1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/locks.c
4 *
5 * We implement four types of file locks: BSD locks, posix locks, open
6 * file description locks, and leases. For details about BSD locks,
7 * see the flock(2) man page; for details about the other three, see
8 * fcntl(2).
9 *
10 *
11 * Locking conflicts and dependencies:
12 * If multiple threads attempt to lock the same byte (or flock the same file)
13 * only one can be granted the lock, and other must wait their turn.
14 * The first lock has been "applied" or "granted", the others are "waiting"
15 * and are "blocked" by the "applied" lock..
16 *
17 * Waiting and applied locks are all kept in trees whose properties are:
18 *
19 * - the root of a tree may be an applied or waiting lock.
20 * - every other node in the tree is a waiting lock that
21 * conflicts with every ancestor of that node.
22 *
23 * Every such tree begins life as a waiting singleton which obviously
24 * satisfies the above properties.
25 *
26 * The only ways we modify trees preserve these properties:
27 *
28 * 1. We may add a new leaf node, but only after first verifying that it
29 * conflicts with all of its ancestors.
30 * 2. We may remove the root of a tree, creating a new singleton
31 * tree from the root and N new trees rooted in the immediate
32 * children.
33 * 3. If the root of a tree is not currently an applied lock, we may
34 * apply it (if possible).
35 * 4. We may upgrade the root of the tree (either extend its range,
36 * or upgrade its entire range from read to write).
37 *
38 * When an applied lock is modified in a way that reduces or downgrades any
39 * part of its range, we remove all its children (2 above). This particularly
40 * happens when a lock is unlocked.
41 *
42 * For each of those child trees we "wake up" the thread which is
43 * waiting for the lock so it can continue handling as follows: if the
44 * root of the tree applies, we do so (3). If it doesn't, it must
45 * conflict with some applied lock. We remove (wake up) all of its children
46 * (2), and add it is a new leaf to the tree rooted in the applied
47 * lock (1). We then repeat the process recursively with those
48 * children.
49 *
50 */
51 #include <linux/capability.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
54 #include <linux/filelock.h>
55 #include <linux/fs.h>
56 #include <linux/init.h>
57 #include <linux/security.h>
58 #include <linux/slab.h>
59 #include <linux/syscalls.h>
60 #include <linux/time.h>
61 #include <linux/rcupdate.h>
62 #include <linux/pid_namespace.h>
63 #include <linux/hashtable.h>
64 #include <linux/percpu.h>
65 #include <linux/sysctl.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/filelock.h>
69
70 #include <linux/uaccess.h>
71
file_lock(struct file_lock_core * flc)72 static struct file_lock *file_lock(struct file_lock_core *flc)
73 {
74 return container_of(flc, struct file_lock, c);
75 }
76
file_lease(struct file_lock_core * flc)77 static struct file_lease *file_lease(struct file_lock_core *flc)
78 {
79 return container_of(flc, struct file_lease, c);
80 }
81
lease_breaking(struct file_lease * fl)82 static bool lease_breaking(struct file_lease *fl)
83 {
84 return fl->c.flc_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
85 }
86
target_leasetype(struct file_lease * fl)87 static int target_leasetype(struct file_lease *fl)
88 {
89 if (fl->c.flc_flags & FL_UNLOCK_PENDING)
90 return F_UNLCK;
91 if (fl->c.flc_flags & FL_DOWNGRADE_PENDING)
92 return F_RDLCK;
93 return fl->c.flc_type;
94 }
95
96 static int leases_enable = 1;
97 static int lease_break_time = 45;
98
99 #ifdef CONFIG_SYSCTL
100 static const struct ctl_table locks_sysctls[] = {
101 {
102 .procname = "leases-enable",
103 .data = &leases_enable,
104 .maxlen = sizeof(int),
105 .mode = 0644,
106 .proc_handler = proc_dointvec,
107 },
108 #ifdef CONFIG_MMU
109 {
110 .procname = "lease-break-time",
111 .data = &lease_break_time,
112 .maxlen = sizeof(int),
113 .mode = 0644,
114 .proc_handler = proc_dointvec,
115 },
116 #endif /* CONFIG_MMU */
117 };
118
init_fs_locks_sysctls(void)119 static int __init init_fs_locks_sysctls(void)
120 {
121 register_sysctl_init("fs", locks_sysctls);
122 return 0;
123 }
124 early_initcall(init_fs_locks_sysctls);
125 #endif /* CONFIG_SYSCTL */
126
127 /*
128 * The global file_lock_list is only used for displaying /proc/locks, so we
129 * keep a list on each CPU, with each list protected by its own spinlock.
130 * Global serialization is done using file_rwsem.
131 *
132 * Note that alterations to the list also require that the relevant flc_lock is
133 * held.
134 */
135 struct file_lock_list_struct {
136 spinlock_t lock;
137 struct hlist_head hlist;
138 };
139 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
140 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
141
142
143 /*
144 * The blocked_hash is used to find POSIX lock loops for deadlock detection.
145 * It is protected by blocked_lock_lock.
146 *
147 * We hash locks by lockowner in order to optimize searching for the lock a
148 * particular lockowner is waiting on.
149 *
150 * FIXME: make this value scale via some heuristic? We generally will want more
151 * buckets when we have more lockowners holding locks, but that's a little
152 * difficult to determine without knowing what the workload will look like.
153 */
154 #define BLOCKED_HASH_BITS 7
155 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
156
157 /*
158 * This lock protects the blocked_hash. Generally, if you're accessing it, you
159 * want to be holding this lock.
160 *
161 * In addition, it also protects the fl->fl_blocked_requests list, and the
162 * fl->fl_blocker pointer for file_lock structures that are acting as lock
163 * requests (in contrast to those that are acting as records of acquired locks).
164 *
165 * Note that when we acquire this lock in order to change the above fields,
166 * we often hold the flc_lock as well. In certain cases, when reading the fields
167 * protected by this lock, we can skip acquiring it iff we already hold the
168 * flc_lock.
169 */
170 static DEFINE_SPINLOCK(blocked_lock_lock);
171
172 static struct kmem_cache *flctx_cache __ro_after_init;
173 static struct kmem_cache *filelock_cache __ro_after_init;
174 static struct kmem_cache *filelease_cache __ro_after_init;
175
176 static struct file_lock_context *
locks_get_lock_context(struct inode * inode,int type)177 locks_get_lock_context(struct inode *inode, int type)
178 {
179 struct file_lock_context *ctx;
180
181 ctx = locks_inode_context(inode);
182 if (likely(ctx) || type == F_UNLCK)
183 goto out;
184
185 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
186 if (!ctx)
187 goto out;
188
189 spin_lock_init(&ctx->flc_lock);
190 INIT_LIST_HEAD(&ctx->flc_flock);
191 INIT_LIST_HEAD(&ctx->flc_posix);
192 INIT_LIST_HEAD(&ctx->flc_lease);
193
194 /*
195 * Assign the pointer if it's not already assigned. If it is, then
196 * free the context we just allocated.
197 */
198 spin_lock(&inode->i_lock);
199 if (!(inode->i_opflags & IOP_FLCTX)) {
200 VFS_BUG_ON_INODE(inode->i_flctx, inode);
201 WRITE_ONCE(inode->i_flctx, ctx);
202 /*
203 * Paired with locks_inode_context().
204 */
205 smp_store_release(&inode->i_opflags, inode->i_opflags | IOP_FLCTX);
206 spin_unlock(&inode->i_lock);
207 } else {
208 VFS_BUG_ON_INODE(!inode->i_flctx, inode);
209 spin_unlock(&inode->i_lock);
210 kmem_cache_free(flctx_cache, ctx);
211 ctx = locks_inode_context(inode);
212 }
213 out:
214 trace_locks_get_lock_context(inode, type, ctx);
215 return ctx;
216 }
217
218 static void
locks_dump_ctx_list(struct list_head * list,char * list_type)219 locks_dump_ctx_list(struct list_head *list, char *list_type)
220 {
221 struct file_lock_core *flc;
222
223 list_for_each_entry(flc, list, flc_list)
224 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
225 list_type, flc->flc_owner, flc->flc_flags,
226 flc->flc_type, flc->flc_pid);
227 }
228
229 static void
locks_check_ctx_lists(struct inode * inode)230 locks_check_ctx_lists(struct inode *inode)
231 {
232 struct file_lock_context *ctx = inode->i_flctx;
233
234 if (unlikely(!list_empty(&ctx->flc_flock) ||
235 !list_empty(&ctx->flc_posix) ||
236 !list_empty(&ctx->flc_lease))) {
237 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
238 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
239 inode->i_ino);
240 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
241 locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
242 locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
243 }
244 }
245
246 static void
locks_check_ctx_file_list(struct file * filp,struct list_head * list,char * list_type)247 locks_check_ctx_file_list(struct file *filp, struct list_head *list, char *list_type)
248 {
249 struct file_lock_core *flc;
250 struct inode *inode = file_inode(filp);
251
252 list_for_each_entry(flc, list, flc_list)
253 if (flc->flc_file == filp)
254 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
255 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
256 list_type, MAJOR(inode->i_sb->s_dev),
257 MINOR(inode->i_sb->s_dev), inode->i_ino,
258 flc->flc_owner, flc->flc_flags,
259 flc->flc_type, flc->flc_pid);
260 }
261
262 void
locks_free_lock_context(struct inode * inode)263 locks_free_lock_context(struct inode *inode)
264 {
265 struct file_lock_context *ctx = locks_inode_context(inode);
266
267 if (unlikely(ctx)) {
268 locks_check_ctx_lists(inode);
269 kmem_cache_free(flctx_cache, ctx);
270 }
271 }
272
locks_init_lock_heads(struct file_lock_core * flc)273 static void locks_init_lock_heads(struct file_lock_core *flc)
274 {
275 INIT_HLIST_NODE(&flc->flc_link);
276 INIT_LIST_HEAD(&flc->flc_list);
277 INIT_LIST_HEAD(&flc->flc_blocked_requests);
278 INIT_LIST_HEAD(&flc->flc_blocked_member);
279 init_waitqueue_head(&flc->flc_wait);
280 }
281
282 /* Allocate an empty lock structure. */
locks_alloc_lock(void)283 struct file_lock *locks_alloc_lock(void)
284 {
285 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
286
287 if (fl)
288 locks_init_lock_heads(&fl->c);
289
290 return fl;
291 }
292 EXPORT_SYMBOL_GPL(locks_alloc_lock);
293
294 /* Allocate an empty lock structure. */
locks_alloc_lease(void)295 struct file_lease *locks_alloc_lease(void)
296 {
297 struct file_lease *fl = kmem_cache_zalloc(filelease_cache, GFP_KERNEL);
298
299 if (fl)
300 locks_init_lock_heads(&fl->c);
301
302 return fl;
303 }
304 EXPORT_SYMBOL_GPL(locks_alloc_lease);
305
locks_release_private(struct file_lock * fl)306 void locks_release_private(struct file_lock *fl)
307 {
308 struct file_lock_core *flc = &fl->c;
309
310 BUG_ON(waitqueue_active(&flc->flc_wait));
311 BUG_ON(!list_empty(&flc->flc_list));
312 BUG_ON(!list_empty(&flc->flc_blocked_requests));
313 BUG_ON(!list_empty(&flc->flc_blocked_member));
314 BUG_ON(!hlist_unhashed(&flc->flc_link));
315
316 if (fl->fl_ops) {
317 if (fl->fl_ops->fl_release_private)
318 fl->fl_ops->fl_release_private(fl);
319 fl->fl_ops = NULL;
320 }
321
322 if (fl->fl_lmops) {
323 if (fl->fl_lmops->lm_put_owner) {
324 fl->fl_lmops->lm_put_owner(flc->flc_owner);
325 flc->flc_owner = NULL;
326 }
327 fl->fl_lmops = NULL;
328 }
329 }
330 EXPORT_SYMBOL_GPL(locks_release_private);
331
332 /**
333 * locks_owner_has_blockers - Check for blocking lock requests
334 * @flctx: file lock context
335 * @owner: lock owner
336 *
337 * Return values:
338 * %true: @owner has at least one blocker
339 * %false: @owner has no blockers
340 */
locks_owner_has_blockers(struct file_lock_context * flctx,fl_owner_t owner)341 bool locks_owner_has_blockers(struct file_lock_context *flctx, fl_owner_t owner)
342 {
343 struct file_lock_core *flc;
344
345 spin_lock(&flctx->flc_lock);
346 list_for_each_entry(flc, &flctx->flc_posix, flc_list) {
347 if (flc->flc_owner != owner)
348 continue;
349 if (!list_empty(&flc->flc_blocked_requests)) {
350 spin_unlock(&flctx->flc_lock);
351 return true;
352 }
353 }
354 spin_unlock(&flctx->flc_lock);
355 return false;
356 }
357 EXPORT_SYMBOL_GPL(locks_owner_has_blockers);
358
359 /* Free a lock which is not in use. */
locks_free_lock(struct file_lock * fl)360 void locks_free_lock(struct file_lock *fl)
361 {
362 locks_release_private(fl);
363 kmem_cache_free(filelock_cache, fl);
364 }
365 EXPORT_SYMBOL(locks_free_lock);
366
367 /* Free a lease which is not in use. */
locks_free_lease(struct file_lease * fl)368 void locks_free_lease(struct file_lease *fl)
369 {
370 kmem_cache_free(filelease_cache, fl);
371 }
372 EXPORT_SYMBOL(locks_free_lease);
373
374 static void
locks_dispose_list(struct list_head * dispose)375 locks_dispose_list(struct list_head *dispose)
376 {
377 struct file_lock_core *flc;
378
379 while (!list_empty(dispose)) {
380 flc = list_first_entry(dispose, struct file_lock_core, flc_list);
381 list_del_init(&flc->flc_list);
382 locks_free_lock(file_lock(flc));
383 }
384 }
385
386 static void
lease_dispose_list(struct list_head * dispose)387 lease_dispose_list(struct list_head *dispose)
388 {
389 struct file_lock_core *flc;
390
391 while (!list_empty(dispose)) {
392 flc = list_first_entry(dispose, struct file_lock_core, flc_list);
393 list_del_init(&flc->flc_list);
394 locks_free_lease(file_lease(flc));
395 }
396 }
397
locks_init_lock(struct file_lock * fl)398 void locks_init_lock(struct file_lock *fl)
399 {
400 memset(fl, 0, sizeof(struct file_lock));
401 locks_init_lock_heads(&fl->c);
402 }
403 EXPORT_SYMBOL(locks_init_lock);
404
locks_init_lease(struct file_lease * fl)405 void locks_init_lease(struct file_lease *fl)
406 {
407 memset(fl, 0, sizeof(*fl));
408 locks_init_lock_heads(&fl->c);
409 }
410 EXPORT_SYMBOL(locks_init_lease);
411
412 /*
413 * Initialize a new lock from an existing file_lock structure.
414 */
locks_copy_conflock(struct file_lock * new,struct file_lock * fl)415 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
416 {
417 new->c.flc_owner = fl->c.flc_owner;
418 new->c.flc_pid = fl->c.flc_pid;
419 new->c.flc_file = NULL;
420 new->c.flc_flags = fl->c.flc_flags;
421 new->c.flc_type = fl->c.flc_type;
422 new->fl_start = fl->fl_start;
423 new->fl_end = fl->fl_end;
424 new->fl_lmops = fl->fl_lmops;
425 new->fl_ops = NULL;
426
427 if (fl->fl_lmops) {
428 if (fl->fl_lmops->lm_get_owner)
429 fl->fl_lmops->lm_get_owner(fl->c.flc_owner);
430 }
431 }
432 EXPORT_SYMBOL(locks_copy_conflock);
433
locks_copy_lock(struct file_lock * new,struct file_lock * fl)434 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
435 {
436 /* "new" must be a freshly-initialized lock */
437 WARN_ON_ONCE(new->fl_ops);
438
439 locks_copy_conflock(new, fl);
440
441 new->c.flc_file = fl->c.flc_file;
442 new->fl_ops = fl->fl_ops;
443
444 if (fl->fl_ops) {
445 if (fl->fl_ops->fl_copy_lock)
446 fl->fl_ops->fl_copy_lock(new, fl);
447 }
448 }
449 EXPORT_SYMBOL(locks_copy_lock);
450
locks_move_blocks(struct file_lock * new,struct file_lock * fl)451 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
452 {
453 struct file_lock *f;
454
455 /*
456 * As ctx->flc_lock is held, new requests cannot be added to
457 * ->flc_blocked_requests, so we don't need a lock to check if it
458 * is empty.
459 */
460 if (list_empty(&fl->c.flc_blocked_requests))
461 return;
462 spin_lock(&blocked_lock_lock);
463 list_splice_init(&fl->c.flc_blocked_requests,
464 &new->c.flc_blocked_requests);
465 list_for_each_entry(f, &new->c.flc_blocked_requests,
466 c.flc_blocked_member)
467 f->c.flc_blocker = &new->c;
468 spin_unlock(&blocked_lock_lock);
469 }
470
flock_translate_cmd(int cmd)471 static inline int flock_translate_cmd(int cmd) {
472 switch (cmd) {
473 case LOCK_SH:
474 return F_RDLCK;
475 case LOCK_EX:
476 return F_WRLCK;
477 case LOCK_UN:
478 return F_UNLCK;
479 }
480 return -EINVAL;
481 }
482
483 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
flock_make_lock(struct file * filp,struct file_lock * fl,int type)484 static void flock_make_lock(struct file *filp, struct file_lock *fl, int type)
485 {
486 locks_init_lock(fl);
487
488 fl->c.flc_file = filp;
489 fl->c.flc_owner = filp;
490 fl->c.flc_pid = current->tgid;
491 fl->c.flc_flags = FL_FLOCK;
492 fl->c.flc_type = type;
493 fl->fl_end = OFFSET_MAX;
494 }
495
assign_type(struct file_lock_core * flc,int type)496 static int assign_type(struct file_lock_core *flc, int type)
497 {
498 switch (type) {
499 case F_RDLCK:
500 case F_WRLCK:
501 case F_UNLCK:
502 flc->flc_type = type;
503 break;
504 default:
505 return -EINVAL;
506 }
507 return 0;
508 }
509
flock64_to_posix_lock(struct file * filp,struct file_lock * fl,struct flock64 * l)510 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
511 struct flock64 *l)
512 {
513 switch (l->l_whence) {
514 case SEEK_SET:
515 fl->fl_start = 0;
516 break;
517 case SEEK_CUR:
518 fl->fl_start = filp->f_pos;
519 break;
520 case SEEK_END:
521 fl->fl_start = i_size_read(file_inode(filp));
522 break;
523 default:
524 return -EINVAL;
525 }
526 if (l->l_start > OFFSET_MAX - fl->fl_start)
527 return -EOVERFLOW;
528 fl->fl_start += l->l_start;
529 if (fl->fl_start < 0)
530 return -EINVAL;
531
532 /* POSIX-1996 leaves the case l->l_len < 0 undefined;
533 POSIX-2001 defines it. */
534 if (l->l_len > 0) {
535 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
536 return -EOVERFLOW;
537 fl->fl_end = fl->fl_start + (l->l_len - 1);
538
539 } else if (l->l_len < 0) {
540 if (fl->fl_start + l->l_len < 0)
541 return -EINVAL;
542 fl->fl_end = fl->fl_start - 1;
543 fl->fl_start += l->l_len;
544 } else
545 fl->fl_end = OFFSET_MAX;
546
547 fl->c.flc_owner = current->files;
548 fl->c.flc_pid = current->tgid;
549 fl->c.flc_file = filp;
550 fl->c.flc_flags = FL_POSIX;
551 fl->fl_ops = NULL;
552 fl->fl_lmops = NULL;
553
554 return assign_type(&fl->c, l->l_type);
555 }
556
557 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
558 * style lock.
559 */
flock_to_posix_lock(struct file * filp,struct file_lock * fl,struct flock * l)560 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
561 struct flock *l)
562 {
563 struct flock64 ll = {
564 .l_type = l->l_type,
565 .l_whence = l->l_whence,
566 .l_start = l->l_start,
567 .l_len = l->l_len,
568 };
569
570 return flock64_to_posix_lock(filp, fl, &ll);
571 }
572
573 /* default lease lock manager operations */
574 static bool
lease_break_callback(struct file_lease * fl)575 lease_break_callback(struct file_lease *fl)
576 {
577 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
578 return false;
579 }
580
581 static void
lease_setup(struct file_lease * fl,void ** priv)582 lease_setup(struct file_lease *fl, void **priv)
583 {
584 struct file *filp = fl->c.flc_file;
585 struct fasync_struct *fa = *priv;
586
587 /*
588 * fasync_insert_entry() returns the old entry if any. If there was no
589 * old entry, then it used "priv" and inserted it into the fasync list.
590 * Clear the pointer to indicate that it shouldn't be freed.
591 */
592 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
593 *priv = NULL;
594
595 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
596 }
597
598 /**
599 * lease_open_conflict - see if the given file points to an inode that has
600 * an existing open that would conflict with the
601 * desired lease.
602 * @filp: file to check
603 * @arg: type of lease that we're trying to acquire
604 *
605 * Check to see if there's an existing open fd on this file that would
606 * conflict with the lease we're trying to set.
607 */
608 static int
lease_open_conflict(struct file * filp,const int arg)609 lease_open_conflict(struct file *filp, const int arg)
610 {
611 struct inode *inode = file_inode(filp);
612 int self_wcount = 0, self_rcount = 0;
613
614 if (arg == F_RDLCK)
615 return inode_is_open_for_write(inode) ? -EAGAIN : 0;
616 else if (arg != F_WRLCK)
617 return 0;
618
619 /*
620 * Make sure that only read/write count is from lease requestor.
621 * Note that this will result in denying write leases when i_writecount
622 * is negative, which is what we want. (We shouldn't grant write leases
623 * on files open for execution.)
624 */
625 if (filp->f_mode & FMODE_WRITE)
626 self_wcount = 1;
627 else if (filp->f_mode & FMODE_READ)
628 self_rcount = 1;
629
630 if (atomic_read(&inode->i_writecount) != self_wcount ||
631 atomic_read(&inode->i_readcount) != self_rcount)
632 return -EAGAIN;
633
634 return 0;
635 }
636
637 static const struct lease_manager_operations lease_manager_ops = {
638 .lm_break = lease_break_callback,
639 .lm_change = lease_modify,
640 .lm_setup = lease_setup,
641 .lm_open_conflict = lease_open_conflict,
642 };
643
644 /*
645 * Initialize a lease, use the default lock manager operations
646 */
lease_init(struct file * filp,unsigned int flags,int type,struct file_lease * fl)647 static int lease_init(struct file *filp, unsigned int flags, int type, struct file_lease *fl)
648 {
649 if (assign_type(&fl->c, type) != 0)
650 return -EINVAL;
651
652 fl->c.flc_owner = filp;
653 fl->c.flc_pid = current->tgid;
654
655 fl->c.flc_file = filp;
656 fl->c.flc_flags = flags;
657 fl->fl_lmops = &lease_manager_ops;
658 return 0;
659 }
660
661 /* Allocate a file_lock initialised to this type of lease */
lease_alloc(struct file * filp,unsigned int flags,int type)662 static struct file_lease *lease_alloc(struct file *filp, unsigned int flags, int type)
663 {
664 struct file_lease *fl = locks_alloc_lease();
665 int error = -ENOMEM;
666
667 if (fl == NULL)
668 return ERR_PTR(error);
669
670 error = lease_init(filp, flags, type, fl);
671 if (error) {
672 locks_free_lease(fl);
673 return ERR_PTR(error);
674 }
675 return fl;
676 }
677
678 /* Check if two locks overlap each other.
679 */
locks_overlap(struct file_lock * fl1,struct file_lock * fl2)680 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
681 {
682 return ((fl1->fl_end >= fl2->fl_start) &&
683 (fl2->fl_end >= fl1->fl_start));
684 }
685
686 /*
687 * Check whether two locks have the same owner.
688 */
posix_same_owner(struct file_lock_core * fl1,struct file_lock_core * fl2)689 static int posix_same_owner(struct file_lock_core *fl1, struct file_lock_core *fl2)
690 {
691 return fl1->flc_owner == fl2->flc_owner;
692 }
693
694 /* Must be called with the flc_lock held! */
locks_insert_global_locks(struct file_lock_core * flc)695 static void locks_insert_global_locks(struct file_lock_core *flc)
696 {
697 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
698
699 percpu_rwsem_assert_held(&file_rwsem);
700
701 spin_lock(&fll->lock);
702 flc->flc_link_cpu = smp_processor_id();
703 hlist_add_head(&flc->flc_link, &fll->hlist);
704 spin_unlock(&fll->lock);
705 }
706
707 /* Must be called with the flc_lock held! */
locks_delete_global_locks(struct file_lock_core * flc)708 static void locks_delete_global_locks(struct file_lock_core *flc)
709 {
710 struct file_lock_list_struct *fll;
711
712 percpu_rwsem_assert_held(&file_rwsem);
713
714 /*
715 * Avoid taking lock if already unhashed. This is safe since this check
716 * is done while holding the flc_lock, and new insertions into the list
717 * also require that it be held.
718 */
719 if (hlist_unhashed(&flc->flc_link))
720 return;
721
722 fll = per_cpu_ptr(&file_lock_list, flc->flc_link_cpu);
723 spin_lock(&fll->lock);
724 hlist_del_init(&flc->flc_link);
725 spin_unlock(&fll->lock);
726 }
727
728 static unsigned long
posix_owner_key(struct file_lock_core * flc)729 posix_owner_key(struct file_lock_core *flc)
730 {
731 return (unsigned long) flc->flc_owner;
732 }
733
locks_insert_global_blocked(struct file_lock_core * waiter)734 static void locks_insert_global_blocked(struct file_lock_core *waiter)
735 {
736 lockdep_assert_held(&blocked_lock_lock);
737
738 hash_add(blocked_hash, &waiter->flc_link, posix_owner_key(waiter));
739 }
740
locks_delete_global_blocked(struct file_lock_core * waiter)741 static void locks_delete_global_blocked(struct file_lock_core *waiter)
742 {
743 lockdep_assert_held(&blocked_lock_lock);
744
745 hash_del(&waiter->flc_link);
746 }
747
748 /* Remove waiter from blocker's block list.
749 * When blocker ends up pointing to itself then the list is empty.
750 *
751 * Must be called with blocked_lock_lock held.
752 */
__locks_unlink_block(struct file_lock_core * waiter)753 static void __locks_unlink_block(struct file_lock_core *waiter)
754 {
755 locks_delete_global_blocked(waiter);
756 list_del_init(&waiter->flc_blocked_member);
757 }
758
__locks_wake_up_blocks(struct file_lock_core * blocker)759 static void __locks_wake_up_blocks(struct file_lock_core *blocker)
760 {
761 while (!list_empty(&blocker->flc_blocked_requests)) {
762 struct file_lock_core *waiter;
763 struct file_lock *fl;
764
765 waiter = list_first_entry(&blocker->flc_blocked_requests,
766 struct file_lock_core, flc_blocked_member);
767
768 fl = file_lock(waiter);
769 __locks_unlink_block(waiter);
770 if ((waiter->flc_flags & (FL_POSIX | FL_FLOCK)) &&
771 fl->fl_lmops && fl->fl_lmops->lm_notify)
772 fl->fl_lmops->lm_notify(fl);
773 else
774 locks_wake_up_waiter(waiter);
775
776 /*
777 * The setting of flc_blocker to NULL marks the "done"
778 * point in deleting a block. Paired with acquire at the top
779 * of locks_delete_block().
780 */
781 smp_store_release(&waiter->flc_blocker, NULL);
782 }
783 }
784
__locks_delete_block(struct file_lock_core * waiter)785 static int __locks_delete_block(struct file_lock_core *waiter)
786 {
787 int status = -ENOENT;
788
789 /*
790 * If fl_blocker is NULL, it won't be set again as this thread "owns"
791 * the lock and is the only one that might try to claim the lock.
792 *
793 * We use acquire/release to manage fl_blocker so that we can
794 * optimize away taking the blocked_lock_lock in many cases.
795 *
796 * The smp_load_acquire guarantees two things:
797 *
798 * 1/ that fl_blocked_requests can be tested locklessly. If something
799 * was recently added to that list it must have been in a locked region
800 * *before* the locked region when fl_blocker was set to NULL.
801 *
802 * 2/ that no other thread is accessing 'waiter', so it is safe to free
803 * it. __locks_wake_up_blocks is careful not to touch waiter after
804 * fl_blocker is released.
805 *
806 * If a lockless check of fl_blocker shows it to be NULL, we know that
807 * no new locks can be inserted into its fl_blocked_requests list, and
808 * can avoid doing anything further if the list is empty.
809 */
810 if (!smp_load_acquire(&waiter->flc_blocker) &&
811 list_empty(&waiter->flc_blocked_requests))
812 return status;
813
814 spin_lock(&blocked_lock_lock);
815 if (waiter->flc_blocker)
816 status = 0;
817 __locks_wake_up_blocks(waiter);
818 __locks_unlink_block(waiter);
819
820 /*
821 * The setting of fl_blocker to NULL marks the "done" point in deleting
822 * a block. Paired with acquire at the top of this function.
823 */
824 smp_store_release(&waiter->flc_blocker, NULL);
825 spin_unlock(&blocked_lock_lock);
826 return status;
827 }
828
829 /**
830 * locks_delete_block - stop waiting for a file lock
831 * @waiter: the lock which was waiting
832 *
833 * lockd/nfsd need to disconnect the lock while working on it.
834 */
locks_delete_block(struct file_lock * waiter)835 int locks_delete_block(struct file_lock *waiter)
836 {
837 return __locks_delete_block(&waiter->c);
838 }
839 EXPORT_SYMBOL(locks_delete_block);
840
841 /* Insert waiter into blocker's block list.
842 * We use a circular list so that processes can be easily woken up in
843 * the order they blocked. The documentation doesn't require this but
844 * it seems like the reasonable thing to do.
845 *
846 * Must be called with both the flc_lock and blocked_lock_lock held. The
847 * fl_blocked_requests list itself is protected by the blocked_lock_lock,
848 * but by ensuring that the flc_lock is also held on insertions we can avoid
849 * taking the blocked_lock_lock in some cases when we see that the
850 * fl_blocked_requests list is empty.
851 *
852 * Rather than just adding to the list, we check for conflicts with any existing
853 * waiters, and add beneath any waiter that blocks the new waiter.
854 * Thus wakeups don't happen until needed.
855 */
__locks_insert_block(struct file_lock_core * blocker,struct file_lock_core * waiter,bool conflict (struct file_lock_core *,struct file_lock_core *))856 static void __locks_insert_block(struct file_lock_core *blocker,
857 struct file_lock_core *waiter,
858 bool conflict(struct file_lock_core *,
859 struct file_lock_core *))
860 {
861 struct file_lock_core *flc;
862
863 BUG_ON(!list_empty(&waiter->flc_blocked_member));
864 new_blocker:
865 list_for_each_entry(flc, &blocker->flc_blocked_requests, flc_blocked_member)
866 if (conflict(flc, waiter)) {
867 blocker = flc;
868 goto new_blocker;
869 }
870 waiter->flc_blocker = blocker;
871 list_add_tail(&waiter->flc_blocked_member,
872 &blocker->flc_blocked_requests);
873
874 if ((blocker->flc_flags & (FL_POSIX|FL_OFDLCK)) == FL_POSIX)
875 locks_insert_global_blocked(waiter);
876
877 /* The requests in waiter->flc_blocked are known to conflict with
878 * waiter, but might not conflict with blocker, or the requests
879 * and lock which block it. So they all need to be woken.
880 */
881 __locks_wake_up_blocks(waiter);
882 }
883
884 /* Must be called with flc_lock held. */
locks_insert_block(struct file_lock_core * blocker,struct file_lock_core * waiter,bool conflict (struct file_lock_core *,struct file_lock_core *))885 static void locks_insert_block(struct file_lock_core *blocker,
886 struct file_lock_core *waiter,
887 bool conflict(struct file_lock_core *,
888 struct file_lock_core *))
889 {
890 spin_lock(&blocked_lock_lock);
891 __locks_insert_block(blocker, waiter, conflict);
892 spin_unlock(&blocked_lock_lock);
893 }
894
895 /*
896 * Wake up processes blocked waiting for blocker.
897 *
898 * Must be called with the inode->flc_lock held!
899 */
locks_wake_up_blocks(struct file_lock_core * blocker)900 static void locks_wake_up_blocks(struct file_lock_core *blocker)
901 {
902 /*
903 * Avoid taking global lock if list is empty. This is safe since new
904 * blocked requests are only added to the list under the flc_lock, and
905 * the flc_lock is always held here. Note that removal from the
906 * fl_blocked_requests list does not require the flc_lock, so we must
907 * recheck list_empty() after acquiring the blocked_lock_lock.
908 */
909 if (list_empty(&blocker->flc_blocked_requests))
910 return;
911
912 spin_lock(&blocked_lock_lock);
913 __locks_wake_up_blocks(blocker);
914 spin_unlock(&blocked_lock_lock);
915 }
916
917 static void
locks_insert_lock_ctx(struct file_lock_core * fl,struct list_head * before)918 locks_insert_lock_ctx(struct file_lock_core *fl, struct list_head *before)
919 {
920 list_add_tail(&fl->flc_list, before);
921 locks_insert_global_locks(fl);
922 }
923
924 static void
locks_unlink_lock_ctx(struct file_lock_core * fl)925 locks_unlink_lock_ctx(struct file_lock_core *fl)
926 {
927 locks_delete_global_locks(fl);
928 list_del_init(&fl->flc_list);
929 locks_wake_up_blocks(fl);
930 }
931
932 static void
locks_delete_lock_ctx(struct file_lock_core * fl,struct list_head * dispose)933 locks_delete_lock_ctx(struct file_lock_core *fl, struct list_head *dispose)
934 {
935 locks_unlink_lock_ctx(fl);
936 if (dispose)
937 list_add(&fl->flc_list, dispose);
938 else
939 locks_free_lock(file_lock(fl));
940 }
941
942 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
943 * checks for shared/exclusive status of overlapping locks.
944 */
locks_conflict(struct file_lock_core * caller_flc,struct file_lock_core * sys_flc)945 static bool locks_conflict(struct file_lock_core *caller_flc,
946 struct file_lock_core *sys_flc)
947 {
948 if (sys_flc->flc_type == F_WRLCK)
949 return true;
950 if (caller_flc->flc_type == F_WRLCK)
951 return true;
952 return false;
953 }
954
955 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
956 * checking before calling the locks_conflict().
957 */
posix_locks_conflict(struct file_lock_core * caller_flc,struct file_lock_core * sys_flc)958 static bool posix_locks_conflict(struct file_lock_core *caller_flc,
959 struct file_lock_core *sys_flc)
960 {
961 struct file_lock *caller_fl = file_lock(caller_flc);
962 struct file_lock *sys_fl = file_lock(sys_flc);
963
964 /* POSIX locks owned by the same process do not conflict with
965 * each other.
966 */
967 if (posix_same_owner(caller_flc, sys_flc))
968 return false;
969
970 /* Check whether they overlap */
971 if (!locks_overlap(caller_fl, sys_fl))
972 return false;
973
974 return locks_conflict(caller_flc, sys_flc);
975 }
976
977 /* Determine if lock sys_fl blocks lock caller_fl. Used on xx_GETLK
978 * path so checks for additional GETLK-specific things like F_UNLCK.
979 */
posix_test_locks_conflict(struct file_lock * caller_fl,struct file_lock * sys_fl)980 static bool posix_test_locks_conflict(struct file_lock *caller_fl,
981 struct file_lock *sys_fl)
982 {
983 struct file_lock_core *caller = &caller_fl->c;
984 struct file_lock_core *sys = &sys_fl->c;
985
986 /* F_UNLCK checks any locks on the same fd. */
987 if (lock_is_unlock(caller_fl)) {
988 if (!posix_same_owner(caller, sys))
989 return false;
990 return locks_overlap(caller_fl, sys_fl);
991 }
992 return posix_locks_conflict(caller, sys);
993 }
994
995 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
996 * checking before calling the locks_conflict().
997 */
flock_locks_conflict(struct file_lock_core * caller_flc,struct file_lock_core * sys_flc)998 static bool flock_locks_conflict(struct file_lock_core *caller_flc,
999 struct file_lock_core *sys_flc)
1000 {
1001 /* FLOCK locks referring to the same filp do not conflict with
1002 * each other.
1003 */
1004 if (caller_flc->flc_file == sys_flc->flc_file)
1005 return false;
1006
1007 return locks_conflict(caller_flc, sys_flc);
1008 }
1009
1010 void
posix_test_lock(struct file * filp,struct file_lock * fl)1011 posix_test_lock(struct file *filp, struct file_lock *fl)
1012 {
1013 struct file_lock *cfl;
1014 struct file_lock_context *ctx;
1015 struct inode *inode = file_inode(filp);
1016 void *owner;
1017 void (*func)(void);
1018
1019 ctx = locks_inode_context(inode);
1020 if (!ctx || list_empty_careful(&ctx->flc_posix)) {
1021 fl->c.flc_type = F_UNLCK;
1022 return;
1023 }
1024
1025 retry:
1026 spin_lock(&ctx->flc_lock);
1027 list_for_each_entry(cfl, &ctx->flc_posix, c.flc_list) {
1028 if (!posix_test_locks_conflict(fl, cfl))
1029 continue;
1030 if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable
1031 && (*cfl->fl_lmops->lm_lock_expirable)(cfl)) {
1032 owner = cfl->fl_lmops->lm_mod_owner;
1033 func = cfl->fl_lmops->lm_expire_lock;
1034 __module_get(owner);
1035 spin_unlock(&ctx->flc_lock);
1036 (*func)();
1037 module_put(owner);
1038 goto retry;
1039 }
1040 locks_copy_conflock(fl, cfl);
1041 goto out;
1042 }
1043 fl->c.flc_type = F_UNLCK;
1044 out:
1045 spin_unlock(&ctx->flc_lock);
1046 return;
1047 }
1048 EXPORT_SYMBOL(posix_test_lock);
1049
1050 /*
1051 * Deadlock detection:
1052 *
1053 * We attempt to detect deadlocks that are due purely to posix file
1054 * locks.
1055 *
1056 * We assume that a task can be waiting for at most one lock at a time.
1057 * So for any acquired lock, the process holding that lock may be
1058 * waiting on at most one other lock. That lock in turns may be held by
1059 * someone waiting for at most one other lock. Given a requested lock
1060 * caller_fl which is about to wait for a conflicting lock block_fl, we
1061 * follow this chain of waiters to ensure we are not about to create a
1062 * cycle.
1063 *
1064 * Since we do this before we ever put a process to sleep on a lock, we
1065 * are ensured that there is never a cycle; that is what guarantees that
1066 * the while() loop in posix_locks_deadlock() eventually completes.
1067 *
1068 * Note: the above assumption may not be true when handling lock
1069 * requests from a broken NFS client. It may also fail in the presence
1070 * of tasks (such as posix threads) sharing the same open file table.
1071 * To handle those cases, we just bail out after a few iterations.
1072 *
1073 * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
1074 * Because the owner is not even nominally tied to a thread of
1075 * execution, the deadlock detection below can't reasonably work well. Just
1076 * skip it for those.
1077 *
1078 * In principle, we could do a more limited deadlock detection on FL_OFDLCK
1079 * locks that just checks for the case where two tasks are attempting to
1080 * upgrade from read to write locks on the same inode.
1081 */
1082
1083 #define MAX_DEADLK_ITERATIONS 10
1084
1085 /* Find a lock that the owner of the given @blocker is blocking on. */
what_owner_is_waiting_for(struct file_lock_core * blocker)1086 static struct file_lock_core *what_owner_is_waiting_for(struct file_lock_core *blocker)
1087 {
1088 struct file_lock_core *flc;
1089
1090 hash_for_each_possible(blocked_hash, flc, flc_link, posix_owner_key(blocker)) {
1091 if (posix_same_owner(flc, blocker)) {
1092 while (flc->flc_blocker)
1093 flc = flc->flc_blocker;
1094 return flc;
1095 }
1096 }
1097 return NULL;
1098 }
1099
1100 /* Must be called with the blocked_lock_lock held! */
posix_locks_deadlock(struct file_lock * caller_fl,struct file_lock * block_fl)1101 static bool posix_locks_deadlock(struct file_lock *caller_fl,
1102 struct file_lock *block_fl)
1103 {
1104 struct file_lock_core *caller = &caller_fl->c;
1105 struct file_lock_core *blocker = &block_fl->c;
1106 int i = 0;
1107
1108 lockdep_assert_held(&blocked_lock_lock);
1109
1110 /*
1111 * This deadlock detector can't reasonably detect deadlocks with
1112 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1113 */
1114 if (caller->flc_flags & FL_OFDLCK)
1115 return false;
1116
1117 while ((blocker = what_owner_is_waiting_for(blocker))) {
1118 if (i++ > MAX_DEADLK_ITERATIONS)
1119 return false;
1120 if (posix_same_owner(caller, blocker))
1121 return true;
1122 }
1123 return false;
1124 }
1125
1126 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1127 * after any leases, but before any posix locks.
1128 *
1129 * Note that if called with an FL_EXISTS argument, the caller may determine
1130 * whether or not a lock was successfully freed by testing the return
1131 * value for -ENOENT.
1132 */
flock_lock_inode(struct inode * inode,struct file_lock * request)1133 static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1134 {
1135 struct file_lock *new_fl = NULL;
1136 struct file_lock *fl;
1137 struct file_lock_context *ctx;
1138 int error = 0;
1139 bool found = false;
1140 LIST_HEAD(dispose);
1141
1142 ctx = locks_get_lock_context(inode, request->c.flc_type);
1143 if (!ctx) {
1144 if (request->c.flc_type != F_UNLCK)
1145 return -ENOMEM;
1146 return (request->c.flc_flags & FL_EXISTS) ? -ENOENT : 0;
1147 }
1148
1149 if (!(request->c.flc_flags & FL_ACCESS) && (request->c.flc_type != F_UNLCK)) {
1150 new_fl = locks_alloc_lock();
1151 if (!new_fl)
1152 return -ENOMEM;
1153 }
1154
1155 percpu_down_read(&file_rwsem);
1156 spin_lock(&ctx->flc_lock);
1157 if (request->c.flc_flags & FL_ACCESS)
1158 goto find_conflict;
1159
1160 list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) {
1161 if (request->c.flc_file != fl->c.flc_file)
1162 continue;
1163 if (request->c.flc_type == fl->c.flc_type)
1164 goto out;
1165 found = true;
1166 locks_delete_lock_ctx(&fl->c, &dispose);
1167 break;
1168 }
1169
1170 if (lock_is_unlock(request)) {
1171 if ((request->c.flc_flags & FL_EXISTS) && !found)
1172 error = -ENOENT;
1173 goto out;
1174 }
1175
1176 find_conflict:
1177 list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) {
1178 if (!flock_locks_conflict(&request->c, &fl->c))
1179 continue;
1180 error = -EAGAIN;
1181 if (!(request->c.flc_flags & FL_SLEEP))
1182 goto out;
1183 error = FILE_LOCK_DEFERRED;
1184 locks_insert_block(&fl->c, &request->c, flock_locks_conflict);
1185 goto out;
1186 }
1187 if (request->c.flc_flags & FL_ACCESS)
1188 goto out;
1189 locks_copy_lock(new_fl, request);
1190 locks_move_blocks(new_fl, request);
1191 locks_insert_lock_ctx(&new_fl->c, &ctx->flc_flock);
1192 new_fl = NULL;
1193 error = 0;
1194
1195 out:
1196 spin_unlock(&ctx->flc_lock);
1197 percpu_up_read(&file_rwsem);
1198 if (new_fl)
1199 locks_free_lock(new_fl);
1200 locks_dispose_list(&dispose);
1201 trace_flock_lock_inode(inode, request, error);
1202 return error;
1203 }
1204
posix_lock_inode(struct inode * inode,struct file_lock * request,struct file_lock * conflock)1205 static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1206 struct file_lock *conflock)
1207 {
1208 struct file_lock *fl, *tmp;
1209 struct file_lock *new_fl = NULL;
1210 struct file_lock *new_fl2 = NULL;
1211 struct file_lock *left = NULL;
1212 struct file_lock *right = NULL;
1213 struct file_lock_context *ctx;
1214 int error;
1215 bool added = false;
1216 LIST_HEAD(dispose);
1217 void *owner;
1218 void (*func)(void);
1219
1220 ctx = locks_get_lock_context(inode, request->c.flc_type);
1221 if (!ctx)
1222 return lock_is_unlock(request) ? 0 : -ENOMEM;
1223
1224 /*
1225 * We may need two file_lock structures for this operation,
1226 * so we get them in advance to avoid races.
1227 *
1228 * In some cases we can be sure, that no new locks will be needed
1229 */
1230 if (!(request->c.flc_flags & FL_ACCESS) &&
1231 (request->c.flc_type != F_UNLCK ||
1232 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1233 new_fl = locks_alloc_lock();
1234 new_fl2 = locks_alloc_lock();
1235 }
1236
1237 retry:
1238 percpu_down_read(&file_rwsem);
1239 spin_lock(&ctx->flc_lock);
1240 /*
1241 * New lock request. Walk all POSIX locks and look for conflicts. If
1242 * there are any, either return error or put the request on the
1243 * blocker's list of waiters and the global blocked_hash.
1244 */
1245 if (request->c.flc_type != F_UNLCK) {
1246 list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) {
1247 if (!posix_locks_conflict(&request->c, &fl->c))
1248 continue;
1249 if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable
1250 && (*fl->fl_lmops->lm_lock_expirable)(fl)) {
1251 owner = fl->fl_lmops->lm_mod_owner;
1252 func = fl->fl_lmops->lm_expire_lock;
1253 __module_get(owner);
1254 spin_unlock(&ctx->flc_lock);
1255 percpu_up_read(&file_rwsem);
1256 (*func)();
1257 module_put(owner);
1258 goto retry;
1259 }
1260 if (conflock)
1261 locks_copy_conflock(conflock, fl);
1262 error = -EAGAIN;
1263 if (!(request->c.flc_flags & FL_SLEEP))
1264 goto out;
1265 /*
1266 * Deadlock detection and insertion into the blocked
1267 * locks list must be done while holding the same lock!
1268 */
1269 error = -EDEADLK;
1270 spin_lock(&blocked_lock_lock);
1271 /*
1272 * Ensure that we don't find any locks blocked on this
1273 * request during deadlock detection.
1274 */
1275 __locks_wake_up_blocks(&request->c);
1276 if (likely(!posix_locks_deadlock(request, fl))) {
1277 error = FILE_LOCK_DEFERRED;
1278 __locks_insert_block(&fl->c, &request->c,
1279 posix_locks_conflict);
1280 }
1281 spin_unlock(&blocked_lock_lock);
1282 goto out;
1283 }
1284 }
1285
1286 /* If we're just looking for a conflict, we're done. */
1287 error = 0;
1288 if (request->c.flc_flags & FL_ACCESS)
1289 goto out;
1290
1291 /* Find the first old lock with the same owner as the new lock */
1292 list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) {
1293 if (posix_same_owner(&request->c, &fl->c))
1294 break;
1295 }
1296
1297 /* Process locks with this owner. */
1298 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, c.flc_list) {
1299 if (!posix_same_owner(&request->c, &fl->c))
1300 break;
1301
1302 /* Detect adjacent or overlapping regions (if same lock type) */
1303 if (request->c.flc_type == fl->c.flc_type) {
1304 /* In all comparisons of start vs end, use
1305 * "start - 1" rather than "end + 1". If end
1306 * is OFFSET_MAX, end + 1 will become negative.
1307 */
1308 if (fl->fl_end < request->fl_start - 1)
1309 continue;
1310 /* If the next lock in the list has entirely bigger
1311 * addresses than the new one, insert the lock here.
1312 */
1313 if (fl->fl_start - 1 > request->fl_end)
1314 break;
1315
1316 /* If we come here, the new and old lock are of the
1317 * same type and adjacent or overlapping. Make one
1318 * lock yielding from the lower start address of both
1319 * locks to the higher end address.
1320 */
1321 if (fl->fl_start > request->fl_start)
1322 fl->fl_start = request->fl_start;
1323 else
1324 request->fl_start = fl->fl_start;
1325 if (fl->fl_end < request->fl_end)
1326 fl->fl_end = request->fl_end;
1327 else
1328 request->fl_end = fl->fl_end;
1329 if (added) {
1330 locks_delete_lock_ctx(&fl->c, &dispose);
1331 continue;
1332 }
1333 request = fl;
1334 added = true;
1335 } else {
1336 /* Processing for different lock types is a bit
1337 * more complex.
1338 */
1339 if (fl->fl_end < request->fl_start)
1340 continue;
1341 if (fl->fl_start > request->fl_end)
1342 break;
1343 if (lock_is_unlock(request))
1344 added = true;
1345 if (fl->fl_start < request->fl_start)
1346 left = fl;
1347 /* If the next lock in the list has a higher end
1348 * address than the new one, insert the new one here.
1349 */
1350 if (fl->fl_end > request->fl_end) {
1351 right = fl;
1352 break;
1353 }
1354 if (fl->fl_start >= request->fl_start) {
1355 /* The new lock completely replaces an old
1356 * one (This may happen several times).
1357 */
1358 if (added) {
1359 locks_delete_lock_ctx(&fl->c, &dispose);
1360 continue;
1361 }
1362 /*
1363 * Replace the old lock with new_fl, and
1364 * remove the old one. It's safe to do the
1365 * insert here since we know that we won't be
1366 * using new_fl later, and that the lock is
1367 * just replacing an existing lock.
1368 */
1369 error = -ENOLCK;
1370 if (!new_fl)
1371 goto out;
1372 locks_copy_lock(new_fl, request);
1373 locks_move_blocks(new_fl, request);
1374 request = new_fl;
1375 new_fl = NULL;
1376 locks_insert_lock_ctx(&request->c,
1377 &fl->c.flc_list);
1378 locks_delete_lock_ctx(&fl->c, &dispose);
1379 added = true;
1380 }
1381 }
1382 }
1383
1384 /*
1385 * The above code only modifies existing locks in case of merging or
1386 * replacing. If new lock(s) need to be inserted all modifications are
1387 * done below this, so it's safe yet to bail out.
1388 */
1389 error = -ENOLCK; /* "no luck" */
1390 if (right && left == right && !new_fl2)
1391 goto out;
1392
1393 error = 0;
1394 if (!added) {
1395 if (lock_is_unlock(request)) {
1396 if (request->c.flc_flags & FL_EXISTS)
1397 error = -ENOENT;
1398 goto out;
1399 }
1400
1401 if (!new_fl) {
1402 error = -ENOLCK;
1403 goto out;
1404 }
1405 locks_copy_lock(new_fl, request);
1406 locks_move_blocks(new_fl, request);
1407 locks_insert_lock_ctx(&new_fl->c, &fl->c.flc_list);
1408 fl = new_fl;
1409 new_fl = NULL;
1410 }
1411 if (right) {
1412 if (left == right) {
1413 /* The new lock breaks the old one in two pieces,
1414 * so we have to use the second new lock.
1415 */
1416 left = new_fl2;
1417 new_fl2 = NULL;
1418 locks_copy_lock(left, right);
1419 locks_insert_lock_ctx(&left->c, &fl->c.flc_list);
1420 }
1421 right->fl_start = request->fl_end + 1;
1422 locks_wake_up_blocks(&right->c);
1423 }
1424 if (left) {
1425 left->fl_end = request->fl_start - 1;
1426 locks_wake_up_blocks(&left->c);
1427 }
1428 out:
1429 trace_posix_lock_inode(inode, request, error);
1430 spin_unlock(&ctx->flc_lock);
1431 percpu_up_read(&file_rwsem);
1432 /*
1433 * Free any unused locks.
1434 */
1435 if (new_fl)
1436 locks_free_lock(new_fl);
1437 if (new_fl2)
1438 locks_free_lock(new_fl2);
1439 locks_dispose_list(&dispose);
1440
1441 return error;
1442 }
1443
1444 /**
1445 * posix_lock_file - Apply a POSIX-style lock to a file
1446 * @filp: The file to apply the lock to
1447 * @fl: The lock to be applied
1448 * @conflock: Place to return a copy of the conflicting lock, if found.
1449 *
1450 * Add a POSIX style lock to a file.
1451 * We merge adjacent & overlapping locks whenever possible.
1452 * POSIX locks are sorted by owner task, then by starting address
1453 *
1454 * Note that if called with an FL_EXISTS argument, the caller may determine
1455 * whether or not a lock was successfully freed by testing the return
1456 * value for -ENOENT.
1457 */
posix_lock_file(struct file * filp,struct file_lock * fl,struct file_lock * conflock)1458 int posix_lock_file(struct file *filp, struct file_lock *fl,
1459 struct file_lock *conflock)
1460 {
1461 return posix_lock_inode(file_inode(filp), fl, conflock);
1462 }
1463 EXPORT_SYMBOL(posix_lock_file);
1464
1465 /**
1466 * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1467 * @inode: inode of file to which lock request should be applied
1468 * @fl: The lock to be applied
1469 *
1470 * Apply a POSIX style lock request to an inode.
1471 */
posix_lock_inode_wait(struct inode * inode,struct file_lock * fl)1472 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1473 {
1474 int error;
1475 might_sleep ();
1476 for (;;) {
1477 error = posix_lock_inode(inode, fl, NULL);
1478 if (error != FILE_LOCK_DEFERRED)
1479 break;
1480 error = wait_event_interruptible(fl->c.flc_wait,
1481 list_empty(&fl->c.flc_blocked_member));
1482 if (error)
1483 break;
1484 }
1485 locks_delete_block(fl);
1486 return error;
1487 }
1488
lease_clear_pending(struct file_lease * fl,int arg)1489 static void lease_clear_pending(struct file_lease *fl, int arg)
1490 {
1491 switch (arg) {
1492 case F_UNLCK:
1493 fl->c.flc_flags &= ~FL_UNLOCK_PENDING;
1494 fallthrough;
1495 case F_RDLCK:
1496 fl->c.flc_flags &= ~FL_DOWNGRADE_PENDING;
1497 }
1498 }
1499
1500 /* We already had a lease on this file; just change its type */
lease_modify(struct file_lease * fl,int arg,struct list_head * dispose)1501 int lease_modify(struct file_lease *fl, int arg, struct list_head *dispose)
1502 {
1503 int error = assign_type(&fl->c, arg);
1504
1505 if (error)
1506 return error;
1507 lease_clear_pending(fl, arg);
1508 locks_wake_up_blocks(&fl->c);
1509 if (arg == F_UNLCK) {
1510 struct file *filp = fl->c.flc_file;
1511
1512 f_delown(filp);
1513 file_f_owner(filp)->signum = 0;
1514 fasync_helper(0, fl->c.flc_file, 0, &fl->fl_fasync);
1515 if (fl->fl_fasync != NULL) {
1516 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1517 fl->fl_fasync = NULL;
1518 }
1519 locks_delete_lock_ctx(&fl->c, dispose);
1520 }
1521 return 0;
1522 }
1523 EXPORT_SYMBOL(lease_modify);
1524
past_time(unsigned long then)1525 static bool past_time(unsigned long then)
1526 {
1527 if (!then)
1528 /* 0 is a special value meaning "this never expires": */
1529 return false;
1530 return time_after(jiffies, then);
1531 }
1532
time_out_leases(struct inode * inode,struct list_head * dispose)1533 static void time_out_leases(struct inode *inode, struct list_head *dispose)
1534 {
1535 struct file_lock_context *ctx = inode->i_flctx;
1536 struct file_lease *fl, *tmp;
1537
1538 lockdep_assert_held(&ctx->flc_lock);
1539
1540 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) {
1541 trace_time_out_leases(inode, fl);
1542 if (past_time(fl->fl_downgrade_time))
1543 lease_modify(fl, F_RDLCK, dispose);
1544 if (past_time(fl->fl_break_time))
1545 lease_modify(fl, F_UNLCK, dispose);
1546 }
1547 }
1548
leases_conflict(struct file_lock_core * lc,struct file_lock_core * bc)1549 static bool leases_conflict(struct file_lock_core *lc, struct file_lock_core *bc)
1550 {
1551 bool rc;
1552 struct file_lease *lease = file_lease(lc);
1553 struct file_lease *breaker = file_lease(bc);
1554
1555 if (lease->fl_lmops->lm_breaker_owns_lease
1556 && lease->fl_lmops->lm_breaker_owns_lease(lease))
1557 return false;
1558 if ((bc->flc_flags & FL_LAYOUT) != (lc->flc_flags & FL_LAYOUT)) {
1559 rc = false;
1560 goto trace;
1561 }
1562 if ((bc->flc_flags & FL_DELEG) && (lc->flc_flags & FL_LEASE)) {
1563 rc = false;
1564 goto trace;
1565 }
1566
1567 rc = locks_conflict(bc, lc);
1568 trace:
1569 trace_leases_conflict(rc, lease, breaker);
1570 return rc;
1571 }
1572
1573 static bool
any_leases_conflict(struct inode * inode,struct file_lease * breaker)1574 any_leases_conflict(struct inode *inode, struct file_lease *breaker)
1575 {
1576 struct file_lock_context *ctx = inode->i_flctx;
1577 struct file_lock_core *flc;
1578
1579 lockdep_assert_held(&ctx->flc_lock);
1580
1581 list_for_each_entry(flc, &ctx->flc_lease, flc_list) {
1582 if (leases_conflict(flc, &breaker->c))
1583 return true;
1584 }
1585 return false;
1586 }
1587
1588 /**
1589 * __break_lease - revoke all outstanding leases on file
1590 * @inode: the inode of the file to return
1591 * @flags: LEASE_BREAK_* flags
1592 *
1593 * break_lease (inlined for speed) has checked there already is at least
1594 * some kind of lock (maybe a lease) on this file. Leases are broken on
1595 * a call to open() or truncate(). This function can block waiting for the
1596 * lease break unless you specify LEASE_BREAK_NONBLOCK.
1597 */
__break_lease(struct inode * inode,unsigned int flags)1598 int __break_lease(struct inode *inode, unsigned int flags)
1599 {
1600 struct file_lease *new_fl, *fl, *tmp;
1601 struct file_lock_context *ctx;
1602 unsigned long break_time;
1603 unsigned int type;
1604 LIST_HEAD(dispose);
1605 bool want_write = !(flags & LEASE_BREAK_OPEN_RDONLY);
1606 int error = 0;
1607
1608 if (flags & LEASE_BREAK_LEASE)
1609 type = FL_LEASE;
1610 else if (flags & LEASE_BREAK_DELEG)
1611 type = FL_DELEG;
1612 else if (flags & LEASE_BREAK_LAYOUT)
1613 type = FL_LAYOUT;
1614 else
1615 return -EINVAL;
1616
1617 new_fl = lease_alloc(NULL, type, want_write ? F_WRLCK : F_RDLCK);
1618 if (IS_ERR(new_fl))
1619 return PTR_ERR(new_fl);
1620
1621 /* typically we will check that ctx is non-NULL before calling */
1622 ctx = locks_inode_context(inode);
1623 if (!ctx) {
1624 WARN_ON_ONCE(1);
1625 goto free_lock;
1626 }
1627
1628 percpu_down_read(&file_rwsem);
1629 spin_lock(&ctx->flc_lock);
1630
1631 time_out_leases(inode, &dispose);
1632
1633 if (!any_leases_conflict(inode, new_fl))
1634 goto out;
1635
1636 break_time = 0;
1637 if (lease_break_time > 0) {
1638 break_time = jiffies + lease_break_time * HZ;
1639 if (break_time == 0)
1640 break_time++; /* so that 0 means no break time */
1641 }
1642
1643 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) {
1644 if (!leases_conflict(&fl->c, &new_fl->c))
1645 continue;
1646 if (want_write) {
1647 if (fl->c.flc_flags & FL_UNLOCK_PENDING)
1648 continue;
1649 fl->c.flc_flags |= FL_UNLOCK_PENDING;
1650 fl->fl_break_time = break_time;
1651 } else {
1652 if (lease_breaking(fl))
1653 continue;
1654 fl->c.flc_flags |= FL_DOWNGRADE_PENDING;
1655 fl->fl_downgrade_time = break_time;
1656 }
1657 if (fl->fl_lmops->lm_break(fl))
1658 locks_delete_lock_ctx(&fl->c, &dispose);
1659 }
1660
1661 if (list_empty(&ctx->flc_lease))
1662 goto out;
1663
1664 if (flags & LEASE_BREAK_NONBLOCK) {
1665 trace_break_lease_noblock(inode, new_fl);
1666 error = -EWOULDBLOCK;
1667 goto out;
1668 }
1669
1670 restart:
1671 fl = list_first_entry(&ctx->flc_lease, struct file_lease, c.flc_list);
1672 break_time = fl->fl_break_time;
1673 if (break_time != 0)
1674 break_time -= jiffies;
1675 if (break_time == 0)
1676 break_time++;
1677 locks_insert_block(&fl->c, &new_fl->c, leases_conflict);
1678 trace_break_lease_block(inode, new_fl);
1679 spin_unlock(&ctx->flc_lock);
1680 percpu_up_read(&file_rwsem);
1681
1682 lease_dispose_list(&dispose);
1683 error = wait_event_interruptible_timeout(new_fl->c.flc_wait,
1684 list_empty(&new_fl->c.flc_blocked_member),
1685 break_time);
1686
1687 percpu_down_read(&file_rwsem);
1688 spin_lock(&ctx->flc_lock);
1689 trace_break_lease_unblock(inode, new_fl);
1690 __locks_delete_block(&new_fl->c);
1691 if (error >= 0) {
1692 /*
1693 * Wait for the next conflicting lease that has not been
1694 * broken yet
1695 */
1696 if (error == 0)
1697 time_out_leases(inode, &dispose);
1698 if (any_leases_conflict(inode, new_fl))
1699 goto restart;
1700 error = 0;
1701 }
1702 out:
1703 spin_unlock(&ctx->flc_lock);
1704 percpu_up_read(&file_rwsem);
1705 lease_dispose_list(&dispose);
1706 free_lock:
1707 locks_free_lease(new_fl);
1708 return error;
1709 }
1710 EXPORT_SYMBOL(__break_lease);
1711
1712 /**
1713 * lease_get_mtime - update modified time of an inode with exclusive lease
1714 * @inode: the inode
1715 * @time: pointer to a timespec which contains the last modified time
1716 *
1717 * This is to force NFS clients to flush their caches for files with
1718 * exclusive leases. The justification is that if someone has an
1719 * exclusive lease, then they could be modifying it.
1720 */
lease_get_mtime(struct inode * inode,struct timespec64 * time)1721 void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1722 {
1723 bool has_lease = false;
1724 struct file_lock_context *ctx;
1725 struct file_lock_core *flc;
1726
1727 ctx = locks_inode_context(inode);
1728 if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1729 spin_lock(&ctx->flc_lock);
1730 flc = list_first_entry_or_null(&ctx->flc_lease,
1731 struct file_lock_core, flc_list);
1732 if (flc && flc->flc_type == F_WRLCK)
1733 has_lease = true;
1734 spin_unlock(&ctx->flc_lock);
1735 }
1736
1737 if (has_lease)
1738 *time = current_time(inode);
1739 }
1740 EXPORT_SYMBOL(lease_get_mtime);
1741
1742 /**
1743 * __fcntl_getlease - Enquire what lease is currently active
1744 * @filp: the file
1745 * @flavor: type of lease flags to check
1746 *
1747 * The value returned by this function will be one of
1748 * (if no lease break is pending):
1749 *
1750 * %F_RDLCK to indicate a shared lease is held.
1751 *
1752 * %F_WRLCK to indicate an exclusive lease is held.
1753 *
1754 * %F_UNLCK to indicate no lease is held.
1755 *
1756 * (if a lease break is pending):
1757 *
1758 * %F_RDLCK to indicate an exclusive lease needs to be
1759 * changed to a shared lease (or removed).
1760 *
1761 * %F_UNLCK to indicate the lease needs to be removed.
1762 *
1763 * XXX: sfr & willy disagree over whether F_INPROGRESS
1764 * should be returned to userspace.
1765 */
__fcntl_getlease(struct file * filp,unsigned int flavor)1766 static int __fcntl_getlease(struct file *filp, unsigned int flavor)
1767 {
1768 struct file_lease *fl;
1769 struct inode *inode = file_inode(filp);
1770 struct file_lock_context *ctx;
1771 int type = F_UNLCK;
1772 LIST_HEAD(dispose);
1773
1774 ctx = locks_inode_context(inode);
1775 if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1776 percpu_down_read(&file_rwsem);
1777 spin_lock(&ctx->flc_lock);
1778 time_out_leases(inode, &dispose);
1779 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) {
1780 if (fl->c.flc_file != filp)
1781 continue;
1782 if (fl->c.flc_flags & flavor)
1783 type = target_leasetype(fl);
1784 break;
1785 }
1786 spin_unlock(&ctx->flc_lock);
1787 percpu_up_read(&file_rwsem);
1788
1789 lease_dispose_list(&dispose);
1790 }
1791 return type;
1792 }
1793
fcntl_getlease(struct file * filp)1794 int fcntl_getlease(struct file *filp)
1795 {
1796 return __fcntl_getlease(filp, FL_LEASE);
1797 }
1798
fcntl_getdeleg(struct file * filp,struct delegation * deleg)1799 int fcntl_getdeleg(struct file *filp, struct delegation *deleg)
1800 {
1801 if (deleg->d_flags != 0 || deleg->__pad != 0)
1802 return -EINVAL;
1803 deleg->d_type = __fcntl_getlease(filp, FL_DELEG);
1804 return 0;
1805 }
1806
1807 static int
generic_add_lease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1808 generic_add_lease(struct file *filp, int arg, struct file_lease **flp, void **priv)
1809 {
1810 struct file_lease *fl, *my_fl = NULL, *lease;
1811 struct inode *inode = file_inode(filp);
1812 struct file_lock_context *ctx;
1813 bool is_deleg = (*flp)->c.flc_flags & FL_DELEG;
1814 int error;
1815 LIST_HEAD(dispose);
1816
1817 lease = *flp;
1818 trace_generic_add_lease(inode, lease);
1819
1820 error = file_f_owner_allocate(filp);
1821 if (error)
1822 return error;
1823
1824 /* Note that arg is never F_UNLCK here */
1825 ctx = locks_get_lock_context(inode, arg);
1826 if (!ctx)
1827 return -ENOMEM;
1828
1829 /*
1830 * In the delegation case we need mutual exclusion with
1831 * a number of operations that take the i_rwsem. We trylock
1832 * because delegations are an optional optimization, and if
1833 * there's some chance of a conflict--we'd rather not
1834 * bother, maybe that's a sign this just isn't a good file to
1835 * hand out a delegation on.
1836 */
1837 if (is_deleg && !inode_trylock(inode))
1838 return -EAGAIN;
1839
1840 percpu_down_read(&file_rwsem);
1841 spin_lock(&ctx->flc_lock);
1842 time_out_leases(inode, &dispose);
1843 error = lease->fl_lmops->lm_open_conflict(filp, arg);
1844 if (error)
1845 goto out;
1846
1847 /*
1848 * At this point, we know that if there is an exclusive
1849 * lease on this file, then we hold it on this filp
1850 * (otherwise our open of this file would have blocked).
1851 * And if we are trying to acquire an exclusive lease,
1852 * then the file is not open by anyone (including us)
1853 * except for this filp.
1854 */
1855 error = -EAGAIN;
1856 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) {
1857 if (fl->c.flc_file == filp &&
1858 fl->c.flc_owner == lease->c.flc_owner) {
1859 my_fl = fl;
1860 continue;
1861 }
1862
1863 /*
1864 * No exclusive leases if someone else has a lease on
1865 * this file:
1866 */
1867 if (arg == F_WRLCK)
1868 goto out;
1869 /*
1870 * Modifying our existing lease is OK, but no getting a
1871 * new lease if someone else is opening for write:
1872 */
1873 if (fl->c.flc_flags & FL_UNLOCK_PENDING)
1874 goto out;
1875 }
1876
1877 if (my_fl != NULL) {
1878 lease = my_fl;
1879 error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1880 if (error)
1881 goto out;
1882 goto out_setup;
1883 }
1884
1885 error = -EINVAL;
1886 if (!leases_enable)
1887 goto out;
1888
1889 locks_insert_lock_ctx(&lease->c, &ctx->flc_lease);
1890 /*
1891 * The check in break_lease() is lockless. It's possible for another
1892 * open to race in after we did the earlier check for a conflicting
1893 * open but before the lease was inserted. Check again for a
1894 * conflicting open and cancel the lease if there is one.
1895 *
1896 * We also add a barrier here to ensure that the insertion of the lock
1897 * precedes these checks.
1898 */
1899 smp_mb();
1900 error = lease->fl_lmops->lm_open_conflict(filp, arg);
1901 if (error) {
1902 locks_unlink_lock_ctx(&lease->c);
1903 goto out;
1904 }
1905
1906 out_setup:
1907 if (lease->fl_lmops->lm_setup)
1908 lease->fl_lmops->lm_setup(lease, priv);
1909 out:
1910 spin_unlock(&ctx->flc_lock);
1911 percpu_up_read(&file_rwsem);
1912 lease_dispose_list(&dispose);
1913 if (is_deleg)
1914 inode_unlock(inode);
1915 if (!error && !my_fl)
1916 *flp = NULL;
1917 return error;
1918 }
1919
generic_delete_lease(struct file * filp,void * owner)1920 static int generic_delete_lease(struct file *filp, void *owner)
1921 {
1922 int error = -EAGAIN;
1923 struct file_lease *fl, *victim = NULL;
1924 struct inode *inode = file_inode(filp);
1925 struct file_lock_context *ctx;
1926 LIST_HEAD(dispose);
1927
1928 ctx = locks_inode_context(inode);
1929 if (!ctx) {
1930 trace_generic_delete_lease(inode, NULL);
1931 return error;
1932 }
1933
1934 percpu_down_read(&file_rwsem);
1935 spin_lock(&ctx->flc_lock);
1936 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) {
1937 if (fl->c.flc_file == filp &&
1938 fl->c.flc_owner == owner) {
1939 victim = fl;
1940 break;
1941 }
1942 }
1943 trace_generic_delete_lease(inode, victim);
1944 if (victim)
1945 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1946 spin_unlock(&ctx->flc_lock);
1947 percpu_up_read(&file_rwsem);
1948 lease_dispose_list(&dispose);
1949 return error;
1950 }
1951
1952 /**
1953 * generic_setlease - sets a lease on an open file
1954 * @filp: file pointer
1955 * @arg: type of lease to obtain
1956 * @flp: input - file_lock to use, output - file_lock inserted
1957 * @priv: private data for lm_setup (may be NULL if lm_setup
1958 * doesn't require it)
1959 *
1960 * The (input) flp->fl_lmops->lm_break function is required
1961 * by break_lease().
1962 */
generic_setlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1963 int generic_setlease(struct file *filp, int arg, struct file_lease **flp,
1964 void **priv)
1965 {
1966 struct inode *inode = file_inode(filp);
1967
1968 if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
1969 return -EINVAL;
1970
1971 switch (arg) {
1972 case F_UNLCK:
1973 return generic_delete_lease(filp, *priv);
1974 case F_WRLCK:
1975 if (S_ISDIR(inode->i_mode))
1976 return -EINVAL;
1977 fallthrough;
1978 case F_RDLCK:
1979 if (!(*flp)->fl_lmops->lm_break) {
1980 WARN_ON_ONCE(1);
1981 return -ENOLCK;
1982 }
1983
1984 return generic_add_lease(filp, arg, flp, priv);
1985 default:
1986 return -EINVAL;
1987 }
1988 }
1989 EXPORT_SYMBOL(generic_setlease);
1990
1991 /*
1992 * Kernel subsystems can register to be notified on any attempt to set
1993 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
1994 * to close files that it may have cached when there is an attempt to set a
1995 * conflicting lease.
1996 */
1997 static struct srcu_notifier_head lease_notifier_chain;
1998
1999 static inline void
lease_notifier_chain_init(void)2000 lease_notifier_chain_init(void)
2001 {
2002 srcu_init_notifier_head(&lease_notifier_chain);
2003 }
2004
2005 static inline void
setlease_notifier(int arg,struct file_lease * lease)2006 setlease_notifier(int arg, struct file_lease *lease)
2007 {
2008 if (arg != F_UNLCK)
2009 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
2010 }
2011
lease_register_notifier(struct notifier_block * nb)2012 int lease_register_notifier(struct notifier_block *nb)
2013 {
2014 return srcu_notifier_chain_register(&lease_notifier_chain, nb);
2015 }
2016 EXPORT_SYMBOL_GPL(lease_register_notifier);
2017
lease_unregister_notifier(struct notifier_block * nb)2018 void lease_unregister_notifier(struct notifier_block *nb)
2019 {
2020 srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
2021 }
2022 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
2023
2024
2025 int
kernel_setlease(struct file * filp,int arg,struct file_lease ** lease,void ** priv)2026 kernel_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv)
2027 {
2028 if (lease)
2029 setlease_notifier(arg, *lease);
2030 if (filp->f_op->setlease)
2031 return filp->f_op->setlease(filp, arg, lease, priv);
2032 return -EINVAL;
2033 }
2034 EXPORT_SYMBOL_GPL(kernel_setlease);
2035
2036 /**
2037 * vfs_setlease - sets a lease on an open file
2038 * @filp: file pointer
2039 * @arg: type of lease to obtain
2040 * @lease: file_lock to use when adding a lease
2041 * @priv: private info for lm_setup when adding a lease (may be
2042 * NULL if lm_setup doesn't require it)
2043 *
2044 * Call this to establish a lease on the file. The "lease" argument is not
2045 * used for F_UNLCK requests and may be NULL. For commands that set or alter
2046 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
2047 * set; if not, this function will return -ENOLCK (and generate a scary-looking
2048 * stack trace).
2049 *
2050 * The "priv" pointer is passed directly to the lm_setup function as-is. It
2051 * may be NULL if the lm_setup operation doesn't require it.
2052 */
2053 int
vfs_setlease(struct file * filp,int arg,struct file_lease ** lease,void ** priv)2054 vfs_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv)
2055 {
2056 struct inode *inode = file_inode(filp);
2057 vfsuid_t vfsuid = i_uid_into_vfsuid(file_mnt_idmap(filp), inode);
2058 int error;
2059
2060 if ((!vfsuid_eq_kuid(vfsuid, current_fsuid())) && !capable(CAP_LEASE))
2061 return -EACCES;
2062 error = security_file_lock(filp, arg);
2063 if (error)
2064 return error;
2065 return kernel_setlease(filp, arg, lease, priv);
2066 }
2067 EXPORT_SYMBOL_GPL(vfs_setlease);
2068
do_fcntl_add_lease(unsigned int fd,struct file * filp,unsigned int flavor,int arg)2069 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, unsigned int flavor, int arg)
2070 {
2071 struct file_lease *fl;
2072 struct fasync_struct *new;
2073 int error;
2074
2075 fl = lease_alloc(filp, flavor, arg);
2076 if (IS_ERR(fl))
2077 return PTR_ERR(fl);
2078
2079 new = fasync_alloc();
2080 if (!new) {
2081 locks_free_lease(fl);
2082 return -ENOMEM;
2083 }
2084 new->fa_fd = fd;
2085
2086 error = vfs_setlease(filp, arg, &fl, (void **)&new);
2087 if (fl)
2088 locks_free_lease(fl);
2089 if (new)
2090 fasync_free(new);
2091 return error;
2092 }
2093
2094 /**
2095 * fcntl_setlease - sets a lease on an open file
2096 * @fd: open file descriptor
2097 * @filp: file pointer
2098 * @arg: type of lease to obtain
2099 *
2100 * Call this fcntl to establish a lease on the file.
2101 * Note that you also need to call %F_SETSIG to
2102 * receive a signal when the lease is broken.
2103 */
fcntl_setlease(unsigned int fd,struct file * filp,int arg)2104 int fcntl_setlease(unsigned int fd, struct file *filp, int arg)
2105 {
2106 if (S_ISDIR(file_inode(filp)->i_mode))
2107 return -EINVAL;
2108
2109 if (arg == F_UNLCK)
2110 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2111 return do_fcntl_add_lease(fd, filp, FL_LEASE, arg);
2112 }
2113
2114 /**
2115 * fcntl_setdeleg - sets a delegation on an open file
2116 * @fd: open file descriptor
2117 * @filp: file pointer
2118 * @deleg: delegation request from userland
2119 *
2120 * Call this fcntl to establish a delegation on the file.
2121 * Note that you also need to call %F_SETSIG to
2122 * receive a signal when the lease is broken.
2123 */
fcntl_setdeleg(unsigned int fd,struct file * filp,struct delegation * deleg)2124 int fcntl_setdeleg(unsigned int fd, struct file *filp, struct delegation *deleg)
2125 {
2126 /* For now, no flags are supported */
2127 if (deleg->d_flags != 0 || deleg->__pad != 0)
2128 return -EINVAL;
2129
2130 if (deleg->d_type == F_UNLCK)
2131 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2132 return do_fcntl_add_lease(fd, filp, FL_DELEG, deleg->d_type);
2133 }
2134
2135 /**
2136 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2137 * @inode: inode of the file to apply to
2138 * @fl: The lock to be applied
2139 *
2140 * Apply a FLOCK style lock request to an inode.
2141 */
flock_lock_inode_wait(struct inode * inode,struct file_lock * fl)2142 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2143 {
2144 int error;
2145 might_sleep();
2146 for (;;) {
2147 error = flock_lock_inode(inode, fl);
2148 if (error != FILE_LOCK_DEFERRED)
2149 break;
2150 error = wait_event_interruptible(fl->c.flc_wait,
2151 list_empty(&fl->c.flc_blocked_member));
2152 if (error)
2153 break;
2154 }
2155 locks_delete_block(fl);
2156 return error;
2157 }
2158
2159 /**
2160 * locks_lock_inode_wait - Apply a lock to an inode
2161 * @inode: inode of the file to apply to
2162 * @fl: The lock to be applied
2163 *
2164 * Apply a POSIX or FLOCK style lock request to an inode.
2165 */
locks_lock_inode_wait(struct inode * inode,struct file_lock * fl)2166 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2167 {
2168 int res = 0;
2169 switch (fl->c.flc_flags & (FL_POSIX|FL_FLOCK)) {
2170 case FL_POSIX:
2171 res = posix_lock_inode_wait(inode, fl);
2172 break;
2173 case FL_FLOCK:
2174 res = flock_lock_inode_wait(inode, fl);
2175 break;
2176 default:
2177 BUG();
2178 }
2179 return res;
2180 }
2181 EXPORT_SYMBOL(locks_lock_inode_wait);
2182
2183 /**
2184 * sys_flock: - flock() system call.
2185 * @fd: the file descriptor to lock.
2186 * @cmd: the type of lock to apply.
2187 *
2188 * Apply a %FL_FLOCK style lock to an open file descriptor.
2189 * The @cmd can be one of:
2190 *
2191 * - %LOCK_SH -- a shared lock.
2192 * - %LOCK_EX -- an exclusive lock.
2193 * - %LOCK_UN -- remove an existing lock.
2194 * - %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED)
2195 *
2196 * %LOCK_MAND support has been removed from the kernel.
2197 */
SYSCALL_DEFINE2(flock,unsigned int,fd,unsigned int,cmd)2198 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2199 {
2200 int can_sleep, error, type;
2201 struct file_lock fl;
2202
2203 /*
2204 * LOCK_MAND locks were broken for a long time in that they never
2205 * conflicted with one another and didn't prevent any sort of open,
2206 * read or write activity.
2207 *
2208 * Just ignore these requests now, to preserve legacy behavior, but
2209 * throw a warning to let people know that they don't actually work.
2210 */
2211 if (cmd & LOCK_MAND) {
2212 pr_warn_once("%s(%d): Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n", current->comm, current->pid);
2213 return 0;
2214 }
2215
2216 type = flock_translate_cmd(cmd & ~LOCK_NB);
2217 if (type < 0)
2218 return type;
2219
2220 CLASS(fd, f)(fd);
2221 if (fd_empty(f))
2222 return -EBADF;
2223
2224 if (type != F_UNLCK && !(fd_file(f)->f_mode & (FMODE_READ | FMODE_WRITE)))
2225 return -EBADF;
2226
2227 flock_make_lock(fd_file(f), &fl, type);
2228
2229 error = security_file_lock(fd_file(f), fl.c.flc_type);
2230 if (error)
2231 return error;
2232
2233 can_sleep = !(cmd & LOCK_NB);
2234 if (can_sleep)
2235 fl.c.flc_flags |= FL_SLEEP;
2236
2237 if (fd_file(f)->f_op->flock)
2238 error = fd_file(f)->f_op->flock(fd_file(f),
2239 (can_sleep) ? F_SETLKW : F_SETLK,
2240 &fl);
2241 else
2242 error = locks_lock_file_wait(fd_file(f), &fl);
2243
2244 locks_release_private(&fl);
2245 return error;
2246 }
2247
2248 /**
2249 * vfs_test_lock - test file byte range lock
2250 * @filp: The file to test lock for
2251 * @fl: The byte-range in the file to test; also used to hold result
2252 *
2253 * On entry, @fl does not contain a lock, but identifies a range (fl_start, fl_end)
2254 * in the file (c.flc_file), and an owner (c.flc_owner) for whom existing locks
2255 * should be ignored. c.flc_type and c.flc_flags are ignored.
2256 * Both fl_lmops and fl_ops in @fl must be NULL.
2257 * Returns -ERRNO on failure. Indicates presence of conflicting lock by
2258 * setting fl->fl_type to something other than F_UNLCK.
2259 *
2260 * If vfs_test_lock() does find a lock and return it, the caller must
2261 * use locks_free_lock() or locks_release_private() on the returned lock.
2262 */
vfs_test_lock(struct file * filp,struct file_lock * fl)2263 int vfs_test_lock(struct file *filp, struct file_lock *fl)
2264 {
2265 int error = 0;
2266
2267 WARN_ON_ONCE(fl->fl_ops || fl->fl_lmops);
2268 WARN_ON_ONCE(filp != fl->c.flc_file);
2269 if (filp->f_op->lock)
2270 error = filp->f_op->lock(filp, F_GETLK, fl);
2271 else
2272 posix_test_lock(filp, fl);
2273
2274 /*
2275 * We don't expect FILE_LOCK_DEFERRED and callers cannot
2276 * handle it.
2277 */
2278 if (WARN_ON_ONCE(error == FILE_LOCK_DEFERRED))
2279 error = -EIO;
2280
2281 return error;
2282 }
2283 EXPORT_SYMBOL_GPL(vfs_test_lock);
2284
2285 /**
2286 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2287 * @fl: The file_lock who's fl_pid should be translated
2288 * @ns: The namespace into which the pid should be translated
2289 *
2290 * Used to translate a fl_pid into a namespace virtual pid number
2291 */
locks_translate_pid(struct file_lock_core * fl,struct pid_namespace * ns)2292 static pid_t locks_translate_pid(struct file_lock_core *fl, struct pid_namespace *ns)
2293 {
2294 pid_t vnr;
2295 struct pid *pid;
2296
2297 if (fl->flc_flags & FL_OFDLCK)
2298 return -1;
2299
2300 /* Remote locks report a negative pid value */
2301 if (fl->flc_pid <= 0)
2302 return fl->flc_pid;
2303
2304 /*
2305 * If the flock owner process is dead and its pid has been already
2306 * freed, the translation below won't work, but we still want to show
2307 * flock owner pid number in init pidns.
2308 */
2309 if (ns == &init_pid_ns)
2310 return (pid_t) fl->flc_pid;
2311
2312 rcu_read_lock();
2313 pid = find_pid_ns(fl->flc_pid, &init_pid_ns);
2314 vnr = pid_nr_ns(pid, ns);
2315 rcu_read_unlock();
2316 return vnr;
2317 }
2318
posix_lock_to_flock(struct flock * flock,struct file_lock * fl)2319 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2320 {
2321 flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current));
2322 #if BITS_PER_LONG == 32
2323 /*
2324 * Make sure we can represent the posix lock via
2325 * legacy 32bit flock.
2326 */
2327 if (fl->fl_start > OFFT_OFFSET_MAX)
2328 return -EOVERFLOW;
2329 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2330 return -EOVERFLOW;
2331 #endif
2332 flock->l_start = fl->fl_start;
2333 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2334 fl->fl_end - fl->fl_start + 1;
2335 flock->l_whence = 0;
2336 flock->l_type = fl->c.flc_type;
2337 return 0;
2338 }
2339
2340 #if BITS_PER_LONG == 32
posix_lock_to_flock64(struct flock64 * flock,struct file_lock * fl)2341 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2342 {
2343 flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current));
2344 flock->l_start = fl->fl_start;
2345 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2346 fl->fl_end - fl->fl_start + 1;
2347 flock->l_whence = 0;
2348 flock->l_type = fl->c.flc_type;
2349 }
2350 #endif
2351
2352 /* Report the first existing lock that would conflict with l.
2353 * This implements the F_GETLK command of fcntl().
2354 */
fcntl_getlk(struct file * filp,unsigned int cmd,struct flock * flock)2355 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2356 {
2357 struct file_lock *fl;
2358 int error;
2359
2360 fl = locks_alloc_lock();
2361 if (fl == NULL)
2362 return -ENOMEM;
2363 error = -EINVAL;
2364 if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK
2365 && flock->l_type != F_WRLCK)
2366 goto out;
2367
2368 error = flock_to_posix_lock(filp, fl, flock);
2369 if (error)
2370 goto out;
2371
2372 if (cmd == F_OFD_GETLK) {
2373 error = -EINVAL;
2374 if (flock->l_pid != 0)
2375 goto out;
2376
2377 fl->c.flc_flags |= FL_OFDLCK;
2378 fl->c.flc_owner = filp;
2379 }
2380
2381 error = vfs_test_lock(filp, fl);
2382 if (error)
2383 goto out;
2384
2385 flock->l_type = fl->c.flc_type;
2386 if (fl->c.flc_type != F_UNLCK) {
2387 error = posix_lock_to_flock(flock, fl);
2388 if (error)
2389 goto out;
2390 }
2391 out:
2392 locks_free_lock(fl);
2393 return error;
2394 }
2395
2396 /**
2397 * vfs_lock_file - file byte range lock
2398 * @filp: The file to apply the lock to
2399 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2400 * @fl: The lock to be applied
2401 * @conf: Place to return a copy of the conflicting lock, if found.
2402 *
2403 * A caller that doesn't care about the conflicting lock may pass NULL
2404 * as the final argument.
2405 *
2406 * If the filesystem defines a private ->lock() method, then @conf will
2407 * be left unchanged; so a caller that cares should initialize it to
2408 * some acceptable default.
2409 *
2410 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2411 * locks, the ->lock() interface may return asynchronously, before the lock has
2412 * been granted or denied by the underlying filesystem, if (and only if)
2413 * lm_grant is set. Additionally FOP_ASYNC_LOCK in file_operations fop_flags
2414 * need to be set.
2415 *
2416 * Callers expecting ->lock() to return asynchronously will only use F_SETLK,
2417 * not F_SETLKW; they will set FL_SLEEP if (and only if) the request is for a
2418 * blocking lock. When ->lock() does return asynchronously, it must return
2419 * FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock request completes.
2420 * If the request is for non-blocking lock the file system should return
2421 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2422 * with the result. If the request timed out the callback routine will return a
2423 * nonzero return code and the file system should release the lock. The file
2424 * system is also responsible to keep a corresponding posix lock when it
2425 * grants a lock so the VFS can find out which locks are locally held and do
2426 * the correct lock cleanup when required.
2427 * The underlying filesystem must not drop the kernel lock or call
2428 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2429 * return code.
2430 */
vfs_lock_file(struct file * filp,unsigned int cmd,struct file_lock * fl,struct file_lock * conf)2431 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2432 {
2433 WARN_ON_ONCE(filp != fl->c.flc_file);
2434 if (filp->f_op->lock)
2435 return filp->f_op->lock(filp, cmd, fl);
2436 else
2437 return posix_lock_file(filp, fl, conf);
2438 }
2439 EXPORT_SYMBOL_GPL(vfs_lock_file);
2440
do_lock_file_wait(struct file * filp,unsigned int cmd,struct file_lock * fl)2441 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2442 struct file_lock *fl)
2443 {
2444 int error;
2445
2446 error = security_file_lock(filp, fl->c.flc_type);
2447 if (error)
2448 return error;
2449
2450 for (;;) {
2451 error = vfs_lock_file(filp, cmd, fl, NULL);
2452 if (error != FILE_LOCK_DEFERRED)
2453 break;
2454 error = wait_event_interruptible(fl->c.flc_wait,
2455 list_empty(&fl->c.flc_blocked_member));
2456 if (error)
2457 break;
2458 }
2459 locks_delete_block(fl);
2460
2461 return error;
2462 }
2463
2464 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2465 static int
check_fmode_for_setlk(struct file_lock * fl)2466 check_fmode_for_setlk(struct file_lock *fl)
2467 {
2468 switch (fl->c.flc_type) {
2469 case F_RDLCK:
2470 if (!(fl->c.flc_file->f_mode & FMODE_READ))
2471 return -EBADF;
2472 break;
2473 case F_WRLCK:
2474 if (!(fl->c.flc_file->f_mode & FMODE_WRITE))
2475 return -EBADF;
2476 }
2477 return 0;
2478 }
2479
2480 /* Apply the lock described by l to an open file descriptor.
2481 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2482 */
fcntl_setlk(unsigned int fd,struct file * filp,unsigned int cmd,struct flock * flock)2483 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2484 struct flock *flock)
2485 {
2486 struct file_lock *file_lock = locks_alloc_lock();
2487 struct inode *inode = file_inode(filp);
2488 struct file *f;
2489 int error;
2490
2491 if (file_lock == NULL)
2492 return -ENOLCK;
2493
2494 error = flock_to_posix_lock(filp, file_lock, flock);
2495 if (error)
2496 goto out;
2497
2498 error = check_fmode_for_setlk(file_lock);
2499 if (error)
2500 goto out;
2501
2502 /*
2503 * If the cmd is requesting file-private locks, then set the
2504 * FL_OFDLCK flag and override the owner.
2505 */
2506 switch (cmd) {
2507 case F_OFD_SETLK:
2508 error = -EINVAL;
2509 if (flock->l_pid != 0)
2510 goto out;
2511
2512 cmd = F_SETLK;
2513 file_lock->c.flc_flags |= FL_OFDLCK;
2514 file_lock->c.flc_owner = filp;
2515 break;
2516 case F_OFD_SETLKW:
2517 error = -EINVAL;
2518 if (flock->l_pid != 0)
2519 goto out;
2520
2521 cmd = F_SETLKW;
2522 file_lock->c.flc_flags |= FL_OFDLCK;
2523 file_lock->c.flc_owner = filp;
2524 fallthrough;
2525 case F_SETLKW:
2526 file_lock->c.flc_flags |= FL_SLEEP;
2527 }
2528
2529 error = do_lock_file_wait(filp, cmd, file_lock);
2530
2531 /*
2532 * Detect close/fcntl races and recover by zapping all POSIX locks
2533 * associated with this file and our files_struct, just like on
2534 * filp_flush(). There is no need to do that when we're
2535 * unlocking though, or for OFD locks.
2536 */
2537 if (!error && file_lock->c.flc_type != F_UNLCK &&
2538 !(file_lock->c.flc_flags & FL_OFDLCK)) {
2539 struct files_struct *files = current->files;
2540 /*
2541 * We need that spin_lock here - it prevents reordering between
2542 * update of i_flctx->flc_posix and check for it done in
2543 * close(). rcu_read_lock() wouldn't do.
2544 */
2545 spin_lock(&files->file_lock);
2546 f = files_lookup_fd_locked(files, fd);
2547 spin_unlock(&files->file_lock);
2548 if (f != filp) {
2549 locks_remove_posix(filp, files);
2550 error = -EBADF;
2551 }
2552 }
2553 out:
2554 trace_fcntl_setlk(inode, file_lock, error);
2555 locks_free_lock(file_lock);
2556 return error;
2557 }
2558
2559 #if BITS_PER_LONG == 32
2560 /* Report the first existing lock that would conflict with l.
2561 * This implements the F_GETLK command of fcntl().
2562 */
fcntl_getlk64(struct file * filp,unsigned int cmd,struct flock64 * flock)2563 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2564 {
2565 struct file_lock *fl;
2566 int error;
2567
2568 fl = locks_alloc_lock();
2569 if (fl == NULL)
2570 return -ENOMEM;
2571
2572 error = -EINVAL;
2573 if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK
2574 && flock->l_type != F_WRLCK)
2575 goto out;
2576
2577 error = flock64_to_posix_lock(filp, fl, flock);
2578 if (error)
2579 goto out;
2580
2581 if (cmd == F_OFD_GETLK) {
2582 error = -EINVAL;
2583 if (flock->l_pid != 0)
2584 goto out;
2585
2586 fl->c.flc_flags |= FL_OFDLCK;
2587 fl->c.flc_owner = filp;
2588 }
2589
2590 error = vfs_test_lock(filp, fl);
2591 if (error)
2592 goto out;
2593
2594 flock->l_type = fl->c.flc_type;
2595 if (fl->c.flc_type != F_UNLCK)
2596 posix_lock_to_flock64(flock, fl);
2597
2598 out:
2599 locks_free_lock(fl);
2600 return error;
2601 }
2602
2603 /* Apply the lock described by l to an open file descriptor.
2604 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2605 */
fcntl_setlk64(unsigned int fd,struct file * filp,unsigned int cmd,struct flock64 * flock)2606 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2607 struct flock64 *flock)
2608 {
2609 struct file_lock *file_lock = locks_alloc_lock();
2610 struct file *f;
2611 int error;
2612
2613 if (file_lock == NULL)
2614 return -ENOLCK;
2615
2616 error = flock64_to_posix_lock(filp, file_lock, flock);
2617 if (error)
2618 goto out;
2619
2620 error = check_fmode_for_setlk(file_lock);
2621 if (error)
2622 goto out;
2623
2624 /*
2625 * If the cmd is requesting file-private locks, then set the
2626 * FL_OFDLCK flag and override the owner.
2627 */
2628 switch (cmd) {
2629 case F_OFD_SETLK:
2630 error = -EINVAL;
2631 if (flock->l_pid != 0)
2632 goto out;
2633
2634 cmd = F_SETLK64;
2635 file_lock->c.flc_flags |= FL_OFDLCK;
2636 file_lock->c.flc_owner = filp;
2637 break;
2638 case F_OFD_SETLKW:
2639 error = -EINVAL;
2640 if (flock->l_pid != 0)
2641 goto out;
2642
2643 cmd = F_SETLKW64;
2644 file_lock->c.flc_flags |= FL_OFDLCK;
2645 file_lock->c.flc_owner = filp;
2646 fallthrough;
2647 case F_SETLKW64:
2648 file_lock->c.flc_flags |= FL_SLEEP;
2649 }
2650
2651 error = do_lock_file_wait(filp, cmd, file_lock);
2652
2653 /*
2654 * Detect close/fcntl races and recover by zapping all POSIX locks
2655 * associated with this file and our files_struct, just like on
2656 * filp_flush(). There is no need to do that when we're
2657 * unlocking though, or for OFD locks.
2658 */
2659 if (!error && file_lock->c.flc_type != F_UNLCK &&
2660 !(file_lock->c.flc_flags & FL_OFDLCK)) {
2661 struct files_struct *files = current->files;
2662 /*
2663 * We need that spin_lock here - it prevents reordering between
2664 * update of i_flctx->flc_posix and check for it done in
2665 * close(). rcu_read_lock() wouldn't do.
2666 */
2667 spin_lock(&files->file_lock);
2668 f = files_lookup_fd_locked(files, fd);
2669 spin_unlock(&files->file_lock);
2670 if (f != filp) {
2671 locks_remove_posix(filp, files);
2672 error = -EBADF;
2673 }
2674 }
2675 out:
2676 locks_free_lock(file_lock);
2677 return error;
2678 }
2679 #endif /* BITS_PER_LONG == 32 */
2680
2681 /*
2682 * This function is called when the file is being removed
2683 * from the task's fd array. POSIX locks belonging to this task
2684 * are deleted at this time.
2685 */
locks_remove_posix(struct file * filp,fl_owner_t owner)2686 void locks_remove_posix(struct file *filp, fl_owner_t owner)
2687 {
2688 int error;
2689 struct inode *inode = file_inode(filp);
2690 struct file_lock lock;
2691 struct file_lock_context *ctx;
2692
2693 /*
2694 * If there are no locks held on this file, we don't need to call
2695 * posix_lock_file(). Another process could be setting a lock on this
2696 * file at the same time, but we wouldn't remove that lock anyway.
2697 */
2698 ctx = locks_inode_context(inode);
2699 if (!ctx || list_empty(&ctx->flc_posix))
2700 return;
2701
2702 locks_init_lock(&lock);
2703 lock.c.flc_type = F_UNLCK;
2704 lock.c.flc_flags = FL_POSIX | FL_CLOSE;
2705 lock.fl_start = 0;
2706 lock.fl_end = OFFSET_MAX;
2707 lock.c.flc_owner = owner;
2708 lock.c.flc_pid = current->tgid;
2709 lock.c.flc_file = filp;
2710 lock.fl_ops = NULL;
2711 lock.fl_lmops = NULL;
2712
2713 error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2714
2715 if (lock.fl_ops && lock.fl_ops->fl_release_private)
2716 lock.fl_ops->fl_release_private(&lock);
2717 trace_locks_remove_posix(inode, &lock, error);
2718 }
2719 EXPORT_SYMBOL(locks_remove_posix);
2720
2721 /* The i_flctx must be valid when calling into here */
2722 static void
locks_remove_flock(struct file * filp,struct file_lock_context * flctx)2723 locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2724 {
2725 struct file_lock fl;
2726 struct inode *inode = file_inode(filp);
2727
2728 if (list_empty(&flctx->flc_flock))
2729 return;
2730
2731 flock_make_lock(filp, &fl, F_UNLCK);
2732 fl.c.flc_flags |= FL_CLOSE;
2733
2734 if (filp->f_op->flock)
2735 filp->f_op->flock(filp, F_SETLKW, &fl);
2736 else
2737 flock_lock_inode(inode, &fl);
2738
2739 if (fl.fl_ops && fl.fl_ops->fl_release_private)
2740 fl.fl_ops->fl_release_private(&fl);
2741 }
2742
2743 /* The i_flctx must be valid when calling into here */
2744 static void
locks_remove_lease(struct file * filp,struct file_lock_context * ctx)2745 locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2746 {
2747 struct file_lease *fl, *tmp;
2748 LIST_HEAD(dispose);
2749
2750 if (list_empty(&ctx->flc_lease))
2751 return;
2752
2753 percpu_down_read(&file_rwsem);
2754 spin_lock(&ctx->flc_lock);
2755 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list)
2756 if (filp == fl->c.flc_file)
2757 lease_modify(fl, F_UNLCK, &dispose);
2758 spin_unlock(&ctx->flc_lock);
2759 percpu_up_read(&file_rwsem);
2760
2761 lease_dispose_list(&dispose);
2762 }
2763
2764 /*
2765 * This function is called on the last close of an open file.
2766 */
locks_remove_file(struct file * filp)2767 void locks_remove_file(struct file *filp)
2768 {
2769 struct file_lock_context *ctx;
2770
2771 ctx = locks_inode_context(file_inode(filp));
2772 if (!ctx)
2773 return;
2774
2775 /* remove any OFD locks */
2776 locks_remove_posix(filp, filp);
2777
2778 /* remove flock locks */
2779 locks_remove_flock(filp, ctx);
2780
2781 /* remove any leases */
2782 locks_remove_lease(filp, ctx);
2783
2784 spin_lock(&ctx->flc_lock);
2785 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2786 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2787 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2788 spin_unlock(&ctx->flc_lock);
2789 }
2790
2791 /**
2792 * vfs_cancel_lock - file byte range unblock lock
2793 * @filp: The file to apply the unblock to
2794 * @fl: The lock to be unblocked
2795 *
2796 * Used by lock managers to cancel blocked requests
2797 */
vfs_cancel_lock(struct file * filp,struct file_lock * fl)2798 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2799 {
2800 WARN_ON_ONCE(filp != fl->c.flc_file);
2801 if (filp->f_op->lock)
2802 return filp->f_op->lock(filp, F_CANCELLK, fl);
2803 return 0;
2804 }
2805 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2806
2807 /**
2808 * vfs_inode_has_locks - are any file locks held on @inode?
2809 * @inode: inode to check for locks
2810 *
2811 * Return true if there are any FL_POSIX or FL_FLOCK locks currently
2812 * set on @inode.
2813 */
vfs_inode_has_locks(struct inode * inode)2814 bool vfs_inode_has_locks(struct inode *inode)
2815 {
2816 struct file_lock_context *ctx;
2817 bool ret;
2818
2819 ctx = locks_inode_context(inode);
2820 if (!ctx)
2821 return false;
2822
2823 spin_lock(&ctx->flc_lock);
2824 ret = !list_empty(&ctx->flc_posix) || !list_empty(&ctx->flc_flock);
2825 spin_unlock(&ctx->flc_lock);
2826 return ret;
2827 }
2828 EXPORT_SYMBOL_GPL(vfs_inode_has_locks);
2829
2830 #ifdef CONFIG_PROC_FS
2831 #include <linux/proc_fs.h>
2832 #include <linux/seq_file.h>
2833
2834 struct locks_iterator {
2835 int li_cpu;
2836 loff_t li_pos;
2837 };
2838
lock_get_status(struct seq_file * f,struct file_lock_core * flc,loff_t id,char * pfx,int repeat)2839 static void lock_get_status(struct seq_file *f, struct file_lock_core *flc,
2840 loff_t id, char *pfx, int repeat)
2841 {
2842 struct inode *inode = NULL;
2843 unsigned int pid;
2844 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2845 int type = flc->flc_type;
2846 struct file_lock *fl = file_lock(flc);
2847
2848 pid = locks_translate_pid(flc, proc_pidns);
2849
2850 /*
2851 * If lock owner is dead (and pid is freed) or not visible in current
2852 * pidns, zero is shown as a pid value. Check lock info from
2853 * init_pid_ns to get saved lock pid value.
2854 */
2855 if (flc->flc_file != NULL)
2856 inode = file_inode(flc->flc_file);
2857
2858 seq_printf(f, "%lld: ", id);
2859
2860 if (repeat)
2861 seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx);
2862
2863 if (flc->flc_flags & FL_POSIX) {
2864 if (flc->flc_flags & FL_ACCESS)
2865 seq_puts(f, "ACCESS");
2866 else if (flc->flc_flags & FL_OFDLCK)
2867 seq_puts(f, "OFDLCK");
2868 else
2869 seq_puts(f, "POSIX ");
2870
2871 seq_printf(f, " %s ",
2872 (inode == NULL) ? "*NOINODE*" : "ADVISORY ");
2873 } else if (flc->flc_flags & FL_FLOCK) {
2874 seq_puts(f, "FLOCK ADVISORY ");
2875 } else if (flc->flc_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) {
2876 struct file_lease *lease = file_lease(flc);
2877
2878 type = target_leasetype(lease);
2879
2880 if (flc->flc_flags & FL_DELEG)
2881 seq_puts(f, "DELEG ");
2882 else
2883 seq_puts(f, "LEASE ");
2884
2885 if (lease_breaking(lease))
2886 seq_puts(f, "BREAKING ");
2887 else if (flc->flc_file)
2888 seq_puts(f, "ACTIVE ");
2889 else
2890 seq_puts(f, "BREAKER ");
2891 } else {
2892 seq_puts(f, "UNKNOWN UNKNOWN ");
2893 }
2894
2895 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2896 (type == F_RDLCK) ? "READ" : "UNLCK");
2897 if (inode) {
2898 /* userspace relies on this representation of dev_t */
2899 seq_printf(f, "%d %02x:%02x:%lu ", pid,
2900 MAJOR(inode->i_sb->s_dev),
2901 MINOR(inode->i_sb->s_dev), inode->i_ino);
2902 } else {
2903 seq_printf(f, "%d <none>:0 ", pid);
2904 }
2905 if (flc->flc_flags & FL_POSIX) {
2906 if (fl->fl_end == OFFSET_MAX)
2907 seq_printf(f, "%Ld EOF\n", fl->fl_start);
2908 else
2909 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2910 } else {
2911 seq_puts(f, "0 EOF\n");
2912 }
2913 }
2914
get_next_blocked_member(struct file_lock_core * node)2915 static struct file_lock_core *get_next_blocked_member(struct file_lock_core *node)
2916 {
2917 struct file_lock_core *tmp;
2918
2919 /* NULL node or root node */
2920 if (node == NULL || node->flc_blocker == NULL)
2921 return NULL;
2922
2923 /* Next member in the linked list could be itself */
2924 tmp = list_next_entry(node, flc_blocked_member);
2925 if (list_entry_is_head(tmp, &node->flc_blocker->flc_blocked_requests,
2926 flc_blocked_member)
2927 || tmp == node) {
2928 return NULL;
2929 }
2930
2931 return tmp;
2932 }
2933
locks_show(struct seq_file * f,void * v)2934 static int locks_show(struct seq_file *f, void *v)
2935 {
2936 struct locks_iterator *iter = f->private;
2937 struct file_lock_core *cur, *tmp;
2938 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2939 int level = 0;
2940
2941 cur = hlist_entry(v, struct file_lock_core, flc_link);
2942
2943 if (locks_translate_pid(cur, proc_pidns) == 0)
2944 return 0;
2945
2946 /* View this crossed linked list as a binary tree, the first member of flc_blocked_requests
2947 * is the left child of current node, the next silibing in flc_blocked_member is the
2948 * right child, we can alse get the parent of current node from flc_blocker, so this
2949 * question becomes traversal of a binary tree
2950 */
2951 while (cur != NULL) {
2952 if (level)
2953 lock_get_status(f, cur, iter->li_pos, "-> ", level);
2954 else
2955 lock_get_status(f, cur, iter->li_pos, "", level);
2956
2957 if (!list_empty(&cur->flc_blocked_requests)) {
2958 /* Turn left */
2959 cur = list_first_entry_or_null(&cur->flc_blocked_requests,
2960 struct file_lock_core,
2961 flc_blocked_member);
2962 level++;
2963 } else {
2964 /* Turn right */
2965 tmp = get_next_blocked_member(cur);
2966 /* Fall back to parent node */
2967 while (tmp == NULL && cur->flc_blocker != NULL) {
2968 cur = cur->flc_blocker;
2969 level--;
2970 tmp = get_next_blocked_member(cur);
2971 }
2972 cur = tmp;
2973 }
2974 }
2975
2976 return 0;
2977 }
2978
__show_fd_locks(struct seq_file * f,struct list_head * head,int * id,struct file * filp,struct files_struct * files)2979 static void __show_fd_locks(struct seq_file *f,
2980 struct list_head *head, int *id,
2981 struct file *filp, struct files_struct *files)
2982 {
2983 struct file_lock_core *fl;
2984
2985 list_for_each_entry(fl, head, flc_list) {
2986
2987 if (filp != fl->flc_file)
2988 continue;
2989 if (fl->flc_owner != files && fl->flc_owner != filp)
2990 continue;
2991
2992 (*id)++;
2993 seq_puts(f, "lock:\t");
2994 lock_get_status(f, fl, *id, "", 0);
2995 }
2996 }
2997
show_fd_locks(struct seq_file * f,struct file * filp,struct files_struct * files)2998 void show_fd_locks(struct seq_file *f,
2999 struct file *filp, struct files_struct *files)
3000 {
3001 struct inode *inode = file_inode(filp);
3002 struct file_lock_context *ctx;
3003 int id = 0;
3004
3005 ctx = locks_inode_context(inode);
3006 if (!ctx)
3007 return;
3008
3009 spin_lock(&ctx->flc_lock);
3010 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
3011 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
3012 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
3013 spin_unlock(&ctx->flc_lock);
3014 }
3015
locks_start(struct seq_file * f,loff_t * pos)3016 static void *locks_start(struct seq_file *f, loff_t *pos)
3017 __acquires(&blocked_lock_lock)
3018 {
3019 struct locks_iterator *iter = f->private;
3020
3021 iter->li_pos = *pos + 1;
3022 percpu_down_write(&file_rwsem);
3023 spin_lock(&blocked_lock_lock);
3024 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
3025 }
3026
locks_next(struct seq_file * f,void * v,loff_t * pos)3027 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
3028 {
3029 struct locks_iterator *iter = f->private;
3030
3031 ++iter->li_pos;
3032 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
3033 }
3034
locks_stop(struct seq_file * f,void * v)3035 static void locks_stop(struct seq_file *f, void *v)
3036 __releases(&blocked_lock_lock)
3037 {
3038 spin_unlock(&blocked_lock_lock);
3039 percpu_up_write(&file_rwsem);
3040 }
3041
3042 static const struct seq_operations locks_seq_operations = {
3043 .start = locks_start,
3044 .next = locks_next,
3045 .stop = locks_stop,
3046 .show = locks_show,
3047 };
3048
proc_locks_init(void)3049 static int __init proc_locks_init(void)
3050 {
3051 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
3052 sizeof(struct locks_iterator), NULL);
3053 return 0;
3054 }
3055 fs_initcall(proc_locks_init);
3056 #endif
3057
filelock_init(void)3058 static int __init filelock_init(void)
3059 {
3060 int i;
3061
3062 flctx_cache = kmem_cache_create("file_lock_ctx",
3063 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
3064
3065 filelock_cache = kmem_cache_create("file_lock_cache",
3066 sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
3067
3068 filelease_cache = kmem_cache_create("file_lease_cache",
3069 sizeof(struct file_lease), 0, SLAB_PANIC, NULL);
3070
3071 for_each_possible_cpu(i) {
3072 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
3073
3074 spin_lock_init(&fll->lock);
3075 INIT_HLIST_HEAD(&fll->hlist);
3076 }
3077
3078 lease_notifier_chain_init();
3079 return 0;
3080 }
3081 core_initcall(filelock_init);
3082