xref: /linux/fs/btrfs/bio.c (revision f92b71ffca8c7e45e194aecc85e31bd11582f4d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "dev-replace.h"
14 #include "zoned.h"
15 #include "file-item.h"
16 #include "raid-stripe-tree.h"
17 
18 static struct bio_set btrfs_bioset;
19 static struct bio_set btrfs_clone_bioset;
20 static struct bio_set btrfs_repair_bioset;
21 static mempool_t btrfs_failed_bio_pool;
22 
23 struct btrfs_failed_bio {
24 	struct btrfs_bio *bbio;
25 	int num_copies;
26 	atomic_t repair_count;
27 };
28 
29 /* Is this a data path I/O that needs storage layer checksum and repair? */
is_data_bbio(const struct btrfs_bio * bbio)30 static inline bool is_data_bbio(const struct btrfs_bio *bbio)
31 {
32 	return bbio->inode && is_data_inode(bbio->inode);
33 }
34 
bbio_has_ordered_extent(const struct btrfs_bio * bbio)35 static bool bbio_has_ordered_extent(const struct btrfs_bio *bbio)
36 {
37 	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38 }
39 
40 /*
41  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
42  * is already initialized by the block layer.
43  */
btrfs_bio_init(struct btrfs_bio * bbio,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45 		    btrfs_bio_end_io_t end_io, void *private)
46 {
47 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48 	bbio->fs_info = fs_info;
49 	bbio->end_io = end_io;
50 	bbio->private = private;
51 	atomic_set(&bbio->pending_ios, 1);
52 	WRITE_ONCE(bbio->status, BLK_STS_OK);
53 }
54 
55 /*
56  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
57  * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
58  *
59  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60  * a mempool.
61  */
btrfs_bio_alloc(unsigned int nr_vecs,blk_opf_t opf,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63 				  struct btrfs_fs_info *fs_info,
64 				  btrfs_bio_end_io_t end_io, void *private)
65 {
66 	struct btrfs_bio *bbio;
67 	struct bio *bio;
68 
69 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70 	bbio = btrfs_bio(bio);
71 	btrfs_bio_init(bbio, fs_info, end_io, private);
72 	return bbio;
73 }
74 
btrfs_split_bio(struct btrfs_fs_info * fs_info,struct btrfs_bio * orig_bbio,u64 map_length)75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76 					 struct btrfs_bio *orig_bbio,
77 					 u64 map_length)
78 {
79 	struct btrfs_bio *bbio;
80 	struct bio *bio;
81 
82 	bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
83 			&btrfs_clone_bioset);
84 	if (IS_ERR(bio))
85 		return ERR_CAST(bio);
86 
87 	bbio = btrfs_bio(bio);
88 	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
89 	bbio->inode = orig_bbio->inode;
90 	bbio->file_offset = orig_bbio->file_offset;
91 	orig_bbio->file_offset += map_length;
92 	if (bbio_has_ordered_extent(bbio)) {
93 		refcount_inc(&orig_bbio->ordered->refs);
94 		bbio->ordered = orig_bbio->ordered;
95 	}
96 	atomic_inc(&orig_bbio->pending_ios);
97 	return bbio;
98 }
99 
btrfs_bio_end_io(struct btrfs_bio * bbio,blk_status_t status)100 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
101 {
102 	bbio->bio.bi_status = status;
103 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
104 		struct btrfs_bio *orig_bbio = bbio->private;
105 
106 		/* Free bio that was never submitted to the underlying device. */
107 		if (bbio_has_ordered_extent(bbio))
108 			btrfs_put_ordered_extent(bbio->ordered);
109 		bio_put(&bbio->bio);
110 
111 		bbio = orig_bbio;
112 	}
113 
114 	/*
115 	 * At this point, bbio always points to the original btrfs_bio. Save
116 	 * the first error in it.
117 	 */
118 	if (status != BLK_STS_OK)
119 		cmpxchg(&bbio->status, BLK_STS_OK, status);
120 
121 	if (atomic_dec_and_test(&bbio->pending_ios)) {
122 		/* Load split bio's error which might be set above. */
123 		if (status == BLK_STS_OK)
124 			bbio->bio.bi_status = READ_ONCE(bbio->status);
125 
126 		if (bbio_has_ordered_extent(bbio)) {
127 			struct btrfs_ordered_extent *ordered = bbio->ordered;
128 
129 			bbio->end_io(bbio);
130 			btrfs_put_ordered_extent(ordered);
131 		} else {
132 			bbio->end_io(bbio);
133 		}
134 	}
135 }
136 
next_repair_mirror(const struct btrfs_failed_bio * fbio,int cur_mirror)137 static int next_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror)
138 {
139 	if (cur_mirror == fbio->num_copies)
140 		return cur_mirror + 1 - fbio->num_copies;
141 	return cur_mirror + 1;
142 }
143 
prev_repair_mirror(const struct btrfs_failed_bio * fbio,int cur_mirror)144 static int prev_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror)
145 {
146 	if (cur_mirror == 1)
147 		return fbio->num_copies;
148 	return cur_mirror - 1;
149 }
150 
btrfs_repair_done(struct btrfs_failed_bio * fbio)151 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
152 {
153 	if (atomic_dec_and_test(&fbio->repair_count)) {
154 		btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
155 		mempool_free(fbio, &btrfs_failed_bio_pool);
156 	}
157 }
158 
btrfs_end_repair_bio(struct btrfs_bio * repair_bbio,struct btrfs_device * dev)159 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
160 				 struct btrfs_device *dev)
161 {
162 	struct btrfs_failed_bio *fbio = repair_bbio->private;
163 	struct btrfs_inode *inode = repair_bbio->inode;
164 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
165 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
166 	int mirror = repair_bbio->mirror_num;
167 
168 	if (repair_bbio->bio.bi_status ||
169 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
170 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
171 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
172 
173 		mirror = next_repair_mirror(fbio, mirror);
174 		if (mirror == fbio->bbio->mirror_num) {
175 			btrfs_debug(fs_info, "no mirror left");
176 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
177 			goto done;
178 		}
179 
180 		btrfs_submit_bbio(repair_bbio, mirror);
181 		return;
182 	}
183 
184 	do {
185 		mirror = prev_repair_mirror(fbio, mirror);
186 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
187 				  repair_bbio->file_offset, fs_info->sectorsize,
188 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
189 				  bvec_phys(bv), mirror);
190 	} while (mirror != fbio->bbio->mirror_num);
191 
192 done:
193 	btrfs_repair_done(fbio);
194 	bio_put(&repair_bbio->bio);
195 }
196 
197 /*
198  * Try to kick off a repair read to the next available mirror for a bad sector.
199  *
200  * This primarily tries to recover good data to serve the actual read request,
201  * but also tries to write the good data back to the bad mirror(s) when a
202  * read succeeded to restore the redundancy.
203  */
repair_one_sector(struct btrfs_bio * failed_bbio,u32 bio_offset,struct bio_vec * bv,struct btrfs_failed_bio * fbio)204 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
205 						  u32 bio_offset,
206 						  struct bio_vec *bv,
207 						  struct btrfs_failed_bio *fbio)
208 {
209 	struct btrfs_inode *inode = failed_bbio->inode;
210 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
211 	const u32 sectorsize = fs_info->sectorsize;
212 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
213 	struct btrfs_bio *repair_bbio;
214 	struct bio *repair_bio;
215 	int num_copies;
216 	int mirror;
217 
218 	btrfs_debug(fs_info, "repair read error: read error at %llu",
219 		    failed_bbio->file_offset + bio_offset);
220 
221 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
222 	if (num_copies == 1) {
223 		btrfs_debug(fs_info, "no copy to repair from");
224 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
225 		return fbio;
226 	}
227 
228 	if (!fbio) {
229 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
230 		fbio->bbio = failed_bbio;
231 		fbio->num_copies = num_copies;
232 		atomic_set(&fbio->repair_count, 1);
233 	}
234 
235 	atomic_inc(&fbio->repair_count);
236 
237 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
238 				      &btrfs_repair_bioset);
239 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
240 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
241 
242 	repair_bbio = btrfs_bio(repair_bio);
243 	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
244 	repair_bbio->inode = failed_bbio->inode;
245 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
246 
247 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
248 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
249 	btrfs_submit_bbio(repair_bbio, mirror);
250 	return fbio;
251 }
252 
btrfs_check_read_bio(struct btrfs_bio * bbio,struct btrfs_device * dev)253 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
254 {
255 	struct btrfs_inode *inode = bbio->inode;
256 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
257 	u32 sectorsize = fs_info->sectorsize;
258 	struct bvec_iter *iter = &bbio->saved_iter;
259 	blk_status_t status = bbio->bio.bi_status;
260 	struct btrfs_failed_bio *fbio = NULL;
261 	u32 offset = 0;
262 
263 	/* Read-repair requires the inode field to be set by the submitter. */
264 	ASSERT(inode);
265 
266 	/*
267 	 * Hand off repair bios to the repair code as there is no upper level
268 	 * submitter for them.
269 	 */
270 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
271 		btrfs_end_repair_bio(bbio, dev);
272 		return;
273 	}
274 
275 	/* Clear the I/O error. A failed repair will reset it. */
276 	bbio->bio.bi_status = BLK_STS_OK;
277 
278 	while (iter->bi_size) {
279 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
280 
281 		bv.bv_len = min(bv.bv_len, sectorsize);
282 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
283 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
284 
285 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
286 		offset += sectorsize;
287 	}
288 
289 	if (bbio->csum != bbio->csum_inline)
290 		kfree(bbio->csum);
291 
292 	if (fbio)
293 		btrfs_repair_done(fbio);
294 	else
295 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
296 }
297 
btrfs_log_dev_io_error(const struct bio * bio,struct btrfs_device * dev)298 static void btrfs_log_dev_io_error(const struct bio *bio, struct btrfs_device *dev)
299 {
300 	if (!dev || !dev->bdev)
301 		return;
302 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
303 		return;
304 
305 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
306 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
307 	else if (!(bio->bi_opf & REQ_RAHEAD))
308 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
309 	if (bio->bi_opf & REQ_PREFLUSH)
310 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
311 }
312 
btrfs_end_io_wq(const struct btrfs_fs_info * fs_info,const struct bio * bio)313 static struct workqueue_struct *btrfs_end_io_wq(const struct btrfs_fs_info *fs_info,
314 						const struct bio *bio)
315 {
316 	if (bio->bi_opf & REQ_META)
317 		return fs_info->endio_meta_workers;
318 	return fs_info->endio_workers;
319 }
320 
btrfs_end_bio_work(struct work_struct * work)321 static void btrfs_end_bio_work(struct work_struct *work)
322 {
323 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
324 
325 	/* Metadata reads are checked and repaired by the submitter. */
326 	if (is_data_bbio(bbio))
327 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
328 	else
329 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
330 }
331 
btrfs_simple_end_io(struct bio * bio)332 static void btrfs_simple_end_io(struct bio *bio)
333 {
334 	struct btrfs_bio *bbio = btrfs_bio(bio);
335 	struct btrfs_device *dev = bio->bi_private;
336 	struct btrfs_fs_info *fs_info = bbio->fs_info;
337 
338 	btrfs_bio_counter_dec(fs_info);
339 
340 	if (bio->bi_status)
341 		btrfs_log_dev_io_error(bio, dev);
342 
343 	if (bio_op(bio) == REQ_OP_READ) {
344 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
345 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
346 	} else {
347 		if (bio_is_zone_append(bio) && !bio->bi_status)
348 			btrfs_record_physical_zoned(bbio);
349 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
350 	}
351 }
352 
btrfs_raid56_end_io(struct bio * bio)353 static void btrfs_raid56_end_io(struct bio *bio)
354 {
355 	struct btrfs_io_context *bioc = bio->bi_private;
356 	struct btrfs_bio *bbio = btrfs_bio(bio);
357 
358 	btrfs_bio_counter_dec(bioc->fs_info);
359 	bbio->mirror_num = bioc->mirror_num;
360 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
361 		btrfs_check_read_bio(bbio, NULL);
362 	else
363 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
364 
365 	btrfs_put_bioc(bioc);
366 }
367 
btrfs_orig_write_end_io(struct bio * bio)368 static void btrfs_orig_write_end_io(struct bio *bio)
369 {
370 	struct btrfs_io_stripe *stripe = bio->bi_private;
371 	struct btrfs_io_context *bioc = stripe->bioc;
372 	struct btrfs_bio *bbio = btrfs_bio(bio);
373 
374 	btrfs_bio_counter_dec(bioc->fs_info);
375 
376 	if (bio->bi_status) {
377 		atomic_inc(&bioc->error);
378 		btrfs_log_dev_io_error(bio, stripe->dev);
379 	}
380 
381 	/*
382 	 * Only send an error to the higher layers if it is beyond the tolerance
383 	 * threshold.
384 	 */
385 	if (atomic_read(&bioc->error) > bioc->max_errors)
386 		bio->bi_status = BLK_STS_IOERR;
387 	else
388 		bio->bi_status = BLK_STS_OK;
389 
390 	if (bio_is_zone_append(bio) && !bio->bi_status)
391 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
392 
393 	btrfs_bio_end_io(bbio, bbio->bio.bi_status);
394 	btrfs_put_bioc(bioc);
395 }
396 
btrfs_clone_write_end_io(struct bio * bio)397 static void btrfs_clone_write_end_io(struct bio *bio)
398 {
399 	struct btrfs_io_stripe *stripe = bio->bi_private;
400 
401 	if (bio->bi_status) {
402 		atomic_inc(&stripe->bioc->error);
403 		btrfs_log_dev_io_error(bio, stripe->dev);
404 	} else if (bio_is_zone_append(bio)) {
405 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
406 	}
407 
408 	/* Pass on control to the original bio this one was cloned from */
409 	bio_endio(stripe->bioc->orig_bio);
410 	bio_put(bio);
411 }
412 
btrfs_submit_dev_bio(struct btrfs_device * dev,struct bio * bio)413 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
414 {
415 	if (!dev || !dev->bdev ||
416 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
417 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
418 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
419 		bio_io_error(bio);
420 		return;
421 	}
422 
423 	bio_set_dev(bio, dev->bdev);
424 
425 	/*
426 	 * For zone append writing, bi_sector must point the beginning of the
427 	 * zone
428 	 */
429 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
430 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
431 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
432 
433 		ASSERT(btrfs_dev_is_sequential(dev, physical));
434 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
435 	}
436 	btrfs_debug(dev->fs_info,
437 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
438 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
439 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
440 		dev->devid, bio->bi_iter.bi_size);
441 
442 	/*
443 	 * Track reads if tracking is enabled; ignore I/O operations before the
444 	 * filesystem is fully initialized.
445 	 */
446 	if (dev->fs_devices->collect_fs_stats && bio_op(bio) == REQ_OP_READ && dev->fs_info)
447 		percpu_counter_add(&dev->fs_info->stats_read_blocks,
448 				   bio->bi_iter.bi_size >> dev->fs_info->sectorsize_bits);
449 
450 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
451 		blkcg_punt_bio_submit(bio);
452 	else
453 		submit_bio(bio);
454 }
455 
btrfs_submit_mirrored_bio(struct btrfs_io_context * bioc,int dev_nr)456 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
457 {
458 	struct bio *orig_bio = bioc->orig_bio, *bio;
459 
460 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
461 
462 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
463 	if (dev_nr == bioc->num_stripes - 1) {
464 		bio = orig_bio;
465 		bio->bi_end_io = btrfs_orig_write_end_io;
466 	} else {
467 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
468 		bio_inc_remaining(orig_bio);
469 		bio->bi_end_io = btrfs_clone_write_end_io;
470 	}
471 
472 	bio->bi_private = &bioc->stripes[dev_nr];
473 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
474 	bioc->stripes[dev_nr].bioc = bioc;
475 	bioc->size = bio->bi_iter.bi_size;
476 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
477 }
478 
btrfs_submit_bio(struct bio * bio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)479 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
480 			     struct btrfs_io_stripe *smap, int mirror_num)
481 {
482 	if (!bioc) {
483 		/* Single mirror read/write fast path. */
484 		btrfs_bio(bio)->mirror_num = mirror_num;
485 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
486 		if (bio_op(bio) != REQ_OP_READ)
487 			btrfs_bio(bio)->orig_physical = smap->physical;
488 		bio->bi_private = smap->dev;
489 		bio->bi_end_io = btrfs_simple_end_io;
490 		btrfs_submit_dev_bio(smap->dev, bio);
491 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
492 		/* Parity RAID write or read recovery. */
493 		bio->bi_private = bioc;
494 		bio->bi_end_io = btrfs_raid56_end_io;
495 		if (bio_op(bio) == REQ_OP_READ)
496 			raid56_parity_recover(bio, bioc, mirror_num);
497 		else
498 			raid56_parity_write(bio, bioc);
499 	} else {
500 		/* Write to multiple mirrors. */
501 		int total_devs = bioc->num_stripes;
502 
503 		bioc->orig_bio = bio;
504 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
505 			btrfs_submit_mirrored_bio(bioc, dev_nr);
506 	}
507 }
508 
btrfs_bio_csum(struct btrfs_bio * bbio)509 static int btrfs_bio_csum(struct btrfs_bio *bbio)
510 {
511 	if (bbio->bio.bi_opf & REQ_META)
512 		return btree_csum_one_bio(bbio);
513 	return btrfs_csum_one_bio(bbio);
514 }
515 
516 /*
517  * Async submit bios are used to offload expensive checksumming onto the worker
518  * threads.
519  */
520 struct async_submit_bio {
521 	struct btrfs_bio *bbio;
522 	struct btrfs_io_context *bioc;
523 	struct btrfs_io_stripe smap;
524 	int mirror_num;
525 	struct btrfs_work work;
526 };
527 
528 /*
529  * In order to insert checksums into the metadata in large chunks, we wait
530  * until bio submission time.   All the pages in the bio are checksummed and
531  * sums are attached onto the ordered extent record.
532  *
533  * At IO completion time the csums attached on the ordered extent record are
534  * inserted into the btree.
535  */
run_one_async_start(struct btrfs_work * work)536 static void run_one_async_start(struct btrfs_work *work)
537 {
538 	struct async_submit_bio *async =
539 		container_of(work, struct async_submit_bio, work);
540 	int ret;
541 
542 	ret = btrfs_bio_csum(async->bbio);
543 	if (ret)
544 		async->bbio->bio.bi_status = errno_to_blk_status(ret);
545 }
546 
547 /*
548  * In order to insert checksums into the metadata in large chunks, we wait
549  * until bio submission time.   All the pages in the bio are checksummed and
550  * sums are attached onto the ordered extent record.
551  *
552  * At IO completion time the csums attached on the ordered extent record are
553  * inserted into the tree.
554  *
555  * If called with @do_free == true, then it will free the work struct.
556  */
run_one_async_done(struct btrfs_work * work,bool do_free)557 static void run_one_async_done(struct btrfs_work *work, bool do_free)
558 {
559 	struct async_submit_bio *async =
560 		container_of(work, struct async_submit_bio, work);
561 	struct bio *bio = &async->bbio->bio;
562 
563 	if (do_free) {
564 		kfree(container_of(work, struct async_submit_bio, work));
565 		return;
566 	}
567 
568 	/* If an error occurred we just want to clean up the bio and move on. */
569 	if (bio->bi_status) {
570 		btrfs_bio_end_io(async->bbio, bio->bi_status);
571 		return;
572 	}
573 
574 	/*
575 	 * All of the bios that pass through here are from async helpers.
576 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
577 	 * context.  This changes nothing when cgroups aren't in use.
578 	 */
579 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
580 	btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
581 }
582 
should_async_write(struct btrfs_bio * bbio)583 static bool should_async_write(struct btrfs_bio *bbio)
584 {
585 	bool auto_csum_mode = true;
586 
587 #ifdef CONFIG_BTRFS_EXPERIMENTAL
588 	struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
589 	enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
590 
591 	if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
592 		return false;
593 
594 	auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
595 #endif
596 
597 	/* Submit synchronously if the checksum implementation is fast. */
598 	if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
599 		return false;
600 
601 	/*
602 	 * Try to defer the submission to a workqueue to parallelize the
603 	 * checksum calculation unless the I/O is issued synchronously.
604 	 */
605 	if (op_is_sync(bbio->bio.bi_opf))
606 		return false;
607 
608 	/* Zoned devices require I/O to be submitted in order. */
609 	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
610 		return false;
611 
612 	return true;
613 }
614 
615 /*
616  * Submit bio to an async queue.
617  *
618  * Return true if the work has been successfully submitted, else false.
619  */
btrfs_wq_submit_bio(struct btrfs_bio * bbio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)620 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
621 				struct btrfs_io_context *bioc,
622 				struct btrfs_io_stripe *smap, int mirror_num)
623 {
624 	struct btrfs_fs_info *fs_info = bbio->fs_info;
625 	struct async_submit_bio *async;
626 
627 	async = kmalloc(sizeof(*async), GFP_NOFS);
628 	if (!async)
629 		return false;
630 
631 	async->bbio = bbio;
632 	async->bioc = bioc;
633 	async->smap = *smap;
634 	async->mirror_num = mirror_num;
635 
636 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
637 	btrfs_queue_work(fs_info->workers, &async->work);
638 	return true;
639 }
640 
btrfs_append_map_length(struct btrfs_bio * bbio,u64 map_length)641 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
642 {
643 	unsigned int nr_segs;
644 	int sector_offset;
645 
646 	map_length = min(map_length, bbio->fs_info->max_zone_append_size);
647 	sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
648 					&nr_segs, map_length);
649 	if (sector_offset) {
650 		/*
651 		 * bio_split_rw_at() could split at a size smaller than our
652 		 * sectorsize and thus cause unaligned I/Os.  Fix that by
653 		 * always rounding down to the nearest boundary.
654 		 */
655 		return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, bbio->fs_info->sectorsize);
656 	}
657 	return map_length;
658 }
659 
btrfs_submit_chunk(struct btrfs_bio * bbio,int mirror_num)660 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
661 {
662 	struct btrfs_inode *inode = bbio->inode;
663 	struct btrfs_fs_info *fs_info = bbio->fs_info;
664 	struct bio *bio = &bbio->bio;
665 	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
666 	u64 length = bio->bi_iter.bi_size;
667 	u64 map_length = length;
668 	bool use_append = btrfs_use_zone_append(bbio);
669 	struct btrfs_io_context *bioc = NULL;
670 	struct btrfs_io_stripe smap;
671 	blk_status_t status;
672 	int ret;
673 
674 	if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
675 		smap.rst_search_commit_root = true;
676 	else
677 		smap.rst_search_commit_root = false;
678 
679 	btrfs_bio_counter_inc_blocked(fs_info);
680 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
681 			      &bioc, &smap, &mirror_num);
682 	if (ret) {
683 		status = errno_to_blk_status(ret);
684 		btrfs_bio_counter_dec(fs_info);
685 		goto end_bbio;
686 	}
687 
688 	map_length = min(map_length, length);
689 	if (use_append)
690 		map_length = btrfs_append_map_length(bbio, map_length);
691 
692 	if (map_length < length) {
693 		struct btrfs_bio *split;
694 
695 		split = btrfs_split_bio(fs_info, bbio, map_length);
696 		if (IS_ERR(split)) {
697 			status = errno_to_blk_status(PTR_ERR(split));
698 			btrfs_bio_counter_dec(fs_info);
699 			goto end_bbio;
700 		}
701 		bbio = split;
702 		bio = &bbio->bio;
703 	}
704 
705 	/*
706 	 * Save the iter for the end_io handler and preload the checksums for
707 	 * data reads.
708 	 */
709 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
710 		bbio->saved_iter = bio->bi_iter;
711 		ret = btrfs_lookup_bio_sums(bbio);
712 		status = errno_to_blk_status(ret);
713 		if (status)
714 			goto fail;
715 	}
716 
717 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
718 		if (use_append) {
719 			bio->bi_opf &= ~REQ_OP_WRITE;
720 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
721 		}
722 
723 		if (is_data_bbio(bbio) && bioc && bioc->use_rst) {
724 			/*
725 			 * No locking for the list update, as we only add to
726 			 * the list in the I/O submission path, and list
727 			 * iteration only happens in the completion path, which
728 			 * can't happen until after the last submission.
729 			 */
730 			btrfs_get_bioc(bioc);
731 			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
732 		}
733 
734 		/*
735 		 * Csum items for reloc roots have already been cloned at this
736 		 * point, so they are handled as part of the no-checksum case.
737 		 */
738 		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
739 		    !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
740 		    !btrfs_is_data_reloc_root(inode->root)) {
741 			if (should_async_write(bbio) &&
742 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
743 				goto done;
744 
745 			ret = btrfs_bio_csum(bbio);
746 			status = errno_to_blk_status(ret);
747 			if (status)
748 				goto fail;
749 		} else if (use_append ||
750 			   (btrfs_is_zoned(fs_info) && inode &&
751 			    inode->flags & BTRFS_INODE_NODATASUM)) {
752 			ret = btrfs_alloc_dummy_sum(bbio);
753 			status = errno_to_blk_status(ret);
754 			if (status)
755 				goto fail;
756 		}
757 	}
758 
759 	btrfs_submit_bio(bio, bioc, &smap, mirror_num);
760 done:
761 	return map_length == length;
762 
763 fail:
764 	btrfs_bio_counter_dec(fs_info);
765 	/*
766 	 * We have split the original bbio, now we have to end both the current
767 	 * @bbio and remaining one, as the remaining one will never be submitted.
768 	 */
769 	if (map_length < length) {
770 		struct btrfs_bio *remaining = bbio->private;
771 
772 		ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
773 		ASSERT(remaining);
774 
775 		btrfs_bio_end_io(remaining, status);
776 	}
777 end_bbio:
778 	btrfs_bio_end_io(bbio, status);
779 	/* Do not submit another chunk */
780 	return true;
781 }
782 
btrfs_submit_bbio(struct btrfs_bio * bbio,int mirror_num)783 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
784 {
785 	/* If bbio->inode is not populated, its file_offset must be 0. */
786 	ASSERT(bbio->inode || bbio->file_offset == 0);
787 
788 	while (!btrfs_submit_chunk(bbio, mirror_num))
789 		;
790 }
791 
792 /*
793  * Submit a repair write.
794  *
795  * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
796  * RAID setup.  Here we only want to write the one bad copy, so we do the
797  * mapping ourselves and submit the bio directly.
798  *
799  * The I/O is issued synchronously to block the repair read completion from
800  * freeing the bio.
801  */
btrfs_repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,phys_addr_t paddr,int mirror_num)802 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
803 			    u64 length, u64 logical, phys_addr_t paddr, int mirror_num)
804 {
805 	struct btrfs_io_stripe smap = { 0 };
806 	struct bio_vec bvec;
807 	struct bio bio;
808 	int ret = 0;
809 
810 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
811 	BUG_ON(!mirror_num);
812 
813 	if (btrfs_repair_one_zone(fs_info, logical))
814 		return 0;
815 
816 	/*
817 	 * Avoid races with device replace and make sure our bioc has devices
818 	 * associated to its stripes that don't go away while we are doing the
819 	 * read repair operation.
820 	 */
821 	btrfs_bio_counter_inc_blocked(fs_info);
822 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
823 	if (ret < 0)
824 		goto out_counter_dec;
825 
826 	if (!smap.dev->bdev ||
827 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
828 		ret = -EIO;
829 		goto out_counter_dec;
830 	}
831 
832 	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
833 	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
834 	__bio_add_page(&bio, phys_to_page(paddr), length, offset_in_page(paddr));
835 	ret = submit_bio_wait(&bio);
836 	if (ret) {
837 		/* try to remap that extent elsewhere? */
838 		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
839 		goto out_bio_uninit;
840 	}
841 
842 	btrfs_info_rl(fs_info,
843 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
844 			     ino, start, btrfs_dev_name(smap.dev),
845 			     smap.physical >> SECTOR_SHIFT);
846 	ret = 0;
847 
848 out_bio_uninit:
849 	bio_uninit(&bio);
850 out_counter_dec:
851 	btrfs_bio_counter_dec(fs_info);
852 	return ret;
853 }
854 
855 /*
856  * Submit a btrfs_bio based repair write.
857  *
858  * If @dev_replace is true, the write would be submitted to dev-replace target.
859  */
btrfs_submit_repair_write(struct btrfs_bio * bbio,int mirror_num,bool dev_replace)860 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
861 {
862 	struct btrfs_fs_info *fs_info = bbio->fs_info;
863 	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
864 	u64 length = bbio->bio.bi_iter.bi_size;
865 	struct btrfs_io_stripe smap = { 0 };
866 	int ret;
867 
868 	ASSERT(fs_info);
869 	ASSERT(mirror_num > 0);
870 	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
871 	ASSERT(!bbio->inode);
872 
873 	btrfs_bio_counter_inc_blocked(fs_info);
874 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
875 	if (ret < 0)
876 		goto fail;
877 
878 	if (dev_replace) {
879 		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
880 		smap.dev = fs_info->dev_replace.tgtdev;
881 	}
882 	btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
883 	return;
884 
885 fail:
886 	btrfs_bio_counter_dec(fs_info);
887 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
888 }
889 
btrfs_bioset_init(void)890 int __init btrfs_bioset_init(void)
891 {
892 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
893 			offsetof(struct btrfs_bio, bio),
894 			BIOSET_NEED_BVECS))
895 		return -ENOMEM;
896 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
897 			offsetof(struct btrfs_bio, bio), 0))
898 		goto out;
899 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
900 			offsetof(struct btrfs_bio, bio),
901 			BIOSET_NEED_BVECS))
902 		goto out;
903 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
904 				      sizeof(struct btrfs_failed_bio)))
905 		goto out;
906 	return 0;
907 
908 out:
909 	btrfs_bioset_exit();
910 	return -ENOMEM;
911 }
912 
btrfs_bioset_exit(void)913 void __cold btrfs_bioset_exit(void)
914 {
915 	mempool_exit(&btrfs_failed_bio_pool);
916 	bioset_exit(&btrfs_repair_bioset);
917 	bioset_exit(&btrfs_clone_bioset);
918 	bioset_exit(&btrfs_bioset);
919 }
920