1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_UTIL_H
3 #define _BCACHEFS_UTIL_H
4
5 #include <linux/bio.h>
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kernel.h>
11 #include <linux/min_heap.h>
12 #include <linux/sched/clock.h>
13 #include <linux/llist.h>
14 #include <linux/log2.h>
15 #include <linux/percpu.h>
16 #include <linux/preempt.h>
17 #include <linux/random.h>
18 #include <linux/ratelimit.h>
19 #include <linux/slab.h>
20 #include <linux/sort.h>
21 #include <linux/vmalloc.h>
22 #include <linux/workqueue.h>
23
24 #include "mean_and_variance.h"
25
26 #include "darray.h"
27 #include "time_stats.h"
28
29 struct closure;
30
31 #ifdef CONFIG_BCACHEFS_DEBUG
32 #define EBUG_ON(cond) BUG_ON(cond)
33 #else
34 #define EBUG_ON(cond)
35 #endif
36
37 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
38 #define CPU_BIG_ENDIAN 0
39 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
40 #define CPU_BIG_ENDIAN 1
41 #endif
42
43 /* type hackery */
44
45 #define type_is_exact(_val, _type) \
46 __builtin_types_compatible_p(typeof(_val), _type)
47
48 #define type_is(_val, _type) \
49 (__builtin_types_compatible_p(typeof(_val), _type) || \
50 __builtin_types_compatible_p(typeof(_val), const _type))
51
52 /* Userspace doesn't align allocations as nicely as the kernel allocators: */
buf_pages(void * p,size_t len)53 static inline size_t buf_pages(void *p, size_t len)
54 {
55 return DIV_ROUND_UP(len +
56 ((unsigned long) p & (PAGE_SIZE - 1)),
57 PAGE_SIZE);
58 }
59
bch2_kvmalloc_noprof(size_t n,gfp_t flags)60 static inline void *bch2_kvmalloc_noprof(size_t n, gfp_t flags)
61 {
62 void *p = unlikely(n >= INT_MAX)
63 ? vmalloc_noprof(n)
64 : kvmalloc_noprof(n, flags & ~__GFP_ZERO);
65 if (p && (flags & __GFP_ZERO))
66 memset(p, 0, n);
67 return p;
68 }
69 #define bch2_kvmalloc(...) alloc_hooks(bch2_kvmalloc_noprof(__VA_ARGS__))
70
71 #define init_heap(heap, _size, gfp) \
72 ({ \
73 (heap)->nr = 0; \
74 (heap)->size = (_size); \
75 (heap)->data = kvmalloc((heap)->size * sizeof((heap)->data[0]),\
76 (gfp)); \
77 })
78
79 #define free_heap(heap) \
80 do { \
81 kvfree((heap)->data); \
82 (heap)->data = NULL; \
83 } while (0)
84
85 #define ANYSINT_MAX(t) \
86 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
87
88 #include "printbuf.h"
89
90 #define prt_vprintf(_out, ...) bch2_prt_vprintf(_out, __VA_ARGS__)
91 #define prt_printf(_out, ...) bch2_prt_printf(_out, __VA_ARGS__)
92 #define printbuf_str(_buf) bch2_printbuf_str(_buf)
93 #define printbuf_exit(_buf) bch2_printbuf_exit(_buf)
94
95 #define printbuf_tabstops_reset(_buf) bch2_printbuf_tabstops_reset(_buf)
96 #define printbuf_tabstop_pop(_buf) bch2_printbuf_tabstop_pop(_buf)
97 #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n)
98
99 #define printbuf_indent_add(_out, _n) bch2_printbuf_indent_add(_out, _n)
100 #define printbuf_indent_add_nextline(_out, _n) bch2_printbuf_indent_add_nextline(_out, _n)
101 #define printbuf_indent_sub(_out, _n) bch2_printbuf_indent_sub(_out, _n)
102
103 #define prt_newline(_out) bch2_prt_newline(_out)
104 #define prt_tab(_out) bch2_prt_tab(_out)
105 #define prt_tab_rjust(_out) bch2_prt_tab_rjust(_out)
106
107 #define prt_bytes_indented(...) bch2_prt_bytes_indented(__VA_ARGS__)
108 #define prt_u64(_out, _v) prt_printf(_out, "%llu", (u64) (_v))
109 #define prt_human_readable_u64(...) bch2_prt_human_readable_u64(__VA_ARGS__)
110 #define prt_human_readable_s64(...) bch2_prt_human_readable_s64(__VA_ARGS__)
111 #define prt_units_u64(...) bch2_prt_units_u64(__VA_ARGS__)
112 #define prt_units_s64(...) bch2_prt_units_s64(__VA_ARGS__)
113 #define prt_string_option(...) bch2_prt_string_option(__VA_ARGS__)
114 #define prt_bitflags(...) bch2_prt_bitflags(__VA_ARGS__)
115 #define prt_bitflags_vector(...) bch2_prt_bitflags_vector(__VA_ARGS__)
116
117 void bch2_pr_time_units(struct printbuf *, u64);
118 void bch2_prt_datetime(struct printbuf *, time64_t);
119
120 #ifdef __KERNEL__
uuid_unparse_lower(u8 * uuid,char * out)121 static inline void uuid_unparse_lower(u8 *uuid, char *out)
122 {
123 sprintf(out, "%pUb", uuid);
124 }
125 #else
126 #include <uuid/uuid.h>
127 #endif
128
pr_uuid(struct printbuf * out,u8 * uuid)129 static inline void pr_uuid(struct printbuf *out, u8 *uuid)
130 {
131 char uuid_str[40];
132
133 uuid_unparse_lower(uuid, uuid_str);
134 prt_printf(out, "%s", uuid_str);
135 }
136
137 int bch2_strtoint_h(const char *, int *);
138 int bch2_strtouint_h(const char *, unsigned int *);
139 int bch2_strtoll_h(const char *, long long *);
140 int bch2_strtoull_h(const char *, unsigned long long *);
141 int bch2_strtou64_h(const char *, u64 *);
142
bch2_strtol_h(const char * cp,long * res)143 static inline int bch2_strtol_h(const char *cp, long *res)
144 {
145 #if BITS_PER_LONG == 32
146 return bch2_strtoint_h(cp, (int *) res);
147 #else
148 return bch2_strtoll_h(cp, (long long *) res);
149 #endif
150 }
151
bch2_strtoul_h(const char * cp,long * res)152 static inline int bch2_strtoul_h(const char *cp, long *res)
153 {
154 #if BITS_PER_LONG == 32
155 return bch2_strtouint_h(cp, (unsigned int *) res);
156 #else
157 return bch2_strtoull_h(cp, (unsigned long long *) res);
158 #endif
159 }
160
161 #define strtoi_h(cp, res) \
162 ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\
163 : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\
164 : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\
165 : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\
166 : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\
167 : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\
168 : -EINVAL)
169
170 #define strtoul_safe(cp, var) \
171 ({ \
172 unsigned long _v; \
173 int _r = kstrtoul(cp, 10, &_v); \
174 if (!_r) \
175 var = _v; \
176 _r; \
177 })
178
179 #define strtoul_safe_clamp(cp, var, min, max) \
180 ({ \
181 unsigned long _v; \
182 int _r = kstrtoul(cp, 10, &_v); \
183 if (!_r) \
184 var = clamp_t(typeof(var), _v, min, max); \
185 _r; \
186 })
187
188 #define strtoul_safe_restrict(cp, var, min, max) \
189 ({ \
190 unsigned long _v; \
191 int _r = kstrtoul(cp, 10, &_v); \
192 if (!_r && _v >= min && _v <= max) \
193 var = _v; \
194 else \
195 _r = -EINVAL; \
196 _r; \
197 })
198
199 #define snprint(out, var) \
200 prt_printf(out, \
201 type_is(var, int) ? "%i\n" \
202 : type_is(var, unsigned) ? "%u\n" \
203 : type_is(var, long) ? "%li\n" \
204 : type_is(var, unsigned long) ? "%lu\n" \
205 : type_is(var, s64) ? "%lli\n" \
206 : type_is(var, u64) ? "%llu\n" \
207 : type_is(var, char *) ? "%s\n" \
208 : "%i\n", var)
209
210 bool bch2_is_zero(const void *, size_t);
211
212 u64 bch2_read_flag_list(const char *, const char * const[]);
213
214 void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned);
215 void bch2_prt_u64_base2(struct printbuf *, u64);
216
217 void bch2_print_string_as_lines(const char *, const char *);
218
219 typedef DARRAY(unsigned long) bch_stacktrace;
220 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned, gfp_t);
221 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *);
222 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned, gfp_t);
223
prt_bdevname(struct printbuf * out,struct block_device * bdev)224 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev)
225 {
226 #ifdef __KERNEL__
227 prt_printf(out, "%pg", bdev);
228 #else
229 prt_str(out, bdev->name);
230 #endif
231 }
232
233 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *);
234
235 #define ewma_add(ewma, val, weight) \
236 ({ \
237 typeof(ewma) _ewma = (ewma); \
238 typeof(weight) _weight = (weight); \
239 \
240 (((_ewma << _weight) - _ewma) + (val)) >> _weight; \
241 })
242
243 struct bch_ratelimit {
244 /* Next time we want to do some work, in nanoseconds */
245 u64 next;
246
247 /*
248 * Rate at which we want to do work, in units per nanosecond
249 * The units here correspond to the units passed to
250 * bch2_ratelimit_increment()
251 */
252 unsigned rate;
253 };
254
bch2_ratelimit_reset(struct bch_ratelimit * d)255 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d)
256 {
257 d->next = local_clock();
258 }
259
260 u64 bch2_ratelimit_delay(struct bch_ratelimit *);
261 void bch2_ratelimit_increment(struct bch_ratelimit *, u64);
262
263 struct bch_pd_controller {
264 struct bch_ratelimit rate;
265 unsigned long last_update;
266
267 s64 last_actual;
268 s64 smoothed_derivative;
269
270 unsigned p_term_inverse;
271 unsigned d_smooth;
272 unsigned d_term;
273
274 /* for exporting to sysfs (no effect on behavior) */
275 s64 last_derivative;
276 s64 last_proportional;
277 s64 last_change;
278 s64 last_target;
279
280 /*
281 * If true, the rate will not increase if bch2_ratelimit_delay()
282 * is not being called often enough.
283 */
284 bool backpressure;
285 };
286
287 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int);
288 void bch2_pd_controller_init(struct bch_pd_controller *);
289 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *);
290
291 #define sysfs_pd_controller_attribute(name) \
292 rw_attribute(name##_rate); \
293 rw_attribute(name##_rate_bytes); \
294 rw_attribute(name##_rate_d_term); \
295 rw_attribute(name##_rate_p_term_inverse); \
296 read_attribute(name##_rate_debug)
297
298 #define sysfs_pd_controller_files(name) \
299 &sysfs_##name##_rate, \
300 &sysfs_##name##_rate_bytes, \
301 &sysfs_##name##_rate_d_term, \
302 &sysfs_##name##_rate_p_term_inverse, \
303 &sysfs_##name##_rate_debug
304
305 #define sysfs_pd_controller_show(name, var) \
306 do { \
307 sysfs_hprint(name##_rate, (var)->rate.rate); \
308 sysfs_print(name##_rate_bytes, (var)->rate.rate); \
309 sysfs_print(name##_rate_d_term, (var)->d_term); \
310 sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \
311 \
312 if (attr == &sysfs_##name##_rate_debug) \
313 bch2_pd_controller_debug_to_text(out, var); \
314 } while (0)
315
316 #define sysfs_pd_controller_store(name, var) \
317 do { \
318 sysfs_strtoul_clamp(name##_rate, \
319 (var)->rate.rate, 1, UINT_MAX); \
320 sysfs_strtoul_clamp(name##_rate_bytes, \
321 (var)->rate.rate, 1, UINT_MAX); \
322 sysfs_strtoul(name##_rate_d_term, (var)->d_term); \
323 sysfs_strtoul_clamp(name##_rate_p_term_inverse, \
324 (var)->p_term_inverse, 1, INT_MAX); \
325 } while (0)
326
327 #define container_of_or_null(ptr, type, member) \
328 ({ \
329 typeof(ptr) _ptr = ptr; \
330 _ptr ? container_of(_ptr, type, member) : NULL; \
331 })
332
list_pop(struct list_head * head)333 static inline struct list_head *list_pop(struct list_head *head)
334 {
335 if (list_empty(head))
336 return NULL;
337
338 struct list_head *ret = head->next;
339 list_del_init(ret);
340 return ret;
341 }
342
343 #define list_pop_entry(head, type, member) \
344 container_of_or_null(list_pop(head), type, member)
345
346 /* Does linear interpolation between powers of two */
fract_exp_two(unsigned x,unsigned fract_bits)347 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
348 {
349 unsigned fract = x & ~(~0 << fract_bits);
350
351 x >>= fract_bits;
352 x = 1 << x;
353 x += (x * fract) >> fract_bits;
354
355 return x;
356 }
357
358 void bch2_bio_map(struct bio *bio, void *base, size_t);
359 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t);
360
361 #define closure_bio_submit(bio, cl) \
362 do { \
363 closure_get(cl); \
364 submit_bio(bio); \
365 } while (0)
366
367 #define kthread_wait(cond) \
368 ({ \
369 int _ret = 0; \
370 \
371 while (1) { \
372 set_current_state(TASK_INTERRUPTIBLE); \
373 if (kthread_should_stop()) { \
374 _ret = -1; \
375 break; \
376 } \
377 \
378 if (cond) \
379 break; \
380 \
381 schedule(); \
382 } \
383 set_current_state(TASK_RUNNING); \
384 _ret; \
385 })
386
387 #define kthread_wait_freezable(cond) \
388 ({ \
389 int _ret = 0; \
390 while (1) { \
391 set_current_state(TASK_INTERRUPTIBLE); \
392 if (kthread_should_stop()) { \
393 _ret = -1; \
394 break; \
395 } \
396 \
397 if (cond) \
398 break; \
399 \
400 schedule(); \
401 try_to_freeze(); \
402 } \
403 set_current_state(TASK_RUNNING); \
404 _ret; \
405 })
406
407 u64 bch2_get_random_u64_below(u64);
408
409 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *);
410 void memcpy_from_bio(void *, struct bio *, struct bvec_iter);
411
412 #ifdef CONFIG_BCACHEFS_DEBUG
413 void bch2_corrupt_bio(struct bio *);
414
bch2_maybe_corrupt_bio(struct bio * bio,unsigned ratio)415 static inline void bch2_maybe_corrupt_bio(struct bio *bio, unsigned ratio)
416 {
417 if (ratio && !get_random_u32_below(ratio))
418 bch2_corrupt_bio(bio);
419 }
420 #else
421 #define bch2_maybe_corrupt_bio(...) do {} while (0)
422 #endif
423
424 void bch2_bio_to_text(struct printbuf *, struct bio *);
425
memcpy_u64s_small(void * dst,const void * src,unsigned u64s)426 static inline void memcpy_u64s_small(void *dst, const void *src,
427 unsigned u64s)
428 {
429 u64 *d = dst;
430 const u64 *s = src;
431
432 while (u64s--)
433 *d++ = *s++;
434 }
435
__memcpy_u64s(void * dst,const void * src,unsigned u64s)436 static inline void __memcpy_u64s(void *dst, const void *src,
437 unsigned u64s)
438 {
439 #if defined(CONFIG_X86_64) && !defined(CONFIG_KMSAN)
440 long d0, d1, d2;
441
442 asm volatile("rep ; movsq"
443 : "=&c" (d0), "=&D" (d1), "=&S" (d2)
444 : "0" (u64s), "1" (dst), "2" (src)
445 : "memory");
446 #else
447 u64 *d = dst;
448 const u64 *s = src;
449
450 while (u64s--)
451 *d++ = *s++;
452 #endif
453 }
454
memcpy_u64s(void * dst,const void * src,unsigned u64s)455 static inline void memcpy_u64s(void *dst, const void *src,
456 unsigned u64s)
457 {
458 EBUG_ON(!(dst >= src + u64s * sizeof(u64) ||
459 dst + u64s * sizeof(u64) <= src));
460
461 __memcpy_u64s(dst, src, u64s);
462 }
463
__memmove_u64s_down(void * dst,const void * src,unsigned u64s)464 static inline void __memmove_u64s_down(void *dst, const void *src,
465 unsigned u64s)
466 {
467 __memcpy_u64s(dst, src, u64s);
468 }
469
memmove_u64s_down(void * dst,const void * src,unsigned u64s)470 static inline void memmove_u64s_down(void *dst, const void *src,
471 unsigned u64s)
472 {
473 EBUG_ON(dst > src);
474
475 __memmove_u64s_down(dst, src, u64s);
476 }
477
__memmove_u64s_down_small(void * dst,const void * src,unsigned u64s)478 static inline void __memmove_u64s_down_small(void *dst, const void *src,
479 unsigned u64s)
480 {
481 memcpy_u64s_small(dst, src, u64s);
482 }
483
memmove_u64s_down_small(void * dst,const void * src,unsigned u64s)484 static inline void memmove_u64s_down_small(void *dst, const void *src,
485 unsigned u64s)
486 {
487 EBUG_ON(dst > src);
488
489 __memmove_u64s_down_small(dst, src, u64s);
490 }
491
__memmove_u64s_up_small(void * _dst,const void * _src,unsigned u64s)492 static inline void __memmove_u64s_up_small(void *_dst, const void *_src,
493 unsigned u64s)
494 {
495 u64 *dst = (u64 *) _dst + u64s;
496 u64 *src = (u64 *) _src + u64s;
497
498 while (u64s--)
499 *--dst = *--src;
500 }
501
memmove_u64s_up_small(void * dst,const void * src,unsigned u64s)502 static inline void memmove_u64s_up_small(void *dst, const void *src,
503 unsigned u64s)
504 {
505 EBUG_ON(dst < src);
506
507 __memmove_u64s_up_small(dst, src, u64s);
508 }
509
__memmove_u64s_up(void * _dst,const void * _src,unsigned u64s)510 static inline void __memmove_u64s_up(void *_dst, const void *_src,
511 unsigned u64s)
512 {
513 u64 *dst = (u64 *) _dst + u64s - 1;
514 u64 *src = (u64 *) _src + u64s - 1;
515
516 #if defined(CONFIG_X86_64) && !defined(CONFIG_KMSAN)
517 long d0, d1, d2;
518
519 asm volatile("std ;\n"
520 "rep ; movsq\n"
521 "cld ;\n"
522 : "=&c" (d0), "=&D" (d1), "=&S" (d2)
523 : "0" (u64s), "1" (dst), "2" (src)
524 : "memory");
525 #else
526 while (u64s--)
527 *dst-- = *src--;
528 #endif
529 }
530
memmove_u64s_up(void * dst,const void * src,unsigned u64s)531 static inline void memmove_u64s_up(void *dst, const void *src,
532 unsigned u64s)
533 {
534 EBUG_ON(dst < src);
535
536 __memmove_u64s_up(dst, src, u64s);
537 }
538
memmove_u64s(void * dst,const void * src,unsigned u64s)539 static inline void memmove_u64s(void *dst, const void *src,
540 unsigned u64s)
541 {
542 if (dst < src)
543 __memmove_u64s_down(dst, src, u64s);
544 else
545 __memmove_u64s_up(dst, src, u64s);
546 }
547
548 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */
memset_u64s_tail(void * s,int c,unsigned bytes)549 static inline void memset_u64s_tail(void *s, int c, unsigned bytes)
550 {
551 unsigned rem = round_up(bytes, sizeof(u64)) - bytes;
552
553 memset(s + bytes, c, rem);
554 }
555
556 /* just the memmove, doesn't update @_nr */
557 #define __array_insert_item(_array, _nr, _pos) \
558 memmove(&(_array)[(_pos) + 1], \
559 &(_array)[(_pos)], \
560 sizeof((_array)[0]) * ((_nr) - (_pos)))
561
562 #define array_insert_item(_array, _nr, _pos, _new_item) \
563 do { \
564 __array_insert_item(_array, _nr, _pos); \
565 (_nr)++; \
566 (_array)[(_pos)] = (_new_item); \
567 } while (0)
568
569 #define array_remove_items(_array, _nr, _pos, _nr_to_remove) \
570 do { \
571 (_nr) -= (_nr_to_remove); \
572 memmove(&(_array)[(_pos)], \
573 &(_array)[(_pos) + (_nr_to_remove)], \
574 sizeof((_array)[0]) * ((_nr) - (_pos))); \
575 } while (0)
576
577 #define array_remove_item(_array, _nr, _pos) \
578 array_remove_items(_array, _nr, _pos, 1)
579
__move_gap(void * array,size_t element_size,size_t nr,size_t size,size_t old_gap,size_t new_gap)580 static inline void __move_gap(void *array, size_t element_size,
581 size_t nr, size_t size,
582 size_t old_gap, size_t new_gap)
583 {
584 size_t gap_end = old_gap + size - nr;
585
586 if (new_gap < old_gap) {
587 size_t move = old_gap - new_gap;
588
589 memmove(array + element_size * (gap_end - move),
590 array + element_size * (old_gap - move),
591 element_size * move);
592 } else if (new_gap > old_gap) {
593 size_t move = new_gap - old_gap;
594
595 memmove(array + element_size * old_gap,
596 array + element_size * gap_end,
597 element_size * move);
598 }
599 }
600
601 /* Move the gap in a gap buffer: */
602 #define move_gap(_d, _new_gap) \
603 do { \
604 BUG_ON(_new_gap > (_d)->nr); \
605 BUG_ON((_d)->gap > (_d)->nr); \
606 \
607 __move_gap((_d)->data, sizeof((_d)->data[0]), \
608 (_d)->nr, (_d)->size, (_d)->gap, _new_gap); \
609 (_d)->gap = _new_gap; \
610 } while (0)
611
612 #define bubble_sort(_base, _nr, _cmp) \
613 do { \
614 ssize_t _i, _last; \
615 bool _swapped = true; \
616 \
617 for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\
618 _swapped = false; \
619 for (_i = 0; _i < _last; _i++) \
620 if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \
621 swap((_base)[_i], (_base)[_i + 1]); \
622 _swapped = true; \
623 } \
624 } \
625 } while (0)
626
627 #define per_cpu_sum(_p) \
628 ({ \
629 TYPEOF_UNQUAL(*_p) _ret = 0; \
630 \
631 int cpu; \
632 for_each_possible_cpu(cpu) \
633 _ret += *per_cpu_ptr(_p, cpu); \
634 _ret; \
635 })
636
percpu_u64_get(u64 __percpu * src)637 static inline u64 percpu_u64_get(u64 __percpu *src)
638 {
639 return per_cpu_sum(src);
640 }
641
percpu_u64_set(u64 __percpu * dst,u64 src)642 static inline void percpu_u64_set(u64 __percpu *dst, u64 src)
643 {
644 int cpu;
645
646 for_each_possible_cpu(cpu)
647 *per_cpu_ptr(dst, cpu) = 0;
648 this_cpu_write(*dst, src);
649 }
650
acc_u64s(u64 * acc,const u64 * src,unsigned nr)651 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr)
652 {
653 for (unsigned i = 0; i < nr; i++)
654 acc[i] += src[i];
655 }
656
acc_u64s_percpu(u64 * acc,const u64 __percpu * src,unsigned nr)657 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src,
658 unsigned nr)
659 {
660 int cpu;
661
662 for_each_possible_cpu(cpu)
663 acc_u64s(acc, per_cpu_ptr(src, cpu), nr);
664 }
665
percpu_memset(void __percpu * p,int c,size_t bytes)666 static inline void percpu_memset(void __percpu *p, int c, size_t bytes)
667 {
668 int cpu;
669
670 for_each_possible_cpu(cpu)
671 memset(per_cpu_ptr(p, cpu), c, bytes);
672 }
673
674 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned);
675
u8_cmp(u8 l,u8 r)676 static inline int u8_cmp(u8 l, u8 r)
677 {
678 return cmp_int(l, r);
679 }
680
cmp_le32(__le32 l,__le32 r)681 static inline int cmp_le32(__le32 l, __le32 r)
682 {
683 return cmp_int(le32_to_cpu(l), le32_to_cpu(r));
684 }
685
686 #include <linux/uuid.h>
687
qstr_eq(const struct qstr l,const struct qstr r)688 static inline bool qstr_eq(const struct qstr l, const struct qstr r)
689 {
690 return l.len == r.len && !memcmp(l.name, r.name, l.len);
691 }
692
693 void bch2_darray_str_exit(darray_const_str *);
694 int bch2_split_devs(const char *, darray_const_str *);
695
696 #ifdef __KERNEL__
697
698 __must_check
copy_to_user_errcode(void __user * to,const void * from,unsigned long n)699 static inline int copy_to_user_errcode(void __user *to, const void *from, unsigned long n)
700 {
701 return copy_to_user(to, from, n) ? -EFAULT : 0;
702 }
703
704 __must_check
copy_from_user_errcode(void * to,const void __user * from,unsigned long n)705 static inline int copy_from_user_errcode(void *to, const void __user *from, unsigned long n)
706 {
707 return copy_from_user(to, from, n) ? -EFAULT : 0;
708 }
709
710 #endif
711
mod_bit(long nr,volatile unsigned long * addr,bool v)712 static inline void mod_bit(long nr, volatile unsigned long *addr, bool v)
713 {
714 if (v)
715 set_bit(nr, addr);
716 else
717 clear_bit(nr, addr);
718 }
719
__set_bit_le64(size_t bit,__le64 * addr)720 static inline void __set_bit_le64(size_t bit, __le64 *addr)
721 {
722 addr[bit / 64] |= cpu_to_le64(BIT_ULL(bit % 64));
723 }
724
__clear_bit_le64(size_t bit,__le64 * addr)725 static inline void __clear_bit_le64(size_t bit, __le64 *addr)
726 {
727 addr[bit / 64] &= ~cpu_to_le64(BIT_ULL(bit % 64));
728 }
729
test_bit_le64(size_t bit,__le64 * addr)730 static inline bool test_bit_le64(size_t bit, __le64 *addr)
731 {
732 return (addr[bit / 64] & cpu_to_le64(BIT_ULL(bit % 64))) != 0;
733 }
734
memcpy_swab(void * _dst,void * _src,size_t len)735 static inline void memcpy_swab(void *_dst, void *_src, size_t len)
736 {
737 u8 *dst = _dst + len;
738 u8 *src = _src;
739
740 while (len--)
741 *--dst = *src++;
742 }
743
744 #define set_flags(_map, _in, _out) \
745 do { \
746 unsigned _i; \
747 \
748 for (_i = 0; _i < ARRAY_SIZE(_map); _i++) \
749 if ((_in) & (1 << _i)) \
750 (_out) |= _map[_i]; \
751 else \
752 (_out) &= ~_map[_i]; \
753 } while (0)
754
755 #define map_flags(_map, _in) \
756 ({ \
757 unsigned _out = 0; \
758 \
759 set_flags(_map, _in, _out); \
760 _out; \
761 })
762
763 #define map_flags_rev(_map, _in) \
764 ({ \
765 unsigned _i, _out = 0; \
766 \
767 for (_i = 0; _i < ARRAY_SIZE(_map); _i++) \
768 if ((_in) & _map[_i]) { \
769 (_out) |= 1 << _i; \
770 (_in) &= ~_map[_i]; \
771 } \
772 (_out); \
773 })
774
775 #define map_defined(_map) \
776 ({ \
777 unsigned _in = ~0; \
778 \
779 map_flags_rev(_map, _in); \
780 })
781
782 #endif /* _BCACHEFS_UTIL_H */
783