1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37
38 /**
39 * DOC: GuC-based command submission
40 *
41 * The Scratch registers:
42 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44 * triggers an interrupt on the GuC via another register write (0xC4C8).
45 * Firmware writes a success/fail code back to the action register after
46 * processes the request. The kernel driver polls waiting for this update and
47 * then proceeds.
48 *
49 * Command Transport buffers (CTBs):
50 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51 * - G2H) are a message interface between the i915 and GuC.
52 *
53 * Context registration:
54 * Before a context can be submitted it must be registered with the GuC via a
55 * H2G. A unique guc_id is associated with each context. The context is either
56 * registered at request creation time (normal operation) or at submission time
57 * (abnormal operation, e.g. after a reset).
58 *
59 * Context submission:
60 * The i915 updates the LRC tail value in memory. The i915 must enable the
61 * scheduling of the context within the GuC for the GuC to actually consider it.
62 * Therefore, the first time a disabled context is submitted we use a schedule
63 * enable H2G, while follow up submissions are done via the context submit H2G,
64 * which informs the GuC that a previously enabled context has new work
65 * available.
66 *
67 * Context unpin:
68 * To unpin a context a H2G is used to disable scheduling. When the
69 * corresponding G2H returns indicating the scheduling disable operation has
70 * completed it is safe to unpin the context. While a disable is in flight it
71 * isn't safe to resubmit the context so a fence is used to stall all future
72 * requests of that context until the G2H is returned. Because this interaction
73 * with the GuC takes a non-zero amount of time we delay the disabling of
74 * scheduling after the pin count goes to zero by a configurable period of time
75 * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76 * time to resubmit something on the context before doing this costly operation.
77 * This delay is only done if the context isn't closed and the guc_id usage is
78 * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79 *
80 * Context deregistration:
81 * Before a context can be destroyed or if we steal its guc_id we must
82 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83 * safe to submit anything to this guc_id until the deregister completes so a
84 * fence is used to stall all requests associated with this guc_id until the
85 * corresponding G2H returns indicating the guc_id has been deregistered.
86 *
87 * submission_state.guc_ids:
88 * Unique number associated with private GuC context data passed in during
89 * context registration / submission / deregistration. 64k available. Simple ida
90 * is used for allocation.
91 *
92 * Stealing guc_ids:
93 * If no guc_ids are available they can be stolen from another context at
94 * request creation time if that context is unpinned. If a guc_id can't be found
95 * we punt this problem to the user as we believe this is near impossible to hit
96 * during normal use cases.
97 *
98 * Locking:
99 * In the GuC submission code we have 3 basic spin locks which protect
100 * everything. Details about each below.
101 *
102 * sched_engine->lock
103 * This is the submission lock for all contexts that share an i915 schedule
104 * engine (sched_engine), thus only one of the contexts which share a
105 * sched_engine can be submitting at a time. Currently only one sched_engine is
106 * used for all of GuC submission but that could change in the future.
107 *
108 * guc->submission_state.lock
109 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110 * list.
111 *
112 * ce->guc_state.lock
113 * Protects everything under ce->guc_state. Ensures that a context is in the
114 * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115 * on a disabled context (bad idea), we don't issue a schedule enable when a
116 * schedule disable is in flight, etc... Also protects list of inflight requests
117 * on the context and the priority management state. Lock is individual to each
118 * context.
119 *
120 * Lock ordering rules:
121 * sched_engine->lock -> ce->guc_state.lock
122 * guc->submission_state.lock -> ce->guc_state.lock
123 *
124 * Reset races:
125 * When a full GT reset is triggered it is assumed that some G2H responses to
126 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127 * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128 * contexts, release guc_ids, etc...). When this occurs we can scrub the
129 * context state and cleanup appropriately, however this is quite racey.
130 * To avoid races, the reset code must disable submission before scrubbing for
131 * the missing G2H, while the submission code must check for submission being
132 * disabled and skip sending H2Gs and updating context states when it is. Both
133 * sides must also make sure to hold the relevant locks.
134 */
135
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 struct intel_engine_cs base;
139 struct intel_context context;
140 };
141
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 unsigned long flags);
145
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 unsigned int num_siblings,
149 unsigned int width);
150
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152
153 /*
154 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155 * per the GuC submission interface. A different allocation algorithm is used
156 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157 * partition the guc_id space. We believe the number of multi-lrc contexts in
158 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159 * multi-lrc.
160 */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc) \
162 ((guc)->submission_state.num_guc_ids / 16)
163
164 /*
165 * Below is a set of functions which control the GuC scheduling state which
166 * require a lock.
167 */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0)
169 #define SCHED_STATE_DESTROYED BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE BIT(2)
171 #define SCHED_STATE_BANNED BIT(3)
172 #define SCHED_STATE_ENABLED BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE BIT(5)
174 #define SCHED_STATE_REGISTERED BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED BIT(7)
176 #define SCHED_STATE_CLOSED BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT 9
178 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT)
180
init_sched_state(struct intel_context * ce)181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 lockdep_assert_held(&ce->guc_state.lock);
184 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186
187 /*
188 * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189 * A context close can race with the submission path, so SCHED_STATE_CLOSED
190 * can be set immediately before we try to register.
191 */
192 #define SCHED_STATE_VALID_INIT \
193 (SCHED_STATE_BLOCKED_MASK | \
194 SCHED_STATE_CLOSED | \
195 SCHED_STATE_REGISTERED)
196
197 __maybe_unused
sched_state_is_init(struct intel_context * ce)198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202
203 static inline bool
context_wait_for_deregister_to_register(struct intel_context * ce)204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 return ce->guc_state.sched_state &
207 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209
210 static inline void
set_context_wait_for_deregister_to_register(struct intel_context * ce)211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 lockdep_assert_held(&ce->guc_state.lock);
214 ce->guc_state.sched_state |=
215 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217
218 static inline void
clr_context_wait_for_deregister_to_register(struct intel_context * ce)219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 lockdep_assert_held(&ce->guc_state.lock);
222 ce->guc_state.sched_state &=
223 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225
226 static inline bool
context_destroyed(struct intel_context * ce)227 context_destroyed(struct intel_context *ce)
228 {
229 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231
232 static inline void
set_context_destroyed(struct intel_context * ce)233 set_context_destroyed(struct intel_context *ce)
234 {
235 lockdep_assert_held(&ce->guc_state.lock);
236 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238
239 static inline void
clr_context_destroyed(struct intel_context * ce)240 clr_context_destroyed(struct intel_context *ce)
241 {
242 lockdep_assert_held(&ce->guc_state.lock);
243 ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245
context_pending_disable(struct intel_context * ce)246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250
set_context_pending_disable(struct intel_context * ce)251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253 lockdep_assert_held(&ce->guc_state.lock);
254 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256
clr_context_pending_disable(struct intel_context * ce)257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259 lockdep_assert_held(&ce->guc_state.lock);
260 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262
context_banned(struct intel_context * ce)263 static inline bool context_banned(struct intel_context *ce)
264 {
265 return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267
set_context_banned(struct intel_context * ce)268 static inline void set_context_banned(struct intel_context *ce)
269 {
270 lockdep_assert_held(&ce->guc_state.lock);
271 ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273
clr_context_banned(struct intel_context * ce)274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276 lockdep_assert_held(&ce->guc_state.lock);
277 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279
context_enabled(struct intel_context * ce)280 static inline bool context_enabled(struct intel_context *ce)
281 {
282 return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284
set_context_enabled(struct intel_context * ce)285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287 lockdep_assert_held(&ce->guc_state.lock);
288 ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290
clr_context_enabled(struct intel_context * ce)291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293 lockdep_assert_held(&ce->guc_state.lock);
294 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296
context_pending_enable(struct intel_context * ce)297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301
set_context_pending_enable(struct intel_context * ce)302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304 lockdep_assert_held(&ce->guc_state.lock);
305 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307
clr_context_pending_enable(struct intel_context * ce)308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310 lockdep_assert_held(&ce->guc_state.lock);
311 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313
context_registered(struct intel_context * ce)314 static inline bool context_registered(struct intel_context *ce)
315 {
316 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318
set_context_registered(struct intel_context * ce)319 static inline void set_context_registered(struct intel_context *ce)
320 {
321 lockdep_assert_held(&ce->guc_state.lock);
322 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324
clr_context_registered(struct intel_context * ce)325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327 lockdep_assert_held(&ce->guc_state.lock);
328 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330
context_policy_required(struct intel_context * ce)331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335
set_context_policy_required(struct intel_context * ce)336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338 lockdep_assert_held(&ce->guc_state.lock);
339 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341
clr_context_policy_required(struct intel_context * ce)342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344 lockdep_assert_held(&ce->guc_state.lock);
345 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347
context_close_done(struct intel_context * ce)348 static inline bool context_close_done(struct intel_context *ce)
349 {
350 return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352
set_context_close_done(struct intel_context * ce)353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355 lockdep_assert_held(&ce->guc_state.lock);
356 ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358
context_blocked(struct intel_context * ce)359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362 SCHED_STATE_BLOCKED_SHIFT;
363 }
364
incr_context_blocked(struct intel_context * ce)365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367 lockdep_assert_held(&ce->guc_state.lock);
368
369 ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370
371 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */
372 }
373
decr_context_blocked(struct intel_context * ce)374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376 lockdep_assert_held(&ce->guc_state.lock);
377
378 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */
379
380 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382
383 static struct intel_context *
request_to_scheduling_context(struct i915_request * rq)384 request_to_scheduling_context(struct i915_request *rq)
385 {
386 return intel_context_to_parent(rq->context);
387 }
388
context_guc_id_invalid(struct intel_context * ce)389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393
set_context_guc_id_invalid(struct intel_context * ce)394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396 ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398
ce_to_guc(struct intel_context * ce)399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401 return gt_to_guc(ce->engine->gt);
402 }
403
to_priolist(struct rb_node * rb)404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406 return rb_entry(rb, struct i915_priolist, node);
407 }
408
409 /*
410 * When using multi-lrc submission a scratch memory area is reserved in the
411 * parent's context state for the process descriptor, work queue, and handshake
412 * between the parent + children contexts to insert safe preemption points
413 * between each of the BBs. Currently the scratch area is sized to a page.
414 *
415 * The layout of this scratch area is below:
416 * 0 guc_process_desc
417 * + sizeof(struct guc_process_desc) child go
418 * + CACHELINE_BYTES child join[0]
419 * ...
420 * + CACHELINE_BYTES child join[n - 1]
421 * ... unused
422 * PARENT_SCRATCH_SIZE / 2 work queue start
423 * ... work queue
424 * PARENT_SCRATCH_SIZE - 1 work queue end
425 */
426 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE)
428
429 struct sync_semaphore {
430 u32 semaphore;
431 u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433
434 struct parent_scratch {
435 union guc_descs {
436 struct guc_sched_wq_desc wq_desc;
437 struct guc_process_desc_v69 pdesc;
438 } descs;
439
440 struct sync_semaphore go;
441 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442
443 u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445
446 u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448
__get_parent_scratch_offset(struct intel_context * ce)449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451 GEM_BUG_ON(!ce->parallel.guc.parent_page);
452
453 return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455
__get_wq_offset(struct intel_context * ce)456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459
460 return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462
463 static struct parent_scratch *
__get_parent_scratch(struct intel_context * ce)464 __get_parent_scratch(struct intel_context *ce)
465 {
466 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468
469 /*
470 * Need to subtract LRC_STATE_OFFSET here as the
471 * parallel.guc.parent_page is the offset into ce->state while
472 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473 */
474 return (struct parent_scratch *)
475 (ce->lrc_reg_state +
476 ((__get_parent_scratch_offset(ce) -
477 LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479
480 static struct guc_process_desc_v69 *
__get_process_desc_v69(struct intel_context * ce)481 __get_process_desc_v69(struct intel_context *ce)
482 {
483 struct parent_scratch *ps = __get_parent_scratch(ce);
484
485 return &ps->descs.pdesc;
486 }
487
488 static struct guc_sched_wq_desc *
__get_wq_desc_v70(struct intel_context * ce)489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491 struct parent_scratch *ps = __get_parent_scratch(ce);
492
493 return &ps->descs.wq_desc;
494 }
495
get_wq_pointer(struct intel_context * ce,u32 wqi_size)496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498 /*
499 * Check for space in work queue. Caching a value of head pointer in
500 * intel_context structure in order reduce the number accesses to shared
501 * GPU memory which may be across a PCIe bus.
502 */
503 #define AVAILABLE_SPACE \
504 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505 if (wqi_size > AVAILABLE_SPACE) {
506 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507
508 if (wqi_size > AVAILABLE_SPACE)
509 return NULL;
510 }
511 #undef AVAILABLE_SPACE
512
513 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515
__get_context(struct intel_guc * guc,u32 id)516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518 struct intel_context *ce = xa_load(&guc->context_lookup, id);
519
520 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521
522 return ce;
523 }
524
__get_lrc_desc_v69(struct intel_guc * guc,u32 index)525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528
529 if (!base)
530 return NULL;
531
532 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533
534 return &base[index];
535 }
536
guc_lrc_desc_pool_create_v69(struct intel_guc * guc)537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539 u32 size;
540 int ret;
541
542 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543 GUC_MAX_CONTEXT_ID);
544 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545 (void **)&guc->lrc_desc_pool_vaddr_v69);
546 if (ret)
547 return ret;
548
549 return 0;
550 }
551
guc_lrc_desc_pool_destroy_v69(struct intel_guc * guc)552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554 if (!guc->lrc_desc_pool_vaddr_v69)
555 return;
556
557 guc->lrc_desc_pool_vaddr_v69 = NULL;
558 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560
guc_submission_initialized(struct intel_guc * guc)561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563 return guc->submission_initialized;
564 }
565
_reset_lrc_desc_v69(struct intel_guc * guc,u32 id)566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569
570 if (desc)
571 memset(desc, 0, sizeof(*desc));
572 }
573
ctx_id_mapped(struct intel_guc * guc,u32 id)574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576 return __get_context(guc, id);
577 }
578
set_ctx_id_mapping(struct intel_guc * guc,u32 id,struct intel_context * ce)579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580 struct intel_context *ce)
581 {
582 unsigned long flags;
583
584 /*
585 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586 * lower level functions directly.
587 */
588 xa_lock_irqsave(&guc->context_lookup, flags);
589 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590 xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592
clr_ctx_id_mapping(struct intel_guc * guc,u32 id)593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595 unsigned long flags;
596
597 if (unlikely(!guc_submission_initialized(guc)))
598 return;
599
600 _reset_lrc_desc_v69(guc, id);
601
602 /*
603 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604 * the lower level functions directly.
605 */
606 xa_lock_irqsave(&guc->context_lookup, flags);
607 __xa_erase(&guc->context_lookup, id);
608 xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610
decr_outstanding_submission_g2h(struct intel_guc * guc)611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613 if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614 wake_up_all(&guc->ct.wq);
615 }
616
guc_submission_send_busy_loop(struct intel_guc * guc,const u32 * action,u32 len,u32 g2h_len_dw,bool loop)617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618 const u32 *action,
619 u32 len,
620 u32 g2h_len_dw,
621 bool loop)
622 {
623 int ret;
624
625 /*
626 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627 * so we don't handle the case where we don't get a reply because we
628 * aborted the send due to the channel being busy.
629 */
630 GEM_BUG_ON(g2h_len_dw && !loop);
631
632 if (g2h_len_dw)
633 atomic_inc(&guc->outstanding_submission_g2h);
634
635 ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636 if (ret)
637 atomic_dec(&guc->outstanding_submission_g2h);
638
639 return ret;
640 }
641
intel_guc_wait_for_pending_msg(struct intel_guc * guc,atomic_t * wait_var,bool interruptible,long timeout)642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643 atomic_t *wait_var,
644 bool interruptible,
645 long timeout)
646 {
647 const int state = interruptible ?
648 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649 DEFINE_WAIT(wait);
650
651 might_sleep();
652 GEM_BUG_ON(timeout < 0);
653
654 if (!atomic_read(wait_var))
655 return 0;
656
657 if (!timeout)
658 return -ETIME;
659
660 for (;;) {
661 prepare_to_wait(&guc->ct.wq, &wait, state);
662
663 if (!atomic_read(wait_var))
664 break;
665
666 if (signal_pending_state(state, current)) {
667 timeout = -EINTR;
668 break;
669 }
670
671 if (!timeout) {
672 timeout = -ETIME;
673 break;
674 }
675
676 timeout = io_schedule_timeout(timeout);
677 }
678 finish_wait(&guc->ct.wq, &wait);
679
680 return (timeout < 0) ? timeout : 0;
681 }
682
intel_guc_wait_for_idle(struct intel_guc * guc,long timeout)683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686 return 0;
687
688 return intel_guc_wait_for_pending_msg(guc,
689 &guc->outstanding_submission_g2h,
690 true, timeout);
691 }
692
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695
__guc_add_request(struct intel_guc * guc,struct i915_request * rq)696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698 int err = 0;
699 struct intel_context *ce = request_to_scheduling_context(rq);
700 u32 action[3];
701 int len = 0;
702 u32 g2h_len_dw = 0;
703 bool enabled;
704
705 lockdep_assert_held(&rq->engine->sched_engine->lock);
706
707 /*
708 * Corner case where requests were sitting in the priority list or a
709 * request resubmitted after the context was banned.
710 */
711 if (unlikely(!intel_context_is_schedulable(ce))) {
712 i915_request_put(i915_request_mark_eio(rq));
713 intel_engine_signal_breadcrumbs(ce->engine);
714 return 0;
715 }
716
717 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718 GEM_BUG_ON(context_guc_id_invalid(ce));
719
720 if (context_policy_required(ce)) {
721 err = guc_context_policy_init_v70(ce, false);
722 if (err)
723 return err;
724 }
725
726 spin_lock(&ce->guc_state.lock);
727
728 /*
729 * The request / context will be run on the hardware when scheduling
730 * gets enabled in the unblock. For multi-lrc we still submit the
731 * context to move the LRC tails.
732 */
733 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734 goto out;
735
736 enabled = context_enabled(ce) || context_blocked(ce);
737
738 if (!enabled) {
739 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740 action[len++] = ce->guc_id.id;
741 action[len++] = GUC_CONTEXT_ENABLE;
742 set_context_pending_enable(ce);
743 intel_context_get(ce);
744 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745 } else {
746 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747 action[len++] = ce->guc_id.id;
748 }
749
750 err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751 if (!enabled && !err) {
752 trace_intel_context_sched_enable(ce);
753 atomic_inc(&guc->outstanding_submission_g2h);
754 set_context_enabled(ce);
755
756 /*
757 * Without multi-lrc KMD does the submission step (moving the
758 * lrc tail) so enabling scheduling is sufficient to submit the
759 * context. This isn't the case in multi-lrc submission as the
760 * GuC needs to move the tails, hence the need for another H2G
761 * to submit a multi-lrc context after enabling scheduling.
762 */
763 if (intel_context_is_parent(ce)) {
764 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765 err = intel_guc_send_nb(guc, action, len - 1, 0);
766 }
767 } else if (!enabled) {
768 clr_context_pending_enable(ce);
769 intel_context_put(ce);
770 }
771 if (likely(!err))
772 trace_i915_request_guc_submit(rq);
773
774 out:
775 spin_unlock(&ce->guc_state.lock);
776 return err;
777 }
778
guc_add_request(struct intel_guc * guc,struct i915_request * rq)779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781 int ret = __guc_add_request(guc, rq);
782
783 if (unlikely(ret == -EBUSY)) {
784 guc->stalled_request = rq;
785 guc->submission_stall_reason = STALL_ADD_REQUEST;
786 }
787
788 return ret;
789 }
790
guc_set_lrc_tail(struct i915_request * rq)791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793 rq->context->lrc_reg_state[CTX_RING_TAIL] =
794 intel_ring_set_tail(rq->ring, rq->tail);
795 }
796
rq_prio(const struct i915_request * rq)797 static inline int rq_prio(const struct i915_request *rq)
798 {
799 return rq->sched.attr.priority;
800 }
801
is_multi_lrc_rq(struct i915_request * rq)802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804 return intel_context_is_parallel(rq->context);
805 }
806
can_merge_rq(struct i915_request * rq,struct i915_request * last)807 static bool can_merge_rq(struct i915_request *rq,
808 struct i915_request *last)
809 {
810 return request_to_scheduling_context(rq) ==
811 request_to_scheduling_context(last);
812 }
813
wq_space_until_wrap(struct intel_context * ce)814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816 return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818
write_wqi(struct intel_context * ce,u32 wqi_size)819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822
823 /*
824 * Ensure WQI are visible before updating tail
825 */
826 intel_guc_write_barrier(ce_to_guc(ce));
827
828 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829 (WQ_SIZE - 1);
830 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832
guc_wq_noop_append(struct intel_context * ce)833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837
838 if (!wqi)
839 return -EBUSY;
840
841 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842
843 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844 FIELD_PREP(WQ_LEN_MASK, len_dw);
845 ce->parallel.guc.wqi_tail = 0;
846
847 return 0;
848 }
849
__guc_wq_item_append(struct i915_request * rq)850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852 struct intel_context *ce = request_to_scheduling_context(rq);
853 struct intel_context *child;
854 unsigned int wqi_size = (ce->parallel.number_children + 4) *
855 sizeof(u32);
856 u32 *wqi;
857 u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858 int ret;
859
860 /* Ensure context is in correct state updating work queue */
861 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862 GEM_BUG_ON(context_guc_id_invalid(ce));
863 GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865
866 /* Insert NOOP if this work queue item will wrap the tail pointer. */
867 if (wqi_size > wq_space_until_wrap(ce)) {
868 ret = guc_wq_noop_append(ce);
869 if (ret)
870 return ret;
871 }
872
873 wqi = get_wq_pointer(ce, wqi_size);
874 if (!wqi)
875 return -EBUSY;
876
877 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878
879 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880 FIELD_PREP(WQ_LEN_MASK, len_dw);
881 *wqi++ = ce->lrc.lrca;
882 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884 *wqi++ = 0; /* fence_id */
885 for_each_child(ce, child)
886 *wqi++ = child->ring->tail / sizeof(u64);
887
888 write_wqi(ce, wqi_size);
889
890 return 0;
891 }
892
guc_wq_item_append(struct intel_guc * guc,struct i915_request * rq)893 static int guc_wq_item_append(struct intel_guc *guc,
894 struct i915_request *rq)
895 {
896 struct intel_context *ce = request_to_scheduling_context(rq);
897 int ret;
898
899 if (unlikely(!intel_context_is_schedulable(ce)))
900 return 0;
901
902 ret = __guc_wq_item_append(rq);
903 if (unlikely(ret == -EBUSY)) {
904 guc->stalled_request = rq;
905 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906 }
907
908 return ret;
909 }
910
multi_lrc_submit(struct i915_request * rq)911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913 struct intel_context *ce = request_to_scheduling_context(rq);
914
915 intel_ring_set_tail(rq->ring, rq->tail);
916
917 /*
918 * We expect the front end (execbuf IOCTL) to set this flag on the last
919 * request generated from a multi-BB submission. This indicates to the
920 * backend (GuC interface) that we should submit this context thus
921 * submitting all the requests generated in parallel.
922 */
923 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924 !intel_context_is_schedulable(ce);
925 }
926
guc_dequeue_one_context(struct intel_guc * guc)927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929 struct i915_sched_engine * const sched_engine = guc->sched_engine;
930 struct i915_request *last = NULL;
931 bool submit = false;
932 struct rb_node *rb;
933 int ret;
934
935 lockdep_assert_held(&sched_engine->lock);
936
937 if (guc->stalled_request) {
938 submit = true;
939 last = guc->stalled_request;
940
941 switch (guc->submission_stall_reason) {
942 case STALL_REGISTER_CONTEXT:
943 goto register_context;
944 case STALL_MOVE_LRC_TAIL:
945 goto move_lrc_tail;
946 case STALL_ADD_REQUEST:
947 goto add_request;
948 default:
949 MISSING_CASE(guc->submission_stall_reason);
950 }
951 }
952
953 while ((rb = rb_first_cached(&sched_engine->queue))) {
954 struct i915_priolist *p = to_priolist(rb);
955 struct i915_request *rq, *rn;
956
957 priolist_for_each_request_consume(rq, rn, p) {
958 if (last && !can_merge_rq(rq, last))
959 goto register_context;
960
961 list_del_init(&rq->sched.link);
962
963 __i915_request_submit(rq);
964
965 trace_i915_request_in(rq, 0);
966 last = rq;
967
968 if (is_multi_lrc_rq(rq)) {
969 /*
970 * We need to coalesce all multi-lrc requests in
971 * a relationship into a single H2G. We are
972 * guaranteed that all of these requests will be
973 * submitted sequentially.
974 */
975 if (multi_lrc_submit(rq)) {
976 submit = true;
977 goto register_context;
978 }
979 } else {
980 submit = true;
981 }
982 }
983
984 rb_erase_cached(&p->node, &sched_engine->queue);
985 i915_priolist_free(p);
986 }
987
988 register_context:
989 if (submit) {
990 struct intel_context *ce = request_to_scheduling_context(last);
991
992 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993 intel_context_is_schedulable(ce))) {
994 ret = try_context_registration(ce, false);
995 if (unlikely(ret == -EPIPE)) {
996 goto deadlk;
997 } else if (ret == -EBUSY) {
998 guc->stalled_request = last;
999 guc->submission_stall_reason =
1000 STALL_REGISTER_CONTEXT;
1001 goto schedule_tasklet;
1002 } else if (ret != 0) {
1003 GEM_WARN_ON(ret); /* Unexpected */
1004 goto deadlk;
1005 }
1006 }
1007
1008 move_lrc_tail:
1009 if (is_multi_lrc_rq(last)) {
1010 ret = guc_wq_item_append(guc, last);
1011 if (ret == -EBUSY) {
1012 goto schedule_tasklet;
1013 } else if (ret != 0) {
1014 GEM_WARN_ON(ret); /* Unexpected */
1015 goto deadlk;
1016 }
1017 } else {
1018 guc_set_lrc_tail(last);
1019 }
1020
1021 add_request:
1022 ret = guc_add_request(guc, last);
1023 if (unlikely(ret == -EPIPE)) {
1024 goto deadlk;
1025 } else if (ret == -EBUSY) {
1026 goto schedule_tasklet;
1027 } else if (ret != 0) {
1028 GEM_WARN_ON(ret); /* Unexpected */
1029 goto deadlk;
1030 }
1031 }
1032
1033 guc->stalled_request = NULL;
1034 guc->submission_stall_reason = STALL_NONE;
1035 return submit;
1036
1037 deadlk:
1038 sched_engine->tasklet.callback = NULL;
1039 tasklet_disable_nosync(&sched_engine->tasklet);
1040 return false;
1041
1042 schedule_tasklet:
1043 tasklet_schedule(&sched_engine->tasklet);
1044 return false;
1045 }
1046
guc_submission_tasklet(struct tasklet_struct * t)1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049 struct i915_sched_engine *sched_engine =
1050 from_tasklet(sched_engine, t, tasklet);
1051 unsigned long flags;
1052 bool loop;
1053
1054 spin_lock_irqsave(&sched_engine->lock, flags);
1055
1056 do {
1057 loop = guc_dequeue_one_context(sched_engine->private_data);
1058 } while (loop);
1059
1060 i915_sched_engine_reset_on_empty(sched_engine);
1061
1062 spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064
cs_irq_handler(struct intel_engine_cs * engine,u16 iir)1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067 if (iir & GT_RENDER_USER_INTERRUPT)
1068 intel_engine_signal_breadcrumbs(engine);
1069 }
1070
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076
scrub_guc_desc_for_outstanding_g2h(struct intel_guc * guc)1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079 struct intel_context *ce;
1080 unsigned long index, flags;
1081 bool pending_disable, pending_enable, deregister, destroyed, banned;
1082
1083 xa_lock_irqsave(&guc->context_lookup, flags);
1084 xa_for_each(&guc->context_lookup, index, ce) {
1085 /*
1086 * Corner case where the ref count on the object is zero but and
1087 * deregister G2H was lost. In this case we don't touch the ref
1088 * count and finish the destroy of the context.
1089 */
1090 bool do_put = kref_get_unless_zero(&ce->ref);
1091
1092 xa_unlock(&guc->context_lookup);
1093
1094 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095 (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096 /* successful cancel so jump straight to close it */
1097 intel_context_sched_disable_unpin(ce);
1098 }
1099
1100 spin_lock(&ce->guc_state.lock);
1101
1102 /*
1103 * Once we are at this point submission_disabled() is guaranteed
1104 * to be visible to all callers who set the below flags (see above
1105 * flush and flushes in reset_prepare). If submission_disabled()
1106 * is set, the caller shouldn't set these flags.
1107 */
1108
1109 destroyed = context_destroyed(ce);
1110 pending_enable = context_pending_enable(ce);
1111 pending_disable = context_pending_disable(ce);
1112 deregister = context_wait_for_deregister_to_register(ce);
1113 banned = context_banned(ce);
1114 init_sched_state(ce);
1115
1116 spin_unlock(&ce->guc_state.lock);
1117
1118 if (pending_enable || destroyed || deregister) {
1119 decr_outstanding_submission_g2h(guc);
1120 if (deregister)
1121 guc_signal_context_fence(ce);
1122 if (destroyed) {
1123 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124 release_guc_id(guc, ce);
1125 __guc_context_destroy(ce);
1126 }
1127 if (pending_enable || deregister)
1128 intel_context_put(ce);
1129 }
1130
1131 /* Not mutualy exclusive with above if statement. */
1132 if (pending_disable) {
1133 guc_signal_context_fence(ce);
1134 if (banned) {
1135 guc_cancel_context_requests(ce);
1136 intel_engine_signal_breadcrumbs(ce->engine);
1137 }
1138 intel_context_sched_disable_unpin(ce);
1139 decr_outstanding_submission_g2h(guc);
1140
1141 spin_lock(&ce->guc_state.lock);
1142 guc_blocked_fence_complete(ce);
1143 spin_unlock(&ce->guc_state.lock);
1144
1145 intel_context_put(ce);
1146 }
1147
1148 if (do_put)
1149 intel_context_put(ce);
1150 xa_lock(&guc->context_lookup);
1151 }
1152 xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154
1155 /*
1156 * GuC stores busyness stats for each engine at context in/out boundaries. A
1157 * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159 * GuC.
1160 *
1161 * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162 * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163 * active. For an active engine total busyness = total + (now - start), where
1164 * 'now' is the time at which the busyness is sampled. For inactive engine,
1165 * total busyness = total.
1166 *
1167 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168 *
1169 * The start and total values provided by GuC are 32 bits and wrap around in a
1170 * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171 * increasing ns values, there is a need for this implementation to account for
1172 * overflows and extend the GuC provided values to 64 bits before returning
1173 * busyness to the user. In order to do that, a worker runs periodically at
1174 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175 * 27 seconds for a gt clock frequency of 19.2 MHz).
1176 */
1177
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180
1181 static void
__extend_last_switch(struct intel_guc * guc,u64 * prev_start,u32 new_start)1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186
1187 if (new_start == lower_32_bits(*prev_start))
1188 return;
1189
1190 /*
1191 * When gt is unparked, we update the gt timestamp and start the ping
1192 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193 * is unparked, all switched in contexts will have a start time that is
1194 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195 *
1196 * If neither gt_stamp nor new_start has rolled over, then the
1197 * gt_stamp_hi does not need to be adjusted, however if one of them has
1198 * rolled over, we need to adjust gt_stamp_hi accordingly.
1199 *
1200 * The below conditions address the cases of new_start rollover and
1201 * gt_stamp_last rollover respectively.
1202 */
1203 if (new_start < gt_stamp_last &&
1204 (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205 gt_stamp_hi++;
1206
1207 if (new_start > gt_stamp_last &&
1208 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209 gt_stamp_hi--;
1210
1211 *prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213
1214 #define record_read(map_, field_) \
1215 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216
1217 /*
1218 * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219 * we run into a race where the value read is inconsistent. Sometimes the
1220 * inconsistency is in reading the upper MSB bytes of the last_in value when
1221 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222 * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223 * determine validity of these values. Instead we read the values multiple times
1224 * until they are consistent. In test runs, 3 attempts results in consistent
1225 * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226 * any new occurrences.
1227 */
__get_engine_usage_record(struct intel_engine_cs * engine,u32 * last_in,u32 * id,u32 * total)1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229 u32 *last_in, u32 *id, u32 *total)
1230 {
1231 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232 int i = 0;
1233
1234 do {
1235 *last_in = record_read(&rec_map, last_switch_in_stamp);
1236 *id = record_read(&rec_map, current_context_index);
1237 *total = record_read(&rec_map, total_runtime);
1238
1239 if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240 record_read(&rec_map, current_context_index) == *id &&
1241 record_read(&rec_map, total_runtime) == *total)
1242 break;
1243 } while (++i < 6);
1244 }
1245
__set_engine_usage_record(struct intel_engine_cs * engine,u32 last_in,u32 id,u32 total)1246 static void __set_engine_usage_record(struct intel_engine_cs *engine,
1247 u32 last_in, u32 id, u32 total)
1248 {
1249 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1250
1251 #define record_write(map_, field_, val_) \
1252 iosys_map_wr_field(map_, 0, struct guc_engine_usage_record, field_, val_)
1253
1254 record_write(&rec_map, last_switch_in_stamp, last_in);
1255 record_write(&rec_map, current_context_index, id);
1256 record_write(&rec_map, total_runtime, total);
1257
1258 #undef record_write
1259 }
1260
guc_update_engine_gt_clks(struct intel_engine_cs * engine)1261 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1262 {
1263 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1264 struct intel_guc *guc = gt_to_guc(engine->gt);
1265 u32 last_switch, ctx_id, total;
1266
1267 lockdep_assert_held(&guc->timestamp.lock);
1268
1269 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1270
1271 stats->running = ctx_id != ~0U && last_switch;
1272 if (stats->running)
1273 __extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1274
1275 /*
1276 * Instead of adjusting the total for overflow, just add the
1277 * difference from previous sample stats->total_gt_clks
1278 */
1279 if (total && total != ~0U) {
1280 stats->total_gt_clks += (u32)(total - stats->prev_total);
1281 stats->prev_total = total;
1282 }
1283 }
1284
gpm_timestamp_shift(struct intel_gt * gt)1285 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1286 {
1287 intel_wakeref_t wakeref;
1288 u32 reg;
1289
1290 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1291 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1292
1293 return 3 - REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, reg);
1294 }
1295
guc_update_pm_timestamp(struct intel_guc * guc,ktime_t * now)1296 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1297 {
1298 struct intel_gt *gt = guc_to_gt(guc);
1299 u32 gt_stamp_lo, gt_stamp_hi;
1300 u64 gpm_ts;
1301
1302 lockdep_assert_held(&guc->timestamp.lock);
1303
1304 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1305 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1306 MISC_STATUS1) >> guc->timestamp.shift;
1307 gt_stamp_lo = lower_32_bits(gpm_ts);
1308 *now = ktime_get();
1309
1310 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1311 gt_stamp_hi++;
1312
1313 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1314 }
1315
1316 /*
1317 * Unlike the execlist mode of submission total and active times are in terms of
1318 * gt clocks. The *now parameter is retained to return the cpu time at which the
1319 * busyness was sampled.
1320 */
guc_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)1321 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1322 {
1323 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1324 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1325 struct intel_gt *gt = engine->gt;
1326 struct intel_guc *guc = gt_to_guc(gt);
1327 u64 total, gt_stamp_saved;
1328 unsigned long flags;
1329 u32 reset_count;
1330 bool in_reset;
1331 intel_wakeref_t wakeref;
1332
1333 spin_lock_irqsave(&guc->timestamp.lock, flags);
1334
1335 /*
1336 * If a reset happened, we risk reading partially updated engine
1337 * busyness from GuC, so we just use the driver stored copy of busyness.
1338 * Synchronize with gt reset using reset_count and the
1339 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1340 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1341 * usable by checking the flag afterwards.
1342 */
1343 reset_count = i915_reset_count(gpu_error);
1344 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags);
1345
1346 *now = ktime_get();
1347
1348 /*
1349 * The active busyness depends on start_gt_clk and gt_stamp.
1350 * gt_stamp is updated by i915 only when gt is awake and the
1351 * start_gt_clk is derived from GuC state. To get a consistent
1352 * view of activity, we query the GuC state only if gt is awake.
1353 */
1354 wakeref = in_reset ? NULL : intel_gt_pm_get_if_awake(gt);
1355 if (wakeref) {
1356 stats_saved = *stats;
1357 gt_stamp_saved = guc->timestamp.gt_stamp;
1358 /*
1359 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1360 * start_gt_clk' calculation below for active engines.
1361 */
1362 guc_update_engine_gt_clks(engine);
1363 guc_update_pm_timestamp(guc, now);
1364 intel_gt_pm_put_async(gt, wakeref);
1365 if (i915_reset_count(gpu_error) != reset_count) {
1366 *stats = stats_saved;
1367 guc->timestamp.gt_stamp = gt_stamp_saved;
1368 }
1369 }
1370
1371 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1372 if (stats->running) {
1373 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1374
1375 total += intel_gt_clock_interval_to_ns(gt, clk);
1376 }
1377
1378 if (total > stats->total)
1379 stats->total = total;
1380
1381 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1382
1383 return ns_to_ktime(stats->total);
1384 }
1385
guc_enable_busyness_worker(struct intel_guc * guc)1386 static void guc_enable_busyness_worker(struct intel_guc *guc)
1387 {
1388 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1389 }
1390
guc_cancel_busyness_worker(struct intel_guc * guc)1391 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1392 {
1393 /*
1394 * There are many different call stacks that can get here. Some of them
1395 * hold the reset mutex. The busyness worker also attempts to acquire the
1396 * reset mutex. Synchronously flushing a worker thread requires acquiring
1397 * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1398 * flush can deadlock because it holds the worker mutex while waiting for
1399 * the reset mutex, but another thread is holding the reset mutex and might
1400 * attempt to use other worker functions.
1401 *
1402 * In practice, this scenario does not exist because the busyness worker
1403 * does not block waiting for the reset mutex. It does a try-lock on it and
1404 * immediately exits if the lock is already held. Unfortunately, the mutex
1405 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1406 * annotation but not to the extent of explaining the 'might lock' is also a
1407 * 'does not need to lock'. So one option would be to add more complex lockdep
1408 * annotations to ignore the issue (if at all possible). A simpler option is to
1409 * just not flush synchronously when a rest in progress. Given that the worker
1410 * will just early exit and re-schedule itself anyway, there is no advantage
1411 * to running it immediately.
1412 *
1413 * If a reset is not in progress, then the synchronous flush may be required.
1414 * As noted many call stacks lead here, some during suspend and driver unload
1415 * which do require a synchronous flush to make sure the worker is stopped
1416 * before memory is freed.
1417 *
1418 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1419 * every possible call stack is unfeasible. It would be too intrusive to many
1420 * areas that really don't care about the GuC backend. However, there is the
1421 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked.
1422 * So just use those. Note that testing both is required due to the hideously
1423 * complex nature of the i915 driver's reset code paths.
1424 *
1425 * And note that in the case of a reset occurring during driver unload
1426 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the
1427 * reset flag/mutex are set) is fine because there is another explicit cancel in
1428 * intel_guc_submission_fini (when the reset flag/mutex are not).
1429 */
1430 if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) ||
1431 test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags))
1432 cancel_delayed_work(&guc->timestamp.work);
1433 else
1434 cancel_delayed_work_sync(&guc->timestamp.work);
1435 }
1436
__reset_guc_busyness_stats(struct intel_guc * guc)1437 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1438 {
1439 struct intel_gt *gt = guc_to_gt(guc);
1440 struct intel_engine_cs *engine;
1441 enum intel_engine_id id;
1442 unsigned long flags;
1443 ktime_t unused;
1444
1445 spin_lock_irqsave(&guc->timestamp.lock, flags);
1446
1447 guc_update_pm_timestamp(guc, &unused);
1448 for_each_engine(engine, gt, id) {
1449 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1450
1451 guc_update_engine_gt_clks(engine);
1452
1453 /*
1454 * If resetting a running context, accumulate the active
1455 * time as well since there will be no context switch.
1456 */
1457 if (stats->running) {
1458 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1459
1460 stats->total_gt_clks += clk;
1461 }
1462 stats->prev_total = 0;
1463 stats->running = 0;
1464 }
1465
1466 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1467 }
1468
__update_guc_busyness_running_state(struct intel_guc * guc)1469 static void __update_guc_busyness_running_state(struct intel_guc *guc)
1470 {
1471 struct intel_gt *gt = guc_to_gt(guc);
1472 struct intel_engine_cs *engine;
1473 enum intel_engine_id id;
1474 unsigned long flags;
1475
1476 spin_lock_irqsave(&guc->timestamp.lock, flags);
1477 for_each_engine(engine, gt, id)
1478 engine->stats.guc.running = false;
1479 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1480 }
1481
__update_guc_busyness_stats(struct intel_guc * guc)1482 static void __update_guc_busyness_stats(struct intel_guc *guc)
1483 {
1484 struct intel_gt *gt = guc_to_gt(guc);
1485 struct intel_engine_cs *engine;
1486 enum intel_engine_id id;
1487 unsigned long flags;
1488 ktime_t unused;
1489
1490 guc->timestamp.last_stat_jiffies = jiffies;
1491
1492 spin_lock_irqsave(&guc->timestamp.lock, flags);
1493
1494 guc_update_pm_timestamp(guc, &unused);
1495 for_each_engine(engine, gt, id)
1496 guc_update_engine_gt_clks(engine);
1497
1498 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1499 }
1500
__guc_context_update_stats(struct intel_context * ce)1501 static void __guc_context_update_stats(struct intel_context *ce)
1502 {
1503 struct intel_guc *guc = ce_to_guc(ce);
1504 unsigned long flags;
1505
1506 spin_lock_irqsave(&guc->timestamp.lock, flags);
1507 lrc_update_runtime(ce);
1508 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1509 }
1510
guc_context_update_stats(struct intel_context * ce)1511 static void guc_context_update_stats(struct intel_context *ce)
1512 {
1513 if (!intel_context_pin_if_active(ce))
1514 return;
1515
1516 __guc_context_update_stats(ce);
1517 intel_context_unpin(ce);
1518 }
1519
guc_timestamp_ping(struct work_struct * wrk)1520 static void guc_timestamp_ping(struct work_struct *wrk)
1521 {
1522 struct intel_guc *guc = container_of(wrk, typeof(*guc),
1523 timestamp.work.work);
1524 struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1525 struct intel_gt *gt = guc_to_gt(guc);
1526 struct intel_context *ce;
1527 intel_wakeref_t wakeref;
1528 unsigned long index;
1529 int srcu, ret;
1530
1531 /*
1532 * Ideally the busyness worker should take a gt pm wakeref because the
1533 * worker only needs to be active while gt is awake. However, the
1534 * gt_park path cancels the worker synchronously and this complicates
1535 * the flow if the worker is also running at the same time. The cancel
1536 * waits for the worker and when the worker releases the wakeref, that
1537 * would call gt_park and would lead to a deadlock.
1538 *
1539 * The resolution is to take the global pm wakeref if runtime pm is
1540 * already active. If not, we don't need to update the busyness stats as
1541 * the stats would already be updated when the gt was parked.
1542 *
1543 * Note:
1544 * - We do not requeue the worker if we cannot take a reference to runtime
1545 * pm since intel_guc_busyness_unpark would requeue the worker in the
1546 * resume path.
1547 *
1548 * - If the gt was parked longer than time taken for GT timestamp to roll
1549 * over, we ignore those rollovers since we don't care about tracking
1550 * the exact GT time. We only care about roll overs when the gt is
1551 * active and running workloads.
1552 *
1553 * - There is a window of time between gt_park and runtime suspend,
1554 * where the worker may run. This is acceptable since the worker will
1555 * not find any new data to update busyness.
1556 */
1557 wakeref = intel_runtime_pm_get_if_active(>->i915->runtime_pm);
1558 if (!wakeref)
1559 return;
1560
1561 /*
1562 * Synchronize with gt reset to make sure the worker does not
1563 * corrupt the engine/guc stats. NB: can't actually block waiting
1564 * for a reset to complete as the reset requires flushing out
1565 * this worker thread if started. So waiting would deadlock.
1566 */
1567 ret = intel_gt_reset_trylock(gt, &srcu);
1568 if (ret)
1569 goto err_trylock;
1570
1571 __update_guc_busyness_stats(guc);
1572
1573 /* adjust context stats for overflow */
1574 xa_for_each(&guc->context_lookup, index, ce)
1575 guc_context_update_stats(ce);
1576
1577 intel_gt_reset_unlock(gt, srcu);
1578
1579 guc_enable_busyness_worker(guc);
1580
1581 err_trylock:
1582 intel_runtime_pm_put(>->i915->runtime_pm, wakeref);
1583 }
1584
guc_action_enable_usage_stats(struct intel_guc * guc)1585 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1586 {
1587 struct intel_gt *gt = guc_to_gt(guc);
1588 struct intel_engine_cs *engine;
1589 enum intel_engine_id id;
1590 u32 offset = intel_guc_engine_usage_offset(guc);
1591 u32 action[] = {
1592 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1593 offset,
1594 0,
1595 };
1596
1597 for_each_engine(engine, gt, id)
1598 __set_engine_usage_record(engine, 0, 0xffffffff, 0);
1599
1600 return intel_guc_send(guc, action, ARRAY_SIZE(action));
1601 }
1602
guc_init_engine_stats(struct intel_guc * guc)1603 static int guc_init_engine_stats(struct intel_guc *guc)
1604 {
1605 struct intel_gt *gt = guc_to_gt(guc);
1606 intel_wakeref_t wakeref;
1607 int ret;
1608
1609 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
1610 ret = guc_action_enable_usage_stats(guc);
1611
1612 if (ret)
1613 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1614 else
1615 guc_enable_busyness_worker(guc);
1616
1617 return ret;
1618 }
1619
guc_fini_engine_stats(struct intel_guc * guc)1620 static void guc_fini_engine_stats(struct intel_guc *guc)
1621 {
1622 guc_cancel_busyness_worker(guc);
1623 }
1624
intel_guc_busyness_park(struct intel_gt * gt)1625 void intel_guc_busyness_park(struct intel_gt *gt)
1626 {
1627 struct intel_guc *guc = gt_to_guc(gt);
1628
1629 if (!guc_submission_initialized(guc))
1630 return;
1631
1632 /* Assume no engines are running and set running state to false */
1633 __update_guc_busyness_running_state(guc);
1634
1635 /*
1636 * There is a race with suspend flow where the worker runs after suspend
1637 * and causes an unclaimed register access warning. Cancel the worker
1638 * synchronously here.
1639 */
1640 guc_cancel_busyness_worker(guc);
1641
1642 /*
1643 * Before parking, we should sample engine busyness stats if we need to.
1644 * We can skip it if we are less than half a ping from the last time we
1645 * sampled the busyness stats.
1646 */
1647 if (guc->timestamp.last_stat_jiffies &&
1648 !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1649 (guc->timestamp.ping_delay / 2)))
1650 return;
1651
1652 __update_guc_busyness_stats(guc);
1653 }
1654
intel_guc_busyness_unpark(struct intel_gt * gt)1655 void intel_guc_busyness_unpark(struct intel_gt *gt)
1656 {
1657 struct intel_guc *guc = gt_to_guc(gt);
1658 unsigned long flags;
1659 ktime_t unused;
1660
1661 if (!guc_submission_initialized(guc))
1662 return;
1663
1664 spin_lock_irqsave(&guc->timestamp.lock, flags);
1665 guc_update_pm_timestamp(guc, &unused);
1666 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1667 guc_enable_busyness_worker(guc);
1668 }
1669
1670 static inline bool
submission_disabled(struct intel_guc * guc)1671 submission_disabled(struct intel_guc *guc)
1672 {
1673 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1674
1675 return unlikely(!sched_engine ||
1676 !__tasklet_is_enabled(&sched_engine->tasklet) ||
1677 intel_gt_is_wedged(guc_to_gt(guc)));
1678 }
1679
disable_submission(struct intel_guc * guc)1680 static void disable_submission(struct intel_guc *guc)
1681 {
1682 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1683
1684 if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1685 GEM_BUG_ON(!guc->ct.enabled);
1686 __tasklet_disable_sync_once(&sched_engine->tasklet);
1687 sched_engine->tasklet.callback = NULL;
1688 }
1689 }
1690
enable_submission(struct intel_guc * guc)1691 static void enable_submission(struct intel_guc *guc)
1692 {
1693 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1694 unsigned long flags;
1695
1696 spin_lock_irqsave(&guc->sched_engine->lock, flags);
1697 sched_engine->tasklet.callback = guc_submission_tasklet;
1698 wmb(); /* Make sure callback visible */
1699 if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1700 __tasklet_enable(&sched_engine->tasklet)) {
1701 GEM_BUG_ON(!guc->ct.enabled);
1702
1703 /* And kick in case we missed a new request submission. */
1704 tasklet_hi_schedule(&sched_engine->tasklet);
1705 }
1706 spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1707 }
1708
guc_flush_submissions(struct intel_guc * guc)1709 static void guc_flush_submissions(struct intel_guc *guc)
1710 {
1711 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1712 unsigned long flags;
1713
1714 spin_lock_irqsave(&sched_engine->lock, flags);
1715 spin_unlock_irqrestore(&sched_engine->lock, flags);
1716 }
1717
intel_guc_submission_flush_work(struct intel_guc * guc)1718 void intel_guc_submission_flush_work(struct intel_guc *guc)
1719 {
1720 flush_work(&guc->submission_state.destroyed_worker);
1721 }
1722
1723 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1724
intel_guc_submission_reset_prepare(struct intel_guc * guc)1725 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1726 {
1727 if (unlikely(!guc_submission_initialized(guc))) {
1728 /* Reset called during driver load? GuC not yet initialised! */
1729 return;
1730 }
1731
1732 intel_gt_park_heartbeats(guc_to_gt(guc));
1733 disable_submission(guc);
1734 guc->interrupts.disable(guc);
1735 __reset_guc_busyness_stats(guc);
1736
1737 /* Flush IRQ handler */
1738 spin_lock_irq(guc_to_gt(guc)->irq_lock);
1739 spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1740
1741 /* Flush tasklet */
1742 tasklet_disable(&guc->ct.receive_tasklet);
1743 tasklet_enable(&guc->ct.receive_tasklet);
1744
1745 guc_flush_submissions(guc);
1746 guc_flush_destroyed_contexts(guc);
1747 flush_work(&guc->ct.requests.worker);
1748
1749 scrub_guc_desc_for_outstanding_g2h(guc);
1750 }
1751
1752 static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs * ve,unsigned int sibling)1753 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1754 {
1755 struct intel_engine_cs *engine;
1756 intel_engine_mask_t tmp, mask = ve->mask;
1757 unsigned int num_siblings = 0;
1758
1759 for_each_engine_masked(engine, ve->gt, mask, tmp)
1760 if (num_siblings++ == sibling)
1761 return engine;
1762
1763 return NULL;
1764 }
1765
1766 static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context * ce)1767 __context_to_physical_engine(struct intel_context *ce)
1768 {
1769 struct intel_engine_cs *engine = ce->engine;
1770
1771 if (intel_engine_is_virtual(engine))
1772 engine = guc_virtual_get_sibling(engine, 0);
1773
1774 return engine;
1775 }
1776
guc_reset_state(struct intel_context * ce,u32 head,bool scrub)1777 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1778 {
1779 struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1780
1781 if (!intel_context_is_schedulable(ce))
1782 return;
1783
1784 GEM_BUG_ON(!intel_context_is_pinned(ce));
1785
1786 /*
1787 * We want a simple context + ring to execute the breadcrumb update.
1788 * We cannot rely on the context being intact across the GPU hang,
1789 * so clear it and rebuild just what we need for the breadcrumb.
1790 * All pending requests for this context will be zapped, and any
1791 * future request will be after userspace has had the opportunity
1792 * to recreate its own state.
1793 */
1794 if (scrub)
1795 lrc_init_regs(ce, engine, true);
1796
1797 /* Rerun the request; its payload has been neutered (if guilty). */
1798 lrc_update_regs(ce, engine, head);
1799 }
1800
guc_engine_reset_prepare(struct intel_engine_cs * engine)1801 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1802 {
1803 /*
1804 * Wa_22011802037: In addition to stopping the cs, we need
1805 * to wait for any pending mi force wakeups
1806 */
1807 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1808 intel_engine_stop_cs(engine);
1809 intel_engine_wait_for_pending_mi_fw(engine);
1810 }
1811 }
1812
guc_reset_nop(struct intel_engine_cs * engine)1813 static void guc_reset_nop(struct intel_engine_cs *engine)
1814 {
1815 }
1816
guc_rewind_nop(struct intel_engine_cs * engine,bool stalled)1817 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1818 {
1819 }
1820
1821 static void
__unwind_incomplete_requests(struct intel_context * ce)1822 __unwind_incomplete_requests(struct intel_context *ce)
1823 {
1824 struct i915_request *rq, *rn;
1825 struct list_head *pl;
1826 int prio = I915_PRIORITY_INVALID;
1827 struct i915_sched_engine * const sched_engine =
1828 ce->engine->sched_engine;
1829 unsigned long flags;
1830
1831 spin_lock_irqsave(&sched_engine->lock, flags);
1832 spin_lock(&ce->guc_state.lock);
1833 list_for_each_entry_safe_reverse(rq, rn,
1834 &ce->guc_state.requests,
1835 sched.link) {
1836 if (i915_request_completed(rq))
1837 continue;
1838
1839 list_del_init(&rq->sched.link);
1840 __i915_request_unsubmit(rq);
1841
1842 /* Push the request back into the queue for later resubmission. */
1843 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1844 if (rq_prio(rq) != prio) {
1845 prio = rq_prio(rq);
1846 pl = i915_sched_lookup_priolist(sched_engine, prio);
1847 }
1848 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1849
1850 list_add(&rq->sched.link, pl);
1851 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1852 }
1853 spin_unlock(&ce->guc_state.lock);
1854 spin_unlock_irqrestore(&sched_engine->lock, flags);
1855 }
1856
__guc_reset_context(struct intel_context * ce,intel_engine_mask_t stalled)1857 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1858 {
1859 bool guilty;
1860 struct i915_request *rq;
1861 unsigned long flags;
1862 u32 head;
1863 int i, number_children = ce->parallel.number_children;
1864 struct intel_context *parent = ce;
1865
1866 GEM_BUG_ON(intel_context_is_child(ce));
1867
1868 intel_context_get(ce);
1869
1870 /*
1871 * GuC will implicitly mark the context as non-schedulable when it sends
1872 * the reset notification. Make sure our state reflects this change. The
1873 * context will be marked enabled on resubmission.
1874 */
1875 spin_lock_irqsave(&ce->guc_state.lock, flags);
1876 clr_context_enabled(ce);
1877 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1878
1879 /*
1880 * For each context in the relationship find the hanging request
1881 * resetting each context / request as needed
1882 */
1883 for (i = 0; i < number_children + 1; ++i) {
1884 if (!intel_context_is_pinned(ce))
1885 goto next_context;
1886
1887 guilty = false;
1888 rq = intel_context_get_active_request(ce);
1889 if (!rq) {
1890 head = ce->ring->tail;
1891 goto out_replay;
1892 }
1893
1894 if (i915_request_started(rq))
1895 guilty = stalled & ce->engine->mask;
1896
1897 GEM_BUG_ON(i915_active_is_idle(&ce->active));
1898 head = intel_ring_wrap(ce->ring, rq->head);
1899
1900 __i915_request_reset(rq, guilty);
1901 i915_request_put(rq);
1902 out_replay:
1903 guc_reset_state(ce, head, guilty);
1904 next_context:
1905 if (i != number_children)
1906 ce = list_next_entry(ce, parallel.child_link);
1907 }
1908
1909 __unwind_incomplete_requests(parent);
1910 intel_context_put(parent);
1911 }
1912
wake_up_all_tlb_invalidate(struct intel_guc * guc)1913 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1914 {
1915 struct intel_guc_tlb_wait *wait;
1916 unsigned long i;
1917
1918 if (!intel_guc_tlb_invalidation_is_available(guc))
1919 return;
1920
1921 xa_lock_irq(&guc->tlb_lookup);
1922 xa_for_each(&guc->tlb_lookup, i, wait)
1923 wake_up(&wait->wq);
1924 xa_unlock_irq(&guc->tlb_lookup);
1925 }
1926
intel_guc_submission_reset(struct intel_guc * guc,intel_engine_mask_t stalled)1927 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1928 {
1929 struct intel_context *ce;
1930 unsigned long index;
1931 unsigned long flags;
1932
1933 if (unlikely(!guc_submission_initialized(guc))) {
1934 /* Reset called during driver load? GuC not yet initialised! */
1935 return;
1936 }
1937
1938 xa_lock_irqsave(&guc->context_lookup, flags);
1939 xa_for_each(&guc->context_lookup, index, ce) {
1940 if (!kref_get_unless_zero(&ce->ref))
1941 continue;
1942
1943 xa_unlock(&guc->context_lookup);
1944
1945 if (intel_context_is_pinned(ce) &&
1946 !intel_context_is_child(ce))
1947 __guc_reset_context(ce, stalled);
1948
1949 intel_context_put(ce);
1950
1951 xa_lock(&guc->context_lookup);
1952 }
1953 xa_unlock_irqrestore(&guc->context_lookup, flags);
1954
1955 /* GuC is blown away, drop all references to contexts */
1956 xa_destroy(&guc->context_lookup);
1957 }
1958
guc_cancel_context_requests(struct intel_context * ce)1959 static void guc_cancel_context_requests(struct intel_context *ce)
1960 {
1961 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1962 struct i915_request *rq;
1963 unsigned long flags;
1964
1965 /* Mark all executing requests as skipped. */
1966 spin_lock_irqsave(&sched_engine->lock, flags);
1967 spin_lock(&ce->guc_state.lock);
1968 list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1969 i915_request_put(i915_request_mark_eio(rq));
1970 spin_unlock(&ce->guc_state.lock);
1971 spin_unlock_irqrestore(&sched_engine->lock, flags);
1972 }
1973
1974 static void
guc_cancel_sched_engine_requests(struct i915_sched_engine * sched_engine)1975 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1976 {
1977 struct i915_request *rq, *rn;
1978 struct rb_node *rb;
1979 unsigned long flags;
1980
1981 /* Can be called during boot if GuC fails to load */
1982 if (!sched_engine)
1983 return;
1984
1985 /*
1986 * Before we call engine->cancel_requests(), we should have exclusive
1987 * access to the submission state. This is arranged for us by the
1988 * caller disabling the interrupt generation, the tasklet and other
1989 * threads that may then access the same state, giving us a free hand
1990 * to reset state. However, we still need to let lockdep be aware that
1991 * we know this state may be accessed in hardirq context, so we
1992 * disable the irq around this manipulation and we want to keep
1993 * the spinlock focused on its duties and not accidentally conflate
1994 * coverage to the submission's irq state. (Similarly, although we
1995 * shouldn't need to disable irq around the manipulation of the
1996 * submission's irq state, we also wish to remind ourselves that
1997 * it is irq state.)
1998 */
1999 spin_lock_irqsave(&sched_engine->lock, flags);
2000
2001 /* Flush the queued requests to the timeline list (for retiring). */
2002 while ((rb = rb_first_cached(&sched_engine->queue))) {
2003 struct i915_priolist *p = to_priolist(rb);
2004
2005 priolist_for_each_request_consume(rq, rn, p) {
2006 list_del_init(&rq->sched.link);
2007
2008 __i915_request_submit(rq);
2009
2010 i915_request_put(i915_request_mark_eio(rq));
2011 }
2012
2013 rb_erase_cached(&p->node, &sched_engine->queue);
2014 i915_priolist_free(p);
2015 }
2016
2017 /* Remaining _unready_ requests will be nop'ed when submitted */
2018
2019 sched_engine->queue_priority_hint = INT_MIN;
2020 sched_engine->queue = RB_ROOT_CACHED;
2021
2022 spin_unlock_irqrestore(&sched_engine->lock, flags);
2023 }
2024
intel_guc_submission_cancel_requests(struct intel_guc * guc)2025 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
2026 {
2027 struct intel_context *ce;
2028 unsigned long index;
2029 unsigned long flags;
2030
2031 xa_lock_irqsave(&guc->context_lookup, flags);
2032 xa_for_each(&guc->context_lookup, index, ce) {
2033 if (!kref_get_unless_zero(&ce->ref))
2034 continue;
2035
2036 xa_unlock(&guc->context_lookup);
2037
2038 if (intel_context_is_pinned(ce) &&
2039 !intel_context_is_child(ce))
2040 guc_cancel_context_requests(ce);
2041
2042 intel_context_put(ce);
2043
2044 xa_lock(&guc->context_lookup);
2045 }
2046 xa_unlock_irqrestore(&guc->context_lookup, flags);
2047
2048 guc_cancel_sched_engine_requests(guc->sched_engine);
2049
2050 /* GuC is blown away, drop all references to contexts */
2051 xa_destroy(&guc->context_lookup);
2052
2053 /*
2054 * Wedged GT won't respond to any TLB invalidation request. Simply
2055 * release all the blocked waiters.
2056 */
2057 wake_up_all_tlb_invalidate(guc);
2058 }
2059
intel_guc_submission_reset_finish(struct intel_guc * guc)2060 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2061 {
2062 int outstanding;
2063
2064 /* Reset called during driver load or during wedge? */
2065 if (unlikely(!guc_submission_initialized(guc) ||
2066 !intel_guc_is_fw_running(guc) ||
2067 intel_gt_is_wedged(guc_to_gt(guc)))) {
2068 return;
2069 }
2070
2071 /*
2072 * Technically possible for either of these values to be non-zero here,
2073 * but very unlikely + harmless. Regardless let's add an error so we can
2074 * see in CI if this happens frequently / a precursor to taking down the
2075 * machine.
2076 */
2077 outstanding = atomic_read(&guc->outstanding_submission_g2h);
2078 if (outstanding)
2079 guc_err(guc, "Unexpected outstanding GuC to Host response(s) in reset finish: %d\n",
2080 outstanding);
2081 atomic_set(&guc->outstanding_submission_g2h, 0);
2082
2083 intel_guc_global_policies_update(guc);
2084 enable_submission(guc);
2085 intel_gt_unpark_heartbeats(guc_to_gt(guc));
2086
2087 /*
2088 * The full GT reset will have cleared the TLB caches and flushed the
2089 * G2H message queue; we can release all the blocked waiters.
2090 */
2091 wake_up_all_tlb_invalidate(guc);
2092 }
2093
2094 static void destroyed_worker_func(struct work_struct *w);
2095 static void reset_fail_worker_func(struct work_struct *w);
2096
intel_guc_tlb_invalidation_is_available(struct intel_guc * guc)2097 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2098 {
2099 return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2100 intel_guc_is_ready(guc);
2101 }
2102
init_tlb_lookup(struct intel_guc * guc)2103 static int init_tlb_lookup(struct intel_guc *guc)
2104 {
2105 struct intel_guc_tlb_wait *wait;
2106 int err;
2107
2108 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2109 return 0;
2110
2111 xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2112
2113 wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2114 if (!wait)
2115 return -ENOMEM;
2116
2117 init_waitqueue_head(&wait->wq);
2118
2119 /* Preallocate a shared id for use under memory pressure. */
2120 err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2121 xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2122 if (err < 0) {
2123 kfree(wait);
2124 return err;
2125 }
2126
2127 return 0;
2128 }
2129
fini_tlb_lookup(struct intel_guc * guc)2130 static void fini_tlb_lookup(struct intel_guc *guc)
2131 {
2132 struct intel_guc_tlb_wait *wait;
2133
2134 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2135 return;
2136
2137 wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2138 if (wait && wait->busy)
2139 guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2140 kfree(wait);
2141
2142 xa_destroy(&guc->tlb_lookup);
2143 }
2144
2145 /*
2146 * Set up the memory resources to be shared with the GuC (via the GGTT)
2147 * at firmware loading time.
2148 */
intel_guc_submission_init(struct intel_guc * guc)2149 int intel_guc_submission_init(struct intel_guc *guc)
2150 {
2151 struct intel_gt *gt = guc_to_gt(guc);
2152 int ret;
2153
2154 if (guc->submission_initialized)
2155 return 0;
2156
2157 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2158 ret = guc_lrc_desc_pool_create_v69(guc);
2159 if (ret)
2160 return ret;
2161 }
2162
2163 ret = init_tlb_lookup(guc);
2164 if (ret)
2165 goto destroy_pool;
2166
2167 guc->submission_state.guc_ids_bitmap =
2168 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2169 if (!guc->submission_state.guc_ids_bitmap) {
2170 ret = -ENOMEM;
2171 goto destroy_tlb;
2172 }
2173
2174 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2175 guc->timestamp.shift = gpm_timestamp_shift(gt);
2176 guc->submission_initialized = true;
2177
2178 return 0;
2179
2180 destroy_tlb:
2181 fini_tlb_lookup(guc);
2182 destroy_pool:
2183 guc_lrc_desc_pool_destroy_v69(guc);
2184 return ret;
2185 }
2186
intel_guc_submission_fini(struct intel_guc * guc)2187 void intel_guc_submission_fini(struct intel_guc *guc)
2188 {
2189 if (!guc->submission_initialized)
2190 return;
2191
2192 guc_fini_engine_stats(guc);
2193 guc_flush_destroyed_contexts(guc);
2194 guc_lrc_desc_pool_destroy_v69(guc);
2195 i915_sched_engine_put(guc->sched_engine);
2196 bitmap_free(guc->submission_state.guc_ids_bitmap);
2197 fini_tlb_lookup(guc);
2198 guc->submission_initialized = false;
2199 }
2200
queue_request(struct i915_sched_engine * sched_engine,struct i915_request * rq,int prio)2201 static inline void queue_request(struct i915_sched_engine *sched_engine,
2202 struct i915_request *rq,
2203 int prio)
2204 {
2205 GEM_BUG_ON(!list_empty(&rq->sched.link));
2206 list_add_tail(&rq->sched.link,
2207 i915_sched_lookup_priolist(sched_engine, prio));
2208 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2209 tasklet_hi_schedule(&sched_engine->tasklet);
2210 }
2211
guc_bypass_tasklet_submit(struct intel_guc * guc,struct i915_request * rq)2212 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2213 struct i915_request *rq)
2214 {
2215 int ret = 0;
2216
2217 __i915_request_submit(rq);
2218
2219 trace_i915_request_in(rq, 0);
2220
2221 if (is_multi_lrc_rq(rq)) {
2222 if (multi_lrc_submit(rq)) {
2223 ret = guc_wq_item_append(guc, rq);
2224 if (!ret)
2225 ret = guc_add_request(guc, rq);
2226 }
2227 } else {
2228 guc_set_lrc_tail(rq);
2229 ret = guc_add_request(guc, rq);
2230 }
2231
2232 if (unlikely(ret == -EPIPE))
2233 disable_submission(guc);
2234
2235 return ret;
2236 }
2237
need_tasklet(struct intel_guc * guc,struct i915_request * rq)2238 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2239 {
2240 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2241 struct intel_context *ce = request_to_scheduling_context(rq);
2242
2243 return submission_disabled(guc) || guc->stalled_request ||
2244 !i915_sched_engine_is_empty(sched_engine) ||
2245 !ctx_id_mapped(guc, ce->guc_id.id);
2246 }
2247
guc_submit_request(struct i915_request * rq)2248 static void guc_submit_request(struct i915_request *rq)
2249 {
2250 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2251 struct intel_guc *guc = gt_to_guc(rq->engine->gt);
2252 unsigned long flags;
2253
2254 /* Will be called from irq-context when using foreign fences. */
2255 spin_lock_irqsave(&sched_engine->lock, flags);
2256
2257 if (need_tasklet(guc, rq))
2258 queue_request(sched_engine, rq, rq_prio(rq));
2259 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2260 tasklet_hi_schedule(&sched_engine->tasklet);
2261
2262 spin_unlock_irqrestore(&sched_engine->lock, flags);
2263 }
2264
new_guc_id(struct intel_guc * guc,struct intel_context * ce)2265 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2266 {
2267 int ret;
2268
2269 GEM_BUG_ON(intel_context_is_child(ce));
2270
2271 if (intel_context_is_parent(ce))
2272 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2273 NUMBER_MULTI_LRC_GUC_ID(guc),
2274 order_base_2(ce->parallel.number_children
2275 + 1));
2276 else
2277 ret = ida_alloc_range(&guc->submission_state.guc_ids,
2278 NUMBER_MULTI_LRC_GUC_ID(guc),
2279 guc->submission_state.num_guc_ids - 1,
2280 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
2281 if (unlikely(ret < 0))
2282 return ret;
2283
2284 if (!intel_context_is_parent(ce))
2285 ++guc->submission_state.guc_ids_in_use;
2286
2287 ce->guc_id.id = ret;
2288 return 0;
2289 }
2290
__release_guc_id(struct intel_guc * guc,struct intel_context * ce)2291 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2292 {
2293 GEM_BUG_ON(intel_context_is_child(ce));
2294
2295 if (!context_guc_id_invalid(ce)) {
2296 if (intel_context_is_parent(ce)) {
2297 bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2298 ce->guc_id.id,
2299 order_base_2(ce->parallel.number_children
2300 + 1));
2301 } else {
2302 --guc->submission_state.guc_ids_in_use;
2303 ida_free(&guc->submission_state.guc_ids,
2304 ce->guc_id.id);
2305 }
2306 clr_ctx_id_mapping(guc, ce->guc_id.id);
2307 set_context_guc_id_invalid(ce);
2308 }
2309 if (!list_empty(&ce->guc_id.link))
2310 list_del_init(&ce->guc_id.link);
2311 }
2312
release_guc_id(struct intel_guc * guc,struct intel_context * ce)2313 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2314 {
2315 unsigned long flags;
2316
2317 spin_lock_irqsave(&guc->submission_state.lock, flags);
2318 __release_guc_id(guc, ce);
2319 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2320 }
2321
steal_guc_id(struct intel_guc * guc,struct intel_context * ce)2322 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2323 {
2324 struct intel_context *cn;
2325
2326 lockdep_assert_held(&guc->submission_state.lock);
2327 GEM_BUG_ON(intel_context_is_child(ce));
2328 GEM_BUG_ON(intel_context_is_parent(ce));
2329
2330 if (!list_empty(&guc->submission_state.guc_id_list)) {
2331 cn = list_first_entry(&guc->submission_state.guc_id_list,
2332 struct intel_context,
2333 guc_id.link);
2334
2335 GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2336 GEM_BUG_ON(context_guc_id_invalid(cn));
2337 GEM_BUG_ON(intel_context_is_child(cn));
2338 GEM_BUG_ON(intel_context_is_parent(cn));
2339
2340 list_del_init(&cn->guc_id.link);
2341 ce->guc_id.id = cn->guc_id.id;
2342
2343 spin_lock(&cn->guc_state.lock);
2344 clr_context_registered(cn);
2345 spin_unlock(&cn->guc_state.lock);
2346
2347 set_context_guc_id_invalid(cn);
2348
2349 #ifdef CONFIG_DRM_I915_SELFTEST
2350 guc->number_guc_id_stolen++;
2351 #endif
2352
2353 return 0;
2354 } else {
2355 return -EAGAIN;
2356 }
2357 }
2358
assign_guc_id(struct intel_guc * guc,struct intel_context * ce)2359 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2360 {
2361 int ret;
2362
2363 lockdep_assert_held(&guc->submission_state.lock);
2364 GEM_BUG_ON(intel_context_is_child(ce));
2365
2366 ret = new_guc_id(guc, ce);
2367 if (unlikely(ret < 0)) {
2368 if (intel_context_is_parent(ce))
2369 return -ENOSPC;
2370
2371 ret = steal_guc_id(guc, ce);
2372 if (ret < 0)
2373 return ret;
2374 }
2375
2376 if (intel_context_is_parent(ce)) {
2377 struct intel_context *child;
2378 int i = 1;
2379
2380 for_each_child(ce, child)
2381 child->guc_id.id = ce->guc_id.id + i++;
2382 }
2383
2384 return 0;
2385 }
2386
2387 #define PIN_GUC_ID_TRIES 4
pin_guc_id(struct intel_guc * guc,struct intel_context * ce)2388 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2389 {
2390 int ret = 0;
2391 unsigned long flags, tries = PIN_GUC_ID_TRIES;
2392
2393 GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2394
2395 try_again:
2396 spin_lock_irqsave(&guc->submission_state.lock, flags);
2397
2398 might_lock(&ce->guc_state.lock);
2399
2400 if (context_guc_id_invalid(ce)) {
2401 ret = assign_guc_id(guc, ce);
2402 if (ret)
2403 goto out_unlock;
2404 ret = 1; /* Indidcates newly assigned guc_id */
2405 }
2406 if (!list_empty(&ce->guc_id.link))
2407 list_del_init(&ce->guc_id.link);
2408 atomic_inc(&ce->guc_id.ref);
2409
2410 out_unlock:
2411 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2412
2413 /*
2414 * -EAGAIN indicates no guc_id are available, let's retire any
2415 * outstanding requests to see if that frees up a guc_id. If the first
2416 * retire didn't help, insert a sleep with the timeslice duration before
2417 * attempting to retire more requests. Double the sleep period each
2418 * subsequent pass before finally giving up. The sleep period has max of
2419 * 100ms and minimum of 1ms.
2420 */
2421 if (ret == -EAGAIN && --tries) {
2422 if (PIN_GUC_ID_TRIES - tries > 1) {
2423 unsigned int timeslice_shifted =
2424 ce->engine->props.timeslice_duration_ms <<
2425 (PIN_GUC_ID_TRIES - tries - 2);
2426 unsigned int max = min_t(unsigned int, 100,
2427 timeslice_shifted);
2428
2429 msleep(max_t(unsigned int, max, 1));
2430 }
2431 intel_gt_retire_requests(guc_to_gt(guc));
2432 goto try_again;
2433 }
2434
2435 return ret;
2436 }
2437
unpin_guc_id(struct intel_guc * guc,struct intel_context * ce)2438 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2439 {
2440 unsigned long flags;
2441
2442 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2443 GEM_BUG_ON(intel_context_is_child(ce));
2444
2445 if (unlikely(context_guc_id_invalid(ce) ||
2446 intel_context_is_parent(ce)))
2447 return;
2448
2449 spin_lock_irqsave(&guc->submission_state.lock, flags);
2450 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2451 !atomic_read(&ce->guc_id.ref))
2452 list_add_tail(&ce->guc_id.link,
2453 &guc->submission_state.guc_id_list);
2454 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2455 }
2456
__guc_action_register_multi_lrc_v69(struct intel_guc * guc,struct intel_context * ce,u32 guc_id,u32 offset,bool loop)2457 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2458 struct intel_context *ce,
2459 u32 guc_id,
2460 u32 offset,
2461 bool loop)
2462 {
2463 struct intel_context *child;
2464 u32 action[4 + MAX_ENGINE_INSTANCE];
2465 int len = 0;
2466
2467 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2468
2469 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2470 action[len++] = guc_id;
2471 action[len++] = ce->parallel.number_children + 1;
2472 action[len++] = offset;
2473 for_each_child(ce, child) {
2474 offset += sizeof(struct guc_lrc_desc_v69);
2475 action[len++] = offset;
2476 }
2477
2478 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2479 }
2480
__guc_action_register_multi_lrc_v70(struct intel_guc * guc,struct intel_context * ce,struct guc_ctxt_registration_info * info,bool loop)2481 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2482 struct intel_context *ce,
2483 struct guc_ctxt_registration_info *info,
2484 bool loop)
2485 {
2486 struct intel_context *child;
2487 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2488 int len = 0;
2489 u32 next_id;
2490
2491 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2492
2493 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2494 action[len++] = info->flags;
2495 action[len++] = info->context_idx;
2496 action[len++] = info->engine_class;
2497 action[len++] = info->engine_submit_mask;
2498 action[len++] = info->wq_desc_lo;
2499 action[len++] = info->wq_desc_hi;
2500 action[len++] = info->wq_base_lo;
2501 action[len++] = info->wq_base_hi;
2502 action[len++] = info->wq_size;
2503 action[len++] = ce->parallel.number_children + 1;
2504 action[len++] = info->hwlrca_lo;
2505 action[len++] = info->hwlrca_hi;
2506
2507 next_id = info->context_idx + 1;
2508 for_each_child(ce, child) {
2509 GEM_BUG_ON(next_id++ != child->guc_id.id);
2510
2511 /*
2512 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2513 * only supports 32 bit currently.
2514 */
2515 action[len++] = lower_32_bits(child->lrc.lrca);
2516 action[len++] = upper_32_bits(child->lrc.lrca);
2517 }
2518
2519 GEM_BUG_ON(len > ARRAY_SIZE(action));
2520
2521 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2522 }
2523
__guc_action_register_context_v69(struct intel_guc * guc,u32 guc_id,u32 offset,bool loop)2524 static int __guc_action_register_context_v69(struct intel_guc *guc,
2525 u32 guc_id,
2526 u32 offset,
2527 bool loop)
2528 {
2529 u32 action[] = {
2530 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2531 guc_id,
2532 offset,
2533 };
2534
2535 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2536 0, loop);
2537 }
2538
__guc_action_register_context_v70(struct intel_guc * guc,struct guc_ctxt_registration_info * info,bool loop)2539 static int __guc_action_register_context_v70(struct intel_guc *guc,
2540 struct guc_ctxt_registration_info *info,
2541 bool loop)
2542 {
2543 u32 action[] = {
2544 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2545 info->flags,
2546 info->context_idx,
2547 info->engine_class,
2548 info->engine_submit_mask,
2549 info->wq_desc_lo,
2550 info->wq_desc_hi,
2551 info->wq_base_lo,
2552 info->wq_base_hi,
2553 info->wq_size,
2554 info->hwlrca_lo,
2555 info->hwlrca_hi,
2556 };
2557
2558 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2559 0, loop);
2560 }
2561
2562 static void prepare_context_registration_info_v69(struct intel_context *ce);
2563 static void prepare_context_registration_info_v70(struct intel_context *ce,
2564 struct guc_ctxt_registration_info *info);
2565
2566 static int
register_context_v69(struct intel_guc * guc,struct intel_context * ce,bool loop)2567 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2568 {
2569 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2570 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2571
2572 prepare_context_registration_info_v69(ce);
2573
2574 if (intel_context_is_parent(ce))
2575 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2576 offset, loop);
2577 else
2578 return __guc_action_register_context_v69(guc, ce->guc_id.id,
2579 offset, loop);
2580 }
2581
2582 static int
register_context_v70(struct intel_guc * guc,struct intel_context * ce,bool loop)2583 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2584 {
2585 struct guc_ctxt_registration_info info;
2586
2587 prepare_context_registration_info_v70(ce, &info);
2588
2589 if (intel_context_is_parent(ce))
2590 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2591 else
2592 return __guc_action_register_context_v70(guc, &info, loop);
2593 }
2594
register_context(struct intel_context * ce,bool loop)2595 static int register_context(struct intel_context *ce, bool loop)
2596 {
2597 struct intel_guc *guc = ce_to_guc(ce);
2598 int ret;
2599
2600 GEM_BUG_ON(intel_context_is_child(ce));
2601 trace_intel_context_register(ce);
2602
2603 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2604 ret = register_context_v70(guc, ce, loop);
2605 else
2606 ret = register_context_v69(guc, ce, loop);
2607
2608 if (likely(!ret)) {
2609 unsigned long flags;
2610
2611 spin_lock_irqsave(&ce->guc_state.lock, flags);
2612 set_context_registered(ce);
2613 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2614
2615 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2616 guc_context_policy_init_v70(ce, loop);
2617 }
2618
2619 return ret;
2620 }
2621
__guc_action_deregister_context(struct intel_guc * guc,u32 guc_id)2622 static int __guc_action_deregister_context(struct intel_guc *guc,
2623 u32 guc_id)
2624 {
2625 u32 action[] = {
2626 INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2627 guc_id,
2628 };
2629
2630 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2631 G2H_LEN_DW_DEREGISTER_CONTEXT,
2632 true);
2633 }
2634
deregister_context(struct intel_context * ce,u32 guc_id)2635 static int deregister_context(struct intel_context *ce, u32 guc_id)
2636 {
2637 struct intel_guc *guc = ce_to_guc(ce);
2638
2639 GEM_BUG_ON(intel_context_is_child(ce));
2640 trace_intel_context_deregister(ce);
2641
2642 return __guc_action_deregister_context(guc, guc_id);
2643 }
2644
clear_children_join_go_memory(struct intel_context * ce)2645 static inline void clear_children_join_go_memory(struct intel_context *ce)
2646 {
2647 struct parent_scratch *ps = __get_parent_scratch(ce);
2648 int i;
2649
2650 ps->go.semaphore = 0;
2651 for (i = 0; i < ce->parallel.number_children + 1; ++i)
2652 ps->join[i].semaphore = 0;
2653 }
2654
get_children_go_value(struct intel_context * ce)2655 static inline u32 get_children_go_value(struct intel_context *ce)
2656 {
2657 return __get_parent_scratch(ce)->go.semaphore;
2658 }
2659
get_children_join_value(struct intel_context * ce,u8 child_index)2660 static inline u32 get_children_join_value(struct intel_context *ce,
2661 u8 child_index)
2662 {
2663 return __get_parent_scratch(ce)->join[child_index].semaphore;
2664 }
2665
2666 struct context_policy {
2667 u32 count;
2668 struct guc_update_context_policy h2g;
2669 };
2670
__guc_context_policy_action_size(struct context_policy * policy)2671 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2672 {
2673 size_t bytes = sizeof(policy->h2g.header) +
2674 (sizeof(policy->h2g.klv[0]) * policy->count);
2675
2676 return bytes / sizeof(u32);
2677 }
2678
__guc_context_policy_start_klv(struct context_policy * policy,u16 guc_id)2679 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2680 {
2681 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2682 policy->h2g.header.ctx_id = guc_id;
2683 policy->count = 0;
2684 }
2685
2686 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2687 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2688 { \
2689 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2690 policy->h2g.klv[policy->count].kl = \
2691 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2692 FIELD_PREP(GUC_KLV_0_LEN, 1); \
2693 policy->h2g.klv[policy->count].value = data; \
2694 policy->count++; \
2695 }
2696
MAKE_CONTEXT_POLICY_ADD(execution_quantum,EXECUTION_QUANTUM)2697 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2698 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2699 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2700 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2701 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY)
2702
2703 #undef MAKE_CONTEXT_POLICY_ADD
2704
2705 static int __guc_context_set_context_policies(struct intel_guc *guc,
2706 struct context_policy *policy,
2707 bool loop)
2708 {
2709 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2710 __guc_context_policy_action_size(policy),
2711 0, loop);
2712 }
2713
guc_context_policy_init_v70(struct intel_context * ce,bool loop)2714 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2715 {
2716 struct intel_engine_cs *engine = ce->engine;
2717 struct intel_guc *guc = gt_to_guc(engine->gt);
2718 struct context_policy policy;
2719 u32 execution_quantum;
2720 u32 preemption_timeout;
2721 u32 slpc_ctx_freq_req = 0;
2722 unsigned long flags;
2723 int ret;
2724
2725 /* NB: For both of these, zero means disabled. */
2726 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2727 execution_quantum));
2728 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2729 preemption_timeout));
2730 execution_quantum = engine->props.timeslice_duration_ms * 1000;
2731 preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2732
2733 if (ce->flags & BIT(CONTEXT_LOW_LATENCY))
2734 slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
2735
2736 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
2737
2738 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2739 __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2740 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2741 __guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req);
2742
2743 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2744 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2745
2746 ret = __guc_context_set_context_policies(guc, &policy, loop);
2747
2748 spin_lock_irqsave(&ce->guc_state.lock, flags);
2749 if (ret != 0)
2750 set_context_policy_required(ce);
2751 else
2752 clr_context_policy_required(ce);
2753 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2754
2755 return ret;
2756 }
2757
guc_context_policy_init_v69(struct intel_engine_cs * engine,struct guc_lrc_desc_v69 * desc)2758 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2759 struct guc_lrc_desc_v69 *desc)
2760 {
2761 desc->policy_flags = 0;
2762
2763 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2764 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2765
2766 /* NB: For both of these, zero means disabled. */
2767 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2768 desc->execution_quantum));
2769 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2770 desc->preemption_timeout));
2771 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2772 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2773 }
2774
map_guc_prio_to_lrc_desc_prio(u8 prio)2775 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2776 {
2777 /*
2778 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2779 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2780 */
2781 switch (prio) {
2782 default:
2783 MISSING_CASE(prio);
2784 fallthrough;
2785 case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2786 return GEN12_CTX_PRIORITY_NORMAL;
2787 case GUC_CLIENT_PRIORITY_NORMAL:
2788 return GEN12_CTX_PRIORITY_LOW;
2789 case GUC_CLIENT_PRIORITY_HIGH:
2790 case GUC_CLIENT_PRIORITY_KMD_HIGH:
2791 return GEN12_CTX_PRIORITY_HIGH;
2792 }
2793 }
2794
prepare_context_registration_info_v69(struct intel_context * ce)2795 static void prepare_context_registration_info_v69(struct intel_context *ce)
2796 {
2797 struct intel_engine_cs *engine = ce->engine;
2798 struct intel_guc *guc = gt_to_guc(engine->gt);
2799 u32 ctx_id = ce->guc_id.id;
2800 struct guc_lrc_desc_v69 *desc;
2801 struct intel_context *child;
2802
2803 GEM_BUG_ON(!engine->mask);
2804
2805 /*
2806 * Ensure LRC + CT vmas are is same region as write barrier is done
2807 * based on CT vma region.
2808 */
2809 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2810 i915_gem_object_is_lmem(ce->ring->vma->obj));
2811
2812 desc = __get_lrc_desc_v69(guc, ctx_id);
2813 GEM_BUG_ON(!desc);
2814 desc->engine_class = engine_class_to_guc_class(engine->class);
2815 desc->engine_submit_mask = engine->logical_mask;
2816 desc->hw_context_desc = ce->lrc.lrca;
2817 desc->priority = ce->guc_state.prio;
2818 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2819 guc_context_policy_init_v69(engine, desc);
2820
2821 /*
2822 * If context is a parent, we need to register a process descriptor
2823 * describing a work queue and register all child contexts.
2824 */
2825 if (intel_context_is_parent(ce)) {
2826 struct guc_process_desc_v69 *pdesc;
2827
2828 ce->parallel.guc.wqi_tail = 0;
2829 ce->parallel.guc.wqi_head = 0;
2830
2831 desc->process_desc = i915_ggtt_offset(ce->state) +
2832 __get_parent_scratch_offset(ce);
2833 desc->wq_addr = i915_ggtt_offset(ce->state) +
2834 __get_wq_offset(ce);
2835 desc->wq_size = WQ_SIZE;
2836
2837 pdesc = __get_process_desc_v69(ce);
2838 memset(pdesc, 0, sizeof(*(pdesc)));
2839 pdesc->stage_id = ce->guc_id.id;
2840 pdesc->wq_base_addr = desc->wq_addr;
2841 pdesc->wq_size_bytes = desc->wq_size;
2842 pdesc->wq_status = WQ_STATUS_ACTIVE;
2843
2844 ce->parallel.guc.wq_head = &pdesc->head;
2845 ce->parallel.guc.wq_tail = &pdesc->tail;
2846 ce->parallel.guc.wq_status = &pdesc->wq_status;
2847
2848 for_each_child(ce, child) {
2849 desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2850
2851 desc->engine_class =
2852 engine_class_to_guc_class(engine->class);
2853 desc->hw_context_desc = child->lrc.lrca;
2854 desc->priority = ce->guc_state.prio;
2855 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2856 guc_context_policy_init_v69(engine, desc);
2857 }
2858
2859 clear_children_join_go_memory(ce);
2860 }
2861 }
2862
prepare_context_registration_info_v70(struct intel_context * ce,struct guc_ctxt_registration_info * info)2863 static void prepare_context_registration_info_v70(struct intel_context *ce,
2864 struct guc_ctxt_registration_info *info)
2865 {
2866 struct intel_engine_cs *engine = ce->engine;
2867 struct intel_guc *guc = gt_to_guc(engine->gt);
2868 u32 ctx_id = ce->guc_id.id;
2869
2870 GEM_BUG_ON(!engine->mask);
2871
2872 /*
2873 * Ensure LRC + CT vmas are is same region as write barrier is done
2874 * based on CT vma region.
2875 */
2876 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2877 i915_gem_object_is_lmem(ce->ring->vma->obj));
2878
2879 memset(info, 0, sizeof(*info));
2880 info->context_idx = ctx_id;
2881 info->engine_class = engine_class_to_guc_class(engine->class);
2882 info->engine_submit_mask = engine->logical_mask;
2883 /*
2884 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2885 * only supports 32 bit currently.
2886 */
2887 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2888 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2889 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2890 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2891 info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2892
2893 /*
2894 * If context is a parent, we need to register a process descriptor
2895 * describing a work queue and register all child contexts.
2896 */
2897 if (intel_context_is_parent(ce)) {
2898 struct guc_sched_wq_desc *wq_desc;
2899 u64 wq_desc_offset, wq_base_offset;
2900
2901 ce->parallel.guc.wqi_tail = 0;
2902 ce->parallel.guc.wqi_head = 0;
2903
2904 wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2905 __get_parent_scratch_offset(ce);
2906 wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2907 __get_wq_offset(ce);
2908 info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2909 info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2910 info->wq_base_lo = lower_32_bits(wq_base_offset);
2911 info->wq_base_hi = upper_32_bits(wq_base_offset);
2912 info->wq_size = WQ_SIZE;
2913
2914 wq_desc = __get_wq_desc_v70(ce);
2915 memset(wq_desc, 0, sizeof(*wq_desc));
2916 wq_desc->wq_status = WQ_STATUS_ACTIVE;
2917
2918 ce->parallel.guc.wq_head = &wq_desc->head;
2919 ce->parallel.guc.wq_tail = &wq_desc->tail;
2920 ce->parallel.guc.wq_status = &wq_desc->wq_status;
2921
2922 clear_children_join_go_memory(ce);
2923 }
2924 }
2925
try_context_registration(struct intel_context * ce,bool loop)2926 static int try_context_registration(struct intel_context *ce, bool loop)
2927 {
2928 struct intel_engine_cs *engine = ce->engine;
2929 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2930 struct intel_guc *guc = gt_to_guc(engine->gt);
2931 intel_wakeref_t wakeref;
2932 u32 ctx_id = ce->guc_id.id;
2933 bool context_registered;
2934 int ret = 0;
2935
2936 GEM_BUG_ON(!sched_state_is_init(ce));
2937
2938 context_registered = ctx_id_mapped(guc, ctx_id);
2939
2940 clr_ctx_id_mapping(guc, ctx_id);
2941 set_ctx_id_mapping(guc, ctx_id, ce);
2942
2943 /*
2944 * The context_lookup xarray is used to determine if the hardware
2945 * context is currently registered. There are two cases in which it
2946 * could be registered either the guc_id has been stolen from another
2947 * context or the lrc descriptor address of this context has changed. In
2948 * either case the context needs to be deregistered with the GuC before
2949 * registering this context.
2950 */
2951 if (context_registered) {
2952 bool disabled;
2953 unsigned long flags;
2954
2955 trace_intel_context_steal_guc_id(ce);
2956 GEM_BUG_ON(!loop);
2957
2958 /* Seal race with Reset */
2959 spin_lock_irqsave(&ce->guc_state.lock, flags);
2960 disabled = submission_disabled(guc);
2961 if (likely(!disabled)) {
2962 set_context_wait_for_deregister_to_register(ce);
2963 intel_context_get(ce);
2964 }
2965 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2966 if (unlikely(disabled)) {
2967 clr_ctx_id_mapping(guc, ctx_id);
2968 return 0; /* Will get registered later */
2969 }
2970
2971 /*
2972 * If stealing the guc_id, this ce has the same guc_id as the
2973 * context whose guc_id was stolen.
2974 */
2975 with_intel_runtime_pm(runtime_pm, wakeref)
2976 ret = deregister_context(ce, ce->guc_id.id);
2977 if (unlikely(ret == -ENODEV))
2978 ret = 0; /* Will get registered later */
2979 } else {
2980 with_intel_runtime_pm(runtime_pm, wakeref)
2981 ret = register_context(ce, loop);
2982 if (unlikely(ret == -EBUSY)) {
2983 clr_ctx_id_mapping(guc, ctx_id);
2984 } else if (unlikely(ret == -ENODEV)) {
2985 clr_ctx_id_mapping(guc, ctx_id);
2986 ret = 0; /* Will get registered later */
2987 }
2988 }
2989
2990 return ret;
2991 }
2992
__guc_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2993 static int __guc_context_pre_pin(struct intel_context *ce,
2994 struct intel_engine_cs *engine,
2995 struct i915_gem_ww_ctx *ww,
2996 void **vaddr)
2997 {
2998 return lrc_pre_pin(ce, engine, ww, vaddr);
2999 }
3000
__guc_context_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)3001 static int __guc_context_pin(struct intel_context *ce,
3002 struct intel_engine_cs *engine,
3003 void *vaddr)
3004 {
3005 if (i915_ggtt_offset(ce->state) !=
3006 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
3007 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3008
3009 /*
3010 * GuC context gets pinned in guc_request_alloc. See that function for
3011 * explanation of why.
3012 */
3013
3014 return lrc_pin(ce, engine, vaddr);
3015 }
3016
guc_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3017 static int guc_context_pre_pin(struct intel_context *ce,
3018 struct i915_gem_ww_ctx *ww,
3019 void **vaddr)
3020 {
3021 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
3022 }
3023
guc_context_pin(struct intel_context * ce,void * vaddr)3024 static int guc_context_pin(struct intel_context *ce, void *vaddr)
3025 {
3026 int ret = __guc_context_pin(ce, ce->engine, vaddr);
3027
3028 if (likely(!ret && !intel_context_is_barrier(ce)))
3029 intel_engine_pm_get(ce->engine);
3030
3031 return ret;
3032 }
3033
guc_context_unpin(struct intel_context * ce)3034 static void guc_context_unpin(struct intel_context *ce)
3035 {
3036 struct intel_guc *guc = ce_to_guc(ce);
3037
3038 __guc_context_update_stats(ce);
3039 unpin_guc_id(guc, ce);
3040 lrc_unpin(ce);
3041
3042 if (likely(!intel_context_is_barrier(ce)))
3043 intel_engine_pm_put_async(ce->engine);
3044 }
3045
guc_context_post_unpin(struct intel_context * ce)3046 static void guc_context_post_unpin(struct intel_context *ce)
3047 {
3048 lrc_post_unpin(ce);
3049 }
3050
__guc_context_sched_enable(struct intel_guc * guc,struct intel_context * ce)3051 static void __guc_context_sched_enable(struct intel_guc *guc,
3052 struct intel_context *ce)
3053 {
3054 u32 action[] = {
3055 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3056 ce->guc_id.id,
3057 GUC_CONTEXT_ENABLE
3058 };
3059
3060 trace_intel_context_sched_enable(ce);
3061
3062 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3063 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3064 }
3065
__guc_context_sched_disable(struct intel_guc * guc,struct intel_context * ce,u16 guc_id)3066 static void __guc_context_sched_disable(struct intel_guc *guc,
3067 struct intel_context *ce,
3068 u16 guc_id)
3069 {
3070 u32 action[] = {
3071 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3072 guc_id, /* ce->guc_id.id not stable */
3073 GUC_CONTEXT_DISABLE
3074 };
3075
3076 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3077
3078 GEM_BUG_ON(intel_context_is_child(ce));
3079 trace_intel_context_sched_disable(ce);
3080
3081 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3082 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3083 }
3084
guc_blocked_fence_complete(struct intel_context * ce)3085 static void guc_blocked_fence_complete(struct intel_context *ce)
3086 {
3087 lockdep_assert_held(&ce->guc_state.lock);
3088
3089 if (!i915_sw_fence_done(&ce->guc_state.blocked))
3090 i915_sw_fence_complete(&ce->guc_state.blocked);
3091 }
3092
guc_blocked_fence_reinit(struct intel_context * ce)3093 static void guc_blocked_fence_reinit(struct intel_context *ce)
3094 {
3095 lockdep_assert_held(&ce->guc_state.lock);
3096 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3097
3098 /*
3099 * This fence is always complete unless a pending schedule disable is
3100 * outstanding. We arm the fence here and complete it when we receive
3101 * the pending schedule disable complete message.
3102 */
3103 i915_sw_fence_fini(&ce->guc_state.blocked);
3104 i915_sw_fence_reinit(&ce->guc_state.blocked);
3105 i915_sw_fence_await(&ce->guc_state.blocked);
3106 i915_sw_fence_commit(&ce->guc_state.blocked);
3107 }
3108
prep_context_pending_disable(struct intel_context * ce)3109 static u16 prep_context_pending_disable(struct intel_context *ce)
3110 {
3111 lockdep_assert_held(&ce->guc_state.lock);
3112
3113 set_context_pending_disable(ce);
3114 clr_context_enabled(ce);
3115 guc_blocked_fence_reinit(ce);
3116 intel_context_get(ce);
3117
3118 return ce->guc_id.id;
3119 }
3120
guc_context_block(struct intel_context * ce)3121 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3122 {
3123 struct intel_guc *guc = ce_to_guc(ce);
3124 unsigned long flags;
3125 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3126 intel_wakeref_t wakeref;
3127 u16 guc_id;
3128 bool enabled;
3129
3130 GEM_BUG_ON(intel_context_is_child(ce));
3131
3132 spin_lock_irqsave(&ce->guc_state.lock, flags);
3133
3134 incr_context_blocked(ce);
3135
3136 enabled = context_enabled(ce);
3137 if (unlikely(!enabled || submission_disabled(guc))) {
3138 if (enabled)
3139 clr_context_enabled(ce);
3140 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3141 return &ce->guc_state.blocked;
3142 }
3143
3144 /*
3145 * We add +2 here as the schedule disable complete CTB handler calls
3146 * intel_context_sched_disable_unpin (-2 to pin_count).
3147 */
3148 atomic_add(2, &ce->pin_count);
3149
3150 guc_id = prep_context_pending_disable(ce);
3151
3152 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3153
3154 with_intel_runtime_pm(runtime_pm, wakeref)
3155 __guc_context_sched_disable(guc, ce, guc_id);
3156
3157 return &ce->guc_state.blocked;
3158 }
3159
3160 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3161 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3162 #define SCHED_STATE_NO_UNBLOCK \
3163 (SCHED_STATE_MULTI_BLOCKED_MASK | \
3164 SCHED_STATE_PENDING_DISABLE | \
3165 SCHED_STATE_BANNED)
3166
context_cant_unblock(struct intel_context * ce)3167 static bool context_cant_unblock(struct intel_context *ce)
3168 {
3169 lockdep_assert_held(&ce->guc_state.lock);
3170
3171 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3172 context_guc_id_invalid(ce) ||
3173 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3174 !intel_context_is_pinned(ce);
3175 }
3176
guc_context_unblock(struct intel_context * ce)3177 static void guc_context_unblock(struct intel_context *ce)
3178 {
3179 struct intel_guc *guc = ce_to_guc(ce);
3180 unsigned long flags;
3181 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3182 intel_wakeref_t wakeref;
3183 bool enable;
3184
3185 GEM_BUG_ON(context_enabled(ce));
3186 GEM_BUG_ON(intel_context_is_child(ce));
3187
3188 spin_lock_irqsave(&ce->guc_state.lock, flags);
3189
3190 if (unlikely(submission_disabled(guc) ||
3191 context_cant_unblock(ce))) {
3192 enable = false;
3193 } else {
3194 enable = true;
3195 set_context_pending_enable(ce);
3196 set_context_enabled(ce);
3197 intel_context_get(ce);
3198 }
3199
3200 decr_context_blocked(ce);
3201
3202 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3203
3204 if (enable) {
3205 with_intel_runtime_pm(runtime_pm, wakeref)
3206 __guc_context_sched_enable(guc, ce);
3207 }
3208 }
3209
guc_context_cancel_request(struct intel_context * ce,struct i915_request * rq)3210 static void guc_context_cancel_request(struct intel_context *ce,
3211 struct i915_request *rq)
3212 {
3213 struct intel_context *block_context =
3214 request_to_scheduling_context(rq);
3215
3216 if (i915_sw_fence_signaled(&rq->submit)) {
3217 struct i915_sw_fence *fence;
3218
3219 intel_context_get(ce);
3220 fence = guc_context_block(block_context);
3221 i915_sw_fence_wait(fence);
3222 if (!i915_request_completed(rq)) {
3223 __i915_request_skip(rq);
3224 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3225 true);
3226 }
3227
3228 guc_context_unblock(block_context);
3229 intel_context_put(ce);
3230 }
3231 }
3232
__guc_context_set_preemption_timeout(struct intel_guc * guc,u16 guc_id,u32 preemption_timeout)3233 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3234 u16 guc_id,
3235 u32 preemption_timeout)
3236 {
3237 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3238 struct context_policy policy;
3239
3240 __guc_context_policy_start_klv(&policy, guc_id);
3241 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3242 __guc_context_set_context_policies(guc, &policy, true);
3243 } else {
3244 u32 action[] = {
3245 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3246 guc_id,
3247 preemption_timeout
3248 };
3249
3250 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3251 }
3252 }
3253
3254 static void
guc_context_revoke(struct intel_context * ce,struct i915_request * rq,unsigned int preempt_timeout_ms)3255 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3256 unsigned int preempt_timeout_ms)
3257 {
3258 struct intel_guc *guc = ce_to_guc(ce);
3259 struct intel_runtime_pm *runtime_pm =
3260 &ce->engine->gt->i915->runtime_pm;
3261 intel_wakeref_t wakeref;
3262 unsigned long flags;
3263
3264 GEM_BUG_ON(intel_context_is_child(ce));
3265
3266 guc_flush_submissions(guc);
3267
3268 spin_lock_irqsave(&ce->guc_state.lock, flags);
3269 set_context_banned(ce);
3270
3271 if (submission_disabled(guc) ||
3272 (!context_enabled(ce) && !context_pending_disable(ce))) {
3273 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3274
3275 guc_cancel_context_requests(ce);
3276 intel_engine_signal_breadcrumbs(ce->engine);
3277 } else if (!context_pending_disable(ce)) {
3278 u16 guc_id;
3279
3280 /*
3281 * We add +2 here as the schedule disable complete CTB handler
3282 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3283 */
3284 atomic_add(2, &ce->pin_count);
3285
3286 guc_id = prep_context_pending_disable(ce);
3287 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3288
3289 /*
3290 * In addition to disabling scheduling, set the preemption
3291 * timeout to the minimum value (1 us) so the banned context
3292 * gets kicked off the HW ASAP.
3293 */
3294 with_intel_runtime_pm(runtime_pm, wakeref) {
3295 __guc_context_set_preemption_timeout(guc, guc_id,
3296 preempt_timeout_ms);
3297 __guc_context_sched_disable(guc, ce, guc_id);
3298 }
3299 } else {
3300 if (!context_guc_id_invalid(ce))
3301 with_intel_runtime_pm(runtime_pm, wakeref)
3302 __guc_context_set_preemption_timeout(guc,
3303 ce->guc_id.id,
3304 preempt_timeout_ms);
3305 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3306 }
3307 }
3308
do_sched_disable(struct intel_guc * guc,struct intel_context * ce,unsigned long flags)3309 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3310 unsigned long flags)
3311 __releases(ce->guc_state.lock)
3312 {
3313 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3314 intel_wakeref_t wakeref;
3315 u16 guc_id;
3316
3317 lockdep_assert_held(&ce->guc_state.lock);
3318 guc_id = prep_context_pending_disable(ce);
3319
3320 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3321
3322 with_intel_runtime_pm(runtime_pm, wakeref)
3323 __guc_context_sched_disable(guc, ce, guc_id);
3324 }
3325
bypass_sched_disable(struct intel_guc * guc,struct intel_context * ce)3326 static bool bypass_sched_disable(struct intel_guc *guc,
3327 struct intel_context *ce)
3328 {
3329 lockdep_assert_held(&ce->guc_state.lock);
3330 GEM_BUG_ON(intel_context_is_child(ce));
3331
3332 if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3333 !ctx_id_mapped(guc, ce->guc_id.id)) {
3334 clr_context_enabled(ce);
3335 return true;
3336 }
3337
3338 return !context_enabled(ce);
3339 }
3340
__delay_sched_disable(struct work_struct * wrk)3341 static void __delay_sched_disable(struct work_struct *wrk)
3342 {
3343 struct intel_context *ce =
3344 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3345 struct intel_guc *guc = ce_to_guc(ce);
3346 unsigned long flags;
3347
3348 spin_lock_irqsave(&ce->guc_state.lock, flags);
3349
3350 if (bypass_sched_disable(guc, ce)) {
3351 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3352 intel_context_sched_disable_unpin(ce);
3353 } else {
3354 do_sched_disable(guc, ce, flags);
3355 }
3356 }
3357
guc_id_pressure(struct intel_guc * guc,struct intel_context * ce)3358 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3359 {
3360 /*
3361 * parent contexts are perma-pinned, if we are unpinning do schedule
3362 * disable immediately.
3363 */
3364 if (intel_context_is_parent(ce))
3365 return true;
3366
3367 /*
3368 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3369 */
3370 return guc->submission_state.guc_ids_in_use >
3371 guc->submission_state.sched_disable_gucid_threshold;
3372 }
3373
guc_context_sched_disable(struct intel_context * ce)3374 static void guc_context_sched_disable(struct intel_context *ce)
3375 {
3376 struct intel_guc *guc = ce_to_guc(ce);
3377 u64 delay = guc->submission_state.sched_disable_delay_ms;
3378 unsigned long flags;
3379
3380 spin_lock_irqsave(&ce->guc_state.lock, flags);
3381
3382 if (bypass_sched_disable(guc, ce)) {
3383 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3384 intel_context_sched_disable_unpin(ce);
3385 } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3386 delay) {
3387 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3388 mod_delayed_work(system_unbound_wq,
3389 &ce->guc_state.sched_disable_delay_work,
3390 msecs_to_jiffies(delay));
3391 } else {
3392 do_sched_disable(guc, ce, flags);
3393 }
3394 }
3395
guc_context_close(struct intel_context * ce)3396 static void guc_context_close(struct intel_context *ce)
3397 {
3398 unsigned long flags;
3399
3400 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3401 cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3402 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3403
3404 spin_lock_irqsave(&ce->guc_state.lock, flags);
3405 set_context_close_done(ce);
3406 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3407 }
3408
guc_lrc_desc_unpin(struct intel_context * ce)3409 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3410 {
3411 struct intel_guc *guc = ce_to_guc(ce);
3412 struct intel_gt *gt = guc_to_gt(guc);
3413 unsigned long flags;
3414 bool disabled;
3415 int ret;
3416
3417 GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3418 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3419 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3420 GEM_BUG_ON(context_enabled(ce));
3421
3422 /* Seal race with Reset */
3423 spin_lock_irqsave(&ce->guc_state.lock, flags);
3424 disabled = submission_disabled(guc);
3425 if (likely(!disabled)) {
3426 /*
3427 * Take a gt-pm ref and change context state to be destroyed.
3428 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3429 */
3430 __intel_gt_pm_get(gt);
3431 set_context_destroyed(ce);
3432 clr_context_registered(ce);
3433 }
3434 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3435
3436 if (unlikely(disabled)) {
3437 release_guc_id(guc, ce);
3438 __guc_context_destroy(ce);
3439 return 0;
3440 }
3441
3442 /*
3443 * GuC is active, lets destroy this context, but at this point we can still be racing
3444 * with suspend, so we undo everything if the H2G fails in deregister_context so
3445 * that GuC reset will find this context during clean up.
3446 */
3447 ret = deregister_context(ce, ce->guc_id.id);
3448 if (ret) {
3449 spin_lock_irqsave(&ce->guc_state.lock, flags);
3450 set_context_registered(ce);
3451 clr_context_destroyed(ce);
3452 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3453 /*
3454 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3455 * the wakeref immediately but per function spec usage call this after unlock.
3456 */
3457 intel_wakeref_put_async(>->wakeref);
3458 }
3459
3460 return ret;
3461 }
3462
__guc_context_destroy(struct intel_context * ce)3463 static void __guc_context_destroy(struct intel_context *ce)
3464 {
3465 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3466 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3467 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3468 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3469
3470 lrc_fini(ce);
3471 intel_context_fini(ce);
3472
3473 if (intel_engine_is_virtual(ce->engine)) {
3474 struct guc_virtual_engine *ve =
3475 container_of(ce, typeof(*ve), context);
3476
3477 if (ve->base.breadcrumbs)
3478 intel_breadcrumbs_put(ve->base.breadcrumbs);
3479
3480 kfree(ve);
3481 } else {
3482 intel_context_free(ce);
3483 }
3484 }
3485
guc_flush_destroyed_contexts(struct intel_guc * guc)3486 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3487 {
3488 struct intel_context *ce;
3489 unsigned long flags;
3490
3491 GEM_BUG_ON(!submission_disabled(guc) &&
3492 guc_submission_initialized(guc));
3493
3494 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3495 spin_lock_irqsave(&guc->submission_state.lock, flags);
3496 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3497 struct intel_context,
3498 destroyed_link);
3499 if (ce)
3500 list_del_init(&ce->destroyed_link);
3501 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3502
3503 if (!ce)
3504 break;
3505
3506 release_guc_id(guc, ce);
3507 __guc_context_destroy(ce);
3508 }
3509 }
3510
deregister_destroyed_contexts(struct intel_guc * guc)3511 static void deregister_destroyed_contexts(struct intel_guc *guc)
3512 {
3513 struct intel_context *ce;
3514 unsigned long flags;
3515
3516 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3517 spin_lock_irqsave(&guc->submission_state.lock, flags);
3518 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3519 struct intel_context,
3520 destroyed_link);
3521 if (ce)
3522 list_del_init(&ce->destroyed_link);
3523 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3524
3525 if (!ce)
3526 break;
3527
3528 if (guc_lrc_desc_unpin(ce)) {
3529 /*
3530 * This means GuC's CT link severed mid-way which could happen
3531 * in suspend-resume corner cases. In this case, put the
3532 * context back into the destroyed_contexts list which will
3533 * get picked up on the next context deregistration event or
3534 * purged in a GuC sanitization event (reset/unload/wedged/...).
3535 */
3536 spin_lock_irqsave(&guc->submission_state.lock, flags);
3537 list_add_tail(&ce->destroyed_link,
3538 &guc->submission_state.destroyed_contexts);
3539 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3540 /* Bail now since the list might never be emptied if h2gs fail */
3541 break;
3542 }
3543
3544 }
3545 }
3546
destroyed_worker_func(struct work_struct * w)3547 static void destroyed_worker_func(struct work_struct *w)
3548 {
3549 struct intel_guc *guc = container_of(w, struct intel_guc,
3550 submission_state.destroyed_worker);
3551 struct intel_gt *gt = guc_to_gt(guc);
3552 intel_wakeref_t wakeref;
3553
3554 /*
3555 * In rare cases we can get here via async context-free fence-signals that
3556 * come very late in suspend flow or very early in resume flows. In these
3557 * cases, GuC won't be ready but just skipping it here is fine as these
3558 * pending-destroy-contexts get destroyed totally at GuC reset time at the
3559 * end of suspend.. OR.. this worker can be picked up later on the next
3560 * context destruction trigger after resume-completes
3561 */
3562 if (!intel_guc_is_ready(guc))
3563 return;
3564
3565 with_intel_gt_pm(gt, wakeref)
3566 deregister_destroyed_contexts(guc);
3567 }
3568
guc_context_destroy(struct kref * kref)3569 static void guc_context_destroy(struct kref *kref)
3570 {
3571 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3572 struct intel_guc *guc = ce_to_guc(ce);
3573 unsigned long flags;
3574 bool destroy;
3575
3576 /*
3577 * If the guc_id is invalid this context has been stolen and we can free
3578 * it immediately. Also can be freed immediately if the context is not
3579 * registered with the GuC or the GuC is in the middle of a reset.
3580 */
3581 spin_lock_irqsave(&guc->submission_state.lock, flags);
3582 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3583 !ctx_id_mapped(guc, ce->guc_id.id);
3584 if (likely(!destroy)) {
3585 if (!list_empty(&ce->guc_id.link))
3586 list_del_init(&ce->guc_id.link);
3587 list_add_tail(&ce->destroyed_link,
3588 &guc->submission_state.destroyed_contexts);
3589 } else {
3590 __release_guc_id(guc, ce);
3591 }
3592 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3593 if (unlikely(destroy)) {
3594 __guc_context_destroy(ce);
3595 return;
3596 }
3597
3598 /*
3599 * We use a worker to issue the H2G to deregister the context as we can
3600 * take the GT PM for the first time which isn't allowed from an atomic
3601 * context.
3602 */
3603 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3604 }
3605
guc_context_alloc(struct intel_context * ce)3606 static int guc_context_alloc(struct intel_context *ce)
3607 {
3608 return lrc_alloc(ce, ce->engine);
3609 }
3610
__guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce)3611 static void __guc_context_set_prio(struct intel_guc *guc,
3612 struct intel_context *ce)
3613 {
3614 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3615 struct context_policy policy;
3616
3617 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
3618 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3619 __guc_context_set_context_policies(guc, &policy, true);
3620 } else {
3621 u32 action[] = {
3622 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3623 ce->guc_id.id,
3624 ce->guc_state.prio,
3625 };
3626
3627 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3628 }
3629 }
3630
guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce,u8 prio)3631 static void guc_context_set_prio(struct intel_guc *guc,
3632 struct intel_context *ce,
3633 u8 prio)
3634 {
3635 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3636 prio > GUC_CLIENT_PRIORITY_NORMAL);
3637 lockdep_assert_held(&ce->guc_state.lock);
3638
3639 if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3640 !context_registered(ce)) {
3641 ce->guc_state.prio = prio;
3642 return;
3643 }
3644
3645 ce->guc_state.prio = prio;
3646 __guc_context_set_prio(guc, ce);
3647
3648 trace_intel_context_set_prio(ce);
3649 }
3650
map_i915_prio_to_guc_prio(int prio)3651 static inline u8 map_i915_prio_to_guc_prio(int prio)
3652 {
3653 if (prio == I915_PRIORITY_NORMAL)
3654 return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3655 else if (prio < I915_PRIORITY_NORMAL)
3656 return GUC_CLIENT_PRIORITY_NORMAL;
3657 else if (prio < I915_PRIORITY_DISPLAY)
3658 return GUC_CLIENT_PRIORITY_HIGH;
3659 else
3660 return GUC_CLIENT_PRIORITY_KMD_HIGH;
3661 }
3662
add_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3663 static inline void add_context_inflight_prio(struct intel_context *ce,
3664 u8 guc_prio)
3665 {
3666 lockdep_assert_held(&ce->guc_state.lock);
3667 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3668
3669 ++ce->guc_state.prio_count[guc_prio];
3670
3671 /* Overflow protection */
3672 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3673 }
3674
sub_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3675 static inline void sub_context_inflight_prio(struct intel_context *ce,
3676 u8 guc_prio)
3677 {
3678 lockdep_assert_held(&ce->guc_state.lock);
3679 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3680
3681 /* Underflow protection */
3682 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3683
3684 --ce->guc_state.prio_count[guc_prio];
3685 }
3686
update_context_prio(struct intel_context * ce)3687 static inline void update_context_prio(struct intel_context *ce)
3688 {
3689 struct intel_guc *guc = &ce->engine->gt->uc.guc;
3690 int i;
3691
3692 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3693 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3694
3695 lockdep_assert_held(&ce->guc_state.lock);
3696
3697 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3698 if (ce->guc_state.prio_count[i]) {
3699 guc_context_set_prio(guc, ce, i);
3700 break;
3701 }
3702 }
3703 }
3704
new_guc_prio_higher(u8 old_guc_prio,u8 new_guc_prio)3705 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3706 {
3707 /* Lower value is higher priority */
3708 return new_guc_prio < old_guc_prio;
3709 }
3710
add_to_context(struct i915_request * rq)3711 static void add_to_context(struct i915_request *rq)
3712 {
3713 struct intel_context *ce = request_to_scheduling_context(rq);
3714 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3715
3716 GEM_BUG_ON(intel_context_is_child(ce));
3717 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3718
3719 spin_lock(&ce->guc_state.lock);
3720 list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3721
3722 if (rq->guc_prio == GUC_PRIO_INIT) {
3723 rq->guc_prio = new_guc_prio;
3724 add_context_inflight_prio(ce, rq->guc_prio);
3725 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3726 sub_context_inflight_prio(ce, rq->guc_prio);
3727 rq->guc_prio = new_guc_prio;
3728 add_context_inflight_prio(ce, rq->guc_prio);
3729 }
3730 update_context_prio(ce);
3731
3732 spin_unlock(&ce->guc_state.lock);
3733 }
3734
guc_prio_fini(struct i915_request * rq,struct intel_context * ce)3735 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3736 {
3737 lockdep_assert_held(&ce->guc_state.lock);
3738
3739 if (rq->guc_prio != GUC_PRIO_INIT &&
3740 rq->guc_prio != GUC_PRIO_FINI) {
3741 sub_context_inflight_prio(ce, rq->guc_prio);
3742 update_context_prio(ce);
3743 }
3744 rq->guc_prio = GUC_PRIO_FINI;
3745 }
3746
remove_from_context(struct i915_request * rq)3747 static void remove_from_context(struct i915_request *rq)
3748 {
3749 struct intel_context *ce = request_to_scheduling_context(rq);
3750
3751 GEM_BUG_ON(intel_context_is_child(ce));
3752
3753 spin_lock_irq(&ce->guc_state.lock);
3754
3755 list_del_init(&rq->sched.link);
3756 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3757
3758 /* Prevent further __await_execution() registering a cb, then flush */
3759 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3760
3761 guc_prio_fini(rq, ce);
3762
3763 spin_unlock_irq(&ce->guc_state.lock);
3764
3765 atomic_dec(&ce->guc_id.ref);
3766 i915_request_notify_execute_cb_imm(rq);
3767 }
3768
3769 static const struct intel_context_ops guc_context_ops = {
3770 .flags = COPS_RUNTIME_CYCLES,
3771 .alloc = guc_context_alloc,
3772
3773 .close = guc_context_close,
3774
3775 .pre_pin = guc_context_pre_pin,
3776 .pin = guc_context_pin,
3777 .unpin = guc_context_unpin,
3778 .post_unpin = guc_context_post_unpin,
3779
3780 .revoke = guc_context_revoke,
3781
3782 .cancel_request = guc_context_cancel_request,
3783
3784 .enter = intel_context_enter_engine,
3785 .exit = intel_context_exit_engine,
3786
3787 .sched_disable = guc_context_sched_disable,
3788
3789 .update_stats = guc_context_update_stats,
3790
3791 .reset = lrc_reset,
3792 .destroy = guc_context_destroy,
3793
3794 .create_virtual = guc_create_virtual,
3795 .create_parallel = guc_create_parallel,
3796 };
3797
submit_work_cb(struct irq_work * wrk)3798 static void submit_work_cb(struct irq_work *wrk)
3799 {
3800 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3801
3802 might_lock(&rq->engine->sched_engine->lock);
3803 i915_sw_fence_complete(&rq->submit);
3804 }
3805
__guc_signal_context_fence(struct intel_context * ce)3806 static void __guc_signal_context_fence(struct intel_context *ce)
3807 {
3808 struct i915_request *rq, *rn;
3809
3810 lockdep_assert_held(&ce->guc_state.lock);
3811
3812 if (!list_empty(&ce->guc_state.fences))
3813 trace_intel_context_fence_release(ce);
3814
3815 /*
3816 * Use an IRQ to ensure locking order of sched_engine->lock ->
3817 * ce->guc_state.lock is preserved.
3818 */
3819 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3820 guc_fence_link) {
3821 list_del(&rq->guc_fence_link);
3822 irq_work_queue(&rq->submit_work);
3823 }
3824
3825 INIT_LIST_HEAD(&ce->guc_state.fences);
3826 }
3827
guc_signal_context_fence(struct intel_context * ce)3828 static void guc_signal_context_fence(struct intel_context *ce)
3829 {
3830 unsigned long flags;
3831
3832 GEM_BUG_ON(intel_context_is_child(ce));
3833
3834 spin_lock_irqsave(&ce->guc_state.lock, flags);
3835 clr_context_wait_for_deregister_to_register(ce);
3836 __guc_signal_context_fence(ce);
3837 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3838 }
3839
context_needs_register(struct intel_context * ce,bool new_guc_id)3840 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3841 {
3842 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3843 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3844 !submission_disabled(ce_to_guc(ce));
3845 }
3846
guc_context_init(struct intel_context * ce)3847 static void guc_context_init(struct intel_context *ce)
3848 {
3849 const struct i915_gem_context *ctx;
3850 int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3851
3852 rcu_read_lock();
3853 ctx = rcu_dereference(ce->gem_context);
3854 if (ctx)
3855 prio = ctx->sched.priority;
3856 rcu_read_unlock();
3857
3858 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3859
3860 INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3861 __delay_sched_disable);
3862
3863 set_bit(CONTEXT_GUC_INIT, &ce->flags);
3864 }
3865
guc_request_alloc(struct i915_request * rq)3866 static int guc_request_alloc(struct i915_request *rq)
3867 {
3868 struct intel_context *ce = request_to_scheduling_context(rq);
3869 struct intel_guc *guc = ce_to_guc(ce);
3870 unsigned long flags;
3871 int ret;
3872
3873 GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3874
3875 /*
3876 * Flush enough space to reduce the likelihood of waiting after
3877 * we start building the request - in which case we will just
3878 * have to repeat work.
3879 */
3880 rq->reserved_space += GUC_REQUEST_SIZE;
3881
3882 /*
3883 * Note that after this point, we have committed to using
3884 * this request as it is being used to both track the
3885 * state of engine initialisation and liveness of the
3886 * golden renderstate above. Think twice before you try
3887 * to cancel/unwind this request now.
3888 */
3889
3890 /* Unconditionally invalidate GPU caches and TLBs. */
3891 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3892 if (ret)
3893 return ret;
3894
3895 rq->reserved_space -= GUC_REQUEST_SIZE;
3896
3897 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3898 guc_context_init(ce);
3899
3900 /*
3901 * If the context gets closed while the execbuf is ongoing, the context
3902 * close code will race with the below code to cancel the delayed work.
3903 * If the context close wins the race and cancels the work, it will
3904 * immediately call the sched disable (see guc_context_close), so there
3905 * is a chance we can get past this check while the sched_disable code
3906 * is being executed. To make sure that code completes before we check
3907 * the status further down, we wait for the close process to complete.
3908 * Else, this code path could send a request down thinking that the
3909 * context is still in a schedule-enable mode while the GuC ends up
3910 * dropping the request completely because the disable did go from the
3911 * context_close path right to GuC just prior. In the event the CT is
3912 * full, we could potentially need to wait up to 1.5 seconds.
3913 */
3914 if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3915 intel_context_sched_disable_unpin(ce);
3916 else if (intel_context_is_closed(ce))
3917 if (wait_for(context_close_done(ce), 1500))
3918 guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3919 /*
3920 * Call pin_guc_id here rather than in the pinning step as with
3921 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3922 * guc_id and creating horrible race conditions. This is especially bad
3923 * when guc_id are being stolen due to over subscription. By the time
3924 * this function is reached, it is guaranteed that the guc_id will be
3925 * persistent until the generated request is retired. Thus, sealing these
3926 * race conditions. It is still safe to fail here if guc_id are
3927 * exhausted and return -EAGAIN to the user indicating that they can try
3928 * again in the future.
3929 *
3930 * There is no need for a lock here as the timeline mutex ensures at
3931 * most one context can be executing this code path at once. The
3932 * guc_id_ref is incremented once for every request in flight and
3933 * decremented on each retire. When it is zero, a lock around the
3934 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3935 */
3936 if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3937 goto out;
3938
3939 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */
3940 if (unlikely(ret < 0))
3941 return ret;
3942 if (context_needs_register(ce, !!ret)) {
3943 ret = try_context_registration(ce, true);
3944 if (unlikely(ret)) { /* unwind */
3945 if (ret == -EPIPE) {
3946 disable_submission(guc);
3947 goto out; /* GPU will be reset */
3948 }
3949 atomic_dec(&ce->guc_id.ref);
3950 unpin_guc_id(guc, ce);
3951 return ret;
3952 }
3953 }
3954
3955 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3956
3957 out:
3958 /*
3959 * We block all requests on this context if a G2H is pending for a
3960 * schedule disable or context deregistration as the GuC will fail a
3961 * schedule enable or context registration if either G2H is pending
3962 * respectfully. Once a G2H returns, the fence is released that is
3963 * blocking these requests (see guc_signal_context_fence).
3964 */
3965 spin_lock_irqsave(&ce->guc_state.lock, flags);
3966 if (context_wait_for_deregister_to_register(ce) ||
3967 context_pending_disable(ce)) {
3968 init_irq_work(&rq->submit_work, submit_work_cb);
3969 i915_sw_fence_await(&rq->submit);
3970
3971 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3972 }
3973 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3974
3975 return 0;
3976 }
3977
guc_virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3978 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3979 struct i915_gem_ww_ctx *ww,
3980 void **vaddr)
3981 {
3982 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3983
3984 return __guc_context_pre_pin(ce, engine, ww, vaddr);
3985 }
3986
guc_virtual_context_pin(struct intel_context * ce,void * vaddr)3987 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3988 {
3989 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3990 int ret = __guc_context_pin(ce, engine, vaddr);
3991 intel_engine_mask_t tmp, mask = ce->engine->mask;
3992
3993 if (likely(!ret))
3994 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3995 intel_engine_pm_get(engine);
3996
3997 return ret;
3998 }
3999
guc_virtual_context_unpin(struct intel_context * ce)4000 static void guc_virtual_context_unpin(struct intel_context *ce)
4001 {
4002 intel_engine_mask_t tmp, mask = ce->engine->mask;
4003 struct intel_engine_cs *engine;
4004 struct intel_guc *guc = ce_to_guc(ce);
4005
4006 GEM_BUG_ON(context_enabled(ce));
4007 GEM_BUG_ON(intel_context_is_barrier(ce));
4008
4009 unpin_guc_id(guc, ce);
4010 lrc_unpin(ce);
4011
4012 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4013 intel_engine_pm_put_async(engine);
4014 }
4015
guc_virtual_context_enter(struct intel_context * ce)4016 static void guc_virtual_context_enter(struct intel_context *ce)
4017 {
4018 intel_engine_mask_t tmp, mask = ce->engine->mask;
4019 struct intel_engine_cs *engine;
4020
4021 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4022 intel_engine_pm_get(engine);
4023
4024 intel_timeline_enter(ce->timeline);
4025 }
4026
guc_virtual_context_exit(struct intel_context * ce)4027 static void guc_virtual_context_exit(struct intel_context *ce)
4028 {
4029 intel_engine_mask_t tmp, mask = ce->engine->mask;
4030 struct intel_engine_cs *engine;
4031
4032 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4033 intel_engine_pm_put(engine);
4034
4035 intel_timeline_exit(ce->timeline);
4036 }
4037
guc_virtual_context_alloc(struct intel_context * ce)4038 static int guc_virtual_context_alloc(struct intel_context *ce)
4039 {
4040 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4041
4042 return lrc_alloc(ce, engine);
4043 }
4044
4045 static const struct intel_context_ops virtual_guc_context_ops = {
4046 .flags = COPS_RUNTIME_CYCLES,
4047 .alloc = guc_virtual_context_alloc,
4048
4049 .close = guc_context_close,
4050
4051 .pre_pin = guc_virtual_context_pre_pin,
4052 .pin = guc_virtual_context_pin,
4053 .unpin = guc_virtual_context_unpin,
4054 .post_unpin = guc_context_post_unpin,
4055
4056 .revoke = guc_context_revoke,
4057
4058 .cancel_request = guc_context_cancel_request,
4059
4060 .enter = guc_virtual_context_enter,
4061 .exit = guc_virtual_context_exit,
4062
4063 .sched_disable = guc_context_sched_disable,
4064 .update_stats = guc_context_update_stats,
4065
4066 .destroy = guc_context_destroy,
4067
4068 .get_sibling = guc_virtual_get_sibling,
4069 };
4070
guc_parent_context_pin(struct intel_context * ce,void * vaddr)4071 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4072 {
4073 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4074 struct intel_guc *guc = ce_to_guc(ce);
4075 int ret;
4076
4077 GEM_BUG_ON(!intel_context_is_parent(ce));
4078 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4079
4080 ret = pin_guc_id(guc, ce);
4081 if (unlikely(ret < 0))
4082 return ret;
4083
4084 return __guc_context_pin(ce, engine, vaddr);
4085 }
4086
guc_child_context_pin(struct intel_context * ce,void * vaddr)4087 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4088 {
4089 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4090
4091 GEM_BUG_ON(!intel_context_is_child(ce));
4092 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4093
4094 __intel_context_pin(ce->parallel.parent);
4095 return __guc_context_pin(ce, engine, vaddr);
4096 }
4097
guc_parent_context_unpin(struct intel_context * ce)4098 static void guc_parent_context_unpin(struct intel_context *ce)
4099 {
4100 struct intel_guc *guc = ce_to_guc(ce);
4101
4102 GEM_BUG_ON(context_enabled(ce));
4103 GEM_BUG_ON(intel_context_is_barrier(ce));
4104 GEM_BUG_ON(!intel_context_is_parent(ce));
4105 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4106
4107 unpin_guc_id(guc, ce);
4108 lrc_unpin(ce);
4109 }
4110
guc_child_context_unpin(struct intel_context * ce)4111 static void guc_child_context_unpin(struct intel_context *ce)
4112 {
4113 GEM_BUG_ON(context_enabled(ce));
4114 GEM_BUG_ON(intel_context_is_barrier(ce));
4115 GEM_BUG_ON(!intel_context_is_child(ce));
4116 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4117
4118 lrc_unpin(ce);
4119 }
4120
guc_child_context_post_unpin(struct intel_context * ce)4121 static void guc_child_context_post_unpin(struct intel_context *ce)
4122 {
4123 GEM_BUG_ON(!intel_context_is_child(ce));
4124 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4125 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4126
4127 lrc_post_unpin(ce);
4128 intel_context_unpin(ce->parallel.parent);
4129 }
4130
guc_child_context_destroy(struct kref * kref)4131 static void guc_child_context_destroy(struct kref *kref)
4132 {
4133 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4134
4135 __guc_context_destroy(ce);
4136 }
4137
4138 static const struct intel_context_ops virtual_parent_context_ops = {
4139 .alloc = guc_virtual_context_alloc,
4140
4141 .close = guc_context_close,
4142
4143 .pre_pin = guc_context_pre_pin,
4144 .pin = guc_parent_context_pin,
4145 .unpin = guc_parent_context_unpin,
4146 .post_unpin = guc_context_post_unpin,
4147
4148 .revoke = guc_context_revoke,
4149
4150 .cancel_request = guc_context_cancel_request,
4151
4152 .enter = guc_virtual_context_enter,
4153 .exit = guc_virtual_context_exit,
4154
4155 .sched_disable = guc_context_sched_disable,
4156
4157 .destroy = guc_context_destroy,
4158
4159 .get_sibling = guc_virtual_get_sibling,
4160 };
4161
4162 static const struct intel_context_ops virtual_child_context_ops = {
4163 .alloc = guc_virtual_context_alloc,
4164
4165 .pre_pin = guc_context_pre_pin,
4166 .pin = guc_child_context_pin,
4167 .unpin = guc_child_context_unpin,
4168 .post_unpin = guc_child_context_post_unpin,
4169
4170 .cancel_request = guc_context_cancel_request,
4171
4172 .enter = guc_virtual_context_enter,
4173 .exit = guc_virtual_context_exit,
4174
4175 .destroy = guc_child_context_destroy,
4176
4177 .get_sibling = guc_virtual_get_sibling,
4178 };
4179
4180 /*
4181 * The below override of the breadcrumbs is enabled when the user configures a
4182 * context for parallel submission (multi-lrc, parent-child).
4183 *
4184 * The overridden breadcrumbs implements an algorithm which allows the GuC to
4185 * safely preempt all the hw contexts configured for parallel submission
4186 * between each BB. The contract between the i915 and GuC is if the parent
4187 * context can be preempted, all the children can be preempted, and the GuC will
4188 * always try to preempt the parent before the children. A handshake between the
4189 * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4190 * creating a window to preempt between each set of BBs.
4191 */
4192 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4193 u64 offset, u32 len,
4194 const unsigned int flags);
4195 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4196 u64 offset, u32 len,
4197 const unsigned int flags);
4198 static u32 *
4199 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4200 u32 *cs);
4201 static u32 *
4202 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4203 u32 *cs);
4204
4205 static struct intel_context *
guc_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)4206 guc_create_parallel(struct intel_engine_cs **engines,
4207 unsigned int num_siblings,
4208 unsigned int width)
4209 {
4210 struct intel_engine_cs **siblings = NULL;
4211 struct intel_context *parent = NULL, *ce, *err;
4212 int i, j;
4213
4214 siblings = kmalloc_array(num_siblings,
4215 sizeof(*siblings),
4216 GFP_KERNEL);
4217 if (!siblings)
4218 return ERR_PTR(-ENOMEM);
4219
4220 for (i = 0; i < width; ++i) {
4221 for (j = 0; j < num_siblings; ++j)
4222 siblings[j] = engines[i * num_siblings + j];
4223
4224 ce = intel_engine_create_virtual(siblings, num_siblings,
4225 FORCE_VIRTUAL);
4226 if (IS_ERR(ce)) {
4227 err = ERR_CAST(ce);
4228 goto unwind;
4229 }
4230
4231 if (i == 0) {
4232 parent = ce;
4233 parent->ops = &virtual_parent_context_ops;
4234 } else {
4235 ce->ops = &virtual_child_context_ops;
4236 intel_context_bind_parent_child(parent, ce);
4237 }
4238 }
4239
4240 parent->parallel.fence_context = dma_fence_context_alloc(1);
4241
4242 parent->engine->emit_bb_start =
4243 emit_bb_start_parent_no_preempt_mid_batch;
4244 parent->engine->emit_fini_breadcrumb =
4245 emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4246 parent->engine->emit_fini_breadcrumb_dw =
4247 12 + 4 * parent->parallel.number_children;
4248 for_each_child(parent, ce) {
4249 ce->engine->emit_bb_start =
4250 emit_bb_start_child_no_preempt_mid_batch;
4251 ce->engine->emit_fini_breadcrumb =
4252 emit_fini_breadcrumb_child_no_preempt_mid_batch;
4253 ce->engine->emit_fini_breadcrumb_dw = 16;
4254 }
4255
4256 kfree(siblings);
4257 return parent;
4258
4259 unwind:
4260 if (parent)
4261 intel_context_put(parent);
4262 kfree(siblings);
4263 return err;
4264 }
4265
4266 static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs * b)4267 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4268 {
4269 struct intel_engine_cs *sibling;
4270 intel_engine_mask_t tmp, mask = b->engine_mask;
4271 bool result = false;
4272
4273 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4274 result |= intel_engine_irq_enable(sibling);
4275
4276 return result;
4277 }
4278
4279 static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs * b)4280 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4281 {
4282 struct intel_engine_cs *sibling;
4283 intel_engine_mask_t tmp, mask = b->engine_mask;
4284
4285 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4286 intel_engine_irq_disable(sibling);
4287 }
4288
guc_init_breadcrumbs(struct intel_engine_cs * engine)4289 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4290 {
4291 int i;
4292
4293 /*
4294 * In GuC submission mode we do not know which physical engine a request
4295 * will be scheduled on, this creates a problem because the breadcrumb
4296 * interrupt is per physical engine. To work around this we attach
4297 * requests and direct all breadcrumb interrupts to the first instance
4298 * of an engine per class. In addition all breadcrumb interrupts are
4299 * enabled / disabled across an engine class in unison.
4300 */
4301 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4302 struct intel_engine_cs *sibling =
4303 engine->gt->engine_class[engine->class][i];
4304
4305 if (sibling) {
4306 if (engine->breadcrumbs != sibling->breadcrumbs) {
4307 intel_breadcrumbs_put(engine->breadcrumbs);
4308 engine->breadcrumbs =
4309 intel_breadcrumbs_get(sibling->breadcrumbs);
4310 }
4311 break;
4312 }
4313 }
4314
4315 if (engine->breadcrumbs) {
4316 engine->breadcrumbs->engine_mask |= engine->mask;
4317 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4318 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4319 }
4320 }
4321
guc_bump_inflight_request_prio(struct i915_request * rq,int prio)4322 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4323 int prio)
4324 {
4325 struct intel_context *ce = request_to_scheduling_context(rq);
4326 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4327
4328 /* Short circuit function */
4329 if (prio < I915_PRIORITY_NORMAL)
4330 return;
4331
4332 spin_lock(&ce->guc_state.lock);
4333
4334 if (rq->guc_prio == GUC_PRIO_FINI)
4335 goto exit;
4336
4337 if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio))
4338 goto exit;
4339
4340 if (rq->guc_prio != GUC_PRIO_INIT)
4341 sub_context_inflight_prio(ce, rq->guc_prio);
4342
4343 rq->guc_prio = new_guc_prio;
4344 add_context_inflight_prio(ce, rq->guc_prio);
4345 update_context_prio(ce);
4346
4347 exit:
4348 spin_unlock(&ce->guc_state.lock);
4349 }
4350
guc_retire_inflight_request_prio(struct i915_request * rq)4351 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4352 {
4353 struct intel_context *ce = request_to_scheduling_context(rq);
4354
4355 spin_lock(&ce->guc_state.lock);
4356 guc_prio_fini(rq, ce);
4357 spin_unlock(&ce->guc_state.lock);
4358 }
4359
sanitize_hwsp(struct intel_engine_cs * engine)4360 static void sanitize_hwsp(struct intel_engine_cs *engine)
4361 {
4362 struct intel_timeline *tl;
4363
4364 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4365 intel_timeline_reset_seqno(tl);
4366 }
4367
guc_sanitize(struct intel_engine_cs * engine)4368 static void guc_sanitize(struct intel_engine_cs *engine)
4369 {
4370 /*
4371 * Poison residual state on resume, in case the suspend didn't!
4372 *
4373 * We have to assume that across suspend/resume (or other loss
4374 * of control) that the contents of our pinned buffers has been
4375 * lost, replaced by garbage. Since this doesn't always happen,
4376 * let's poison such state so that we more quickly spot when
4377 * we falsely assume it has been preserved.
4378 */
4379 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4380 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4381
4382 /*
4383 * The kernel_context HWSP is stored in the status_page. As above,
4384 * that may be lost on resume/initialisation, and so we need to
4385 * reset the value in the HWSP.
4386 */
4387 sanitize_hwsp(engine);
4388
4389 /* And scrub the dirty cachelines for the HWSP */
4390 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4391
4392 intel_engine_reset_pinned_contexts(engine);
4393 }
4394
setup_hwsp(struct intel_engine_cs * engine)4395 static void setup_hwsp(struct intel_engine_cs *engine)
4396 {
4397 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4398
4399 ENGINE_WRITE_FW(engine,
4400 RING_HWS_PGA,
4401 i915_ggtt_offset(engine->status_page.vma));
4402 }
4403
start_engine(struct intel_engine_cs * engine)4404 static void start_engine(struct intel_engine_cs *engine)
4405 {
4406 ENGINE_WRITE_FW(engine,
4407 RING_MODE_GEN7,
4408 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4409
4410 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4411 ENGINE_POSTING_READ(engine, RING_MI_MODE);
4412 }
4413
guc_resume(struct intel_engine_cs * engine)4414 static int guc_resume(struct intel_engine_cs *engine)
4415 {
4416 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4417
4418 intel_mocs_init_engine(engine);
4419
4420 intel_breadcrumbs_reset(engine->breadcrumbs);
4421
4422 setup_hwsp(engine);
4423 start_engine(engine);
4424
4425 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4426 xehp_enable_ccs_engines(engine);
4427
4428 return 0;
4429 }
4430
guc_sched_engine_disabled(struct i915_sched_engine * sched_engine)4431 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4432 {
4433 return !sched_engine->tasklet.callback;
4434 }
4435
guc_set_default_submission(struct intel_engine_cs * engine)4436 static void guc_set_default_submission(struct intel_engine_cs *engine)
4437 {
4438 engine->submit_request = guc_submit_request;
4439 }
4440
guc_kernel_context_pin(struct intel_guc * guc,struct intel_context * ce)4441 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4442 struct intel_context *ce)
4443 {
4444 int ret;
4445
4446 /*
4447 * Note: we purposefully do not check the returns below because
4448 * the registration can only fail if a reset is just starting.
4449 * This is called at the end of reset so presumably another reset
4450 * isn't happening and even it did this code would be run again.
4451 */
4452
4453 if (context_guc_id_invalid(ce)) {
4454 ret = pin_guc_id(guc, ce);
4455
4456 if (ret < 0)
4457 return ret;
4458 }
4459
4460 if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4461 guc_context_init(ce);
4462
4463 ret = try_context_registration(ce, true);
4464 if (ret)
4465 unpin_guc_id(guc, ce);
4466
4467 return ret;
4468 }
4469
guc_init_submission(struct intel_guc * guc)4470 static inline int guc_init_submission(struct intel_guc *guc)
4471 {
4472 struct intel_gt *gt = guc_to_gt(guc);
4473 struct intel_engine_cs *engine;
4474 enum intel_engine_id id;
4475
4476 /* make sure all descriptors are clean... */
4477 xa_destroy(&guc->context_lookup);
4478
4479 /*
4480 * A reset might have occurred while we had a pending stalled request,
4481 * so make sure we clean that up.
4482 */
4483 guc->stalled_request = NULL;
4484 guc->submission_stall_reason = STALL_NONE;
4485
4486 /*
4487 * Some contexts might have been pinned before we enabled GuC
4488 * submission, so we need to add them to the GuC bookeeping.
4489 * Also, after a reset the of the GuC we want to make sure that the
4490 * information shared with GuC is properly reset. The kernel LRCs are
4491 * not attached to the gem_context, so they need to be added separately.
4492 */
4493 for_each_engine(engine, gt, id) {
4494 struct intel_context *ce;
4495
4496 list_for_each_entry(ce, &engine->pinned_contexts_list,
4497 pinned_contexts_link) {
4498 int ret = guc_kernel_context_pin(guc, ce);
4499
4500 if (ret) {
4501 /* No point in trying to clean up as i915 will wedge on failure */
4502 return ret;
4503 }
4504 }
4505 }
4506
4507 return 0;
4508 }
4509
guc_release(struct intel_engine_cs * engine)4510 static void guc_release(struct intel_engine_cs *engine)
4511 {
4512 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4513
4514 intel_engine_cleanup_common(engine);
4515 lrc_fini_wa_ctx(engine);
4516 }
4517
virtual_guc_bump_serial(struct intel_engine_cs * engine)4518 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4519 {
4520 struct intel_engine_cs *e;
4521 intel_engine_mask_t tmp, mask = engine->mask;
4522
4523 for_each_engine_masked(e, engine->gt, mask, tmp)
4524 e->serial++;
4525 }
4526
guc_default_vfuncs(struct intel_engine_cs * engine)4527 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4528 {
4529 /* Default vfuncs which can be overridden by each engine. */
4530
4531 engine->resume = guc_resume;
4532
4533 engine->cops = &guc_context_ops;
4534 engine->request_alloc = guc_request_alloc;
4535 engine->add_active_request = add_to_context;
4536 engine->remove_active_request = remove_from_context;
4537
4538 engine->sched_engine->schedule = i915_schedule;
4539
4540 engine->reset.prepare = guc_engine_reset_prepare;
4541 engine->reset.rewind = guc_rewind_nop;
4542 engine->reset.cancel = guc_reset_nop;
4543 engine->reset.finish = guc_reset_nop;
4544
4545 engine->emit_flush = gen8_emit_flush_xcs;
4546 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4547 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4548 if (GRAPHICS_VER(engine->i915) >= 12) {
4549 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4550 engine->emit_flush = gen12_emit_flush_xcs;
4551 }
4552 engine->set_default_submission = guc_set_default_submission;
4553 engine->busyness = guc_engine_busyness;
4554
4555 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4556 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4557 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4558
4559 /* Wa_14014475959:dg2 */
4560 if (engine->class == COMPUTE_CLASS)
4561 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4562 IS_DG2(engine->i915))
4563 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4564
4565 /* Wa_16019325821 */
4566 /* Wa_14019159160 */
4567 if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
4568 IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
4569 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4570
4571 /*
4572 * TODO: GuC supports timeslicing and semaphores as well, but they're
4573 * handled by the firmware so some minor tweaks are required before
4574 * enabling.
4575 *
4576 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4577 */
4578
4579 engine->emit_bb_start = gen8_emit_bb_start;
4580 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
4581 engine->emit_bb_start = xehp_emit_bb_start;
4582 }
4583
rcs_submission_override(struct intel_engine_cs * engine)4584 static void rcs_submission_override(struct intel_engine_cs *engine)
4585 {
4586 switch (GRAPHICS_VER(engine->i915)) {
4587 case 12:
4588 engine->emit_flush = gen12_emit_flush_rcs;
4589 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4590 break;
4591 case 11:
4592 engine->emit_flush = gen11_emit_flush_rcs;
4593 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4594 break;
4595 default:
4596 engine->emit_flush = gen8_emit_flush_rcs;
4597 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4598 break;
4599 }
4600 }
4601
guc_default_irqs(struct intel_engine_cs * engine)4602 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4603 {
4604 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4605 intel_engine_set_irq_handler(engine, cs_irq_handler);
4606 }
4607
guc_sched_engine_destroy(struct kref * kref)4608 static void guc_sched_engine_destroy(struct kref *kref)
4609 {
4610 struct i915_sched_engine *sched_engine =
4611 container_of(kref, typeof(*sched_engine), ref);
4612 struct intel_guc *guc = sched_engine->private_data;
4613
4614 guc->sched_engine = NULL;
4615 tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4616 kfree(sched_engine);
4617 }
4618
intel_guc_submission_setup(struct intel_engine_cs * engine)4619 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4620 {
4621 struct drm_i915_private *i915 = engine->i915;
4622 struct intel_guc *guc = gt_to_guc(engine->gt);
4623
4624 /*
4625 * The setup relies on several assumptions (e.g. irqs always enabled)
4626 * that are only valid on gen11+
4627 */
4628 GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4629
4630 if (!guc->sched_engine) {
4631 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4632 if (!guc->sched_engine)
4633 return -ENOMEM;
4634
4635 guc->sched_engine->schedule = i915_schedule;
4636 guc->sched_engine->disabled = guc_sched_engine_disabled;
4637 guc->sched_engine->private_data = guc;
4638 guc->sched_engine->destroy = guc_sched_engine_destroy;
4639 guc->sched_engine->bump_inflight_request_prio =
4640 guc_bump_inflight_request_prio;
4641 guc->sched_engine->retire_inflight_request_prio =
4642 guc_retire_inflight_request_prio;
4643 tasklet_setup(&guc->sched_engine->tasklet,
4644 guc_submission_tasklet);
4645 }
4646 i915_sched_engine_put(engine->sched_engine);
4647 engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4648
4649 guc_default_vfuncs(engine);
4650 guc_default_irqs(engine);
4651 guc_init_breadcrumbs(engine);
4652
4653 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4654 rcs_submission_override(engine);
4655
4656 lrc_init_wa_ctx(engine);
4657
4658 /* Finally, take ownership and responsibility for cleanup! */
4659 engine->sanitize = guc_sanitize;
4660 engine->release = guc_release;
4661
4662 return 0;
4663 }
4664
4665 struct scheduling_policy {
4666 /* internal data */
4667 u32 max_words, num_words;
4668 u32 count;
4669 /* API data */
4670 struct guc_update_scheduling_policy h2g;
4671 };
4672
__guc_scheduling_policy_action_size(struct scheduling_policy * policy)4673 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4674 {
4675 u32 *start = (void *)&policy->h2g;
4676 u32 *end = policy->h2g.data + policy->num_words;
4677 size_t delta = end - start;
4678
4679 return delta;
4680 }
4681
__guc_scheduling_policy_start_klv(struct scheduling_policy * policy)4682 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4683 {
4684 policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4685 policy->max_words = ARRAY_SIZE(policy->h2g.data);
4686 policy->num_words = 0;
4687 policy->count = 0;
4688
4689 return policy;
4690 }
4691
__guc_scheduling_policy_add_klv(struct scheduling_policy * policy,u32 action,u32 * data,u32 len)4692 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4693 u32 action, u32 *data, u32 len)
4694 {
4695 u32 *klv_ptr = policy->h2g.data + policy->num_words;
4696
4697 GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4698 *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4699 FIELD_PREP(GUC_KLV_0_LEN, len);
4700 memcpy(klv_ptr, data, sizeof(u32) * len);
4701 policy->num_words += 1 + len;
4702 policy->count++;
4703 }
4704
__guc_action_set_scheduling_policies(struct intel_guc * guc,struct scheduling_policy * policy)4705 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4706 struct scheduling_policy *policy)
4707 {
4708 int ret;
4709
4710 ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4711 __guc_scheduling_policy_action_size(policy));
4712 if (ret < 0) {
4713 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4714 ERR_PTR(ret));
4715 return ret;
4716 }
4717
4718 if (ret != policy->count) {
4719 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4720 ret, policy->count);
4721 if (ret > policy->count)
4722 return -EPROTO;
4723 }
4724
4725 return 0;
4726 }
4727
guc_init_global_schedule_policy(struct intel_guc * guc)4728 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4729 {
4730 struct scheduling_policy policy;
4731 struct intel_gt *gt = guc_to_gt(guc);
4732 intel_wakeref_t wakeref;
4733 int ret;
4734
4735 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4736 return 0;
4737
4738 __guc_scheduling_policy_start_klv(&policy);
4739
4740 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) {
4741 u32 yield[] = {
4742 GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4743 GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4744 };
4745
4746 __guc_scheduling_policy_add_klv(&policy,
4747 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4748 yield, ARRAY_SIZE(yield));
4749
4750 ret = __guc_action_set_scheduling_policies(guc, &policy);
4751 }
4752
4753 return ret;
4754 }
4755
guc_route_semaphores(struct intel_guc * guc,bool to_guc)4756 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4757 {
4758 struct intel_gt *gt = guc_to_gt(guc);
4759 u32 val;
4760
4761 if (GRAPHICS_VER(gt->i915) < 12)
4762 return;
4763
4764 if (to_guc)
4765 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4766 else
4767 val = 0;
4768
4769 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4770 }
4771
intel_guc_submission_enable(struct intel_guc * guc)4772 int intel_guc_submission_enable(struct intel_guc *guc)
4773 {
4774 int ret;
4775
4776 /* Semaphore interrupt enable and route to GuC */
4777 guc_route_semaphores(guc, true);
4778
4779 ret = guc_init_submission(guc);
4780 if (ret)
4781 goto fail_sem;
4782
4783 ret = guc_init_engine_stats(guc);
4784 if (ret)
4785 goto fail_sem;
4786
4787 ret = guc_init_global_schedule_policy(guc);
4788 if (ret)
4789 goto fail_stats;
4790
4791 return 0;
4792
4793 fail_stats:
4794 guc_fini_engine_stats(guc);
4795 fail_sem:
4796 guc_route_semaphores(guc, false);
4797 return ret;
4798 }
4799
4800 /* Note: By the time we're here, GuC may have already been reset */
intel_guc_submission_disable(struct intel_guc * guc)4801 void intel_guc_submission_disable(struct intel_guc *guc)
4802 {
4803 guc_cancel_busyness_worker(guc);
4804
4805 /* Semaphore interrupt disable and route to host */
4806 guc_route_semaphores(guc, false);
4807 }
4808
__guc_submission_supported(struct intel_guc * guc)4809 static bool __guc_submission_supported(struct intel_guc *guc)
4810 {
4811 /* GuC submission is unavailable for pre-Gen11 */
4812 return intel_guc_is_supported(guc) &&
4813 GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4814 }
4815
__guc_submission_selected(struct intel_guc * guc)4816 static bool __guc_submission_selected(struct intel_guc *guc)
4817 {
4818 struct drm_i915_private *i915 = guc_to_i915(guc);
4819
4820 if (!intel_guc_submission_is_supported(guc))
4821 return false;
4822
4823 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4824 }
4825
intel_guc_sched_disable_gucid_threshold_max(struct intel_guc * guc)4826 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4827 {
4828 return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4829 }
4830
4831 /*
4832 * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4833 * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4834 * operation. This matches the 30fps game-render + encode (real world) workload this
4835 * knob was tested against.
4836 */
4837 #define SCHED_DISABLE_DELAY_MS 34
4838
4839 /*
4840 * A threshold of 75% is a reasonable starting point considering that real world apps
4841 * generally don't get anywhere near this.
4842 */
4843 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4844 (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4845
intel_guc_submission_init_early(struct intel_guc * guc)4846 void intel_guc_submission_init_early(struct intel_guc *guc)
4847 {
4848 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4849
4850 spin_lock_init(&guc->submission_state.lock);
4851 INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4852 ida_init(&guc->submission_state.guc_ids);
4853 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4854 INIT_WORK(&guc->submission_state.destroyed_worker,
4855 destroyed_worker_func);
4856 INIT_WORK(&guc->submission_state.reset_fail_worker,
4857 reset_fail_worker_func);
4858
4859 spin_lock_init(&guc->timestamp.lock);
4860 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4861
4862 guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4863 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4864 guc->submission_state.sched_disable_gucid_threshold =
4865 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4866 guc->submission_supported = __guc_submission_supported(guc);
4867 guc->submission_selected = __guc_submission_selected(guc);
4868 }
4869
4870 static inline struct intel_context *
g2h_context_lookup(struct intel_guc * guc,u32 ctx_id)4871 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4872 {
4873 struct intel_context *ce;
4874
4875 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4876 guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4877 return NULL;
4878 }
4879
4880 ce = __get_context(guc, ctx_id);
4881 if (unlikely(!ce)) {
4882 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4883 return NULL;
4884 }
4885
4886 if (unlikely(intel_context_is_child(ce))) {
4887 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4888 return NULL;
4889 }
4890
4891 return ce;
4892 }
4893
wait_wake_outstanding_tlb_g2h(struct intel_guc * guc,u32 seqno)4894 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4895 {
4896 struct intel_guc_tlb_wait *wait;
4897 unsigned long flags;
4898
4899 xa_lock_irqsave(&guc->tlb_lookup, flags);
4900 wait = xa_load(&guc->tlb_lookup, seqno);
4901
4902 if (wait)
4903 wake_up(&wait->wq);
4904 else
4905 guc_dbg(guc,
4906 "Stale TLB invalidation response with seqno %d\n", seqno);
4907
4908 xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4909 }
4910
intel_guc_tlb_invalidation_done(struct intel_guc * guc,const u32 * payload,u32 len)4911 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4912 const u32 *payload, u32 len)
4913 {
4914 if (len < 1)
4915 return -EPROTO;
4916
4917 wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4918 return 0;
4919 }
4920
must_wait_woken(struct wait_queue_entry * wq_entry,long timeout)4921 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4922 {
4923 /*
4924 * This is equivalent to wait_woken() with the exception that
4925 * we do not wake up early if the kthread task has been completed.
4926 * As we are called from page reclaim in any task context,
4927 * we may be invoked from stopped kthreads, but we *must*
4928 * complete the wait from the HW.
4929 */
4930 do {
4931 set_current_state(TASK_UNINTERRUPTIBLE);
4932 if (wq_entry->flags & WQ_FLAG_WOKEN)
4933 break;
4934
4935 timeout = schedule_timeout(timeout);
4936 } while (timeout);
4937
4938 /* See wait_woken() and woken_wake_function() */
4939 __set_current_state(TASK_RUNNING);
4940 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4941
4942 return timeout;
4943 }
4944
intel_gt_is_enabled(const struct intel_gt * gt)4945 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4946 {
4947 /* Check if GT is wedged or suspended */
4948 if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4949 return false;
4950 return true;
4951 }
4952
guc_send_invalidate_tlb(struct intel_guc * guc,enum intel_guc_tlb_invalidation_type type)4953 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4954 enum intel_guc_tlb_invalidation_type type)
4955 {
4956 struct intel_guc_tlb_wait _wq, *wq = &_wq;
4957 struct intel_gt *gt = guc_to_gt(guc);
4958 DEFINE_WAIT_FUNC(wait, woken_wake_function);
4959 int err;
4960 u32 seqno;
4961 u32 action[] = {
4962 INTEL_GUC_ACTION_TLB_INVALIDATION,
4963 0,
4964 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4965 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4966 INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4967 INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4968 };
4969 u32 size = ARRAY_SIZE(action);
4970
4971 /*
4972 * Early guard against GT enablement. TLB invalidation should not be
4973 * attempted if the GT is disabled due to suspend/wedge.
4974 */
4975 if (!intel_gt_is_enabled(gt))
4976 return -EINVAL;
4977
4978 init_waitqueue_head(&_wq.wq);
4979
4980 if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4981 xa_limit_32b, &guc->next_seqno,
4982 GFP_ATOMIC | __GFP_NOWARN) < 0) {
4983 /* Under severe memory pressure? Serialise TLB allocations */
4984 xa_lock_irq(&guc->tlb_lookup);
4985 wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4986 wait_event_lock_irq(wq->wq,
4987 !READ_ONCE(wq->busy),
4988 guc->tlb_lookup.xa_lock);
4989 /*
4990 * Update wq->busy under lock to ensure only one waiter can
4991 * issue the TLB invalidation command using the serial slot at a
4992 * time. The condition is set to true before releasing the lock
4993 * so that other caller continue to wait until woken up again.
4994 */
4995 wq->busy = true;
4996 xa_unlock_irq(&guc->tlb_lookup);
4997
4998 seqno = guc->serial_slot;
4999 }
5000
5001 action[1] = seqno;
5002
5003 add_wait_queue(&wq->wq, &wait);
5004
5005 /* This is a critical reclaim path and thus we must loop here. */
5006 err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
5007 if (err)
5008 goto out;
5009
5010 /*
5011 * Late guard against GT enablement. It is not an error for the TLB
5012 * invalidation to time out if the GT is disabled during the process
5013 * due to suspend/wedge. In fact, the TLB invalidation is cancelled
5014 * in this case.
5015 */
5016 if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
5017 intel_gt_is_enabled(gt)) {
5018 guc_err(guc,
5019 "TLB invalidation response timed out for seqno %u\n", seqno);
5020 err = -ETIME;
5021 }
5022 out:
5023 remove_wait_queue(&wq->wq, &wait);
5024 if (seqno != guc->serial_slot)
5025 xa_erase_irq(&guc->tlb_lookup, seqno);
5026
5027 return err;
5028 }
5029
5030 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
intel_guc_invalidate_tlb_engines(struct intel_guc * guc)5031 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
5032 {
5033 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
5034 }
5035
5036 /* Send a H2G command to invalidate the GuC's internal TLB. */
intel_guc_invalidate_tlb_guc(struct intel_guc * guc)5037 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
5038 {
5039 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
5040 }
5041
intel_guc_deregister_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5042 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
5043 const u32 *msg,
5044 u32 len)
5045 {
5046 struct intel_context *ce;
5047 u32 ctx_id;
5048
5049 if (unlikely(len < 1)) {
5050 guc_err(guc, "Invalid length %u\n", len);
5051 return -EPROTO;
5052 }
5053 ctx_id = msg[0];
5054
5055 ce = g2h_context_lookup(guc, ctx_id);
5056 if (unlikely(!ce))
5057 return -EPROTO;
5058
5059 trace_intel_context_deregister_done(ce);
5060
5061 #ifdef CONFIG_DRM_I915_SELFTEST
5062 if (unlikely(ce->drop_deregister)) {
5063 ce->drop_deregister = false;
5064 return 0;
5065 }
5066 #endif
5067
5068 if (context_wait_for_deregister_to_register(ce)) {
5069 struct intel_runtime_pm *runtime_pm =
5070 &ce->engine->gt->i915->runtime_pm;
5071 intel_wakeref_t wakeref;
5072
5073 /*
5074 * Previous owner of this guc_id has been deregistered, now safe
5075 * register this context.
5076 */
5077 with_intel_runtime_pm(runtime_pm, wakeref)
5078 register_context(ce, true);
5079 guc_signal_context_fence(ce);
5080 intel_context_put(ce);
5081 } else if (context_destroyed(ce)) {
5082 /* Context has been destroyed */
5083 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5084 release_guc_id(guc, ce);
5085 __guc_context_destroy(ce);
5086 }
5087
5088 decr_outstanding_submission_g2h(guc);
5089
5090 return 0;
5091 }
5092
intel_guc_sched_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5093 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5094 const u32 *msg,
5095 u32 len)
5096 {
5097 struct intel_context *ce;
5098 unsigned long flags;
5099 u32 ctx_id;
5100
5101 if (unlikely(len < 2)) {
5102 guc_err(guc, "Invalid length %u\n", len);
5103 return -EPROTO;
5104 }
5105 ctx_id = msg[0];
5106
5107 ce = g2h_context_lookup(guc, ctx_id);
5108 if (unlikely(!ce))
5109 return -EPROTO;
5110
5111 if (unlikely(context_destroyed(ce) ||
5112 (!context_pending_enable(ce) &&
5113 !context_pending_disable(ce)))) {
5114 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5115 ce->guc_state.sched_state, ctx_id);
5116 return -EPROTO;
5117 }
5118
5119 trace_intel_context_sched_done(ce);
5120
5121 if (context_pending_enable(ce)) {
5122 #ifdef CONFIG_DRM_I915_SELFTEST
5123 if (unlikely(ce->drop_schedule_enable)) {
5124 ce->drop_schedule_enable = false;
5125 return 0;
5126 }
5127 #endif
5128
5129 spin_lock_irqsave(&ce->guc_state.lock, flags);
5130 clr_context_pending_enable(ce);
5131 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5132 } else if (context_pending_disable(ce)) {
5133 bool banned;
5134
5135 #ifdef CONFIG_DRM_I915_SELFTEST
5136 if (unlikely(ce->drop_schedule_disable)) {
5137 ce->drop_schedule_disable = false;
5138 return 0;
5139 }
5140 #endif
5141
5142 /*
5143 * Unpin must be done before __guc_signal_context_fence,
5144 * otherwise a race exists between the requests getting
5145 * submitted + retired before this unpin completes resulting in
5146 * the pin_count going to zero and the context still being
5147 * enabled.
5148 */
5149 intel_context_sched_disable_unpin(ce);
5150
5151 spin_lock_irqsave(&ce->guc_state.lock, flags);
5152 banned = context_banned(ce);
5153 clr_context_banned(ce);
5154 clr_context_pending_disable(ce);
5155 __guc_signal_context_fence(ce);
5156 guc_blocked_fence_complete(ce);
5157 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5158
5159 if (banned) {
5160 guc_cancel_context_requests(ce);
5161 intel_engine_signal_breadcrumbs(ce->engine);
5162 }
5163 }
5164
5165 decr_outstanding_submission_g2h(guc);
5166 intel_context_put(ce);
5167
5168 return 0;
5169 }
5170
capture_error_state(struct intel_guc * guc,struct intel_context * ce)5171 static void capture_error_state(struct intel_guc *guc,
5172 struct intel_context *ce)
5173 {
5174 struct intel_gt *gt = guc_to_gt(guc);
5175 struct drm_i915_private *i915 = gt->i915;
5176 intel_wakeref_t wakeref;
5177 intel_engine_mask_t engine_mask;
5178
5179 if (intel_engine_is_virtual(ce->engine)) {
5180 struct intel_engine_cs *e;
5181 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5182
5183 engine_mask = 0;
5184 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5185 bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5186
5187 if (match) {
5188 intel_engine_set_hung_context(e, ce);
5189 engine_mask |= e->mask;
5190 i915_increase_reset_engine_count(&i915->gpu_error,
5191 e);
5192 }
5193 }
5194
5195 if (!engine_mask) {
5196 guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5197 ce->guc_id.id, ce->engine->name);
5198 engine_mask = ~0U;
5199 }
5200 } else {
5201 intel_engine_set_hung_context(ce->engine, ce);
5202 engine_mask = ce->engine->mask;
5203 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5204 }
5205
5206 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5207 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5208 }
5209
guc_context_replay(struct intel_context * ce)5210 static void guc_context_replay(struct intel_context *ce)
5211 {
5212 struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5213
5214 __guc_reset_context(ce, ce->engine->mask);
5215 tasklet_hi_schedule(&sched_engine->tasklet);
5216 }
5217
guc_handle_context_reset(struct intel_guc * guc,struct intel_context * ce)5218 static void guc_handle_context_reset(struct intel_guc *guc,
5219 struct intel_context *ce)
5220 {
5221 bool capture = intel_context_is_schedulable(ce);
5222
5223 trace_intel_context_reset(ce);
5224
5225 guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5226 capture ? "Got" : "Ignoring",
5227 ce->guc_id.id, ce->engine->name,
5228 str_yes_no(intel_context_is_exiting(ce)),
5229 str_yes_no(intel_context_is_banned(ce)));
5230
5231 if (capture) {
5232 capture_error_state(guc, ce);
5233 guc_context_replay(ce);
5234 }
5235 }
5236
intel_guc_context_reset_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5237 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5238 const u32 *msg, u32 len)
5239 {
5240 struct intel_context *ce;
5241 unsigned long flags;
5242 int ctx_id;
5243
5244 if (unlikely(len != 1)) {
5245 guc_err(guc, "Invalid length %u", len);
5246 return -EPROTO;
5247 }
5248
5249 ctx_id = msg[0];
5250
5251 /*
5252 * The context lookup uses the xarray but lookups only require an RCU lock
5253 * not the full spinlock. So take the lock explicitly and keep it until the
5254 * context has been reference count locked to ensure it can't be destroyed
5255 * asynchronously until the reset is done.
5256 */
5257 xa_lock_irqsave(&guc->context_lookup, flags);
5258 ce = g2h_context_lookup(guc, ctx_id);
5259 if (ce)
5260 intel_context_get(ce);
5261 xa_unlock_irqrestore(&guc->context_lookup, flags);
5262
5263 if (unlikely(!ce))
5264 return -EPROTO;
5265
5266 guc_handle_context_reset(guc, ce);
5267 intel_context_put(ce);
5268
5269 return 0;
5270 }
5271
intel_guc_error_capture_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5272 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5273 const u32 *msg, u32 len)
5274 {
5275 u32 status;
5276
5277 if (unlikely(len != 1)) {
5278 guc_dbg(guc, "Invalid length %u", len);
5279 return -EPROTO;
5280 }
5281
5282 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5283 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5284 guc_warn(guc, "No space for error capture");
5285
5286 intel_guc_capture_process(guc);
5287
5288 return 0;
5289 }
5290
5291 struct intel_engine_cs *
intel_guc_lookup_engine(struct intel_guc * guc,u8 guc_class,u8 instance)5292 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5293 {
5294 struct intel_gt *gt = guc_to_gt(guc);
5295 u8 engine_class = guc_class_to_engine_class(guc_class);
5296
5297 /* Class index is checked in class converter */
5298 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5299
5300 return gt->engine_class[engine_class][instance];
5301 }
5302
reset_fail_worker_func(struct work_struct * w)5303 static void reset_fail_worker_func(struct work_struct *w)
5304 {
5305 struct intel_guc *guc = container_of(w, struct intel_guc,
5306 submission_state.reset_fail_worker);
5307 struct intel_gt *gt = guc_to_gt(guc);
5308 intel_engine_mask_t reset_fail_mask;
5309 unsigned long flags;
5310
5311 spin_lock_irqsave(&guc->submission_state.lock, flags);
5312 reset_fail_mask = guc->submission_state.reset_fail_mask;
5313 guc->submission_state.reset_fail_mask = 0;
5314 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5315
5316 if (likely(reset_fail_mask)) {
5317 struct intel_engine_cs *engine;
5318 enum intel_engine_id id;
5319
5320 /*
5321 * GuC is toast at this point - it dead loops after sending the failed
5322 * reset notification. So need to manually determine the guilty context.
5323 * Note that it should be reliable to do this here because the GuC is
5324 * toast and will not be scheduling behind the KMD's back.
5325 */
5326 for_each_engine_masked(engine, gt, reset_fail_mask, id)
5327 intel_guc_find_hung_context(engine);
5328
5329 intel_gt_handle_error(gt, reset_fail_mask,
5330 I915_ERROR_CAPTURE,
5331 "GuC failed to reset engine mask=0x%x",
5332 reset_fail_mask);
5333 }
5334 }
5335
intel_guc_engine_failure_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5336 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5337 const u32 *msg, u32 len)
5338 {
5339 struct intel_engine_cs *engine;
5340 u8 guc_class, instance;
5341 u32 reason;
5342 unsigned long flags;
5343
5344 if (unlikely(len != 3)) {
5345 guc_err(guc, "Invalid length %u", len);
5346 return -EPROTO;
5347 }
5348
5349 guc_class = msg[0];
5350 instance = msg[1];
5351 reason = msg[2];
5352
5353 engine = intel_guc_lookup_engine(guc, guc_class, instance);
5354 if (unlikely(!engine)) {
5355 guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5356 return -EPROTO;
5357 }
5358
5359 /*
5360 * This is an unexpected failure of a hardware feature. So, log a real
5361 * error message not just the informational that comes with the reset.
5362 */
5363 guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5364 guc_class, instance, engine->name, reason);
5365
5366 spin_lock_irqsave(&guc->submission_state.lock, flags);
5367 guc->submission_state.reset_fail_mask |= engine->mask;
5368 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5369
5370 /*
5371 * A GT reset flushes this worker queue (G2H handler) so we must use
5372 * another worker to trigger a GT reset.
5373 */
5374 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5375
5376 return 0;
5377 }
5378
intel_guc_find_hung_context(struct intel_engine_cs * engine)5379 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5380 {
5381 struct intel_guc *guc = gt_to_guc(engine->gt);
5382 struct intel_context *ce;
5383 struct i915_request *rq;
5384 unsigned long index;
5385 unsigned long flags;
5386
5387 /* Reset called during driver load? GuC not yet initialised! */
5388 if (unlikely(!guc_submission_initialized(guc)))
5389 return;
5390
5391 xa_lock_irqsave(&guc->context_lookup, flags);
5392 xa_for_each(&guc->context_lookup, index, ce) {
5393 bool found;
5394
5395 if (!kref_get_unless_zero(&ce->ref))
5396 continue;
5397
5398 xa_unlock(&guc->context_lookup);
5399
5400 if (!intel_context_is_pinned(ce))
5401 goto next;
5402
5403 if (intel_engine_is_virtual(ce->engine)) {
5404 if (!(ce->engine->mask & engine->mask))
5405 goto next;
5406 } else {
5407 if (ce->engine != engine)
5408 goto next;
5409 }
5410
5411 found = false;
5412 spin_lock(&ce->guc_state.lock);
5413 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5414 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5415 continue;
5416
5417 found = true;
5418 break;
5419 }
5420 spin_unlock(&ce->guc_state.lock);
5421
5422 if (found) {
5423 intel_engine_set_hung_context(engine, ce);
5424
5425 /* Can only cope with one hang at a time... */
5426 intel_context_put(ce);
5427 xa_lock(&guc->context_lookup);
5428 goto done;
5429 }
5430
5431 next:
5432 intel_context_put(ce);
5433 xa_lock(&guc->context_lookup);
5434 }
5435 done:
5436 xa_unlock_irqrestore(&guc->context_lookup, flags);
5437 }
5438
intel_guc_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)5439 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5440 struct i915_request *hung_rq,
5441 struct drm_printer *m)
5442 {
5443 struct intel_guc *guc = gt_to_guc(engine->gt);
5444 struct intel_context *ce;
5445 unsigned long index;
5446 unsigned long flags;
5447
5448 /* Reset called during driver load? GuC not yet initialised! */
5449 if (unlikely(!guc_submission_initialized(guc)))
5450 return;
5451
5452 xa_lock_irqsave(&guc->context_lookup, flags);
5453 xa_for_each(&guc->context_lookup, index, ce) {
5454 if (!kref_get_unless_zero(&ce->ref))
5455 continue;
5456
5457 xa_unlock(&guc->context_lookup);
5458
5459 if (!intel_context_is_pinned(ce))
5460 goto next;
5461
5462 if (intel_engine_is_virtual(ce->engine)) {
5463 if (!(ce->engine->mask & engine->mask))
5464 goto next;
5465 } else {
5466 if (ce->engine != engine)
5467 goto next;
5468 }
5469
5470 spin_lock(&ce->guc_state.lock);
5471 intel_engine_dump_active_requests(&ce->guc_state.requests,
5472 hung_rq, m);
5473 spin_unlock(&ce->guc_state.lock);
5474
5475 next:
5476 intel_context_put(ce);
5477 xa_lock(&guc->context_lookup);
5478 }
5479 xa_unlock_irqrestore(&guc->context_lookup, flags);
5480 }
5481
intel_guc_submission_print_info(struct intel_guc * guc,struct drm_printer * p)5482 void intel_guc_submission_print_info(struct intel_guc *guc,
5483 struct drm_printer *p)
5484 {
5485 struct i915_sched_engine *sched_engine = guc->sched_engine;
5486 struct rb_node *rb;
5487 unsigned long flags;
5488
5489 if (!sched_engine)
5490 return;
5491
5492 drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5493 guc->submission_version.major, guc->submission_version.minor,
5494 guc->submission_version.patch);
5495 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5496 atomic_read(&guc->outstanding_submission_g2h));
5497 drm_printf(p, "GuC tasklet count: %u\n",
5498 atomic_read(&sched_engine->tasklet.count));
5499
5500 spin_lock_irqsave(&sched_engine->lock, flags);
5501 drm_printf(p, "Requests in GuC submit tasklet:\n");
5502 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5503 struct i915_priolist *pl = to_priolist(rb);
5504 struct i915_request *rq;
5505
5506 priolist_for_each_request(rq, pl)
5507 drm_printf(p, "guc_id=%u, seqno=%llu\n",
5508 rq->context->guc_id.id,
5509 rq->fence.seqno);
5510 }
5511 spin_unlock_irqrestore(&sched_engine->lock, flags);
5512 drm_printf(p, "\n");
5513 }
5514
guc_log_context_priority(struct drm_printer * p,struct intel_context * ce)5515 static inline void guc_log_context_priority(struct drm_printer *p,
5516 struct intel_context *ce)
5517 {
5518 int i;
5519
5520 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5521 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5522 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5523 i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5524 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5525 i, ce->guc_state.prio_count[i]);
5526 }
5527 drm_printf(p, "\n");
5528 }
5529
guc_log_context(struct drm_printer * p,struct intel_context * ce)5530 static inline void guc_log_context(struct drm_printer *p,
5531 struct intel_context *ce)
5532 {
5533 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5534 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5535 if (intel_context_pin_if_active(ce)) {
5536 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5537 ce->ring->head,
5538 ce->lrc_reg_state[CTX_RING_HEAD]);
5539 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5540 ce->ring->tail,
5541 ce->lrc_reg_state[CTX_RING_TAIL]);
5542 intel_context_unpin(ce);
5543 } else {
5544 drm_printf(p, "\t\tLRC Head: Internal %u, Memory not pinned\n",
5545 ce->ring->head);
5546 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory not pinned\n",
5547 ce->ring->tail);
5548 }
5549 drm_printf(p, "\t\tContext Pin Count: %u\n",
5550 atomic_read(&ce->pin_count));
5551 drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5552 atomic_read(&ce->guc_id.ref));
5553 drm_printf(p, "\t\tSchedule State: 0x%x\n",
5554 ce->guc_state.sched_state);
5555 }
5556
intel_guc_submission_print_context_info(struct intel_guc * guc,struct drm_printer * p)5557 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5558 struct drm_printer *p)
5559 {
5560 struct intel_context *ce;
5561 unsigned long index;
5562 unsigned long flags;
5563
5564 xa_lock_irqsave(&guc->context_lookup, flags);
5565 xa_for_each(&guc->context_lookup, index, ce) {
5566 GEM_BUG_ON(intel_context_is_child(ce));
5567
5568 guc_log_context(p, ce);
5569 guc_log_context_priority(p, ce);
5570
5571 if (intel_context_is_parent(ce)) {
5572 struct intel_context *child;
5573
5574 drm_printf(p, "\t\tNumber children: %u\n",
5575 ce->parallel.number_children);
5576
5577 if (ce->parallel.guc.wq_status) {
5578 drm_printf(p, "\t\tWQI Head: %u\n",
5579 READ_ONCE(*ce->parallel.guc.wq_head));
5580 drm_printf(p, "\t\tWQI Tail: %u\n",
5581 READ_ONCE(*ce->parallel.guc.wq_tail));
5582 drm_printf(p, "\t\tWQI Status: %u\n",
5583 READ_ONCE(*ce->parallel.guc.wq_status));
5584 }
5585
5586 if (ce->engine->emit_bb_start ==
5587 emit_bb_start_parent_no_preempt_mid_batch) {
5588 u8 i;
5589
5590 drm_printf(p, "\t\tChildren Go: %u\n",
5591 get_children_go_value(ce));
5592 for (i = 0; i < ce->parallel.number_children; ++i)
5593 drm_printf(p, "\t\tChildren Join: %u\n",
5594 get_children_join_value(ce, i));
5595 }
5596
5597 for_each_child(ce, child)
5598 guc_log_context(p, child);
5599 }
5600 }
5601 xa_unlock_irqrestore(&guc->context_lookup, flags);
5602 }
5603
get_children_go_addr(struct intel_context * ce)5604 static inline u32 get_children_go_addr(struct intel_context *ce)
5605 {
5606 GEM_BUG_ON(!intel_context_is_parent(ce));
5607
5608 return i915_ggtt_offset(ce->state) +
5609 __get_parent_scratch_offset(ce) +
5610 offsetof(struct parent_scratch, go.semaphore);
5611 }
5612
get_children_join_addr(struct intel_context * ce,u8 child_index)5613 static inline u32 get_children_join_addr(struct intel_context *ce,
5614 u8 child_index)
5615 {
5616 GEM_BUG_ON(!intel_context_is_parent(ce));
5617
5618 return i915_ggtt_offset(ce->state) +
5619 __get_parent_scratch_offset(ce) +
5620 offsetof(struct parent_scratch, join[child_index].semaphore);
5621 }
5622
5623 #define PARENT_GO_BB 1
5624 #define PARENT_GO_FINI_BREADCRUMB 0
5625 #define CHILD_GO_BB 1
5626 #define CHILD_GO_FINI_BREADCRUMB 0
emit_bb_start_parent_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5627 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5628 u64 offset, u32 len,
5629 const unsigned int flags)
5630 {
5631 struct intel_context *ce = rq->context;
5632 u32 *cs;
5633 u8 i;
5634
5635 GEM_BUG_ON(!intel_context_is_parent(ce));
5636
5637 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5638 if (IS_ERR(cs))
5639 return PTR_ERR(cs);
5640
5641 /* Wait on children */
5642 for (i = 0; i < ce->parallel.number_children; ++i) {
5643 *cs++ = (MI_SEMAPHORE_WAIT |
5644 MI_SEMAPHORE_GLOBAL_GTT |
5645 MI_SEMAPHORE_POLL |
5646 MI_SEMAPHORE_SAD_EQ_SDD);
5647 *cs++ = PARENT_GO_BB;
5648 *cs++ = get_children_join_addr(ce, i);
5649 *cs++ = 0;
5650 }
5651
5652 /* Turn off preemption */
5653 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5654 *cs++ = MI_NOOP;
5655
5656 /* Tell children go */
5657 cs = gen8_emit_ggtt_write(cs,
5658 CHILD_GO_BB,
5659 get_children_go_addr(ce),
5660 0);
5661
5662 /* Jump to batch */
5663 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5664 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5665 *cs++ = lower_32_bits(offset);
5666 *cs++ = upper_32_bits(offset);
5667 *cs++ = MI_NOOP;
5668
5669 intel_ring_advance(rq, cs);
5670
5671 return 0;
5672 }
5673
emit_bb_start_child_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5674 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5675 u64 offset, u32 len,
5676 const unsigned int flags)
5677 {
5678 struct intel_context *ce = rq->context;
5679 struct intel_context *parent = intel_context_to_parent(ce);
5680 u32 *cs;
5681
5682 GEM_BUG_ON(!intel_context_is_child(ce));
5683
5684 cs = intel_ring_begin(rq, 12);
5685 if (IS_ERR(cs))
5686 return PTR_ERR(cs);
5687
5688 /* Signal parent */
5689 cs = gen8_emit_ggtt_write(cs,
5690 PARENT_GO_BB,
5691 get_children_join_addr(parent,
5692 ce->parallel.child_index),
5693 0);
5694
5695 /* Wait on parent for go */
5696 *cs++ = (MI_SEMAPHORE_WAIT |
5697 MI_SEMAPHORE_GLOBAL_GTT |
5698 MI_SEMAPHORE_POLL |
5699 MI_SEMAPHORE_SAD_EQ_SDD);
5700 *cs++ = CHILD_GO_BB;
5701 *cs++ = get_children_go_addr(parent);
5702 *cs++ = 0;
5703
5704 /* Turn off preemption */
5705 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5706
5707 /* Jump to batch */
5708 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5709 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5710 *cs++ = lower_32_bits(offset);
5711 *cs++ = upper_32_bits(offset);
5712
5713 intel_ring_advance(rq, cs);
5714
5715 return 0;
5716 }
5717
5718 static u32 *
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5719 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5720 u32 *cs)
5721 {
5722 struct intel_context *ce = rq->context;
5723 u8 i;
5724
5725 GEM_BUG_ON(!intel_context_is_parent(ce));
5726
5727 /* Wait on children */
5728 for (i = 0; i < ce->parallel.number_children; ++i) {
5729 *cs++ = (MI_SEMAPHORE_WAIT |
5730 MI_SEMAPHORE_GLOBAL_GTT |
5731 MI_SEMAPHORE_POLL |
5732 MI_SEMAPHORE_SAD_EQ_SDD);
5733 *cs++ = PARENT_GO_FINI_BREADCRUMB;
5734 *cs++ = get_children_join_addr(ce, i);
5735 *cs++ = 0;
5736 }
5737
5738 /* Turn on preemption */
5739 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5740 *cs++ = MI_NOOP;
5741
5742 /* Tell children go */
5743 cs = gen8_emit_ggtt_write(cs,
5744 CHILD_GO_FINI_BREADCRUMB,
5745 get_children_go_addr(ce),
5746 0);
5747
5748 return cs;
5749 }
5750
5751 /*
5752 * If this true, a submission of multi-lrc requests had an error and the
5753 * requests need to be skipped. The front end (execuf IOCTL) should've called
5754 * i915_request_skip which squashes the BB but we still need to emit the fini
5755 * breadrcrumbs seqno write. At this point we don't know how many of the
5756 * requests in the multi-lrc submission were generated so we can't do the
5757 * handshake between the parent and children (e.g. if 4 requests should be
5758 * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5759 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5760 * has occurred on any of the requests in submission / relationship.
5761 */
skip_handshake(struct i915_request * rq)5762 static inline bool skip_handshake(struct i915_request *rq)
5763 {
5764 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5765 }
5766
5767 #define NON_SKIP_LEN 6
5768 static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5769 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5770 u32 *cs)
5771 {
5772 struct intel_context *ce = rq->context;
5773 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5774 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5775
5776 GEM_BUG_ON(!intel_context_is_parent(ce));
5777
5778 if (unlikely(skip_handshake(rq))) {
5779 /*
5780 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5781 * the NON_SKIP_LEN comes from the length of the emits below.
5782 */
5783 memset(cs, 0, sizeof(u32) *
5784 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5785 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5786 } else {
5787 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5788 }
5789
5790 /* Emit fini breadcrumb */
5791 before_fini_breadcrumb_user_interrupt_cs = cs;
5792 cs = gen8_emit_ggtt_write(cs,
5793 rq->fence.seqno,
5794 i915_request_active_timeline(rq)->hwsp_offset,
5795 0);
5796
5797 /* User interrupt */
5798 *cs++ = MI_USER_INTERRUPT;
5799 *cs++ = MI_NOOP;
5800
5801 /* Ensure our math for skip + emit is correct */
5802 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5803 cs);
5804 GEM_BUG_ON(start_fini_breadcrumb_cs +
5805 ce->engine->emit_fini_breadcrumb_dw != cs);
5806
5807 rq->tail = intel_ring_offset(rq, cs);
5808
5809 return cs;
5810 }
5811
5812 static u32 *
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5813 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5814 u32 *cs)
5815 {
5816 struct intel_context *ce = rq->context;
5817 struct intel_context *parent = intel_context_to_parent(ce);
5818
5819 GEM_BUG_ON(!intel_context_is_child(ce));
5820
5821 /* Turn on preemption */
5822 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5823 *cs++ = MI_NOOP;
5824
5825 /* Signal parent */
5826 cs = gen8_emit_ggtt_write(cs,
5827 PARENT_GO_FINI_BREADCRUMB,
5828 get_children_join_addr(parent,
5829 ce->parallel.child_index),
5830 0);
5831
5832 /* Wait parent on for go */
5833 *cs++ = (MI_SEMAPHORE_WAIT |
5834 MI_SEMAPHORE_GLOBAL_GTT |
5835 MI_SEMAPHORE_POLL |
5836 MI_SEMAPHORE_SAD_EQ_SDD);
5837 *cs++ = CHILD_GO_FINI_BREADCRUMB;
5838 *cs++ = get_children_go_addr(parent);
5839 *cs++ = 0;
5840
5841 return cs;
5842 }
5843
5844 static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5845 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5846 u32 *cs)
5847 {
5848 struct intel_context *ce = rq->context;
5849 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5850 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5851
5852 GEM_BUG_ON(!intel_context_is_child(ce));
5853
5854 if (unlikely(skip_handshake(rq))) {
5855 /*
5856 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5857 * the NON_SKIP_LEN comes from the length of the emits below.
5858 */
5859 memset(cs, 0, sizeof(u32) *
5860 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5861 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5862 } else {
5863 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5864 }
5865
5866 /* Emit fini breadcrumb */
5867 before_fini_breadcrumb_user_interrupt_cs = cs;
5868 cs = gen8_emit_ggtt_write(cs,
5869 rq->fence.seqno,
5870 i915_request_active_timeline(rq)->hwsp_offset,
5871 0);
5872
5873 /* User interrupt */
5874 *cs++ = MI_USER_INTERRUPT;
5875 *cs++ = MI_NOOP;
5876
5877 /* Ensure our math for skip + emit is correct */
5878 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5879 cs);
5880 GEM_BUG_ON(start_fini_breadcrumb_cs +
5881 ce->engine->emit_fini_breadcrumb_dw != cs);
5882
5883 rq->tail = intel_ring_offset(rq, cs);
5884
5885 return cs;
5886 }
5887
5888 #undef NON_SKIP_LEN
5889
5890 static struct intel_context *
guc_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)5891 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5892 unsigned long flags)
5893 {
5894 struct guc_virtual_engine *ve;
5895 struct intel_guc *guc;
5896 unsigned int n;
5897 int err;
5898
5899 ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5900 if (!ve)
5901 return ERR_PTR(-ENOMEM);
5902
5903 guc = gt_to_guc(siblings[0]->gt);
5904
5905 ve->base.i915 = siblings[0]->i915;
5906 ve->base.gt = siblings[0]->gt;
5907 ve->base.uncore = siblings[0]->uncore;
5908 ve->base.id = -1;
5909
5910 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5911 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5912 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5913 ve->base.saturated = ALL_ENGINES;
5914
5915 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5916
5917 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5918
5919 ve->base.cops = &virtual_guc_context_ops;
5920 ve->base.request_alloc = guc_request_alloc;
5921 ve->base.bump_serial = virtual_guc_bump_serial;
5922
5923 ve->base.submit_request = guc_submit_request;
5924
5925 ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5926
5927 BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5928 ve->base.mask = VIRTUAL_ENGINES;
5929
5930 intel_context_init(&ve->context, &ve->base);
5931
5932 for (n = 0; n < count; n++) {
5933 struct intel_engine_cs *sibling = siblings[n];
5934
5935 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5936 if (sibling->mask & ve->base.mask) {
5937 guc_dbg(guc, "duplicate %s entry in load balancer\n",
5938 sibling->name);
5939 err = -EINVAL;
5940 goto err_put;
5941 }
5942
5943 ve->base.mask |= sibling->mask;
5944 ve->base.logical_mask |= sibling->logical_mask;
5945
5946 if (n != 0 && ve->base.class != sibling->class) {
5947 guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5948 sibling->class, ve->base.class);
5949 err = -EINVAL;
5950 goto err_put;
5951 } else if (n == 0) {
5952 ve->base.class = sibling->class;
5953 ve->base.uabi_class = sibling->uabi_class;
5954 snprintf(ve->base.name, sizeof(ve->base.name),
5955 "v%dx%d", ve->base.class, count);
5956 ve->base.context_size = sibling->context_size;
5957
5958 ve->base.add_active_request =
5959 sibling->add_active_request;
5960 ve->base.remove_active_request =
5961 sibling->remove_active_request;
5962 ve->base.emit_bb_start = sibling->emit_bb_start;
5963 ve->base.emit_flush = sibling->emit_flush;
5964 ve->base.emit_init_breadcrumb =
5965 sibling->emit_init_breadcrumb;
5966 ve->base.emit_fini_breadcrumb =
5967 sibling->emit_fini_breadcrumb;
5968 ve->base.emit_fini_breadcrumb_dw =
5969 sibling->emit_fini_breadcrumb_dw;
5970 ve->base.breadcrumbs =
5971 intel_breadcrumbs_get(sibling->breadcrumbs);
5972
5973 ve->base.flags |= sibling->flags;
5974
5975 ve->base.props.timeslice_duration_ms =
5976 sibling->props.timeslice_duration_ms;
5977 ve->base.props.preempt_timeout_ms =
5978 sibling->props.preempt_timeout_ms;
5979 }
5980 }
5981
5982 return &ve->context;
5983
5984 err_put:
5985 intel_context_put(&ve->context);
5986 return ERR_PTR(err);
5987 }
5988
intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs * ve)5989 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5990 {
5991 struct intel_engine_cs *engine;
5992 intel_engine_mask_t tmp, mask = ve->mask;
5993
5994 for_each_engine_masked(engine, ve->gt, mask, tmp)
5995 if (READ_ONCE(engine->props.heartbeat_interval_ms))
5996 return true;
5997
5998 return false;
5999 }
6000
6001 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6002 #include "selftest_guc.c"
6003 #include "selftest_guc_multi_lrc.c"
6004 #include "selftest_guc_hangcheck.c"
6005 #endif
6006