1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/locks.c
4 *
5 * We implement four types of file locks: BSD locks, posix locks, open
6 * file description locks, and leases. For details about BSD locks,
7 * see the flock(2) man page; for details about the other three, see
8 * fcntl(2).
9 *
10 *
11 * Locking conflicts and dependencies:
12 * If multiple threads attempt to lock the same byte (or flock the same file)
13 * only one can be granted the lock, and other must wait their turn.
14 * The first lock has been "applied" or "granted", the others are "waiting"
15 * and are "blocked" by the "applied" lock..
16 *
17 * Waiting and applied locks are all kept in trees whose properties are:
18 *
19 * - the root of a tree may be an applied or waiting lock.
20 * - every other node in the tree is a waiting lock that
21 * conflicts with every ancestor of that node.
22 *
23 * Every such tree begins life as a waiting singleton which obviously
24 * satisfies the above properties.
25 *
26 * The only ways we modify trees preserve these properties:
27 *
28 * 1. We may add a new leaf node, but only after first verifying that it
29 * conflicts with all of its ancestors.
30 * 2. We may remove the root of a tree, creating a new singleton
31 * tree from the root and N new trees rooted in the immediate
32 * children.
33 * 3. If the root of a tree is not currently an applied lock, we may
34 * apply it (if possible).
35 * 4. We may upgrade the root of the tree (either extend its range,
36 * or upgrade its entire range from read to write).
37 *
38 * When an applied lock is modified in a way that reduces or downgrades any
39 * part of its range, we remove all its children (2 above). This particularly
40 * happens when a lock is unlocked.
41 *
42 * For each of those child trees we "wake up" the thread which is
43 * waiting for the lock so it can continue handling as follows: if the
44 * root of the tree applies, we do so (3). If it doesn't, it must
45 * conflict with some applied lock. We remove (wake up) all of its children
46 * (2), and add it is a new leaf to the tree rooted in the applied
47 * lock (1). We then repeat the process recursively with those
48 * children.
49 *
50 */
51 #include <linux/capability.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
54 #include <linux/filelock.h>
55 #include <linux/fs.h>
56 #include <linux/init.h>
57 #include <linux/security.h>
58 #include <linux/slab.h>
59 #include <linux/syscalls.h>
60 #include <linux/time.h>
61 #include <linux/rcupdate.h>
62 #include <linux/pid_namespace.h>
63 #include <linux/hashtable.h>
64 #include <linux/percpu.h>
65 #include <linux/sysctl.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/filelock.h>
69
70 #include <linux/uaccess.h>
71
file_lock(struct file_lock_core * flc)72 static struct file_lock *file_lock(struct file_lock_core *flc)
73 {
74 return container_of(flc, struct file_lock, c);
75 }
76
file_lease(struct file_lock_core * flc)77 static struct file_lease *file_lease(struct file_lock_core *flc)
78 {
79 return container_of(flc, struct file_lease, c);
80 }
81
lease_breaking(struct file_lease * fl)82 static bool lease_breaking(struct file_lease *fl)
83 {
84 return fl->c.flc_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
85 }
86
target_leasetype(struct file_lease * fl)87 static int target_leasetype(struct file_lease *fl)
88 {
89 if (fl->c.flc_flags & FL_UNLOCK_PENDING)
90 return F_UNLCK;
91 if (fl->c.flc_flags & FL_DOWNGRADE_PENDING)
92 return F_RDLCK;
93 return fl->c.flc_type;
94 }
95
96 static int leases_enable = 1;
97 static int lease_break_time = 45;
98
99 #ifdef CONFIG_SYSCTL
100 static const struct ctl_table locks_sysctls[] = {
101 {
102 .procname = "leases-enable",
103 .data = &leases_enable,
104 .maxlen = sizeof(int),
105 .mode = 0644,
106 .proc_handler = proc_dointvec,
107 },
108 #ifdef CONFIG_MMU
109 {
110 .procname = "lease-break-time",
111 .data = &lease_break_time,
112 .maxlen = sizeof(int),
113 .mode = 0644,
114 .proc_handler = proc_dointvec,
115 },
116 #endif /* CONFIG_MMU */
117 };
118
init_fs_locks_sysctls(void)119 static int __init init_fs_locks_sysctls(void)
120 {
121 register_sysctl_init("fs", locks_sysctls);
122 return 0;
123 }
124 early_initcall(init_fs_locks_sysctls);
125 #endif /* CONFIG_SYSCTL */
126
127 /*
128 * The global file_lock_list is only used for displaying /proc/locks, so we
129 * keep a list on each CPU, with each list protected by its own spinlock.
130 * Global serialization is done using file_rwsem.
131 *
132 * Note that alterations to the list also require that the relevant flc_lock is
133 * held.
134 */
135 struct file_lock_list_struct {
136 spinlock_t lock;
137 struct hlist_head hlist;
138 };
139 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
140 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
141
142
143 /*
144 * The blocked_hash is used to find POSIX lock loops for deadlock detection.
145 * It is protected by blocked_lock_lock.
146 *
147 * We hash locks by lockowner in order to optimize searching for the lock a
148 * particular lockowner is waiting on.
149 *
150 * FIXME: make this value scale via some heuristic? We generally will want more
151 * buckets when we have more lockowners holding locks, but that's a little
152 * difficult to determine without knowing what the workload will look like.
153 */
154 #define BLOCKED_HASH_BITS 7
155 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
156
157 /*
158 * This lock protects the blocked_hash. Generally, if you're accessing it, you
159 * want to be holding this lock.
160 *
161 * In addition, it also protects the fl->fl_blocked_requests list, and the
162 * fl->fl_blocker pointer for file_lock structures that are acting as lock
163 * requests (in contrast to those that are acting as records of acquired locks).
164 *
165 * Note that when we acquire this lock in order to change the above fields,
166 * we often hold the flc_lock as well. In certain cases, when reading the fields
167 * protected by this lock, we can skip acquiring it iff we already hold the
168 * flc_lock.
169 */
170 static DEFINE_SPINLOCK(blocked_lock_lock);
171
172 static struct kmem_cache *flctx_cache __ro_after_init;
173 static struct kmem_cache *filelock_cache __ro_after_init;
174 static struct kmem_cache *filelease_cache __ro_after_init;
175
176 static struct file_lock_context *
locks_get_lock_context(struct inode * inode,int type)177 locks_get_lock_context(struct inode *inode, int type)
178 {
179 struct file_lock_context *ctx;
180
181 /* paired with cmpxchg() below */
182 ctx = locks_inode_context(inode);
183 if (likely(ctx) || type == F_UNLCK)
184 goto out;
185
186 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
187 if (!ctx)
188 goto out;
189
190 spin_lock_init(&ctx->flc_lock);
191 INIT_LIST_HEAD(&ctx->flc_flock);
192 INIT_LIST_HEAD(&ctx->flc_posix);
193 INIT_LIST_HEAD(&ctx->flc_lease);
194
195 /*
196 * Assign the pointer if it's not already assigned. If it is, then
197 * free the context we just allocated.
198 */
199 if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
200 kmem_cache_free(flctx_cache, ctx);
201 ctx = locks_inode_context(inode);
202 }
203 out:
204 trace_locks_get_lock_context(inode, type, ctx);
205 return ctx;
206 }
207
208 static void
locks_dump_ctx_list(struct list_head * list,char * list_type)209 locks_dump_ctx_list(struct list_head *list, char *list_type)
210 {
211 struct file_lock_core *flc;
212
213 list_for_each_entry(flc, list, flc_list)
214 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
215 list_type, flc->flc_owner, flc->flc_flags,
216 flc->flc_type, flc->flc_pid);
217 }
218
219 static void
locks_check_ctx_lists(struct inode * inode)220 locks_check_ctx_lists(struct inode *inode)
221 {
222 struct file_lock_context *ctx = inode->i_flctx;
223
224 if (unlikely(!list_empty(&ctx->flc_flock) ||
225 !list_empty(&ctx->flc_posix) ||
226 !list_empty(&ctx->flc_lease))) {
227 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
228 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
229 inode->i_ino);
230 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
231 locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
232 locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
233 }
234 }
235
236 static void
locks_check_ctx_file_list(struct file * filp,struct list_head * list,char * list_type)237 locks_check_ctx_file_list(struct file *filp, struct list_head *list, char *list_type)
238 {
239 struct file_lock_core *flc;
240 struct inode *inode = file_inode(filp);
241
242 list_for_each_entry(flc, list, flc_list)
243 if (flc->flc_file == filp)
244 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
245 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
246 list_type, MAJOR(inode->i_sb->s_dev),
247 MINOR(inode->i_sb->s_dev), inode->i_ino,
248 flc->flc_owner, flc->flc_flags,
249 flc->flc_type, flc->flc_pid);
250 }
251
252 void
locks_free_lock_context(struct inode * inode)253 locks_free_lock_context(struct inode *inode)
254 {
255 struct file_lock_context *ctx = locks_inode_context(inode);
256
257 if (unlikely(ctx)) {
258 locks_check_ctx_lists(inode);
259 kmem_cache_free(flctx_cache, ctx);
260 }
261 }
262
locks_init_lock_heads(struct file_lock_core * flc)263 static void locks_init_lock_heads(struct file_lock_core *flc)
264 {
265 INIT_HLIST_NODE(&flc->flc_link);
266 INIT_LIST_HEAD(&flc->flc_list);
267 INIT_LIST_HEAD(&flc->flc_blocked_requests);
268 INIT_LIST_HEAD(&flc->flc_blocked_member);
269 init_waitqueue_head(&flc->flc_wait);
270 }
271
272 /* Allocate an empty lock structure. */
locks_alloc_lock(void)273 struct file_lock *locks_alloc_lock(void)
274 {
275 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
276
277 if (fl)
278 locks_init_lock_heads(&fl->c);
279
280 return fl;
281 }
282 EXPORT_SYMBOL_GPL(locks_alloc_lock);
283
284 /* Allocate an empty lock structure. */
locks_alloc_lease(void)285 struct file_lease *locks_alloc_lease(void)
286 {
287 struct file_lease *fl = kmem_cache_zalloc(filelease_cache, GFP_KERNEL);
288
289 if (fl)
290 locks_init_lock_heads(&fl->c);
291
292 return fl;
293 }
294 EXPORT_SYMBOL_GPL(locks_alloc_lease);
295
locks_release_private(struct file_lock * fl)296 void locks_release_private(struct file_lock *fl)
297 {
298 struct file_lock_core *flc = &fl->c;
299
300 BUG_ON(waitqueue_active(&flc->flc_wait));
301 BUG_ON(!list_empty(&flc->flc_list));
302 BUG_ON(!list_empty(&flc->flc_blocked_requests));
303 BUG_ON(!list_empty(&flc->flc_blocked_member));
304 BUG_ON(!hlist_unhashed(&flc->flc_link));
305
306 if (fl->fl_ops) {
307 if (fl->fl_ops->fl_release_private)
308 fl->fl_ops->fl_release_private(fl);
309 fl->fl_ops = NULL;
310 }
311
312 if (fl->fl_lmops) {
313 if (fl->fl_lmops->lm_put_owner) {
314 fl->fl_lmops->lm_put_owner(flc->flc_owner);
315 flc->flc_owner = NULL;
316 }
317 fl->fl_lmops = NULL;
318 }
319 }
320 EXPORT_SYMBOL_GPL(locks_release_private);
321
322 /**
323 * locks_owner_has_blockers - Check for blocking lock requests
324 * @flctx: file lock context
325 * @owner: lock owner
326 *
327 * Return values:
328 * %true: @owner has at least one blocker
329 * %false: @owner has no blockers
330 */
locks_owner_has_blockers(struct file_lock_context * flctx,fl_owner_t owner)331 bool locks_owner_has_blockers(struct file_lock_context *flctx, fl_owner_t owner)
332 {
333 struct file_lock_core *flc;
334
335 spin_lock(&flctx->flc_lock);
336 list_for_each_entry(flc, &flctx->flc_posix, flc_list) {
337 if (flc->flc_owner != owner)
338 continue;
339 if (!list_empty(&flc->flc_blocked_requests)) {
340 spin_unlock(&flctx->flc_lock);
341 return true;
342 }
343 }
344 spin_unlock(&flctx->flc_lock);
345 return false;
346 }
347 EXPORT_SYMBOL_GPL(locks_owner_has_blockers);
348
349 /* Free a lock which is not in use. */
locks_free_lock(struct file_lock * fl)350 void locks_free_lock(struct file_lock *fl)
351 {
352 locks_release_private(fl);
353 kmem_cache_free(filelock_cache, fl);
354 }
355 EXPORT_SYMBOL(locks_free_lock);
356
357 /* Free a lease which is not in use. */
locks_free_lease(struct file_lease * fl)358 void locks_free_lease(struct file_lease *fl)
359 {
360 kmem_cache_free(filelease_cache, fl);
361 }
362 EXPORT_SYMBOL(locks_free_lease);
363
364 static void
locks_dispose_list(struct list_head * dispose)365 locks_dispose_list(struct list_head *dispose)
366 {
367 struct file_lock_core *flc;
368
369 while (!list_empty(dispose)) {
370 flc = list_first_entry(dispose, struct file_lock_core, flc_list);
371 list_del_init(&flc->flc_list);
372 if (flc->flc_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
373 locks_free_lease(file_lease(flc));
374 else
375 locks_free_lock(file_lock(flc));
376 }
377 }
378
locks_init_lock(struct file_lock * fl)379 void locks_init_lock(struct file_lock *fl)
380 {
381 memset(fl, 0, sizeof(struct file_lock));
382 locks_init_lock_heads(&fl->c);
383 }
384 EXPORT_SYMBOL(locks_init_lock);
385
locks_init_lease(struct file_lease * fl)386 void locks_init_lease(struct file_lease *fl)
387 {
388 memset(fl, 0, sizeof(*fl));
389 locks_init_lock_heads(&fl->c);
390 }
391 EXPORT_SYMBOL(locks_init_lease);
392
393 /*
394 * Initialize a new lock from an existing file_lock structure.
395 */
locks_copy_conflock(struct file_lock * new,struct file_lock * fl)396 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
397 {
398 new->c.flc_owner = fl->c.flc_owner;
399 new->c.flc_pid = fl->c.flc_pid;
400 new->c.flc_file = NULL;
401 new->c.flc_flags = fl->c.flc_flags;
402 new->c.flc_type = fl->c.flc_type;
403 new->fl_start = fl->fl_start;
404 new->fl_end = fl->fl_end;
405 new->fl_lmops = fl->fl_lmops;
406 new->fl_ops = NULL;
407
408 if (fl->fl_lmops) {
409 if (fl->fl_lmops->lm_get_owner)
410 fl->fl_lmops->lm_get_owner(fl->c.flc_owner);
411 }
412 }
413 EXPORT_SYMBOL(locks_copy_conflock);
414
locks_copy_lock(struct file_lock * new,struct file_lock * fl)415 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
416 {
417 /* "new" must be a freshly-initialized lock */
418 WARN_ON_ONCE(new->fl_ops);
419
420 locks_copy_conflock(new, fl);
421
422 new->c.flc_file = fl->c.flc_file;
423 new->fl_ops = fl->fl_ops;
424
425 if (fl->fl_ops) {
426 if (fl->fl_ops->fl_copy_lock)
427 fl->fl_ops->fl_copy_lock(new, fl);
428 }
429 }
430 EXPORT_SYMBOL(locks_copy_lock);
431
locks_move_blocks(struct file_lock * new,struct file_lock * fl)432 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
433 {
434 struct file_lock *f;
435
436 /*
437 * As ctx->flc_lock is held, new requests cannot be added to
438 * ->flc_blocked_requests, so we don't need a lock to check if it
439 * is empty.
440 */
441 if (list_empty(&fl->c.flc_blocked_requests))
442 return;
443 spin_lock(&blocked_lock_lock);
444 list_splice_init(&fl->c.flc_blocked_requests,
445 &new->c.flc_blocked_requests);
446 list_for_each_entry(f, &new->c.flc_blocked_requests,
447 c.flc_blocked_member)
448 f->c.flc_blocker = &new->c;
449 spin_unlock(&blocked_lock_lock);
450 }
451
flock_translate_cmd(int cmd)452 static inline int flock_translate_cmd(int cmd) {
453 switch (cmd) {
454 case LOCK_SH:
455 return F_RDLCK;
456 case LOCK_EX:
457 return F_WRLCK;
458 case LOCK_UN:
459 return F_UNLCK;
460 }
461 return -EINVAL;
462 }
463
464 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
flock_make_lock(struct file * filp,struct file_lock * fl,int type)465 static void flock_make_lock(struct file *filp, struct file_lock *fl, int type)
466 {
467 locks_init_lock(fl);
468
469 fl->c.flc_file = filp;
470 fl->c.flc_owner = filp;
471 fl->c.flc_pid = current->tgid;
472 fl->c.flc_flags = FL_FLOCK;
473 fl->c.flc_type = type;
474 fl->fl_end = OFFSET_MAX;
475 }
476
assign_type(struct file_lock_core * flc,int type)477 static int assign_type(struct file_lock_core *flc, int type)
478 {
479 switch (type) {
480 case F_RDLCK:
481 case F_WRLCK:
482 case F_UNLCK:
483 flc->flc_type = type;
484 break;
485 default:
486 return -EINVAL;
487 }
488 return 0;
489 }
490
flock64_to_posix_lock(struct file * filp,struct file_lock * fl,struct flock64 * l)491 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
492 struct flock64 *l)
493 {
494 switch (l->l_whence) {
495 case SEEK_SET:
496 fl->fl_start = 0;
497 break;
498 case SEEK_CUR:
499 fl->fl_start = filp->f_pos;
500 break;
501 case SEEK_END:
502 fl->fl_start = i_size_read(file_inode(filp));
503 break;
504 default:
505 return -EINVAL;
506 }
507 if (l->l_start > OFFSET_MAX - fl->fl_start)
508 return -EOVERFLOW;
509 fl->fl_start += l->l_start;
510 if (fl->fl_start < 0)
511 return -EINVAL;
512
513 /* POSIX-1996 leaves the case l->l_len < 0 undefined;
514 POSIX-2001 defines it. */
515 if (l->l_len > 0) {
516 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
517 return -EOVERFLOW;
518 fl->fl_end = fl->fl_start + (l->l_len - 1);
519
520 } else if (l->l_len < 0) {
521 if (fl->fl_start + l->l_len < 0)
522 return -EINVAL;
523 fl->fl_end = fl->fl_start - 1;
524 fl->fl_start += l->l_len;
525 } else
526 fl->fl_end = OFFSET_MAX;
527
528 fl->c.flc_owner = current->files;
529 fl->c.flc_pid = current->tgid;
530 fl->c.flc_file = filp;
531 fl->c.flc_flags = FL_POSIX;
532 fl->fl_ops = NULL;
533 fl->fl_lmops = NULL;
534
535 return assign_type(&fl->c, l->l_type);
536 }
537
538 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
539 * style lock.
540 */
flock_to_posix_lock(struct file * filp,struct file_lock * fl,struct flock * l)541 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
542 struct flock *l)
543 {
544 struct flock64 ll = {
545 .l_type = l->l_type,
546 .l_whence = l->l_whence,
547 .l_start = l->l_start,
548 .l_len = l->l_len,
549 };
550
551 return flock64_to_posix_lock(filp, fl, &ll);
552 }
553
554 /* default lease lock manager operations */
555 static bool
lease_break_callback(struct file_lease * fl)556 lease_break_callback(struct file_lease *fl)
557 {
558 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
559 return false;
560 }
561
562 static void
lease_setup(struct file_lease * fl,void ** priv)563 lease_setup(struct file_lease *fl, void **priv)
564 {
565 struct file *filp = fl->c.flc_file;
566 struct fasync_struct *fa = *priv;
567
568 /*
569 * fasync_insert_entry() returns the old entry if any. If there was no
570 * old entry, then it used "priv" and inserted it into the fasync list.
571 * Clear the pointer to indicate that it shouldn't be freed.
572 */
573 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
574 *priv = NULL;
575
576 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
577 }
578
579 static const struct lease_manager_operations lease_manager_ops = {
580 .lm_break = lease_break_callback,
581 .lm_change = lease_modify,
582 .lm_setup = lease_setup,
583 };
584
585 /*
586 * Initialize a lease, use the default lock manager operations
587 */
lease_init(struct file * filp,unsigned int flags,int type,struct file_lease * fl)588 static int lease_init(struct file *filp, unsigned int flags, int type, struct file_lease *fl)
589 {
590 if (assign_type(&fl->c, type) != 0)
591 return -EINVAL;
592
593 fl->c.flc_owner = filp;
594 fl->c.flc_pid = current->tgid;
595
596 fl->c.flc_file = filp;
597 fl->c.flc_flags = flags;
598 fl->fl_lmops = &lease_manager_ops;
599 return 0;
600 }
601
602 /* Allocate a file_lock initialised to this type of lease */
lease_alloc(struct file * filp,unsigned int flags,int type)603 static struct file_lease *lease_alloc(struct file *filp, unsigned int flags, int type)
604 {
605 struct file_lease *fl = locks_alloc_lease();
606 int error = -ENOMEM;
607
608 if (fl == NULL)
609 return ERR_PTR(error);
610
611 error = lease_init(filp, flags, type, fl);
612 if (error) {
613 locks_free_lease(fl);
614 return ERR_PTR(error);
615 }
616 return fl;
617 }
618
619 /* Check if two locks overlap each other.
620 */
locks_overlap(struct file_lock * fl1,struct file_lock * fl2)621 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
622 {
623 return ((fl1->fl_end >= fl2->fl_start) &&
624 (fl2->fl_end >= fl1->fl_start));
625 }
626
627 /*
628 * Check whether two locks have the same owner.
629 */
posix_same_owner(struct file_lock_core * fl1,struct file_lock_core * fl2)630 static int posix_same_owner(struct file_lock_core *fl1, struct file_lock_core *fl2)
631 {
632 return fl1->flc_owner == fl2->flc_owner;
633 }
634
635 /* Must be called with the flc_lock held! */
locks_insert_global_locks(struct file_lock_core * flc)636 static void locks_insert_global_locks(struct file_lock_core *flc)
637 {
638 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
639
640 percpu_rwsem_assert_held(&file_rwsem);
641
642 spin_lock(&fll->lock);
643 flc->flc_link_cpu = smp_processor_id();
644 hlist_add_head(&flc->flc_link, &fll->hlist);
645 spin_unlock(&fll->lock);
646 }
647
648 /* Must be called with the flc_lock held! */
locks_delete_global_locks(struct file_lock_core * flc)649 static void locks_delete_global_locks(struct file_lock_core *flc)
650 {
651 struct file_lock_list_struct *fll;
652
653 percpu_rwsem_assert_held(&file_rwsem);
654
655 /*
656 * Avoid taking lock if already unhashed. This is safe since this check
657 * is done while holding the flc_lock, and new insertions into the list
658 * also require that it be held.
659 */
660 if (hlist_unhashed(&flc->flc_link))
661 return;
662
663 fll = per_cpu_ptr(&file_lock_list, flc->flc_link_cpu);
664 spin_lock(&fll->lock);
665 hlist_del_init(&flc->flc_link);
666 spin_unlock(&fll->lock);
667 }
668
669 static unsigned long
posix_owner_key(struct file_lock_core * flc)670 posix_owner_key(struct file_lock_core *flc)
671 {
672 return (unsigned long) flc->flc_owner;
673 }
674
locks_insert_global_blocked(struct file_lock_core * waiter)675 static void locks_insert_global_blocked(struct file_lock_core *waiter)
676 {
677 lockdep_assert_held(&blocked_lock_lock);
678
679 hash_add(blocked_hash, &waiter->flc_link, posix_owner_key(waiter));
680 }
681
locks_delete_global_blocked(struct file_lock_core * waiter)682 static void locks_delete_global_blocked(struct file_lock_core *waiter)
683 {
684 lockdep_assert_held(&blocked_lock_lock);
685
686 hash_del(&waiter->flc_link);
687 }
688
689 /* Remove waiter from blocker's block list.
690 * When blocker ends up pointing to itself then the list is empty.
691 *
692 * Must be called with blocked_lock_lock held.
693 */
__locks_unlink_block(struct file_lock_core * waiter)694 static void __locks_unlink_block(struct file_lock_core *waiter)
695 {
696 locks_delete_global_blocked(waiter);
697 list_del_init(&waiter->flc_blocked_member);
698 }
699
__locks_wake_up_blocks(struct file_lock_core * blocker)700 static void __locks_wake_up_blocks(struct file_lock_core *blocker)
701 {
702 while (!list_empty(&blocker->flc_blocked_requests)) {
703 struct file_lock_core *waiter;
704 struct file_lock *fl;
705
706 waiter = list_first_entry(&blocker->flc_blocked_requests,
707 struct file_lock_core, flc_blocked_member);
708
709 fl = file_lock(waiter);
710 __locks_unlink_block(waiter);
711 if ((waiter->flc_flags & (FL_POSIX | FL_FLOCK)) &&
712 fl->fl_lmops && fl->fl_lmops->lm_notify)
713 fl->fl_lmops->lm_notify(fl);
714 else
715 locks_wake_up_waiter(waiter);
716
717 /*
718 * The setting of flc_blocker to NULL marks the "done"
719 * point in deleting a block. Paired with acquire at the top
720 * of locks_delete_block().
721 */
722 smp_store_release(&waiter->flc_blocker, NULL);
723 }
724 }
725
__locks_delete_block(struct file_lock_core * waiter)726 static int __locks_delete_block(struct file_lock_core *waiter)
727 {
728 int status = -ENOENT;
729
730 /*
731 * If fl_blocker is NULL, it won't be set again as this thread "owns"
732 * the lock and is the only one that might try to claim the lock.
733 *
734 * We use acquire/release to manage fl_blocker so that we can
735 * optimize away taking the blocked_lock_lock in many cases.
736 *
737 * The smp_load_acquire guarantees two things:
738 *
739 * 1/ that fl_blocked_requests can be tested locklessly. If something
740 * was recently added to that list it must have been in a locked region
741 * *before* the locked region when fl_blocker was set to NULL.
742 *
743 * 2/ that no other thread is accessing 'waiter', so it is safe to free
744 * it. __locks_wake_up_blocks is careful not to touch waiter after
745 * fl_blocker is released.
746 *
747 * If a lockless check of fl_blocker shows it to be NULL, we know that
748 * no new locks can be inserted into its fl_blocked_requests list, and
749 * can avoid doing anything further if the list is empty.
750 */
751 if (!smp_load_acquire(&waiter->flc_blocker) &&
752 list_empty(&waiter->flc_blocked_requests))
753 return status;
754
755 spin_lock(&blocked_lock_lock);
756 if (waiter->flc_blocker)
757 status = 0;
758 __locks_wake_up_blocks(waiter);
759 __locks_unlink_block(waiter);
760
761 /*
762 * The setting of fl_blocker to NULL marks the "done" point in deleting
763 * a block. Paired with acquire at the top of this function.
764 */
765 smp_store_release(&waiter->flc_blocker, NULL);
766 spin_unlock(&blocked_lock_lock);
767 return status;
768 }
769
770 /**
771 * locks_delete_block - stop waiting for a file lock
772 * @waiter: the lock which was waiting
773 *
774 * lockd/nfsd need to disconnect the lock while working on it.
775 */
locks_delete_block(struct file_lock * waiter)776 int locks_delete_block(struct file_lock *waiter)
777 {
778 return __locks_delete_block(&waiter->c);
779 }
780 EXPORT_SYMBOL(locks_delete_block);
781
782 /* Insert waiter into blocker's block list.
783 * We use a circular list so that processes can be easily woken up in
784 * the order they blocked. The documentation doesn't require this but
785 * it seems like the reasonable thing to do.
786 *
787 * Must be called with both the flc_lock and blocked_lock_lock held. The
788 * fl_blocked_requests list itself is protected by the blocked_lock_lock,
789 * but by ensuring that the flc_lock is also held on insertions we can avoid
790 * taking the blocked_lock_lock in some cases when we see that the
791 * fl_blocked_requests list is empty.
792 *
793 * Rather than just adding to the list, we check for conflicts with any existing
794 * waiters, and add beneath any waiter that blocks the new waiter.
795 * Thus wakeups don't happen until needed.
796 */
__locks_insert_block(struct file_lock_core * blocker,struct file_lock_core * waiter,bool conflict (struct file_lock_core *,struct file_lock_core *))797 static void __locks_insert_block(struct file_lock_core *blocker,
798 struct file_lock_core *waiter,
799 bool conflict(struct file_lock_core *,
800 struct file_lock_core *))
801 {
802 struct file_lock_core *flc;
803
804 BUG_ON(!list_empty(&waiter->flc_blocked_member));
805 new_blocker:
806 list_for_each_entry(flc, &blocker->flc_blocked_requests, flc_blocked_member)
807 if (conflict(flc, waiter)) {
808 blocker = flc;
809 goto new_blocker;
810 }
811 waiter->flc_blocker = blocker;
812 list_add_tail(&waiter->flc_blocked_member,
813 &blocker->flc_blocked_requests);
814
815 if ((blocker->flc_flags & (FL_POSIX|FL_OFDLCK)) == FL_POSIX)
816 locks_insert_global_blocked(waiter);
817
818 /* The requests in waiter->flc_blocked are known to conflict with
819 * waiter, but might not conflict with blocker, or the requests
820 * and lock which block it. So they all need to be woken.
821 */
822 __locks_wake_up_blocks(waiter);
823 }
824
825 /* Must be called with flc_lock held. */
locks_insert_block(struct file_lock_core * blocker,struct file_lock_core * waiter,bool conflict (struct file_lock_core *,struct file_lock_core *))826 static void locks_insert_block(struct file_lock_core *blocker,
827 struct file_lock_core *waiter,
828 bool conflict(struct file_lock_core *,
829 struct file_lock_core *))
830 {
831 spin_lock(&blocked_lock_lock);
832 __locks_insert_block(blocker, waiter, conflict);
833 spin_unlock(&blocked_lock_lock);
834 }
835
836 /*
837 * Wake up processes blocked waiting for blocker.
838 *
839 * Must be called with the inode->flc_lock held!
840 */
locks_wake_up_blocks(struct file_lock_core * blocker)841 static void locks_wake_up_blocks(struct file_lock_core *blocker)
842 {
843 /*
844 * Avoid taking global lock if list is empty. This is safe since new
845 * blocked requests are only added to the list under the flc_lock, and
846 * the flc_lock is always held here. Note that removal from the
847 * fl_blocked_requests list does not require the flc_lock, so we must
848 * recheck list_empty() after acquiring the blocked_lock_lock.
849 */
850 if (list_empty(&blocker->flc_blocked_requests))
851 return;
852
853 spin_lock(&blocked_lock_lock);
854 __locks_wake_up_blocks(blocker);
855 spin_unlock(&blocked_lock_lock);
856 }
857
858 static void
locks_insert_lock_ctx(struct file_lock_core * fl,struct list_head * before)859 locks_insert_lock_ctx(struct file_lock_core *fl, struct list_head *before)
860 {
861 list_add_tail(&fl->flc_list, before);
862 locks_insert_global_locks(fl);
863 }
864
865 static void
locks_unlink_lock_ctx(struct file_lock_core * fl)866 locks_unlink_lock_ctx(struct file_lock_core *fl)
867 {
868 locks_delete_global_locks(fl);
869 list_del_init(&fl->flc_list);
870 locks_wake_up_blocks(fl);
871 }
872
873 static void
locks_delete_lock_ctx(struct file_lock_core * fl,struct list_head * dispose)874 locks_delete_lock_ctx(struct file_lock_core *fl, struct list_head *dispose)
875 {
876 locks_unlink_lock_ctx(fl);
877 if (dispose)
878 list_add(&fl->flc_list, dispose);
879 else
880 locks_free_lock(file_lock(fl));
881 }
882
883 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
884 * checks for shared/exclusive status of overlapping locks.
885 */
locks_conflict(struct file_lock_core * caller_flc,struct file_lock_core * sys_flc)886 static bool locks_conflict(struct file_lock_core *caller_flc,
887 struct file_lock_core *sys_flc)
888 {
889 if (sys_flc->flc_type == F_WRLCK)
890 return true;
891 if (caller_flc->flc_type == F_WRLCK)
892 return true;
893 return false;
894 }
895
896 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
897 * checking before calling the locks_conflict().
898 */
posix_locks_conflict(struct file_lock_core * caller_flc,struct file_lock_core * sys_flc)899 static bool posix_locks_conflict(struct file_lock_core *caller_flc,
900 struct file_lock_core *sys_flc)
901 {
902 struct file_lock *caller_fl = file_lock(caller_flc);
903 struct file_lock *sys_fl = file_lock(sys_flc);
904
905 /* POSIX locks owned by the same process do not conflict with
906 * each other.
907 */
908 if (posix_same_owner(caller_flc, sys_flc))
909 return false;
910
911 /* Check whether they overlap */
912 if (!locks_overlap(caller_fl, sys_fl))
913 return false;
914
915 return locks_conflict(caller_flc, sys_flc);
916 }
917
918 /* Determine if lock sys_fl blocks lock caller_fl. Used on xx_GETLK
919 * path so checks for additional GETLK-specific things like F_UNLCK.
920 */
posix_test_locks_conflict(struct file_lock * caller_fl,struct file_lock * sys_fl)921 static bool posix_test_locks_conflict(struct file_lock *caller_fl,
922 struct file_lock *sys_fl)
923 {
924 struct file_lock_core *caller = &caller_fl->c;
925 struct file_lock_core *sys = &sys_fl->c;
926
927 /* F_UNLCK checks any locks on the same fd. */
928 if (lock_is_unlock(caller_fl)) {
929 if (!posix_same_owner(caller, sys))
930 return false;
931 return locks_overlap(caller_fl, sys_fl);
932 }
933 return posix_locks_conflict(caller, sys);
934 }
935
936 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
937 * checking before calling the locks_conflict().
938 */
flock_locks_conflict(struct file_lock_core * caller_flc,struct file_lock_core * sys_flc)939 static bool flock_locks_conflict(struct file_lock_core *caller_flc,
940 struct file_lock_core *sys_flc)
941 {
942 /* FLOCK locks referring to the same filp do not conflict with
943 * each other.
944 */
945 if (caller_flc->flc_file == sys_flc->flc_file)
946 return false;
947
948 return locks_conflict(caller_flc, sys_flc);
949 }
950
951 void
posix_test_lock(struct file * filp,struct file_lock * fl)952 posix_test_lock(struct file *filp, struct file_lock *fl)
953 {
954 struct file_lock *cfl;
955 struct file_lock_context *ctx;
956 struct inode *inode = file_inode(filp);
957 void *owner;
958 void (*func)(void);
959
960 ctx = locks_inode_context(inode);
961 if (!ctx || list_empty_careful(&ctx->flc_posix)) {
962 fl->c.flc_type = F_UNLCK;
963 return;
964 }
965
966 retry:
967 spin_lock(&ctx->flc_lock);
968 list_for_each_entry(cfl, &ctx->flc_posix, c.flc_list) {
969 if (!posix_test_locks_conflict(fl, cfl))
970 continue;
971 if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable
972 && (*cfl->fl_lmops->lm_lock_expirable)(cfl)) {
973 owner = cfl->fl_lmops->lm_mod_owner;
974 func = cfl->fl_lmops->lm_expire_lock;
975 __module_get(owner);
976 spin_unlock(&ctx->flc_lock);
977 (*func)();
978 module_put(owner);
979 goto retry;
980 }
981 locks_copy_conflock(fl, cfl);
982 goto out;
983 }
984 fl->c.flc_type = F_UNLCK;
985 out:
986 spin_unlock(&ctx->flc_lock);
987 return;
988 }
989 EXPORT_SYMBOL(posix_test_lock);
990
991 /*
992 * Deadlock detection:
993 *
994 * We attempt to detect deadlocks that are due purely to posix file
995 * locks.
996 *
997 * We assume that a task can be waiting for at most one lock at a time.
998 * So for any acquired lock, the process holding that lock may be
999 * waiting on at most one other lock. That lock in turns may be held by
1000 * someone waiting for at most one other lock. Given a requested lock
1001 * caller_fl which is about to wait for a conflicting lock block_fl, we
1002 * follow this chain of waiters to ensure we are not about to create a
1003 * cycle.
1004 *
1005 * Since we do this before we ever put a process to sleep on a lock, we
1006 * are ensured that there is never a cycle; that is what guarantees that
1007 * the while() loop in posix_locks_deadlock() eventually completes.
1008 *
1009 * Note: the above assumption may not be true when handling lock
1010 * requests from a broken NFS client. It may also fail in the presence
1011 * of tasks (such as posix threads) sharing the same open file table.
1012 * To handle those cases, we just bail out after a few iterations.
1013 *
1014 * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
1015 * Because the owner is not even nominally tied to a thread of
1016 * execution, the deadlock detection below can't reasonably work well. Just
1017 * skip it for those.
1018 *
1019 * In principle, we could do a more limited deadlock detection on FL_OFDLCK
1020 * locks that just checks for the case where two tasks are attempting to
1021 * upgrade from read to write locks on the same inode.
1022 */
1023
1024 #define MAX_DEADLK_ITERATIONS 10
1025
1026 /* Find a lock that the owner of the given @blocker is blocking on. */
what_owner_is_waiting_for(struct file_lock_core * blocker)1027 static struct file_lock_core *what_owner_is_waiting_for(struct file_lock_core *blocker)
1028 {
1029 struct file_lock_core *flc;
1030
1031 hash_for_each_possible(blocked_hash, flc, flc_link, posix_owner_key(blocker)) {
1032 if (posix_same_owner(flc, blocker)) {
1033 while (flc->flc_blocker)
1034 flc = flc->flc_blocker;
1035 return flc;
1036 }
1037 }
1038 return NULL;
1039 }
1040
1041 /* Must be called with the blocked_lock_lock held! */
posix_locks_deadlock(struct file_lock * caller_fl,struct file_lock * block_fl)1042 static bool posix_locks_deadlock(struct file_lock *caller_fl,
1043 struct file_lock *block_fl)
1044 {
1045 struct file_lock_core *caller = &caller_fl->c;
1046 struct file_lock_core *blocker = &block_fl->c;
1047 int i = 0;
1048
1049 lockdep_assert_held(&blocked_lock_lock);
1050
1051 /*
1052 * This deadlock detector can't reasonably detect deadlocks with
1053 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1054 */
1055 if (caller->flc_flags & FL_OFDLCK)
1056 return false;
1057
1058 while ((blocker = what_owner_is_waiting_for(blocker))) {
1059 if (i++ > MAX_DEADLK_ITERATIONS)
1060 return false;
1061 if (posix_same_owner(caller, blocker))
1062 return true;
1063 }
1064 return false;
1065 }
1066
1067 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1068 * after any leases, but before any posix locks.
1069 *
1070 * Note that if called with an FL_EXISTS argument, the caller may determine
1071 * whether or not a lock was successfully freed by testing the return
1072 * value for -ENOENT.
1073 */
flock_lock_inode(struct inode * inode,struct file_lock * request)1074 static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1075 {
1076 struct file_lock *new_fl = NULL;
1077 struct file_lock *fl;
1078 struct file_lock_context *ctx;
1079 int error = 0;
1080 bool found = false;
1081 LIST_HEAD(dispose);
1082
1083 ctx = locks_get_lock_context(inode, request->c.flc_type);
1084 if (!ctx) {
1085 if (request->c.flc_type != F_UNLCK)
1086 return -ENOMEM;
1087 return (request->c.flc_flags & FL_EXISTS) ? -ENOENT : 0;
1088 }
1089
1090 if (!(request->c.flc_flags & FL_ACCESS) && (request->c.flc_type != F_UNLCK)) {
1091 new_fl = locks_alloc_lock();
1092 if (!new_fl)
1093 return -ENOMEM;
1094 }
1095
1096 percpu_down_read(&file_rwsem);
1097 spin_lock(&ctx->flc_lock);
1098 if (request->c.flc_flags & FL_ACCESS)
1099 goto find_conflict;
1100
1101 list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) {
1102 if (request->c.flc_file != fl->c.flc_file)
1103 continue;
1104 if (request->c.flc_type == fl->c.flc_type)
1105 goto out;
1106 found = true;
1107 locks_delete_lock_ctx(&fl->c, &dispose);
1108 break;
1109 }
1110
1111 if (lock_is_unlock(request)) {
1112 if ((request->c.flc_flags & FL_EXISTS) && !found)
1113 error = -ENOENT;
1114 goto out;
1115 }
1116
1117 find_conflict:
1118 list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) {
1119 if (!flock_locks_conflict(&request->c, &fl->c))
1120 continue;
1121 error = -EAGAIN;
1122 if (!(request->c.flc_flags & FL_SLEEP))
1123 goto out;
1124 error = FILE_LOCK_DEFERRED;
1125 locks_insert_block(&fl->c, &request->c, flock_locks_conflict);
1126 goto out;
1127 }
1128 if (request->c.flc_flags & FL_ACCESS)
1129 goto out;
1130 locks_copy_lock(new_fl, request);
1131 locks_move_blocks(new_fl, request);
1132 locks_insert_lock_ctx(&new_fl->c, &ctx->flc_flock);
1133 new_fl = NULL;
1134 error = 0;
1135
1136 out:
1137 spin_unlock(&ctx->flc_lock);
1138 percpu_up_read(&file_rwsem);
1139 if (new_fl)
1140 locks_free_lock(new_fl);
1141 locks_dispose_list(&dispose);
1142 trace_flock_lock_inode(inode, request, error);
1143 return error;
1144 }
1145
posix_lock_inode(struct inode * inode,struct file_lock * request,struct file_lock * conflock)1146 static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1147 struct file_lock *conflock)
1148 {
1149 struct file_lock *fl, *tmp;
1150 struct file_lock *new_fl = NULL;
1151 struct file_lock *new_fl2 = NULL;
1152 struct file_lock *left = NULL;
1153 struct file_lock *right = NULL;
1154 struct file_lock_context *ctx;
1155 int error;
1156 bool added = false;
1157 LIST_HEAD(dispose);
1158 void *owner;
1159 void (*func)(void);
1160
1161 ctx = locks_get_lock_context(inode, request->c.flc_type);
1162 if (!ctx)
1163 return lock_is_unlock(request) ? 0 : -ENOMEM;
1164
1165 /*
1166 * We may need two file_lock structures for this operation,
1167 * so we get them in advance to avoid races.
1168 *
1169 * In some cases we can be sure, that no new locks will be needed
1170 */
1171 if (!(request->c.flc_flags & FL_ACCESS) &&
1172 (request->c.flc_type != F_UNLCK ||
1173 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1174 new_fl = locks_alloc_lock();
1175 new_fl2 = locks_alloc_lock();
1176 }
1177
1178 retry:
1179 percpu_down_read(&file_rwsem);
1180 spin_lock(&ctx->flc_lock);
1181 /*
1182 * New lock request. Walk all POSIX locks and look for conflicts. If
1183 * there are any, either return error or put the request on the
1184 * blocker's list of waiters and the global blocked_hash.
1185 */
1186 if (request->c.flc_type != F_UNLCK) {
1187 list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) {
1188 if (!posix_locks_conflict(&request->c, &fl->c))
1189 continue;
1190 if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable
1191 && (*fl->fl_lmops->lm_lock_expirable)(fl)) {
1192 owner = fl->fl_lmops->lm_mod_owner;
1193 func = fl->fl_lmops->lm_expire_lock;
1194 __module_get(owner);
1195 spin_unlock(&ctx->flc_lock);
1196 percpu_up_read(&file_rwsem);
1197 (*func)();
1198 module_put(owner);
1199 goto retry;
1200 }
1201 if (conflock)
1202 locks_copy_conflock(conflock, fl);
1203 error = -EAGAIN;
1204 if (!(request->c.flc_flags & FL_SLEEP))
1205 goto out;
1206 /*
1207 * Deadlock detection and insertion into the blocked
1208 * locks list must be done while holding the same lock!
1209 */
1210 error = -EDEADLK;
1211 spin_lock(&blocked_lock_lock);
1212 /*
1213 * Ensure that we don't find any locks blocked on this
1214 * request during deadlock detection.
1215 */
1216 __locks_wake_up_blocks(&request->c);
1217 if (likely(!posix_locks_deadlock(request, fl))) {
1218 error = FILE_LOCK_DEFERRED;
1219 __locks_insert_block(&fl->c, &request->c,
1220 posix_locks_conflict);
1221 }
1222 spin_unlock(&blocked_lock_lock);
1223 goto out;
1224 }
1225 }
1226
1227 /* If we're just looking for a conflict, we're done. */
1228 error = 0;
1229 if (request->c.flc_flags & FL_ACCESS)
1230 goto out;
1231
1232 /* Find the first old lock with the same owner as the new lock */
1233 list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) {
1234 if (posix_same_owner(&request->c, &fl->c))
1235 break;
1236 }
1237
1238 /* Process locks with this owner. */
1239 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, c.flc_list) {
1240 if (!posix_same_owner(&request->c, &fl->c))
1241 break;
1242
1243 /* Detect adjacent or overlapping regions (if same lock type) */
1244 if (request->c.flc_type == fl->c.flc_type) {
1245 /* In all comparisons of start vs end, use
1246 * "start - 1" rather than "end + 1". If end
1247 * is OFFSET_MAX, end + 1 will become negative.
1248 */
1249 if (fl->fl_end < request->fl_start - 1)
1250 continue;
1251 /* If the next lock in the list has entirely bigger
1252 * addresses than the new one, insert the lock here.
1253 */
1254 if (fl->fl_start - 1 > request->fl_end)
1255 break;
1256
1257 /* If we come here, the new and old lock are of the
1258 * same type and adjacent or overlapping. Make one
1259 * lock yielding from the lower start address of both
1260 * locks to the higher end address.
1261 */
1262 if (fl->fl_start > request->fl_start)
1263 fl->fl_start = request->fl_start;
1264 else
1265 request->fl_start = fl->fl_start;
1266 if (fl->fl_end < request->fl_end)
1267 fl->fl_end = request->fl_end;
1268 else
1269 request->fl_end = fl->fl_end;
1270 if (added) {
1271 locks_delete_lock_ctx(&fl->c, &dispose);
1272 continue;
1273 }
1274 request = fl;
1275 added = true;
1276 } else {
1277 /* Processing for different lock types is a bit
1278 * more complex.
1279 */
1280 if (fl->fl_end < request->fl_start)
1281 continue;
1282 if (fl->fl_start > request->fl_end)
1283 break;
1284 if (lock_is_unlock(request))
1285 added = true;
1286 if (fl->fl_start < request->fl_start)
1287 left = fl;
1288 /* If the next lock in the list has a higher end
1289 * address than the new one, insert the new one here.
1290 */
1291 if (fl->fl_end > request->fl_end) {
1292 right = fl;
1293 break;
1294 }
1295 if (fl->fl_start >= request->fl_start) {
1296 /* The new lock completely replaces an old
1297 * one (This may happen several times).
1298 */
1299 if (added) {
1300 locks_delete_lock_ctx(&fl->c, &dispose);
1301 continue;
1302 }
1303 /*
1304 * Replace the old lock with new_fl, and
1305 * remove the old one. It's safe to do the
1306 * insert here since we know that we won't be
1307 * using new_fl later, and that the lock is
1308 * just replacing an existing lock.
1309 */
1310 error = -ENOLCK;
1311 if (!new_fl)
1312 goto out;
1313 locks_copy_lock(new_fl, request);
1314 locks_move_blocks(new_fl, request);
1315 request = new_fl;
1316 new_fl = NULL;
1317 locks_insert_lock_ctx(&request->c,
1318 &fl->c.flc_list);
1319 locks_delete_lock_ctx(&fl->c, &dispose);
1320 added = true;
1321 }
1322 }
1323 }
1324
1325 /*
1326 * The above code only modifies existing locks in case of merging or
1327 * replacing. If new lock(s) need to be inserted all modifications are
1328 * done below this, so it's safe yet to bail out.
1329 */
1330 error = -ENOLCK; /* "no luck" */
1331 if (right && left == right && !new_fl2)
1332 goto out;
1333
1334 error = 0;
1335 if (!added) {
1336 if (lock_is_unlock(request)) {
1337 if (request->c.flc_flags & FL_EXISTS)
1338 error = -ENOENT;
1339 goto out;
1340 }
1341
1342 if (!new_fl) {
1343 error = -ENOLCK;
1344 goto out;
1345 }
1346 locks_copy_lock(new_fl, request);
1347 locks_move_blocks(new_fl, request);
1348 locks_insert_lock_ctx(&new_fl->c, &fl->c.flc_list);
1349 fl = new_fl;
1350 new_fl = NULL;
1351 }
1352 if (right) {
1353 if (left == right) {
1354 /* The new lock breaks the old one in two pieces,
1355 * so we have to use the second new lock.
1356 */
1357 left = new_fl2;
1358 new_fl2 = NULL;
1359 locks_copy_lock(left, right);
1360 locks_insert_lock_ctx(&left->c, &fl->c.flc_list);
1361 }
1362 right->fl_start = request->fl_end + 1;
1363 locks_wake_up_blocks(&right->c);
1364 }
1365 if (left) {
1366 left->fl_end = request->fl_start - 1;
1367 locks_wake_up_blocks(&left->c);
1368 }
1369 out:
1370 trace_posix_lock_inode(inode, request, error);
1371 spin_unlock(&ctx->flc_lock);
1372 percpu_up_read(&file_rwsem);
1373 /*
1374 * Free any unused locks.
1375 */
1376 if (new_fl)
1377 locks_free_lock(new_fl);
1378 if (new_fl2)
1379 locks_free_lock(new_fl2);
1380 locks_dispose_list(&dispose);
1381
1382 return error;
1383 }
1384
1385 /**
1386 * posix_lock_file - Apply a POSIX-style lock to a file
1387 * @filp: The file to apply the lock to
1388 * @fl: The lock to be applied
1389 * @conflock: Place to return a copy of the conflicting lock, if found.
1390 *
1391 * Add a POSIX style lock to a file.
1392 * We merge adjacent & overlapping locks whenever possible.
1393 * POSIX locks are sorted by owner task, then by starting address
1394 *
1395 * Note that if called with an FL_EXISTS argument, the caller may determine
1396 * whether or not a lock was successfully freed by testing the return
1397 * value for -ENOENT.
1398 */
posix_lock_file(struct file * filp,struct file_lock * fl,struct file_lock * conflock)1399 int posix_lock_file(struct file *filp, struct file_lock *fl,
1400 struct file_lock *conflock)
1401 {
1402 return posix_lock_inode(file_inode(filp), fl, conflock);
1403 }
1404 EXPORT_SYMBOL(posix_lock_file);
1405
1406 /**
1407 * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1408 * @inode: inode of file to which lock request should be applied
1409 * @fl: The lock to be applied
1410 *
1411 * Apply a POSIX style lock request to an inode.
1412 */
posix_lock_inode_wait(struct inode * inode,struct file_lock * fl)1413 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1414 {
1415 int error;
1416 might_sleep ();
1417 for (;;) {
1418 error = posix_lock_inode(inode, fl, NULL);
1419 if (error != FILE_LOCK_DEFERRED)
1420 break;
1421 error = wait_event_interruptible(fl->c.flc_wait,
1422 list_empty(&fl->c.flc_blocked_member));
1423 if (error)
1424 break;
1425 }
1426 locks_delete_block(fl);
1427 return error;
1428 }
1429
lease_clear_pending(struct file_lease * fl,int arg)1430 static void lease_clear_pending(struct file_lease *fl, int arg)
1431 {
1432 switch (arg) {
1433 case F_UNLCK:
1434 fl->c.flc_flags &= ~FL_UNLOCK_PENDING;
1435 fallthrough;
1436 case F_RDLCK:
1437 fl->c.flc_flags &= ~FL_DOWNGRADE_PENDING;
1438 }
1439 }
1440
1441 /* We already had a lease on this file; just change its type */
lease_modify(struct file_lease * fl,int arg,struct list_head * dispose)1442 int lease_modify(struct file_lease *fl, int arg, struct list_head *dispose)
1443 {
1444 int error = assign_type(&fl->c, arg);
1445
1446 if (error)
1447 return error;
1448 lease_clear_pending(fl, arg);
1449 locks_wake_up_blocks(&fl->c);
1450 if (arg == F_UNLCK) {
1451 struct file *filp = fl->c.flc_file;
1452
1453 f_delown(filp);
1454 file_f_owner(filp)->signum = 0;
1455 fasync_helper(0, fl->c.flc_file, 0, &fl->fl_fasync);
1456 if (fl->fl_fasync != NULL) {
1457 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1458 fl->fl_fasync = NULL;
1459 }
1460 locks_delete_lock_ctx(&fl->c, dispose);
1461 }
1462 return 0;
1463 }
1464 EXPORT_SYMBOL(lease_modify);
1465
past_time(unsigned long then)1466 static bool past_time(unsigned long then)
1467 {
1468 if (!then)
1469 /* 0 is a special value meaning "this never expires": */
1470 return false;
1471 return time_after(jiffies, then);
1472 }
1473
time_out_leases(struct inode * inode,struct list_head * dispose)1474 static void time_out_leases(struct inode *inode, struct list_head *dispose)
1475 {
1476 struct file_lock_context *ctx = inode->i_flctx;
1477 struct file_lease *fl, *tmp;
1478
1479 lockdep_assert_held(&ctx->flc_lock);
1480
1481 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) {
1482 trace_time_out_leases(inode, fl);
1483 if (past_time(fl->fl_downgrade_time))
1484 lease_modify(fl, F_RDLCK, dispose);
1485 if (past_time(fl->fl_break_time))
1486 lease_modify(fl, F_UNLCK, dispose);
1487 }
1488 }
1489
leases_conflict(struct file_lock_core * lc,struct file_lock_core * bc)1490 static bool leases_conflict(struct file_lock_core *lc, struct file_lock_core *bc)
1491 {
1492 bool rc;
1493 struct file_lease *lease = file_lease(lc);
1494 struct file_lease *breaker = file_lease(bc);
1495
1496 if (lease->fl_lmops->lm_breaker_owns_lease
1497 && lease->fl_lmops->lm_breaker_owns_lease(lease))
1498 return false;
1499 if ((bc->flc_flags & FL_LAYOUT) != (lc->flc_flags & FL_LAYOUT)) {
1500 rc = false;
1501 goto trace;
1502 }
1503 if ((bc->flc_flags & FL_DELEG) && (lc->flc_flags & FL_LEASE)) {
1504 rc = false;
1505 goto trace;
1506 }
1507
1508 rc = locks_conflict(bc, lc);
1509 trace:
1510 trace_leases_conflict(rc, lease, breaker);
1511 return rc;
1512 }
1513
1514 static bool
any_leases_conflict(struct inode * inode,struct file_lease * breaker)1515 any_leases_conflict(struct inode *inode, struct file_lease *breaker)
1516 {
1517 struct file_lock_context *ctx = inode->i_flctx;
1518 struct file_lock_core *flc;
1519
1520 lockdep_assert_held(&ctx->flc_lock);
1521
1522 list_for_each_entry(flc, &ctx->flc_lease, flc_list) {
1523 if (leases_conflict(flc, &breaker->c))
1524 return true;
1525 }
1526 return false;
1527 }
1528
1529 /**
1530 * __break_lease - revoke all outstanding leases on file
1531 * @inode: the inode of the file to return
1532 * @flags: LEASE_BREAK_* flags
1533 *
1534 * break_lease (inlined for speed) has checked there already is at least
1535 * some kind of lock (maybe a lease) on this file. Leases are broken on
1536 * a call to open() or truncate(). This function can block waiting for the
1537 * lease break unless you specify LEASE_BREAK_NONBLOCK.
1538 */
__break_lease(struct inode * inode,unsigned int flags)1539 int __break_lease(struct inode *inode, unsigned int flags)
1540 {
1541 struct file_lease *new_fl, *fl, *tmp;
1542 struct file_lock_context *ctx;
1543 unsigned long break_time;
1544 unsigned int type;
1545 LIST_HEAD(dispose);
1546 bool want_write = !(flags & LEASE_BREAK_OPEN_RDONLY);
1547 int error = 0;
1548
1549 if (flags & LEASE_BREAK_LEASE)
1550 type = FL_LEASE;
1551 else if (flags & LEASE_BREAK_DELEG)
1552 type = FL_DELEG;
1553 else if (flags & LEASE_BREAK_LAYOUT)
1554 type = FL_LAYOUT;
1555 else
1556 return -EINVAL;
1557
1558 new_fl = lease_alloc(NULL, type, want_write ? F_WRLCK : F_RDLCK);
1559 if (IS_ERR(new_fl))
1560 return PTR_ERR(new_fl);
1561
1562 /* typically we will check that ctx is non-NULL before calling */
1563 ctx = locks_inode_context(inode);
1564 if (!ctx) {
1565 WARN_ON_ONCE(1);
1566 goto free_lock;
1567 }
1568
1569 percpu_down_read(&file_rwsem);
1570 spin_lock(&ctx->flc_lock);
1571
1572 time_out_leases(inode, &dispose);
1573
1574 if (!any_leases_conflict(inode, new_fl))
1575 goto out;
1576
1577 break_time = 0;
1578 if (lease_break_time > 0) {
1579 break_time = jiffies + lease_break_time * HZ;
1580 if (break_time == 0)
1581 break_time++; /* so that 0 means no break time */
1582 }
1583
1584 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) {
1585 if (!leases_conflict(&fl->c, &new_fl->c))
1586 continue;
1587 if (want_write) {
1588 if (fl->c.flc_flags & FL_UNLOCK_PENDING)
1589 continue;
1590 fl->c.flc_flags |= FL_UNLOCK_PENDING;
1591 fl->fl_break_time = break_time;
1592 } else {
1593 if (lease_breaking(fl))
1594 continue;
1595 fl->c.flc_flags |= FL_DOWNGRADE_PENDING;
1596 fl->fl_downgrade_time = break_time;
1597 }
1598 if (fl->fl_lmops->lm_break(fl))
1599 locks_delete_lock_ctx(&fl->c, &dispose);
1600 }
1601
1602 if (list_empty(&ctx->flc_lease))
1603 goto out;
1604
1605 if (flags & LEASE_BREAK_NONBLOCK) {
1606 trace_break_lease_noblock(inode, new_fl);
1607 error = -EWOULDBLOCK;
1608 goto out;
1609 }
1610
1611 restart:
1612 fl = list_first_entry(&ctx->flc_lease, struct file_lease, c.flc_list);
1613 break_time = fl->fl_break_time;
1614 if (break_time != 0)
1615 break_time -= jiffies;
1616 if (break_time == 0)
1617 break_time++;
1618 locks_insert_block(&fl->c, &new_fl->c, leases_conflict);
1619 trace_break_lease_block(inode, new_fl);
1620 spin_unlock(&ctx->flc_lock);
1621 percpu_up_read(&file_rwsem);
1622
1623 locks_dispose_list(&dispose);
1624 error = wait_event_interruptible_timeout(new_fl->c.flc_wait,
1625 list_empty(&new_fl->c.flc_blocked_member),
1626 break_time);
1627
1628 percpu_down_read(&file_rwsem);
1629 spin_lock(&ctx->flc_lock);
1630 trace_break_lease_unblock(inode, new_fl);
1631 __locks_delete_block(&new_fl->c);
1632 if (error >= 0) {
1633 /*
1634 * Wait for the next conflicting lease that has not been
1635 * broken yet
1636 */
1637 if (error == 0)
1638 time_out_leases(inode, &dispose);
1639 if (any_leases_conflict(inode, new_fl))
1640 goto restart;
1641 error = 0;
1642 }
1643 out:
1644 spin_unlock(&ctx->flc_lock);
1645 percpu_up_read(&file_rwsem);
1646 locks_dispose_list(&dispose);
1647 free_lock:
1648 locks_free_lease(new_fl);
1649 return error;
1650 }
1651 EXPORT_SYMBOL(__break_lease);
1652
1653 /**
1654 * lease_get_mtime - update modified time of an inode with exclusive lease
1655 * @inode: the inode
1656 * @time: pointer to a timespec which contains the last modified time
1657 *
1658 * This is to force NFS clients to flush their caches for files with
1659 * exclusive leases. The justification is that if someone has an
1660 * exclusive lease, then they could be modifying it.
1661 */
lease_get_mtime(struct inode * inode,struct timespec64 * time)1662 void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1663 {
1664 bool has_lease = false;
1665 struct file_lock_context *ctx;
1666 struct file_lock_core *flc;
1667
1668 ctx = locks_inode_context(inode);
1669 if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1670 spin_lock(&ctx->flc_lock);
1671 flc = list_first_entry_or_null(&ctx->flc_lease,
1672 struct file_lock_core, flc_list);
1673 if (flc && flc->flc_type == F_WRLCK)
1674 has_lease = true;
1675 spin_unlock(&ctx->flc_lock);
1676 }
1677
1678 if (has_lease)
1679 *time = current_time(inode);
1680 }
1681 EXPORT_SYMBOL(lease_get_mtime);
1682
1683 /**
1684 * __fcntl_getlease - Enquire what lease is currently active
1685 * @filp: the file
1686 * @flavor: type of lease flags to check
1687 *
1688 * The value returned by this function will be one of
1689 * (if no lease break is pending):
1690 *
1691 * %F_RDLCK to indicate a shared lease is held.
1692 *
1693 * %F_WRLCK to indicate an exclusive lease is held.
1694 *
1695 * %F_UNLCK to indicate no lease is held.
1696 *
1697 * (if a lease break is pending):
1698 *
1699 * %F_RDLCK to indicate an exclusive lease needs to be
1700 * changed to a shared lease (or removed).
1701 *
1702 * %F_UNLCK to indicate the lease needs to be removed.
1703 *
1704 * XXX: sfr & willy disagree over whether F_INPROGRESS
1705 * should be returned to userspace.
1706 */
__fcntl_getlease(struct file * filp,unsigned int flavor)1707 static int __fcntl_getlease(struct file *filp, unsigned int flavor)
1708 {
1709 struct file_lease *fl;
1710 struct inode *inode = file_inode(filp);
1711 struct file_lock_context *ctx;
1712 int type = F_UNLCK;
1713 LIST_HEAD(dispose);
1714
1715 ctx = locks_inode_context(inode);
1716 if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1717 percpu_down_read(&file_rwsem);
1718 spin_lock(&ctx->flc_lock);
1719 time_out_leases(inode, &dispose);
1720 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) {
1721 if (fl->c.flc_file != filp)
1722 continue;
1723 if (fl->c.flc_flags & flavor)
1724 type = target_leasetype(fl);
1725 break;
1726 }
1727 spin_unlock(&ctx->flc_lock);
1728 percpu_up_read(&file_rwsem);
1729
1730 locks_dispose_list(&dispose);
1731 }
1732 return type;
1733 }
1734
fcntl_getlease(struct file * filp)1735 int fcntl_getlease(struct file *filp)
1736 {
1737 return __fcntl_getlease(filp, FL_LEASE);
1738 }
1739
fcntl_getdeleg(struct file * filp,struct delegation * deleg)1740 int fcntl_getdeleg(struct file *filp, struct delegation *deleg)
1741 {
1742 if (deleg->d_flags != 0 || deleg->__pad != 0)
1743 return -EINVAL;
1744 deleg->d_type = __fcntl_getlease(filp, FL_DELEG);
1745 return 0;
1746 }
1747
1748 /**
1749 * check_conflicting_open - see if the given file points to an inode that has
1750 * an existing open that would conflict with the
1751 * desired lease.
1752 * @filp: file to check
1753 * @arg: type of lease that we're trying to acquire
1754 * @flags: current lock flags
1755 *
1756 * Check to see if there's an existing open fd on this file that would
1757 * conflict with the lease we're trying to set.
1758 */
1759 static int
check_conflicting_open(struct file * filp,const int arg,int flags)1760 check_conflicting_open(struct file *filp, const int arg, int flags)
1761 {
1762 struct inode *inode = file_inode(filp);
1763 int self_wcount = 0, self_rcount = 0;
1764
1765 if (flags & FL_LAYOUT)
1766 return 0;
1767 if (flags & FL_DELEG)
1768 /* We leave these checks to the caller */
1769 return 0;
1770
1771 if (arg == F_RDLCK)
1772 return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1773 else if (arg != F_WRLCK)
1774 return 0;
1775
1776 /*
1777 * Make sure that only read/write count is from lease requestor.
1778 * Note that this will result in denying write leases when i_writecount
1779 * is negative, which is what we want. (We shouldn't grant write leases
1780 * on files open for execution.)
1781 */
1782 if (filp->f_mode & FMODE_WRITE)
1783 self_wcount = 1;
1784 else if (filp->f_mode & FMODE_READ)
1785 self_rcount = 1;
1786
1787 if (atomic_read(&inode->i_writecount) != self_wcount ||
1788 atomic_read(&inode->i_readcount) != self_rcount)
1789 return -EAGAIN;
1790
1791 return 0;
1792 }
1793
1794 static int
generic_add_lease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1795 generic_add_lease(struct file *filp, int arg, struct file_lease **flp, void **priv)
1796 {
1797 struct file_lease *fl, *my_fl = NULL, *lease;
1798 struct inode *inode = file_inode(filp);
1799 struct file_lock_context *ctx;
1800 bool is_deleg = (*flp)->c.flc_flags & FL_DELEG;
1801 int error;
1802 LIST_HEAD(dispose);
1803
1804 lease = *flp;
1805 trace_generic_add_lease(inode, lease);
1806
1807 error = file_f_owner_allocate(filp);
1808 if (error)
1809 return error;
1810
1811 /* Note that arg is never F_UNLCK here */
1812 ctx = locks_get_lock_context(inode, arg);
1813 if (!ctx)
1814 return -ENOMEM;
1815
1816 /*
1817 * In the delegation case we need mutual exclusion with
1818 * a number of operations that take the i_rwsem. We trylock
1819 * because delegations are an optional optimization, and if
1820 * there's some chance of a conflict--we'd rather not
1821 * bother, maybe that's a sign this just isn't a good file to
1822 * hand out a delegation on.
1823 */
1824 if (is_deleg && !inode_trylock(inode))
1825 return -EAGAIN;
1826
1827 percpu_down_read(&file_rwsem);
1828 spin_lock(&ctx->flc_lock);
1829 time_out_leases(inode, &dispose);
1830 error = check_conflicting_open(filp, arg, lease->c.flc_flags);
1831 if (error)
1832 goto out;
1833
1834 /*
1835 * At this point, we know that if there is an exclusive
1836 * lease on this file, then we hold it on this filp
1837 * (otherwise our open of this file would have blocked).
1838 * And if we are trying to acquire an exclusive lease,
1839 * then the file is not open by anyone (including us)
1840 * except for this filp.
1841 */
1842 error = -EAGAIN;
1843 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) {
1844 if (fl->c.flc_file == filp &&
1845 fl->c.flc_owner == lease->c.flc_owner) {
1846 my_fl = fl;
1847 continue;
1848 }
1849
1850 /*
1851 * No exclusive leases if someone else has a lease on
1852 * this file:
1853 */
1854 if (arg == F_WRLCK)
1855 goto out;
1856 /*
1857 * Modifying our existing lease is OK, but no getting a
1858 * new lease if someone else is opening for write:
1859 */
1860 if (fl->c.flc_flags & FL_UNLOCK_PENDING)
1861 goto out;
1862 }
1863
1864 if (my_fl != NULL) {
1865 lease = my_fl;
1866 error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1867 if (error)
1868 goto out;
1869 goto out_setup;
1870 }
1871
1872 error = -EINVAL;
1873 if (!leases_enable)
1874 goto out;
1875
1876 locks_insert_lock_ctx(&lease->c, &ctx->flc_lease);
1877 /*
1878 * The check in break_lease() is lockless. It's possible for another
1879 * open to race in after we did the earlier check for a conflicting
1880 * open but before the lease was inserted. Check again for a
1881 * conflicting open and cancel the lease if there is one.
1882 *
1883 * We also add a barrier here to ensure that the insertion of the lock
1884 * precedes these checks.
1885 */
1886 smp_mb();
1887 error = check_conflicting_open(filp, arg, lease->c.flc_flags);
1888 if (error) {
1889 locks_unlink_lock_ctx(&lease->c);
1890 goto out;
1891 }
1892
1893 out_setup:
1894 if (lease->fl_lmops->lm_setup)
1895 lease->fl_lmops->lm_setup(lease, priv);
1896 out:
1897 spin_unlock(&ctx->flc_lock);
1898 percpu_up_read(&file_rwsem);
1899 locks_dispose_list(&dispose);
1900 if (is_deleg)
1901 inode_unlock(inode);
1902 if (!error && !my_fl)
1903 *flp = NULL;
1904 return error;
1905 }
1906
generic_delete_lease(struct file * filp,void * owner)1907 static int generic_delete_lease(struct file *filp, void *owner)
1908 {
1909 int error = -EAGAIN;
1910 struct file_lease *fl, *victim = NULL;
1911 struct inode *inode = file_inode(filp);
1912 struct file_lock_context *ctx;
1913 LIST_HEAD(dispose);
1914
1915 ctx = locks_inode_context(inode);
1916 if (!ctx) {
1917 trace_generic_delete_lease(inode, NULL);
1918 return error;
1919 }
1920
1921 percpu_down_read(&file_rwsem);
1922 spin_lock(&ctx->flc_lock);
1923 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) {
1924 if (fl->c.flc_file == filp &&
1925 fl->c.flc_owner == owner) {
1926 victim = fl;
1927 break;
1928 }
1929 }
1930 trace_generic_delete_lease(inode, victim);
1931 if (victim)
1932 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1933 spin_unlock(&ctx->flc_lock);
1934 percpu_up_read(&file_rwsem);
1935 locks_dispose_list(&dispose);
1936 return error;
1937 }
1938
1939 /**
1940 * generic_setlease - sets a lease on an open file
1941 * @filp: file pointer
1942 * @arg: type of lease to obtain
1943 * @flp: input - file_lock to use, output - file_lock inserted
1944 * @priv: private data for lm_setup (may be NULL if lm_setup
1945 * doesn't require it)
1946 *
1947 * The (input) flp->fl_lmops->lm_break function is required
1948 * by break_lease().
1949 */
generic_setlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1950 int generic_setlease(struct file *filp, int arg, struct file_lease **flp,
1951 void **priv)
1952 {
1953 struct inode *inode = file_inode(filp);
1954
1955 if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
1956 return -EINVAL;
1957
1958 switch (arg) {
1959 case F_UNLCK:
1960 return generic_delete_lease(filp, *priv);
1961 case F_WRLCK:
1962 if (S_ISDIR(inode->i_mode))
1963 return -EINVAL;
1964 fallthrough;
1965 case F_RDLCK:
1966 if (!(*flp)->fl_lmops->lm_break) {
1967 WARN_ON_ONCE(1);
1968 return -ENOLCK;
1969 }
1970
1971 return generic_add_lease(filp, arg, flp, priv);
1972 default:
1973 return -EINVAL;
1974 }
1975 }
1976 EXPORT_SYMBOL(generic_setlease);
1977
1978 /*
1979 * Kernel subsystems can register to be notified on any attempt to set
1980 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
1981 * to close files that it may have cached when there is an attempt to set a
1982 * conflicting lease.
1983 */
1984 static struct srcu_notifier_head lease_notifier_chain;
1985
1986 static inline void
lease_notifier_chain_init(void)1987 lease_notifier_chain_init(void)
1988 {
1989 srcu_init_notifier_head(&lease_notifier_chain);
1990 }
1991
1992 static inline void
setlease_notifier(int arg,struct file_lease * lease)1993 setlease_notifier(int arg, struct file_lease *lease)
1994 {
1995 if (arg != F_UNLCK)
1996 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
1997 }
1998
lease_register_notifier(struct notifier_block * nb)1999 int lease_register_notifier(struct notifier_block *nb)
2000 {
2001 return srcu_notifier_chain_register(&lease_notifier_chain, nb);
2002 }
2003 EXPORT_SYMBOL_GPL(lease_register_notifier);
2004
lease_unregister_notifier(struct notifier_block * nb)2005 void lease_unregister_notifier(struct notifier_block *nb)
2006 {
2007 srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
2008 }
2009 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
2010
2011
2012 int
kernel_setlease(struct file * filp,int arg,struct file_lease ** lease,void ** priv)2013 kernel_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv)
2014 {
2015 if (lease)
2016 setlease_notifier(arg, *lease);
2017 if (filp->f_op->setlease)
2018 return filp->f_op->setlease(filp, arg, lease, priv);
2019 else
2020 return generic_setlease(filp, arg, lease, priv);
2021 }
2022 EXPORT_SYMBOL_GPL(kernel_setlease);
2023
2024 /**
2025 * vfs_setlease - sets a lease on an open file
2026 * @filp: file pointer
2027 * @arg: type of lease to obtain
2028 * @lease: file_lock to use when adding a lease
2029 * @priv: private info for lm_setup when adding a lease (may be
2030 * NULL if lm_setup doesn't require it)
2031 *
2032 * Call this to establish a lease on the file. The "lease" argument is not
2033 * used for F_UNLCK requests and may be NULL. For commands that set or alter
2034 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
2035 * set; if not, this function will return -ENOLCK (and generate a scary-looking
2036 * stack trace).
2037 *
2038 * The "priv" pointer is passed directly to the lm_setup function as-is. It
2039 * may be NULL if the lm_setup operation doesn't require it.
2040 */
2041 int
vfs_setlease(struct file * filp,int arg,struct file_lease ** lease,void ** priv)2042 vfs_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv)
2043 {
2044 struct inode *inode = file_inode(filp);
2045 vfsuid_t vfsuid = i_uid_into_vfsuid(file_mnt_idmap(filp), inode);
2046 int error;
2047
2048 if ((!vfsuid_eq_kuid(vfsuid, current_fsuid())) && !capable(CAP_LEASE))
2049 return -EACCES;
2050 error = security_file_lock(filp, arg);
2051 if (error)
2052 return error;
2053 return kernel_setlease(filp, arg, lease, priv);
2054 }
2055 EXPORT_SYMBOL_GPL(vfs_setlease);
2056
do_fcntl_add_lease(unsigned int fd,struct file * filp,unsigned int flavor,int arg)2057 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, unsigned int flavor, int arg)
2058 {
2059 struct file_lease *fl;
2060 struct fasync_struct *new;
2061 int error;
2062
2063 fl = lease_alloc(filp, flavor, arg);
2064 if (IS_ERR(fl))
2065 return PTR_ERR(fl);
2066
2067 new = fasync_alloc();
2068 if (!new) {
2069 locks_free_lease(fl);
2070 return -ENOMEM;
2071 }
2072 new->fa_fd = fd;
2073
2074 error = vfs_setlease(filp, arg, &fl, (void **)&new);
2075 if (fl)
2076 locks_free_lease(fl);
2077 if (new)
2078 fasync_free(new);
2079 return error;
2080 }
2081
2082 /**
2083 * fcntl_setlease - sets a lease on an open file
2084 * @fd: open file descriptor
2085 * @filp: file pointer
2086 * @arg: type of lease to obtain
2087 *
2088 * Call this fcntl to establish a lease on the file.
2089 * Note that you also need to call %F_SETSIG to
2090 * receive a signal when the lease is broken.
2091 */
fcntl_setlease(unsigned int fd,struct file * filp,int arg)2092 int fcntl_setlease(unsigned int fd, struct file *filp, int arg)
2093 {
2094 if (S_ISDIR(file_inode(filp)->i_mode))
2095 return -EINVAL;
2096
2097 if (arg == F_UNLCK)
2098 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2099 return do_fcntl_add_lease(fd, filp, FL_LEASE, arg);
2100 }
2101
2102 /**
2103 * fcntl_setdeleg - sets a delegation on an open file
2104 * @fd: open file descriptor
2105 * @filp: file pointer
2106 * @deleg: delegation request from userland
2107 *
2108 * Call this fcntl to establish a delegation on the file.
2109 * Note that you also need to call %F_SETSIG to
2110 * receive a signal when the lease is broken.
2111 */
fcntl_setdeleg(unsigned int fd,struct file * filp,struct delegation * deleg)2112 int fcntl_setdeleg(unsigned int fd, struct file *filp, struct delegation *deleg)
2113 {
2114 /* For now, no flags are supported */
2115 if (deleg->d_flags != 0 || deleg->__pad != 0)
2116 return -EINVAL;
2117
2118 if (deleg->d_type == F_UNLCK)
2119 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2120 return do_fcntl_add_lease(fd, filp, FL_DELEG, deleg->d_type);
2121 }
2122
2123 /**
2124 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2125 * @inode: inode of the file to apply to
2126 * @fl: The lock to be applied
2127 *
2128 * Apply a FLOCK style lock request to an inode.
2129 */
flock_lock_inode_wait(struct inode * inode,struct file_lock * fl)2130 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2131 {
2132 int error;
2133 might_sleep();
2134 for (;;) {
2135 error = flock_lock_inode(inode, fl);
2136 if (error != FILE_LOCK_DEFERRED)
2137 break;
2138 error = wait_event_interruptible(fl->c.flc_wait,
2139 list_empty(&fl->c.flc_blocked_member));
2140 if (error)
2141 break;
2142 }
2143 locks_delete_block(fl);
2144 return error;
2145 }
2146
2147 /**
2148 * locks_lock_inode_wait - Apply a lock to an inode
2149 * @inode: inode of the file to apply to
2150 * @fl: The lock to be applied
2151 *
2152 * Apply a POSIX or FLOCK style lock request to an inode.
2153 */
locks_lock_inode_wait(struct inode * inode,struct file_lock * fl)2154 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2155 {
2156 int res = 0;
2157 switch (fl->c.flc_flags & (FL_POSIX|FL_FLOCK)) {
2158 case FL_POSIX:
2159 res = posix_lock_inode_wait(inode, fl);
2160 break;
2161 case FL_FLOCK:
2162 res = flock_lock_inode_wait(inode, fl);
2163 break;
2164 default:
2165 BUG();
2166 }
2167 return res;
2168 }
2169 EXPORT_SYMBOL(locks_lock_inode_wait);
2170
2171 /**
2172 * sys_flock: - flock() system call.
2173 * @fd: the file descriptor to lock.
2174 * @cmd: the type of lock to apply.
2175 *
2176 * Apply a %FL_FLOCK style lock to an open file descriptor.
2177 * The @cmd can be one of:
2178 *
2179 * - %LOCK_SH -- a shared lock.
2180 * - %LOCK_EX -- an exclusive lock.
2181 * - %LOCK_UN -- remove an existing lock.
2182 * - %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED)
2183 *
2184 * %LOCK_MAND support has been removed from the kernel.
2185 */
SYSCALL_DEFINE2(flock,unsigned int,fd,unsigned int,cmd)2186 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2187 {
2188 int can_sleep, error, type;
2189 struct file_lock fl;
2190
2191 /*
2192 * LOCK_MAND locks were broken for a long time in that they never
2193 * conflicted with one another and didn't prevent any sort of open,
2194 * read or write activity.
2195 *
2196 * Just ignore these requests now, to preserve legacy behavior, but
2197 * throw a warning to let people know that they don't actually work.
2198 */
2199 if (cmd & LOCK_MAND) {
2200 pr_warn_once("%s(%d): Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n", current->comm, current->pid);
2201 return 0;
2202 }
2203
2204 type = flock_translate_cmd(cmd & ~LOCK_NB);
2205 if (type < 0)
2206 return type;
2207
2208 CLASS(fd, f)(fd);
2209 if (fd_empty(f))
2210 return -EBADF;
2211
2212 if (type != F_UNLCK && !(fd_file(f)->f_mode & (FMODE_READ | FMODE_WRITE)))
2213 return -EBADF;
2214
2215 flock_make_lock(fd_file(f), &fl, type);
2216
2217 error = security_file_lock(fd_file(f), fl.c.flc_type);
2218 if (error)
2219 return error;
2220
2221 can_sleep = !(cmd & LOCK_NB);
2222 if (can_sleep)
2223 fl.c.flc_flags |= FL_SLEEP;
2224
2225 if (fd_file(f)->f_op->flock)
2226 error = fd_file(f)->f_op->flock(fd_file(f),
2227 (can_sleep) ? F_SETLKW : F_SETLK,
2228 &fl);
2229 else
2230 error = locks_lock_file_wait(fd_file(f), &fl);
2231
2232 locks_release_private(&fl);
2233 return error;
2234 }
2235
2236 /**
2237 * vfs_test_lock - test file byte range lock
2238 * @filp: The file to test lock for
2239 * @fl: The byte-range in the file to test; also used to hold result
2240 *
2241 * On entry, @fl does not contain a lock, but identifies a range (fl_start, fl_end)
2242 * in the file (c.flc_file), and an owner (c.flc_owner) for whom existing locks
2243 * should be ignored. c.flc_type and c.flc_flags are ignored.
2244 * Both fl_lmops and fl_ops in @fl must be NULL.
2245 * Returns -ERRNO on failure. Indicates presence of conflicting lock by
2246 * setting fl->fl_type to something other than F_UNLCK.
2247 *
2248 * If vfs_test_lock() does find a lock and return it, the caller must
2249 * use locks_free_lock() or locks_release_private() on the returned lock.
2250 */
vfs_test_lock(struct file * filp,struct file_lock * fl)2251 int vfs_test_lock(struct file *filp, struct file_lock *fl)
2252 {
2253 WARN_ON_ONCE(fl->fl_ops || fl->fl_lmops);
2254 WARN_ON_ONCE(filp != fl->c.flc_file);
2255 if (filp->f_op->lock)
2256 return filp->f_op->lock(filp, F_GETLK, fl);
2257 posix_test_lock(filp, fl);
2258 return 0;
2259 }
2260 EXPORT_SYMBOL_GPL(vfs_test_lock);
2261
2262 /**
2263 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2264 * @fl: The file_lock who's fl_pid should be translated
2265 * @ns: The namespace into which the pid should be translated
2266 *
2267 * Used to translate a fl_pid into a namespace virtual pid number
2268 */
locks_translate_pid(struct file_lock_core * fl,struct pid_namespace * ns)2269 static pid_t locks_translate_pid(struct file_lock_core *fl, struct pid_namespace *ns)
2270 {
2271 pid_t vnr;
2272 struct pid *pid;
2273
2274 if (fl->flc_flags & FL_OFDLCK)
2275 return -1;
2276
2277 /* Remote locks report a negative pid value */
2278 if (fl->flc_pid <= 0)
2279 return fl->flc_pid;
2280
2281 /*
2282 * If the flock owner process is dead and its pid has been already
2283 * freed, the translation below won't work, but we still want to show
2284 * flock owner pid number in init pidns.
2285 */
2286 if (ns == &init_pid_ns)
2287 return (pid_t) fl->flc_pid;
2288
2289 rcu_read_lock();
2290 pid = find_pid_ns(fl->flc_pid, &init_pid_ns);
2291 vnr = pid_nr_ns(pid, ns);
2292 rcu_read_unlock();
2293 return vnr;
2294 }
2295
posix_lock_to_flock(struct flock * flock,struct file_lock * fl)2296 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2297 {
2298 flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current));
2299 #if BITS_PER_LONG == 32
2300 /*
2301 * Make sure we can represent the posix lock via
2302 * legacy 32bit flock.
2303 */
2304 if (fl->fl_start > OFFT_OFFSET_MAX)
2305 return -EOVERFLOW;
2306 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2307 return -EOVERFLOW;
2308 #endif
2309 flock->l_start = fl->fl_start;
2310 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2311 fl->fl_end - fl->fl_start + 1;
2312 flock->l_whence = 0;
2313 flock->l_type = fl->c.flc_type;
2314 return 0;
2315 }
2316
2317 #if BITS_PER_LONG == 32
posix_lock_to_flock64(struct flock64 * flock,struct file_lock * fl)2318 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2319 {
2320 flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current));
2321 flock->l_start = fl->fl_start;
2322 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2323 fl->fl_end - fl->fl_start + 1;
2324 flock->l_whence = 0;
2325 flock->l_type = fl->c.flc_type;
2326 }
2327 #endif
2328
2329 /* Report the first existing lock that would conflict with l.
2330 * This implements the F_GETLK command of fcntl().
2331 */
fcntl_getlk(struct file * filp,unsigned int cmd,struct flock * flock)2332 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2333 {
2334 struct file_lock *fl;
2335 int error;
2336
2337 fl = locks_alloc_lock();
2338 if (fl == NULL)
2339 return -ENOMEM;
2340 error = -EINVAL;
2341 if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK
2342 && flock->l_type != F_WRLCK)
2343 goto out;
2344
2345 error = flock_to_posix_lock(filp, fl, flock);
2346 if (error)
2347 goto out;
2348
2349 if (cmd == F_OFD_GETLK) {
2350 error = -EINVAL;
2351 if (flock->l_pid != 0)
2352 goto out;
2353
2354 fl->c.flc_flags |= FL_OFDLCK;
2355 fl->c.flc_owner = filp;
2356 }
2357
2358 error = vfs_test_lock(filp, fl);
2359 if (error)
2360 goto out;
2361
2362 flock->l_type = fl->c.flc_type;
2363 if (fl->c.flc_type != F_UNLCK) {
2364 error = posix_lock_to_flock(flock, fl);
2365 if (error)
2366 goto out;
2367 }
2368 out:
2369 locks_free_lock(fl);
2370 return error;
2371 }
2372
2373 /**
2374 * vfs_lock_file - file byte range lock
2375 * @filp: The file to apply the lock to
2376 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2377 * @fl: The lock to be applied
2378 * @conf: Place to return a copy of the conflicting lock, if found.
2379 *
2380 * A caller that doesn't care about the conflicting lock may pass NULL
2381 * as the final argument.
2382 *
2383 * If the filesystem defines a private ->lock() method, then @conf will
2384 * be left unchanged; so a caller that cares should initialize it to
2385 * some acceptable default.
2386 *
2387 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2388 * locks, the ->lock() interface may return asynchronously, before the lock has
2389 * been granted or denied by the underlying filesystem, if (and only if)
2390 * lm_grant is set. Additionally FOP_ASYNC_LOCK in file_operations fop_flags
2391 * need to be set.
2392 *
2393 * Callers expecting ->lock() to return asynchronously will only use F_SETLK,
2394 * not F_SETLKW; they will set FL_SLEEP if (and only if) the request is for a
2395 * blocking lock. When ->lock() does return asynchronously, it must return
2396 * FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock request completes.
2397 * If the request is for non-blocking lock the file system should return
2398 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2399 * with the result. If the request timed out the callback routine will return a
2400 * nonzero return code and the file system should release the lock. The file
2401 * system is also responsible to keep a corresponding posix lock when it
2402 * grants a lock so the VFS can find out which locks are locally held and do
2403 * the correct lock cleanup when required.
2404 * The underlying filesystem must not drop the kernel lock or call
2405 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2406 * return code.
2407 */
vfs_lock_file(struct file * filp,unsigned int cmd,struct file_lock * fl,struct file_lock * conf)2408 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2409 {
2410 WARN_ON_ONCE(filp != fl->c.flc_file);
2411 if (filp->f_op->lock)
2412 return filp->f_op->lock(filp, cmd, fl);
2413 else
2414 return posix_lock_file(filp, fl, conf);
2415 }
2416 EXPORT_SYMBOL_GPL(vfs_lock_file);
2417
do_lock_file_wait(struct file * filp,unsigned int cmd,struct file_lock * fl)2418 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2419 struct file_lock *fl)
2420 {
2421 int error;
2422
2423 error = security_file_lock(filp, fl->c.flc_type);
2424 if (error)
2425 return error;
2426
2427 for (;;) {
2428 error = vfs_lock_file(filp, cmd, fl, NULL);
2429 if (error != FILE_LOCK_DEFERRED)
2430 break;
2431 error = wait_event_interruptible(fl->c.flc_wait,
2432 list_empty(&fl->c.flc_blocked_member));
2433 if (error)
2434 break;
2435 }
2436 locks_delete_block(fl);
2437
2438 return error;
2439 }
2440
2441 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2442 static int
check_fmode_for_setlk(struct file_lock * fl)2443 check_fmode_for_setlk(struct file_lock *fl)
2444 {
2445 switch (fl->c.flc_type) {
2446 case F_RDLCK:
2447 if (!(fl->c.flc_file->f_mode & FMODE_READ))
2448 return -EBADF;
2449 break;
2450 case F_WRLCK:
2451 if (!(fl->c.flc_file->f_mode & FMODE_WRITE))
2452 return -EBADF;
2453 }
2454 return 0;
2455 }
2456
2457 /* Apply the lock described by l to an open file descriptor.
2458 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2459 */
fcntl_setlk(unsigned int fd,struct file * filp,unsigned int cmd,struct flock * flock)2460 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2461 struct flock *flock)
2462 {
2463 struct file_lock *file_lock = locks_alloc_lock();
2464 struct inode *inode = file_inode(filp);
2465 struct file *f;
2466 int error;
2467
2468 if (file_lock == NULL)
2469 return -ENOLCK;
2470
2471 error = flock_to_posix_lock(filp, file_lock, flock);
2472 if (error)
2473 goto out;
2474
2475 error = check_fmode_for_setlk(file_lock);
2476 if (error)
2477 goto out;
2478
2479 /*
2480 * If the cmd is requesting file-private locks, then set the
2481 * FL_OFDLCK flag and override the owner.
2482 */
2483 switch (cmd) {
2484 case F_OFD_SETLK:
2485 error = -EINVAL;
2486 if (flock->l_pid != 0)
2487 goto out;
2488
2489 cmd = F_SETLK;
2490 file_lock->c.flc_flags |= FL_OFDLCK;
2491 file_lock->c.flc_owner = filp;
2492 break;
2493 case F_OFD_SETLKW:
2494 error = -EINVAL;
2495 if (flock->l_pid != 0)
2496 goto out;
2497
2498 cmd = F_SETLKW;
2499 file_lock->c.flc_flags |= FL_OFDLCK;
2500 file_lock->c.flc_owner = filp;
2501 fallthrough;
2502 case F_SETLKW:
2503 file_lock->c.flc_flags |= FL_SLEEP;
2504 }
2505
2506 error = do_lock_file_wait(filp, cmd, file_lock);
2507
2508 /*
2509 * Detect close/fcntl races and recover by zapping all POSIX locks
2510 * associated with this file and our files_struct, just like on
2511 * filp_flush(). There is no need to do that when we're
2512 * unlocking though, or for OFD locks.
2513 */
2514 if (!error && file_lock->c.flc_type != F_UNLCK &&
2515 !(file_lock->c.flc_flags & FL_OFDLCK)) {
2516 struct files_struct *files = current->files;
2517 /*
2518 * We need that spin_lock here - it prevents reordering between
2519 * update of i_flctx->flc_posix and check for it done in
2520 * close(). rcu_read_lock() wouldn't do.
2521 */
2522 spin_lock(&files->file_lock);
2523 f = files_lookup_fd_locked(files, fd);
2524 spin_unlock(&files->file_lock);
2525 if (f != filp) {
2526 locks_remove_posix(filp, files);
2527 error = -EBADF;
2528 }
2529 }
2530 out:
2531 trace_fcntl_setlk(inode, file_lock, error);
2532 locks_free_lock(file_lock);
2533 return error;
2534 }
2535
2536 #if BITS_PER_LONG == 32
2537 /* Report the first existing lock that would conflict with l.
2538 * This implements the F_GETLK command of fcntl().
2539 */
fcntl_getlk64(struct file * filp,unsigned int cmd,struct flock64 * flock)2540 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2541 {
2542 struct file_lock *fl;
2543 int error;
2544
2545 fl = locks_alloc_lock();
2546 if (fl == NULL)
2547 return -ENOMEM;
2548
2549 error = -EINVAL;
2550 if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK
2551 && flock->l_type != F_WRLCK)
2552 goto out;
2553
2554 error = flock64_to_posix_lock(filp, fl, flock);
2555 if (error)
2556 goto out;
2557
2558 if (cmd == F_OFD_GETLK) {
2559 error = -EINVAL;
2560 if (flock->l_pid != 0)
2561 goto out;
2562
2563 fl->c.flc_flags |= FL_OFDLCK;
2564 fl->c.flc_owner = filp;
2565 }
2566
2567 error = vfs_test_lock(filp, fl);
2568 if (error)
2569 goto out;
2570
2571 flock->l_type = fl->c.flc_type;
2572 if (fl->c.flc_type != F_UNLCK)
2573 posix_lock_to_flock64(flock, fl);
2574
2575 out:
2576 locks_free_lock(fl);
2577 return error;
2578 }
2579
2580 /* Apply the lock described by l to an open file descriptor.
2581 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2582 */
fcntl_setlk64(unsigned int fd,struct file * filp,unsigned int cmd,struct flock64 * flock)2583 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2584 struct flock64 *flock)
2585 {
2586 struct file_lock *file_lock = locks_alloc_lock();
2587 struct file *f;
2588 int error;
2589
2590 if (file_lock == NULL)
2591 return -ENOLCK;
2592
2593 error = flock64_to_posix_lock(filp, file_lock, flock);
2594 if (error)
2595 goto out;
2596
2597 error = check_fmode_for_setlk(file_lock);
2598 if (error)
2599 goto out;
2600
2601 /*
2602 * If the cmd is requesting file-private locks, then set the
2603 * FL_OFDLCK flag and override the owner.
2604 */
2605 switch (cmd) {
2606 case F_OFD_SETLK:
2607 error = -EINVAL;
2608 if (flock->l_pid != 0)
2609 goto out;
2610
2611 cmd = F_SETLK64;
2612 file_lock->c.flc_flags |= FL_OFDLCK;
2613 file_lock->c.flc_owner = filp;
2614 break;
2615 case F_OFD_SETLKW:
2616 error = -EINVAL;
2617 if (flock->l_pid != 0)
2618 goto out;
2619
2620 cmd = F_SETLKW64;
2621 file_lock->c.flc_flags |= FL_OFDLCK;
2622 file_lock->c.flc_owner = filp;
2623 fallthrough;
2624 case F_SETLKW64:
2625 file_lock->c.flc_flags |= FL_SLEEP;
2626 }
2627
2628 error = do_lock_file_wait(filp, cmd, file_lock);
2629
2630 /*
2631 * Detect close/fcntl races and recover by zapping all POSIX locks
2632 * associated with this file and our files_struct, just like on
2633 * filp_flush(). There is no need to do that when we're
2634 * unlocking though, or for OFD locks.
2635 */
2636 if (!error && file_lock->c.flc_type != F_UNLCK &&
2637 !(file_lock->c.flc_flags & FL_OFDLCK)) {
2638 struct files_struct *files = current->files;
2639 /*
2640 * We need that spin_lock here - it prevents reordering between
2641 * update of i_flctx->flc_posix and check for it done in
2642 * close(). rcu_read_lock() wouldn't do.
2643 */
2644 spin_lock(&files->file_lock);
2645 f = files_lookup_fd_locked(files, fd);
2646 spin_unlock(&files->file_lock);
2647 if (f != filp) {
2648 locks_remove_posix(filp, files);
2649 error = -EBADF;
2650 }
2651 }
2652 out:
2653 locks_free_lock(file_lock);
2654 return error;
2655 }
2656 #endif /* BITS_PER_LONG == 32 */
2657
2658 /*
2659 * This function is called when the file is being removed
2660 * from the task's fd array. POSIX locks belonging to this task
2661 * are deleted at this time.
2662 */
locks_remove_posix(struct file * filp,fl_owner_t owner)2663 void locks_remove_posix(struct file *filp, fl_owner_t owner)
2664 {
2665 int error;
2666 struct inode *inode = file_inode(filp);
2667 struct file_lock lock;
2668 struct file_lock_context *ctx;
2669
2670 /*
2671 * If there are no locks held on this file, we don't need to call
2672 * posix_lock_file(). Another process could be setting a lock on this
2673 * file at the same time, but we wouldn't remove that lock anyway.
2674 */
2675 ctx = locks_inode_context(inode);
2676 if (!ctx || list_empty(&ctx->flc_posix))
2677 return;
2678
2679 locks_init_lock(&lock);
2680 lock.c.flc_type = F_UNLCK;
2681 lock.c.flc_flags = FL_POSIX | FL_CLOSE;
2682 lock.fl_start = 0;
2683 lock.fl_end = OFFSET_MAX;
2684 lock.c.flc_owner = owner;
2685 lock.c.flc_pid = current->tgid;
2686 lock.c.flc_file = filp;
2687 lock.fl_ops = NULL;
2688 lock.fl_lmops = NULL;
2689
2690 error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2691
2692 if (lock.fl_ops && lock.fl_ops->fl_release_private)
2693 lock.fl_ops->fl_release_private(&lock);
2694 trace_locks_remove_posix(inode, &lock, error);
2695 }
2696 EXPORT_SYMBOL(locks_remove_posix);
2697
2698 /* The i_flctx must be valid when calling into here */
2699 static void
locks_remove_flock(struct file * filp,struct file_lock_context * flctx)2700 locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2701 {
2702 struct file_lock fl;
2703 struct inode *inode = file_inode(filp);
2704
2705 if (list_empty(&flctx->flc_flock))
2706 return;
2707
2708 flock_make_lock(filp, &fl, F_UNLCK);
2709 fl.c.flc_flags |= FL_CLOSE;
2710
2711 if (filp->f_op->flock)
2712 filp->f_op->flock(filp, F_SETLKW, &fl);
2713 else
2714 flock_lock_inode(inode, &fl);
2715
2716 if (fl.fl_ops && fl.fl_ops->fl_release_private)
2717 fl.fl_ops->fl_release_private(&fl);
2718 }
2719
2720 /* The i_flctx must be valid when calling into here */
2721 static void
locks_remove_lease(struct file * filp,struct file_lock_context * ctx)2722 locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2723 {
2724 struct file_lease *fl, *tmp;
2725 LIST_HEAD(dispose);
2726
2727 if (list_empty(&ctx->flc_lease))
2728 return;
2729
2730 percpu_down_read(&file_rwsem);
2731 spin_lock(&ctx->flc_lock);
2732 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list)
2733 if (filp == fl->c.flc_file)
2734 lease_modify(fl, F_UNLCK, &dispose);
2735 spin_unlock(&ctx->flc_lock);
2736 percpu_up_read(&file_rwsem);
2737
2738 locks_dispose_list(&dispose);
2739 }
2740
2741 /*
2742 * This function is called on the last close of an open file.
2743 */
locks_remove_file(struct file * filp)2744 void locks_remove_file(struct file *filp)
2745 {
2746 struct file_lock_context *ctx;
2747
2748 ctx = locks_inode_context(file_inode(filp));
2749 if (!ctx)
2750 return;
2751
2752 /* remove any OFD locks */
2753 locks_remove_posix(filp, filp);
2754
2755 /* remove flock locks */
2756 locks_remove_flock(filp, ctx);
2757
2758 /* remove any leases */
2759 locks_remove_lease(filp, ctx);
2760
2761 spin_lock(&ctx->flc_lock);
2762 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2763 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2764 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2765 spin_unlock(&ctx->flc_lock);
2766 }
2767
2768 /**
2769 * vfs_cancel_lock - file byte range unblock lock
2770 * @filp: The file to apply the unblock to
2771 * @fl: The lock to be unblocked
2772 *
2773 * Used by lock managers to cancel blocked requests
2774 */
vfs_cancel_lock(struct file * filp,struct file_lock * fl)2775 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2776 {
2777 WARN_ON_ONCE(filp != fl->c.flc_file);
2778 if (filp->f_op->lock)
2779 return filp->f_op->lock(filp, F_CANCELLK, fl);
2780 return 0;
2781 }
2782 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2783
2784 /**
2785 * vfs_inode_has_locks - are any file locks held on @inode?
2786 * @inode: inode to check for locks
2787 *
2788 * Return true if there are any FL_POSIX or FL_FLOCK locks currently
2789 * set on @inode.
2790 */
vfs_inode_has_locks(struct inode * inode)2791 bool vfs_inode_has_locks(struct inode *inode)
2792 {
2793 struct file_lock_context *ctx;
2794 bool ret;
2795
2796 ctx = locks_inode_context(inode);
2797 if (!ctx)
2798 return false;
2799
2800 spin_lock(&ctx->flc_lock);
2801 ret = !list_empty(&ctx->flc_posix) || !list_empty(&ctx->flc_flock);
2802 spin_unlock(&ctx->flc_lock);
2803 return ret;
2804 }
2805 EXPORT_SYMBOL_GPL(vfs_inode_has_locks);
2806
2807 #ifdef CONFIG_PROC_FS
2808 #include <linux/proc_fs.h>
2809 #include <linux/seq_file.h>
2810
2811 struct locks_iterator {
2812 int li_cpu;
2813 loff_t li_pos;
2814 };
2815
lock_get_status(struct seq_file * f,struct file_lock_core * flc,loff_t id,char * pfx,int repeat)2816 static void lock_get_status(struct seq_file *f, struct file_lock_core *flc,
2817 loff_t id, char *pfx, int repeat)
2818 {
2819 struct inode *inode = NULL;
2820 unsigned int pid;
2821 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2822 int type = flc->flc_type;
2823 struct file_lock *fl = file_lock(flc);
2824
2825 pid = locks_translate_pid(flc, proc_pidns);
2826
2827 /*
2828 * If lock owner is dead (and pid is freed) or not visible in current
2829 * pidns, zero is shown as a pid value. Check lock info from
2830 * init_pid_ns to get saved lock pid value.
2831 */
2832 if (flc->flc_file != NULL)
2833 inode = file_inode(flc->flc_file);
2834
2835 seq_printf(f, "%lld: ", id);
2836
2837 if (repeat)
2838 seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx);
2839
2840 if (flc->flc_flags & FL_POSIX) {
2841 if (flc->flc_flags & FL_ACCESS)
2842 seq_puts(f, "ACCESS");
2843 else if (flc->flc_flags & FL_OFDLCK)
2844 seq_puts(f, "OFDLCK");
2845 else
2846 seq_puts(f, "POSIX ");
2847
2848 seq_printf(f, " %s ",
2849 (inode == NULL) ? "*NOINODE*" : "ADVISORY ");
2850 } else if (flc->flc_flags & FL_FLOCK) {
2851 seq_puts(f, "FLOCK ADVISORY ");
2852 } else if (flc->flc_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) {
2853 struct file_lease *lease = file_lease(flc);
2854
2855 type = target_leasetype(lease);
2856
2857 if (flc->flc_flags & FL_DELEG)
2858 seq_puts(f, "DELEG ");
2859 else
2860 seq_puts(f, "LEASE ");
2861
2862 if (lease_breaking(lease))
2863 seq_puts(f, "BREAKING ");
2864 else if (flc->flc_file)
2865 seq_puts(f, "ACTIVE ");
2866 else
2867 seq_puts(f, "BREAKER ");
2868 } else {
2869 seq_puts(f, "UNKNOWN UNKNOWN ");
2870 }
2871
2872 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2873 (type == F_RDLCK) ? "READ" : "UNLCK");
2874 if (inode) {
2875 /* userspace relies on this representation of dev_t */
2876 seq_printf(f, "%d %02x:%02x:%lu ", pid,
2877 MAJOR(inode->i_sb->s_dev),
2878 MINOR(inode->i_sb->s_dev), inode->i_ino);
2879 } else {
2880 seq_printf(f, "%d <none>:0 ", pid);
2881 }
2882 if (flc->flc_flags & FL_POSIX) {
2883 if (fl->fl_end == OFFSET_MAX)
2884 seq_printf(f, "%Ld EOF\n", fl->fl_start);
2885 else
2886 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2887 } else {
2888 seq_puts(f, "0 EOF\n");
2889 }
2890 }
2891
get_next_blocked_member(struct file_lock_core * node)2892 static struct file_lock_core *get_next_blocked_member(struct file_lock_core *node)
2893 {
2894 struct file_lock_core *tmp;
2895
2896 /* NULL node or root node */
2897 if (node == NULL || node->flc_blocker == NULL)
2898 return NULL;
2899
2900 /* Next member in the linked list could be itself */
2901 tmp = list_next_entry(node, flc_blocked_member);
2902 if (list_entry_is_head(tmp, &node->flc_blocker->flc_blocked_requests,
2903 flc_blocked_member)
2904 || tmp == node) {
2905 return NULL;
2906 }
2907
2908 return tmp;
2909 }
2910
locks_show(struct seq_file * f,void * v)2911 static int locks_show(struct seq_file *f, void *v)
2912 {
2913 struct locks_iterator *iter = f->private;
2914 struct file_lock_core *cur, *tmp;
2915 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2916 int level = 0;
2917
2918 cur = hlist_entry(v, struct file_lock_core, flc_link);
2919
2920 if (locks_translate_pid(cur, proc_pidns) == 0)
2921 return 0;
2922
2923 /* View this crossed linked list as a binary tree, the first member of flc_blocked_requests
2924 * is the left child of current node, the next silibing in flc_blocked_member is the
2925 * right child, we can alse get the parent of current node from flc_blocker, so this
2926 * question becomes traversal of a binary tree
2927 */
2928 while (cur != NULL) {
2929 if (level)
2930 lock_get_status(f, cur, iter->li_pos, "-> ", level);
2931 else
2932 lock_get_status(f, cur, iter->li_pos, "", level);
2933
2934 if (!list_empty(&cur->flc_blocked_requests)) {
2935 /* Turn left */
2936 cur = list_first_entry_or_null(&cur->flc_blocked_requests,
2937 struct file_lock_core,
2938 flc_blocked_member);
2939 level++;
2940 } else {
2941 /* Turn right */
2942 tmp = get_next_blocked_member(cur);
2943 /* Fall back to parent node */
2944 while (tmp == NULL && cur->flc_blocker != NULL) {
2945 cur = cur->flc_blocker;
2946 level--;
2947 tmp = get_next_blocked_member(cur);
2948 }
2949 cur = tmp;
2950 }
2951 }
2952
2953 return 0;
2954 }
2955
__show_fd_locks(struct seq_file * f,struct list_head * head,int * id,struct file * filp,struct files_struct * files)2956 static void __show_fd_locks(struct seq_file *f,
2957 struct list_head *head, int *id,
2958 struct file *filp, struct files_struct *files)
2959 {
2960 struct file_lock_core *fl;
2961
2962 list_for_each_entry(fl, head, flc_list) {
2963
2964 if (filp != fl->flc_file)
2965 continue;
2966 if (fl->flc_owner != files && fl->flc_owner != filp)
2967 continue;
2968
2969 (*id)++;
2970 seq_puts(f, "lock:\t");
2971 lock_get_status(f, fl, *id, "", 0);
2972 }
2973 }
2974
show_fd_locks(struct seq_file * f,struct file * filp,struct files_struct * files)2975 void show_fd_locks(struct seq_file *f,
2976 struct file *filp, struct files_struct *files)
2977 {
2978 struct inode *inode = file_inode(filp);
2979 struct file_lock_context *ctx;
2980 int id = 0;
2981
2982 ctx = locks_inode_context(inode);
2983 if (!ctx)
2984 return;
2985
2986 spin_lock(&ctx->flc_lock);
2987 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2988 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2989 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2990 spin_unlock(&ctx->flc_lock);
2991 }
2992
locks_start(struct seq_file * f,loff_t * pos)2993 static void *locks_start(struct seq_file *f, loff_t *pos)
2994 __acquires(&blocked_lock_lock)
2995 {
2996 struct locks_iterator *iter = f->private;
2997
2998 iter->li_pos = *pos + 1;
2999 percpu_down_write(&file_rwsem);
3000 spin_lock(&blocked_lock_lock);
3001 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
3002 }
3003
locks_next(struct seq_file * f,void * v,loff_t * pos)3004 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
3005 {
3006 struct locks_iterator *iter = f->private;
3007
3008 ++iter->li_pos;
3009 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
3010 }
3011
locks_stop(struct seq_file * f,void * v)3012 static void locks_stop(struct seq_file *f, void *v)
3013 __releases(&blocked_lock_lock)
3014 {
3015 spin_unlock(&blocked_lock_lock);
3016 percpu_up_write(&file_rwsem);
3017 }
3018
3019 static const struct seq_operations locks_seq_operations = {
3020 .start = locks_start,
3021 .next = locks_next,
3022 .stop = locks_stop,
3023 .show = locks_show,
3024 };
3025
proc_locks_init(void)3026 static int __init proc_locks_init(void)
3027 {
3028 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
3029 sizeof(struct locks_iterator), NULL);
3030 return 0;
3031 }
3032 fs_initcall(proc_locks_init);
3033 #endif
3034
filelock_init(void)3035 static int __init filelock_init(void)
3036 {
3037 int i;
3038
3039 flctx_cache = kmem_cache_create("file_lock_ctx",
3040 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
3041
3042 filelock_cache = kmem_cache_create("file_lock_cache",
3043 sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
3044
3045 filelease_cache = kmem_cache_create("file_lease_cache",
3046 sizeof(struct file_lease), 0, SLAB_PANIC, NULL);
3047
3048 for_each_possible_cpu(i) {
3049 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
3050
3051 spin_lock_init(&fll->lock);
3052 INIT_HLIST_HEAD(&fll->hlist);
3053 }
3054
3055 lease_notifier_chain_init();
3056 return 0;
3057 }
3058 core_initcall(filelock_init);
3059