663 pool->suspended = false;
3664 spin_unlock_irq(&pool->lock);
3665 }
3666
pool_postsuspend(struct dm_target * ti)3667 static void pool_postsuspend(struct dm_target *ti)
3668 {
3669 struct pool_c *pt = ti->private;
3670 struct pool *pool = pt->pool;
3671
3672 cancel_delayed_work_sync(&pool->waker);
3673 cancel_delayed_work_sync(&pool->no_space_timeout);
3674 flush_workqueue(pool->wq);
3675 (void) commit(pool);
3676 }
3677
check_arg_count(unsigned int argc,unsigned int args_required)3678 static int check_arg_count(unsigned int argc, unsigned int args_required)
3679 {
3680 if (argc != args_required) {
3681 DMWARN("Message received with %u arguments instead of %u.",
3682 argc, args_required);
3683 return -EINVAL;
3684 }
3685
3686 return 0;
3687 }
3688
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)3689 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3690 {
3691 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3692 *dev_id <= MAX_DEV_ID)
3693 return 0;
3694
3695 if (warning)
3696 DMWARN("Message received with invalid device id: %s", arg);
3697
3698 return -EINVAL;
3699 }
3700
process_create_thin_mesg(unsigned int argc,char ** argv,struct pool * pool)3701 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3702 {
3703 dm_thin_id dev_id;
3704 int r;
3705
3706 r = check_arg_count(argc, 2);
3707 if (r)
3708 return r;
3709
3710 r = read_dev_id(argv[1], &dev_id, 1);
3711 if (r)
3712 return r;
3713
3714 r = dm_pool_create_thin(pool->pmd, dev_id);
3715 if (r) {
3716 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3717 argv[1]);
3718 return r;
3719 }
3720
3721 return 0;
3722 }
3723
process_create_snap_mesg(unsigned int argc,char ** argv,struct pool * pool)3724 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3725 {
3726 dm_thin_id dev_id;
3727 dm_thin_id origin_dev_id;
3728 int r;
3729
3730 r = check_arg_count(argc, 3);
3731 if (r)
3732 return r;
3733
3734 r = read_dev_id(argv[1], &dev_id, 1);
3735 if (r)
3736 return r;
3737
3738 r = read_dev_id(argv[2], &origin_dev_id, 1);
3739 if (r)
3740 return r;
3741
3742 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3743 if (r) {
3744 DMWARN("Creation of new snapshot %s of device %s failed.",
3745 argv[1], argv[2]);
3746 return r;
3747 }
3748
3749 return 0;
3750 }
3751
process_delete_mesg(unsigned int argc,char ** argv,struct pool * pool)3752 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3753 {
3754 dm_thin_id dev_id;
3755 int r;
3756
3757 r = check_arg_count(argc, 2);
3758 if (r)
3759 return r;
3760
3761 r = read_dev_id(argv[1], &dev_id, 1);
3762 if (r)
3763 return r;
3764
3765 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3766 if (r)
3767 DMWARN("Deletion of thin device %s failed.", argv[1]);
3768
3769 return r;
3770 }
3771
process_set_transaction_id_mesg(unsigned int argc,char ** argv,struct pool * pool)3772 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3773 {
3774 dm_thin_id old_id, new_id;
3775 int r;
3776
3777 r = check_arg_count(argc, 3);
3778 if (r)
3779 return r;
3780
3781 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3782 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3783 return -EINVAL;
3784 }
3785
3786 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3787 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3788 return -EINVAL;
3789 }
3790
3791 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3792 if (r) {
3793 DMWARN("Failed to change transaction id from %s to %s.",
3794 argv[1], argv[2]);
3795 return r;
3796 }
3797
3798 return 0;
3799 }
3800
process_reserve_metadata_snap_mesg(unsigned int argc,char ** argv,struct pool * pool)3801 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3802 {
3803 int r;
3804
3805 r = check_arg_count(argc, 1);
3806 if (r)
3807 return r;
3808
3809 (void) commit(pool);
3810
3811 r = dm_pool_reserve_metadata_snap(pool->pmd);
3812 if (r)
3813 DMWARN("reserve_metadata_snap message failed.");
3814
3815 return r;
3816 }
3817
process_release_metadata_snap_mesg(unsigned int argc,char ** argv,struct pool * pool)3818 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3819 {
3820 int r;
3821
3822 r = check_arg_count(argc, 1);
3823 if (r)
3824 return r;
3825
3826 r = dm_pool_release_metadata_snap(pool->pmd);
3827 if (r)
3828 DMWARN("release_metadata_snap message failed.");
3829
3830 return r;
3831 }
3832
3833 /*
3834 * Messages supported:
3835 * create_thin <dev_id>
3836 * create_snap <dev_id> <origin_id>
3837 * delete <dev_id>
3838 * set_transaction_id <current_trans_id> <new_trans_id>
3839 * reserve_metadata_snap
3840 * release_metadata_snap
3841 */
pool_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3842 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3843 char *result, unsigned int maxlen)
3844 {
3845 int r = -EINVAL;
3846 struct pool_c *pt = ti->private;
3847 struct pool *pool = pt->pool;
3848
3849 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3850 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3851 dm_device_name(pool->pool_md));
3852 return -EOPNOTSUPP;
3853 }
3854
3855 if (!strcasecmp(argv[0], "create_thin"))
3856 r = process_create_thin_mesg(argc, argv, pool);
3857
3858 else if (!strcasecmp(argv[0], "create_snap"))
3859 r = process_create_snap_mesg(argc, argv, pool);
3860
3861 else if (!strcasecmp(argv[0], "delete"))
3862 r = process_delete_mesg(argc, argv, pool);
3863
3864 else if (!strcasecmp(argv[0], "set_transaction_id"))
3865 r = process_set_transaction_id_mesg(argc, argv, pool);
3866
3867 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3868 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3869
3870 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3871 r = process_release_metadata_snap_mesg(argc, argv, pool);
3872
3873 else
3874 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3875
3876 if (!r)
3877 (void) commit(pool);
3878
3879 return r;
3880 }
3881
emit_flags(struct pool_features * pf,char * result,unsigned int sz,unsigned int maxlen)3882 static void emit_flags(struct pool_features *pf, char *result,
3883 unsigned int sz, unsigned int maxlen)
3884 {
3885 unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3886 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3887 pf->error_if_no_space;
3888 DMEMIT("%u ", count);
3889
3890 if (!pf->zero_new_blocks)
3891 DMEMIT("skip_block_zeroing ");
3892
3893 if (!pf->discard_enabled)
3894 DMEMIT("ignore_discard ");
3895
3896 if (!pf->discard_passdown)
3897 DMEMIT("no_discard_passdown ");
3898
3899 if (pf->mode == PM_READ_ONLY)
3900 DMEMIT("read_only ");
3901
3902 if (pf->error_if_no_space)
3903 DMEMIT("error_if_no_space ");
3904 }
3905
3906 /*
3907 * Status line is:
3908 * <transaction id> <used metadata sectors>/<total metadata sectors>
3909 * <used data sectors>/<total data sectors> <held metadata root>
3910 * <pool mode> <discard config> <no space config> <needs_check>
3911 */
pool_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3912 static void pool_status(struct dm_target *ti, status_type_t type,
3913 unsigned int status_flags, char *result, unsigned int maxlen)
3914 {
3915 int r;
3916 unsigned int sz = 0;
3917 uint64_t transaction_id;
3918 dm_block_t nr_free_blocks_data;
3919 dm_block_t nr_free_blocks_metadata;
3920 dm_block_t nr_blocks_data;
3921 dm_block_t nr_blocks_metadata;
3922 dm_block_t held_root;
3923 enum pool_mode mode;
3924 char buf[BDEVNAME_SIZE];
3925 char buf2[BDEVNAME_SIZE];
3926 struct pool_c *pt = ti->private;
3927 struct pool *pool = pt->pool;
3928
3929 switch (type) {
3930 case STATUSTYPE_INFO:
3931 if (get_pool_mode(pool) == PM_FAIL) {
3932 DMEMIT("Fail");
3933 break;
3934 }
3935
3936 /* Commit to ensure statistics aren't out-of-date */
3937 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3938 (void) commit(pool);
3939
3940 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3941 if (r) {
3942 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3943 dm_device_name(pool->pool_md), r);
3944 goto err;
3945 }
3946
3947 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3948 if (r) {
3949 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3950 dm_device_name(pool->pool_md), r);
3951 goto err;
3952 }
3953
3954 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3955 if (r) {
3956 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3957 dm_device_name(pool->pool_md), r);
3958 goto err;
3959 }
3960
3961 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3962 if (r) {
3963 DMERR("%s: dm_pool_get_free_block_count returned %d",
3964 dm_device_name(pool->pool_md), r);
3965 goto err;
3966 }
3967
3968 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3969 if (r) {
3970 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3971 dm_device_name(pool->pool_md), r);
3972 goto err;
3973 }
3974
3975 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3976 if (r) {
3977 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3978 dm_device_name(pool->pool_md), r);
3979 goto err;
3980 }
3981
3982 DMEMIT("%llu %llu/%llu %llu/%llu ",
3983 (unsigned long long)transaction_id,
3984 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3985 (unsigned long long)nr_blocks_metadata,
3986 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3987 (unsigned long long)nr_blocks_data);
3988
3989 if (held_root)
3990 DMEMIT("%llu ", held_root);
3991 else
3992 DMEMIT("- ");
3993
3994 mode = get_pool_mode(pool);
3995 if (mode == PM_OUT_OF_DATA_SPACE)
3996 DMEMIT("out_of_data_space ");
3997 else if (is_read_only_pool_mode(mode))
3998 DMEMIT("ro ");
3999 else
4000 DMEMIT("rw ");
4001
4002 if (!pool->pf.discard_enabled)
4003 DMEMIT("ignore_discard ");
4004 else if (pool->pf.discard_passdown)
4005 DMEMIT("discard_passdown ");
4006 else
4007 DMEMIT("no_discard_passdown ");
4008
4009 if (pool->pf.error_if_no_space)
4010 DMEMIT("error_if_no_space ");
4011 else
4012 DMEMIT("queue_if_no_space ");
4013
4014 if (dm_pool_metadata_needs_check(pool->pmd))
4015 DMEMIT("needs_check ");
4016 else
4017 DMEMIT("- ");
4018
4019 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4020
4021 break;
4022
4023 case STATUSTYPE_TABLE:
4024 DMEMIT("%s %s %lu %llu ",
4025 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4026 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4027 (unsigned long)pool->sectors_per_block,
4028 (unsigned long long)pt->low_water_blocks);
4029 emit_flags(&pt->requested_pf, result, sz, maxlen);
4030 break;
4031
4032 case STATUSTYPE_IMA:
4033 *result = '\0';
4034 break;
4035 }
4036 return;
4037
4038 err:
4039 DMEMIT("Error");
4040 }
4041
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4042 static int pool_iterate_devices(struct dm_target *ti,
4043 iterate_devices_callout_fn fn, void *data)
4044 {
4045 struct pool_c *pt = ti->private;
4046
4047 return fn(ti, pt->data_dev, 0, ti->len, data);
4048 }
4049
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)4050 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4051 {
4052 struct pool_c *pt = ti->private;
4053 struct pool *pool = pt->pool;
4054 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4055
4056 /*
4057 * If max_sectors is smaller than pool->sectors_per_block adjust it
4058 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4059 * This is especially beneficial when the pool's data device is a RAID
4060 * device that has a full stripe width that matches pool->sectors_per_block
4061 * -- because even though partial RAID stripe-sized IOs will be issued to a
4062 * single RAID stripe; when aggregated they will end on a full RAID stripe
4063 * boundary.. which avoids additional partial RAID stripe writes cascading
4064 */
4065 if (limits->max_sectors < pool->sectors_per_block) {
4066 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4067 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4068 limits->max_sectors--;
4069 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4070 }
4071 }
4072
4073 /*
4074 * If the system-determined stacked limits are compatible with the
4075 * pool's blocksize (io_opt is a factor) do not override them.
4076 */
4077 if (io_opt_sectors < pool->sectors_per_block ||
4078 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4079 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4080 limits->io_min = limits->max_sectors << SECTOR_SHIFT;
4081 else
4082 limits->io_min = pool->sectors_per_block << SECTOR_SHIFT;
4083 limits->io_opt = pool->sectors_per_block << SECTOR_SHIFT;
4084 }
4085
4086 /*
4087 * pt->adjusted_pf is a staging area for the actual features to use.
4088 * They get transferred to the live pool in bind_control_target()
4089 * called from pool_preresume().
4090 */
4091
4092 if (pt->adjusted_pf.discard_enabled) {
4093 disable_discard_passdown_if_not_supported(pt);
4094 if (!pt->adjusted_pf.discard_passdown)
4095 limits->max_hw_discard_sectors = 0;
4096 /*
4097 * The pool uses the same discard limits as the underlying data
4098 * device. DM core has already set this up.
4099 */
4100 } else {
4101 /*
4102 * Must explicitly disallow stacking discard limits otherwise the
4103 * block layer will stack them if pool's data device has support.
4104 */
4105 limits->discard_granularity = 0;
4106 }
4107 }
4108
4109 static struct target_type pool_target = {
4110 .name = "thin-pool",
4111 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4112 DM_TARGET_IMMUTABLE | DM_TARGET_PASSES_CRYPTO,
4113 .version = {1, 24, 0},
4114 .module = THIS_MODULE,
4115 .ctr = pool_ctr,
4116 .dtr = pool_dtr,
4117 .map = pool_map,
4118 .presuspend = pool_presuspend,
4119 .presuspend_undo = pool_presuspend_undo,
4120 .postsuspend = pool_postsuspend,
4121 .preresume = pool_preresume,
4122 .resume = pool_resume,
4123 .message = pool_message,
4124 .status = pool_status,
4125 .iterate_devices = pool_iterate_devices,
4126 .io_hints = pool_io_hints,
4127 };
4128
4129 /*
4130 *--------------------------------------------------------------
4131 * Thin target methods
4132 *--------------------------------------------------------------
4133 */
thin_get(struct thin_c * tc)4134 static void thin_get(struct thin_c *tc)
4135 {
4136 refcount_inc(&tc->refcount);
4137 }
4138
thin_put(struct thin_c * tc)4139 static void thin_put(struct thin_c *tc)
4140 {
4141 if (refcount_dec_and_test(&tc->refcount))
4142 complete(&tc->can_destroy);
4143 }
4144
thin_dtr(struct dm_target * ti)4145 static void thin_dtr(struct dm_target *ti)
4146 {
4147 struct thin_c *tc = ti->private;
4148
4149 spin_lock_irq(&tc->pool->lock);
4150 list_del_rcu(&tc->list);
4151 spin_unlock_irq(&tc->pool->lock);
4152 synchronize_rcu();
4153
4154 thin_put(tc);
4155 wait_for_completion(&tc->can_destroy);
4156
4157 mutex_lock(&dm_thin_pool_table.mutex);
4158
4159 __pool_dec(tc->pool);
4160 dm_pool_close_thin_device(tc->td);
4161 dm_put_device(ti, tc->pool_dev);
4162 if (tc->origin_dev)
4163 dm_put_device(ti, tc->origin_dev);
4164 kfree(tc);
4165
4166 mutex_unlock(&dm_thin_pool_table.mutex);
4167 }
4168
4169 /*
4170 * Thin target parameters:
4171 *
4172 * <pool_dev> <dev_id> [origin_dev]
4173 *
4174 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4175 * dev_id: the internal device identifier
4176 * origin_dev: a device external to the pool that should act as the origin
4177 *
4178 * If the pool device has discards disabled, they get disabled for the thin
4179 * device as well.
4180 */
thin_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4181 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4182 {
4183 int r;
4184 struct thin_c *tc;
4185 struct dm_dev *pool_dev, *origin_dev;
4186 struct mapped_device *pool_md;
4187
4188 mutex_lock(&dm_thin_pool_table.mutex);
4189
4190 if (argc != 2 && argc != 3) {
4191 ti->error = "Invalid argument count";
4192 r = -EINVAL;
4193 goto out_unlock;
4194 }
4195
4196 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4197 if (!tc) {
4198 ti->error = "Out of memory";
4199 r = -ENOMEM;
4200 goto out_unlock;
4201 }
4202 tc->thin_md = dm_table_get_md(ti->table);
4203 spin_lock_init(&tc->lock);
4204 INIT_LIST_HEAD(&tc->deferred_cells);
4205 bio_list_init(&tc->deferred_bio_list);
4206 bio_list_init(&tc->retry_on_resume_list);
4207 tc->sort_bio_list = RB_ROOT;
4208
4209 if (argc == 3) {
4210 if (!strcmp(argv[0], argv[2])) {
4211 ti->error = "Error setting origin device";
4212 r = -EINVAL;
4213 goto bad_origin_dev;
4214 }
4215
4216 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4217 if (r) {
4218 ti->error = "Error opening origin device";
4219 goto bad_origin_dev;
4220 }
4221 tc->origin_dev = origin_dev;
4222 }
4223
4224 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4225 if (r) {
4226 ti->error = "Error opening pool device";
4227 goto bad_pool_dev;
4228 }
4229 tc->pool_dev = pool_dev;
4230
4231 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4232 ti->error = "Invalid device id";
4233 r = -EINVAL;
4234 goto bad_common;
4235 }
4236
4237 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4238 if (!pool_md) {
4239 ti->error = "Couldn't get pool mapped device";
4240 r = -EINVAL;
4241 goto bad_common;
4242 }
4243
4244 tc->pool = __pool_table_lookup(pool_md);
4245 if (!tc->pool) {
4246 ti->error = "Couldn't find pool object";
4247 r = -EINVAL;
4248 goto bad_pool_lookup;
4249 }
4250 __pool_inc(tc->pool);
4251
4252 if (get_pool_mode(tc->pool) == PM_FAIL) {
4253 ti->error = "Couldn't open thin device, Pool is in fail mode";
4254 r = -EINVAL;
4255 goto bad_pool;
4256 }
4257
4258 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4259 if (r) {
4260 ti->error = "Couldn't open thin internal device";
4261 goto bad_pool;
4262 }
4263
4264 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4265 if (r)
4266 goto bad;
4267
4268 ti->num_flush_bios = 1;
4269 ti->limit_swap_bios = true;
4270 ti->flush_supported = true;
4271 ti->accounts_remapped_io = true;
4272 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4273
4274 /* In case the pool supports discards, pass them on. */
4275 if (tc->pool->pf.discard_enabled) {
4276 ti->discards_supported = true;
4277 ti->num_discard_bios = 1;
4278 ti->max_discard_granularity = true;
4279 }
4280
4281 mutex_unlock(&dm_thin_pool_table.mutex);
4282
4283 spin_lock_irq(&tc->pool->lock);
4284 if (tc->pool->suspended) {
4285 spin_unlock_irq(&tc->pool->lock);
4286 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4287 ti->error = "Unable to activate thin device while pool is suspended";
4288 r = -EINVAL;
4289 goto bad;
4290 }
4291 refcount_set(&tc->refcount, 1);
4292 init_completion(&tc->can_destroy);
4293 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4294 spin_unlock_irq(&tc->pool->lock);
4295 /*
4296 * This synchronize_rcu() call is needed here otherwise we risk a
4297 * wake_worker() call finding no bios to process (because the newly
4298 * added tc isn't yet visible). So this reduces latency since we
4299 * aren't then dependent on the periodic commit to wake_worker().
4300 */
4301 synchronize_rcu();
4302
4303 dm_put(pool_md);
4304
4305 return 0;
4306
4307 bad:
4308 dm_pool_close_thin_device(tc->td);
4309 bad_pool:
4310 __pool_dec(tc->pool);
4311 bad_pool_lookup:
4312 dm_put(pool_md);
4313 bad_common:
4314 dm_put_device(ti, tc->pool_dev);
4315 bad_pool_dev:
4316 if (tc->origin_dev)
4317 dm_put_device(ti, tc->origin_dev);
4318 bad_origin_dev:
4319 kfree(tc);
4320 out_unlock:
4321 mutex_unlock(&dm_thin_pool_table.mutex);
4322
4323 return r;
4324 }
4325
thin_map(struct dm_target * ti,struct bio * bio)4326 static int thin_map(struct dm_target *ti, struct bio *bio)
4327 {
4328 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4329
4330 return thin_bio_map(ti, bio);
4331 }
4332
thin_endio(struct dm_target * ti,struct bio * bio,blk_status_t * err)4333 static int thin_endio(struct dm_target *ti, struct bio *bio,
4334 blk_status_t *err)
4335 {
4336 unsigned long flags;
4337 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4338 struct list_head work;
4339 struct dm_thin_new_mapping *m, *tmp;
4340 struct pool *pool = h->tc->pool;
4341
4342 if (h->shared_read_entry) {
4343 INIT_LIST_HEAD(&work);
4344 dm_deferred_entry_dec(h->shared_read_entry, &work);
4345
4346 spin_lock_irqsave(&pool->lock, flags);
4347 list_for_each_entry_safe(m, tmp, &work, list) {
4348 list_del(&m->list);
4349 __complete_mapping_preparation(m);
4350 }
4351 spin_unlock_irqrestore(&pool->lock, flags);
4352 }
4353
4354 if (h->all_io_entry) {
4355 INIT_LIST_HEAD(&work);
4356 dm_deferred_entry_dec(h->all_io_entry, &work);
4357 if (!list_empty(&work)) {
4358 spin_lock_irqsave(&pool->lock, flags);
4359 list_for_each_entry_safe(m, tmp, &work, list)
4360 list_add_tail(&m->list, &pool->prepared_discards);
4361 spin_unlock_irqrestore(&pool->lock, flags);
4362 wake_worker(pool);
4363 }
4364 }
4365
4366 if (h->cell)
4367 cell_defer_no_holder(h->tc, h->cell);
4368
4369 return DM_ENDIO_DONE;
4370 }
4371
thin_presuspend(struct dm_target * ti)4372 static void thin_presuspend(struct dm_target *ti)
4373 {
4374 struct thin_c *tc = ti->private;
4375
4376 if (dm_noflush_suspending(ti))
4377 noflush_work(tc, do_noflush_start);
4378 }
4379
thin_postsuspend(struct dm_target * ti)4380 static void thin_postsuspend(struct dm_target *ti)
4381 {
4382 struct thin_c *tc = ti->private;
4383
4384 if (dm_noflush_suspending(ti))
4385 noflush_work(tc, do_noflush_stop);
4386 }
4387
thin_preresume(struct dm_target * ti)4388 static int thin_preresume(struct dm_target *ti)
4389 {
4390 struct thin_c *tc = ti->private;
4391
4392 if (tc->origin_dev)
4393 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4394
4395 return 0;
4396 }
4397
4398 /*
4399 * <nr mapped sectors> <highest mapped sector>
4400 */
thin_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)4401 static void thin_status(struct dm_target *ti, status_type_t type,
4402 unsigned int status_flags, char *result, unsigned int maxlen)
4403 {
4404 int r;
4405 ssize_t sz = 0;
4406 dm_block_t mapped, highest;
4407 char buf[BDEVNAME_SIZE];
4408 struct thin_c *tc = ti->private;
4409
4410 if (get_pool_mode(tc->pool) == PM_FAIL) {
4411 DMEMIT("Fail");
4412 return;
4413 }
4414
4415 if (!tc->td)
4416 DMEMIT("-");
4417 else {
4418 switch (type) {
4419 case STATUSTYPE_INFO:
4420 r = dm_thin_get_mapped_count(tc->td, &mapped);
4421 if (r) {
4422 DMERR("dm_thin_get_mapped_count returned %d", r);
4423 goto err;
4424 }
4425
4426 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4427 if (r < 0) {
4428 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4429 goto err;
4430 }
4431
4432 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4433 if (r)
4434 DMEMIT("%llu", ((highest + 1) *
4435 tc->pool->sectors_per_block) - 1);
4436 else
4437 DMEMIT("-");
4438 break;
4439
4440 case STATUSTYPE_TABLE:
4441 DMEMIT("%s %lu",
4442 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4443 (unsigned long) tc->dev_id);
4444 if (tc->origin_dev)
4445 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4446 break;
4447
4448 case STATUSTYPE_IMA:
4449 *result = '\0';
4450 break;
4451 }
4452 }
4453
4454 return;
4455
4456 err:
4457 DMEMIT("Error");
4458 }
4459
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4460 static int thin_iterate_devices(struct dm_target *ti,
4461 iterate_devices_callout_fn fn, void *data)
4462 {
4463 sector_t blocks;
4464 struct thin_c *tc = ti->private;
4465 struct pool *pool = tc->pool;
4466
4467 /*
4468 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4469 * we follow a more convoluted path through to the pool's target.
4470 */
4471 if (!pool->ti)
4472 return 0; /* nothing is bound */
4473
4474 blocks = pool->ti->len;
4475 (void) sector_div(blocks, pool->sectors_per_block);
4476 if (blocks)
4477 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4478
4479 return 0;
4480 }
4481
thin_io_hints(struct dm_target * ti,struct queue_limits * limits)4482 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4483 {
4484 struct thin_c *tc = ti->private;
4485 struct pool *pool = tc->pool;
4486
4487 if (pool->pf.discard_enabled) {
4488 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4489 limits->max_hw_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4490 }
4491 }
4492
4493 static struct target_type thin_target = {
4494 .name = "thin",
4495 .features = DM_TARGET_PASSES_CRYPTO,
4496 .version = {1, 24, 0},
4497 .module = THIS_MODULE,
4498 .ctr = thin_ctr,
4499 .dtr = thin_dtr,
4500 .map = thin_map,
4501 .end_io = thin_endio,
4502 .preresume = thin_preresume,
4503 .presuspend = thin_presuspend,
4504 .postsuspend = thin_postsuspend,
4505 .status = thin_status,
4506 .iterate_devices = thin_iterate_devices,
4507 .io_hints = thin_io_hints,
4508 };
4509
4510 /*----------------------------------------------------------------*/
4511
dm_thin_init(void)4512 static int __init dm_thin_init(void)
4513 {
4514 int r = -ENOMEM;
4515
4516 pool_table_init();
4517
4518 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4519 if (!_new_mapping_cache)
4520 return r;
4521
4522 r = dm_register_target(&thin_target);
4523 if (r)
4524 goto bad_new_mapping_cache;
4525
4526 r = dm_register_target(&pool_target);
4527 if (r)
4528 goto bad_thin_target;
4529
4530 return 0;
4531
4532 bad_thin_target:
4533 dm_unregister_target(&thin_target);
4534 bad_new_mapping_cache:
4535 kmem_cache_destroy(_new_mapping_cache);
4536
4537 return r;
4538 }
4539
dm_thin_exit(void)4540 static void dm_thin_exit(void)
4541 {
4542 dm_unregister_target(&thin_target);
4543 dm_unregister_target(&pool_target);
4544
4545 kmem_cache_destroy(_new_mapping_cache);
4546
4547 pool_table_exit();
4548 }
4549
4550 module_init(dm_thin_init);
4551 module_exit(dm_thin_exit);
4552
4553 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4554 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4555
4556 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4557 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4558 MODULE_LICENSE("GPL");
4559