xref: /linux/tools/perf/util/annotate-data.c (revision 4f9786035f9e519db41375818e1d0b5f20da2f10)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Convert sample address to data type using DWARF debug info.
4  *
5  * Written by Namhyung Kim <namhyung@kernel.org>
6  */
7 
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <inttypes.h>
11 #include <linux/zalloc.h>
12 
13 #include "annotate.h"
14 #include "annotate-data.h"
15 #include "debuginfo.h"
16 #include "debug.h"
17 #include "dso.h"
18 #include "dwarf-regs.h"
19 #include "evsel.h"
20 #include "evlist.h"
21 #include "map.h"
22 #include "map_symbol.h"
23 #include "sort.h"
24 #include "strbuf.h"
25 #include "symbol.h"
26 #include "symbol_conf.h"
27 #include "thread.h"
28 
29 /* register number of the stack pointer */
30 #define X86_REG_SP 7
31 
32 static void delete_var_types(struct die_var_type *var_types);
33 
34 #define pr_debug_dtp(fmt, ...)					\
35 do {								\
36 	if (debug_type_profile)					\
37 		pr_info(fmt, ##__VA_ARGS__);			\
38 	else							\
39 		pr_debug3(fmt, ##__VA_ARGS__);			\
40 } while (0)
41 
42 void pr_debug_type_name(Dwarf_Die *die, enum type_state_kind kind)
43 {
44 	struct strbuf sb;
45 	char *str;
46 	Dwarf_Word size = 0;
47 
48 	if (!debug_type_profile && verbose < 3)
49 		return;
50 
51 	switch (kind) {
52 	case TSR_KIND_INVALID:
53 		pr_info("\n");
54 		return;
55 	case TSR_KIND_PERCPU_BASE:
56 		pr_info(" percpu base\n");
57 		return;
58 	case TSR_KIND_CONST:
59 		pr_info(" constant\n");
60 		return;
61 	case TSR_KIND_POINTER:
62 		pr_info(" pointer");
63 		/* it also prints the type info */
64 		break;
65 	case TSR_KIND_CANARY:
66 		pr_info(" stack canary\n");
67 		return;
68 	case TSR_KIND_TYPE:
69 	default:
70 		break;
71 	}
72 
73 	dwarf_aggregate_size(die, &size);
74 
75 	strbuf_init(&sb, 32);
76 	die_get_typename_from_type(die, &sb);
77 	str = strbuf_detach(&sb, NULL);
78 	pr_info(" type='%s' size=%#lx (die:%#lx)\n",
79 		str, (long)size, (long)dwarf_dieoffset(die));
80 	free(str);
81 }
82 
83 static void pr_debug_location(Dwarf_Die *die, u64 pc, int reg)
84 {
85 	ptrdiff_t off = 0;
86 	Dwarf_Attribute attr;
87 	Dwarf_Addr base, start, end;
88 	Dwarf_Op *ops;
89 	size_t nops;
90 
91 	if (!debug_type_profile && verbose < 3)
92 		return;
93 
94 	if (dwarf_attr(die, DW_AT_location, &attr) == NULL)
95 		return;
96 
97 	while ((off = dwarf_getlocations(&attr, off, &base, &start, &end, &ops, &nops)) > 0) {
98 		if (reg != DWARF_REG_PC && end <= pc)
99 			continue;
100 		if (reg != DWARF_REG_PC && start > pc)
101 			break;
102 
103 		pr_info(" variable location: ");
104 		switch (ops->atom) {
105 		case DW_OP_reg0 ...DW_OP_reg31:
106 			pr_info("reg%d\n", ops->atom - DW_OP_reg0);
107 			break;
108 		case DW_OP_breg0 ...DW_OP_breg31:
109 			pr_info("base=reg%d, offset=%#lx\n",
110 				ops->atom - DW_OP_breg0, (long)ops->number);
111 			break;
112 		case DW_OP_regx:
113 			pr_info("reg%ld\n", (long)ops->number);
114 			break;
115 		case DW_OP_bregx:
116 			pr_info("base=reg%ld, offset=%#lx\n",
117 				(long)ops->number, (long)ops->number2);
118 			break;
119 		case DW_OP_fbreg:
120 			pr_info("use frame base, offset=%#lx\n", (long)ops->number);
121 			break;
122 		case DW_OP_addr:
123 			pr_info("address=%#lx\n", (long)ops->number);
124 			break;
125 		default:
126 			pr_info("unknown: code=%#x, number=%#lx\n",
127 				ops->atom, (long)ops->number);
128 			break;
129 		}
130 		break;
131 	}
132 }
133 
134 static void pr_debug_scope(Dwarf_Die *scope_die)
135 {
136 	int tag;
137 
138 	if (!debug_type_profile && verbose < 3)
139 		return;
140 
141 	pr_info("(die:%lx) ", (long)dwarf_dieoffset(scope_die));
142 
143 	tag = dwarf_tag(scope_die);
144 	if (tag == DW_TAG_subprogram)
145 		pr_info("[function] %s\n", dwarf_diename(scope_die));
146 	else if (tag == DW_TAG_inlined_subroutine)
147 		pr_info("[inlined] %s\n", dwarf_diename(scope_die));
148 	else if (tag == DW_TAG_lexical_block)
149 		pr_info("[block]\n");
150 	else
151 		pr_info("[unknown] tag=%x\n", tag);
152 }
153 
154 bool has_reg_type(struct type_state *state, int reg)
155 {
156 	return (unsigned)reg < ARRAY_SIZE(state->regs);
157 }
158 
159 static void init_type_state(struct type_state *state, struct arch *arch)
160 {
161 	memset(state, 0, sizeof(*state));
162 	INIT_LIST_HEAD(&state->stack_vars);
163 
164 	if (arch__is(arch, "x86")) {
165 		state->regs[0].caller_saved = true;
166 		state->regs[1].caller_saved = true;
167 		state->regs[2].caller_saved = true;
168 		state->regs[4].caller_saved = true;
169 		state->regs[5].caller_saved = true;
170 		state->regs[8].caller_saved = true;
171 		state->regs[9].caller_saved = true;
172 		state->regs[10].caller_saved = true;
173 		state->regs[11].caller_saved = true;
174 		state->ret_reg = 0;
175 		state->stack_reg = X86_REG_SP;
176 	}
177 }
178 
179 static void exit_type_state(struct type_state *state)
180 {
181 	struct type_state_stack *stack, *tmp;
182 
183 	list_for_each_entry_safe(stack, tmp, &state->stack_vars, list) {
184 		list_del(&stack->list);
185 		free(stack);
186 	}
187 }
188 
189 /*
190  * Compare type name and size to maintain them in a tree.
191  * I'm not sure if DWARF would have information of a single type in many
192  * different places (compilation units).  If not, it could compare the
193  * offset of the type entry in the .debug_info section.
194  */
195 static int data_type_cmp(const void *_key, const struct rb_node *node)
196 {
197 	const struct annotated_data_type *key = _key;
198 	struct annotated_data_type *type;
199 
200 	type = rb_entry(node, struct annotated_data_type, node);
201 
202 	if (key->self.size != type->self.size)
203 		return key->self.size - type->self.size;
204 	return strcmp(key->self.type_name, type->self.type_name);
205 }
206 
207 static bool data_type_less(struct rb_node *node_a, const struct rb_node *node_b)
208 {
209 	struct annotated_data_type *a, *b;
210 
211 	a = rb_entry(node_a, struct annotated_data_type, node);
212 	b = rb_entry(node_b, struct annotated_data_type, node);
213 
214 	if (a->self.size != b->self.size)
215 		return a->self.size < b->self.size;
216 	return strcmp(a->self.type_name, b->self.type_name) < 0;
217 }
218 
219 /* Recursively add new members for struct/union */
220 static int __add_member_cb(Dwarf_Die *die, void *arg)
221 {
222 	struct annotated_member *parent = arg;
223 	struct annotated_member *member;
224 	Dwarf_Die member_type, die_mem;
225 	Dwarf_Word size, loc, bit_size = 0;
226 	Dwarf_Attribute attr;
227 	struct strbuf sb;
228 	int tag;
229 
230 	if (dwarf_tag(die) != DW_TAG_member)
231 		return DIE_FIND_CB_SIBLING;
232 
233 	member = zalloc(sizeof(*member));
234 	if (member == NULL)
235 		return DIE_FIND_CB_END;
236 
237 	strbuf_init(&sb, 32);
238 	die_get_typename(die, &sb);
239 
240 	__die_get_real_type(die, &member_type);
241 	if (dwarf_tag(&member_type) == DW_TAG_typedef)
242 		die_get_real_type(&member_type, &die_mem);
243 	else
244 		die_mem = member_type;
245 
246 	if (dwarf_aggregate_size(&die_mem, &size) < 0)
247 		size = 0;
248 
249 	if (dwarf_attr_integrate(die, DW_AT_data_member_location, &attr))
250 		dwarf_formudata(&attr, &loc);
251 	else {
252 		/* bitfield member */
253 		if (dwarf_attr_integrate(die, DW_AT_data_bit_offset, &attr) &&
254 		    dwarf_formudata(&attr, &loc) == 0)
255 			loc /= 8;
256 		else
257 			loc = 0;
258 
259 		if (dwarf_attr_integrate(die, DW_AT_bit_size, &attr) &&
260 		    dwarf_formudata(&attr, &bit_size) == 0)
261 			size = (bit_size + 7) / 8;
262 	}
263 
264 	member->type_name = strbuf_detach(&sb, NULL);
265 	/* member->var_name can be NULL */
266 	if (dwarf_diename(die)) {
267 		if (bit_size) {
268 			if (asprintf(&member->var_name, "%s:%ld",
269 				     dwarf_diename(die), (long)bit_size) < 0)
270 				member->var_name = NULL;
271 		} else {
272 			member->var_name = strdup(dwarf_diename(die));
273 		}
274 
275 		if (member->var_name == NULL) {
276 			free(member);
277 			return DIE_FIND_CB_END;
278 		}
279 	}
280 	member->size = size;
281 	member->offset = loc + parent->offset;
282 	INIT_LIST_HEAD(&member->children);
283 	list_add_tail(&member->node, &parent->children);
284 
285 	tag = dwarf_tag(&die_mem);
286 	switch (tag) {
287 	case DW_TAG_structure_type:
288 	case DW_TAG_union_type:
289 		die_find_child(&die_mem, __add_member_cb, member, &die_mem);
290 		break;
291 	default:
292 		break;
293 	}
294 	return DIE_FIND_CB_SIBLING;
295 }
296 
297 static void add_member_types(struct annotated_data_type *parent, Dwarf_Die *type)
298 {
299 	Dwarf_Die die_mem;
300 
301 	die_find_child(type, __add_member_cb, &parent->self, &die_mem);
302 }
303 
304 static void delete_members(struct annotated_member *member)
305 {
306 	struct annotated_member *child, *tmp;
307 
308 	list_for_each_entry_safe(child, tmp, &member->children, node) {
309 		list_del(&child->node);
310 		delete_members(child);
311 		zfree(&child->type_name);
312 		zfree(&child->var_name);
313 		free(child);
314 	}
315 }
316 
317 static int fill_member_name(char *buf, size_t sz, struct annotated_member *m,
318 			    int offset, bool first)
319 {
320 	struct annotated_member *child;
321 
322 	if (list_empty(&m->children))
323 		return 0;
324 
325 	list_for_each_entry(child, &m->children, node) {
326 		int len;
327 
328 		if (offset < child->offset || offset >= child->offset + child->size)
329 			continue;
330 
331 		/* It can have anonymous struct/union members */
332 		if (child->var_name) {
333 			len = scnprintf(buf, sz, "%s%s",
334 					first ? "" : ".", child->var_name);
335 			first = false;
336 		} else {
337 			len = 0;
338 		}
339 
340 		return fill_member_name(buf + len, sz - len, child, offset, first) + len;
341 	}
342 	return 0;
343 }
344 
345 int annotated_data_type__get_member_name(struct annotated_data_type *adt,
346 					 char *buf, size_t sz, int member_offset)
347 {
348 	return fill_member_name(buf, sz, &adt->self, member_offset, /*first=*/true);
349 }
350 
351 static struct annotated_data_type *dso__findnew_data_type(struct dso *dso,
352 							  Dwarf_Die *type_die)
353 {
354 	struct annotated_data_type *result = NULL;
355 	struct annotated_data_type key;
356 	struct rb_node *node;
357 	struct strbuf sb;
358 	char *type_name;
359 	Dwarf_Word size;
360 
361 	strbuf_init(&sb, 32);
362 	if (die_get_typename_from_type(type_die, &sb) < 0)
363 		strbuf_add(&sb, "(unknown type)", 14);
364 	type_name = strbuf_detach(&sb, NULL);
365 
366 	if (dwarf_tag(type_die) == DW_TAG_typedef)
367 		die_get_real_type(type_die, type_die);
368 
369 	dwarf_aggregate_size(type_die, &size);
370 
371 	/* Check existing nodes in dso->data_types tree */
372 	key.self.type_name = type_name;
373 	key.self.size = size;
374 	node = rb_find(&key, dso__data_types(dso), data_type_cmp);
375 	if (node) {
376 		result = rb_entry(node, struct annotated_data_type, node);
377 		free(type_name);
378 		return result;
379 	}
380 
381 	/* If not, add a new one */
382 	result = zalloc(sizeof(*result));
383 	if (result == NULL) {
384 		free(type_name);
385 		return NULL;
386 	}
387 
388 	result->self.type_name = type_name;
389 	result->self.size = size;
390 	INIT_LIST_HEAD(&result->self.children);
391 
392 	if (symbol_conf.annotate_data_member)
393 		add_member_types(result, type_die);
394 
395 	rb_add(&result->node, dso__data_types(dso), data_type_less);
396 	return result;
397 }
398 
399 static bool find_cu_die(struct debuginfo *di, u64 pc, Dwarf_Die *cu_die)
400 {
401 	Dwarf_Off off, next_off;
402 	size_t header_size;
403 
404 	if (dwarf_addrdie(di->dbg, pc, cu_die) != NULL)
405 		return cu_die;
406 
407 	/*
408 	 * There are some kernels don't have full aranges and contain only a few
409 	 * aranges entries.  Fallback to iterate all CU entries in .debug_info
410 	 * in case it's missing.
411 	 */
412 	off = 0;
413 	while (dwarf_nextcu(di->dbg, off, &next_off, &header_size,
414 			    NULL, NULL, NULL) == 0) {
415 		if (dwarf_offdie(di->dbg, off + header_size, cu_die) &&
416 		    dwarf_haspc(cu_die, pc))
417 			return true;
418 
419 		off = next_off;
420 	}
421 	return false;
422 }
423 
424 enum type_match_result {
425 	PERF_TMR_UNKNOWN = 0,
426 	PERF_TMR_OK,
427 	PERF_TMR_NO_TYPE,
428 	PERF_TMR_NO_POINTER,
429 	PERF_TMR_NO_SIZE,
430 	PERF_TMR_BAD_OFFSET,
431 	PERF_TMR_BAIL_OUT,
432 };
433 
434 static const char *match_result_str(enum type_match_result tmr)
435 {
436 	switch (tmr) {
437 	case PERF_TMR_OK:
438 		return "Good!";
439 	case PERF_TMR_NO_TYPE:
440 		return "no type information";
441 	case PERF_TMR_NO_POINTER:
442 		return "no/void pointer";
443 	case PERF_TMR_NO_SIZE:
444 		return "type size is unknown";
445 	case PERF_TMR_BAD_OFFSET:
446 		return "offset bigger than size";
447 	case PERF_TMR_UNKNOWN:
448 	case PERF_TMR_BAIL_OUT:
449 	default:
450 		return "invalid state";
451 	}
452 }
453 
454 static bool is_pointer_type(Dwarf_Die *type_die)
455 {
456 	int tag = dwarf_tag(type_die);
457 
458 	return tag == DW_TAG_pointer_type || tag == DW_TAG_array_type;
459 }
460 
461 static bool is_compound_type(Dwarf_Die *type_die)
462 {
463 	int tag = dwarf_tag(type_die);
464 
465 	return tag == DW_TAG_structure_type || tag == DW_TAG_union_type;
466 }
467 
468 /* returns if Type B has better information than Type A */
469 static bool is_better_type(Dwarf_Die *type_a, Dwarf_Die *type_b)
470 {
471 	Dwarf_Word size_a, size_b;
472 	Dwarf_Die die_a, die_b;
473 
474 	/* pointer type is preferred */
475 	if (is_pointer_type(type_a) != is_pointer_type(type_b))
476 		return is_pointer_type(type_b);
477 
478 	if (is_pointer_type(type_b)) {
479 		/*
480 		 * We want to compare the target type, but 'void *' can fail to
481 		 * get the target type.
482 		 */
483 		if (die_get_real_type(type_a, &die_a) == NULL)
484 			return true;
485 		if (die_get_real_type(type_b, &die_b) == NULL)
486 			return false;
487 
488 		type_a = &die_a;
489 		type_b = &die_b;
490 	}
491 
492 	/* bigger type is preferred */
493 	if (dwarf_aggregate_size(type_a, &size_a) < 0 ||
494 	    dwarf_aggregate_size(type_b, &size_b) < 0)
495 		return false;
496 
497 	if (size_a != size_b)
498 		return size_a < size_b;
499 
500 	/* struct or union is preferred */
501 	if (is_compound_type(type_a) != is_compound_type(type_b))
502 		return is_compound_type(type_b);
503 
504 	/* typedef is preferred */
505 	if (dwarf_tag(type_b) == DW_TAG_typedef)
506 		return true;
507 
508 	return false;
509 }
510 
511 /* The type info will be saved in @type_die */
512 static enum type_match_result check_variable(struct data_loc_info *dloc,
513 					     Dwarf_Die *var_die,
514 					     Dwarf_Die *type_die, int reg,
515 					     int offset, bool is_fbreg)
516 {
517 	Dwarf_Word size;
518 	bool needs_pointer = true;
519 	Dwarf_Die sized_type;
520 
521 	if (reg == DWARF_REG_PC)
522 		needs_pointer = false;
523 	else if (reg == dloc->fbreg || is_fbreg)
524 		needs_pointer = false;
525 	else if (arch__is(dloc->arch, "x86") && reg == X86_REG_SP)
526 		needs_pointer = false;
527 
528 	/* Get the type of the variable */
529 	if (__die_get_real_type(var_die, type_die) == NULL)
530 		return PERF_TMR_NO_TYPE;
531 
532 	/*
533 	 * Usually it expects a pointer type for a memory access.
534 	 * Convert to a real type it points to.  But global variables
535 	 * and local variables are accessed directly without a pointer.
536 	 */
537 	if (needs_pointer) {
538 		if (!is_pointer_type(type_die) ||
539 		    __die_get_real_type(type_die, type_die) == NULL)
540 			return PERF_TMR_NO_POINTER;
541 	}
542 
543 	if (dwarf_tag(type_die) == DW_TAG_typedef)
544 		die_get_real_type(type_die, &sized_type);
545 	else
546 		sized_type = *type_die;
547 
548 	/* Get the size of the actual type */
549 	if (dwarf_aggregate_size(&sized_type, &size) < 0)
550 		return PERF_TMR_NO_SIZE;
551 
552 	/* Minimal sanity check */
553 	if ((unsigned)offset >= size)
554 		return PERF_TMR_BAD_OFFSET;
555 
556 	return PERF_TMR_OK;
557 }
558 
559 struct type_state_stack *find_stack_state(struct type_state *state,
560 						 int offset)
561 {
562 	struct type_state_stack *stack;
563 
564 	list_for_each_entry(stack, &state->stack_vars, list) {
565 		if (offset == stack->offset)
566 			return stack;
567 
568 		if (stack->compound && stack->offset < offset &&
569 		    offset < stack->offset + stack->size)
570 			return stack;
571 	}
572 	return NULL;
573 }
574 
575 void set_stack_state(struct type_state_stack *stack, int offset, u8 kind,
576 			    Dwarf_Die *type_die)
577 {
578 	int tag;
579 	Dwarf_Word size;
580 
581 	if (dwarf_aggregate_size(type_die, &size) < 0)
582 		size = 0;
583 
584 	tag = dwarf_tag(type_die);
585 
586 	stack->type = *type_die;
587 	stack->size = size;
588 	stack->offset = offset;
589 	stack->kind = kind;
590 
591 	switch (tag) {
592 	case DW_TAG_structure_type:
593 	case DW_TAG_union_type:
594 		stack->compound = (kind != TSR_KIND_POINTER);
595 		break;
596 	default:
597 		stack->compound = false;
598 		break;
599 	}
600 }
601 
602 struct type_state_stack *findnew_stack_state(struct type_state *state,
603 						    int offset, u8 kind,
604 						    Dwarf_Die *type_die)
605 {
606 	struct type_state_stack *stack = find_stack_state(state, offset);
607 
608 	if (stack) {
609 		set_stack_state(stack, offset, kind, type_die);
610 		return stack;
611 	}
612 
613 	stack = malloc(sizeof(*stack));
614 	if (stack) {
615 		set_stack_state(stack, offset, kind, type_die);
616 		list_add(&stack->list, &state->stack_vars);
617 	}
618 	return stack;
619 }
620 
621 /* Maintain a cache for quick global variable lookup */
622 struct global_var_entry {
623 	struct rb_node node;
624 	char *name;
625 	u64 start;
626 	u64 end;
627 	u64 die_offset;
628 };
629 
630 static int global_var_cmp(const void *_key, const struct rb_node *node)
631 {
632 	const u64 addr = (uintptr_t)_key;
633 	struct global_var_entry *gvar;
634 
635 	gvar = rb_entry(node, struct global_var_entry, node);
636 
637 	if (gvar->start <= addr && addr < gvar->end)
638 		return 0;
639 	return gvar->start > addr ? -1 : 1;
640 }
641 
642 static bool global_var_less(struct rb_node *node_a, const struct rb_node *node_b)
643 {
644 	struct global_var_entry *gvar_a, *gvar_b;
645 
646 	gvar_a = rb_entry(node_a, struct global_var_entry, node);
647 	gvar_b = rb_entry(node_b, struct global_var_entry, node);
648 
649 	return gvar_a->start < gvar_b->start;
650 }
651 
652 static struct global_var_entry *global_var__find(struct data_loc_info *dloc, u64 addr)
653 {
654 	struct dso *dso = map__dso(dloc->ms->map);
655 	struct rb_node *node;
656 
657 	node = rb_find((void *)(uintptr_t)addr, dso__global_vars(dso), global_var_cmp);
658 	if (node == NULL)
659 		return NULL;
660 
661 	return rb_entry(node, struct global_var_entry, node);
662 }
663 
664 static bool global_var__add(struct data_loc_info *dloc, u64 addr,
665 			    const char *name, Dwarf_Die *type_die)
666 {
667 	struct dso *dso = map__dso(dloc->ms->map);
668 	struct global_var_entry *gvar;
669 	Dwarf_Word size;
670 
671 	if (dwarf_aggregate_size(type_die, &size) < 0)
672 		return false;
673 
674 	gvar = malloc(sizeof(*gvar));
675 	if (gvar == NULL)
676 		return false;
677 
678 	gvar->name = name ? strdup(name) : NULL;
679 	if (name && gvar->name == NULL) {
680 		free(gvar);
681 		return false;
682 	}
683 
684 	gvar->start = addr;
685 	gvar->end = addr + size;
686 	gvar->die_offset = dwarf_dieoffset(type_die);
687 
688 	rb_add(&gvar->node, dso__global_vars(dso), global_var_less);
689 	return true;
690 }
691 
692 void global_var_type__tree_delete(struct rb_root *root)
693 {
694 	struct global_var_entry *gvar;
695 
696 	while (!RB_EMPTY_ROOT(root)) {
697 		struct rb_node *node = rb_first(root);
698 
699 		rb_erase(node, root);
700 		gvar = rb_entry(node, struct global_var_entry, node);
701 		zfree(&gvar->name);
702 		free(gvar);
703 	}
704 }
705 
706 bool get_global_var_info(struct data_loc_info *dloc, u64 addr,
707 				const char **var_name, int *var_offset)
708 {
709 	struct addr_location al;
710 	struct symbol *sym;
711 	u64 mem_addr;
712 
713 	/* Kernel symbols might be relocated */
714 	mem_addr = addr + map__reloc(dloc->ms->map);
715 
716 	addr_location__init(&al);
717 	sym = thread__find_symbol_fb(dloc->thread, dloc->cpumode,
718 				     mem_addr, &al);
719 	if (sym) {
720 		*var_name = sym->name;
721 		/* Calculate type offset from the start of variable */
722 		*var_offset = mem_addr - map__unmap_ip(al.map, sym->start);
723 	} else {
724 		*var_name = NULL;
725 	}
726 	addr_location__exit(&al);
727 	if (*var_name == NULL)
728 		return false;
729 
730 	return true;
731 }
732 
733 static void global_var__collect(struct data_loc_info *dloc)
734 {
735 	Dwarf *dwarf = dloc->di->dbg;
736 	Dwarf_Off off, next_off;
737 	Dwarf_Die cu_die, type_die;
738 	size_t header_size;
739 
740 	/* Iterate all CU and collect global variables that have no location in a register. */
741 	off = 0;
742 	while (dwarf_nextcu(dwarf, off, &next_off, &header_size,
743 			    NULL, NULL, NULL) == 0) {
744 		struct die_var_type *var_types = NULL;
745 		struct die_var_type *pos;
746 
747 		if (dwarf_offdie(dwarf, off + header_size, &cu_die) == NULL) {
748 			off = next_off;
749 			continue;
750 		}
751 
752 		die_collect_global_vars(&cu_die, &var_types);
753 
754 		for (pos = var_types; pos; pos = pos->next) {
755 			const char *var_name = NULL;
756 			int var_offset = 0;
757 
758 			if (pos->reg != -1)
759 				continue;
760 
761 			if (!dwarf_offdie(dwarf, pos->die_off, &type_die))
762 				continue;
763 
764 			if (!get_global_var_info(dloc, pos->addr, &var_name,
765 						 &var_offset))
766 				continue;
767 
768 			if (var_offset != 0)
769 				continue;
770 
771 			global_var__add(dloc, pos->addr, var_name, &type_die);
772 		}
773 
774 		delete_var_types(var_types);
775 
776 		off = next_off;
777 	}
778 }
779 
780 bool get_global_var_type(Dwarf_Die *cu_die, struct data_loc_info *dloc,
781 				u64 ip, u64 var_addr, int *var_offset,
782 				Dwarf_Die *type_die)
783 {
784 	u64 pc;
785 	int offset;
786 	const char *var_name = NULL;
787 	struct global_var_entry *gvar;
788 	struct dso *dso = map__dso(dloc->ms->map);
789 	Dwarf_Die var_die;
790 
791 	if (RB_EMPTY_ROOT(dso__global_vars(dso)))
792 		global_var__collect(dloc);
793 
794 	gvar = global_var__find(dloc, var_addr);
795 	if (gvar) {
796 		if (!dwarf_offdie(dloc->di->dbg, gvar->die_offset, type_die))
797 			return false;
798 
799 		*var_offset = var_addr - gvar->start;
800 		return true;
801 	}
802 
803 	/* Try to get the variable by address first */
804 	if (die_find_variable_by_addr(cu_die, var_addr, &var_die, &offset) &&
805 	    check_variable(dloc, &var_die, type_die, DWARF_REG_PC, offset,
806 			   /*is_fbreg=*/false) == PERF_TMR_OK) {
807 		var_name = dwarf_diename(&var_die);
808 		*var_offset = offset;
809 		goto ok;
810 	}
811 
812 	if (!get_global_var_info(dloc, var_addr, &var_name, var_offset))
813 		return false;
814 
815 	pc = map__rip_2objdump(dloc->ms->map, ip);
816 
817 	/* Try to get the name of global variable */
818 	if (die_find_variable_at(cu_die, var_name, pc, &var_die) &&
819 	    check_variable(dloc, &var_die, type_die, DWARF_REG_PC, *var_offset,
820 			   /*is_fbreg=*/false) == PERF_TMR_OK)
821 		goto ok;
822 
823 	return false;
824 
825 ok:
826 	/* The address should point to the start of the variable */
827 	global_var__add(dloc, var_addr - *var_offset, var_name, type_die);
828 	return true;
829 }
830 
831 static bool die_is_same(Dwarf_Die *die_a, Dwarf_Die *die_b)
832 {
833 	return (die_a->cu == die_b->cu) && (die_a->addr == die_b->addr);
834 }
835 
836 /**
837  * update_var_state - Update type state using given variables
838  * @state: type state table
839  * @dloc: data location info
840  * @addr: instruction address to match with variable
841  * @insn_offset: instruction offset (for debug)
842  * @var_types: list of variables with type info
843  *
844  * This function fills the @state table using @var_types info.  Each variable
845  * is used only at the given location and updates an entry in the table.
846  */
847 static void update_var_state(struct type_state *state, struct data_loc_info *dloc,
848 			     u64 addr, u64 insn_offset, struct die_var_type *var_types)
849 {
850 	Dwarf_Die mem_die;
851 	struct die_var_type *var;
852 	int fbreg = dloc->fbreg;
853 	int fb_offset = 0;
854 
855 	if (dloc->fb_cfa) {
856 		if (die_get_cfa(dloc->di->dbg, addr, &fbreg, &fb_offset) < 0)
857 			fbreg = -1;
858 	}
859 
860 	for (var = var_types; var != NULL; var = var->next) {
861 		if (var->addr != addr)
862 			continue;
863 		/* Get the type DIE using the offset */
864 		if (!dwarf_offdie(dloc->di->dbg, var->die_off, &mem_die))
865 			continue;
866 
867 		if (var->reg == DWARF_REG_FB || var->reg == fbreg || var->reg == state->stack_reg) {
868 			int offset = var->offset;
869 			struct type_state_stack *stack;
870 
871 			if (var->reg != DWARF_REG_FB)
872 				offset -= fb_offset;
873 
874 			stack = find_stack_state(state, offset);
875 			if (stack && stack->kind == TSR_KIND_TYPE &&
876 			    !is_better_type(&stack->type, &mem_die))
877 				continue;
878 
879 			findnew_stack_state(state, offset, TSR_KIND_TYPE,
880 					    &mem_die);
881 
882 			if (var->reg == state->stack_reg) {
883 				pr_debug_dtp("var [%"PRIx64"] %#x(reg%d)",
884 					     insn_offset, offset, state->stack_reg);
885 			} else {
886 				pr_debug_dtp("var [%"PRIx64"] -%#x(stack)",
887 					     insn_offset, -offset);
888 			}
889 			pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
890 		} else if (has_reg_type(state, var->reg) && var->offset == 0) {
891 			struct type_state_reg *reg;
892 			Dwarf_Die orig_type;
893 
894 			reg = &state->regs[var->reg];
895 
896 			if (reg->ok && reg->kind == TSR_KIND_TYPE &&
897 			    !is_better_type(&reg->type, &mem_die))
898 				continue;
899 
900 			orig_type = reg->type;
901 
902 			reg->type = mem_die;
903 			reg->kind = TSR_KIND_TYPE;
904 			reg->ok = true;
905 
906 			pr_debug_dtp("var [%"PRIx64"] reg%d",
907 				     insn_offset, var->reg);
908 			pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
909 
910 			/*
911 			 * If this register is directly copied from another and it gets a
912 			 * better type, also update the type of the source register.  This
913 			 * is usually the case of container_of() macro with offset of 0.
914 			 */
915 			if (has_reg_type(state, reg->copied_from)) {
916 				struct type_state_reg *copy_reg;
917 
918 				copy_reg = &state->regs[reg->copied_from];
919 
920 				/* TODO: check if type is compatible or embedded */
921 				if (!copy_reg->ok || (copy_reg->kind != TSR_KIND_TYPE) ||
922 				    !die_is_same(&copy_reg->type, &orig_type) ||
923 				    !is_better_type(&copy_reg->type, &mem_die))
924 					continue;
925 
926 				copy_reg->type = mem_die;
927 
928 				pr_debug_dtp("var [%"PRIx64"] copyback reg%d",
929 					     insn_offset, reg->copied_from);
930 				pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
931 			}
932 		}
933 	}
934 }
935 
936 /**
937  * update_insn_state - Update type state for an instruction
938  * @state: type state table
939  * @dloc: data location info
940  * @cu_die: compile unit debug entry
941  * @dl: disasm line for the instruction
942  *
943  * This function updates the @state table for the target operand of the
944  * instruction at @dl if it transfers the type like MOV on x86.  Since it
945  * tracks the type, it won't care about the values like in arithmetic
946  * instructions like ADD/SUB/MUL/DIV and INC/DEC.
947  *
948  * Note that ops->reg2 is only available when both mem_ref and multi_regs
949  * are true.
950  */
951 static void update_insn_state(struct type_state *state, struct data_loc_info *dloc,
952 			      Dwarf_Die *cu_die, struct disasm_line *dl)
953 {
954 	if (dloc->arch->update_insn_state)
955 		dloc->arch->update_insn_state(state, dloc, cu_die, dl);
956 }
957 
958 /*
959  * Prepend this_blocks (from the outer scope) to full_blocks, removing
960  * duplicate disasm line.
961  */
962 static void prepend_basic_blocks(struct list_head *this_blocks,
963 				 struct list_head *full_blocks)
964 {
965 	struct annotated_basic_block *first_bb, *last_bb;
966 
967 	last_bb = list_last_entry(this_blocks, typeof(*last_bb), list);
968 	first_bb = list_first_entry(full_blocks, typeof(*first_bb), list);
969 
970 	if (list_empty(full_blocks))
971 		goto out;
972 
973 	/* Last insn in this_blocks should be same as first insn in full_blocks */
974 	if (last_bb->end != first_bb->begin) {
975 		pr_debug("prepend basic blocks: mismatched disasm line %"PRIx64" -> %"PRIx64"\n",
976 			 last_bb->end->al.offset, first_bb->begin->al.offset);
977 		goto out;
978 	}
979 
980 	/* Is the basic block have only one disasm_line? */
981 	if (last_bb->begin == last_bb->end) {
982 		list_del(&last_bb->list);
983 		free(last_bb);
984 		goto out;
985 	}
986 
987 	/* Point to the insn before the last when adding this block to full_blocks */
988 	last_bb->end = list_prev_entry(last_bb->end, al.node);
989 
990 out:
991 	list_splice(this_blocks, full_blocks);
992 }
993 
994 static void delete_basic_blocks(struct list_head *basic_blocks)
995 {
996 	struct annotated_basic_block *bb, *tmp;
997 
998 	list_for_each_entry_safe(bb, tmp, basic_blocks, list) {
999 		list_del(&bb->list);
1000 		free(bb);
1001 	}
1002 }
1003 
1004 /* Make sure all variables have a valid start address */
1005 static void fixup_var_address(struct die_var_type *var_types, u64 addr)
1006 {
1007 	while (var_types) {
1008 		/*
1009 		 * Some variables have no address range meaning it's always
1010 		 * available in the whole scope.  Let's adjust the start
1011 		 * address to the start of the scope.
1012 		 */
1013 		if (var_types->addr == 0)
1014 			var_types->addr = addr;
1015 
1016 		var_types = var_types->next;
1017 	}
1018 }
1019 
1020 static void delete_var_types(struct die_var_type *var_types)
1021 {
1022 	while (var_types) {
1023 		struct die_var_type *next = var_types->next;
1024 
1025 		free(var_types);
1026 		var_types = next;
1027 	}
1028 }
1029 
1030 /* should match to is_stack_canary() in util/annotate.c */
1031 static void setup_stack_canary(struct data_loc_info *dloc)
1032 {
1033 	if (arch__is(dloc->arch, "x86")) {
1034 		dloc->op->segment = INSN_SEG_X86_GS;
1035 		dloc->op->imm = true;
1036 		dloc->op->offset = 40;
1037 	}
1038 }
1039 
1040 /*
1041  * It's at the target address, check if it has a matching type.
1042  * It returns PERF_TMR_BAIL_OUT when it looks up per-cpu variables which
1043  * are similar to global variables and no additional info is needed.
1044  */
1045 static enum type_match_result check_matching_type(struct type_state *state,
1046 						  struct data_loc_info *dloc,
1047 						  Dwarf_Die *cu_die,
1048 						  struct disasm_line *dl,
1049 						  Dwarf_Die *type_die)
1050 {
1051 	Dwarf_Word size;
1052 	u32 insn_offset = dl->al.offset;
1053 	int reg = dloc->op->reg1;
1054 	int offset = dloc->op->offset;
1055 	const char *offset_sign = "";
1056 	bool retry = true;
1057 
1058 	if (offset < 0) {
1059 		offset = -offset;
1060 		offset_sign = "-";
1061 	}
1062 
1063 again:
1064 	pr_debug_dtp("chk [%x] reg%d offset=%s%#x ok=%d kind=%d ",
1065 		     insn_offset, reg, offset_sign, offset,
1066 		     state->regs[reg].ok, state->regs[reg].kind);
1067 
1068 	if (!state->regs[reg].ok)
1069 		goto check_non_register;
1070 
1071 	if (state->regs[reg].kind == TSR_KIND_TYPE) {
1072 		Dwarf_Die sized_type;
1073 		struct strbuf sb;
1074 
1075 		strbuf_init(&sb, 32);
1076 		die_get_typename_from_type(&state->regs[reg].type, &sb);
1077 		pr_debug_dtp("(%s)", sb.buf);
1078 		strbuf_release(&sb);
1079 
1080 		/*
1081 		 * Normal registers should hold a pointer (or array) to
1082 		 * dereference a memory location.
1083 		 */
1084 		if (!is_pointer_type(&state->regs[reg].type)) {
1085 			if (dloc->op->offset < 0 && reg != state->stack_reg)
1086 				goto check_kernel;
1087 
1088 			return PERF_TMR_NO_POINTER;
1089 		}
1090 
1091 		/* Remove the pointer and get the target type */
1092 		if (__die_get_real_type(&state->regs[reg].type, type_die) == NULL)
1093 			return PERF_TMR_NO_POINTER;
1094 
1095 		dloc->type_offset = dloc->op->offset;
1096 
1097 		if (dwarf_tag(type_die) == DW_TAG_typedef)
1098 			die_get_real_type(type_die, &sized_type);
1099 		else
1100 			sized_type = *type_die;
1101 
1102 		/* Get the size of the actual type */
1103 		if (dwarf_aggregate_size(&sized_type, &size) < 0 ||
1104 		    (unsigned)dloc->type_offset >= size)
1105 			return PERF_TMR_BAD_OFFSET;
1106 
1107 		return PERF_TMR_OK;
1108 	}
1109 
1110 	if (state->regs[reg].kind == TSR_KIND_POINTER) {
1111 		pr_debug_dtp("percpu ptr");
1112 
1113 		/*
1114 		 * It's actaully pointer but the address was calculated using
1115 		 * some arithmetic.  So it points to the actual type already.
1116 		 */
1117 		*type_die = state->regs[reg].type;
1118 
1119 		dloc->type_offset = dloc->op->offset;
1120 
1121 		/* Get the size of the actual type */
1122 		if (dwarf_aggregate_size(type_die, &size) < 0 ||
1123 		    (unsigned)dloc->type_offset >= size)
1124 			return PERF_TMR_BAIL_OUT;
1125 
1126 		return PERF_TMR_OK;
1127 	}
1128 
1129 	if (state->regs[reg].kind == TSR_KIND_CANARY) {
1130 		pr_debug_dtp("stack canary");
1131 
1132 		/*
1133 		 * This is a saved value of the stack canary which will be handled
1134 		 * in the outer logic when it returns failure here.  Pretend it's
1135 		 * from the stack canary directly.
1136 		 */
1137 		setup_stack_canary(dloc);
1138 
1139 		return PERF_TMR_BAIL_OUT;
1140 	}
1141 
1142 	if (state->regs[reg].kind == TSR_KIND_PERCPU_BASE) {
1143 		u64 var_addr = dloc->op->offset;
1144 		int var_offset;
1145 
1146 		pr_debug_dtp("percpu var");
1147 
1148 		if (dloc->op->multi_regs) {
1149 			int reg2 = dloc->op->reg2;
1150 
1151 			if (dloc->op->reg2 == reg)
1152 				reg2 = dloc->op->reg1;
1153 
1154 			if (has_reg_type(state, reg2) && state->regs[reg2].ok &&
1155 			    state->regs[reg2].kind == TSR_KIND_CONST)
1156 				var_addr += state->regs[reg2].imm_value;
1157 		}
1158 
1159 		if (get_global_var_type(cu_die, dloc, dloc->ip, var_addr,
1160 					&var_offset, type_die)) {
1161 			dloc->type_offset = var_offset;
1162 			return PERF_TMR_OK;
1163 		}
1164 		/* No need to retry per-cpu (global) variables */
1165 		return PERF_TMR_BAIL_OUT;
1166 	}
1167 
1168 check_non_register:
1169 	if (reg == dloc->fbreg || reg == state->stack_reg) {
1170 		struct type_state_stack *stack;
1171 
1172 		pr_debug_dtp("%s", reg == dloc->fbreg ? "fbreg" : "stack");
1173 
1174 		stack = find_stack_state(state, dloc->type_offset);
1175 		if (stack == NULL) {
1176 			if (retry) {
1177 				pr_debug_dtp(" : retry\n");
1178 				retry = false;
1179 
1180 				/* update type info it's the first store to the stack */
1181 				update_insn_state(state, dloc, cu_die, dl);
1182 				goto again;
1183 			}
1184 			return PERF_TMR_NO_TYPE;
1185 		}
1186 
1187 		if (stack->kind == TSR_KIND_CANARY) {
1188 			setup_stack_canary(dloc);
1189 			return PERF_TMR_BAIL_OUT;
1190 		}
1191 
1192 		if (stack->kind != TSR_KIND_TYPE)
1193 			return PERF_TMR_NO_TYPE;
1194 
1195 		*type_die = stack->type;
1196 		/* Update the type offset from the start of slot */
1197 		dloc->type_offset -= stack->offset;
1198 
1199 		return PERF_TMR_OK;
1200 	}
1201 
1202 	if (dloc->fb_cfa) {
1203 		struct type_state_stack *stack;
1204 		u64 pc = map__rip_2objdump(dloc->ms->map, dloc->ip);
1205 		int fbreg, fboff;
1206 
1207 		pr_debug_dtp("cfa");
1208 
1209 		if (die_get_cfa(dloc->di->dbg, pc, &fbreg, &fboff) < 0)
1210 			fbreg = -1;
1211 
1212 		if (reg != fbreg)
1213 			return PERF_TMR_NO_TYPE;
1214 
1215 		stack = find_stack_state(state, dloc->type_offset - fboff);
1216 		if (stack == NULL) {
1217 			if (retry) {
1218 				pr_debug_dtp(" : retry\n");
1219 				retry = false;
1220 
1221 				/* update type info it's the first store to the stack */
1222 				update_insn_state(state, dloc, cu_die, dl);
1223 				goto again;
1224 			}
1225 			return PERF_TMR_NO_TYPE;
1226 		}
1227 
1228 		if (stack->kind == TSR_KIND_CANARY) {
1229 			setup_stack_canary(dloc);
1230 			return PERF_TMR_BAIL_OUT;
1231 		}
1232 
1233 		if (stack->kind != TSR_KIND_TYPE)
1234 			return PERF_TMR_NO_TYPE;
1235 
1236 		*type_die = stack->type;
1237 		/* Update the type offset from the start of slot */
1238 		dloc->type_offset -= fboff + stack->offset;
1239 
1240 		return PERF_TMR_OK;
1241 	}
1242 
1243 check_kernel:
1244 	if (dso__kernel(map__dso(dloc->ms->map))) {
1245 		u64 addr;
1246 
1247 		/* Direct this-cpu access like "%gs:0x34740" */
1248 		if (dloc->op->segment == INSN_SEG_X86_GS && dloc->op->imm &&
1249 		    arch__is(dloc->arch, "x86")) {
1250 			pr_debug_dtp("this-cpu var");
1251 
1252 			addr = dloc->op->offset;
1253 
1254 			if (get_global_var_type(cu_die, dloc, dloc->ip, addr,
1255 						&offset, type_die)) {
1256 				dloc->type_offset = offset;
1257 				return PERF_TMR_OK;
1258 			}
1259 			return PERF_TMR_BAIL_OUT;
1260 		}
1261 
1262 		/* Access to global variable like "-0x7dcf0500(,%rdx,8)" */
1263 		if (dloc->op->offset < 0 && reg != state->stack_reg) {
1264 			addr = (s64) dloc->op->offset;
1265 
1266 			if (get_global_var_type(cu_die, dloc, dloc->ip, addr,
1267 						&offset, type_die)) {
1268 				pr_debug_dtp("global var");
1269 
1270 				dloc->type_offset = offset;
1271 				return PERF_TMR_OK;
1272 			}
1273 			return PERF_TMR_BAIL_OUT;
1274 		}
1275 	}
1276 
1277 	return PERF_TMR_UNKNOWN;
1278 }
1279 
1280 /* Iterate instructions in basic blocks and update type table */
1281 static enum type_match_result find_data_type_insn(struct data_loc_info *dloc,
1282 						  struct list_head *basic_blocks,
1283 						  struct die_var_type *var_types,
1284 						  Dwarf_Die *cu_die,
1285 						  Dwarf_Die *type_die)
1286 {
1287 	struct type_state state;
1288 	struct symbol *sym = dloc->ms->sym;
1289 	struct annotation *notes = symbol__annotation(sym);
1290 	struct annotated_basic_block *bb;
1291 	enum type_match_result ret = PERF_TMR_UNKNOWN;
1292 
1293 	init_type_state(&state, dloc->arch);
1294 
1295 	list_for_each_entry(bb, basic_blocks, list) {
1296 		struct disasm_line *dl = bb->begin;
1297 
1298 		BUG_ON(bb->begin->al.offset == -1 || bb->end->al.offset == -1);
1299 
1300 		pr_debug_dtp("bb: [%"PRIx64" - %"PRIx64"]\n",
1301 			     bb->begin->al.offset, bb->end->al.offset);
1302 
1303 		list_for_each_entry_from(dl, &notes->src->source, al.node) {
1304 			u64 this_ip = sym->start + dl->al.offset;
1305 			u64 addr = map__rip_2objdump(dloc->ms->map, this_ip);
1306 
1307 			/* Skip comment or debug info lines */
1308 			if (dl->al.offset == -1)
1309 				continue;
1310 
1311 			/* Update variable type at this address */
1312 			update_var_state(&state, dloc, addr, dl->al.offset, var_types);
1313 
1314 			if (this_ip == dloc->ip) {
1315 				ret = check_matching_type(&state, dloc,
1316 							  cu_die, dl, type_die);
1317 				pr_debug_dtp(" : %s\n", match_result_str(ret));
1318 				goto out;
1319 			}
1320 
1321 			/* Update type table after processing the instruction */
1322 			update_insn_state(&state, dloc, cu_die, dl);
1323 			if (dl == bb->end)
1324 				break;
1325 		}
1326 	}
1327 
1328 out:
1329 	exit_type_state(&state);
1330 	return ret;
1331 }
1332 
1333 static int arch_supports_insn_tracking(struct data_loc_info *dloc)
1334 {
1335 	if ((arch__is(dloc->arch, "x86")) || (arch__is(dloc->arch, "powerpc")))
1336 		return 1;
1337 	return 0;
1338 }
1339 
1340 /*
1341  * Construct a list of basic blocks for each scope with variables and try to find
1342  * the data type by updating a type state table through instructions.
1343  */
1344 static enum type_match_result find_data_type_block(struct data_loc_info *dloc,
1345 						   Dwarf_Die *cu_die,
1346 						   Dwarf_Die *scopes,
1347 						   int nr_scopes,
1348 						   Dwarf_Die *type_die)
1349 {
1350 	LIST_HEAD(basic_blocks);
1351 	struct die_var_type *var_types = NULL;
1352 	u64 src_ip, dst_ip, prev_dst_ip;
1353 	enum type_match_result ret = PERF_TMR_UNKNOWN;
1354 
1355 	/* TODO: other architecture support */
1356 	if (!arch_supports_insn_tracking(dloc))
1357 		return PERF_TMR_BAIL_OUT;
1358 
1359 	prev_dst_ip = dst_ip = dloc->ip;
1360 	for (int i = nr_scopes - 1; i >= 0; i--) {
1361 		Dwarf_Addr base, start, end;
1362 		LIST_HEAD(this_blocks);
1363 
1364 		if (dwarf_ranges(&scopes[i], 0, &base, &start, &end) < 0)
1365 			break;
1366 
1367 		pr_debug_dtp("scope: [%d/%d] ", i + 1, nr_scopes);
1368 		pr_debug_scope(&scopes[i]);
1369 
1370 		src_ip = map__objdump_2rip(dloc->ms->map, start);
1371 
1372 again:
1373 		/* Get basic blocks for this scope */
1374 		if (annotate_get_basic_blocks(dloc->ms->sym, src_ip, dst_ip,
1375 					      &this_blocks) < 0) {
1376 			/* Try previous block if they are not connected */
1377 			if (prev_dst_ip != dst_ip) {
1378 				dst_ip = prev_dst_ip;
1379 				goto again;
1380 			}
1381 
1382 			pr_debug_dtp("cannot find a basic block from %"PRIx64" to %"PRIx64"\n",
1383 				     src_ip - dloc->ms->sym->start,
1384 				     dst_ip - dloc->ms->sym->start);
1385 			continue;
1386 		}
1387 		prepend_basic_blocks(&this_blocks, &basic_blocks);
1388 
1389 		/* Get variable info for this scope and add to var_types list */
1390 		die_collect_vars(&scopes[i], &var_types);
1391 		fixup_var_address(var_types, start);
1392 
1393 		/* Find from start of this scope to the target instruction */
1394 		ret = find_data_type_insn(dloc, &basic_blocks, var_types,
1395 					    cu_die, type_die);
1396 		if (ret == PERF_TMR_OK) {
1397 			char buf[64];
1398 			int offset = dloc->op->offset;
1399 			const char *offset_sign = "";
1400 
1401 			if (offset < 0) {
1402 				offset = -offset;
1403 				offset_sign = "-";
1404 			}
1405 
1406 			if (dloc->op->multi_regs)
1407 				snprintf(buf, sizeof(buf), "reg%d, reg%d",
1408 					 dloc->op->reg1, dloc->op->reg2);
1409 			else
1410 				snprintf(buf, sizeof(buf), "reg%d", dloc->op->reg1);
1411 
1412 			pr_debug_dtp("found by insn track: %s%#x(%s) type-offset=%#x\n",
1413 				     offset_sign, offset, buf, dloc->type_offset);
1414 			break;
1415 		}
1416 
1417 		if (ret == PERF_TMR_BAIL_OUT)
1418 			break;
1419 
1420 		/* Go up to the next scope and find blocks to the start */
1421 		prev_dst_ip = dst_ip;
1422 		dst_ip = src_ip;
1423 	}
1424 
1425 	delete_basic_blocks(&basic_blocks);
1426 	delete_var_types(var_types);
1427 	return ret;
1428 }
1429 
1430 /* The result will be saved in @type_die */
1431 static int find_data_type_die(struct data_loc_info *dloc, Dwarf_Die *type_die)
1432 {
1433 	struct annotated_op_loc *loc = dloc->op;
1434 	Dwarf_Die cu_die, var_die;
1435 	Dwarf_Die *scopes = NULL;
1436 	int reg, offset = loc->offset;
1437 	int ret = -1;
1438 	int i, nr_scopes;
1439 	int fbreg = -1;
1440 	int fb_offset = 0;
1441 	bool is_fbreg = false;
1442 	bool found = false;
1443 	u64 pc;
1444 	char buf[64];
1445 	enum type_match_result result = PERF_TMR_UNKNOWN;
1446 	const char *offset_sign = "";
1447 
1448 	if (dloc->op->multi_regs)
1449 		snprintf(buf, sizeof(buf), "reg%d, reg%d", dloc->op->reg1, dloc->op->reg2);
1450 	else if (dloc->op->reg1 == DWARF_REG_PC)
1451 		snprintf(buf, sizeof(buf), "PC");
1452 	else
1453 		snprintf(buf, sizeof(buf), "reg%d", dloc->op->reg1);
1454 
1455 	if (offset < 0) {
1456 		offset = -offset;
1457 		offset_sign = "-";
1458 	}
1459 
1460 	pr_debug_dtp("-----------------------------------------------------------\n");
1461 	pr_debug_dtp("find data type for %s%#x(%s) at %s+%#"PRIx64"\n",
1462 		     offset_sign, offset, buf,
1463 		     dloc->ms->sym->name, dloc->ip - dloc->ms->sym->start);
1464 
1465 	/*
1466 	 * IP is a relative instruction address from the start of the map, as
1467 	 * it can be randomized/relocated, it needs to translate to PC which is
1468 	 * a file address for DWARF processing.
1469 	 */
1470 	pc = map__rip_2objdump(dloc->ms->map, dloc->ip);
1471 
1472 	/* Get a compile_unit for this address */
1473 	if (!find_cu_die(dloc->di, pc, &cu_die)) {
1474 		pr_debug_dtp("cannot find CU for address %"PRIx64"\n", pc);
1475 		ann_data_stat.no_cuinfo++;
1476 		return -1;
1477 	}
1478 
1479 	reg = loc->reg1;
1480 	offset = loc->offset;
1481 
1482 	pr_debug_dtp("CU for %s (die:%#lx)\n",
1483 		     dwarf_diename(&cu_die), (long)dwarf_dieoffset(&cu_die));
1484 
1485 	if (reg == DWARF_REG_PC) {
1486 		if (get_global_var_type(&cu_die, dloc, dloc->ip, dloc->var_addr,
1487 					&offset, type_die)) {
1488 			dloc->type_offset = offset;
1489 
1490 			pr_debug_dtp("found by addr=%#"PRIx64" type_offset=%#x\n",
1491 				     dloc->var_addr, offset);
1492 			pr_debug_type_name(type_die, TSR_KIND_TYPE);
1493 			found = true;
1494 			goto out;
1495 		}
1496 	}
1497 
1498 	/* Get a list of nested scopes - i.e. (inlined) functions and blocks. */
1499 	nr_scopes = die_get_scopes(&cu_die, pc, &scopes);
1500 
1501 	if (reg != DWARF_REG_PC && dwarf_hasattr(&scopes[0], DW_AT_frame_base)) {
1502 		Dwarf_Attribute attr;
1503 		Dwarf_Block block;
1504 
1505 		/* Check if the 'reg' is assigned as frame base register */
1506 		if (dwarf_attr(&scopes[0], DW_AT_frame_base, &attr) != NULL &&
1507 		    dwarf_formblock(&attr, &block) == 0 && block.length == 1) {
1508 			switch (*block.data) {
1509 			case DW_OP_reg0 ... DW_OP_reg31:
1510 				fbreg = dloc->fbreg = *block.data - DW_OP_reg0;
1511 				break;
1512 			case DW_OP_call_frame_cfa:
1513 				dloc->fb_cfa = true;
1514 				if (die_get_cfa(dloc->di->dbg, pc, &fbreg,
1515 						&fb_offset) < 0)
1516 					fbreg = -1;
1517 				break;
1518 			default:
1519 				break;
1520 			}
1521 
1522 			pr_debug_dtp("frame base: cfa=%d fbreg=%d\n",
1523 				     dloc->fb_cfa, fbreg);
1524 		}
1525 	}
1526 
1527 retry:
1528 	is_fbreg = (reg == fbreg);
1529 	if (is_fbreg)
1530 		offset = loc->offset - fb_offset;
1531 
1532 	/* Search from the inner-most scope to the outer */
1533 	for (i = nr_scopes - 1; i >= 0; i--) {
1534 		Dwarf_Die mem_die;
1535 		int type_offset = offset;
1536 
1537 		if (reg == DWARF_REG_PC) {
1538 			if (!die_find_variable_by_addr(&scopes[i], dloc->var_addr,
1539 						       &var_die, &type_offset))
1540 				continue;
1541 		} else {
1542 			/* Look up variables/parameters in this scope */
1543 			if (!die_find_variable_by_reg(&scopes[i], pc, reg,
1544 						      &type_offset, is_fbreg, &var_die))
1545 				continue;
1546 		}
1547 
1548 		pr_debug_dtp("found \"%s\" (die: %#lx) in scope=%d/%d (die: %#lx) ",
1549 			     dwarf_diename(&var_die), (long)dwarf_dieoffset(&var_die),
1550 			     i+1, nr_scopes, (long)dwarf_dieoffset(&scopes[i]));
1551 
1552 		/* Found a variable, see if it's correct */
1553 		result = check_variable(dloc, &var_die, &mem_die, reg, type_offset, is_fbreg);
1554 		if (result == PERF_TMR_OK) {
1555 			if (reg == DWARF_REG_PC) {
1556 				pr_debug_dtp("addr=%#"PRIx64" type_offset=%#x\n",
1557 					     dloc->var_addr, type_offset);
1558 			} else if (reg == DWARF_REG_FB || is_fbreg) {
1559 				pr_debug_dtp("stack_offset=%#x type_offset=%#x\n",
1560 					     fb_offset, type_offset);
1561 			} else {
1562 				pr_debug_dtp("type_offset=%#x\n", type_offset);
1563 			}
1564 
1565 			if (!found || is_better_type(type_die, &mem_die)) {
1566 				*type_die = mem_die;
1567 				dloc->type_offset = type_offset;
1568 				found = true;
1569 			}
1570 		} else {
1571 			pr_debug_dtp("failed: %s\n", match_result_str(result));
1572 		}
1573 
1574 		pr_debug_location(&var_die, pc, reg);
1575 		pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
1576 	}
1577 
1578 	if (!found && loc->multi_regs && reg == loc->reg1 && loc->reg1 != loc->reg2) {
1579 		reg = loc->reg2;
1580 		goto retry;
1581 	}
1582 
1583 	if (!found && reg != DWARF_REG_PC) {
1584 		result = find_data_type_block(dloc, &cu_die, scopes,
1585 					      nr_scopes, type_die);
1586 		if (result == PERF_TMR_OK) {
1587 			ann_data_stat.insn_track++;
1588 			found = true;
1589 		}
1590 	}
1591 
1592 out:
1593 	pr_debug_dtp("final result: ");
1594 	if (found) {
1595 		pr_debug_type_name(type_die, TSR_KIND_TYPE);
1596 		ret = 0;
1597 	} else {
1598 		switch (result) {
1599 		case PERF_TMR_NO_TYPE:
1600 		case PERF_TMR_NO_POINTER:
1601 			pr_debug_dtp("%s\n", match_result_str(result));
1602 			ann_data_stat.no_typeinfo++;
1603 			break;
1604 		case PERF_TMR_NO_SIZE:
1605 			pr_debug_dtp("%s\n", match_result_str(result));
1606 			ann_data_stat.invalid_size++;
1607 			break;
1608 		case PERF_TMR_BAD_OFFSET:
1609 			pr_debug_dtp("%s\n", match_result_str(result));
1610 			ann_data_stat.bad_offset++;
1611 			break;
1612 		case PERF_TMR_UNKNOWN:
1613 		case PERF_TMR_BAIL_OUT:
1614 		case PERF_TMR_OK:  /* should not reach here */
1615 		default:
1616 			pr_debug_dtp("no variable found\n");
1617 			ann_data_stat.no_var++;
1618 			break;
1619 		}
1620 		ret = -1;
1621 	}
1622 
1623 	free(scopes);
1624 	return ret;
1625 }
1626 
1627 /**
1628  * find_data_type - Return a data type at the location
1629  * @dloc: data location
1630  *
1631  * This functions searches the debug information of the binary to get the data
1632  * type it accesses.  The exact location is expressed by (ip, reg, offset)
1633  * for pointer variables or (ip, addr) for global variables.  Note that global
1634  * variables might update the @dloc->type_offset after finding the start of the
1635  * variable.  If it cannot find a global variable by address, it tried to find
1636  * a declaration of the variable using var_name.  In that case, @dloc->offset
1637  * won't be updated.
1638  *
1639  * It return %NULL if not found.
1640  */
1641 struct annotated_data_type *find_data_type(struct data_loc_info *dloc)
1642 {
1643 	struct dso *dso = map__dso(dloc->ms->map);
1644 	Dwarf_Die type_die;
1645 
1646 	/*
1647 	 * The type offset is the same as instruction offset by default.
1648 	 * But when finding a global variable, the offset won't be valid.
1649 	 */
1650 	dloc->type_offset = dloc->op->offset;
1651 
1652 	dloc->fbreg = -1;
1653 
1654 	if (find_data_type_die(dloc, &type_die) < 0)
1655 		return NULL;
1656 
1657 	return dso__findnew_data_type(dso, &type_die);
1658 }
1659 
1660 static int alloc_data_type_histograms(struct annotated_data_type *adt, int nr_entries)
1661 {
1662 	int i;
1663 	size_t sz = sizeof(struct type_hist);
1664 
1665 	sz += sizeof(struct type_hist_entry) * adt->self.size;
1666 
1667 	/* Allocate a table of pointers for each event */
1668 	adt->histograms = calloc(nr_entries, sizeof(*adt->histograms));
1669 	if (adt->histograms == NULL)
1670 		return -ENOMEM;
1671 
1672 	/*
1673 	 * Each histogram is allocated for the whole size of the type.
1674 	 * TODO: Probably we can move the histogram to members.
1675 	 */
1676 	for (i = 0; i < nr_entries; i++) {
1677 		adt->histograms[i] = zalloc(sz);
1678 		if (adt->histograms[i] == NULL)
1679 			goto err;
1680 	}
1681 
1682 	adt->nr_histograms = nr_entries;
1683 	return 0;
1684 
1685 err:
1686 	while (--i >= 0)
1687 		zfree(&(adt->histograms[i]));
1688 	zfree(&adt->histograms);
1689 	return -ENOMEM;
1690 }
1691 
1692 static void delete_data_type_histograms(struct annotated_data_type *adt)
1693 {
1694 	for (int i = 0; i < adt->nr_histograms; i++)
1695 		zfree(&(adt->histograms[i]));
1696 
1697 	zfree(&adt->histograms);
1698 	adt->nr_histograms = 0;
1699 }
1700 
1701 void annotated_data_type__tree_delete(struct rb_root *root)
1702 {
1703 	struct annotated_data_type *pos;
1704 
1705 	while (!RB_EMPTY_ROOT(root)) {
1706 		struct rb_node *node = rb_first(root);
1707 
1708 		rb_erase(node, root);
1709 		pos = rb_entry(node, struct annotated_data_type, node);
1710 		delete_members(&pos->self);
1711 		delete_data_type_histograms(pos);
1712 		zfree(&pos->self.type_name);
1713 		free(pos);
1714 	}
1715 }
1716 
1717 /**
1718  * annotated_data_type__update_samples - Update histogram
1719  * @adt: Data type to update
1720  * @evsel: Event to update
1721  * @offset: Offset in the type
1722  * @nr_samples: Number of samples at this offset
1723  * @period: Event count at this offset
1724  *
1725  * This function updates type histogram at @ofs for @evsel.  Samples are
1726  * aggregated before calling this function so it can be called with more
1727  * than one samples at a certain offset.
1728  */
1729 int annotated_data_type__update_samples(struct annotated_data_type *adt,
1730 					struct evsel *evsel, int offset,
1731 					int nr_samples, u64 period)
1732 {
1733 	struct type_hist *h;
1734 
1735 	if (adt == NULL)
1736 		return 0;
1737 
1738 	if (adt->histograms == NULL) {
1739 		int nr = evsel->evlist->core.nr_entries;
1740 
1741 		if (alloc_data_type_histograms(adt, nr) < 0)
1742 			return -1;
1743 	}
1744 
1745 	if (offset < 0 || offset >= adt->self.size)
1746 		return -1;
1747 
1748 	h = adt->histograms[evsel->core.idx];
1749 
1750 	h->nr_samples += nr_samples;
1751 	h->addr[offset].nr_samples += nr_samples;
1752 	h->period += period;
1753 	h->addr[offset].period += period;
1754 	return 0;
1755 }
1756 
1757 static void print_annotated_data_header(struct hist_entry *he, struct evsel *evsel)
1758 {
1759 	struct dso *dso = map__dso(he->ms.map);
1760 	int nr_members = 1;
1761 	int nr_samples = he->stat.nr_events;
1762 	int width = 7;
1763 	const char *val_hdr = "Percent";
1764 
1765 	if (evsel__is_group_event(evsel)) {
1766 		struct hist_entry *pair;
1767 
1768 		list_for_each_entry(pair, &he->pairs.head, pairs.node)
1769 			nr_samples += pair->stat.nr_events;
1770 	}
1771 
1772 	printf("Annotate type: '%s' in %s (%d samples):\n",
1773 	       he->mem_type->self.type_name, dso__name(dso), nr_samples);
1774 
1775 	if (evsel__is_group_event(evsel)) {
1776 		struct evsel *pos;
1777 		int i = 0;
1778 
1779 		nr_members = 0;
1780 		for_each_group_evsel(pos, evsel) {
1781 			if (symbol_conf.skip_empty &&
1782 			    evsel__hists(pos)->stats.nr_samples == 0)
1783 				continue;
1784 
1785 			printf(" event[%d] = %s\n", i++, pos->name);
1786 			nr_members++;
1787 		}
1788 	}
1789 
1790 	if (symbol_conf.show_total_period) {
1791 		width = 11;
1792 		val_hdr = "Period";
1793 	} else if (symbol_conf.show_nr_samples) {
1794 		width = 7;
1795 		val_hdr = "Samples";
1796 	}
1797 
1798 	printf("============================================================================\n");
1799 	printf("%*s %10s %10s  %s\n", (width + 1) * nr_members, val_hdr,
1800 	       "offset", "size", "field");
1801 }
1802 
1803 static void print_annotated_data_value(struct type_hist *h, u64 period, int nr_samples)
1804 {
1805 	double percent = h->period ? (100.0 * period / h->period) : 0;
1806 	const char *color = get_percent_color(percent);
1807 
1808 	if (symbol_conf.show_total_period)
1809 		color_fprintf(stdout, color, " %11" PRIu64, period);
1810 	else if (symbol_conf.show_nr_samples)
1811 		color_fprintf(stdout, color, " %7d", nr_samples);
1812 	else
1813 		color_fprintf(stdout, color, " %7.2f", percent);
1814 }
1815 
1816 static void print_annotated_data_type(struct annotated_data_type *mem_type,
1817 				      struct annotated_member *member,
1818 				      struct evsel *evsel, int indent)
1819 {
1820 	struct annotated_member *child;
1821 	struct type_hist *h = mem_type->histograms[evsel->core.idx];
1822 	int i, nr_events = 0, samples = 0;
1823 	u64 period = 0;
1824 	int width = symbol_conf.show_total_period ? 11 : 7;
1825 	struct evsel *pos;
1826 
1827 	for_each_group_evsel(pos, evsel) {
1828 		h = mem_type->histograms[pos->core.idx];
1829 
1830 		if (symbol_conf.skip_empty &&
1831 		    evsel__hists(pos)->stats.nr_samples == 0)
1832 			continue;
1833 
1834 		samples = 0;
1835 		period = 0;
1836 		for (i = 0; i < member->size; i++) {
1837 			samples += h->addr[member->offset + i].nr_samples;
1838 			period += h->addr[member->offset + i].period;
1839 		}
1840 		print_annotated_data_value(h, period, samples);
1841 		nr_events++;
1842 	}
1843 
1844 	printf(" %#10x %#10x  %*s%s\t%s",
1845 	       member->offset, member->size, indent, "", member->type_name,
1846 	       member->var_name ?: "");
1847 
1848 	if (!list_empty(&member->children))
1849 		printf(" {\n");
1850 
1851 	list_for_each_entry(child, &member->children, node)
1852 		print_annotated_data_type(mem_type, child, evsel, indent + 4);
1853 
1854 	if (!list_empty(&member->children))
1855 		printf("%*s}", (width + 1) * nr_events + 24 + indent, "");
1856 	printf(";\n");
1857 }
1858 
1859 int hist_entry__annotate_data_tty(struct hist_entry *he, struct evsel *evsel)
1860 {
1861 	print_annotated_data_header(he, evsel);
1862 	print_annotated_data_type(he->mem_type, &he->mem_type->self, evsel, 0);
1863 	printf("\n");
1864 
1865 	/* move to the next entry */
1866 	return '>';
1867 }
1868