1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * vma.h
4 *
5 * Core VMA manipulation API implemented in vma.c.
6 */
7 #ifndef __MM_VMA_H
8 #define __MM_VMA_H
9
10 /*
11 * VMA lock generalization
12 */
13 struct vma_prepare {
14 struct vm_area_struct *vma;
15 struct vm_area_struct *adj_next;
16 struct file *file;
17 struct address_space *mapping;
18 struct anon_vma *anon_vma;
19 struct vm_area_struct *insert;
20 struct vm_area_struct *remove;
21 struct vm_area_struct *remove2;
22
23 bool skip_vma_uprobe :1;
24 };
25
26 struct unlink_vma_file_batch {
27 int count;
28 struct vm_area_struct *vmas[8];
29 };
30
31 /*
32 * vma munmap operation
33 */
34 struct vma_munmap_struct {
35 struct vma_iterator *vmi;
36 struct vm_area_struct *vma; /* The first vma to munmap */
37 struct vm_area_struct *prev; /* vma before the munmap area */
38 struct vm_area_struct *next; /* vma after the munmap area */
39 struct list_head *uf; /* Userfaultfd list_head */
40 unsigned long start; /* Aligned start addr (inclusive) */
41 unsigned long end; /* Aligned end addr (exclusive) */
42 unsigned long unmap_start; /* Unmap PTE start */
43 unsigned long unmap_end; /* Unmap PTE end */
44 int vma_count; /* Number of vmas that will be removed */
45 bool unlock; /* Unlock after the munmap */
46 bool clear_ptes; /* If there are outstanding PTE to be cleared */
47 /* 2 byte hole */
48 unsigned long nr_pages; /* Number of pages being removed */
49 unsigned long locked_vm; /* Number of locked pages */
50 unsigned long nr_accounted; /* Number of VM_ACCOUNT pages */
51 unsigned long exec_vm;
52 unsigned long stack_vm;
53 unsigned long data_vm;
54 };
55
56 enum vma_merge_state {
57 VMA_MERGE_START,
58 VMA_MERGE_ERROR_NOMEM,
59 VMA_MERGE_NOMERGE,
60 VMA_MERGE_SUCCESS,
61 };
62
63 /*
64 * Describes a VMA merge operation and is threaded throughout it.
65 *
66 * Any of the fields may be mutated by the merge operation, so no guarantees are
67 * made to the contents of this structure after a merge operation has completed.
68 */
69 struct vma_merge_struct {
70 struct mm_struct *mm;
71 struct vma_iterator *vmi;
72 /*
73 * Adjacent VMAs, any of which may be NULL if not present:
74 *
75 * |------|--------|------|
76 * | prev | middle | next |
77 * |------|--------|------|
78 *
79 * middle may not yet exist in the case of a proposed new VMA being
80 * merged, or it may be an existing VMA.
81 *
82 * next may be assigned by the caller.
83 */
84 struct vm_area_struct *prev;
85 struct vm_area_struct *middle;
86 struct vm_area_struct *next;
87 /* This is the VMA we ultimately target to become the merged VMA. */
88 struct vm_area_struct *target;
89 /*
90 * Initially, the start, end, pgoff fields are provided by the caller
91 * and describe the proposed new VMA range, whether modifying an
92 * existing VMA (which will be 'middle'), or adding a new one.
93 *
94 * During the merge process these fields are updated to describe the new
95 * range _including those VMAs which will be merged_.
96 */
97 unsigned long start;
98 unsigned long end;
99 pgoff_t pgoff;
100
101 vm_flags_t vm_flags;
102 struct file *file;
103 struct anon_vma *anon_vma;
104 struct mempolicy *policy;
105 struct vm_userfaultfd_ctx uffd_ctx;
106 struct anon_vma_name *anon_name;
107 enum vma_merge_state state;
108
109 /* Flags which callers can use to modify merge behaviour: */
110
111 /*
112 * If we can expand, simply do so. We know there is nothing to merge to
113 * the right. Does not reset state upon failure to merge. The VMA
114 * iterator is assumed to be positioned at the previous VMA, rather than
115 * at the gap.
116 */
117 bool just_expand :1;
118
119 /*
120 * If a merge is possible, but an OOM error occurs, give up and don't
121 * execute the merge, returning NULL.
122 */
123 bool give_up_on_oom :1;
124
125 /*
126 * If set, skip uprobe_mmap upon merged vma.
127 */
128 bool skip_vma_uprobe :1;
129
130 /* Internal flags set during merge process: */
131
132 /*
133 * Internal flag indicating the merge increases vmg->middle->vm_start
134 * (and thereby, vmg->prev->vm_end).
135 */
136 bool __adjust_middle_start :1;
137 /*
138 * Internal flag indicating the merge decreases vmg->next->vm_start
139 * (and thereby, vmg->middle->vm_end).
140 */
141 bool __adjust_next_start :1;
142 /*
143 * Internal flag used during the merge operation to indicate we will
144 * remove vmg->middle.
145 */
146 bool __remove_middle :1;
147 /*
148 * Internal flag used during the merge operation to indicate we will
149 * remove vmg->next.
150 */
151 bool __remove_next :1;
152
153 };
154
vmg_nomem(struct vma_merge_struct * vmg)155 static inline bool vmg_nomem(struct vma_merge_struct *vmg)
156 {
157 return vmg->state == VMA_MERGE_ERROR_NOMEM;
158 }
159
160 /* Assumes addr >= vma->vm_start. */
vma_pgoff_offset(struct vm_area_struct * vma,unsigned long addr)161 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma,
162 unsigned long addr)
163 {
164 return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start);
165 }
166
167 #define VMG_STATE(name, mm_, vmi_, start_, end_, vm_flags_, pgoff_) \
168 struct vma_merge_struct name = { \
169 .mm = mm_, \
170 .vmi = vmi_, \
171 .start = start_, \
172 .end = end_, \
173 .vm_flags = vm_flags_, \
174 .pgoff = pgoff_, \
175 .state = VMA_MERGE_START, \
176 }
177
178 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \
179 struct vma_merge_struct name = { \
180 .mm = vma_->vm_mm, \
181 .vmi = vmi_, \
182 .prev = prev_, \
183 .middle = vma_, \
184 .next = NULL, \
185 .start = start_, \
186 .end = end_, \
187 .vm_flags = vma_->vm_flags, \
188 .pgoff = vma_pgoff_offset(vma_, start_), \
189 .file = vma_->vm_file, \
190 .anon_vma = vma_->anon_vma, \
191 .policy = vma_policy(vma_), \
192 .uffd_ctx = vma_->vm_userfaultfd_ctx, \
193 .anon_name = anon_vma_name(vma_), \
194 .state = VMA_MERGE_START, \
195 }
196
197 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
198 void validate_mm(struct mm_struct *mm);
199 #else
200 #define validate_mm(mm) do { } while (0)
201 #endif
202
203 __must_check int vma_expand(struct vma_merge_struct *vmg);
204 __must_check int vma_shrink(struct vma_iterator *vmi,
205 struct vm_area_struct *vma,
206 unsigned long start, unsigned long end, pgoff_t pgoff);
207
vma_iter_store_gfp(struct vma_iterator * vmi,struct vm_area_struct * vma,gfp_t gfp)208 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
209 struct vm_area_struct *vma, gfp_t gfp)
210
211 {
212 if (vmi->mas.status != ma_start &&
213 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
214 vma_iter_invalidate(vmi);
215
216 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
217 mas_store_gfp(&vmi->mas, vma, gfp);
218 if (unlikely(mas_is_err(&vmi->mas)))
219 return -ENOMEM;
220
221 vma_mark_attached(vma);
222 return 0;
223 }
224
225 /*
226 * Temporary helper function for stacked mmap handlers which specify
227 * f_op->mmap() but which might have an underlying file system which implements
228 * f_op->mmap_prepare().
229 */
set_vma_from_desc(struct vm_area_struct * vma,struct vm_area_desc * desc)230 static inline void set_vma_from_desc(struct vm_area_struct *vma,
231 struct vm_area_desc *desc)
232 {
233 /*
234 * Since we're invoking .mmap_prepare() despite having a partially
235 * established VMA, we must take care to handle setting fields
236 * correctly.
237 */
238
239 /* Mutable fields. Populated with initial state. */
240 vma->vm_pgoff = desc->pgoff;
241 if (desc->vm_file != vma->vm_file)
242 vma_set_file(vma, desc->vm_file);
243 if (desc->vm_flags != vma->vm_flags)
244 vm_flags_set(vma, desc->vm_flags);
245 vma->vm_page_prot = desc->page_prot;
246
247 /* User-defined fields. */
248 vma->vm_ops = desc->vm_ops;
249 vma->vm_private_data = desc->private_data;
250 }
251
252 int
253 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
254 struct mm_struct *mm, unsigned long start,
255 unsigned long end, struct list_head *uf, bool unlock);
256
257 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
258 unsigned long start, size_t len, struct list_head *uf,
259 bool unlock);
260
261 void remove_vma(struct vm_area_struct *vma);
262
263 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
264 struct vm_area_struct *prev, struct vm_area_struct *next);
265
266 /* We are about to modify the VMA's flags. */
267 __must_check struct vm_area_struct
268 *vma_modify_flags(struct vma_iterator *vmi,
269 struct vm_area_struct *prev, struct vm_area_struct *vma,
270 unsigned long start, unsigned long end,
271 vm_flags_t vm_flags);
272
273 /* We are about to modify the VMA's anon_name. */
274 __must_check struct vm_area_struct
275 *vma_modify_name(struct vma_iterator *vmi,
276 struct vm_area_struct *prev,
277 struct vm_area_struct *vma,
278 unsigned long start,
279 unsigned long end,
280 struct anon_vma_name *new_name);
281
282 /* We are about to modify the VMA's memory policy. */
283 __must_check struct vm_area_struct
284 *vma_modify_policy(struct vma_iterator *vmi,
285 struct vm_area_struct *prev,
286 struct vm_area_struct *vma,
287 unsigned long start, unsigned long end,
288 struct mempolicy *new_pol);
289
290 /* We are about to modify the VMA's flags and/or uffd context. */
291 __must_check struct vm_area_struct
292 *vma_modify_flags_uffd(struct vma_iterator *vmi,
293 struct vm_area_struct *prev,
294 struct vm_area_struct *vma,
295 unsigned long start, unsigned long end,
296 vm_flags_t vm_flags,
297 struct vm_userfaultfd_ctx new_ctx,
298 bool give_up_on_oom);
299
300 __must_check struct vm_area_struct
301 *vma_merge_new_range(struct vma_merge_struct *vmg);
302
303 __must_check struct vm_area_struct
304 *vma_merge_extend(struct vma_iterator *vmi,
305 struct vm_area_struct *vma,
306 unsigned long delta);
307
308 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb);
309
310 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb);
311
312 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
313 struct vm_area_struct *vma);
314
315 void unlink_file_vma(struct vm_area_struct *vma);
316
317 void vma_link_file(struct vm_area_struct *vma);
318
319 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma);
320
321 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
322 unsigned long addr, unsigned long len, pgoff_t pgoff,
323 bool *need_rmap_locks);
324
325 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma);
326
327 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
328 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
329
330 int mm_take_all_locks(struct mm_struct *mm);
331 void mm_drop_all_locks(struct mm_struct *mm);
332
333 unsigned long mmap_region(struct file *file, unsigned long addr,
334 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
335 struct list_head *uf);
336
337 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
338 unsigned long addr, unsigned long request, unsigned long flags);
339
340 unsigned long unmapped_area(struct vm_unmapped_area_info *info);
341 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
342
vma_wants_manual_pte_write_upgrade(struct vm_area_struct * vma)343 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
344 {
345 /*
346 * We want to check manually if we can change individual PTEs writable
347 * if we can't do that automatically for all PTEs in a mapping. For
348 * private mappings, that's always the case when we have write
349 * permissions as we properly have to handle COW.
350 */
351 if (vma->vm_flags & VM_SHARED)
352 return vma_wants_writenotify(vma, vma->vm_page_prot);
353 return !!(vma->vm_flags & VM_WRITE);
354 }
355
356 #ifdef CONFIG_MMU
vm_pgprot_modify(pgprot_t oldprot,vm_flags_t vm_flags)357 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, vm_flags_t vm_flags)
358 {
359 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
360 }
361 #endif
362
vma_prev_limit(struct vma_iterator * vmi,unsigned long min)363 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
364 unsigned long min)
365 {
366 return mas_prev(&vmi->mas, min);
367 }
368
369 /*
370 * These three helpers classifies VMAs for virtual memory accounting.
371 */
372
373 /*
374 * Executable code area - executable, not writable, not stack
375 */
is_exec_mapping(vm_flags_t flags)376 static inline bool is_exec_mapping(vm_flags_t flags)
377 {
378 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
379 }
380
381 /*
382 * Stack area (including shadow stacks)
383 *
384 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
385 * do_mmap() forbids all other combinations.
386 */
is_stack_mapping(vm_flags_t flags)387 static inline bool is_stack_mapping(vm_flags_t flags)
388 {
389 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
390 }
391
392 /*
393 * Data area - private, writable, not stack
394 */
is_data_mapping(vm_flags_t flags)395 static inline bool is_data_mapping(vm_flags_t flags)
396 {
397 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
398 }
399
400
vma_iter_config(struct vma_iterator * vmi,unsigned long index,unsigned long last)401 static inline void vma_iter_config(struct vma_iterator *vmi,
402 unsigned long index, unsigned long last)
403 {
404 __mas_set_range(&vmi->mas, index, last - 1);
405 }
406
vma_iter_reset(struct vma_iterator * vmi)407 static inline void vma_iter_reset(struct vma_iterator *vmi)
408 {
409 mas_reset(&vmi->mas);
410 }
411
412 static inline
vma_iter_prev_range_limit(struct vma_iterator * vmi,unsigned long min)413 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
414 {
415 return mas_prev_range(&vmi->mas, min);
416 }
417
418 static inline
vma_iter_next_range_limit(struct vma_iterator * vmi,unsigned long max)419 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
420 {
421 return mas_next_range(&vmi->mas, max);
422 }
423
vma_iter_area_lowest(struct vma_iterator * vmi,unsigned long min,unsigned long max,unsigned long size)424 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
425 unsigned long max, unsigned long size)
426 {
427 return mas_empty_area(&vmi->mas, min, max - 1, size);
428 }
429
vma_iter_area_highest(struct vma_iterator * vmi,unsigned long min,unsigned long max,unsigned long size)430 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
431 unsigned long max, unsigned long size)
432 {
433 return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
434 }
435
436 /*
437 * VMA Iterator functions shared between nommu and mmap
438 */
vma_iter_prealloc(struct vma_iterator * vmi,struct vm_area_struct * vma)439 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
440 struct vm_area_struct *vma)
441 {
442 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
443 }
444
vma_iter_clear(struct vma_iterator * vmi)445 static inline void vma_iter_clear(struct vma_iterator *vmi)
446 {
447 mas_store_prealloc(&vmi->mas, NULL);
448 }
449
vma_iter_load(struct vma_iterator * vmi)450 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
451 {
452 return mas_walk(&vmi->mas);
453 }
454
455 /* Store a VMA with preallocated memory */
vma_iter_store_overwrite(struct vma_iterator * vmi,struct vm_area_struct * vma)456 static inline void vma_iter_store_overwrite(struct vma_iterator *vmi,
457 struct vm_area_struct *vma)
458 {
459 vma_assert_attached(vma);
460
461 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
462 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
463 vmi->mas.index > vma->vm_start)) {
464 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
465 vmi->mas.index, vma->vm_start, vma->vm_start,
466 vma->vm_end, vmi->mas.index, vmi->mas.last);
467 }
468 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
469 vmi->mas.last < vma->vm_start)) {
470 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
471 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
472 vmi->mas.index, vmi->mas.last);
473 }
474 #endif
475
476 if (vmi->mas.status != ma_start &&
477 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
478 vma_iter_invalidate(vmi);
479
480 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
481 mas_store_prealloc(&vmi->mas, vma);
482 }
483
vma_iter_store_new(struct vma_iterator * vmi,struct vm_area_struct * vma)484 static inline void vma_iter_store_new(struct vma_iterator *vmi,
485 struct vm_area_struct *vma)
486 {
487 vma_mark_attached(vma);
488 vma_iter_store_overwrite(vmi, vma);
489 }
490
vma_iter_addr(struct vma_iterator * vmi)491 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
492 {
493 return vmi->mas.index;
494 }
495
vma_iter_end(struct vma_iterator * vmi)496 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
497 {
498 return vmi->mas.last + 1;
499 }
500
vma_iter_bulk_alloc(struct vma_iterator * vmi,unsigned long count)501 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
502 unsigned long count)
503 {
504 return mas_expected_entries(&vmi->mas, count);
505 }
506
507 static inline
vma_iter_prev_range(struct vma_iterator * vmi)508 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
509 {
510 return mas_prev_range(&vmi->mas, 0);
511 }
512
513 /*
514 * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or
515 * if no previous VMA, to index 0.
516 */
517 static inline
vma_iter_next_rewind(struct vma_iterator * vmi,struct vm_area_struct ** pprev)518 struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi,
519 struct vm_area_struct **pprev)
520 {
521 struct vm_area_struct *next = vma_next(vmi);
522 struct vm_area_struct *prev = vma_prev(vmi);
523
524 /*
525 * Consider the case where no previous VMA exists. We advance to the
526 * next VMA, skipping any gap, then rewind to the start of the range.
527 *
528 * If we were to unconditionally advance to the next range we'd wind up
529 * at the next VMA again, so we check to ensure there is a previous VMA
530 * to skip over.
531 */
532 if (prev)
533 vma_iter_next_range(vmi);
534
535 if (pprev)
536 *pprev = prev;
537
538 return next;
539 }
540
541 #ifdef CONFIG_64BIT
vma_is_sealed(struct vm_area_struct * vma)542 static inline bool vma_is_sealed(struct vm_area_struct *vma)
543 {
544 return (vma->vm_flags & VM_SEALED);
545 }
546 #else
vma_is_sealed(struct vm_area_struct * vma)547 static inline bool vma_is_sealed(struct vm_area_struct *vma)
548 {
549 return false;
550 }
551 #endif
552
553 #if defined(CONFIG_STACK_GROWSUP)
554 int expand_upwards(struct vm_area_struct *vma, unsigned long address);
555 #endif
556
557 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
558
559 int __vm_munmap(unsigned long start, size_t len, bool unlock);
560
561 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma);
562
563 /* vma_init.h, shared between CONFIG_MMU and nommu. */
564 void __init vma_state_init(void);
565 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm);
566 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig);
567 void vm_area_free(struct vm_area_struct *vma);
568
569 /* vma_exec.c */
570 #ifdef CONFIG_MMU
571 int create_init_stack_vma(struct mm_struct *mm, struct vm_area_struct **vmap,
572 unsigned long *top_mem_p);
573 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
574 #endif
575
576 #endif /* __MM_VMA_H */
577