xref: /linux/drivers/md/dm-thin.c (revision d358e5254674b70f34c847715ca509e46eb81e6f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25 
26 #define	DM_MSG_PREFIX	"thin"
27 
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35 
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39 		"A percentage of time allocated for copy on write");
40 
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47 
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52 
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110 
111 /*----------------------------------------------------------------*/
112 
113 /*
114  * Key building.
115  */
116 enum lock_space {
117 	VIRTUAL,
118 	PHYSICAL
119 };
120 
build_key(struct dm_thin_device * td,enum lock_space ls,dm_block_t b,dm_block_t e,struct dm_cell_key * key)121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124 	key->virtual = (ls == VIRTUAL);
125 	key->dev = dm_thin_dev_id(td);
126 	key->block_begin = b;
127 	key->block_end = e;
128 
129 	return dm_cell_key_has_valid_range(key);
130 }
131 
build_data_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133 			   struct dm_cell_key *key)
134 {
135 	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
136 }
137 
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139 			      struct dm_cell_key *key)
140 {
141 	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
142 }
143 
144 /*----------------------------------------------------------------*/
145 
146 #define THROTTLE_THRESHOLD (1 * HZ)
147 
148 struct throttle {
149 	struct rw_semaphore lock;
150 	unsigned long threshold;
151 	bool throttle_applied;
152 };
153 
throttle_init(struct throttle * t)154 static void throttle_init(struct throttle *t)
155 {
156 	init_rwsem(&t->lock);
157 	t->throttle_applied = false;
158 }
159 
throttle_work_start(struct throttle * t)160 static void throttle_work_start(struct throttle *t)
161 {
162 	t->threshold = jiffies + THROTTLE_THRESHOLD;
163 }
164 
throttle_work_update(struct throttle * t)165 static void throttle_work_update(struct throttle *t)
166 {
167 	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168 		down_write(&t->lock);
169 		t->throttle_applied = true;
170 	}
171 }
172 
throttle_work_complete(struct throttle * t)173 static void throttle_work_complete(struct throttle *t)
174 {
175 	if (t->throttle_applied) {
176 		t->throttle_applied = false;
177 		up_write(&t->lock);
178 	}
179 }
180 
throttle_lock(struct throttle * t)181 static void throttle_lock(struct throttle *t)
182 {
183 	down_read(&t->lock);
184 }
185 
throttle_unlock(struct throttle * t)186 static void throttle_unlock(struct throttle *t)
187 {
188 	up_read(&t->lock);
189 }
190 
191 /*----------------------------------------------------------------*/
192 
193 /*
194  * A pool device ties together a metadata device and a data device.  It
195  * also provides the interface for creating and destroying internal
196  * devices.
197  */
198 struct dm_thin_new_mapping;
199 
200 /*
201  * The pool runs in various modes.  Ordered in degraded order for comparisons.
202  */
203 enum pool_mode {
204 	PM_WRITE,		/* metadata may be changed */
205 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
206 
207 	/*
208 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209 	 */
210 	PM_OUT_OF_METADATA_SPACE,
211 	PM_READ_ONLY,		/* metadata may not be changed */
212 
213 	PM_FAIL,		/* all I/O fails */
214 };
215 
216 struct pool_features {
217 	enum pool_mode mode;
218 
219 	bool zero_new_blocks:1;
220 	bool discard_enabled:1;
221 	bool discard_passdown:1;
222 	bool error_if_no_space:1;
223 };
224 
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229 
230 #define CELL_SORT_ARRAY_SIZE 8192
231 
232 struct pool {
233 	struct list_head list;
234 	struct dm_target *ti;	/* Only set if a pool target is bound */
235 
236 	struct mapped_device *pool_md;
237 	struct block_device *data_dev;
238 	struct block_device *md_dev;
239 	struct dm_pool_metadata *pmd;
240 
241 	dm_block_t low_water_blocks;
242 	uint32_t sectors_per_block;
243 	int sectors_per_block_shift;
244 
245 	struct pool_features pf;
246 	bool low_water_triggered:1;	/* A dm event has been sent */
247 	bool suspended:1;
248 	bool out_of_data_space:1;
249 
250 	struct dm_bio_prison *prison;
251 	struct dm_kcopyd_client *copier;
252 
253 	struct work_struct worker;
254 	struct workqueue_struct *wq;
255 	struct throttle throttle;
256 	struct delayed_work waker;
257 	struct delayed_work no_space_timeout;
258 
259 	unsigned long last_commit_jiffies;
260 	unsigned int ref_count;
261 
262 	spinlock_t lock;
263 	struct bio_list deferred_flush_bios;
264 	struct bio_list deferred_flush_completions;
265 	struct list_head prepared_mappings;
266 	struct list_head prepared_discards;
267 	struct list_head prepared_discards_pt2;
268 	struct list_head active_thins;
269 
270 	struct dm_deferred_set *shared_read_ds;
271 	struct dm_deferred_set *all_io_ds;
272 
273 	struct dm_thin_new_mapping *next_mapping;
274 
275 	process_bio_fn process_bio;
276 	process_bio_fn process_discard;
277 
278 	process_cell_fn process_cell;
279 	process_cell_fn process_discard_cell;
280 
281 	process_mapping_fn process_prepared_mapping;
282 	process_mapping_fn process_prepared_discard;
283 	process_mapping_fn process_prepared_discard_pt2;
284 
285 	struct dm_bio_prison_cell **cell_sort_array;
286 
287 	mempool_t mapping_pool;
288 };
289 
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291 
get_pool_mode(struct pool * pool)292 static enum pool_mode get_pool_mode(struct pool *pool)
293 {
294 	return pool->pf.mode;
295 }
296 
notify_of_pool_mode_change(struct pool * pool)297 static void notify_of_pool_mode_change(struct pool *pool)
298 {
299 	static const char *descs[] = {
300 		"write",
301 		"out-of-data-space",
302 		"read-only",
303 		"read-only",
304 		"fail"
305 	};
306 	const char *extra_desc = NULL;
307 	enum pool_mode mode = get_pool_mode(pool);
308 
309 	if (mode == PM_OUT_OF_DATA_SPACE) {
310 		if (!pool->pf.error_if_no_space)
311 			extra_desc = " (queue IO)";
312 		else
313 			extra_desc = " (error IO)";
314 	}
315 
316 	dm_table_event(pool->ti->table);
317 	DMINFO("%s: switching pool to %s%s mode",
318 	       dm_device_name(pool->pool_md),
319 	       descs[(int)mode], extra_desc ? : "");
320 }
321 
322 /*
323  * Target context for a pool.
324  */
325 struct pool_c {
326 	struct dm_target *ti;
327 	struct pool *pool;
328 	struct dm_dev *data_dev;
329 	struct dm_dev *metadata_dev;
330 
331 	dm_block_t low_water_blocks;
332 	struct pool_features requested_pf; /* Features requested during table load */
333 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335 
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340 	struct list_head list;
341 	struct dm_dev *pool_dev;
342 	struct dm_dev *origin_dev;
343 	sector_t origin_size;
344 	dm_thin_id dev_id;
345 
346 	struct pool *pool;
347 	struct dm_thin_device *td;
348 	struct mapped_device *thin_md;
349 
350 	bool requeue_mode:1;
351 	spinlock_t lock;
352 	struct list_head deferred_cells;
353 	struct bio_list deferred_bio_list;
354 	struct bio_list retry_on_resume_list;
355 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
356 
357 	/*
358 	 * Ensures the thin is not destroyed until the worker has finished
359 	 * iterating the active_thins list.
360 	 */
361 	refcount_t refcount;
362 	struct completion can_destroy;
363 };
364 
365 /*----------------------------------------------------------------*/
366 
block_size_is_power_of_two(struct pool * pool)367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369 	return pool->sectors_per_block_shift >= 0;
370 }
371 
block_to_sectors(struct pool * pool,dm_block_t b)372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374 	return block_size_is_power_of_two(pool) ?
375 		(b << pool->sectors_per_block_shift) :
376 		(b * pool->sectors_per_block);
377 }
378 
379 /*----------------------------------------------------------------*/
380 
381 struct discard_op {
382 	struct thin_c *tc;
383 	struct blk_plug plug;
384 	struct bio *parent_bio;
385 	struct bio *bio;
386 };
387 
begin_discard(struct discard_op * op,struct thin_c * tc,struct bio * parent)388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390 	BUG_ON(!parent);
391 
392 	op->tc = tc;
393 	blk_start_plug(&op->plug);
394 	op->parent_bio = parent;
395 	op->bio = NULL;
396 }
397 
issue_discard(struct discard_op * op,dm_block_t data_b,dm_block_t data_e)398 static void issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400 	struct thin_c *tc = op->tc;
401 	sector_t s = block_to_sectors(tc->pool, data_b);
402 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403 
404 	__blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
405 }
406 
end_discard(struct discard_op * op,int r)407 static void end_discard(struct discard_op *op, int r)
408 {
409 	if (op->bio) {
410 		/*
411 		 * Even if one of the calls to issue_discard failed, we
412 		 * need to wait for the chain to complete.
413 		 */
414 		bio_chain(op->bio, op->parent_bio);
415 		op->bio->bi_opf = REQ_OP_DISCARD;
416 		submit_bio(op->bio);
417 	}
418 
419 	blk_finish_plug(&op->plug);
420 
421 	/*
422 	 * Even if r is set, there could be sub discards in flight that we
423 	 * need to wait for.
424 	 */
425 	if (r && !op->parent_bio->bi_status)
426 		op->parent_bio->bi_status = errno_to_blk_status(r);
427 	bio_endio(op->parent_bio);
428 }
429 
430 /*----------------------------------------------------------------*/
431 
432 /*
433  * wake_worker() is used when new work is queued and when pool_resume is
434  * ready to continue deferred IO processing.
435  */
wake_worker(struct pool * pool)436 static void wake_worker(struct pool *pool)
437 {
438 	queue_work(pool->wq, &pool->worker);
439 }
440 
441 /*----------------------------------------------------------------*/
442 
bio_detain(struct pool * pool,struct dm_cell_key * key,struct bio * bio,struct dm_bio_prison_cell ** cell_result)443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 		      struct dm_bio_prison_cell **cell_result)
445 {
446 	int r;
447 	struct dm_bio_prison_cell *cell_prealloc;
448 
449 	/*
450 	 * Allocate a cell from the prison's mempool.
451 	 * This might block but it can't fail.
452 	 */
453 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454 
455 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 	if (r) {
457 		/*
458 		 * We reused an old cell; we can get rid of
459 		 * the new one.
460 		 */
461 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462 	}
463 
464 	return r;
465 }
466 
cell_release(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)467 static void cell_release(struct pool *pool,
468 			 struct dm_bio_prison_cell *cell,
469 			 struct bio_list *bios)
470 {
471 	dm_cell_release(pool->prison, cell, bios);
472 	dm_bio_prison_free_cell(pool->prison, cell);
473 }
474 
cell_visit_release(struct pool * pool,void (* fn)(void *,struct dm_bio_prison_cell *),void * context,struct dm_bio_prison_cell * cell)475 static void cell_visit_release(struct pool *pool,
476 			       void (*fn)(void *, struct dm_bio_prison_cell *),
477 			       void *context,
478 			       struct dm_bio_prison_cell *cell)
479 {
480 	dm_cell_visit_release(pool->prison, fn, context, cell);
481 	dm_bio_prison_free_cell(pool->prison, cell);
482 }
483 
cell_release_no_holder(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)484 static void cell_release_no_holder(struct pool *pool,
485 				   struct dm_bio_prison_cell *cell,
486 				   struct bio_list *bios)
487 {
488 	dm_cell_release_no_holder(pool->prison, cell, bios);
489 	dm_bio_prison_free_cell(pool->prison, cell);
490 }
491 
cell_error_with_code(struct pool * pool,struct dm_bio_prison_cell * cell,blk_status_t error_code)492 static void cell_error_with_code(struct pool *pool,
493 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 {
495 	dm_cell_error(pool->prison, cell, error_code);
496 	dm_bio_prison_free_cell(pool->prison, cell);
497 }
498 
get_pool_io_error_code(struct pool * pool)499 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 {
501 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 }
503 
cell_error(struct pool * pool,struct dm_bio_prison_cell * cell)504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 {
506 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 }
508 
cell_success(struct pool * pool,struct dm_bio_prison_cell * cell)509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 {
511 	cell_error_with_code(pool, cell, 0);
512 }
513 
cell_requeue(struct pool * pool,struct dm_bio_prison_cell * cell)514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 {
516 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 }
518 
519 /*----------------------------------------------------------------*/
520 
521 /*
522  * A global list of pools that uses a struct mapped_device as a key.
523  */
524 static struct dm_thin_pool_table {
525 	struct mutex mutex;
526 	struct list_head pools;
527 } dm_thin_pool_table;
528 
pool_table_init(void)529 static void pool_table_init(void)
530 {
531 	mutex_init(&dm_thin_pool_table.mutex);
532 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 }
534 
pool_table_exit(void)535 static void pool_table_exit(void)
536 {
537 	mutex_destroy(&dm_thin_pool_table.mutex);
538 }
539 
__pool_table_insert(struct pool * pool)540 static void __pool_table_insert(struct pool *pool)
541 {
542 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543 	list_add(&pool->list, &dm_thin_pool_table.pools);
544 }
545 
__pool_table_remove(struct pool * pool)546 static void __pool_table_remove(struct pool *pool)
547 {
548 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549 	list_del(&pool->list);
550 }
551 
__pool_table_lookup(struct mapped_device * md)552 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 {
554 	struct pool *pool = NULL, *tmp;
555 
556 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557 
558 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559 		if (tmp->pool_md == md) {
560 			pool = tmp;
561 			break;
562 		}
563 	}
564 
565 	return pool;
566 }
567 
__pool_table_lookup_metadata_dev(struct block_device * md_dev)568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 {
570 	struct pool *pool = NULL, *tmp;
571 
572 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573 
574 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575 		if (tmp->md_dev == md_dev) {
576 			pool = tmp;
577 			break;
578 		}
579 	}
580 
581 	return pool;
582 }
583 
584 /*----------------------------------------------------------------*/
585 
586 struct dm_thin_endio_hook {
587 	struct thin_c *tc;
588 	struct dm_deferred_entry *shared_read_entry;
589 	struct dm_deferred_entry *all_io_entry;
590 	struct dm_thin_new_mapping *overwrite_mapping;
591 	struct rb_node rb_node;
592 	struct dm_bio_prison_cell *cell;
593 };
594 
error_bio_list(struct bio_list * bios,blk_status_t error)595 static void error_bio_list(struct bio_list *bios, blk_status_t error)
596 {
597 	struct bio *bio;
598 
599 	while ((bio = bio_list_pop(bios))) {
600 		bio->bi_status = error;
601 		bio_endio(bio);
602 	}
603 }
604 
error_thin_bio_list(struct thin_c * tc,struct bio_list * master,blk_status_t error)605 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
606 		blk_status_t error)
607 {
608 	struct bio_list bios;
609 
610 	bio_list_init(&bios);
611 
612 	spin_lock_irq(&tc->lock);
613 	bio_list_merge_init(&bios, master);
614 	spin_unlock_irq(&tc->lock);
615 
616 	error_bio_list(&bios, error);
617 }
618 
requeue_deferred_cells(struct thin_c * tc)619 static void requeue_deferred_cells(struct thin_c *tc)
620 {
621 	struct pool *pool = tc->pool;
622 	struct list_head cells;
623 	struct dm_bio_prison_cell *cell, *tmp;
624 
625 	INIT_LIST_HEAD(&cells);
626 
627 	spin_lock_irq(&tc->lock);
628 	list_splice_init(&tc->deferred_cells, &cells);
629 	spin_unlock_irq(&tc->lock);
630 
631 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
632 		cell_requeue(pool, cell);
633 }
634 
requeue_io(struct thin_c * tc)635 static void requeue_io(struct thin_c *tc)
636 {
637 	struct bio_list bios;
638 
639 	bio_list_init(&bios);
640 
641 	spin_lock_irq(&tc->lock);
642 	bio_list_merge_init(&bios, &tc->deferred_bio_list);
643 	bio_list_merge_init(&bios, &tc->retry_on_resume_list);
644 	spin_unlock_irq(&tc->lock);
645 
646 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
647 	requeue_deferred_cells(tc);
648 }
649 
error_retry_list_with_code(struct pool * pool,blk_status_t error)650 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
651 {
652 	struct thin_c *tc;
653 
654 	rcu_read_lock();
655 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
656 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
657 	rcu_read_unlock();
658 }
659 
error_retry_list(struct pool * pool)660 static void error_retry_list(struct pool *pool)
661 {
662 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
663 }
664 
665 /*
666  * This section of code contains the logic for processing a thin device's IO.
667  * Much of the code depends on pool object resources (lists, workqueues, etc)
668  * but most is exclusively called from the thin target rather than the thin-pool
669  * target.
670  */
671 
get_bio_block(struct thin_c * tc,struct bio * bio)672 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
673 {
674 	struct pool *pool = tc->pool;
675 	sector_t block_nr = bio->bi_iter.bi_sector;
676 
677 	if (block_size_is_power_of_two(pool))
678 		block_nr >>= pool->sectors_per_block_shift;
679 	else
680 		(void) sector_div(block_nr, pool->sectors_per_block);
681 
682 	return block_nr;
683 }
684 
685 /*
686  * Returns the _complete_ blocks that this bio covers.
687  */
get_bio_block_range(struct thin_c * tc,struct bio * bio,dm_block_t * begin,dm_block_t * end)688 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
689 				dm_block_t *begin, dm_block_t *end)
690 {
691 	struct pool *pool = tc->pool;
692 	sector_t b = bio->bi_iter.bi_sector;
693 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
694 
695 	b += pool->sectors_per_block - 1ull; /* so we round up */
696 
697 	if (block_size_is_power_of_two(pool)) {
698 		b >>= pool->sectors_per_block_shift;
699 		e >>= pool->sectors_per_block_shift;
700 	} else {
701 		(void) sector_div(b, pool->sectors_per_block);
702 		(void) sector_div(e, pool->sectors_per_block);
703 	}
704 
705 	if (e < b) {
706 		/* Can happen if the bio is within a single block. */
707 		e = b;
708 	}
709 
710 	*begin = b;
711 	*end = e;
712 }
713 
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)714 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
715 {
716 	struct pool *pool = tc->pool;
717 	sector_t bi_sector = bio->bi_iter.bi_sector;
718 
719 	bio_set_dev(bio, tc->pool_dev->bdev);
720 	if (block_size_is_power_of_two(pool)) {
721 		bio->bi_iter.bi_sector =
722 			(block << pool->sectors_per_block_shift) |
723 			(bi_sector & (pool->sectors_per_block - 1));
724 	} else {
725 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
726 				 sector_div(bi_sector, pool->sectors_per_block);
727 	}
728 }
729 
remap_to_origin(struct thin_c * tc,struct bio * bio)730 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
731 {
732 	bio_set_dev(bio, tc->origin_dev->bdev);
733 }
734 
bio_triggers_commit(struct thin_c * tc,struct bio * bio)735 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
736 {
737 	return op_is_flush(bio->bi_opf) &&
738 		dm_thin_changed_this_transaction(tc->td);
739 }
740 
inc_all_io_entry(struct pool * pool,struct bio * bio)741 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
742 {
743 	struct dm_thin_endio_hook *h;
744 
745 	if (bio_op(bio) == REQ_OP_DISCARD)
746 		return;
747 
748 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
749 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
750 }
751 
issue(struct thin_c * tc,struct bio * bio)752 static void issue(struct thin_c *tc, struct bio *bio)
753 {
754 	struct pool *pool = tc->pool;
755 
756 	if (!bio_triggers_commit(tc, bio)) {
757 		dm_submit_bio_remap(bio, NULL);
758 		return;
759 	}
760 
761 	/*
762 	 * Complete bio with an error if earlier I/O caused changes to
763 	 * the metadata that can't be committed e.g, due to I/O errors
764 	 * on the metadata device.
765 	 */
766 	if (dm_thin_aborted_changes(tc->td)) {
767 		bio_io_error(bio);
768 		return;
769 	}
770 
771 	/*
772 	 * Batch together any bios that trigger commits and then issue a
773 	 * single commit for them in process_deferred_bios().
774 	 */
775 	spin_lock_irq(&pool->lock);
776 	bio_list_add(&pool->deferred_flush_bios, bio);
777 	spin_unlock_irq(&pool->lock);
778 }
779 
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)780 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
781 {
782 	remap_to_origin(tc, bio);
783 	issue(tc, bio);
784 }
785 
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)786 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
787 			    dm_block_t block)
788 {
789 	remap(tc, bio, block);
790 	issue(tc, bio);
791 }
792 
793 /*----------------------------------------------------------------*/
794 
795 /*
796  * Bio endio functions.
797  */
798 struct dm_thin_new_mapping {
799 	struct list_head list;
800 
801 	bool pass_discard:1;
802 	bool maybe_shared:1;
803 
804 	/*
805 	 * Track quiescing, copying and zeroing preparation actions.  When this
806 	 * counter hits zero the block is prepared and can be inserted into the
807 	 * btree.
808 	 */
809 	atomic_t prepare_actions;
810 
811 	blk_status_t status;
812 	struct thin_c *tc;
813 	dm_block_t virt_begin, virt_end;
814 	dm_block_t data_block;
815 	struct dm_bio_prison_cell *cell;
816 
817 	/*
818 	 * If the bio covers the whole area of a block then we can avoid
819 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
820 	 * still be in the cell, so care has to be taken to avoid issuing
821 	 * the bio twice.
822 	 */
823 	struct bio *bio;
824 	bio_end_io_t *saved_bi_end_io;
825 };
826 
__complete_mapping_preparation(struct dm_thin_new_mapping * m)827 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
828 {
829 	struct pool *pool = m->tc->pool;
830 
831 	if (atomic_dec_and_test(&m->prepare_actions)) {
832 		list_add_tail(&m->list, &pool->prepared_mappings);
833 		wake_worker(pool);
834 	}
835 }
836 
complete_mapping_preparation(struct dm_thin_new_mapping * m)837 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
838 {
839 	unsigned long flags;
840 	struct pool *pool = m->tc->pool;
841 
842 	spin_lock_irqsave(&pool->lock, flags);
843 	__complete_mapping_preparation(m);
844 	spin_unlock_irqrestore(&pool->lock, flags);
845 }
846 
copy_complete(int read_err,unsigned long write_err,void * context)847 static void copy_complete(int read_err, unsigned long write_err, void *context)
848 {
849 	struct dm_thin_new_mapping *m = context;
850 
851 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
852 	complete_mapping_preparation(m);
853 }
854 
overwrite_endio(struct bio * bio)855 static void overwrite_endio(struct bio *bio)
856 {
857 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
858 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
859 
860 	bio->bi_end_io = m->saved_bi_end_io;
861 
862 	m->status = bio->bi_status;
863 	complete_mapping_preparation(m);
864 }
865 
866 /*----------------------------------------------------------------*/
867 
868 /*
869  * Workqueue.
870  */
871 
872 /*
873  * Prepared mapping jobs.
874  */
875 
876 /*
877  * This sends the bios in the cell, except the original holder, back
878  * to the deferred_bios list.
879  */
cell_defer_no_holder(struct thin_c * tc,struct dm_bio_prison_cell * cell)880 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
881 {
882 	struct pool *pool = tc->pool;
883 	unsigned long flags;
884 	struct bio_list bios;
885 
886 	bio_list_init(&bios);
887 	cell_release_no_holder(pool, cell, &bios);
888 
889 	if (!bio_list_empty(&bios)) {
890 		spin_lock_irqsave(&tc->lock, flags);
891 		bio_list_merge(&tc->deferred_bio_list, &bios);
892 		spin_unlock_irqrestore(&tc->lock, flags);
893 		wake_worker(pool);
894 	}
895 }
896 
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898 
899 struct remap_info {
900 	struct thin_c *tc;
901 	struct bio_list defer_bios;
902 	struct bio_list issue_bios;
903 };
904 
__inc_remap_and_issue_cell(void * context,struct dm_bio_prison_cell * cell)905 static void __inc_remap_and_issue_cell(void *context,
906 				       struct dm_bio_prison_cell *cell)
907 {
908 	struct remap_info *info = context;
909 	struct bio *bio;
910 
911 	while ((bio = bio_list_pop(&cell->bios))) {
912 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913 			bio_list_add(&info->defer_bios, bio);
914 		else {
915 			inc_all_io_entry(info->tc->pool, bio);
916 
917 			/*
918 			 * We can't issue the bios with the bio prison lock
919 			 * held, so we add them to a list to issue on
920 			 * return from this function.
921 			 */
922 			bio_list_add(&info->issue_bios, bio);
923 		}
924 	}
925 }
926 
inc_remap_and_issue_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928 				     struct dm_bio_prison_cell *cell,
929 				     dm_block_t block)
930 {
931 	struct bio *bio;
932 	struct remap_info info;
933 
934 	info.tc = tc;
935 	bio_list_init(&info.defer_bios);
936 	bio_list_init(&info.issue_bios);
937 
938 	/*
939 	 * We have to be careful to inc any bios we're about to issue
940 	 * before the cell is released, and avoid a race with new bios
941 	 * being added to the cell.
942 	 */
943 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944 			   &info, cell);
945 
946 	while ((bio = bio_list_pop(&info.defer_bios)))
947 		thin_defer_bio(tc, bio);
948 
949 	while ((bio = bio_list_pop(&info.issue_bios)))
950 		remap_and_issue(info.tc, bio, block);
951 }
952 
process_prepared_mapping_fail(struct dm_thin_new_mapping * m)953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955 	cell_error(m->tc->pool, m->cell);
956 	list_del(&m->list);
957 	mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959 
complete_overwrite_bio(struct thin_c * tc,struct bio * bio)960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962 	struct pool *pool = tc->pool;
963 
964 	/*
965 	 * If the bio has the REQ_FUA flag set we must commit the metadata
966 	 * before signaling its completion.
967 	 */
968 	if (!bio_triggers_commit(tc, bio)) {
969 		bio_endio(bio);
970 		return;
971 	}
972 
973 	/*
974 	 * Complete bio with an error if earlier I/O caused changes to the
975 	 * metadata that can't be committed, e.g, due to I/O errors on the
976 	 * metadata device.
977 	 */
978 	if (dm_thin_aborted_changes(tc->td)) {
979 		bio_io_error(bio);
980 		return;
981 	}
982 
983 	/*
984 	 * Batch together any bios that trigger commits and then issue a
985 	 * single commit for them in process_deferred_bios().
986 	 */
987 	spin_lock_irq(&pool->lock);
988 	bio_list_add(&pool->deferred_flush_completions, bio);
989 	spin_unlock_irq(&pool->lock);
990 }
991 
process_prepared_mapping(struct dm_thin_new_mapping * m)992 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
993 {
994 	struct thin_c *tc = m->tc;
995 	struct pool *pool = tc->pool;
996 	struct bio *bio = m->bio;
997 	int r;
998 
999 	if (m->status) {
1000 		cell_error(pool, m->cell);
1001 		goto out;
1002 	}
1003 
1004 	/*
1005 	 * Commit the prepared block into the mapping btree.
1006 	 * Any I/O for this block arriving after this point will get
1007 	 * remapped to it directly.
1008 	 */
1009 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010 	if (r) {
1011 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012 		cell_error(pool, m->cell);
1013 		goto out;
1014 	}
1015 
1016 	/*
1017 	 * Release any bios held while the block was being provisioned.
1018 	 * If we are processing a write bio that completely covers the block,
1019 	 * we already processed it so can ignore it now when processing
1020 	 * the bios in the cell.
1021 	 */
1022 	if (bio) {
1023 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024 		complete_overwrite_bio(tc, bio);
1025 	} else {
1026 		inc_all_io_entry(tc->pool, m->cell->holder);
1027 		remap_and_issue(tc, m->cell->holder, m->data_block);
1028 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029 	}
1030 
1031 out:
1032 	list_del(&m->list);
1033 	mempool_free(m, &pool->mapping_pool);
1034 }
1035 
1036 /*----------------------------------------------------------------*/
1037 
free_discard_mapping(struct dm_thin_new_mapping * m)1038 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039 {
1040 	struct thin_c *tc = m->tc;
1041 
1042 	if (m->cell)
1043 		cell_defer_no_holder(tc, m->cell);
1044 	mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046 
process_prepared_discard_fail(struct dm_thin_new_mapping * m)1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049 	bio_io_error(m->bio);
1050 	free_discard_mapping(m);
1051 }
1052 
process_prepared_discard_success(struct dm_thin_new_mapping * m)1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055 	bio_endio(m->bio);
1056 	free_discard_mapping(m);
1057 }
1058 
process_prepared_discard_no_passdown(struct dm_thin_new_mapping * m)1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061 	int r;
1062 	struct thin_c *tc = m->tc;
1063 
1064 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065 	if (r) {
1066 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067 		bio_io_error(m->bio);
1068 	} else
1069 		bio_endio(m->bio);
1070 
1071 	cell_defer_no_holder(tc, m->cell);
1072 	mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074 
1075 /*----------------------------------------------------------------*/
1076 
passdown_double_checking_shared_status(struct dm_thin_new_mapping * m,struct bio * discard_parent)1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078 						   struct bio *discard_parent)
1079 {
1080 	/*
1081 	 * We've already unmapped this range of blocks, but before we
1082 	 * passdown we have to check that these blocks are now unused.
1083 	 */
1084 	int r = 0;
1085 	bool shared = true;
1086 	struct thin_c *tc = m->tc;
1087 	struct pool *pool = tc->pool;
1088 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089 	struct discard_op op;
1090 
1091 	begin_discard(&op, tc, discard_parent);
1092 	while (b != end) {
1093 		/* find start of unmapped run */
1094 		for (; b < end; b++) {
1095 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096 			if (r)
1097 				goto out;
1098 
1099 			if (!shared)
1100 				break;
1101 		}
1102 
1103 		if (b == end)
1104 			break;
1105 
1106 		/* find end of run */
1107 		for (e = b + 1; e != end; e++) {
1108 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109 			if (r)
1110 				goto out;
1111 
1112 			if (shared)
1113 				break;
1114 		}
1115 
1116 		issue_discard(&op, b, e);
1117 
1118 		b = e;
1119 	}
1120 out:
1121 	end_discard(&op, r);
1122 }
1123 
queue_passdown_pt2(struct dm_thin_new_mapping * m)1124 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1125 {
1126 	unsigned long flags;
1127 	struct pool *pool = m->tc->pool;
1128 
1129 	spin_lock_irqsave(&pool->lock, flags);
1130 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1131 	spin_unlock_irqrestore(&pool->lock, flags);
1132 	wake_worker(pool);
1133 }
1134 
passdown_endio(struct bio * bio)1135 static void passdown_endio(struct bio *bio)
1136 {
1137 	/*
1138 	 * It doesn't matter if the passdown discard failed, we still want
1139 	 * to unmap (we ignore err).
1140 	 */
1141 	queue_passdown_pt2(bio->bi_private);
1142 	bio_put(bio);
1143 }
1144 
process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping * m)1145 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1146 {
1147 	int r;
1148 	struct thin_c *tc = m->tc;
1149 	struct pool *pool = tc->pool;
1150 	struct bio *discard_parent;
1151 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1152 
1153 	/*
1154 	 * Only this thread allocates blocks, so we can be sure that the
1155 	 * newly unmapped blocks will not be allocated before the end of
1156 	 * the function.
1157 	 */
1158 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1159 	if (r) {
1160 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1161 		bio_io_error(m->bio);
1162 		cell_defer_no_holder(tc, m->cell);
1163 		mempool_free(m, &pool->mapping_pool);
1164 		return;
1165 	}
1166 
1167 	/*
1168 	 * Increment the unmapped blocks.  This prevents a race between the
1169 	 * passdown io and reallocation of freed blocks.
1170 	 */
1171 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1172 	if (r) {
1173 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1174 		bio_io_error(m->bio);
1175 		cell_defer_no_holder(tc, m->cell);
1176 		mempool_free(m, &pool->mapping_pool);
1177 		return;
1178 	}
1179 
1180 	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1181 	discard_parent->bi_end_io = passdown_endio;
1182 	discard_parent->bi_private = m;
1183 	if (m->maybe_shared)
1184 		passdown_double_checking_shared_status(m, discard_parent);
1185 	else {
1186 		struct discard_op op;
1187 
1188 		begin_discard(&op, tc, discard_parent);
1189 		issue_discard(&op, m->data_block, data_end);
1190 		end_discard(&op, 0);
1191 	}
1192 }
1193 
process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping * m)1194 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1195 {
1196 	int r;
1197 	struct thin_c *tc = m->tc;
1198 	struct pool *pool = tc->pool;
1199 
1200 	/*
1201 	 * The passdown has completed, so now we can decrement all those
1202 	 * unmapped blocks.
1203 	 */
1204 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1205 				   m->data_block + (m->virt_end - m->virt_begin));
1206 	if (r) {
1207 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1208 		bio_io_error(m->bio);
1209 	} else
1210 		bio_endio(m->bio);
1211 
1212 	cell_defer_no_holder(tc, m->cell);
1213 	mempool_free(m, &pool->mapping_pool);
1214 }
1215 
process_prepared(struct pool * pool,struct list_head * head,process_mapping_fn * fn)1216 static void process_prepared(struct pool *pool, struct list_head *head,
1217 			     process_mapping_fn *fn)
1218 {
1219 	struct list_head maps;
1220 	struct dm_thin_new_mapping *m, *tmp;
1221 
1222 	INIT_LIST_HEAD(&maps);
1223 	spin_lock_irq(&pool->lock);
1224 	list_splice_init(head, &maps);
1225 	spin_unlock_irq(&pool->lock);
1226 
1227 	list_for_each_entry_safe(m, tmp, &maps, list)
1228 		(*fn)(m);
1229 }
1230 
1231 /*
1232  * Deferred bio jobs.
1233  */
io_overlaps_block(struct pool * pool,struct bio * bio)1234 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1235 {
1236 	return bio->bi_iter.bi_size ==
1237 		(pool->sectors_per_block << SECTOR_SHIFT);
1238 }
1239 
io_overwrites_block(struct pool * pool,struct bio * bio)1240 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1241 {
1242 	return (bio_data_dir(bio) == WRITE) &&
1243 		io_overlaps_block(pool, bio);
1244 }
1245 
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)1246 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1247 			       bio_end_io_t *fn)
1248 {
1249 	*save = bio->bi_end_io;
1250 	bio->bi_end_io = fn;
1251 }
1252 
ensure_next_mapping(struct pool * pool)1253 static int ensure_next_mapping(struct pool *pool)
1254 {
1255 	if (pool->next_mapping)
1256 		return 0;
1257 
1258 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1259 
1260 	return pool->next_mapping ? 0 : -ENOMEM;
1261 }
1262 
get_next_mapping(struct pool * pool)1263 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1264 {
1265 	struct dm_thin_new_mapping *m = pool->next_mapping;
1266 
1267 	BUG_ON(!pool->next_mapping);
1268 
1269 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1270 	INIT_LIST_HEAD(&m->list);
1271 	m->bio = NULL;
1272 
1273 	pool->next_mapping = NULL;
1274 
1275 	return m;
1276 }
1277 
ll_zero(struct thin_c * tc,struct dm_thin_new_mapping * m,sector_t begin,sector_t end)1278 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1279 		    sector_t begin, sector_t end)
1280 {
1281 	struct dm_io_region to;
1282 
1283 	to.bdev = tc->pool_dev->bdev;
1284 	to.sector = begin;
1285 	to.count = end - begin;
1286 
1287 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1288 }
1289 
remap_and_issue_overwrite(struct thin_c * tc,struct bio * bio,dm_block_t data_begin,struct dm_thin_new_mapping * m)1290 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1291 				      dm_block_t data_begin,
1292 				      struct dm_thin_new_mapping *m)
1293 {
1294 	struct pool *pool = tc->pool;
1295 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296 
1297 	h->overwrite_mapping = m;
1298 	m->bio = bio;
1299 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1300 	inc_all_io_entry(pool, bio);
1301 	remap_and_issue(tc, bio, data_begin);
1302 }
1303 
1304 /*
1305  * A partial copy also needs to zero the uncopied region.
1306  */
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio,sector_t len)1307 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1308 			  struct dm_dev *origin, dm_block_t data_origin,
1309 			  dm_block_t data_dest,
1310 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1311 			  sector_t len)
1312 {
1313 	struct pool *pool = tc->pool;
1314 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1315 
1316 	m->tc = tc;
1317 	m->virt_begin = virt_block;
1318 	m->virt_end = virt_block + 1u;
1319 	m->data_block = data_dest;
1320 	m->cell = cell;
1321 
1322 	/*
1323 	 * quiesce action + copy action + an extra reference held for the
1324 	 * duration of this function (we may need to inc later for a
1325 	 * partial zero).
1326 	 */
1327 	atomic_set(&m->prepare_actions, 3);
1328 
1329 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1330 		complete_mapping_preparation(m); /* already quiesced */
1331 
1332 	/*
1333 	 * IO to pool_dev remaps to the pool target's data_dev.
1334 	 *
1335 	 * If the whole block of data is being overwritten, we can issue the
1336 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1337 	 */
1338 	if (io_overwrites_block(pool, bio))
1339 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1340 	else {
1341 		struct dm_io_region from, to;
1342 
1343 		from.bdev = origin->bdev;
1344 		from.sector = data_origin * pool->sectors_per_block;
1345 		from.count = len;
1346 
1347 		to.bdev = tc->pool_dev->bdev;
1348 		to.sector = data_dest * pool->sectors_per_block;
1349 		to.count = len;
1350 
1351 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1352 			       0, copy_complete, m);
1353 
1354 		/*
1355 		 * Do we need to zero a tail region?
1356 		 */
1357 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1358 			atomic_inc(&m->prepare_actions);
1359 			ll_zero(tc, m,
1360 				data_dest * pool->sectors_per_block + len,
1361 				(data_dest + 1) * pool->sectors_per_block);
1362 		}
1363 	}
1364 
1365 	complete_mapping_preparation(m); /* drop our ref */
1366 }
1367 
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1368 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1369 				   dm_block_t data_origin, dm_block_t data_dest,
1370 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1371 {
1372 	schedule_copy(tc, virt_block, tc->pool_dev,
1373 		      data_origin, data_dest, cell, bio,
1374 		      tc->pool->sectors_per_block);
1375 }
1376 
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct dm_bio_prison_cell * cell,struct bio * bio)1377 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1378 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1379 			  struct bio *bio)
1380 {
1381 	struct pool *pool = tc->pool;
1382 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1383 
1384 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1385 	m->tc = tc;
1386 	m->virt_begin = virt_block;
1387 	m->virt_end = virt_block + 1u;
1388 	m->data_block = data_block;
1389 	m->cell = cell;
1390 
1391 	/*
1392 	 * If the whole block of data is being overwritten or we are not
1393 	 * zeroing pre-existing data, we can issue the bio immediately.
1394 	 * Otherwise we use kcopyd to zero the data first.
1395 	 */
1396 	if (pool->pf.zero_new_blocks) {
1397 		if (io_overwrites_block(pool, bio))
1398 			remap_and_issue_overwrite(tc, bio, data_block, m);
1399 		else {
1400 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1401 				(data_block + 1) * pool->sectors_per_block);
1402 		}
1403 	} else
1404 		process_prepared_mapping(m);
1405 }
1406 
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1407 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1408 				   dm_block_t data_dest,
1409 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1410 {
1411 	struct pool *pool = tc->pool;
1412 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1413 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1414 
1415 	if (virt_block_end <= tc->origin_size) {
1416 		schedule_copy(tc, virt_block, tc->origin_dev,
1417 			      virt_block, data_dest, cell, bio,
1418 			      pool->sectors_per_block);
1419 
1420 	} else if (virt_block_begin < tc->origin_size) {
1421 		schedule_copy(tc, virt_block, tc->origin_dev,
1422 			      virt_block, data_dest, cell, bio,
1423 			      tc->origin_size - virt_block_begin);
1424 
1425 	} else
1426 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1427 }
1428 
1429 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1430 
1431 static void requeue_bios(struct pool *pool);
1432 
is_read_only_pool_mode(enum pool_mode mode)1433 static bool is_read_only_pool_mode(enum pool_mode mode)
1434 {
1435 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1436 }
1437 
is_read_only(struct pool * pool)1438 static bool is_read_only(struct pool *pool)
1439 {
1440 	return is_read_only_pool_mode(get_pool_mode(pool));
1441 }
1442 
check_for_metadata_space(struct pool * pool)1443 static void check_for_metadata_space(struct pool *pool)
1444 {
1445 	int r;
1446 	const char *ooms_reason = NULL;
1447 	dm_block_t nr_free;
1448 
1449 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1450 	if (r)
1451 		ooms_reason = "Could not get free metadata blocks";
1452 	else if (!nr_free)
1453 		ooms_reason = "No free metadata blocks";
1454 
1455 	if (ooms_reason && !is_read_only(pool)) {
1456 		DMERR("%s", ooms_reason);
1457 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1458 	}
1459 }
1460 
check_for_data_space(struct pool * pool)1461 static void check_for_data_space(struct pool *pool)
1462 {
1463 	int r;
1464 	dm_block_t nr_free;
1465 
1466 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1467 		return;
1468 
1469 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1470 	if (r)
1471 		return;
1472 
1473 	if (nr_free) {
1474 		set_pool_mode(pool, PM_WRITE);
1475 		requeue_bios(pool);
1476 	}
1477 }
1478 
1479 /*
1480  * A non-zero return indicates read_only or fail_io mode.
1481  * Many callers don't care about the return value.
1482  */
commit(struct pool * pool)1483 static int commit(struct pool *pool)
1484 {
1485 	int r;
1486 
1487 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1488 		return -EINVAL;
1489 
1490 	r = dm_pool_commit_metadata(pool->pmd);
1491 	if (r)
1492 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1493 	else {
1494 		check_for_metadata_space(pool);
1495 		check_for_data_space(pool);
1496 	}
1497 
1498 	return r;
1499 }
1500 
check_low_water_mark(struct pool * pool,dm_block_t free_blocks)1501 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1502 {
1503 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1504 		DMWARN("%s: reached low water mark for data device: sending event.",
1505 		       dm_device_name(pool->pool_md));
1506 		spin_lock_irq(&pool->lock);
1507 		pool->low_water_triggered = true;
1508 		spin_unlock_irq(&pool->lock);
1509 		dm_table_event(pool->ti->table);
1510 	}
1511 }
1512 
alloc_data_block(struct thin_c * tc,dm_block_t * result)1513 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1514 {
1515 	int r;
1516 	dm_block_t free_blocks;
1517 	struct pool *pool = tc->pool;
1518 
1519 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1520 		return -EINVAL;
1521 
1522 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1523 	if (r) {
1524 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1525 		return r;
1526 	}
1527 
1528 	check_low_water_mark(pool, free_blocks);
1529 
1530 	if (!free_blocks) {
1531 		/*
1532 		 * Try to commit to see if that will free up some
1533 		 * more space.
1534 		 */
1535 		r = commit(pool);
1536 		if (r)
1537 			return r;
1538 
1539 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1540 		if (r) {
1541 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1542 			return r;
1543 		}
1544 
1545 		if (!free_blocks) {
1546 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1547 			return -ENOSPC;
1548 		}
1549 	}
1550 
1551 	r = dm_pool_alloc_data_block(pool->pmd, result);
1552 	if (r) {
1553 		if (r == -ENOSPC)
1554 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1555 		else
1556 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1557 		return r;
1558 	}
1559 
1560 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1561 	if (r) {
1562 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1563 		return r;
1564 	}
1565 
1566 	if (!free_blocks) {
1567 		/* Let's commit before we use up the metadata reserve. */
1568 		r = commit(pool);
1569 		if (r)
1570 			return r;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 /*
1577  * If we have run out of space, queue bios until the device is
1578  * resumed, presumably after having been reloaded with more space.
1579  */
retry_on_resume(struct bio * bio)1580 static void retry_on_resume(struct bio *bio)
1581 {
1582 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1583 	struct thin_c *tc = h->tc;
1584 
1585 	spin_lock_irq(&tc->lock);
1586 	bio_list_add(&tc->retry_on_resume_list, bio);
1587 	spin_unlock_irq(&tc->lock);
1588 }
1589 
should_error_unserviceable_bio(struct pool * pool)1590 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1591 {
1592 	enum pool_mode m = get_pool_mode(pool);
1593 
1594 	switch (m) {
1595 	case PM_WRITE:
1596 		/* Shouldn't get here */
1597 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1598 		return BLK_STS_IOERR;
1599 
1600 	case PM_OUT_OF_DATA_SPACE:
1601 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1602 
1603 	case PM_OUT_OF_METADATA_SPACE:
1604 	case PM_READ_ONLY:
1605 	case PM_FAIL:
1606 		return BLK_STS_IOERR;
1607 	default:
1608 		/* Shouldn't get here */
1609 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1610 		return BLK_STS_IOERR;
1611 	}
1612 }
1613 
handle_unserviceable_bio(struct pool * pool,struct bio * bio)1614 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1615 {
1616 	blk_status_t error = should_error_unserviceable_bio(pool);
1617 
1618 	if (error) {
1619 		bio->bi_status = error;
1620 		bio_endio(bio);
1621 	} else
1622 		retry_on_resume(bio);
1623 }
1624 
retry_bios_on_resume(struct pool * pool,struct dm_bio_prison_cell * cell)1625 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1626 {
1627 	struct bio *bio;
1628 	struct bio_list bios;
1629 	blk_status_t error;
1630 
1631 	error = should_error_unserviceable_bio(pool);
1632 	if (error) {
1633 		cell_error_with_code(pool, cell, error);
1634 		return;
1635 	}
1636 
1637 	bio_list_init(&bios);
1638 	cell_release(pool, cell, &bios);
1639 
1640 	while ((bio = bio_list_pop(&bios)))
1641 		retry_on_resume(bio);
1642 }
1643 
process_discard_cell_no_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1644 static void process_discard_cell_no_passdown(struct thin_c *tc,
1645 					     struct dm_bio_prison_cell *virt_cell)
1646 {
1647 	struct pool *pool = tc->pool;
1648 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1649 
1650 	/*
1651 	 * We don't need to lock the data blocks, since there's no
1652 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1653 	 */
1654 	m->tc = tc;
1655 	m->virt_begin = virt_cell->key.block_begin;
1656 	m->virt_end = virt_cell->key.block_end;
1657 	m->cell = virt_cell;
1658 	m->bio = virt_cell->holder;
1659 
1660 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1661 		pool->process_prepared_discard(m);
1662 }
1663 
break_up_discard_bio(struct thin_c * tc,dm_block_t begin,dm_block_t end,struct bio * bio)1664 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1665 				 struct bio *bio)
1666 {
1667 	struct pool *pool = tc->pool;
1668 
1669 	int r;
1670 	bool maybe_shared;
1671 	struct dm_cell_key data_key;
1672 	struct dm_bio_prison_cell *data_cell;
1673 	struct dm_thin_new_mapping *m;
1674 	dm_block_t virt_begin, virt_end, data_begin, data_end;
1675 	dm_block_t len, next_boundary;
1676 
1677 	while (begin != end) {
1678 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1679 					      &data_begin, &maybe_shared);
1680 		if (r) {
1681 			/*
1682 			 * Silently fail, letting any mappings we've
1683 			 * created complete.
1684 			 */
1685 			break;
1686 		}
1687 
1688 		data_end = data_begin + (virt_end - virt_begin);
1689 
1690 		/*
1691 		 * Make sure the data region obeys the bio prison restrictions.
1692 		 */
1693 		while (data_begin < data_end) {
1694 			r = ensure_next_mapping(pool);
1695 			if (r)
1696 				return; /* we did our best */
1697 
1698 			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1699 				<< BIO_PRISON_MAX_RANGE_SHIFT;
1700 			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1701 
1702 			/* This key is certainly within range given the above splitting */
1703 			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1704 			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1705 				/* contention, we'll give up with this range */
1706 				data_begin += len;
1707 				continue;
1708 			}
1709 
1710 			/*
1711 			 * IO may still be going to the destination block.  We must
1712 			 * quiesce before we can do the removal.
1713 			 */
1714 			m = get_next_mapping(pool);
1715 			m->tc = tc;
1716 			m->maybe_shared = maybe_shared;
1717 			m->virt_begin = virt_begin;
1718 			m->virt_end = virt_begin + len;
1719 			m->data_block = data_begin;
1720 			m->cell = data_cell;
1721 			m->bio = bio;
1722 
1723 			/*
1724 			 * The parent bio must not complete before sub discard bios are
1725 			 * chained to it (see end_discard's bio_chain)!
1726 			 *
1727 			 * This per-mapping bi_remaining increment is paired with
1728 			 * the implicit decrement that occurs via bio_endio() in
1729 			 * end_discard().
1730 			 */
1731 			bio_inc_remaining(bio);
1732 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1733 				pool->process_prepared_discard(m);
1734 
1735 			virt_begin += len;
1736 			data_begin += len;
1737 		}
1738 
1739 		begin = virt_end;
1740 	}
1741 }
1742 
process_discard_cell_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1743 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1744 {
1745 	struct bio *bio = virt_cell->holder;
1746 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1747 
1748 	/*
1749 	 * The virt_cell will only get freed once the origin bio completes.
1750 	 * This means it will remain locked while all the individual
1751 	 * passdown bios are in flight.
1752 	 */
1753 	h->cell = virt_cell;
1754 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1755 
1756 	/*
1757 	 * We complete the bio now, knowing that the bi_remaining field
1758 	 * will prevent completion until the sub range discards have
1759 	 * completed.
1760 	 */
1761 	bio_endio(bio);
1762 }
1763 
process_discard_bio(struct thin_c * tc,struct bio * bio)1764 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1765 {
1766 	dm_block_t begin, end;
1767 	struct dm_cell_key virt_key;
1768 	struct dm_bio_prison_cell *virt_cell;
1769 
1770 	get_bio_block_range(tc, bio, &begin, &end);
1771 	if (begin == end) {
1772 		/*
1773 		 * The discard covers less than a block.
1774 		 */
1775 		bio_endio(bio);
1776 		return;
1777 	}
1778 
1779 	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1780 		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1781 		bio_endio(bio);
1782 		return;
1783 	}
1784 
1785 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1786 		/*
1787 		 * Potential starvation issue: We're relying on the
1788 		 * fs/application being well behaved, and not trying to
1789 		 * send IO to a region at the same time as discarding it.
1790 		 * If they do this persistently then it's possible this
1791 		 * cell will never be granted.
1792 		 */
1793 		return;
1794 	}
1795 
1796 	tc->pool->process_discard_cell(tc, virt_cell);
1797 }
1798 
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_cell_key * key,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * cell)1799 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1800 			  struct dm_cell_key *key,
1801 			  struct dm_thin_lookup_result *lookup_result,
1802 			  struct dm_bio_prison_cell *cell)
1803 {
1804 	int r;
1805 	dm_block_t data_block;
1806 	struct pool *pool = tc->pool;
1807 
1808 	r = alloc_data_block(tc, &data_block);
1809 	switch (r) {
1810 	case 0:
1811 		schedule_internal_copy(tc, block, lookup_result->block,
1812 				       data_block, cell, bio);
1813 		break;
1814 
1815 	case -ENOSPC:
1816 		retry_bios_on_resume(pool, cell);
1817 		break;
1818 
1819 	default:
1820 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1821 			    __func__, r);
1822 		cell_error(pool, cell);
1823 		break;
1824 	}
1825 }
1826 
__remap_and_issue_shared_cell(void * context,struct dm_bio_prison_cell * cell)1827 static void __remap_and_issue_shared_cell(void *context,
1828 					  struct dm_bio_prison_cell *cell)
1829 {
1830 	struct remap_info *info = context;
1831 	struct bio *bio;
1832 
1833 	while ((bio = bio_list_pop(&cell->bios))) {
1834 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1835 		    bio_op(bio) == REQ_OP_DISCARD)
1836 			bio_list_add(&info->defer_bios, bio);
1837 		else {
1838 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1839 
1840 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1841 			inc_all_io_entry(info->tc->pool, bio);
1842 			bio_list_add(&info->issue_bios, bio);
1843 		}
1844 	}
1845 }
1846 
remap_and_issue_shared_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)1847 static void remap_and_issue_shared_cell(struct thin_c *tc,
1848 					struct dm_bio_prison_cell *cell,
1849 					dm_block_t block)
1850 {
1851 	struct bio *bio;
1852 	struct remap_info info;
1853 
1854 	info.tc = tc;
1855 	bio_list_init(&info.defer_bios);
1856 	bio_list_init(&info.issue_bios);
1857 
1858 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1859 			   &info, cell);
1860 
1861 	while ((bio = bio_list_pop(&info.defer_bios)))
1862 		thin_defer_bio(tc, bio);
1863 
1864 	while ((bio = bio_list_pop(&info.issue_bios)))
1865 		remap_and_issue(tc, bio, block);
1866 }
1867 
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * virt_cell)1868 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1869 			       dm_block_t block,
1870 			       struct dm_thin_lookup_result *lookup_result,
1871 			       struct dm_bio_prison_cell *virt_cell)
1872 {
1873 	struct dm_bio_prison_cell *data_cell;
1874 	struct pool *pool = tc->pool;
1875 	struct dm_cell_key key;
1876 
1877 	/*
1878 	 * If cell is already occupied, then sharing is already in the process
1879 	 * of being broken so we have nothing further to do here.
1880 	 */
1881 	build_data_key(tc->td, lookup_result->block, &key);
1882 	if (bio_detain(pool, &key, bio, &data_cell)) {
1883 		cell_defer_no_holder(tc, virt_cell);
1884 		return;
1885 	}
1886 
1887 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1888 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1889 		cell_defer_no_holder(tc, virt_cell);
1890 	} else {
1891 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1892 
1893 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1894 		inc_all_io_entry(pool, bio);
1895 		remap_and_issue(tc, bio, lookup_result->block);
1896 
1897 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1898 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1899 	}
1900 }
1901 
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_bio_prison_cell * cell)1902 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1903 			    struct dm_bio_prison_cell *cell)
1904 {
1905 	int r;
1906 	dm_block_t data_block;
1907 	struct pool *pool = tc->pool;
1908 
1909 	/*
1910 	 * Remap empty bios (flushes) immediately, without provisioning.
1911 	 */
1912 	if (!bio->bi_iter.bi_size) {
1913 		inc_all_io_entry(pool, bio);
1914 		cell_defer_no_holder(tc, cell);
1915 
1916 		remap_and_issue(tc, bio, 0);
1917 		return;
1918 	}
1919 
1920 	/*
1921 	 * Fill read bios with zeroes and complete them immediately.
1922 	 */
1923 	if (bio_data_dir(bio) == READ) {
1924 		zero_fill_bio(bio);
1925 		cell_defer_no_holder(tc, cell);
1926 		bio_endio(bio);
1927 		return;
1928 	}
1929 
1930 	r = alloc_data_block(tc, &data_block);
1931 	switch (r) {
1932 	case 0:
1933 		if (tc->origin_dev)
1934 			schedule_external_copy(tc, block, data_block, cell, bio);
1935 		else
1936 			schedule_zero(tc, block, data_block, cell, bio);
1937 		break;
1938 
1939 	case -ENOSPC:
1940 		retry_bios_on_resume(pool, cell);
1941 		break;
1942 
1943 	default:
1944 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1945 			    __func__, r);
1946 		cell_error(pool, cell);
1947 		break;
1948 	}
1949 }
1950 
process_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)1951 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1952 {
1953 	int r;
1954 	struct pool *pool = tc->pool;
1955 	struct bio *bio = cell->holder;
1956 	dm_block_t block = get_bio_block(tc, bio);
1957 	struct dm_thin_lookup_result lookup_result;
1958 
1959 	if (tc->requeue_mode) {
1960 		cell_requeue(pool, cell);
1961 		return;
1962 	}
1963 
1964 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1965 	switch (r) {
1966 	case 0:
1967 		if (lookup_result.shared)
1968 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1969 		else {
1970 			inc_all_io_entry(pool, bio);
1971 			remap_and_issue(tc, bio, lookup_result.block);
1972 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1973 		}
1974 		break;
1975 
1976 	case -ENODATA:
1977 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1978 			inc_all_io_entry(pool, bio);
1979 			cell_defer_no_holder(tc, cell);
1980 
1981 			if (bio_end_sector(bio) <= tc->origin_size)
1982 				remap_to_origin_and_issue(tc, bio);
1983 
1984 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1985 				zero_fill_bio(bio);
1986 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1987 				remap_to_origin_and_issue(tc, bio);
1988 
1989 			} else {
1990 				zero_fill_bio(bio);
1991 				bio_endio(bio);
1992 			}
1993 		} else
1994 			provision_block(tc, bio, block, cell);
1995 		break;
1996 
1997 	default:
1998 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1999 			    __func__, r);
2000 		cell_defer_no_holder(tc, cell);
2001 		bio_io_error(bio);
2002 		break;
2003 	}
2004 }
2005 
process_bio(struct thin_c * tc,struct bio * bio)2006 static void process_bio(struct thin_c *tc, struct bio *bio)
2007 {
2008 	struct pool *pool = tc->pool;
2009 	dm_block_t block = get_bio_block(tc, bio);
2010 	struct dm_bio_prison_cell *cell;
2011 	struct dm_cell_key key;
2012 
2013 	/*
2014 	 * If cell is already occupied, then the block is already
2015 	 * being provisioned so we have nothing further to do here.
2016 	 */
2017 	build_virtual_key(tc->td, block, &key);
2018 	if (bio_detain(pool, &key, bio, &cell))
2019 		return;
2020 
2021 	process_cell(tc, cell);
2022 }
2023 
__process_bio_read_only(struct thin_c * tc,struct bio * bio,struct dm_bio_prison_cell * cell)2024 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2025 				    struct dm_bio_prison_cell *cell)
2026 {
2027 	int r;
2028 	int rw = bio_data_dir(bio);
2029 	dm_block_t block = get_bio_block(tc, bio);
2030 	struct dm_thin_lookup_result lookup_result;
2031 
2032 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2033 	switch (r) {
2034 	case 0:
2035 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2036 			handle_unserviceable_bio(tc->pool, bio);
2037 			if (cell)
2038 				cell_defer_no_holder(tc, cell);
2039 		} else {
2040 			inc_all_io_entry(tc->pool, bio);
2041 			remap_and_issue(tc, bio, lookup_result.block);
2042 			if (cell)
2043 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2044 		}
2045 		break;
2046 
2047 	case -ENODATA:
2048 		if (cell)
2049 			cell_defer_no_holder(tc, cell);
2050 		if (rw != READ) {
2051 			handle_unserviceable_bio(tc->pool, bio);
2052 			break;
2053 		}
2054 
2055 		if (tc->origin_dev) {
2056 			inc_all_io_entry(tc->pool, bio);
2057 			remap_to_origin_and_issue(tc, bio);
2058 			break;
2059 		}
2060 
2061 		zero_fill_bio(bio);
2062 		bio_endio(bio);
2063 		break;
2064 
2065 	default:
2066 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2067 			    __func__, r);
2068 		if (cell)
2069 			cell_defer_no_holder(tc, cell);
2070 		bio_io_error(bio);
2071 		break;
2072 	}
2073 }
2074 
process_bio_read_only(struct thin_c * tc,struct bio * bio)2075 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2076 {
2077 	__process_bio_read_only(tc, bio, NULL);
2078 }
2079 
process_cell_read_only(struct thin_c * tc,struct dm_bio_prison_cell * cell)2080 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2081 {
2082 	__process_bio_read_only(tc, cell->holder, cell);
2083 }
2084 
process_bio_success(struct thin_c * tc,struct bio * bio)2085 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2086 {
2087 	bio_endio(bio);
2088 }
2089 
process_bio_fail(struct thin_c * tc,struct bio * bio)2090 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2091 {
2092 	bio_io_error(bio);
2093 }
2094 
process_cell_success(struct thin_c * tc,struct dm_bio_prison_cell * cell)2095 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2096 {
2097 	cell_success(tc->pool, cell);
2098 }
2099 
process_cell_fail(struct thin_c * tc,struct dm_bio_prison_cell * cell)2100 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2101 {
2102 	cell_error(tc->pool, cell);
2103 }
2104 
2105 /*
2106  * FIXME: should we also commit due to size of transaction, measured in
2107  * metadata blocks?
2108  */
need_commit_due_to_time(struct pool * pool)2109 static int need_commit_due_to_time(struct pool *pool)
2110 {
2111 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2112 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2113 }
2114 
2115 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2116 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2117 
__thin_bio_rb_add(struct thin_c * tc,struct bio * bio)2118 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2119 {
2120 	struct rb_node **rbp, *parent;
2121 	struct dm_thin_endio_hook *pbd;
2122 	sector_t bi_sector = bio->bi_iter.bi_sector;
2123 
2124 	rbp = &tc->sort_bio_list.rb_node;
2125 	parent = NULL;
2126 	while (*rbp) {
2127 		parent = *rbp;
2128 		pbd = thin_pbd(parent);
2129 
2130 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2131 			rbp = &(*rbp)->rb_left;
2132 		else
2133 			rbp = &(*rbp)->rb_right;
2134 	}
2135 
2136 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2137 	rb_link_node(&pbd->rb_node, parent, rbp);
2138 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2139 }
2140 
__extract_sorted_bios(struct thin_c * tc)2141 static void __extract_sorted_bios(struct thin_c *tc)
2142 {
2143 	struct rb_node *node;
2144 	struct dm_thin_endio_hook *pbd;
2145 	struct bio *bio;
2146 
2147 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2148 		pbd = thin_pbd(node);
2149 		bio = thin_bio(pbd);
2150 
2151 		bio_list_add(&tc->deferred_bio_list, bio);
2152 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2153 	}
2154 
2155 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2156 }
2157 
__sort_thin_deferred_bios(struct thin_c * tc)2158 static void __sort_thin_deferred_bios(struct thin_c *tc)
2159 {
2160 	struct bio *bio;
2161 	struct bio_list bios;
2162 
2163 	bio_list_init(&bios);
2164 	bio_list_merge(&bios, &tc->deferred_bio_list);
2165 	bio_list_init(&tc->deferred_bio_list);
2166 
2167 	/* Sort deferred_bio_list using rb-tree */
2168 	while ((bio = bio_list_pop(&bios)))
2169 		__thin_bio_rb_add(tc, bio);
2170 
2171 	/*
2172 	 * Transfer the sorted bios in sort_bio_list back to
2173 	 * deferred_bio_list to allow lockless submission of
2174 	 * all bios.
2175 	 */
2176 	__extract_sorted_bios(tc);
2177 }
2178 
process_thin_deferred_bios(struct thin_c * tc)2179 static void process_thin_deferred_bios(struct thin_c *tc)
2180 {
2181 	struct pool *pool = tc->pool;
2182 	struct bio *bio;
2183 	struct bio_list bios;
2184 	struct blk_plug plug;
2185 	unsigned int count = 0;
2186 
2187 	if (tc->requeue_mode) {
2188 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2189 				BLK_STS_DM_REQUEUE);
2190 		return;
2191 	}
2192 
2193 	bio_list_init(&bios);
2194 
2195 	spin_lock_irq(&tc->lock);
2196 
2197 	if (bio_list_empty(&tc->deferred_bio_list)) {
2198 		spin_unlock_irq(&tc->lock);
2199 		return;
2200 	}
2201 
2202 	__sort_thin_deferred_bios(tc);
2203 
2204 	bio_list_merge(&bios, &tc->deferred_bio_list);
2205 	bio_list_init(&tc->deferred_bio_list);
2206 
2207 	spin_unlock_irq(&tc->lock);
2208 
2209 	blk_start_plug(&plug);
2210 	while ((bio = bio_list_pop(&bios))) {
2211 		/*
2212 		 * If we've got no free new_mapping structs, and processing
2213 		 * this bio might require one, we pause until there are some
2214 		 * prepared mappings to process.
2215 		 */
2216 		if (ensure_next_mapping(pool)) {
2217 			spin_lock_irq(&tc->lock);
2218 			bio_list_add(&tc->deferred_bio_list, bio);
2219 			bio_list_merge(&tc->deferred_bio_list, &bios);
2220 			spin_unlock_irq(&tc->lock);
2221 			break;
2222 		}
2223 
2224 		if (bio_op(bio) == REQ_OP_DISCARD)
2225 			pool->process_discard(tc, bio);
2226 		else
2227 			pool->process_bio(tc, bio);
2228 
2229 		if ((count++ & 127) == 0) {
2230 			throttle_work_update(&pool->throttle);
2231 			dm_pool_issue_prefetches(pool->pmd);
2232 		}
2233 		cond_resched();
2234 	}
2235 	blk_finish_plug(&plug);
2236 }
2237 
cmp_cells(const void * lhs,const void * rhs)2238 static int cmp_cells(const void *lhs, const void *rhs)
2239 {
2240 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2241 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2242 
2243 	BUG_ON(!lhs_cell->holder);
2244 	BUG_ON(!rhs_cell->holder);
2245 
2246 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2247 		return -1;
2248 
2249 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2250 		return 1;
2251 
2252 	return 0;
2253 }
2254 
sort_cells(struct pool * pool,struct list_head * cells)2255 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2256 {
2257 	unsigned int count = 0;
2258 	struct dm_bio_prison_cell *cell, *tmp;
2259 
2260 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2261 		if (count >= CELL_SORT_ARRAY_SIZE)
2262 			break;
2263 
2264 		pool->cell_sort_array[count++] = cell;
2265 		list_del(&cell->user_list);
2266 	}
2267 
2268 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2269 
2270 	return count;
2271 }
2272 
process_thin_deferred_cells(struct thin_c * tc)2273 static void process_thin_deferred_cells(struct thin_c *tc)
2274 {
2275 	struct pool *pool = tc->pool;
2276 	struct list_head cells;
2277 	struct dm_bio_prison_cell *cell;
2278 	unsigned int i, j, count;
2279 
2280 	INIT_LIST_HEAD(&cells);
2281 
2282 	spin_lock_irq(&tc->lock);
2283 	list_splice_init(&tc->deferred_cells, &cells);
2284 	spin_unlock_irq(&tc->lock);
2285 
2286 	if (list_empty(&cells))
2287 		return;
2288 
2289 	do {
2290 		count = sort_cells(tc->pool, &cells);
2291 
2292 		for (i = 0; i < count; i++) {
2293 			cell = pool->cell_sort_array[i];
2294 			BUG_ON(!cell->holder);
2295 
2296 			/*
2297 			 * If we've got no free new_mapping structs, and processing
2298 			 * this bio might require one, we pause until there are some
2299 			 * prepared mappings to process.
2300 			 */
2301 			if (ensure_next_mapping(pool)) {
2302 				for (j = i; j < count; j++)
2303 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2304 
2305 				spin_lock_irq(&tc->lock);
2306 				list_splice(&cells, &tc->deferred_cells);
2307 				spin_unlock_irq(&tc->lock);
2308 				return;
2309 			}
2310 
2311 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2312 				pool->process_discard_cell(tc, cell);
2313 			else
2314 				pool->process_cell(tc, cell);
2315 		}
2316 		cond_resched();
2317 	} while (!list_empty(&cells));
2318 }
2319 
2320 static void thin_get(struct thin_c *tc);
2321 static void thin_put(struct thin_c *tc);
2322 
2323 /*
2324  * We can't hold rcu_read_lock() around code that can block.  So we
2325  * find a thin with the rcu lock held; bump a refcount; then drop
2326  * the lock.
2327  */
get_first_thin(struct pool * pool)2328 static struct thin_c *get_first_thin(struct pool *pool)
2329 {
2330 	struct thin_c *tc = NULL;
2331 
2332 	rcu_read_lock();
2333 	tc = list_first_or_null_rcu(&pool->active_thins, struct thin_c, list);
2334 	if (tc)
2335 		thin_get(tc);
2336 	rcu_read_unlock();
2337 
2338 	return tc;
2339 }
2340 
get_next_thin(struct pool * pool,struct thin_c * tc)2341 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2342 {
2343 	struct thin_c *old_tc = tc;
2344 
2345 	rcu_read_lock();
2346 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2347 		thin_get(tc);
2348 		thin_put(old_tc);
2349 		rcu_read_unlock();
2350 		return tc;
2351 	}
2352 	thin_put(old_tc);
2353 	rcu_read_unlock();
2354 
2355 	return NULL;
2356 }
2357 
process_deferred_bios(struct pool * pool)2358 static void process_deferred_bios(struct pool *pool)
2359 {
2360 	struct bio *bio;
2361 	struct bio_list bios, bio_completions;
2362 	struct thin_c *tc;
2363 
2364 	tc = get_first_thin(pool);
2365 	while (tc) {
2366 		process_thin_deferred_cells(tc);
2367 		process_thin_deferred_bios(tc);
2368 		tc = get_next_thin(pool, tc);
2369 	}
2370 
2371 	/*
2372 	 * If there are any deferred flush bios, we must commit the metadata
2373 	 * before issuing them or signaling their completion.
2374 	 */
2375 	bio_list_init(&bios);
2376 	bio_list_init(&bio_completions);
2377 
2378 	spin_lock_irq(&pool->lock);
2379 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2380 	bio_list_init(&pool->deferred_flush_bios);
2381 
2382 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2383 	bio_list_init(&pool->deferred_flush_completions);
2384 	spin_unlock_irq(&pool->lock);
2385 
2386 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2387 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2388 		return;
2389 
2390 	if (commit(pool)) {
2391 		bio_list_merge(&bios, &bio_completions);
2392 
2393 		while ((bio = bio_list_pop(&bios)))
2394 			bio_io_error(bio);
2395 		return;
2396 	}
2397 	pool->last_commit_jiffies = jiffies;
2398 
2399 	while ((bio = bio_list_pop(&bio_completions)))
2400 		bio_endio(bio);
2401 
2402 	while ((bio = bio_list_pop(&bios))) {
2403 		/*
2404 		 * The data device was flushed as part of metadata commit,
2405 		 * so complete redundant flushes immediately.
2406 		 */
2407 		if (bio->bi_opf & REQ_PREFLUSH)
2408 			bio_endio(bio);
2409 		else
2410 			dm_submit_bio_remap(bio, NULL);
2411 	}
2412 }
2413 
do_worker(struct work_struct * ws)2414 static void do_worker(struct work_struct *ws)
2415 {
2416 	struct pool *pool = container_of(ws, struct pool, worker);
2417 
2418 	throttle_work_start(&pool->throttle);
2419 	dm_pool_issue_prefetches(pool->pmd);
2420 	throttle_work_update(&pool->throttle);
2421 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2422 	throttle_work_update(&pool->throttle);
2423 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2424 	throttle_work_update(&pool->throttle);
2425 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2426 	throttle_work_update(&pool->throttle);
2427 	process_deferred_bios(pool);
2428 	throttle_work_complete(&pool->throttle);
2429 }
2430 
2431 /*
2432  * We want to commit periodically so that not too much
2433  * unwritten data builds up.
2434  */
do_waker(struct work_struct * ws)2435 static void do_waker(struct work_struct *ws)
2436 {
2437 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2438 
2439 	wake_worker(pool);
2440 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2441 }
2442 
2443 /*
2444  * We're holding onto IO to allow userland time to react.  After the
2445  * timeout either the pool will have been resized (and thus back in
2446  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2447  */
do_no_space_timeout(struct work_struct * ws)2448 static void do_no_space_timeout(struct work_struct *ws)
2449 {
2450 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2451 					 no_space_timeout);
2452 
2453 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2454 		pool->pf.error_if_no_space = true;
2455 		notify_of_pool_mode_change(pool);
2456 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2457 	}
2458 }
2459 
2460 /*----------------------------------------------------------------*/
2461 
2462 struct pool_work {
2463 	struct work_struct worker;
2464 	struct completion complete;
2465 };
2466 
to_pool_work(struct work_struct * ws)2467 static struct pool_work *to_pool_work(struct work_struct *ws)
2468 {
2469 	return container_of(ws, struct pool_work, worker);
2470 }
2471 
pool_work_complete(struct pool_work * pw)2472 static void pool_work_complete(struct pool_work *pw)
2473 {
2474 	complete(&pw->complete);
2475 }
2476 
pool_work_wait(struct pool_work * pw,struct pool * pool,void (* fn)(struct work_struct *))2477 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2478 			   void (*fn)(struct work_struct *))
2479 {
2480 	INIT_WORK_ONSTACK(&pw->worker, fn);
2481 	init_completion(&pw->complete);
2482 	queue_work(pool->wq, &pw->worker);
2483 	wait_for_completion(&pw->complete);
2484 	destroy_work_on_stack(&pw->worker);
2485 }
2486 
2487 /*----------------------------------------------------------------*/
2488 
2489 struct noflush_work {
2490 	struct pool_work pw;
2491 	struct thin_c *tc;
2492 };
2493 
to_noflush(struct work_struct * ws)2494 static struct noflush_work *to_noflush(struct work_struct *ws)
2495 {
2496 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2497 }
2498 
do_noflush_start(struct work_struct * ws)2499 static void do_noflush_start(struct work_struct *ws)
2500 {
2501 	struct noflush_work *w = to_noflush(ws);
2502 
2503 	w->tc->requeue_mode = true;
2504 	requeue_io(w->tc);
2505 	pool_work_complete(&w->pw);
2506 }
2507 
do_noflush_stop(struct work_struct * ws)2508 static void do_noflush_stop(struct work_struct *ws)
2509 {
2510 	struct noflush_work *w = to_noflush(ws);
2511 
2512 	w->tc->requeue_mode = false;
2513 	pool_work_complete(&w->pw);
2514 }
2515 
noflush_work(struct thin_c * tc,void (* fn)(struct work_struct *))2516 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2517 {
2518 	struct noflush_work w;
2519 
2520 	w.tc = tc;
2521 	pool_work_wait(&w.pw, tc->pool, fn);
2522 }
2523 
2524 /*----------------------------------------------------------------*/
2525 
set_discard_callbacks(struct pool * pool)2526 static void set_discard_callbacks(struct pool *pool)
2527 {
2528 	struct pool_c *pt = pool->ti->private;
2529 
2530 	if (pt->adjusted_pf.discard_passdown) {
2531 		pool->process_discard_cell = process_discard_cell_passdown;
2532 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2533 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2534 	} else {
2535 		pool->process_discard_cell = process_discard_cell_no_passdown;
2536 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2537 	}
2538 }
2539 
set_pool_mode(struct pool * pool,enum pool_mode new_mode)2540 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2541 {
2542 	struct pool_c *pt = pool->ti->private;
2543 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2544 	enum pool_mode old_mode = get_pool_mode(pool);
2545 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2546 
2547 	/*
2548 	 * Never allow the pool to transition to PM_WRITE mode if user
2549 	 * intervention is required to verify metadata and data consistency.
2550 	 */
2551 	if (new_mode == PM_WRITE && needs_check) {
2552 		DMERR("%s: unable to switch pool to write mode until repaired.",
2553 		      dm_device_name(pool->pool_md));
2554 		if (old_mode != new_mode)
2555 			new_mode = old_mode;
2556 		else
2557 			new_mode = PM_READ_ONLY;
2558 	}
2559 	/*
2560 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2561 	 * not going to recover without a thin_repair.	So we never let the
2562 	 * pool move out of the old mode.
2563 	 */
2564 	if (old_mode == PM_FAIL)
2565 		new_mode = old_mode;
2566 
2567 	switch (new_mode) {
2568 	case PM_FAIL:
2569 		dm_pool_metadata_read_only(pool->pmd);
2570 		pool->process_bio = process_bio_fail;
2571 		pool->process_discard = process_bio_fail;
2572 		pool->process_cell = process_cell_fail;
2573 		pool->process_discard_cell = process_cell_fail;
2574 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2575 		pool->process_prepared_discard = process_prepared_discard_fail;
2576 
2577 		error_retry_list(pool);
2578 		break;
2579 
2580 	case PM_OUT_OF_METADATA_SPACE:
2581 	case PM_READ_ONLY:
2582 		dm_pool_metadata_read_only(pool->pmd);
2583 		pool->process_bio = process_bio_read_only;
2584 		pool->process_discard = process_bio_success;
2585 		pool->process_cell = process_cell_read_only;
2586 		pool->process_discard_cell = process_cell_success;
2587 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2588 		pool->process_prepared_discard = process_prepared_discard_success;
2589 
2590 		error_retry_list(pool);
2591 		break;
2592 
2593 	case PM_OUT_OF_DATA_SPACE:
2594 		/*
2595 		 * Ideally we'd never hit this state; the low water mark
2596 		 * would trigger userland to extend the pool before we
2597 		 * completely run out of data space.  However, many small
2598 		 * IOs to unprovisioned space can consume data space at an
2599 		 * alarming rate.  Adjust your low water mark if you're
2600 		 * frequently seeing this mode.
2601 		 */
2602 		pool->out_of_data_space = true;
2603 		pool->process_bio = process_bio_read_only;
2604 		pool->process_discard = process_discard_bio;
2605 		pool->process_cell = process_cell_read_only;
2606 		pool->process_prepared_mapping = process_prepared_mapping;
2607 		set_discard_callbacks(pool);
2608 
2609 		if (!pool->pf.error_if_no_space && no_space_timeout)
2610 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2611 		break;
2612 
2613 	case PM_WRITE:
2614 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2615 			cancel_delayed_work_sync(&pool->no_space_timeout);
2616 		pool->out_of_data_space = false;
2617 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2618 		dm_pool_metadata_read_write(pool->pmd);
2619 		pool->process_bio = process_bio;
2620 		pool->process_discard = process_discard_bio;
2621 		pool->process_cell = process_cell;
2622 		pool->process_prepared_mapping = process_prepared_mapping;
2623 		set_discard_callbacks(pool);
2624 		break;
2625 	}
2626 
2627 	pool->pf.mode = new_mode;
2628 	/*
2629 	 * The pool mode may have changed, sync it so bind_control_target()
2630 	 * doesn't cause an unexpected mode transition on resume.
2631 	 */
2632 	pt->adjusted_pf.mode = new_mode;
2633 
2634 	if (old_mode != new_mode)
2635 		notify_of_pool_mode_change(pool);
2636 }
2637 
abort_transaction(struct pool * pool)2638 static void abort_transaction(struct pool *pool)
2639 {
2640 	const char *dev_name = dm_device_name(pool->pool_md);
2641 
2642 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2643 	if (dm_pool_abort_metadata(pool->pmd)) {
2644 		DMERR("%s: failed to abort metadata transaction", dev_name);
2645 		set_pool_mode(pool, PM_FAIL);
2646 	}
2647 
2648 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2649 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2650 		set_pool_mode(pool, PM_FAIL);
2651 	}
2652 }
2653 
metadata_operation_failed(struct pool * pool,const char * op,int r)2654 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2655 {
2656 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2657 		    dm_device_name(pool->pool_md), op, r);
2658 
2659 	abort_transaction(pool);
2660 	set_pool_mode(pool, PM_READ_ONLY);
2661 }
2662 
2663 /*----------------------------------------------------------------*/
2664 
2665 /*
2666  * Mapping functions.
2667  */
2668 
2669 /*
2670  * Called only while mapping a thin bio to hand it over to the workqueue.
2671  */
thin_defer_bio(struct thin_c * tc,struct bio * bio)2672 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2673 {
2674 	struct pool *pool = tc->pool;
2675 
2676 	spin_lock_irq(&tc->lock);
2677 	bio_list_add(&tc->deferred_bio_list, bio);
2678 	spin_unlock_irq(&tc->lock);
2679 
2680 	wake_worker(pool);
2681 }
2682 
thin_defer_bio_with_throttle(struct thin_c * tc,struct bio * bio)2683 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2684 {
2685 	struct pool *pool = tc->pool;
2686 
2687 	throttle_lock(&pool->throttle);
2688 	thin_defer_bio(tc, bio);
2689 	throttle_unlock(&pool->throttle);
2690 }
2691 
thin_defer_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)2692 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2693 {
2694 	struct pool *pool = tc->pool;
2695 
2696 	throttle_lock(&pool->throttle);
2697 	spin_lock_irq(&tc->lock);
2698 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2699 	spin_unlock_irq(&tc->lock);
2700 	throttle_unlock(&pool->throttle);
2701 
2702 	wake_worker(pool);
2703 }
2704 
thin_hook_bio(struct thin_c * tc,struct bio * bio)2705 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2706 {
2707 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2708 
2709 	h->tc = tc;
2710 	h->shared_read_entry = NULL;
2711 	h->all_io_entry = NULL;
2712 	h->overwrite_mapping = NULL;
2713 	h->cell = NULL;
2714 }
2715 
2716 /*
2717  * Non-blocking function called from the thin target's map function.
2718  */
thin_bio_map(struct dm_target * ti,struct bio * bio)2719 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2720 {
2721 	int r;
2722 	struct thin_c *tc = ti->private;
2723 	dm_block_t block = get_bio_block(tc, bio);
2724 	struct dm_thin_device *td = tc->td;
2725 	struct dm_thin_lookup_result result;
2726 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2727 	struct dm_cell_key key;
2728 
2729 	thin_hook_bio(tc, bio);
2730 
2731 	if (tc->requeue_mode) {
2732 		bio->bi_status = BLK_STS_DM_REQUEUE;
2733 		bio_endio(bio);
2734 		return DM_MAPIO_SUBMITTED;
2735 	}
2736 
2737 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2738 		bio_io_error(bio);
2739 		return DM_MAPIO_SUBMITTED;
2740 	}
2741 
2742 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2743 		thin_defer_bio_with_throttle(tc, bio);
2744 		return DM_MAPIO_SUBMITTED;
2745 	}
2746 
2747 	/*
2748 	 * We must hold the virtual cell before doing the lookup, otherwise
2749 	 * there's a race with discard.
2750 	 */
2751 	build_virtual_key(tc->td, block, &key);
2752 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2753 		return DM_MAPIO_SUBMITTED;
2754 
2755 	r = dm_thin_find_block(td, block, 0, &result);
2756 
2757 	/*
2758 	 * Note that we defer readahead too.
2759 	 */
2760 	switch (r) {
2761 	case 0:
2762 		if (unlikely(result.shared)) {
2763 			/*
2764 			 * We have a race condition here between the
2765 			 * result.shared value returned by the lookup and
2766 			 * snapshot creation, which may cause new
2767 			 * sharing.
2768 			 *
2769 			 * To avoid this always quiesce the origin before
2770 			 * taking the snap.  You want to do this anyway to
2771 			 * ensure a consistent application view
2772 			 * (i.e. lockfs).
2773 			 *
2774 			 * More distant ancestors are irrelevant. The
2775 			 * shared flag will be set in their case.
2776 			 */
2777 			thin_defer_cell(tc, virt_cell);
2778 			return DM_MAPIO_SUBMITTED;
2779 		}
2780 
2781 		build_data_key(tc->td, result.block, &key);
2782 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2783 			cell_defer_no_holder(tc, virt_cell);
2784 			return DM_MAPIO_SUBMITTED;
2785 		}
2786 
2787 		inc_all_io_entry(tc->pool, bio);
2788 		cell_defer_no_holder(tc, data_cell);
2789 		cell_defer_no_holder(tc, virt_cell);
2790 
2791 		remap(tc, bio, result.block);
2792 		return DM_MAPIO_REMAPPED;
2793 
2794 	case -ENODATA:
2795 	case -EWOULDBLOCK:
2796 		thin_defer_cell(tc, virt_cell);
2797 		return DM_MAPIO_SUBMITTED;
2798 
2799 	default:
2800 		/*
2801 		 * Must always call bio_io_error on failure.
2802 		 * dm_thin_find_block can fail with -EINVAL if the
2803 		 * pool is switched to fail-io mode.
2804 		 */
2805 		bio_io_error(bio);
2806 		cell_defer_no_holder(tc, virt_cell);
2807 		return DM_MAPIO_SUBMITTED;
2808 	}
2809 }
2810 
requeue_bios(struct pool * pool)2811 static void requeue_bios(struct pool *pool)
2812 {
2813 	struct thin_c *tc;
2814 
2815 	rcu_read_lock();
2816 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2817 		spin_lock_irq(&tc->lock);
2818 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2819 		bio_list_init(&tc->retry_on_resume_list);
2820 		spin_unlock_irq(&tc->lock);
2821 	}
2822 	rcu_read_unlock();
2823 }
2824 
2825 /*
2826  *--------------------------------------------------------------
2827  * Binding of control targets to a pool object
2828  *--------------------------------------------------------------
2829  */
is_factor(sector_t block_size,uint32_t n)2830 static bool is_factor(sector_t block_size, uint32_t n)
2831 {
2832 	return !sector_div(block_size, n);
2833 }
2834 
2835 /*
2836  * If discard_passdown was enabled verify that the data device
2837  * supports discards.  Disable discard_passdown if not.
2838  */
disable_discard_passdown_if_not_supported(struct pool_c * pt)2839 static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2840 {
2841 	struct pool *pool = pt->pool;
2842 	struct block_device *data_bdev = pt->data_dev->bdev;
2843 	struct queue_limits *data_limits = bdev_limits(data_bdev);
2844 	const char *reason = NULL;
2845 
2846 	if (!pt->adjusted_pf.discard_passdown)
2847 		return;
2848 
2849 	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2850 		reason = "discard unsupported";
2851 
2852 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2853 		reason = "max discard sectors smaller than a block";
2854 
2855 	if (reason) {
2856 		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2857 		pt->adjusted_pf.discard_passdown = false;
2858 	}
2859 }
2860 
bind_control_target(struct pool * pool,struct dm_target * ti)2861 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2862 {
2863 	struct pool_c *pt = ti->private;
2864 
2865 	/*
2866 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2867 	 */
2868 	enum pool_mode old_mode = get_pool_mode(pool);
2869 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2870 
2871 	/*
2872 	 * Don't change the pool's mode until set_pool_mode() below.
2873 	 * Otherwise the pool's process_* function pointers may
2874 	 * not match the desired pool mode.
2875 	 */
2876 	pt->adjusted_pf.mode = old_mode;
2877 
2878 	pool->ti = ti;
2879 	pool->pf = pt->adjusted_pf;
2880 	pool->low_water_blocks = pt->low_water_blocks;
2881 
2882 	set_pool_mode(pool, new_mode);
2883 
2884 	return 0;
2885 }
2886 
unbind_control_target(struct pool * pool,struct dm_target * ti)2887 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2888 {
2889 	if (pool->ti == ti)
2890 		pool->ti = NULL;
2891 }
2892 
2893 /*
2894  *--------------------------------------------------------------
2895  * Pool creation
2896  *--------------------------------------------------------------
2897  */
2898 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)2899 static void pool_features_init(struct pool_features *pf)
2900 {
2901 	pf->mode = PM_WRITE;
2902 	pf->zero_new_blocks = true;
2903 	pf->discard_enabled = true;
2904 	pf->discard_passdown = true;
2905 	pf->error_if_no_space = false;
2906 }
2907 
__pool_destroy(struct pool * pool)2908 static void __pool_destroy(struct pool *pool)
2909 {
2910 	__pool_table_remove(pool);
2911 
2912 	vfree(pool->cell_sort_array);
2913 	if (dm_pool_metadata_close(pool->pmd) < 0)
2914 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2915 
2916 	dm_bio_prison_destroy(pool->prison);
2917 	dm_kcopyd_client_destroy(pool->copier);
2918 
2919 	cancel_delayed_work_sync(&pool->waker);
2920 	cancel_delayed_work_sync(&pool->no_space_timeout);
2921 	if (pool->wq)
2922 		destroy_workqueue(pool->wq);
2923 
2924 	if (pool->next_mapping)
2925 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2926 	mempool_exit(&pool->mapping_pool);
2927 	dm_deferred_set_destroy(pool->shared_read_ds);
2928 	dm_deferred_set_destroy(pool->all_io_ds);
2929 	kfree(pool);
2930 }
2931 
2932 static struct kmem_cache *_new_mapping_cache;
2933 
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error)2934 static struct pool *pool_create(struct mapped_device *pool_md,
2935 				struct block_device *metadata_dev,
2936 				struct block_device *data_dev,
2937 				unsigned long block_size,
2938 				int read_only, char **error)
2939 {
2940 	int r;
2941 	void *err_p;
2942 	struct pool *pool;
2943 	struct dm_pool_metadata *pmd;
2944 	bool format_device = read_only ? false : true;
2945 
2946 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2947 	if (IS_ERR(pmd)) {
2948 		*error = "Error creating metadata object";
2949 		return ERR_CAST(pmd);
2950 	}
2951 
2952 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2953 	if (!pool) {
2954 		*error = "Error allocating memory for pool";
2955 		err_p = ERR_PTR(-ENOMEM);
2956 		goto bad_pool;
2957 	}
2958 
2959 	pool->pmd = pmd;
2960 	pool->sectors_per_block = block_size;
2961 	if (block_size & (block_size - 1))
2962 		pool->sectors_per_block_shift = -1;
2963 	else
2964 		pool->sectors_per_block_shift = __ffs(block_size);
2965 	pool->low_water_blocks = 0;
2966 	pool_features_init(&pool->pf);
2967 	pool->prison = dm_bio_prison_create();
2968 	if (!pool->prison) {
2969 		*error = "Error creating pool's bio prison";
2970 		err_p = ERR_PTR(-ENOMEM);
2971 		goto bad_prison;
2972 	}
2973 
2974 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2975 	if (IS_ERR(pool->copier)) {
2976 		r = PTR_ERR(pool->copier);
2977 		*error = "Error creating pool's kcopyd client";
2978 		err_p = ERR_PTR(r);
2979 		goto bad_kcopyd_client;
2980 	}
2981 
2982 	/*
2983 	 * Create singlethreaded workqueue that will service all devices
2984 	 * that use this metadata.
2985 	 */
2986 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2987 	if (!pool->wq) {
2988 		*error = "Error creating pool's workqueue";
2989 		err_p = ERR_PTR(-ENOMEM);
2990 		goto bad_wq;
2991 	}
2992 
2993 	throttle_init(&pool->throttle);
2994 	INIT_WORK(&pool->worker, do_worker);
2995 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2996 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2997 	spin_lock_init(&pool->lock);
2998 	bio_list_init(&pool->deferred_flush_bios);
2999 	bio_list_init(&pool->deferred_flush_completions);
3000 	INIT_LIST_HEAD(&pool->prepared_mappings);
3001 	INIT_LIST_HEAD(&pool->prepared_discards);
3002 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3003 	INIT_LIST_HEAD(&pool->active_thins);
3004 	pool->low_water_triggered = false;
3005 	pool->suspended = true;
3006 	pool->out_of_data_space = false;
3007 
3008 	pool->shared_read_ds = dm_deferred_set_create();
3009 	if (!pool->shared_read_ds) {
3010 		*error = "Error creating pool's shared read deferred set";
3011 		err_p = ERR_PTR(-ENOMEM);
3012 		goto bad_shared_read_ds;
3013 	}
3014 
3015 	pool->all_io_ds = dm_deferred_set_create();
3016 	if (!pool->all_io_ds) {
3017 		*error = "Error creating pool's all io deferred set";
3018 		err_p = ERR_PTR(-ENOMEM);
3019 		goto bad_all_io_ds;
3020 	}
3021 
3022 	pool->next_mapping = NULL;
3023 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3024 				   _new_mapping_cache);
3025 	if (r) {
3026 		*error = "Error creating pool's mapping mempool";
3027 		err_p = ERR_PTR(r);
3028 		goto bad_mapping_pool;
3029 	}
3030 
3031 	pool->cell_sort_array =
3032 		vmalloc_array(CELL_SORT_ARRAY_SIZE,
3033 			      sizeof(*pool->cell_sort_array));
3034 	if (!pool->cell_sort_array) {
3035 		*error = "Error allocating cell sort array";
3036 		err_p = ERR_PTR(-ENOMEM);
3037 		goto bad_sort_array;
3038 	}
3039 
3040 	pool->ref_count = 1;
3041 	pool->last_commit_jiffies = jiffies;
3042 	pool->pool_md = pool_md;
3043 	pool->md_dev = metadata_dev;
3044 	pool->data_dev = data_dev;
3045 	__pool_table_insert(pool);
3046 
3047 	return pool;
3048 
3049 bad_sort_array:
3050 	mempool_exit(&pool->mapping_pool);
3051 bad_mapping_pool:
3052 	dm_deferred_set_destroy(pool->all_io_ds);
3053 bad_all_io_ds:
3054 	dm_deferred_set_destroy(pool->shared_read_ds);
3055 bad_shared_read_ds:
3056 	destroy_workqueue(pool->wq);
3057 bad_wq:
3058 	dm_kcopyd_client_destroy(pool->copier);
3059 bad_kcopyd_client:
3060 	dm_bio_prison_destroy(pool->prison);
3061 bad_prison:
3062 	kfree(pool);
3063 bad_pool:
3064 	if (dm_pool_metadata_close(pmd))
3065 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3066 
3067 	return err_p;
3068 }
3069 
__pool_inc(struct pool * pool)3070 static void __pool_inc(struct pool *pool)
3071 {
3072 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3073 	pool->ref_count++;
3074 }
3075 
__pool_dec(struct pool * pool)3076 static void __pool_dec(struct pool *pool)
3077 {
3078 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3079 	BUG_ON(!pool->ref_count);
3080 	if (!--pool->ref_count)
3081 		__pool_destroy(pool);
3082 }
3083 
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error,int * created)3084 static struct pool *__pool_find(struct mapped_device *pool_md,
3085 				struct block_device *metadata_dev,
3086 				struct block_device *data_dev,
3087 				unsigned long block_size, int read_only,
3088 				char **error, int *created)
3089 {
3090 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3091 
3092 	if (pool) {
3093 		if (pool->pool_md != pool_md) {
3094 			*error = "metadata device already in use by a pool";
3095 			return ERR_PTR(-EBUSY);
3096 		}
3097 		if (pool->data_dev != data_dev) {
3098 			*error = "data device already in use by a pool";
3099 			return ERR_PTR(-EBUSY);
3100 		}
3101 		__pool_inc(pool);
3102 
3103 	} else {
3104 		pool = __pool_table_lookup(pool_md);
3105 		if (pool) {
3106 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3107 				*error = "different pool cannot replace a pool";
3108 				return ERR_PTR(-EINVAL);
3109 			}
3110 			__pool_inc(pool);
3111 
3112 		} else {
3113 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3114 			*created = 1;
3115 		}
3116 	}
3117 
3118 	return pool;
3119 }
3120 
3121 /*
3122  *--------------------------------------------------------------
3123  * Pool target methods
3124  *--------------------------------------------------------------
3125  */
pool_dtr(struct dm_target * ti)3126 static void pool_dtr(struct dm_target *ti)
3127 {
3128 	struct pool_c *pt = ti->private;
3129 
3130 	mutex_lock(&dm_thin_pool_table.mutex);
3131 
3132 	unbind_control_target(pt->pool, ti);
3133 	__pool_dec(pt->pool);
3134 	dm_put_device(ti, pt->metadata_dev);
3135 	dm_put_device(ti, pt->data_dev);
3136 	kfree(pt);
3137 
3138 	mutex_unlock(&dm_thin_pool_table.mutex);
3139 }
3140 
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)3141 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3142 			       struct dm_target *ti)
3143 {
3144 	int r;
3145 	unsigned int argc;
3146 	const char *arg_name;
3147 
3148 	static const struct dm_arg _args[] = {
3149 		{0, 4, "Invalid number of pool feature arguments"},
3150 	};
3151 
3152 	/*
3153 	 * No feature arguments supplied.
3154 	 */
3155 	if (!as->argc)
3156 		return 0;
3157 
3158 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3159 	if (r)
3160 		return -EINVAL;
3161 
3162 	while (argc && !r) {
3163 		arg_name = dm_shift_arg(as);
3164 		argc--;
3165 
3166 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3167 			pf->zero_new_blocks = false;
3168 
3169 		else if (!strcasecmp(arg_name, "ignore_discard"))
3170 			pf->discard_enabled = false;
3171 
3172 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3173 			pf->discard_passdown = false;
3174 
3175 		else if (!strcasecmp(arg_name, "read_only"))
3176 			pf->mode = PM_READ_ONLY;
3177 
3178 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3179 			pf->error_if_no_space = true;
3180 
3181 		else {
3182 			ti->error = "Unrecognised pool feature requested";
3183 			r = -EINVAL;
3184 			break;
3185 		}
3186 	}
3187 
3188 	return r;
3189 }
3190 
metadata_low_callback(void * context)3191 static void metadata_low_callback(void *context)
3192 {
3193 	struct pool *pool = context;
3194 
3195 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3196 	       dm_device_name(pool->pool_md));
3197 
3198 	dm_table_event(pool->ti->table);
3199 }
3200 
3201 /*
3202  * We need to flush the data device **before** committing the metadata.
3203  *
3204  * This ensures that the data blocks of any newly inserted mappings are
3205  * properly written to non-volatile storage and won't be lost in case of a
3206  * crash.
3207  *
3208  * Failure to do so can result in data corruption in the case of internal or
3209  * external snapshots and in the case of newly provisioned blocks, when block
3210  * zeroing is enabled.
3211  */
metadata_pre_commit_callback(void * context)3212 static int metadata_pre_commit_callback(void *context)
3213 {
3214 	struct pool *pool = context;
3215 
3216 	return blkdev_issue_flush(pool->data_dev);
3217 }
3218 
get_dev_size(struct block_device * bdev)3219 static sector_t get_dev_size(struct block_device *bdev)
3220 {
3221 	return bdev_nr_sectors(bdev);
3222 }
3223 
warn_if_metadata_device_too_big(struct block_device * bdev)3224 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3225 {
3226 	sector_t metadata_dev_size = get_dev_size(bdev);
3227 
3228 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3229 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3230 		       bdev, THIN_METADATA_MAX_SECTORS);
3231 }
3232 
get_metadata_dev_size(struct block_device * bdev)3233 static sector_t get_metadata_dev_size(struct block_device *bdev)
3234 {
3235 	sector_t metadata_dev_size = get_dev_size(bdev);
3236 
3237 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3238 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3239 
3240 	return metadata_dev_size;
3241 }
3242 
get_metadata_dev_size_in_blocks(struct block_device * bdev)3243 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3244 {
3245 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3246 
3247 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3248 
3249 	return metadata_dev_size;
3250 }
3251 
3252 /*
3253  * When a metadata threshold is crossed a dm event is triggered, and
3254  * userland should respond by growing the metadata device.  We could let
3255  * userland set the threshold, like we do with the data threshold, but I'm
3256  * not sure they know enough to do this well.
3257  */
calc_metadata_threshold(struct pool_c * pt)3258 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3259 {
3260 	/*
3261 	 * 4M is ample for all ops with the possible exception of thin
3262 	 * device deletion which is harmless if it fails (just retry the
3263 	 * delete after you've grown the device).
3264 	 */
3265 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3266 
3267 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3268 }
3269 
3270 /*
3271  * thin-pool <metadata dev> <data dev>
3272  *	     <data block size (sectors)>
3273  *	     <low water mark (blocks)>
3274  *	     [<#feature args> [<arg>]*]
3275  *
3276  * Optional feature arguments are:
3277  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3278  *	     ignore_discard: disable discard
3279  *	     no_discard_passdown: don't pass discards down to the data device
3280  *	     read_only: Don't allow any changes to be made to the pool metadata.
3281  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3282  */
pool_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3283 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3284 {
3285 	int r, pool_created = 0;
3286 	struct pool_c *pt;
3287 	struct pool *pool;
3288 	struct pool_features pf;
3289 	struct dm_arg_set as;
3290 	struct dm_dev *data_dev;
3291 	unsigned long block_size;
3292 	dm_block_t low_water_blocks;
3293 	struct dm_dev *metadata_dev;
3294 	blk_mode_t metadata_mode;
3295 
3296 	/*
3297 	 * FIXME Remove validation from scope of lock.
3298 	 */
3299 	mutex_lock(&dm_thin_pool_table.mutex);
3300 
3301 	if (argc < 4) {
3302 		ti->error = "Invalid argument count";
3303 		r = -EINVAL;
3304 		goto out_unlock;
3305 	}
3306 
3307 	as.argc = argc;
3308 	as.argv = argv;
3309 
3310 	/* make sure metadata and data are different devices */
3311 	if (!strcmp(argv[0], argv[1])) {
3312 		ti->error = "Error setting metadata or data device";
3313 		r = -EINVAL;
3314 		goto out_unlock;
3315 	}
3316 
3317 	/*
3318 	 * Set default pool features.
3319 	 */
3320 	pool_features_init(&pf);
3321 
3322 	dm_consume_args(&as, 4);
3323 	r = parse_pool_features(&as, &pf, ti);
3324 	if (r)
3325 		goto out_unlock;
3326 
3327 	metadata_mode = BLK_OPEN_READ |
3328 		((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3329 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3330 	if (r) {
3331 		ti->error = "Error opening metadata block device";
3332 		goto out_unlock;
3333 	}
3334 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3335 
3336 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3337 	if (r) {
3338 		ti->error = "Error getting data device";
3339 		goto out_metadata;
3340 	}
3341 
3342 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3343 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3344 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3345 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3346 		ti->error = "Invalid block size";
3347 		r = -EINVAL;
3348 		goto out;
3349 	}
3350 
3351 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3352 		ti->error = "Invalid low water mark";
3353 		r = -EINVAL;
3354 		goto out;
3355 	}
3356 
3357 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3358 	if (!pt) {
3359 		r = -ENOMEM;
3360 		goto out;
3361 	}
3362 
3363 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3364 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3365 	if (IS_ERR(pool)) {
3366 		r = PTR_ERR(pool);
3367 		goto out_free_pt;
3368 	}
3369 
3370 	/*
3371 	 * 'pool_created' reflects whether this is the first table load.
3372 	 * Top level discard support is not allowed to be changed after
3373 	 * initial load.  This would require a pool reload to trigger thin
3374 	 * device changes.
3375 	 */
3376 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3377 		ti->error = "Discard support cannot be disabled once enabled";
3378 		r = -EINVAL;
3379 		goto out_flags_changed;
3380 	}
3381 
3382 	pt->pool = pool;
3383 	pt->ti = ti;
3384 	pt->metadata_dev = metadata_dev;
3385 	pt->data_dev = data_dev;
3386 	pt->low_water_blocks = low_water_blocks;
3387 	pt->adjusted_pf = pt->requested_pf = pf;
3388 	ti->num_flush_bios = 1;
3389 	ti->limit_swap_bios = true;
3390 
3391 	/*
3392 	 * Only need to enable discards if the pool should pass
3393 	 * them down to the data device.  The thin device's discard
3394 	 * processing will cause mappings to be removed from the btree.
3395 	 */
3396 	if (pf.discard_enabled && pf.discard_passdown) {
3397 		ti->num_discard_bios = 1;
3398 		/*
3399 		 * Setting 'discards_supported' circumvents the normal
3400 		 * stacking of discard limits (this keeps the pool and
3401 		 * thin devices' discard limits consistent).
3402 		 */
3403 		ti->discards_supported = true;
3404 		ti->max_discard_granularity = true;
3405 	}
3406 	ti->private = pt;
3407 
3408 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3409 						calc_metadata_threshold(pt),
3410 						metadata_low_callback,
3411 						pool);
3412 	if (r) {
3413 		ti->error = "Error registering metadata threshold";
3414 		goto out_flags_changed;
3415 	}
3416 
3417 	dm_pool_register_pre_commit_callback(pool->pmd,
3418 					     metadata_pre_commit_callback, pool);
3419 
3420 	mutex_unlock(&dm_thin_pool_table.mutex);
3421 
3422 	return 0;
3423 
3424 out_flags_changed:
3425 	__pool_dec(pool);
3426 out_free_pt:
3427 	kfree(pt);
3428 out:
3429 	dm_put_device(ti, data_dev);
3430 out_metadata:
3431 	dm_put_device(ti, metadata_dev);
3432 out_unlock:
3433 	mutex_unlock(&dm_thin_pool_table.mutex);
3434 
3435 	return r;
3436 }
3437 
pool_map(struct dm_target * ti,struct bio * bio)3438 static int pool_map(struct dm_target *ti, struct bio *bio)
3439 {
3440 	struct pool_c *pt = ti->private;
3441 	struct pool *pool = pt->pool;
3442 
3443 	/*
3444 	 * As this is a singleton target, ti->begin is always zero.
3445 	 */
3446 	spin_lock_irq(&pool->lock);
3447 	bio_set_dev(bio, pt->data_dev->bdev);
3448 	spin_unlock_irq(&pool->lock);
3449 
3450 	return DM_MAPIO_REMAPPED;
3451 }
3452 
maybe_resize_data_dev(struct dm_target * ti,bool * need_commit)3453 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3454 {
3455 	int r;
3456 	struct pool_c *pt = ti->private;
3457 	struct pool *pool = pt->pool;
3458 	sector_t data_size = ti->len;
3459 	dm_block_t sb_data_size;
3460 
3461 	*need_commit = false;
3462 
3463 	(void) sector_div(data_size, pool->sectors_per_block);
3464 
3465 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3466 	if (r) {
3467 		DMERR("%s: failed to retrieve data device size",
3468 		      dm_device_name(pool->pool_md));
3469 		return r;
3470 	}
3471 
3472 	if (data_size < sb_data_size) {
3473 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3474 		      dm_device_name(pool->pool_md),
3475 		      (unsigned long long)data_size, sb_data_size);
3476 		return -EINVAL;
3477 
3478 	} else if (data_size > sb_data_size) {
3479 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3480 			DMERR("%s: unable to grow the data device until repaired.",
3481 			      dm_device_name(pool->pool_md));
3482 			return 0;
3483 		}
3484 
3485 		if (sb_data_size)
3486 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3487 			       dm_device_name(pool->pool_md),
3488 			       sb_data_size, (unsigned long long)data_size);
3489 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3490 		if (r) {
3491 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3492 			return r;
3493 		}
3494 
3495 		*need_commit = true;
3496 	}
3497 
3498 	return 0;
3499 }
3500 
maybe_resize_metadata_dev(struct dm_target * ti,bool * need_commit)3501 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3502 {
3503 	int r;
3504 	struct pool_c *pt = ti->private;
3505 	struct pool *pool = pt->pool;
3506 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3507 
3508 	*need_commit = false;
3509 
3510 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3511 
3512 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3513 	if (r) {
3514 		DMERR("%s: failed to retrieve metadata device size",
3515 		      dm_device_name(pool->pool_md));
3516 		return r;
3517 	}
3518 
3519 	if (metadata_dev_size < sb_metadata_dev_size) {
3520 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3521 		      dm_device_name(pool->pool_md),
3522 		      metadata_dev_size, sb_metadata_dev_size);
3523 		return -EINVAL;
3524 
3525 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3526 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3527 			DMERR("%s: unable to grow the metadata device until repaired.",
3528 			      dm_device_name(pool->pool_md));
3529 			return 0;
3530 		}
3531 
3532 		warn_if_metadata_device_too_big(pool->md_dev);
3533 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3534 		       dm_device_name(pool->pool_md),
3535 		       sb_metadata_dev_size, metadata_dev_size);
3536 
3537 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3538 			set_pool_mode(pool, PM_WRITE);
3539 
3540 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3541 		if (r) {
3542 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3543 			return r;
3544 		}
3545 
3546 		*need_commit = true;
3547 	}
3548 
3549 	return 0;
3550 }
3551 
3552 /*
3553  * Retrieves the number of blocks of the data device from
3554  * the superblock and compares it to the actual device size,
3555  * thus resizing the data device in case it has grown.
3556  *
3557  * This both copes with opening preallocated data devices in the ctr
3558  * being followed by a resume
3559  * -and-
3560  * calling the resume method individually after userspace has
3561  * grown the data device in reaction to a table event.
3562  */
pool_preresume(struct dm_target * ti)3563 static int pool_preresume(struct dm_target *ti)
3564 {
3565 	int r;
3566 	bool need_commit1, need_commit2;
3567 	struct pool_c *pt = ti->private;
3568 	struct pool *pool = pt->pool;
3569 
3570 	/*
3571 	 * Take control of the pool object.
3572 	 */
3573 	r = bind_control_target(pool, ti);
3574 	if (r)
3575 		goto out;
3576 
3577 	r = maybe_resize_data_dev(ti, &need_commit1);
3578 	if (r)
3579 		goto out;
3580 
3581 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3582 	if (r)
3583 		goto out;
3584 
3585 	if (need_commit1 || need_commit2)
3586 		(void) commit(pool);
3587 out:
3588 	/*
3589 	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3590 	 * bio is in deferred list. Therefore need to return 0
3591 	 * to allow pool_resume() to flush IO.
3592 	 */
3593 	if (r && get_pool_mode(pool) == PM_FAIL)
3594 		r = 0;
3595 
3596 	return r;
3597 }
3598 
pool_suspend_active_thins(struct pool * pool)3599 static void pool_suspend_active_thins(struct pool *pool)
3600 {
3601 	struct thin_c *tc;
3602 
3603 	/* Suspend all active thin devices */
3604 	tc = get_first_thin(pool);
3605 	while (tc) {
3606 		dm_internal_suspend_noflush(tc->thin_md);
3607 		tc = get_next_thin(pool, tc);
3608 	}
3609 }
3610 
pool_resume_active_thins(struct pool * pool)3611 static void pool_resume_active_thins(struct pool *pool)
3612 {
3613 	struct thin_c *tc;
3614 
3615 	/* Resume all active thin devices */
3616 	tc = get_first_thin(pool);
3617 	while (tc) {
3618 		dm_internal_resume(tc->thin_md);
3619 		tc = get_next_thin(pool, tc);
3620 	}
3621 }
3622 
pool_resume(struct dm_target * ti)3623 static void pool_resume(struct dm_target *ti)
3624 {
3625 	struct pool_c *pt = ti->private;
3626 	struct pool *pool = pt->pool;
3627 
3628 	/*
3629 	 * Must requeue active_thins' bios and then resume
3630 	 * active_thins _before_ clearing 'suspend' flag.
3631 	 */
3632 	requeue_bios(pool);
3633 	pool_resume_active_thins(pool);
3634 
3635 	spin_lock_irq(&pool->lock);
3636 	pool->low_water_triggered = false;
3637 	pool->suspended = false;
3638 	spin_unlock_irq(&pool->lock);
3639 
3640 	do_waker(&pool->waker.work);
3641 }
3642 
pool_presuspend(struct dm_target * ti)3643 static void pool_presuspend(struct dm_target *ti)
3644 {
3645 	struct pool_c *pt = ti->private;
3646 	struct pool *pool = pt->pool;
3647 
3648 	spin_lock_irq(&pool->lock);
3649 	pool->suspended = true;
3650 	spin_unlock_irq(&pool->lock);
3651 
3652 	pool_suspend_active_thins(pool);
3653 }
3654 
pool_presuspend_undo(struct dm_target * ti)3655 static void pool_presuspend_undo(struct dm_target *ti)
3656 {
3657 	struct pool_c *pt = ti->private;
3658 	struct pool *pool = pt->pool;
3659 
3660 	pool_resume_active_thins(pool);
3661 
3662 	spin_lock_irq(&pool->lock);
3663 	pool->suspended = false;
3664 	spin_unlock_irq(&pool->lock);
3665 }
3666 
pool_postsuspend(struct dm_target * ti)3667 static void pool_postsuspend(struct dm_target *ti)
3668 {
3669 	struct pool_c *pt = ti->private;
3670 	struct pool *pool = pt->pool;
3671 
3672 	cancel_delayed_work_sync(&pool->waker);
3673 	cancel_delayed_work_sync(&pool->no_space_timeout);
3674 	flush_workqueue(pool->wq);
3675 	(void) commit(pool);
3676 }
3677 
check_arg_count(unsigned int argc,unsigned int args_required)3678 static int check_arg_count(unsigned int argc, unsigned int args_required)
3679 {
3680 	if (argc != args_required) {
3681 		DMWARN("Message received with %u arguments instead of %u.",
3682 		       argc, args_required);
3683 		return -EINVAL;
3684 	}
3685 
3686 	return 0;
3687 }
3688 
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)3689 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3690 {
3691 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3692 	    *dev_id <= MAX_DEV_ID)
3693 		return 0;
3694 
3695 	if (warning)
3696 		DMWARN("Message received with invalid device id: %s", arg);
3697 
3698 	return -EINVAL;
3699 }
3700 
process_create_thin_mesg(unsigned int argc,char ** argv,struct pool * pool)3701 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3702 {
3703 	dm_thin_id dev_id;
3704 	int r;
3705 
3706 	r = check_arg_count(argc, 2);
3707 	if (r)
3708 		return r;
3709 
3710 	r = read_dev_id(argv[1], &dev_id, 1);
3711 	if (r)
3712 		return r;
3713 
3714 	r = dm_pool_create_thin(pool->pmd, dev_id);
3715 	if (r) {
3716 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3717 		       argv[1]);
3718 		return r;
3719 	}
3720 
3721 	return 0;
3722 }
3723 
process_create_snap_mesg(unsigned int argc,char ** argv,struct pool * pool)3724 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3725 {
3726 	dm_thin_id dev_id;
3727 	dm_thin_id origin_dev_id;
3728 	int r;
3729 
3730 	r = check_arg_count(argc, 3);
3731 	if (r)
3732 		return r;
3733 
3734 	r = read_dev_id(argv[1], &dev_id, 1);
3735 	if (r)
3736 		return r;
3737 
3738 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3739 	if (r)
3740 		return r;
3741 
3742 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3743 	if (r) {
3744 		DMWARN("Creation of new snapshot %s of device %s failed.",
3745 		       argv[1], argv[2]);
3746 		return r;
3747 	}
3748 
3749 	return 0;
3750 }
3751 
process_delete_mesg(unsigned int argc,char ** argv,struct pool * pool)3752 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3753 {
3754 	dm_thin_id dev_id;
3755 	int r;
3756 
3757 	r = check_arg_count(argc, 2);
3758 	if (r)
3759 		return r;
3760 
3761 	r = read_dev_id(argv[1], &dev_id, 1);
3762 	if (r)
3763 		return r;
3764 
3765 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3766 	if (r)
3767 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3768 
3769 	return r;
3770 }
3771 
process_set_transaction_id_mesg(unsigned int argc,char ** argv,struct pool * pool)3772 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3773 {
3774 	dm_thin_id old_id, new_id;
3775 	int r;
3776 
3777 	r = check_arg_count(argc, 3);
3778 	if (r)
3779 		return r;
3780 
3781 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3782 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3783 		return -EINVAL;
3784 	}
3785 
3786 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3787 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3788 		return -EINVAL;
3789 	}
3790 
3791 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3792 	if (r) {
3793 		DMWARN("Failed to change transaction id from %s to %s.",
3794 		       argv[1], argv[2]);
3795 		return r;
3796 	}
3797 
3798 	return 0;
3799 }
3800 
process_reserve_metadata_snap_mesg(unsigned int argc,char ** argv,struct pool * pool)3801 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3802 {
3803 	int r;
3804 
3805 	r = check_arg_count(argc, 1);
3806 	if (r)
3807 		return r;
3808 
3809 	(void) commit(pool);
3810 
3811 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3812 	if (r)
3813 		DMWARN("reserve_metadata_snap message failed.");
3814 
3815 	return r;
3816 }
3817 
process_release_metadata_snap_mesg(unsigned int argc,char ** argv,struct pool * pool)3818 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3819 {
3820 	int r;
3821 
3822 	r = check_arg_count(argc, 1);
3823 	if (r)
3824 		return r;
3825 
3826 	r = dm_pool_release_metadata_snap(pool->pmd);
3827 	if (r)
3828 		DMWARN("release_metadata_snap message failed.");
3829 
3830 	return r;
3831 }
3832 
3833 /*
3834  * Messages supported:
3835  *   create_thin	<dev_id>
3836  *   create_snap	<dev_id> <origin_id>
3837  *   delete		<dev_id>
3838  *   set_transaction_id <current_trans_id> <new_trans_id>
3839  *   reserve_metadata_snap
3840  *   release_metadata_snap
3841  */
pool_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3842 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3843 			char *result, unsigned int maxlen)
3844 {
3845 	int r = -EINVAL;
3846 	struct pool_c *pt = ti->private;
3847 	struct pool *pool = pt->pool;
3848 
3849 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3850 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3851 		      dm_device_name(pool->pool_md));
3852 		return -EOPNOTSUPP;
3853 	}
3854 
3855 	if (!strcasecmp(argv[0], "create_thin"))
3856 		r = process_create_thin_mesg(argc, argv, pool);
3857 
3858 	else if (!strcasecmp(argv[0], "create_snap"))
3859 		r = process_create_snap_mesg(argc, argv, pool);
3860 
3861 	else if (!strcasecmp(argv[0], "delete"))
3862 		r = process_delete_mesg(argc, argv, pool);
3863 
3864 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3865 		r = process_set_transaction_id_mesg(argc, argv, pool);
3866 
3867 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3868 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3869 
3870 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3871 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3872 
3873 	else
3874 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3875 
3876 	if (!r)
3877 		(void) commit(pool);
3878 
3879 	return r;
3880 }
3881 
emit_flags(struct pool_features * pf,char * result,unsigned int sz,unsigned int maxlen)3882 static void emit_flags(struct pool_features *pf, char *result,
3883 		       unsigned int sz, unsigned int maxlen)
3884 {
3885 	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3886 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3887 		pf->error_if_no_space;
3888 	DMEMIT("%u ", count);
3889 
3890 	if (!pf->zero_new_blocks)
3891 		DMEMIT("skip_block_zeroing ");
3892 
3893 	if (!pf->discard_enabled)
3894 		DMEMIT("ignore_discard ");
3895 
3896 	if (!pf->discard_passdown)
3897 		DMEMIT("no_discard_passdown ");
3898 
3899 	if (pf->mode == PM_READ_ONLY)
3900 		DMEMIT("read_only ");
3901 
3902 	if (pf->error_if_no_space)
3903 		DMEMIT("error_if_no_space ");
3904 }
3905 
3906 /*
3907  * Status line is:
3908  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3909  *    <used data sectors>/<total data sectors> <held metadata root>
3910  *    <pool mode> <discard config> <no space config> <needs_check>
3911  */
pool_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3912 static void pool_status(struct dm_target *ti, status_type_t type,
3913 			unsigned int status_flags, char *result, unsigned int maxlen)
3914 {
3915 	int r;
3916 	unsigned int sz = 0;
3917 	uint64_t transaction_id;
3918 	dm_block_t nr_free_blocks_data;
3919 	dm_block_t nr_free_blocks_metadata;
3920 	dm_block_t nr_blocks_data;
3921 	dm_block_t nr_blocks_metadata;
3922 	dm_block_t held_root;
3923 	enum pool_mode mode;
3924 	char buf[BDEVNAME_SIZE];
3925 	char buf2[BDEVNAME_SIZE];
3926 	struct pool_c *pt = ti->private;
3927 	struct pool *pool = pt->pool;
3928 
3929 	switch (type) {
3930 	case STATUSTYPE_INFO:
3931 		if (get_pool_mode(pool) == PM_FAIL) {
3932 			DMEMIT("Fail");
3933 			break;
3934 		}
3935 
3936 		/* Commit to ensure statistics aren't out-of-date */
3937 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3938 			(void) commit(pool);
3939 
3940 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3941 		if (r) {
3942 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3943 			      dm_device_name(pool->pool_md), r);
3944 			goto err;
3945 		}
3946 
3947 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3948 		if (r) {
3949 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3950 			      dm_device_name(pool->pool_md), r);
3951 			goto err;
3952 		}
3953 
3954 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3955 		if (r) {
3956 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3957 			      dm_device_name(pool->pool_md), r);
3958 			goto err;
3959 		}
3960 
3961 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3962 		if (r) {
3963 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3964 			      dm_device_name(pool->pool_md), r);
3965 			goto err;
3966 		}
3967 
3968 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3969 		if (r) {
3970 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3971 			      dm_device_name(pool->pool_md), r);
3972 			goto err;
3973 		}
3974 
3975 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3976 		if (r) {
3977 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3978 			      dm_device_name(pool->pool_md), r);
3979 			goto err;
3980 		}
3981 
3982 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3983 		       (unsigned long long)transaction_id,
3984 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3985 		       (unsigned long long)nr_blocks_metadata,
3986 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3987 		       (unsigned long long)nr_blocks_data);
3988 
3989 		if (held_root)
3990 			DMEMIT("%llu ", held_root);
3991 		else
3992 			DMEMIT("- ");
3993 
3994 		mode = get_pool_mode(pool);
3995 		if (mode == PM_OUT_OF_DATA_SPACE)
3996 			DMEMIT("out_of_data_space ");
3997 		else if (is_read_only_pool_mode(mode))
3998 			DMEMIT("ro ");
3999 		else
4000 			DMEMIT("rw ");
4001 
4002 		if (!pool->pf.discard_enabled)
4003 			DMEMIT("ignore_discard ");
4004 		else if (pool->pf.discard_passdown)
4005 			DMEMIT("discard_passdown ");
4006 		else
4007 			DMEMIT("no_discard_passdown ");
4008 
4009 		if (pool->pf.error_if_no_space)
4010 			DMEMIT("error_if_no_space ");
4011 		else
4012 			DMEMIT("queue_if_no_space ");
4013 
4014 		if (dm_pool_metadata_needs_check(pool->pmd))
4015 			DMEMIT("needs_check ");
4016 		else
4017 			DMEMIT("- ");
4018 
4019 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4020 
4021 		break;
4022 
4023 	case STATUSTYPE_TABLE:
4024 		DMEMIT("%s %s %lu %llu ",
4025 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4026 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4027 		       (unsigned long)pool->sectors_per_block,
4028 		       (unsigned long long)pt->low_water_blocks);
4029 		emit_flags(&pt->requested_pf, result, sz, maxlen);
4030 		break;
4031 
4032 	case STATUSTYPE_IMA:
4033 		*result = '\0';
4034 		break;
4035 	}
4036 	return;
4037 
4038 err:
4039 	DMEMIT("Error");
4040 }
4041 
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4042 static int pool_iterate_devices(struct dm_target *ti,
4043 				iterate_devices_callout_fn fn, void *data)
4044 {
4045 	struct pool_c *pt = ti->private;
4046 
4047 	return fn(ti, pt->data_dev, 0, ti->len, data);
4048 }
4049 
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)4050 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4051 {
4052 	struct pool_c *pt = ti->private;
4053 	struct pool *pool = pt->pool;
4054 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4055 
4056 	/*
4057 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4058 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4059 	 * This is especially beneficial when the pool's data device is a RAID
4060 	 * device that has a full stripe width that matches pool->sectors_per_block
4061 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4062 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4063 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4064 	 */
4065 	if (limits->max_sectors < pool->sectors_per_block) {
4066 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4067 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4068 				limits->max_sectors--;
4069 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4070 		}
4071 	}
4072 
4073 	/*
4074 	 * If the system-determined stacked limits are compatible with the
4075 	 * pool's blocksize (io_opt is a factor) do not override them.
4076 	 */
4077 	if (io_opt_sectors < pool->sectors_per_block ||
4078 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4079 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4080 			limits->io_min = limits->max_sectors << SECTOR_SHIFT;
4081 		else
4082 			limits->io_min = pool->sectors_per_block << SECTOR_SHIFT;
4083 		limits->io_opt = pool->sectors_per_block << SECTOR_SHIFT;
4084 	}
4085 
4086 	/*
4087 	 * pt->adjusted_pf is a staging area for the actual features to use.
4088 	 * They get transferred to the live pool in bind_control_target()
4089 	 * called from pool_preresume().
4090 	 */
4091 
4092 	if (pt->adjusted_pf.discard_enabled) {
4093 		disable_discard_passdown_if_not_supported(pt);
4094 		if (!pt->adjusted_pf.discard_passdown)
4095 			limits->max_hw_discard_sectors = 0;
4096 		/*
4097 		 * The pool uses the same discard limits as the underlying data
4098 		 * device.  DM core has already set this up.
4099 		 */
4100 	} else {
4101 		/*
4102 		 * Must explicitly disallow stacking discard limits otherwise the
4103 		 * block layer will stack them if pool's data device has support.
4104 		 */
4105 		limits->discard_granularity = 0;
4106 	}
4107 }
4108 
4109 static struct target_type pool_target = {
4110 	.name = "thin-pool",
4111 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4112 		    DM_TARGET_IMMUTABLE | DM_TARGET_PASSES_CRYPTO,
4113 	.version = {1, 24, 0},
4114 	.module = THIS_MODULE,
4115 	.ctr = pool_ctr,
4116 	.dtr = pool_dtr,
4117 	.map = pool_map,
4118 	.presuspend = pool_presuspend,
4119 	.presuspend_undo = pool_presuspend_undo,
4120 	.postsuspend = pool_postsuspend,
4121 	.preresume = pool_preresume,
4122 	.resume = pool_resume,
4123 	.message = pool_message,
4124 	.status = pool_status,
4125 	.iterate_devices = pool_iterate_devices,
4126 	.io_hints = pool_io_hints,
4127 };
4128 
4129 /*
4130  *--------------------------------------------------------------
4131  * Thin target methods
4132  *--------------------------------------------------------------
4133  */
thin_get(struct thin_c * tc)4134 static void thin_get(struct thin_c *tc)
4135 {
4136 	refcount_inc(&tc->refcount);
4137 }
4138 
thin_put(struct thin_c * tc)4139 static void thin_put(struct thin_c *tc)
4140 {
4141 	if (refcount_dec_and_test(&tc->refcount))
4142 		complete(&tc->can_destroy);
4143 }
4144 
thin_dtr(struct dm_target * ti)4145 static void thin_dtr(struct dm_target *ti)
4146 {
4147 	struct thin_c *tc = ti->private;
4148 
4149 	spin_lock_irq(&tc->pool->lock);
4150 	list_del_rcu(&tc->list);
4151 	spin_unlock_irq(&tc->pool->lock);
4152 	synchronize_rcu();
4153 
4154 	thin_put(tc);
4155 	wait_for_completion(&tc->can_destroy);
4156 
4157 	mutex_lock(&dm_thin_pool_table.mutex);
4158 
4159 	__pool_dec(tc->pool);
4160 	dm_pool_close_thin_device(tc->td);
4161 	dm_put_device(ti, tc->pool_dev);
4162 	if (tc->origin_dev)
4163 		dm_put_device(ti, tc->origin_dev);
4164 	kfree(tc);
4165 
4166 	mutex_unlock(&dm_thin_pool_table.mutex);
4167 }
4168 
4169 /*
4170  * Thin target parameters:
4171  *
4172  * <pool_dev> <dev_id> [origin_dev]
4173  *
4174  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4175  * dev_id: the internal device identifier
4176  * origin_dev: a device external to the pool that should act as the origin
4177  *
4178  * If the pool device has discards disabled, they get disabled for the thin
4179  * device as well.
4180  */
thin_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4181 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4182 {
4183 	int r;
4184 	struct thin_c *tc;
4185 	struct dm_dev *pool_dev, *origin_dev;
4186 	struct mapped_device *pool_md;
4187 
4188 	mutex_lock(&dm_thin_pool_table.mutex);
4189 
4190 	if (argc != 2 && argc != 3) {
4191 		ti->error = "Invalid argument count";
4192 		r = -EINVAL;
4193 		goto out_unlock;
4194 	}
4195 
4196 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4197 	if (!tc) {
4198 		ti->error = "Out of memory";
4199 		r = -ENOMEM;
4200 		goto out_unlock;
4201 	}
4202 	tc->thin_md = dm_table_get_md(ti->table);
4203 	spin_lock_init(&tc->lock);
4204 	INIT_LIST_HEAD(&tc->deferred_cells);
4205 	bio_list_init(&tc->deferred_bio_list);
4206 	bio_list_init(&tc->retry_on_resume_list);
4207 	tc->sort_bio_list = RB_ROOT;
4208 
4209 	if (argc == 3) {
4210 		if (!strcmp(argv[0], argv[2])) {
4211 			ti->error = "Error setting origin device";
4212 			r = -EINVAL;
4213 			goto bad_origin_dev;
4214 		}
4215 
4216 		r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4217 		if (r) {
4218 			ti->error = "Error opening origin device";
4219 			goto bad_origin_dev;
4220 		}
4221 		tc->origin_dev = origin_dev;
4222 	}
4223 
4224 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4225 	if (r) {
4226 		ti->error = "Error opening pool device";
4227 		goto bad_pool_dev;
4228 	}
4229 	tc->pool_dev = pool_dev;
4230 
4231 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4232 		ti->error = "Invalid device id";
4233 		r = -EINVAL;
4234 		goto bad_common;
4235 	}
4236 
4237 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4238 	if (!pool_md) {
4239 		ti->error = "Couldn't get pool mapped device";
4240 		r = -EINVAL;
4241 		goto bad_common;
4242 	}
4243 
4244 	tc->pool = __pool_table_lookup(pool_md);
4245 	if (!tc->pool) {
4246 		ti->error = "Couldn't find pool object";
4247 		r = -EINVAL;
4248 		goto bad_pool_lookup;
4249 	}
4250 	__pool_inc(tc->pool);
4251 
4252 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4253 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4254 		r = -EINVAL;
4255 		goto bad_pool;
4256 	}
4257 
4258 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4259 	if (r) {
4260 		ti->error = "Couldn't open thin internal device";
4261 		goto bad_pool;
4262 	}
4263 
4264 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4265 	if (r)
4266 		goto bad;
4267 
4268 	ti->num_flush_bios = 1;
4269 	ti->limit_swap_bios = true;
4270 	ti->flush_supported = true;
4271 	ti->accounts_remapped_io = true;
4272 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4273 
4274 	/* In case the pool supports discards, pass them on. */
4275 	if (tc->pool->pf.discard_enabled) {
4276 		ti->discards_supported = true;
4277 		ti->num_discard_bios = 1;
4278 		ti->max_discard_granularity = true;
4279 	}
4280 
4281 	mutex_unlock(&dm_thin_pool_table.mutex);
4282 
4283 	spin_lock_irq(&tc->pool->lock);
4284 	if (tc->pool->suspended) {
4285 		spin_unlock_irq(&tc->pool->lock);
4286 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4287 		ti->error = "Unable to activate thin device while pool is suspended";
4288 		r = -EINVAL;
4289 		goto bad;
4290 	}
4291 	refcount_set(&tc->refcount, 1);
4292 	init_completion(&tc->can_destroy);
4293 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4294 	spin_unlock_irq(&tc->pool->lock);
4295 	/*
4296 	 * This synchronize_rcu() call is needed here otherwise we risk a
4297 	 * wake_worker() call finding no bios to process (because the newly
4298 	 * added tc isn't yet visible).  So this reduces latency since we
4299 	 * aren't then dependent on the periodic commit to wake_worker().
4300 	 */
4301 	synchronize_rcu();
4302 
4303 	dm_put(pool_md);
4304 
4305 	return 0;
4306 
4307 bad:
4308 	dm_pool_close_thin_device(tc->td);
4309 bad_pool:
4310 	__pool_dec(tc->pool);
4311 bad_pool_lookup:
4312 	dm_put(pool_md);
4313 bad_common:
4314 	dm_put_device(ti, tc->pool_dev);
4315 bad_pool_dev:
4316 	if (tc->origin_dev)
4317 		dm_put_device(ti, tc->origin_dev);
4318 bad_origin_dev:
4319 	kfree(tc);
4320 out_unlock:
4321 	mutex_unlock(&dm_thin_pool_table.mutex);
4322 
4323 	return r;
4324 }
4325 
thin_map(struct dm_target * ti,struct bio * bio)4326 static int thin_map(struct dm_target *ti, struct bio *bio)
4327 {
4328 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4329 
4330 	return thin_bio_map(ti, bio);
4331 }
4332 
thin_endio(struct dm_target * ti,struct bio * bio,blk_status_t * err)4333 static int thin_endio(struct dm_target *ti, struct bio *bio,
4334 		blk_status_t *err)
4335 {
4336 	unsigned long flags;
4337 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4338 	struct list_head work;
4339 	struct dm_thin_new_mapping *m, *tmp;
4340 	struct pool *pool = h->tc->pool;
4341 
4342 	if (h->shared_read_entry) {
4343 		INIT_LIST_HEAD(&work);
4344 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4345 
4346 		spin_lock_irqsave(&pool->lock, flags);
4347 		list_for_each_entry_safe(m, tmp, &work, list) {
4348 			list_del(&m->list);
4349 			__complete_mapping_preparation(m);
4350 		}
4351 		spin_unlock_irqrestore(&pool->lock, flags);
4352 	}
4353 
4354 	if (h->all_io_entry) {
4355 		INIT_LIST_HEAD(&work);
4356 		dm_deferred_entry_dec(h->all_io_entry, &work);
4357 		if (!list_empty(&work)) {
4358 			spin_lock_irqsave(&pool->lock, flags);
4359 			list_for_each_entry_safe(m, tmp, &work, list)
4360 				list_add_tail(&m->list, &pool->prepared_discards);
4361 			spin_unlock_irqrestore(&pool->lock, flags);
4362 			wake_worker(pool);
4363 		}
4364 	}
4365 
4366 	if (h->cell)
4367 		cell_defer_no_holder(h->tc, h->cell);
4368 
4369 	return DM_ENDIO_DONE;
4370 }
4371 
thin_presuspend(struct dm_target * ti)4372 static void thin_presuspend(struct dm_target *ti)
4373 {
4374 	struct thin_c *tc = ti->private;
4375 
4376 	if (dm_noflush_suspending(ti))
4377 		noflush_work(tc, do_noflush_start);
4378 }
4379 
thin_postsuspend(struct dm_target * ti)4380 static void thin_postsuspend(struct dm_target *ti)
4381 {
4382 	struct thin_c *tc = ti->private;
4383 
4384 	if (dm_noflush_suspending(ti))
4385 		noflush_work(tc, do_noflush_stop);
4386 }
4387 
thin_preresume(struct dm_target * ti)4388 static int thin_preresume(struct dm_target *ti)
4389 {
4390 	struct thin_c *tc = ti->private;
4391 
4392 	if (tc->origin_dev)
4393 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4394 
4395 	return 0;
4396 }
4397 
4398 /*
4399  * <nr mapped sectors> <highest mapped sector>
4400  */
thin_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)4401 static void thin_status(struct dm_target *ti, status_type_t type,
4402 			unsigned int status_flags, char *result, unsigned int maxlen)
4403 {
4404 	int r;
4405 	ssize_t sz = 0;
4406 	dm_block_t mapped, highest;
4407 	char buf[BDEVNAME_SIZE];
4408 	struct thin_c *tc = ti->private;
4409 
4410 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4411 		DMEMIT("Fail");
4412 		return;
4413 	}
4414 
4415 	if (!tc->td)
4416 		DMEMIT("-");
4417 	else {
4418 		switch (type) {
4419 		case STATUSTYPE_INFO:
4420 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4421 			if (r) {
4422 				DMERR("dm_thin_get_mapped_count returned %d", r);
4423 				goto err;
4424 			}
4425 
4426 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4427 			if (r < 0) {
4428 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4429 				goto err;
4430 			}
4431 
4432 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4433 			if (r)
4434 				DMEMIT("%llu", ((highest + 1) *
4435 						tc->pool->sectors_per_block) - 1);
4436 			else
4437 				DMEMIT("-");
4438 			break;
4439 
4440 		case STATUSTYPE_TABLE:
4441 			DMEMIT("%s %lu",
4442 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4443 			       (unsigned long) tc->dev_id);
4444 			if (tc->origin_dev)
4445 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4446 			break;
4447 
4448 		case STATUSTYPE_IMA:
4449 			*result = '\0';
4450 			break;
4451 		}
4452 	}
4453 
4454 	return;
4455 
4456 err:
4457 	DMEMIT("Error");
4458 }
4459 
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4460 static int thin_iterate_devices(struct dm_target *ti,
4461 				iterate_devices_callout_fn fn, void *data)
4462 {
4463 	sector_t blocks;
4464 	struct thin_c *tc = ti->private;
4465 	struct pool *pool = tc->pool;
4466 
4467 	/*
4468 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4469 	 * we follow a more convoluted path through to the pool's target.
4470 	 */
4471 	if (!pool->ti)
4472 		return 0;	/* nothing is bound */
4473 
4474 	blocks = pool->ti->len;
4475 	(void) sector_div(blocks, pool->sectors_per_block);
4476 	if (blocks)
4477 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4478 
4479 	return 0;
4480 }
4481 
thin_io_hints(struct dm_target * ti,struct queue_limits * limits)4482 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4483 {
4484 	struct thin_c *tc = ti->private;
4485 	struct pool *pool = tc->pool;
4486 
4487 	if (pool->pf.discard_enabled) {
4488 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4489 		limits->max_hw_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4490 	}
4491 }
4492 
4493 static struct target_type thin_target = {
4494 	.name = "thin",
4495 	.features = DM_TARGET_PASSES_CRYPTO,
4496 	.version = {1, 24, 0},
4497 	.module	= THIS_MODULE,
4498 	.ctr = thin_ctr,
4499 	.dtr = thin_dtr,
4500 	.map = thin_map,
4501 	.end_io = thin_endio,
4502 	.preresume = thin_preresume,
4503 	.presuspend = thin_presuspend,
4504 	.postsuspend = thin_postsuspend,
4505 	.status = thin_status,
4506 	.iterate_devices = thin_iterate_devices,
4507 	.io_hints = thin_io_hints,
4508 };
4509 
4510 /*----------------------------------------------------------------*/
4511 
dm_thin_init(void)4512 static int __init dm_thin_init(void)
4513 {
4514 	int r = -ENOMEM;
4515 
4516 	pool_table_init();
4517 
4518 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4519 	if (!_new_mapping_cache)
4520 		return r;
4521 
4522 	r = dm_register_target(&thin_target);
4523 	if (r)
4524 		goto bad_new_mapping_cache;
4525 
4526 	r = dm_register_target(&pool_target);
4527 	if (r)
4528 		goto bad_thin_target;
4529 
4530 	return 0;
4531 
4532 bad_thin_target:
4533 	dm_unregister_target(&thin_target);
4534 bad_new_mapping_cache:
4535 	kmem_cache_destroy(_new_mapping_cache);
4536 
4537 	return r;
4538 }
4539 
dm_thin_exit(void)4540 static void dm_thin_exit(void)
4541 {
4542 	dm_unregister_target(&thin_target);
4543 	dm_unregister_target(&pool_target);
4544 
4545 	kmem_cache_destroy(_new_mapping_cache);
4546 
4547 	pool_table_exit();
4548 }
4549 
4550 module_init(dm_thin_init);
4551 module_exit(dm_thin_exit);
4552 
4553 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4554 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4555 
4556 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4557 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4558 MODULE_LICENSE("GPL");
4559