1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "mem-info.h"
20 #include "path.h"
21 #include "srcline.h"
22 #include "symbol.h"
23 #include "synthetic-events.h"
24 #include "sort.h"
25 #include "strlist.h"
26 #include "target.h"
27 #include "thread.h"
28 #include "util.h"
29 #include "vdso.h"
30 #include <stdbool.h>
31 #include <sys/types.h>
32 #include <sys/stat.h>
33 #include <unistd.h>
34 #include "unwind.h"
35 #include "linux/hash.h"
36 #include "asm/bug.h"
37 #include "bpf-event.h"
38 #include <internal/lib.h> // page_size
39 #include "cgroup.h"
40 #include "arm64-frame-pointer-unwind-support.h"
41 #include <api/io_dir.h>
42
43 #include <linux/ctype.h>
44 #include <symbol/kallsyms.h>
45 #include <linux/mman.h>
46 #include <linux/string.h>
47 #include <linux/zalloc.h>
48
machine__kernel_dso(struct machine * machine)49 static struct dso *machine__kernel_dso(struct machine *machine)
50 {
51 return map__dso(machine->vmlinux_map);
52 }
53
machine__set_mmap_name(struct machine * machine)54 static int machine__set_mmap_name(struct machine *machine)
55 {
56 if (machine__is_host(machine))
57 machine->mmap_name = strdup("[kernel.kallsyms]");
58 else if (machine__is_default_guest(machine))
59 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
60 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
61 machine->pid) < 0)
62 machine->mmap_name = NULL;
63
64 return machine->mmap_name ? 0 : -ENOMEM;
65 }
66
thread__set_guest_comm(struct thread * thread,pid_t pid)67 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
68 {
69 char comm[64];
70
71 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
72 thread__set_comm(thread, comm, 0);
73 }
74
machine__init(struct machine * machine,const char * root_dir,pid_t pid)75 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
76 {
77 int err = -ENOMEM;
78
79 memset(machine, 0, sizeof(*machine));
80 machine->kmaps = maps__new(machine);
81 if (machine->kmaps == NULL)
82 return -ENOMEM;
83
84 RB_CLEAR_NODE(&machine->rb_node);
85 dsos__init(&machine->dsos);
86
87 threads__init(&machine->threads);
88
89 machine->vdso_info = NULL;
90 machine->env = NULL;
91
92 machine->pid = pid;
93
94 machine->id_hdr_size = 0;
95 machine->kptr_restrict_warned = false;
96 machine->comm_exec = false;
97 machine->kernel_start = 0;
98 machine->vmlinux_map = NULL;
99 /* There is no initial context switch in, so we start at 1. */
100 machine->parallelism = 1;
101
102 machine->root_dir = strdup(root_dir);
103 if (machine->root_dir == NULL)
104 goto out;
105
106 if (machine__set_mmap_name(machine))
107 goto out;
108
109 if (pid != HOST_KERNEL_ID) {
110 struct thread *thread = machine__findnew_thread(machine, -1,
111 pid);
112
113 if (thread == NULL)
114 goto out;
115
116 thread__set_guest_comm(thread, pid);
117 thread__put(thread);
118 }
119
120 machine->current_tid = NULL;
121 err = 0;
122
123 out:
124 if (err) {
125 zfree(&machine->kmaps);
126 zfree(&machine->root_dir);
127 zfree(&machine->mmap_name);
128 }
129 return 0;
130 }
131
__machine__new_host(struct perf_env * host_env,bool kernel_maps)132 static struct machine *__machine__new_host(struct perf_env *host_env, bool kernel_maps)
133 {
134 struct machine *machine = malloc(sizeof(*machine));
135
136 if (!machine)
137 return NULL;
138
139 machine__init(machine, "", HOST_KERNEL_ID);
140
141 if (kernel_maps && machine__create_kernel_maps(machine) < 0) {
142 free(machine);
143 return NULL;
144 }
145 machine->env = host_env;
146 return machine;
147 }
148
machine__new_host(struct perf_env * host_env)149 struct machine *machine__new_host(struct perf_env *host_env)
150 {
151 return __machine__new_host(host_env, /*kernel_maps=*/true);
152 }
153
mmap_handler(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine)154 static int mmap_handler(const struct perf_tool *tool __maybe_unused,
155 union perf_event *event,
156 struct perf_sample *sample,
157 struct machine *machine)
158 {
159 return machine__process_mmap2_event(machine, event, sample);
160 }
161
machine__init_live(struct machine * machine,pid_t pid)162 static int machine__init_live(struct machine *machine, pid_t pid)
163 {
164 union perf_event event;
165
166 memset(&event, 0, sizeof(event));
167 return perf_event__synthesize_mmap_events(NULL, &event, pid, pid,
168 mmap_handler, machine, true);
169 }
170
machine__new_live(struct perf_env * host_env,bool kernel_maps,pid_t pid)171 struct machine *machine__new_live(struct perf_env *host_env, bool kernel_maps, pid_t pid)
172 {
173 struct machine *machine = __machine__new_host(host_env, kernel_maps);
174
175 if (!machine)
176 return NULL;
177
178 if (machine__init_live(machine, pid)) {
179 machine__delete(machine);
180 return NULL;
181 }
182 return machine;
183 }
184
machine__new_kallsyms(struct perf_env * host_env)185 struct machine *machine__new_kallsyms(struct perf_env *host_env)
186 {
187 struct machine *machine = machine__new_host(host_env);
188 /*
189 * FIXME:
190 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
191 * ask for not using the kcore parsing code, once this one is fixed
192 * to create a map per module.
193 */
194 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
195 machine__delete(machine);
196 machine = NULL;
197 }
198
199 return machine;
200 }
201
machine__delete_threads(struct machine * machine)202 void machine__delete_threads(struct machine *machine)
203 {
204 threads__remove_all_threads(&machine->threads);
205 }
206
machine__exit(struct machine * machine)207 void machine__exit(struct machine *machine)
208 {
209 if (machine == NULL)
210 return;
211
212 machine__destroy_kernel_maps(machine);
213 maps__zput(machine->kmaps);
214 dsos__exit(&machine->dsos);
215 machine__exit_vdso(machine);
216 zfree(&machine->root_dir);
217 zfree(&machine->mmap_name);
218 zfree(&machine->current_tid);
219 zfree(&machine->kallsyms_filename);
220
221 threads__exit(&machine->threads);
222 }
223
machine__delete(struct machine * machine)224 void machine__delete(struct machine *machine)
225 {
226 if (machine) {
227 machine__exit(machine);
228 free(machine);
229 }
230 }
231
machines__init(struct machines * machines)232 void machines__init(struct machines *machines)
233 {
234 machine__init(&machines->host, "", HOST_KERNEL_ID);
235 machines->guests = RB_ROOT_CACHED;
236 }
237
machines__exit(struct machines * machines)238 void machines__exit(struct machines *machines)
239 {
240 machine__exit(&machines->host);
241 /* XXX exit guest */
242 }
243
machines__add(struct machines * machines,pid_t pid,const char * root_dir)244 struct machine *machines__add(struct machines *machines, pid_t pid,
245 const char *root_dir)
246 {
247 struct rb_node **p = &machines->guests.rb_root.rb_node;
248 struct rb_node *parent = NULL;
249 struct machine *pos, *machine = malloc(sizeof(*machine));
250 bool leftmost = true;
251
252 if (machine == NULL)
253 return NULL;
254
255 if (machine__init(machine, root_dir, pid) != 0) {
256 free(machine);
257 return NULL;
258 }
259
260 while (*p != NULL) {
261 parent = *p;
262 pos = rb_entry(parent, struct machine, rb_node);
263 if (pid < pos->pid)
264 p = &(*p)->rb_left;
265 else {
266 p = &(*p)->rb_right;
267 leftmost = false;
268 }
269 }
270
271 rb_link_node(&machine->rb_node, parent, p);
272 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
273
274 machine->machines = machines;
275
276 return machine;
277 }
278
machines__set_comm_exec(struct machines * machines,bool comm_exec)279 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
280 {
281 struct rb_node *nd;
282
283 machines->host.comm_exec = comm_exec;
284
285 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
286 struct machine *machine = rb_entry(nd, struct machine, rb_node);
287
288 machine->comm_exec = comm_exec;
289 }
290 }
291
machines__find(struct machines * machines,pid_t pid)292 struct machine *machines__find(struct machines *machines, pid_t pid)
293 {
294 struct rb_node **p = &machines->guests.rb_root.rb_node;
295 struct rb_node *parent = NULL;
296 struct machine *machine;
297 struct machine *default_machine = NULL;
298
299 if (pid == HOST_KERNEL_ID)
300 return &machines->host;
301
302 while (*p != NULL) {
303 parent = *p;
304 machine = rb_entry(parent, struct machine, rb_node);
305 if (pid < machine->pid)
306 p = &(*p)->rb_left;
307 else if (pid > machine->pid)
308 p = &(*p)->rb_right;
309 else
310 return machine;
311 if (!machine->pid)
312 default_machine = machine;
313 }
314
315 return default_machine;
316 }
317
machines__findnew(struct machines * machines,pid_t pid)318 struct machine *machines__findnew(struct machines *machines, pid_t pid)
319 {
320 char path[PATH_MAX];
321 const char *root_dir = "";
322 struct machine *machine = machines__find(machines, pid);
323
324 if (machine && (machine->pid == pid))
325 goto out;
326
327 if ((pid != HOST_KERNEL_ID) &&
328 (pid != DEFAULT_GUEST_KERNEL_ID) &&
329 (symbol_conf.guestmount)) {
330 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
331 if (access(path, R_OK)) {
332 static struct strlist *seen;
333
334 if (!seen)
335 seen = strlist__new(NULL, NULL);
336
337 if (!strlist__has_entry(seen, path)) {
338 pr_err("Can't access file %s\n", path);
339 strlist__add(seen, path);
340 }
341 machine = NULL;
342 goto out;
343 }
344 root_dir = path;
345 }
346
347 machine = machines__add(machines, pid, root_dir);
348 out:
349 return machine;
350 }
351
machines__find_guest(struct machines * machines,pid_t pid)352 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
353 {
354 struct machine *machine = machines__find(machines, pid);
355
356 if (!machine)
357 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
358 return machine;
359 }
360
361 /*
362 * A common case for KVM test programs is that the test program acts as the
363 * hypervisor, creating, running and destroying the virtual machine, and
364 * providing the guest object code from its own object code. In this case,
365 * the VM is not running an OS, but only the functions loaded into it by the
366 * hypervisor test program, and conveniently, loaded at the same virtual
367 * addresses.
368 *
369 * Normally to resolve addresses, MMAP events are needed to map addresses
370 * back to the object code and debug symbols for that object code.
371 *
372 * Currently, there is no way to get such mapping information from guests
373 * but, in the scenario described above, the guest has the same mappings
374 * as the hypervisor, so support for that scenario can be achieved.
375 *
376 * To support that, copy the host thread's maps to the guest thread's maps.
377 * Note, we do not discover the guest until we encounter a guest event,
378 * which works well because it is not until then that we know that the host
379 * thread's maps have been set up.
380 *
381 * This function returns the guest thread. Apart from keeping the data
382 * structures sane, using a thread belonging to the guest machine, instead
383 * of the host thread, allows it to have its own comm (refer
384 * thread__set_guest_comm()).
385 */
findnew_guest_code(struct machine * machine,struct machine * host_machine,pid_t pid)386 static struct thread *findnew_guest_code(struct machine *machine,
387 struct machine *host_machine,
388 pid_t pid)
389 {
390 struct thread *host_thread;
391 struct thread *thread;
392 int err;
393
394 if (!machine)
395 return NULL;
396
397 thread = machine__findnew_thread(machine, -1, pid);
398 if (!thread)
399 return NULL;
400
401 /* Assume maps are set up if there are any */
402 if (!maps__empty(thread__maps(thread)))
403 return thread;
404
405 host_thread = machine__find_thread(host_machine, -1, pid);
406 if (!host_thread)
407 goto out_err;
408
409 thread__set_guest_comm(thread, pid);
410
411 /*
412 * Guest code can be found in hypervisor process at the same address
413 * so copy host maps.
414 */
415 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
416 thread__put(host_thread);
417 if (err)
418 goto out_err;
419
420 return thread;
421
422 out_err:
423 thread__zput(thread);
424 return NULL;
425 }
426
machines__findnew_guest_code(struct machines * machines,pid_t pid)427 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
428 {
429 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
430 struct machine *machine = machines__findnew(machines, pid);
431
432 return findnew_guest_code(machine, host_machine, pid);
433 }
434
machine__findnew_guest_code(struct machine * machine,pid_t pid)435 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
436 {
437 struct machines *machines = machine->machines;
438 struct machine *host_machine;
439
440 if (!machines)
441 return NULL;
442
443 host_machine = machines__find(machines, HOST_KERNEL_ID);
444
445 return findnew_guest_code(machine, host_machine, pid);
446 }
447
machines__process_guests(struct machines * machines,machine__process_t process,void * data)448 void machines__process_guests(struct machines *machines,
449 machine__process_t process, void *data)
450 {
451 struct rb_node *nd;
452
453 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
454 struct machine *pos = rb_entry(nd, struct machine, rb_node);
455 process(pos, data);
456 }
457 }
458
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)459 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
460 {
461 struct rb_node *node;
462 struct machine *machine;
463
464 machines->host.id_hdr_size = id_hdr_size;
465
466 for (node = rb_first_cached(&machines->guests); node;
467 node = rb_next(node)) {
468 machine = rb_entry(node, struct machine, rb_node);
469 machine->id_hdr_size = id_hdr_size;
470 }
471
472 return;
473 }
474
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)475 static void machine__update_thread_pid(struct machine *machine,
476 struct thread *th, pid_t pid)
477 {
478 struct thread *leader;
479
480 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
481 return;
482
483 thread__set_pid(th, pid);
484
485 if (thread__pid(th) == thread__tid(th))
486 return;
487
488 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
489 if (!leader)
490 goto out_err;
491
492 if (!thread__maps(leader))
493 thread__set_maps(leader, maps__new(machine));
494
495 if (!thread__maps(leader))
496 goto out_err;
497
498 if (thread__maps(th) == thread__maps(leader))
499 goto out_put;
500
501 if (thread__maps(th)) {
502 /*
503 * Maps are created from MMAP events which provide the pid and
504 * tid. Consequently there never should be any maps on a thread
505 * with an unknown pid. Just print an error if there are.
506 */
507 if (!maps__empty(thread__maps(th)))
508 pr_err("Discarding thread maps for %d:%d\n",
509 thread__pid(th), thread__tid(th));
510 maps__put(thread__maps(th));
511 }
512
513 thread__set_maps(th, maps__get(thread__maps(leader)));
514 out_put:
515 thread__put(leader);
516 return;
517 out_err:
518 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
519 goto out_put;
520 }
521
522 /*
523 * Caller must eventually drop thread->refcnt returned with a successful
524 * lookup/new thread inserted.
525 */
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid,bool create)526 static struct thread *__machine__findnew_thread(struct machine *machine,
527 pid_t pid,
528 pid_t tid,
529 bool create)
530 {
531 struct thread *th = threads__find(&machine->threads, tid);
532 bool created;
533
534 if (th) {
535 machine__update_thread_pid(machine, th, pid);
536 return th;
537 }
538 if (!create)
539 return NULL;
540
541 th = threads__findnew(&machine->threads, pid, tid, &created);
542 if (created) {
543 /*
544 * We have to initialize maps separately after rb tree is
545 * updated.
546 *
547 * The reason is that we call machine__findnew_thread within
548 * thread__init_maps to find the thread leader and that would
549 * screwed the rb tree.
550 */
551 if (thread__init_maps(th, machine)) {
552 pr_err("Thread init failed thread %d\n", pid);
553 threads__remove(&machine->threads, th);
554 thread__put(th);
555 return NULL;
556 }
557 } else
558 machine__update_thread_pid(machine, th, pid);
559
560 return th;
561 }
562
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)563 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564 {
565 return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
566 }
567
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)568 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
569 pid_t tid)
570 {
571 return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
572 }
573
574 /*
575 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
576 * So here a single thread is created for that, but actually there is a separate
577 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
578 * is only 1. That causes problems for some tools, requiring workarounds. For
579 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
580 */
machine__idle_thread(struct machine * machine)581 struct thread *machine__idle_thread(struct machine *machine)
582 {
583 struct thread *thread = machine__findnew_thread(machine, 0, 0);
584
585 if (!thread || thread__set_comm(thread, "swapper", 0) ||
586 thread__set_namespaces(thread, 0, NULL))
587 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
588
589 return thread;
590 }
591
machine__thread_exec_comm(struct machine * machine,struct thread * thread)592 struct comm *machine__thread_exec_comm(struct machine *machine,
593 struct thread *thread)
594 {
595 if (machine->comm_exec)
596 return thread__exec_comm(thread);
597 else
598 return thread__comm(thread);
599 }
600
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)601 int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 struct perf_sample *sample)
603 {
604 struct thread *thread = machine__findnew_thread(machine,
605 event->comm.pid,
606 event->comm.tid);
607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 int err = 0;
609
610 if (exec)
611 machine->comm_exec = true;
612
613 if (dump_trace)
614 perf_event__fprintf_comm(event, stdout);
615
616 if (thread == NULL ||
617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 err = -1;
620 }
621
622 thread__put(thread);
623
624 return err;
625 }
626
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)627 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 union perf_event *event,
629 struct perf_sample *sample __maybe_unused)
630 {
631 struct thread *thread = machine__findnew_thread(machine,
632 event->namespaces.pid,
633 event->namespaces.tid);
634 int err = 0;
635
636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 "\nWARNING: kernel seems to support more namespaces than perf"
638 " tool.\nTry updating the perf tool..\n\n");
639
640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 "\nWARNING: perf tool seems to support more namespaces than"
642 " the kernel.\nTry updating the kernel..\n\n");
643
644 if (dump_trace)
645 perf_event__fprintf_namespaces(event, stdout);
646
647 if (thread == NULL ||
648 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 err = -1;
651 }
652
653 thread__put(thread);
654
655 return err;
656 }
657
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)658 int machine__process_cgroup_event(struct machine *machine,
659 union perf_event *event,
660 struct perf_sample *sample __maybe_unused)
661 {
662 struct cgroup *cgrp;
663
664 if (dump_trace)
665 perf_event__fprintf_cgroup(event, stdout);
666
667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 if (cgrp == NULL)
669 return -ENOMEM;
670
671 return 0;
672 }
673
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)674 int machine__process_lost_event(struct machine *machine __maybe_unused,
675 union perf_event *event, struct perf_sample *sample __maybe_unused)
676 {
677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 event->lost.id, event->lost.lost);
679 return 0;
680 }
681
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 union perf_event *event, struct perf_sample *sample)
684 {
685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n",
686 sample->id, event->lost_samples.lost,
687 event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : "");
688 return 0;
689 }
690
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)691 int machine__process_aux_event(struct machine *machine __maybe_unused,
692 union perf_event *event)
693 {
694 if (dump_trace)
695 perf_event__fprintf_aux(event, stdout);
696 return 0;
697 }
698
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)699 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
700 union perf_event *event)
701 {
702 if (dump_trace)
703 perf_event__fprintf_itrace_start(event, stdout);
704 return 0;
705 }
706
machine__process_aux_output_hw_id_event(struct machine * machine __maybe_unused,union perf_event * event)707 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
708 union perf_event *event)
709 {
710 if (dump_trace)
711 perf_event__fprintf_aux_output_hw_id(event, stdout);
712 return 0;
713 }
714
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)715 int machine__process_switch_event(struct machine *machine __maybe_unused,
716 union perf_event *event)
717 {
718 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
719
720 if (dump_trace)
721 perf_event__fprintf_switch(event, stdout);
722 machine->parallelism += out ? -1 : 1;
723 return 0;
724 }
725
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)726 static int machine__process_ksymbol_register(struct machine *machine,
727 union perf_event *event,
728 struct perf_sample *sample __maybe_unused)
729 {
730 struct symbol *sym;
731 struct dso *dso = NULL;
732 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
733 int err = 0;
734
735 if (!map) {
736 dso = dso__new(event->ksymbol.name);
737
738 if (!dso) {
739 err = -ENOMEM;
740 goto out;
741 }
742 dso__set_kernel(dso, DSO_SPACE__KERNEL);
743 map = map__new2(0, dso);
744 if (!map) {
745 err = -ENOMEM;
746 goto out;
747 }
748 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
749 dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
750 dso__data(dso)->file_size = event->ksymbol.len;
751 dso__set_loaded(dso);
752 }
753
754 map__set_start(map, event->ksymbol.addr);
755 map__set_end(map, map__start(map) + event->ksymbol.len);
756 err = maps__fixup_overlap_and_insert(machine__kernel_maps(machine), map);
757 if (err) {
758 err = -ENOMEM;
759 goto out;
760 }
761
762 dso__set_loaded(dso);
763
764 if (is_bpf_image(event->ksymbol.name)) {
765 dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
766 dso__set_long_name(dso, "", false);
767 }
768 } else {
769 dso = dso__get(map__dso(map));
770 }
771
772 sym = symbol__new(map__map_ip(map, map__start(map)),
773 event->ksymbol.len,
774 0, 0, event->ksymbol.name);
775 if (!sym) {
776 err = -ENOMEM;
777 goto out;
778 }
779 dso__insert_symbol(dso, sym);
780 out:
781 map__put(map);
782 dso__put(dso);
783 return err;
784 }
785
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)786 static int machine__process_ksymbol_unregister(struct machine *machine,
787 union perf_event *event,
788 struct perf_sample *sample __maybe_unused)
789 {
790 struct symbol *sym;
791 struct map *map;
792
793 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
794 if (!map)
795 return 0;
796
797 if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
798 maps__remove(machine__kernel_maps(machine), map);
799 else {
800 struct dso *dso = map__dso(map);
801
802 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
803 if (sym)
804 dso__delete_symbol(dso, sym);
805 }
806 map__put(map);
807 return 0;
808 }
809
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)810 int machine__process_ksymbol(struct machine *machine __maybe_unused,
811 union perf_event *event,
812 struct perf_sample *sample)
813 {
814 if (dump_trace)
815 perf_event__fprintf_ksymbol(event, stdout);
816
817 /* no need to process non-JIT BPF as it cannot get samples */
818 if (event->ksymbol.len == 0)
819 return 0;
820
821 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
822 return machine__process_ksymbol_unregister(machine, event,
823 sample);
824 return machine__process_ksymbol_register(machine, event, sample);
825 }
826
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)827 int machine__process_text_poke(struct machine *machine, union perf_event *event,
828 struct perf_sample *sample __maybe_unused)
829 {
830 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
831 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
832 struct dso *dso = map ? map__dso(map) : NULL;
833
834 if (dump_trace)
835 perf_event__fprintf_text_poke(event, machine, stdout);
836
837 if (!event->text_poke.new_len)
838 goto out;
839
840 if (cpumode != PERF_RECORD_MISC_KERNEL) {
841 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
842 goto out;
843 }
844
845 if (dso) {
846 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
847 int ret;
848
849 /*
850 * Kernel maps might be changed when loading symbols so loading
851 * must be done prior to using kernel maps.
852 */
853 map__load(map);
854 ret = dso__data_write_cache_addr(dso, map, machine,
855 event->text_poke.addr,
856 new_bytes,
857 event->text_poke.new_len);
858 if (ret != event->text_poke.new_len)
859 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
860 event->text_poke.addr);
861 } else {
862 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
863 event->text_poke.addr);
864 }
865 out:
866 map__put(map);
867 return 0;
868 }
869
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)870 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
871 const char *filename)
872 {
873 struct map *map = NULL;
874 struct kmod_path m;
875 struct dso *dso;
876 int err;
877
878 if (kmod_path__parse_name(&m, filename))
879 return NULL;
880
881 dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
882 if (dso == NULL)
883 goto out;
884
885 map = map__new2(start, dso);
886 if (map == NULL)
887 goto out;
888
889 err = maps__insert(machine__kernel_maps(machine), map);
890 /* If maps__insert failed, return NULL. */
891 if (err) {
892 map__put(map);
893 map = NULL;
894 }
895 out:
896 /* put the dso here, corresponding to machine__findnew_module_dso */
897 dso__put(dso);
898 zfree(&m.name);
899 return map;
900 }
901
machines__fprintf_dsos(struct machines * machines,FILE * fp)902 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
903 {
904 struct rb_node *nd;
905 size_t ret = dsos__fprintf(&machines->host.dsos, fp);
906
907 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
908 struct machine *pos = rb_entry(nd, struct machine, rb_node);
909 ret += dsos__fprintf(&pos->dsos, fp);
910 }
911
912 return ret;
913 }
914
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)915 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
916 bool (skip)(struct dso *dso, int parm), int parm)
917 {
918 return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
919 }
920
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)921 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
922 bool (skip)(struct dso *dso, int parm), int parm)
923 {
924 struct rb_node *nd;
925 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
926
927 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
928 struct machine *pos = rb_entry(nd, struct machine, rb_node);
929 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
930 }
931 return ret;
932 }
933
934 struct machine_fprintf_cb_args {
935 FILE *fp;
936 size_t printed;
937 };
938
machine_fprintf_cb(struct thread * thread,void * data)939 static int machine_fprintf_cb(struct thread *thread, void *data)
940 {
941 struct machine_fprintf_cb_args *args = data;
942
943 /* TODO: handle fprintf errors. */
944 args->printed += thread__fprintf(thread, args->fp);
945 return 0;
946 }
947
machine__fprintf(struct machine * machine,FILE * fp)948 size_t machine__fprintf(struct machine *machine, FILE *fp)
949 {
950 struct machine_fprintf_cb_args args = {
951 .fp = fp,
952 .printed = 0,
953 };
954 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
955
956 machine__for_each_thread(machine, machine_fprintf_cb, &args);
957 return ret + args.printed;
958 }
959
machine__get_kernel(struct machine * machine)960 static struct dso *machine__get_kernel(struct machine *machine)
961 {
962 const char *vmlinux_name = machine->mmap_name;
963 struct dso *kernel;
964
965 if (machine__is_host(machine)) {
966 if (symbol_conf.vmlinux_name)
967 vmlinux_name = symbol_conf.vmlinux_name;
968
969 kernel = machine__findnew_kernel(machine, vmlinux_name,
970 "[kernel]", DSO_SPACE__KERNEL);
971 } else {
972 if (symbol_conf.default_guest_vmlinux_name)
973 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
974
975 kernel = machine__findnew_kernel(machine, vmlinux_name,
976 "[guest.kernel]",
977 DSO_SPACE__KERNEL_GUEST);
978 }
979
980 if (kernel != NULL && (!dso__has_build_id(kernel)))
981 dso__read_running_kernel_build_id(kernel, machine);
982
983 return kernel;
984 }
985
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)986 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
987 size_t bufsz)
988 {
989 if (machine__is_default_guest(machine))
990 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
991 else
992 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
993 }
994
995 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
996
997 /* Figure out the start address of kernel map from /proc/kallsyms.
998 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
999 * symbol_name if it's not that important.
1000 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)1001 static int machine__get_running_kernel_start(struct machine *machine,
1002 const char **symbol_name,
1003 u64 *start, u64 *end)
1004 {
1005 char filename[PATH_MAX];
1006 int i, err = -1;
1007 const char *name;
1008 u64 addr = 0;
1009
1010 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1011
1012 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1013 return 0;
1014
1015 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1016 err = kallsyms__get_function_start(filename, name, &addr);
1017 if (!err)
1018 break;
1019 }
1020
1021 if (err)
1022 return -1;
1023
1024 if (symbol_name)
1025 *symbol_name = name;
1026
1027 *start = addr;
1028
1029 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1030 if (err)
1031 err = kallsyms__get_symbol_start(filename, "_etext", &addr);
1032 if (!err)
1033 *end = addr;
1034
1035 return 0;
1036 }
1037
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1038 int machine__create_extra_kernel_map(struct machine *machine,
1039 struct dso *kernel,
1040 struct extra_kernel_map *xm)
1041 {
1042 struct kmap *kmap;
1043 struct map *map;
1044 int err;
1045
1046 map = map__new2(xm->start, kernel);
1047 if (!map)
1048 return -ENOMEM;
1049
1050 map__set_end(map, xm->end);
1051 map__set_pgoff(map, xm->pgoff);
1052
1053 kmap = map__kmap(map);
1054
1055 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1056
1057 err = maps__insert(machine__kernel_maps(machine), map);
1058
1059 if (!err) {
1060 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1061 kmap->name, map__start(map), map__end(map));
1062 }
1063
1064 map__put(map);
1065
1066 return err;
1067 }
1068
find_entry_trampoline(struct dso * dso)1069 static u64 find_entry_trampoline(struct dso *dso)
1070 {
1071 /* Duplicates are removed so lookup all aliases */
1072 const char *syms[] = {
1073 "_entry_trampoline",
1074 "__entry_trampoline_start",
1075 "entry_SYSCALL_64_trampoline",
1076 };
1077 struct symbol *sym = dso__first_symbol(dso);
1078 unsigned int i;
1079
1080 for (; sym; sym = dso__next_symbol(sym)) {
1081 if (sym->binding != STB_GLOBAL)
1082 continue;
1083 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1084 if (!strcmp(sym->name, syms[i]))
1085 return sym->start;
1086 }
1087 }
1088
1089 return 0;
1090 }
1091
1092 /*
1093 * These values can be used for kernels that do not have symbols for the entry
1094 * trampolines in kallsyms.
1095 */
1096 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1097 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1098 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1099
1100 struct machine__map_x86_64_entry_trampolines_args {
1101 struct maps *kmaps;
1102 bool found;
1103 };
1104
machine__map_x86_64_entry_trampolines_cb(struct map * map,void * data)1105 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1106 {
1107 struct machine__map_x86_64_entry_trampolines_args *args = data;
1108 struct map *dest_map;
1109 struct kmap *kmap = __map__kmap(map);
1110
1111 if (!kmap || !is_entry_trampoline(kmap->name))
1112 return 0;
1113
1114 dest_map = maps__find(args->kmaps, map__pgoff(map));
1115 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1116 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1117
1118 map__put(dest_map);
1119 args->found = true;
1120 return 0;
1121 }
1122
1123 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1124 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1125 struct dso *kernel)
1126 {
1127 struct machine__map_x86_64_entry_trampolines_args args = {
1128 .kmaps = machine__kernel_maps(machine),
1129 .found = false,
1130 };
1131 int nr_cpus_avail, cpu;
1132 u64 pgoff;
1133
1134 /*
1135 * In the vmlinux case, pgoff is a virtual address which must now be
1136 * mapped to a vmlinux offset.
1137 */
1138 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1139
1140 if (args.found || machine->trampolines_mapped)
1141 return 0;
1142
1143 pgoff = find_entry_trampoline(kernel);
1144 if (!pgoff)
1145 return 0;
1146
1147 nr_cpus_avail = machine__nr_cpus_avail(machine);
1148
1149 /* Add a 1 page map for each CPU's entry trampoline */
1150 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1151 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1152 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1153 X86_64_ENTRY_TRAMPOLINE;
1154 struct extra_kernel_map xm = {
1155 .start = va,
1156 .end = va + page_size,
1157 .pgoff = pgoff,
1158 };
1159
1160 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1161
1162 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1163 return -1;
1164 }
1165
1166 machine->trampolines_mapped = nr_cpus_avail;
1167
1168 return 0;
1169 }
1170
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1171 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1172 struct dso *kernel __maybe_unused)
1173 {
1174 return 0;
1175 }
1176
1177 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1178 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1179 {
1180 /* In case of renewal the kernel map, destroy previous one */
1181 machine__destroy_kernel_maps(machine);
1182
1183 map__put(machine->vmlinux_map);
1184 machine->vmlinux_map = map__new2(0, kernel);
1185 if (machine->vmlinux_map == NULL)
1186 return -ENOMEM;
1187
1188 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1189 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1190 }
1191
machine__destroy_kernel_maps(struct machine * machine)1192 void machine__destroy_kernel_maps(struct machine *machine)
1193 {
1194 struct kmap *kmap;
1195 struct map *map = machine__kernel_map(machine);
1196
1197 if (map == NULL)
1198 return;
1199
1200 kmap = map__kmap(map);
1201 maps__remove(machine__kernel_maps(machine), map);
1202 if (kmap && kmap->ref_reloc_sym) {
1203 zfree((char **)&kmap->ref_reloc_sym->name);
1204 zfree(&kmap->ref_reloc_sym);
1205 }
1206
1207 map__zput(machine->vmlinux_map);
1208 }
1209
machines__create_guest_kernel_maps(struct machines * machines)1210 int machines__create_guest_kernel_maps(struct machines *machines)
1211 {
1212 int ret = 0;
1213 struct dirent **namelist = NULL;
1214 int i, items = 0;
1215 char path[PATH_MAX];
1216 pid_t pid;
1217 char *endp;
1218
1219 if (symbol_conf.default_guest_vmlinux_name ||
1220 symbol_conf.default_guest_modules ||
1221 symbol_conf.default_guest_kallsyms) {
1222 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1223 }
1224
1225 if (symbol_conf.guestmount) {
1226 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1227 if (items <= 0)
1228 return -ENOENT;
1229 for (i = 0; i < items; i++) {
1230 if (!isdigit(namelist[i]->d_name[0])) {
1231 /* Filter out . and .. */
1232 continue;
1233 }
1234 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1235 if ((*endp != '\0') ||
1236 (endp == namelist[i]->d_name) ||
1237 (errno == ERANGE)) {
1238 pr_debug("invalid directory (%s). Skipping.\n",
1239 namelist[i]->d_name);
1240 continue;
1241 }
1242 sprintf(path, "%s/%s/proc/kallsyms",
1243 symbol_conf.guestmount,
1244 namelist[i]->d_name);
1245 ret = access(path, R_OK);
1246 if (ret) {
1247 pr_debug("Can't access file %s\n", path);
1248 goto failure;
1249 }
1250 machines__create_kernel_maps(machines, pid);
1251 }
1252 failure:
1253 free(namelist);
1254 }
1255
1256 return ret;
1257 }
1258
machines__destroy_kernel_maps(struct machines * machines)1259 void machines__destroy_kernel_maps(struct machines *machines)
1260 {
1261 struct rb_node *next = rb_first_cached(&machines->guests);
1262
1263 machine__destroy_kernel_maps(&machines->host);
1264
1265 while (next) {
1266 struct machine *pos = rb_entry(next, struct machine, rb_node);
1267
1268 next = rb_next(&pos->rb_node);
1269 rb_erase_cached(&pos->rb_node, &machines->guests);
1270 machine__delete(pos);
1271 }
1272 }
1273
machines__create_kernel_maps(struct machines * machines,pid_t pid)1274 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1275 {
1276 struct machine *machine = machines__findnew(machines, pid);
1277
1278 if (machine == NULL)
1279 return -1;
1280
1281 return machine__create_kernel_maps(machine);
1282 }
1283
machine__load_kallsyms(struct machine * machine,const char * filename)1284 int machine__load_kallsyms(struct machine *machine, const char *filename)
1285 {
1286 struct map *map = machine__kernel_map(machine);
1287 struct dso *dso = map__dso(map);
1288 int ret = __dso__load_kallsyms(dso, filename, map, true);
1289
1290 if (ret > 0) {
1291 dso__set_loaded(dso);
1292 /*
1293 * Since /proc/kallsyms will have multiple sessions for the
1294 * kernel, with modules between them, fixup the end of all
1295 * sections.
1296 */
1297 maps__fixup_end(machine__kernel_maps(machine));
1298 }
1299
1300 return ret;
1301 }
1302
machine__load_vmlinux_path(struct machine * machine)1303 int machine__load_vmlinux_path(struct machine *machine)
1304 {
1305 struct map *map = machine__kernel_map(machine);
1306 struct dso *dso = map__dso(map);
1307 int ret = dso__load_vmlinux_path(dso, map);
1308
1309 if (ret > 0)
1310 dso__set_loaded(dso);
1311
1312 return ret;
1313 }
1314
get_kernel_version(const char * root_dir)1315 static char *get_kernel_version(const char *root_dir)
1316 {
1317 char version[PATH_MAX];
1318 FILE *file;
1319 char *name, *tmp;
1320 const char *prefix = "Linux version ";
1321
1322 sprintf(version, "%s/proc/version", root_dir);
1323 file = fopen(version, "r");
1324 if (!file)
1325 return NULL;
1326
1327 tmp = fgets(version, sizeof(version), file);
1328 fclose(file);
1329 if (!tmp)
1330 return NULL;
1331
1332 name = strstr(version, prefix);
1333 if (!name)
1334 return NULL;
1335 name += strlen(prefix);
1336 tmp = strchr(name, ' ');
1337 if (tmp)
1338 *tmp = '\0';
1339
1340 return strdup(name);
1341 }
1342
is_kmod_dso(struct dso * dso)1343 static bool is_kmod_dso(struct dso *dso)
1344 {
1345 return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1346 dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1347 }
1348
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1349 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1350 {
1351 char *long_name;
1352 struct dso *dso;
1353 struct map *map = maps__find_by_name(maps, m->name);
1354
1355 if (map == NULL)
1356 return 0;
1357
1358 long_name = strdup(path);
1359 if (long_name == NULL) {
1360 map__put(map);
1361 return -ENOMEM;
1362 }
1363
1364 dso = map__dso(map);
1365 dso__set_long_name(dso, long_name, true);
1366 dso__kernel_module_get_build_id(dso, "");
1367
1368 /*
1369 * Full name could reveal us kmod compression, so
1370 * we need to update the symtab_type if needed.
1371 */
1372 if (m->comp && is_kmod_dso(dso)) {
1373 dso__set_symtab_type(dso, dso__symtab_type(dso)+1);
1374 dso__set_comp(dso, m->comp);
1375 }
1376 map__put(map);
1377 return 0;
1378 }
1379
maps__set_modules_path_dir(struct maps * maps,char * path,size_t path_size,int depth)1380 static int maps__set_modules_path_dir(struct maps *maps, char *path, size_t path_size, int depth)
1381 {
1382 struct io_dirent64 *dent;
1383 struct io_dir iod;
1384 size_t root_len = strlen(path);
1385 int ret = 0;
1386
1387 io_dir__init(&iod, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1388 if (iod.dirfd < 0) {
1389 pr_debug("%s: cannot open %s dir\n", __func__, path);
1390 return -1;
1391 }
1392 /* Bounds check, should never happen. */
1393 if (root_len >= path_size)
1394 return -1;
1395 path[root_len++] = '/';
1396 while ((dent = io_dir__readdir(&iod)) != NULL) {
1397 if (io_dir__is_dir(&iod, dent)) {
1398 if (!strcmp(dent->d_name, ".") ||
1399 !strcmp(dent->d_name, ".."))
1400 continue;
1401
1402 /* Do not follow top-level source and build symlinks */
1403 if (depth == 0) {
1404 if (!strcmp(dent->d_name, "source") ||
1405 !strcmp(dent->d_name, "build"))
1406 continue;
1407 }
1408
1409 /* Bounds check, should never happen. */
1410 if (root_len + strlen(dent->d_name) >= path_size)
1411 continue;
1412
1413 strcpy(path + root_len, dent->d_name);
1414 ret = maps__set_modules_path_dir(maps, path, path_size, depth + 1);
1415 if (ret < 0)
1416 goto out;
1417 } else {
1418 struct kmod_path m;
1419
1420 ret = kmod_path__parse_name(&m, dent->d_name);
1421 if (ret)
1422 goto out;
1423
1424 if (m.kmod) {
1425 /* Bounds check, should never happen. */
1426 if (root_len + strlen(dent->d_name) < path_size) {
1427 strcpy(path + root_len, dent->d_name);
1428 ret = maps__set_module_path(maps, path, &m);
1429
1430 }
1431 }
1432 zfree(&m.name);
1433
1434 if (ret)
1435 goto out;
1436 }
1437 }
1438
1439 out:
1440 close(iod.dirfd);
1441 return ret;
1442 }
1443
machine__set_modules_path(struct machine * machine)1444 static int machine__set_modules_path(struct machine *machine)
1445 {
1446 char *version;
1447 char modules_path[PATH_MAX];
1448
1449 version = get_kernel_version(machine->root_dir);
1450 if (!version)
1451 return -1;
1452
1453 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1454 machine->root_dir, version);
1455 free(version);
1456
1457 return maps__set_modules_path_dir(machine__kernel_maps(machine),
1458 modules_path, sizeof(modules_path), 0);
1459 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1460 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1461 u64 *size __maybe_unused,
1462 const char *name __maybe_unused)
1463 {
1464 return 0;
1465 }
1466
machine__create_module(void * arg,const char * name,u64 start,u64 size)1467 static int machine__create_module(void *arg, const char *name, u64 start,
1468 u64 size)
1469 {
1470 struct machine *machine = arg;
1471 struct map *map;
1472
1473 if (arch__fix_module_text_start(&start, &size, name) < 0)
1474 return -1;
1475
1476 map = machine__addnew_module_map(machine, start, name);
1477 if (map == NULL)
1478 return -1;
1479 map__set_end(map, start + size);
1480
1481 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1482 map__put(map);
1483 return 0;
1484 }
1485
machine__create_modules(struct machine * machine)1486 static int machine__create_modules(struct machine *machine)
1487 {
1488 const char *modules;
1489 char path[PATH_MAX];
1490
1491 if (machine__is_default_guest(machine)) {
1492 modules = symbol_conf.default_guest_modules;
1493 } else {
1494 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1495 modules = path;
1496 }
1497
1498 if (symbol__restricted_filename(modules, "/proc/modules"))
1499 return -1;
1500
1501 if (modules__parse(modules, machine, machine__create_module))
1502 return -1;
1503
1504 if (!machine__set_modules_path(machine))
1505 return 0;
1506
1507 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1508
1509 return 0;
1510 }
1511
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1512 static void machine__set_kernel_mmap(struct machine *machine,
1513 u64 start, u64 end)
1514 {
1515 map__set_start(machine->vmlinux_map, start);
1516 map__set_end(machine->vmlinux_map, end);
1517 /*
1518 * Be a bit paranoid here, some perf.data file came with
1519 * a zero sized synthesized MMAP event for the kernel.
1520 */
1521 if (start == 0 && end == 0)
1522 map__set_end(machine->vmlinux_map, ~0ULL);
1523 }
1524
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1525 static int machine__update_kernel_mmap(struct machine *machine,
1526 u64 start, u64 end)
1527 {
1528 struct map *orig, *updated;
1529 int err;
1530
1531 orig = machine->vmlinux_map;
1532 updated = map__get(orig);
1533
1534 machine->vmlinux_map = updated;
1535 maps__remove(machine__kernel_maps(machine), orig);
1536 machine__set_kernel_mmap(machine, start, end);
1537 err = maps__insert(machine__kernel_maps(machine), updated);
1538 map__put(orig);
1539
1540 return err;
1541 }
1542
machine__create_kernel_maps(struct machine * machine)1543 int machine__create_kernel_maps(struct machine *machine)
1544 {
1545 struct dso *kernel = machine__get_kernel(machine);
1546 const char *name = NULL;
1547 u64 start = 0, end = ~0ULL;
1548 int ret;
1549
1550 if (kernel == NULL)
1551 return -1;
1552
1553 ret = __machine__create_kernel_maps(machine, kernel);
1554 if (ret < 0)
1555 goto out_put;
1556
1557 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1558 if (machine__is_host(machine))
1559 pr_debug("Problems creating module maps, "
1560 "continuing anyway...\n");
1561 else
1562 pr_debug("Problems creating module maps for guest %d, "
1563 "continuing anyway...\n", machine->pid);
1564 }
1565
1566 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1567 if (name &&
1568 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1569 machine__destroy_kernel_maps(machine);
1570 ret = -1;
1571 goto out_put;
1572 }
1573
1574 /*
1575 * we have a real start address now, so re-order the kmaps
1576 * assume it's the last in the kmaps
1577 */
1578 ret = machine__update_kernel_mmap(machine, start, end);
1579 if (ret < 0)
1580 goto out_put;
1581 }
1582
1583 if (machine__create_extra_kernel_maps(machine, kernel))
1584 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1585
1586 if (end == ~0ULL) {
1587 /* update end address of the kernel map using adjacent module address */
1588 struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1589 machine__kernel_map(machine));
1590
1591 if (next) {
1592 machine__set_kernel_mmap(machine, start, map__start(next));
1593 map__put(next);
1594 }
1595 }
1596
1597 maps__fixup_end(machine__kernel_maps(machine));
1598
1599 out_put:
1600 dso__put(kernel);
1601 return ret;
1602 }
1603
machine__uses_kcore_cb(struct dso * dso,void * data __maybe_unused)1604 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1605 {
1606 return dso__is_kcore(dso) ? 1 : 0;
1607 }
1608
machine__uses_kcore(struct machine * machine)1609 static bool machine__uses_kcore(struct machine *machine)
1610 {
1611 return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1612 }
1613
perf_event__is_extra_kernel_mmap(struct machine * machine,struct extra_kernel_map * xm)1614 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1615 struct extra_kernel_map *xm)
1616 {
1617 return machine__is(machine, "x86_64") &&
1618 is_entry_trampoline(xm->name);
1619 }
1620
machine__process_extra_kernel_map(struct machine * machine,struct extra_kernel_map * xm)1621 static int machine__process_extra_kernel_map(struct machine *machine,
1622 struct extra_kernel_map *xm)
1623 {
1624 struct dso *kernel = machine__kernel_dso(machine);
1625
1626 if (kernel == NULL)
1627 return -1;
1628
1629 return machine__create_extra_kernel_map(machine, kernel, xm);
1630 }
1631
machine__process_kernel_mmap_event(struct machine * machine,struct extra_kernel_map * xm,struct build_id * bid)1632 static int machine__process_kernel_mmap_event(struct machine *machine,
1633 struct extra_kernel_map *xm,
1634 struct build_id *bid)
1635 {
1636 enum dso_space_type dso_space;
1637 bool is_kernel_mmap;
1638 const char *mmap_name = machine->mmap_name;
1639
1640 /* If we have maps from kcore then we do not need or want any others */
1641 if (machine__uses_kcore(machine))
1642 return 0;
1643
1644 if (machine__is_host(machine))
1645 dso_space = DSO_SPACE__KERNEL;
1646 else
1647 dso_space = DSO_SPACE__KERNEL_GUEST;
1648
1649 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1650 if (!is_kernel_mmap && !machine__is_host(machine)) {
1651 /*
1652 * If the event was recorded inside the guest and injected into
1653 * the host perf.data file, then it will match a host mmap_name,
1654 * so try that - see machine__set_mmap_name().
1655 */
1656 mmap_name = "[kernel.kallsyms]";
1657 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1658 }
1659 if (xm->name[0] == '/' ||
1660 (!is_kernel_mmap && xm->name[0] == '[')) {
1661 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1662
1663 if (map == NULL)
1664 goto out_problem;
1665
1666 map__set_end(map, map__start(map) + xm->end - xm->start);
1667
1668 if (build_id__is_defined(bid))
1669 dso__set_build_id(map__dso(map), bid);
1670
1671 map__put(map);
1672 } else if (is_kernel_mmap) {
1673 const char *symbol_name = xm->name + strlen(mmap_name);
1674 /*
1675 * Should be there already, from the build-id table in
1676 * the header.
1677 */
1678 struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
1679
1680 if (kernel == NULL)
1681 kernel = machine__findnew_dso(machine, machine->mmap_name);
1682 if (kernel == NULL)
1683 goto out_problem;
1684
1685 dso__set_kernel(kernel, dso_space);
1686 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1687 dso__put(kernel);
1688 goto out_problem;
1689 }
1690
1691 if (strstr(dso__long_name(kernel), "vmlinux"))
1692 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1693
1694 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1695 dso__put(kernel);
1696 goto out_problem;
1697 }
1698
1699 if (build_id__is_defined(bid))
1700 dso__set_build_id(kernel, bid);
1701
1702 /*
1703 * Avoid using a zero address (kptr_restrict) for the ref reloc
1704 * symbol. Effectively having zero here means that at record
1705 * time /proc/sys/kernel/kptr_restrict was non zero.
1706 */
1707 if (xm->pgoff != 0) {
1708 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1709 symbol_name,
1710 xm->pgoff);
1711 }
1712
1713 if (machine__is_default_guest(machine)) {
1714 /*
1715 * preload dso of guest kernel and modules
1716 */
1717 dso__load(kernel, machine__kernel_map(machine));
1718 }
1719 dso__put(kernel);
1720 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1721 return machine__process_extra_kernel_map(machine, xm);
1722 }
1723 return 0;
1724 out_problem:
1725 return -1;
1726 }
1727
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1728 int machine__process_mmap2_event(struct machine *machine,
1729 union perf_event *event,
1730 struct perf_sample *sample)
1731 {
1732 struct thread *thread;
1733 struct map *map;
1734 struct dso_id dso_id = dso_id_empty;
1735 int ret = 0;
1736
1737 if (dump_trace)
1738 perf_event__fprintf_mmap2(event, stdout);
1739
1740 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1741 build_id__init(&dso_id.build_id, event->mmap2.build_id, event->mmap2.build_id_size);
1742 } else {
1743 dso_id.maj = event->mmap2.maj;
1744 dso_id.min = event->mmap2.min;
1745 dso_id.ino = event->mmap2.ino;
1746 dso_id.ino_generation = event->mmap2.ino_generation;
1747 dso_id.mmap2_valid = true;
1748 dso_id.mmap2_ino_generation_valid = true;
1749 }
1750
1751 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1752 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1753 struct extra_kernel_map xm = {
1754 .start = event->mmap2.start,
1755 .end = event->mmap2.start + event->mmap2.len,
1756 .pgoff = event->mmap2.pgoff,
1757 };
1758
1759 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1760 ret = machine__process_kernel_mmap_event(machine, &xm, &dso_id.build_id);
1761 if (ret < 0)
1762 goto out_problem;
1763 return 0;
1764 }
1765
1766 thread = machine__findnew_thread(machine, event->mmap2.pid,
1767 event->mmap2.tid);
1768 if (thread == NULL)
1769 goto out_problem;
1770
1771 map = map__new(machine, event->mmap2.start,
1772 event->mmap2.len, event->mmap2.pgoff,
1773 &dso_id, event->mmap2.prot,
1774 event->mmap2.flags,
1775 event->mmap2.filename, thread);
1776
1777 if (map == NULL)
1778 goto out_problem_map;
1779
1780 ret = thread__insert_map(thread, map);
1781 if (ret)
1782 goto out_problem_insert;
1783
1784 thread__put(thread);
1785 map__put(map);
1786 return 0;
1787
1788 out_problem_insert:
1789 map__put(map);
1790 out_problem_map:
1791 thread__put(thread);
1792 out_problem:
1793 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1794 return 0;
1795 }
1796
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1797 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1798 struct perf_sample *sample)
1799 {
1800 struct thread *thread;
1801 struct map *map;
1802 u32 prot = 0;
1803 int ret = 0;
1804
1805 if (dump_trace)
1806 perf_event__fprintf_mmap(event, stdout);
1807
1808 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1809 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1810 struct extra_kernel_map xm = {
1811 .start = event->mmap.start,
1812 .end = event->mmap.start + event->mmap.len,
1813 .pgoff = event->mmap.pgoff,
1814 };
1815
1816 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1817 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1818 if (ret < 0)
1819 goto out_problem;
1820 return 0;
1821 }
1822
1823 thread = machine__findnew_thread(machine, event->mmap.pid,
1824 event->mmap.tid);
1825 if (thread == NULL)
1826 goto out_problem;
1827
1828 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1829 prot = PROT_EXEC;
1830
1831 map = map__new(machine, event->mmap.start,
1832 event->mmap.len, event->mmap.pgoff,
1833 &dso_id_empty, prot, /*flags=*/0, event->mmap.filename, thread);
1834
1835 if (map == NULL)
1836 goto out_problem_map;
1837
1838 ret = thread__insert_map(thread, map);
1839 if (ret)
1840 goto out_problem_insert;
1841
1842 thread__put(thread);
1843 map__put(map);
1844 return 0;
1845
1846 out_problem_insert:
1847 map__put(map);
1848 out_problem_map:
1849 thread__put(thread);
1850 out_problem:
1851 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1852 return 0;
1853 }
1854
machine__remove_thread(struct machine * machine,struct thread * th)1855 void machine__remove_thread(struct machine *machine, struct thread *th)
1856 {
1857 return threads__remove(&machine->threads, th);
1858 }
1859
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1860 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1861 struct perf_sample *sample)
1862 {
1863 struct thread *thread = machine__find_thread(machine,
1864 event->fork.pid,
1865 event->fork.tid);
1866 struct thread *parent = machine__findnew_thread(machine,
1867 event->fork.ppid,
1868 event->fork.ptid);
1869 bool do_maps_clone = true;
1870 int err = 0;
1871
1872 if (dump_trace)
1873 perf_event__fprintf_task(event, stdout);
1874
1875 /*
1876 * There may be an existing thread that is not actually the parent,
1877 * either because we are processing events out of order, or because the
1878 * (fork) event that would have removed the thread was lost. Assume the
1879 * latter case and continue on as best we can.
1880 */
1881 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1882 dump_printf("removing erroneous parent thread %d/%d\n",
1883 thread__pid(parent), thread__tid(parent));
1884 machine__remove_thread(machine, parent);
1885 thread__put(parent);
1886 parent = machine__findnew_thread(machine, event->fork.ppid,
1887 event->fork.ptid);
1888 }
1889
1890 /* if a thread currently exists for the thread id remove it */
1891 if (thread != NULL) {
1892 machine__remove_thread(machine, thread);
1893 thread__put(thread);
1894 }
1895
1896 thread = machine__findnew_thread(machine, event->fork.pid,
1897 event->fork.tid);
1898 /*
1899 * When synthesizing FORK events, we are trying to create thread
1900 * objects for the already running tasks on the machine.
1901 *
1902 * Normally, for a kernel FORK event, we want to clone the parent's
1903 * maps because that is what the kernel just did.
1904 *
1905 * But when synthesizing, this should not be done. If we do, we end up
1906 * with overlapping maps as we process the synthesized MMAP2 events that
1907 * get delivered shortly thereafter.
1908 *
1909 * Use the FORK event misc flags in an internal way to signal this
1910 * situation, so we can elide the map clone when appropriate.
1911 */
1912 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1913 do_maps_clone = false;
1914
1915 if (thread == NULL || parent == NULL ||
1916 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1917 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1918 err = -1;
1919 }
1920 thread__put(thread);
1921 thread__put(parent);
1922
1923 return err;
1924 }
1925
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1926 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1927 struct perf_sample *sample __maybe_unused)
1928 {
1929 struct thread *thread = machine__find_thread(machine,
1930 event->fork.pid,
1931 event->fork.tid);
1932
1933 if (dump_trace)
1934 perf_event__fprintf_task(event, stdout);
1935
1936 /* There is no context switch out before exit, so we decrement here. */
1937 machine->parallelism--;
1938 if (thread != NULL) {
1939 if (symbol_conf.keep_exited_threads)
1940 thread__set_exited(thread, /*exited=*/true);
1941 else
1942 machine__remove_thread(machine, thread);
1943 }
1944 thread__put(thread);
1945 return 0;
1946 }
1947
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1948 int machine__process_event(struct machine *machine, union perf_event *event,
1949 struct perf_sample *sample)
1950 {
1951 int ret;
1952
1953 switch (event->header.type) {
1954 case PERF_RECORD_COMM:
1955 ret = machine__process_comm_event(machine, event, sample); break;
1956 case PERF_RECORD_MMAP:
1957 ret = machine__process_mmap_event(machine, event, sample); break;
1958 case PERF_RECORD_NAMESPACES:
1959 ret = machine__process_namespaces_event(machine, event, sample); break;
1960 case PERF_RECORD_CGROUP:
1961 ret = machine__process_cgroup_event(machine, event, sample); break;
1962 case PERF_RECORD_MMAP2:
1963 ret = machine__process_mmap2_event(machine, event, sample); break;
1964 case PERF_RECORD_FORK:
1965 ret = machine__process_fork_event(machine, event, sample); break;
1966 case PERF_RECORD_EXIT:
1967 ret = machine__process_exit_event(machine, event, sample); break;
1968 case PERF_RECORD_LOST:
1969 ret = machine__process_lost_event(machine, event, sample); break;
1970 case PERF_RECORD_AUX:
1971 ret = machine__process_aux_event(machine, event); break;
1972 case PERF_RECORD_ITRACE_START:
1973 ret = machine__process_itrace_start_event(machine, event); break;
1974 case PERF_RECORD_LOST_SAMPLES:
1975 ret = machine__process_lost_samples_event(machine, event, sample); break;
1976 case PERF_RECORD_SWITCH:
1977 case PERF_RECORD_SWITCH_CPU_WIDE:
1978 ret = machine__process_switch_event(machine, event); break;
1979 case PERF_RECORD_KSYMBOL:
1980 ret = machine__process_ksymbol(machine, event, sample); break;
1981 case PERF_RECORD_BPF_EVENT:
1982 ret = machine__process_bpf(machine, event, sample); break;
1983 case PERF_RECORD_TEXT_POKE:
1984 ret = machine__process_text_poke(machine, event, sample); break;
1985 case PERF_RECORD_AUX_OUTPUT_HW_ID:
1986 ret = machine__process_aux_output_hw_id_event(machine, event); break;
1987 default:
1988 ret = -1;
1989 break;
1990 }
1991
1992 return ret;
1993 }
1994
symbol__match_regex(struct symbol * sym,regex_t * regex)1995 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1996 {
1997 return regexec(regex, sym->name, 0, NULL, 0) == 0;
1998 }
1999
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)2000 static void ip__resolve_ams(struct thread *thread,
2001 struct addr_map_symbol *ams,
2002 u64 ip)
2003 {
2004 struct addr_location al;
2005
2006 addr_location__init(&al);
2007 /*
2008 * We cannot use the header.misc hint to determine whether a
2009 * branch stack address is user, kernel, guest, hypervisor.
2010 * Branches may straddle the kernel/user/hypervisor boundaries.
2011 * Thus, we have to try consecutively until we find a match
2012 * or else, the symbol is unknown
2013 */
2014 thread__find_cpumode_addr_location(thread, ip, /*symbols=*/true, &al);
2015
2016 ams->addr = ip;
2017 ams->al_addr = al.addr;
2018 ams->al_level = al.level;
2019 ams->ms.thread = thread__get(al.thread);
2020 ams->ms.sym = al.sym;
2021 ams->ms.map = map__get(al.map);
2022 ams->phys_addr = 0;
2023 ams->data_page_size = 0;
2024 addr_location__exit(&al);
2025 }
2026
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr,u64 daddr_page_size)2027 static void ip__resolve_data(struct thread *thread,
2028 u8 m, struct addr_map_symbol *ams,
2029 u64 addr, u64 phys_addr, u64 daddr_page_size)
2030 {
2031 struct addr_location al;
2032
2033 addr_location__init(&al);
2034
2035 thread__find_symbol(thread, m, addr, &al);
2036
2037 ams->addr = addr;
2038 ams->al_addr = al.addr;
2039 ams->al_level = al.level;
2040 ams->ms.thread = thread__get(al.thread);
2041 ams->ms.sym = al.sym;
2042 ams->ms.map = map__get(al.map);
2043 ams->phys_addr = phys_addr;
2044 ams->data_page_size = daddr_page_size;
2045 addr_location__exit(&al);
2046 }
2047
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2048 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2049 struct addr_location *al)
2050 {
2051 struct mem_info *mi = mem_info__new();
2052
2053 if (!mi)
2054 return NULL;
2055
2056 ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2057 ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2058 sample->addr, sample->phys_addr,
2059 sample->data_page_size);
2060 mem_info__data_src(mi)->val = sample->data_src;
2061
2062 return mi;
2063 }
2064
callchain_srcline(struct map_symbol * ms,u64 ip)2065 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2066 {
2067 struct map *map = ms->map;
2068 char *srcline = NULL;
2069 struct dso *dso;
2070
2071 if (!map || callchain_param.key == CCKEY_FUNCTION)
2072 return srcline;
2073
2074 dso = map__dso(map);
2075 srcline = srcline__tree_find(dso__srclines(dso), ip);
2076 if (!srcline) {
2077 bool show_sym = false;
2078 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2079
2080 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2081 ms->sym, show_sym, show_addr, ip);
2082 srcline__tree_insert(dso__srclines(dso), ip, srcline);
2083 }
2084
2085 return srcline;
2086 }
2087
2088 struct iterations {
2089 int nr_loop_iter;
2090 u64 cycles;
2091 };
2092
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip,bool branch,struct branch_flags * flags,int nr_loop_iter,u64 iter_cycles,u64 branch_from)2093 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip,
2094 bool branch, struct branch_flags *flags, int nr_loop_iter,
2095 u64 iter_cycles, u64 branch_from)
2096 {
2097 struct symbol *sym = ms->sym;
2098 struct map *map = ms->map;
2099 struct inline_node *inline_node;
2100 struct inline_list *ilist;
2101 struct dso *dso;
2102 u64 addr;
2103 int ret = 1;
2104 struct map_symbol ilist_ms;
2105 bool first = true;
2106
2107 if (!symbol_conf.inline_name || !map || !sym)
2108 return ret;
2109
2110 addr = map__dso_map_ip(map, ip);
2111 addr = map__rip_2objdump(map, addr);
2112 dso = map__dso(map);
2113
2114 inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2115 if (!inline_node) {
2116 inline_node = dso__parse_addr_inlines(dso, addr, sym);
2117 if (!inline_node)
2118 return ret;
2119 inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2120 }
2121
2122 ilist_ms = (struct map_symbol) {
2123 .thread = thread__get(ms->thread),
2124 .map = map__get(map),
2125 };
2126 list_for_each_entry(ilist, &inline_node->val, list) {
2127 ilist_ms.sym = ilist->symbol;
2128 if (first) {
2129 ret = callchain_cursor_append(cursor, ip, &ilist_ms,
2130 branch, flags, nr_loop_iter,
2131 iter_cycles, branch_from, ilist->srcline);
2132 } else {
2133 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2134 NULL, 0, 0, 0, ilist->srcline);
2135 }
2136 first = false;
2137
2138 if (ret != 0)
2139 return ret;
2140 }
2141 map_symbol__exit(&ilist_ms);
2142
2143 return ret;
2144 }
2145
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from,bool symbols)2146 static int add_callchain_ip(struct thread *thread,
2147 struct callchain_cursor *cursor,
2148 struct symbol **parent,
2149 struct addr_location *root_al,
2150 u8 *cpumode,
2151 u64 ip,
2152 bool branch,
2153 struct branch_flags *flags,
2154 struct iterations *iter,
2155 u64 branch_from,
2156 bool symbols)
2157 {
2158 struct map_symbol ms = {};
2159 struct addr_location al;
2160 int nr_loop_iter = 0, err = 0;
2161 u64 iter_cycles = 0;
2162 const char *srcline = NULL;
2163
2164 addr_location__init(&al);
2165 al.filtered = 0;
2166 al.sym = NULL;
2167 al.srcline = NULL;
2168 if (!cpumode) {
2169 thread__find_cpumode_addr_location(thread, ip, symbols, &al);
2170 } else {
2171 if (ip >= PERF_CONTEXT_MAX) {
2172 switch (ip) {
2173 case PERF_CONTEXT_HV:
2174 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2175 break;
2176 case PERF_CONTEXT_KERNEL:
2177 *cpumode = PERF_RECORD_MISC_KERNEL;
2178 break;
2179 case PERF_CONTEXT_USER:
2180 case PERF_CONTEXT_USER_DEFERRED:
2181 *cpumode = PERF_RECORD_MISC_USER;
2182 break;
2183 default:
2184 pr_debug("invalid callchain context: "
2185 "%"PRId64"\n", (s64) ip);
2186 /*
2187 * It seems the callchain is corrupted.
2188 * Discard all.
2189 */
2190 callchain_cursor_reset(cursor);
2191 err = 1;
2192 goto out;
2193 }
2194 goto out;
2195 }
2196 if (symbols)
2197 thread__find_symbol(thread, *cpumode, ip, &al);
2198 else
2199 thread__find_map(thread, *cpumode, ip, &al);
2200 }
2201
2202 if (al.sym != NULL) {
2203 if (perf_hpp_list.parent && !*parent &&
2204 symbol__match_regex(al.sym, &parent_regex))
2205 *parent = al.sym;
2206 else if (have_ignore_callees && root_al &&
2207 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2208 /* Treat this symbol as the root,
2209 forgetting its callees. */
2210 addr_location__copy(root_al, &al);
2211 callchain_cursor_reset(cursor);
2212 }
2213 }
2214
2215 if (symbol_conf.hide_unresolved && al.sym == NULL)
2216 goto out;
2217
2218 if (iter) {
2219 nr_loop_iter = iter->nr_loop_iter;
2220 iter_cycles = iter->cycles;
2221 }
2222
2223 ms.thread = thread__get(al.thread);
2224 ms.map = map__get(al.map);
2225 ms.sym = al.sym;
2226
2227 if (append_inlines(cursor, &ms, ip, branch, flags, nr_loop_iter,
2228 iter_cycles, branch_from) == 0)
2229 goto out;
2230
2231 srcline = callchain_srcline(&ms, al.addr);
2232 err = callchain_cursor_append(cursor, ip, &ms,
2233 branch, flags, nr_loop_iter,
2234 iter_cycles, branch_from, srcline);
2235 out:
2236 addr_location__exit(&al);
2237 map_symbol__exit(&ms);
2238 return err;
2239 }
2240
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2241 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2242 struct addr_location *al)
2243 {
2244 unsigned int i;
2245 const struct branch_stack *bs = sample->branch_stack;
2246 struct branch_entry *entries = perf_sample__branch_entries(sample);
2247 u64 *branch_stack_cntr = sample->branch_stack_cntr;
2248 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2249
2250 if (!bi)
2251 return NULL;
2252
2253 for (i = 0; i < bs->nr; i++) {
2254 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2255 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2256 bi[i].flags = entries[i].flags;
2257 if (branch_stack_cntr)
2258 bi[i].branch_stack_cntr = branch_stack_cntr[i];
2259 }
2260 return bi;
2261 }
2262
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2263 static void save_iterations(struct iterations *iter,
2264 struct branch_entry *be, int nr)
2265 {
2266 int i;
2267
2268 iter->nr_loop_iter++;
2269 iter->cycles = 0;
2270
2271 for (i = 0; i < nr; i++)
2272 iter->cycles += be[i].flags.cycles;
2273 }
2274
2275 #define CHASHSZ 127
2276 #define CHASHBITS 7
2277 #define NO_ENTRY 0xff
2278
2279 #define PERF_MAX_BRANCH_DEPTH 127
2280
2281 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2282 static int remove_loops(struct branch_entry *l, int nr,
2283 struct iterations *iter)
2284 {
2285 int i, j, off;
2286 unsigned char chash[CHASHSZ];
2287
2288 memset(chash, NO_ENTRY, sizeof(chash));
2289
2290 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2291
2292 for (i = 0; i < nr; i++) {
2293 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2294
2295 /* no collision handling for now */
2296 if (chash[h] == NO_ENTRY) {
2297 chash[h] = i;
2298 } else if (l[chash[h]].from == l[i].from) {
2299 bool is_loop = true;
2300 /* check if it is a real loop */
2301 off = 0;
2302 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2303 if (l[j].from != l[i + off].from) {
2304 is_loop = false;
2305 break;
2306 }
2307 if (is_loop) {
2308 j = nr - (i + off);
2309 if (j > 0) {
2310 save_iterations(iter + i + off,
2311 l + i, off);
2312
2313 memmove(iter + i, iter + i + off,
2314 j * sizeof(*iter));
2315
2316 memmove(l + i, l + i + off,
2317 j * sizeof(*l));
2318 }
2319
2320 nr -= off;
2321 }
2322 }
2323 }
2324 return nr;
2325 }
2326
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end,bool symbols)2327 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2328 struct callchain_cursor *cursor,
2329 struct perf_sample *sample,
2330 struct symbol **parent,
2331 struct addr_location *root_al,
2332 u64 branch_from,
2333 bool callee, int end,
2334 bool symbols)
2335 {
2336 struct ip_callchain *chain = sample->callchain;
2337 u8 cpumode = PERF_RECORD_MISC_USER;
2338 int err, i;
2339
2340 if (callee) {
2341 for (i = 0; i < end + 1; i++) {
2342 err = add_callchain_ip(thread, cursor, parent,
2343 root_al, &cpumode, chain->ips[i],
2344 false, NULL, NULL, branch_from,
2345 symbols);
2346 if (err)
2347 return err;
2348 }
2349 return 0;
2350 }
2351
2352 for (i = end; i >= 0; i--) {
2353 err = add_callchain_ip(thread, cursor, parent,
2354 root_al, &cpumode, chain->ips[i],
2355 false, NULL, NULL, branch_from,
2356 symbols);
2357 if (err)
2358 return err;
2359 }
2360
2361 return 0;
2362 }
2363
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2364 static void save_lbr_cursor_node(struct thread *thread,
2365 struct callchain_cursor *cursor,
2366 int idx)
2367 {
2368 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2369
2370 if (!lbr_stitch)
2371 return;
2372
2373 if (cursor->pos == cursor->nr) {
2374 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2375 return;
2376 }
2377
2378 if (!cursor->curr)
2379 cursor->curr = cursor->first;
2380 else
2381 cursor->curr = cursor->curr->next;
2382
2383 map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms);
2384 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2385 sizeof(struct callchain_cursor_node));
2386 lbr_stitch->prev_lbr_cursor[idx].ms.thread = thread__get(cursor->curr->ms.thread);
2387 lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map);
2388
2389 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2390 cursor->pos++;
2391 }
2392
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee,bool symbols)2393 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2394 struct callchain_cursor *cursor,
2395 struct perf_sample *sample,
2396 struct symbol **parent,
2397 struct addr_location *root_al,
2398 u64 *branch_from,
2399 bool callee,
2400 bool symbols)
2401 {
2402 struct branch_stack *lbr_stack = sample->branch_stack;
2403 struct branch_entry *entries = perf_sample__branch_entries(sample);
2404 u8 cpumode = PERF_RECORD_MISC_USER;
2405 int lbr_nr = lbr_stack->nr;
2406 struct branch_flags *flags;
2407 int err, i;
2408 u64 ip;
2409
2410 /*
2411 * The curr and pos are not used in writing session. They are cleared
2412 * in callchain_cursor_commit() when the writing session is closed.
2413 * Using curr and pos to track the current cursor node.
2414 */
2415 if (thread__lbr_stitch(thread)) {
2416 cursor->curr = NULL;
2417 cursor->pos = cursor->nr;
2418 if (cursor->nr) {
2419 cursor->curr = cursor->first;
2420 for (i = 0; i < (int)(cursor->nr - 1); i++)
2421 cursor->curr = cursor->curr->next;
2422 }
2423 }
2424
2425 if (callee) {
2426 /*
2427 * Set the (first) leaf function's IP to sample->ip (the
2428 * location of the sample) but if not recorded use entries.to
2429 */
2430 if (sample->ip)
2431 ip = sample->ip;
2432 else
2433 ip = entries[0].to;
2434 flags = &entries[0].flags;
2435 *branch_from = entries[0].from;
2436 err = add_callchain_ip(thread, cursor, parent,
2437 root_al, &cpumode, ip,
2438 true, flags, NULL,
2439 *branch_from, symbols);
2440 if (err)
2441 return err;
2442
2443 /*
2444 * The number of cursor node increases.
2445 * Move the current cursor node.
2446 * But does not need to save current cursor node for entry 0.
2447 * It's impossible to stitch the whole LBRs of previous sample.
2448 */
2449 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2450 if (!cursor->curr)
2451 cursor->curr = cursor->first;
2452 else
2453 cursor->curr = cursor->curr->next;
2454 cursor->pos++;
2455 }
2456
2457 /* Add LBR ip from entries.from one by one. */
2458 for (i = 0; i < lbr_nr; i++) {
2459 ip = entries[i].from;
2460 flags = &entries[i].flags;
2461 err = add_callchain_ip(thread, cursor, parent,
2462 root_al, &cpumode, ip,
2463 true, flags, NULL,
2464 *branch_from, symbols);
2465 if (err)
2466 return err;
2467 save_lbr_cursor_node(thread, cursor, i);
2468 }
2469 return 0;
2470 }
2471
2472 /* Add LBR ip from entries.from one by one. */
2473 for (i = lbr_nr - 1; i >= 0; i--) {
2474 ip = entries[i].from;
2475 flags = &entries[i].flags;
2476 err = add_callchain_ip(thread, cursor, parent,
2477 root_al, &cpumode, ip,
2478 true, flags, NULL,
2479 *branch_from, symbols);
2480 if (err)
2481 return err;
2482 save_lbr_cursor_node(thread, cursor, i);
2483 }
2484
2485 if (lbr_nr > 0) {
2486 /*
2487 * Set the (first) leaf function's IP to sample->ip (the
2488 * location of the sample) but if not recorded use entries.to
2489 */
2490 if (sample->ip)
2491 ip = sample->ip;
2492 else
2493 ip = entries[0].to;
2494 flags = &entries[0].flags;
2495 *branch_from = entries[0].from;
2496 err = add_callchain_ip(thread, cursor, parent,
2497 root_al, &cpumode, ip,
2498 true, flags, NULL,
2499 *branch_from, symbols);
2500 if (err)
2501 return err;
2502 }
2503
2504 return 0;
2505 }
2506
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2507 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2508 struct callchain_cursor *cursor)
2509 {
2510 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2511 struct callchain_cursor_node *cnode;
2512 struct stitch_list *stitch_node;
2513 int err;
2514
2515 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2516 cnode = &stitch_node->cursor;
2517
2518 err = callchain_cursor_append(cursor, cnode->ip,
2519 &cnode->ms,
2520 cnode->branch,
2521 &cnode->branch_flags,
2522 cnode->nr_loop_iter,
2523 cnode->iter_cycles,
2524 cnode->branch_from,
2525 cnode->srcline);
2526 if (err)
2527 return err;
2528 }
2529 return 0;
2530 }
2531
get_stitch_node(struct thread * thread)2532 static struct stitch_list *get_stitch_node(struct thread *thread)
2533 {
2534 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2535 struct stitch_list *stitch_node;
2536
2537 if (!list_empty(&lbr_stitch->free_lists)) {
2538 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2539 struct stitch_list, node);
2540 list_del(&stitch_node->node);
2541
2542 return stitch_node;
2543 }
2544
2545 return malloc(sizeof(struct stitch_list));
2546 }
2547
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2548 static bool has_stitched_lbr(struct thread *thread,
2549 struct perf_sample *cur,
2550 struct perf_sample *prev,
2551 unsigned int max_lbr,
2552 bool callee)
2553 {
2554 struct branch_stack *cur_stack = cur->branch_stack;
2555 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2556 struct branch_stack *prev_stack = prev->branch_stack;
2557 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2558 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2559 int i, j, nr_identical_branches = 0;
2560 struct stitch_list *stitch_node;
2561 u64 cur_base, distance;
2562
2563 if (!cur_stack || !prev_stack)
2564 return false;
2565
2566 /* Find the physical index of the base-of-stack for current sample. */
2567 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2568
2569 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2570 (max_lbr + prev_stack->hw_idx - cur_base);
2571 /* Previous sample has shorter stack. Nothing can be stitched. */
2572 if (distance + 1 > prev_stack->nr)
2573 return false;
2574
2575 /*
2576 * Check if there are identical LBRs between two samples.
2577 * Identical LBRs must have same from, to and flags values. Also,
2578 * they have to be saved in the same LBR registers (same physical
2579 * index).
2580 *
2581 * Starts from the base-of-stack of current sample.
2582 */
2583 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2584 if ((prev_entries[i].from != cur_entries[j].from) ||
2585 (prev_entries[i].to != cur_entries[j].to) ||
2586 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2587 break;
2588 nr_identical_branches++;
2589 }
2590
2591 if (!nr_identical_branches)
2592 return false;
2593
2594 /*
2595 * Save the LBRs between the base-of-stack of previous sample
2596 * and the base-of-stack of current sample into lbr_stitch->lists.
2597 * These LBRs will be stitched later.
2598 */
2599 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2600
2601 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2602 continue;
2603
2604 stitch_node = get_stitch_node(thread);
2605 if (!stitch_node)
2606 return false;
2607
2608 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2609 sizeof(struct callchain_cursor_node));
2610
2611 stitch_node->cursor.ms.thread =
2612 thread__get(lbr_stitch->prev_lbr_cursor[i].ms.thread);
2613 stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map);
2614
2615 if (callee)
2616 list_add(&stitch_node->node, &lbr_stitch->lists);
2617 else
2618 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2619 }
2620
2621 return true;
2622 }
2623
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2624 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2625 {
2626 if (thread__lbr_stitch(thread))
2627 return true;
2628
2629 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2630 if (!thread__lbr_stitch(thread))
2631 goto err;
2632
2633 thread__lbr_stitch(thread)->prev_lbr_cursor =
2634 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2635 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2636 goto free_lbr_stitch;
2637
2638 thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1;
2639
2640 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2641 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2642
2643 return true;
2644
2645 free_lbr_stitch:
2646 free(thread__lbr_stitch(thread));
2647 thread__set_lbr_stitch(thread, NULL);
2648 err:
2649 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2650 thread__set_lbr_stitch_enable(thread, false);
2651 return false;
2652 }
2653
2654 /*
2655 * Resolve LBR callstack chain sample
2656 * Return:
2657 * 1 on success get LBR callchain information
2658 * 0 no available LBR callchain information, should try fp
2659 * negative error code on other errors.
2660 */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr,bool symbols)2661 static int resolve_lbr_callchain_sample(struct thread *thread,
2662 struct callchain_cursor *cursor,
2663 struct perf_sample *sample,
2664 struct symbol **parent,
2665 struct addr_location *root_al,
2666 int max_stack,
2667 unsigned int max_lbr,
2668 bool symbols)
2669 {
2670 bool callee = (callchain_param.order == ORDER_CALLEE);
2671 struct ip_callchain *chain = sample->callchain;
2672 int chain_nr = min(max_stack, (int)chain->nr), i;
2673 struct lbr_stitch *lbr_stitch;
2674 bool stitched_lbr = false;
2675 u64 branch_from = 0;
2676 int err;
2677
2678 for (i = 0; i < chain_nr; i++) {
2679 if (chain->ips[i] == PERF_CONTEXT_USER)
2680 break;
2681 }
2682
2683 /* LBR only affects the user callchain */
2684 if (i == chain_nr)
2685 return 0;
2686
2687 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2688 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2689 lbr_stitch = thread__lbr_stitch(thread);
2690
2691 stitched_lbr = has_stitched_lbr(thread, sample,
2692 &lbr_stitch->prev_sample,
2693 max_lbr, callee);
2694
2695 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2696 struct stitch_list *stitch_node;
2697
2698 list_for_each_entry(stitch_node, &lbr_stitch->lists, node)
2699 map_symbol__exit(&stitch_node->cursor.ms);
2700
2701 list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists);
2702 }
2703 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2704 }
2705
2706 if (callee) {
2707 /* Add kernel ip */
2708 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2709 parent, root_al, branch_from,
2710 true, i, symbols);
2711 if (err)
2712 goto error;
2713
2714 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2715 root_al, &branch_from, true, symbols);
2716 if (err)
2717 goto error;
2718
2719 if (stitched_lbr) {
2720 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2721 if (err)
2722 goto error;
2723 }
2724
2725 } else {
2726 if (stitched_lbr) {
2727 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2728 if (err)
2729 goto error;
2730 }
2731 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2732 root_al, &branch_from, false, symbols);
2733 if (err)
2734 goto error;
2735
2736 /* Add kernel ip */
2737 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2738 parent, root_al, branch_from,
2739 false, i, symbols);
2740 if (err)
2741 goto error;
2742 }
2743 return 1;
2744
2745 error:
2746 return (err < 0) ? err : 0;
2747 }
2748
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent,bool symbols)2749 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2750 struct callchain_cursor *cursor,
2751 struct symbol **parent,
2752 struct addr_location *root_al,
2753 u8 *cpumode, int ent, bool symbols)
2754 {
2755 int err = 0;
2756
2757 while (--ent >= 0) {
2758 u64 ip = chain->ips[ent];
2759
2760 if (ip >= PERF_CONTEXT_MAX) {
2761 err = add_callchain_ip(thread, cursor, parent,
2762 root_al, cpumode, ip,
2763 false, NULL, NULL, 0, symbols);
2764 break;
2765 }
2766 }
2767 return err;
2768 }
2769
get_leaf_frame_caller(struct perf_sample * sample,struct thread * thread,int usr_idx)2770 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2771 struct thread *thread, int usr_idx)
2772 {
2773 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2774 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2775 else
2776 return 0;
2777 }
2778
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,bool symbols)2779 static int thread__resolve_callchain_sample(struct thread *thread,
2780 struct callchain_cursor *cursor,
2781 struct evsel *evsel,
2782 struct perf_sample *sample,
2783 struct symbol **parent,
2784 struct addr_location *root_al,
2785 int max_stack,
2786 bool symbols)
2787 {
2788 struct branch_stack *branch = sample->branch_stack;
2789 struct branch_entry *entries = perf_sample__branch_entries(sample);
2790 struct ip_callchain *chain = sample->callchain;
2791 int chain_nr = 0;
2792 u8 cpumode = PERF_RECORD_MISC_USER;
2793 int i, j, err, nr_entries, usr_idx;
2794 int skip_idx = -1;
2795 int first_call = 0;
2796 u64 leaf_frame_caller;
2797
2798 if (chain)
2799 chain_nr = chain->nr;
2800
2801 if (evsel__has_branch_callstack(evsel)) {
2802 struct perf_env *env = evsel__env(evsel);
2803
2804 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2805 root_al, max_stack,
2806 !env ? 0 : env->max_branches,
2807 symbols);
2808 if (err)
2809 return (err < 0) ? err : 0;
2810 }
2811
2812 /*
2813 * Based on DWARF debug information, some architectures skip
2814 * a callchain entry saved by the kernel.
2815 */
2816 skip_idx = arch_skip_callchain_idx(thread, chain);
2817
2818 /*
2819 * Add branches to call stack for easier browsing. This gives
2820 * more context for a sample than just the callers.
2821 *
2822 * This uses individual histograms of paths compared to the
2823 * aggregated histograms the normal LBR mode uses.
2824 *
2825 * Limitations for now:
2826 * - No extra filters
2827 * - No annotations (should annotate somehow)
2828 */
2829
2830 if (branch && callchain_param.branch_callstack) {
2831 int nr = min(max_stack, (int)branch->nr);
2832 struct branch_entry be[nr];
2833 struct iterations iter[nr];
2834
2835 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2836 pr_warning("corrupted branch chain. skipping...\n");
2837 goto check_calls;
2838 }
2839
2840 for (i = 0; i < nr; i++) {
2841 if (callchain_param.order == ORDER_CALLEE) {
2842 be[i] = entries[i];
2843
2844 if (chain == NULL)
2845 continue;
2846
2847 /*
2848 * Check for overlap into the callchain.
2849 * The return address is one off compared to
2850 * the branch entry. To adjust for this
2851 * assume the calling instruction is not longer
2852 * than 8 bytes.
2853 */
2854 if (i == skip_idx ||
2855 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2856 first_call++;
2857 else if (be[i].from < chain->ips[first_call] &&
2858 be[i].from >= chain->ips[first_call] - 8)
2859 first_call++;
2860 } else
2861 be[i] = entries[branch->nr - i - 1];
2862 }
2863
2864 memset(iter, 0, sizeof(struct iterations) * nr);
2865 nr = remove_loops(be, nr, iter);
2866
2867 for (i = 0; i < nr; i++) {
2868 err = add_callchain_ip(thread, cursor, parent,
2869 root_al,
2870 NULL, be[i].to,
2871 true, &be[i].flags,
2872 NULL, be[i].from, symbols);
2873
2874 if (!err) {
2875 err = add_callchain_ip(thread, cursor, parent, root_al,
2876 NULL, be[i].from,
2877 true, &be[i].flags,
2878 &iter[i], 0, symbols);
2879 }
2880 if (err == -EINVAL)
2881 break;
2882 if (err)
2883 return err;
2884 }
2885
2886 if (chain_nr == 0)
2887 return 0;
2888
2889 chain_nr -= nr;
2890 }
2891
2892 check_calls:
2893 if (chain && callchain_param.order != ORDER_CALLEE) {
2894 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2895 &cpumode, chain->nr - first_call, symbols);
2896 if (err)
2897 return (err < 0) ? err : 0;
2898 }
2899 for (i = first_call, nr_entries = 0;
2900 i < chain_nr && nr_entries < max_stack; i++) {
2901 u64 ip;
2902
2903 if (callchain_param.order == ORDER_CALLEE)
2904 j = i;
2905 else
2906 j = chain->nr - i - 1;
2907
2908 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2909 if (j == skip_idx)
2910 continue;
2911 #endif
2912 ip = chain->ips[j];
2913 if (ip < PERF_CONTEXT_MAX)
2914 ++nr_entries;
2915 else if (callchain_param.order != ORDER_CALLEE) {
2916 err = find_prev_cpumode(chain, thread, cursor, parent,
2917 root_al, &cpumode, j, symbols);
2918 if (err)
2919 return (err < 0) ? err : 0;
2920 continue;
2921 }
2922
2923 /*
2924 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2925 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2926 * the index will be different in order to add the missing frame
2927 * at the right place.
2928 */
2929
2930 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2931
2932 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2933
2934 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2935
2936 /*
2937 * check if leaf_frame_Caller != ip to not add the same
2938 * value twice.
2939 */
2940
2941 if (leaf_frame_caller && leaf_frame_caller != ip) {
2942
2943 err = add_callchain_ip(thread, cursor, parent,
2944 root_al, &cpumode, leaf_frame_caller,
2945 false, NULL, NULL, 0, symbols);
2946 if (err)
2947 return (err < 0) ? err : 0;
2948 }
2949 }
2950
2951 err = add_callchain_ip(thread, cursor, parent,
2952 root_al, &cpumode, ip,
2953 false, NULL, NULL, 0, symbols);
2954
2955 if (err)
2956 return (err < 0) ? err : 0;
2957 }
2958
2959 return 0;
2960 }
2961
unwind_entry(struct unwind_entry * entry,void * arg)2962 static int unwind_entry(struct unwind_entry *entry, void *arg)
2963 {
2964 struct callchain_cursor *cursor = arg;
2965 const char *srcline = NULL;
2966 u64 addr = entry->ip;
2967
2968 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2969 return 0;
2970
2971 if (append_inlines(cursor, &entry->ms, entry->ip, /*branch=*/false, /*branch_flags=*/NULL,
2972 /*nr_loop_iter=*/0, /*iter_cycles=*/0, /*branch_from=*/0) == 0)
2973 return 0;
2974
2975 /*
2976 * Convert entry->ip from a virtual address to an offset in
2977 * its corresponding binary.
2978 */
2979 if (entry->ms.map)
2980 addr = map__dso_map_ip(entry->ms.map, entry->ip);
2981
2982 srcline = callchain_srcline(&entry->ms, addr);
2983 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2984 false, NULL, 0, 0, 0, srcline);
2985 }
2986
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack,bool symbols)2987 static int thread__resolve_callchain_unwind(struct thread *thread,
2988 struct callchain_cursor *cursor,
2989 struct evsel *evsel,
2990 struct perf_sample *sample,
2991 int max_stack, bool symbols)
2992 {
2993 /* Can we do dwarf post unwind? */
2994 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2995 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2996 return 0;
2997
2998 /* Bail out if nothing was captured. */
2999 if (!sample->user_regs || !sample->user_regs->regs ||
3000 !sample->user_stack.size)
3001 return 0;
3002
3003 if (!symbols)
3004 pr_debug("Not resolving symbols with an unwinder isn't currently supported\n");
3005
3006 return unwind__get_entries(unwind_entry, cursor,
3007 thread, sample, max_stack, false);
3008 }
3009
__thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,bool symbols)3010 int __thread__resolve_callchain(struct thread *thread,
3011 struct callchain_cursor *cursor,
3012 struct evsel *evsel,
3013 struct perf_sample *sample,
3014 struct symbol **parent,
3015 struct addr_location *root_al,
3016 int max_stack,
3017 bool symbols)
3018 {
3019 int ret = 0;
3020
3021 if (cursor == NULL)
3022 return -ENOMEM;
3023
3024 callchain_cursor_reset(cursor);
3025
3026 if (callchain_param.order == ORDER_CALLEE) {
3027 ret = thread__resolve_callchain_sample(thread, cursor,
3028 evsel, sample,
3029 parent, root_al,
3030 max_stack, symbols);
3031 if (ret)
3032 return ret;
3033 ret = thread__resolve_callchain_unwind(thread, cursor,
3034 evsel, sample,
3035 max_stack, symbols);
3036 } else {
3037 ret = thread__resolve_callchain_unwind(thread, cursor,
3038 evsel, sample,
3039 max_stack, symbols);
3040 if (ret)
3041 return ret;
3042 ret = thread__resolve_callchain_sample(thread, cursor,
3043 evsel, sample,
3044 parent, root_al,
3045 max_stack, symbols);
3046 }
3047
3048 return ret;
3049 }
3050
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)3051 int machine__for_each_thread(struct machine *machine,
3052 int (*fn)(struct thread *thread, void *p),
3053 void *priv)
3054 {
3055 return threads__for_each_thread(&machine->threads, fn, priv);
3056 }
3057
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)3058 int machines__for_each_thread(struct machines *machines,
3059 int (*fn)(struct thread *thread, void *p),
3060 void *priv)
3061 {
3062 struct rb_node *nd;
3063 int rc = 0;
3064
3065 rc = machine__for_each_thread(&machines->host, fn, priv);
3066 if (rc != 0)
3067 return rc;
3068
3069 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3070 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3071
3072 rc = machine__for_each_thread(machine, fn, priv);
3073 if (rc != 0)
3074 return rc;
3075 }
3076 return rc;
3077 }
3078
3079
thread_list_cb(struct thread * thread,void * data)3080 static int thread_list_cb(struct thread *thread, void *data)
3081 {
3082 struct list_head *list = data;
3083 struct thread_list *entry = malloc(sizeof(*entry));
3084
3085 if (!entry)
3086 return -ENOMEM;
3087
3088 entry->thread = thread__get(thread);
3089 list_add_tail(&entry->list, list);
3090 return 0;
3091 }
3092
machine__thread_list(struct machine * machine,struct list_head * list)3093 int machine__thread_list(struct machine *machine, struct list_head *list)
3094 {
3095 return machine__for_each_thread(machine, thread_list_cb, list);
3096 }
3097
thread_list__delete(struct list_head * list)3098 void thread_list__delete(struct list_head *list)
3099 {
3100 struct thread_list *pos, *next;
3101
3102 list_for_each_entry_safe(pos, next, list, list) {
3103 thread__zput(pos->thread);
3104 list_del(&pos->list);
3105 free(pos);
3106 }
3107 }
3108
machine__get_current_tid(struct machine * machine,int cpu)3109 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3110 {
3111 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3112 return -1;
3113
3114 return machine->current_tid[cpu];
3115 }
3116
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)3117 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3118 pid_t tid)
3119 {
3120 struct thread *thread;
3121 const pid_t init_val = -1;
3122
3123 if (cpu < 0)
3124 return -EINVAL;
3125
3126 if (realloc_array_as_needed(machine->current_tid,
3127 machine->current_tid_sz,
3128 (unsigned int)cpu,
3129 &init_val))
3130 return -ENOMEM;
3131
3132 machine->current_tid[cpu] = tid;
3133
3134 thread = machine__findnew_thread(machine, pid, tid);
3135 if (!thread)
3136 return -ENOMEM;
3137
3138 thread__set_cpu(thread, cpu);
3139 thread__put(thread);
3140
3141 return 0;
3142 }
3143
3144 /*
3145 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3146 * machine__normalized_is() if a normalized arch is needed.
3147 */
machine__is(struct machine * machine,const char * arch)3148 bool machine__is(struct machine *machine, const char *arch)
3149 {
3150 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3151 }
3152
machine__normalized_is(struct machine * machine,const char * arch)3153 bool machine__normalized_is(struct machine *machine, const char *arch)
3154 {
3155 return machine && !strcmp(perf_env__arch(machine->env), arch);
3156 }
3157
machine__nr_cpus_avail(struct machine * machine)3158 int machine__nr_cpus_avail(struct machine *machine)
3159 {
3160 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3161 }
3162
machine__get_kernel_start(struct machine * machine)3163 int machine__get_kernel_start(struct machine *machine)
3164 {
3165 struct map *map = machine__kernel_map(machine);
3166 int err = 0;
3167
3168 /*
3169 * The only addresses above 2^63 are kernel addresses of a 64-bit
3170 * kernel. Note that addresses are unsigned so that on a 32-bit system
3171 * all addresses including kernel addresses are less than 2^32. In
3172 * that case (32-bit system), if the kernel mapping is unknown, all
3173 * addresses will be assumed to be in user space - see
3174 * machine__kernel_ip().
3175 */
3176 machine->kernel_start = 1ULL << 63;
3177 if (map) {
3178 err = map__load(map);
3179 /*
3180 * On x86_64, PTI entry trampolines are less than the
3181 * start of kernel text, but still above 2^63. So leave
3182 * kernel_start = 1ULL << 63 for x86_64.
3183 */
3184 if (!err && !machine__is(machine, "x86_64"))
3185 machine->kernel_start = map__start(map);
3186 }
3187 return err;
3188 }
3189
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3190 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3191 {
3192 u8 addr_cpumode = cpumode;
3193 bool kernel_ip;
3194
3195 if (!machine->single_address_space)
3196 goto out;
3197
3198 kernel_ip = machine__kernel_ip(machine, addr);
3199 switch (cpumode) {
3200 case PERF_RECORD_MISC_KERNEL:
3201 case PERF_RECORD_MISC_USER:
3202 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3203 PERF_RECORD_MISC_USER;
3204 break;
3205 case PERF_RECORD_MISC_GUEST_KERNEL:
3206 case PERF_RECORD_MISC_GUEST_USER:
3207 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3208 PERF_RECORD_MISC_GUEST_USER;
3209 break;
3210 default:
3211 break;
3212 }
3213 out:
3214 return addr_cpumode;
3215 }
3216
machine__findnew_dso_id(struct machine * machine,const char * filename,const struct dso_id * id)3217 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename,
3218 const struct dso_id *id)
3219 {
3220 return dsos__findnew_id(&machine->dsos, filename, id);
3221 }
3222
machine__findnew_dso(struct machine * machine,const char * filename)3223 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3224 {
3225 return machine__findnew_dso_id(machine, filename, &dso_id_empty);
3226 }
3227
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3228 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3229 {
3230 struct machine *machine = vmachine;
3231 struct map *map;
3232 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3233
3234 if (sym == NULL)
3235 return NULL;
3236
3237 *modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3238 *addrp = map__unmap_ip(map, sym->start);
3239 return sym->name;
3240 }
3241
3242 struct machine__for_each_dso_cb_args {
3243 struct machine *machine;
3244 machine__dso_t fn;
3245 void *priv;
3246 };
3247
machine__for_each_dso_cb(struct dso * dso,void * data)3248 static int machine__for_each_dso_cb(struct dso *dso, void *data)
3249 {
3250 struct machine__for_each_dso_cb_args *args = data;
3251
3252 return args->fn(dso, args->machine, args->priv);
3253 }
3254
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3255 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3256 {
3257 struct machine__for_each_dso_cb_args args = {
3258 .machine = machine,
3259 .fn = fn,
3260 .priv = priv,
3261 };
3262
3263 return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3264 }
3265
machine__for_each_kernel_map(struct machine * machine,machine__map_t fn,void * priv)3266 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3267 {
3268 struct maps *maps = machine__kernel_maps(machine);
3269
3270 return maps__for_each_map(maps, fn, priv);
3271 }
3272
machine__is_lock_function(struct machine * machine,u64 addr)3273 bool machine__is_lock_function(struct machine *machine, u64 addr)
3274 {
3275 if (!machine->sched.text_start) {
3276 struct map *kmap;
3277 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3278
3279 if (!sym) {
3280 /* to avoid retry */
3281 machine->sched.text_start = 1;
3282 return false;
3283 }
3284
3285 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3286
3287 /* should not fail from here */
3288 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3289 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3290
3291 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3292 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3293
3294 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3295 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3296
3297 sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3298 if (sym) {
3299 machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3300 machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3301 }
3302 sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3303 if (sym) {
3304 machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3305 machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3306 }
3307 }
3308
3309 /* failed to get kernel symbols */
3310 if (machine->sched.text_start == 1)
3311 return false;
3312
3313 /* mutex and rwsem functions are in sched text section */
3314 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3315 return true;
3316
3317 /* spinlock functions are in lock text section */
3318 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3319 return true;
3320
3321 /* traceiter functions currently don't have their own section
3322 * but we consider them lock functions
3323 */
3324 if (machine->traceiter.text_start != 0) {
3325 if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3326 return true;
3327 }
3328
3329 if (machine->trace.text_start != 0) {
3330 if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3331 return true;
3332 }
3333
3334 return false;
3335 }
3336
machine__hit_all_dsos(struct machine * machine)3337 int machine__hit_all_dsos(struct machine *machine)
3338 {
3339 return dsos__hit_all(&machine->dsos);
3340 }
3341