1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65
66 /* No special request */
67 #define FPI_NONE ((__force fpi_t)0)
68
69 /*
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
76 */
77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78
79 /*
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
83 *
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
87 * reporting).
88 */
89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
90
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97 * On SMP, spin_trylock is sufficient protection.
98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99 */
100 #define pcp_trylock_prepare(flags) do { } while (0)
101 #define pcp_trylock_finish(flag) do { } while (0)
102 #else
103
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags) local_irq_save(flags)
106 #define pcp_trylock_finish(flags) local_irq_restore(flags)
107 #endif
108
109 /*
110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111 * a migration causing the wrong PCP to be locked and remote memory being
112 * potentially allocated, pin the task to the CPU for the lookup+lock.
113 * preempt_disable is used on !RT because it is faster than migrate_disable.
114 * migrate_disable is used on RT because otherwise RT spinlock usage is
115 * interfered with and a high priority task cannot preempt the allocator.
116 */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin() preempt_disable()
119 #define pcpu_task_unpin() preempt_enable()
120 #else
121 #define pcpu_task_pin() migrate_disable()
122 #define pcpu_task_unpin() migrate_enable()
123 #endif
124
125 /*
126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127 * Return value should be used with equivalent unlock helper.
128 */
129 #define pcpu_spin_lock(type, member, ptr) \
130 ({ \
131 type *_ret; \
132 pcpu_task_pin(); \
133 _ret = this_cpu_ptr(ptr); \
134 spin_lock(&_ret->member); \
135 _ret; \
136 })
137
138 #define pcpu_spin_trylock(type, member, ptr) \
139 ({ \
140 type *_ret; \
141 pcpu_task_pin(); \
142 _ret = this_cpu_ptr(ptr); \
143 if (!spin_trylock(&_ret->member)) { \
144 pcpu_task_unpin(); \
145 _ret = NULL; \
146 } \
147 _ret; \
148 })
149
150 #define pcpu_spin_unlock(member, ptr) \
151 ({ \
152 spin_unlock(&ptr->member); \
153 pcpu_task_unpin(); \
154 })
155
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr) \
158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159
160 #define pcp_spin_trylock(ptr) \
161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162
163 #define pcp_spin_unlock(ptr) \
164 pcpu_spin_unlock(lock, ptr)
165
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178 * defined in <linux/topology.h>.
179 */
180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190
191 /*
192 * Array of node states.
193 */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 [N_POSSIBLE] = NODE_MASK_ALL,
196 [N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 [N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 [N_MEMORY] = { { [0] = 1UL } },
203 [N_CPU] = { { [0] = 1UL } },
204 #endif /* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 fpi_t fpi_flags);
216
217 /*
218 * results with 256, 32 in the lowmem_reserve sysctl:
219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220 * 1G machine -> (16M dma, 784M normal, 224M high)
221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224 *
225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
226 * don't need any ZONE_NORMAL reservation
227 */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 [ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 [ZONE_DMA32] = 256,
234 #endif
235 [ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 [ZONE_HIGHMEM] = 0,
238 #endif
239 [ZONE_MOVABLE] = 0,
240 };
241
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 "DMA32",
248 #endif
249 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 "HighMem",
252 #endif
253 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 "Device",
256 #endif
257 };
258
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 "Unmovable",
261 "Movable",
262 "Reclaimable",
263 "HighAtomic",
264 #ifdef CONFIG_CMA
265 "CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 "Isolate",
269 #endif
270 };
271
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291
292 int page_group_by_mobility_disabled __read_mostly;
293
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296 * During boot we initialize deferred pages on-demand, as needed, but once
297 * page_alloc_init_late() has finished, the deferred pages are all initialized,
298 * and we can permanently disable that path.
299 */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301
deferred_pages_enabled(void)302 static inline bool deferred_pages_enabled(void)
303 {
304 return static_branch_unlikely(&deferred_pages);
305 }
306
307 /*
308 * deferred_grow_zone() is __init, but it is called from
309 * get_page_from_freelist() during early boot until deferred_pages permanently
310 * disables this call. This is why we have refdata wrapper to avoid warning,
311 * and to ensure that the function body gets unloaded.
312 */
313 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 return deferred_grow_zone(zone, order);
317 }
318 #else
deferred_pages_enabled(void)319 static inline bool deferred_pages_enabled(void)
320 {
321 return false;
322 }
323
_deferred_grow_zone(struct zone * zone,unsigned int order)324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340
pfn_to_bitidx(const struct page * page,unsigned long pfn)341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 pfn &= (PAGES_PER_SECTION-1);
345 #else
346 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350
351 /**
352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353 * @page: The page within the block of interest
354 * @pfn: The target page frame number
355 * @mask: mask of bits that the caller is interested in
356 *
357 * Return: pageblock_bits flags
358 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 unsigned long pfn, unsigned long mask)
361 {
362 unsigned long *bitmap;
363 unsigned long bitidx, word_bitidx;
364 unsigned long word;
365
366 bitmap = get_pageblock_bitmap(page, pfn);
367 bitidx = pfn_to_bitidx(page, pfn);
368 word_bitidx = bitidx / BITS_PER_LONG;
369 bitidx &= (BITS_PER_LONG-1);
370 /*
371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 * a consistent read of the memory array, so that results, even though
373 * racy, are not corrupted.
374 */
375 word = READ_ONCE(bitmap[word_bitidx]);
376 return (word >> bitidx) & mask;
377 }
378
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 unsigned long pfn)
381 {
382 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384
385 /**
386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387 * @page: The page within the block of interest
388 * @flags: The flags to set
389 * @pfn: The target page frame number
390 * @mask: mask of bits that the caller is interested in
391 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 unsigned long pfn,
394 unsigned long mask)
395 {
396 unsigned long *bitmap;
397 unsigned long bitidx, word_bitidx;
398 unsigned long word;
399
400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402
403 bitmap = get_pageblock_bitmap(page, pfn);
404 bitidx = pfn_to_bitidx(page, pfn);
405 word_bitidx = bitidx / BITS_PER_LONG;
406 bitidx &= (BITS_PER_LONG-1);
407
408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409
410 mask <<= bitidx;
411 flags <<= bitidx;
412
413 word = READ_ONCE(bitmap[word_bitidx]);
414 do {
415 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417
set_pageblock_migratetype(struct page * page,int migratetype)418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 if (unlikely(page_group_by_mobility_disabled &&
421 migratetype < MIGRATE_PCPTYPES))
422 migratetype = MIGRATE_UNMOVABLE;
423
424 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427
428 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 int ret;
432 unsigned seq;
433 unsigned long pfn = page_to_pfn(page);
434 unsigned long sp, start_pfn;
435
436 do {
437 seq = zone_span_seqbegin(zone);
438 start_pfn = zone->zone_start_pfn;
439 sp = zone->spanned_pages;
440 ret = !zone_spans_pfn(zone, pfn);
441 } while (zone_span_seqretry(zone, seq));
442
443 if (ret)
444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 pfn, zone_to_nid(zone), zone->name,
446 start_pfn, start_pfn + sp);
447
448 return ret;
449 }
450
451 /*
452 * Temporary debugging check for pages not lying within a given zone.
453 */
bad_range(struct zone * zone,struct page * page)454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 if (page_outside_zone_boundaries(zone, page))
457 return true;
458 if (zone != page_zone(page))
459 return true;
460
461 return false;
462 }
463 #else
bad_range(struct zone * zone,struct page * page)464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 return false;
467 }
468 #endif
469
bad_page(struct page * page,const char * reason)470 static void bad_page(struct page *page, const char *reason)
471 {
472 static unsigned long resume;
473 static unsigned long nr_shown;
474 static unsigned long nr_unshown;
475
476 /*
477 * Allow a burst of 60 reports, then keep quiet for that minute;
478 * or allow a steady drip of one report per second.
479 */
480 if (nr_shown == 60) {
481 if (time_before(jiffies, resume)) {
482 nr_unshown++;
483 goto out;
484 }
485 if (nr_unshown) {
486 pr_alert(
487 "BUG: Bad page state: %lu messages suppressed\n",
488 nr_unshown);
489 nr_unshown = 0;
490 }
491 nr_shown = 0;
492 }
493 if (nr_shown++ == 0)
494 resume = jiffies + 60 * HZ;
495
496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
497 current->comm, page_to_pfn(page));
498 dump_page(page, reason);
499
500 print_modules();
501 dump_stack();
502 out:
503 /* Leave bad fields for debug, except PageBuddy could make trouble */
504 if (PageBuddy(page))
505 __ClearPageBuddy(page);
506 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508
order_to_pindex(int migratetype,int order)509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 bool __maybe_unused movable;
512
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 VM_BUG_ON(order != HPAGE_PMD_ORDER);
516
517 movable = migratetype == MIGRATE_MOVABLE;
518
519 return NR_LOWORDER_PCP_LISTS + movable;
520 }
521 #else
522 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524
525 return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527
pindex_to_order(unsigned int pindex)528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 int order = pindex / MIGRATE_PCPTYPES;
531
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 if (pindex >= NR_LOWORDER_PCP_LISTS)
534 order = HPAGE_PMD_ORDER;
535 #else
536 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538
539 return order;
540 }
541
pcp_allowed_order(unsigned int order)542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 if (order == HPAGE_PMD_ORDER)
548 return true;
549 #endif
550 return false;
551 }
552
553 /*
554 * Higher-order pages are called "compound pages". They are structured thusly:
555 *
556 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557 *
558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560 *
561 * The first tail page's ->compound_order holds the order of allocation.
562 * This usage means that zero-order pages may not be compound.
563 */
564
prep_compound_page(struct page * page,unsigned int order)565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 int i;
568 int nr_pages = 1 << order;
569
570 __SetPageHead(page);
571 for (i = 1; i < nr_pages; i++)
572 prep_compound_tail(page, i);
573
574 prep_compound_head(page, order);
575 }
576
set_buddy_order(struct page * page,unsigned int order)577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 set_page_private(page, order);
580 __SetPageBuddy(page);
581 }
582
583 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 struct capture_control *capc = current->capture_control;
587
588 return unlikely(capc) &&
589 !(current->flags & PF_KTHREAD) &&
590 !capc->page &&
591 capc->cc->zone == zone ? capc : NULL;
592 }
593
594 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)595 compaction_capture(struct capture_control *capc, struct page *page,
596 int order, int migratetype)
597 {
598 if (!capc || order != capc->cc->order)
599 return false;
600
601 /* Do not accidentally pollute CMA or isolated regions*/
602 if (is_migrate_cma(migratetype) ||
603 is_migrate_isolate(migratetype))
604 return false;
605
606 /*
607 * Do not let lower order allocations pollute a movable pageblock
608 * unless compaction is also requesting movable pages.
609 * This might let an unmovable request use a reclaimable pageblock
610 * and vice-versa but no more than normal fallback logic which can
611 * have trouble finding a high-order free page.
612 */
613 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 capc->cc->migratetype != MIGRATE_MOVABLE)
615 return false;
616
617 capc->page = page;
618 return true;
619 }
620
621 #else
task_capc(struct zone * zone)622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 return NULL;
625 }
626
627 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)628 compaction_capture(struct capture_control *capc, struct page *page,
629 int order, int migratetype)
630 {
631 return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634
account_freepages(struct zone * zone,int nr_pages,int migratetype)635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 int migratetype)
637 {
638 lockdep_assert_held(&zone->lock);
639
640 if (is_migrate_isolate(migratetype))
641 return;
642
643 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
644
645 if (is_migrate_cma(migratetype))
646 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
647 else if (is_migrate_highatomic(migratetype))
648 WRITE_ONCE(zone->nr_free_highatomic,
649 zone->nr_free_highatomic + nr_pages);
650 }
651
652 /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)653 static inline void __add_to_free_list(struct page *page, struct zone *zone,
654 unsigned int order, int migratetype,
655 bool tail)
656 {
657 struct free_area *area = &zone->free_area[order];
658
659 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
660 "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 get_pageblock_migratetype(page), migratetype, 1 << order);
662
663 if (tail)
664 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
665 else
666 list_add(&page->buddy_list, &area->free_list[migratetype]);
667 area->nr_free++;
668 }
669
670 /*
671 * Used for pages which are on another list. Move the pages to the tail
672 * of the list - so the moved pages won't immediately be considered for
673 * allocation again (e.g., optimization for memory onlining).
674 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)675 static inline void move_to_free_list(struct page *page, struct zone *zone,
676 unsigned int order, int old_mt, int new_mt)
677 {
678 struct free_area *area = &zone->free_area[order];
679
680 /* Free page moving can fail, so it happens before the type update */
681 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
682 "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 get_pageblock_migratetype(page), old_mt, 1 << order);
684
685 list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
686
687 account_freepages(zone, -(1 << order), old_mt);
688 account_freepages(zone, 1 << order, new_mt);
689 }
690
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
692 unsigned int order, int migratetype)
693 {
694 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
695 "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 get_pageblock_migratetype(page), migratetype, 1 << order);
697
698 /* clear reported state and update reported page count */
699 if (page_reported(page))
700 __ClearPageReported(page);
701
702 list_del(&page->buddy_list);
703 __ClearPageBuddy(page);
704 set_page_private(page, 0);
705 zone->free_area[order].nr_free--;
706 }
707
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)708 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
709 unsigned int order, int migratetype)
710 {
711 __del_page_from_free_list(page, zone, order, migratetype);
712 account_freepages(zone, -(1 << order), migratetype);
713 }
714
get_page_from_free_area(struct free_area * area,int migratetype)715 static inline struct page *get_page_from_free_area(struct free_area *area,
716 int migratetype)
717 {
718 return list_first_entry_or_null(&area->free_list[migratetype],
719 struct page, buddy_list);
720 }
721
722 /*
723 * If this is less than the 2nd largest possible page, check if the buddy
724 * of the next-higher order is free. If it is, it's possible
725 * that pages are being freed that will coalesce soon. In case,
726 * that is happening, add the free page to the tail of the list
727 * so it's less likely to be used soon and more likely to be merged
728 * as a 2-level higher order page
729 */
730 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
732 struct page *page, unsigned int order)
733 {
734 unsigned long higher_page_pfn;
735 struct page *higher_page;
736
737 if (order >= MAX_PAGE_ORDER - 1)
738 return false;
739
740 higher_page_pfn = buddy_pfn & pfn;
741 higher_page = page + (higher_page_pfn - pfn);
742
743 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
744 NULL) != NULL;
745 }
746
747 /*
748 * Freeing function for a buddy system allocator.
749 *
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
762 * So when we are allocating or freeing one, we can derive the state of the
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
765 * If a block is freed, and its buddy is also free, then this
766 * triggers coalescing into a block of larger size.
767 *
768 * -- nyc
769 */
770
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)771 static inline void __free_one_page(struct page *page,
772 unsigned long pfn,
773 struct zone *zone, unsigned int order,
774 int migratetype, fpi_t fpi_flags)
775 {
776 struct capture_control *capc = task_capc(zone);
777 unsigned long buddy_pfn = 0;
778 unsigned long combined_pfn;
779 struct page *buddy;
780 bool to_tail;
781
782 VM_BUG_ON(!zone_is_initialized(zone));
783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784
785 VM_BUG_ON(migratetype == -1);
786 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787 VM_BUG_ON_PAGE(bad_range(zone, page), page);
788
789 account_freepages(zone, 1 << order, migratetype);
790
791 while (order < MAX_PAGE_ORDER) {
792 int buddy_mt = migratetype;
793
794 if (compaction_capture(capc, page, order, migratetype)) {
795 account_freepages(zone, -(1 << order), migratetype);
796 return;
797 }
798
799 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
800 if (!buddy)
801 goto done_merging;
802
803 if (unlikely(order >= pageblock_order)) {
804 /*
805 * We want to prevent merge between freepages on pageblock
806 * without fallbacks and normal pageblock. Without this,
807 * pageblock isolation could cause incorrect freepage or CMA
808 * accounting or HIGHATOMIC accounting.
809 */
810 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
811
812 if (migratetype != buddy_mt &&
813 (!migratetype_is_mergeable(migratetype) ||
814 !migratetype_is_mergeable(buddy_mt)))
815 goto done_merging;
816 }
817
818 /*
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
821 */
822 if (page_is_guard(buddy))
823 clear_page_guard(zone, buddy, order);
824 else
825 __del_page_from_free_list(buddy, zone, order, buddy_mt);
826
827 if (unlikely(buddy_mt != migratetype)) {
828 /*
829 * Match buddy type. This ensures that an
830 * expand() down the line puts the sub-blocks
831 * on the right freelists.
832 */
833 set_pageblock_migratetype(buddy, migratetype);
834 }
835
836 combined_pfn = buddy_pfn & pfn;
837 page = page + (combined_pfn - pfn);
838 pfn = combined_pfn;
839 order++;
840 }
841
842 done_merging:
843 set_buddy_order(page, order);
844
845 if (fpi_flags & FPI_TO_TAIL)
846 to_tail = true;
847 else if (is_shuffle_order(order))
848 to_tail = shuffle_pick_tail();
849 else
850 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
851
852 __add_to_free_list(page, zone, order, migratetype, to_tail);
853
854 /* Notify page reporting subsystem of freed page */
855 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
856 page_reporting_notify_free(order);
857 }
858
859 /*
860 * A bad page could be due to a number of fields. Instead of multiple branches,
861 * try and check multiple fields with one check. The caller must do a detailed
862 * check if necessary.
863 */
page_expected_state(struct page * page,unsigned long check_flags)864 static inline bool page_expected_state(struct page *page,
865 unsigned long check_flags)
866 {
867 if (unlikely(atomic_read(&page->_mapcount) != -1))
868 return false;
869
870 if (unlikely((unsigned long)page->mapping |
871 page_ref_count(page) |
872 #ifdef CONFIG_MEMCG
873 page->memcg_data |
874 #endif
875 #ifdef CONFIG_PAGE_POOL
876 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
877 #endif
878 (page->flags & check_flags)))
879 return false;
880
881 return true;
882 }
883
page_bad_reason(struct page * page,unsigned long flags)884 static const char *page_bad_reason(struct page *page, unsigned long flags)
885 {
886 const char *bad_reason = NULL;
887
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 bad_reason = "nonzero mapcount";
890 if (unlikely(page->mapping != NULL))
891 bad_reason = "non-NULL mapping";
892 if (unlikely(page_ref_count(page) != 0))
893 bad_reason = "nonzero _refcount";
894 if (unlikely(page->flags & flags)) {
895 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
896 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
897 else
898 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
899 }
900 #ifdef CONFIG_MEMCG
901 if (unlikely(page->memcg_data))
902 bad_reason = "page still charged to cgroup";
903 #endif
904 #ifdef CONFIG_PAGE_POOL
905 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
906 bad_reason = "page_pool leak";
907 #endif
908 return bad_reason;
909 }
910
free_page_is_bad_report(struct page * page)911 static void free_page_is_bad_report(struct page *page)
912 {
913 bad_page(page,
914 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
915 }
916
free_page_is_bad(struct page * page)917 static inline bool free_page_is_bad(struct page *page)
918 {
919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 return false;
921
922 /* Something has gone sideways, find it */
923 free_page_is_bad_report(page);
924 return true;
925 }
926
is_check_pages_enabled(void)927 static inline bool is_check_pages_enabled(void)
928 {
929 return static_branch_unlikely(&check_pages_enabled);
930 }
931
free_tail_page_prepare(struct page * head_page,struct page * page)932 static int free_tail_page_prepare(struct page *head_page, struct page *page)
933 {
934 struct folio *folio = (struct folio *)head_page;
935 int ret = 1;
936
937 /*
938 * We rely page->lru.next never has bit 0 set, unless the page
939 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940 */
941 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942
943 if (!is_check_pages_enabled()) {
944 ret = 0;
945 goto out;
946 }
947 switch (page - head_page) {
948 case 1:
949 /* the first tail page: these may be in place of ->mapping */
950 if (unlikely(folio_entire_mapcount(folio))) {
951 bad_page(page, "nonzero entire_mapcount");
952 goto out;
953 }
954 if (unlikely(folio_large_mapcount(folio))) {
955 bad_page(page, "nonzero large_mapcount");
956 goto out;
957 }
958 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
959 bad_page(page, "nonzero nr_pages_mapped");
960 goto out;
961 }
962 if (unlikely(atomic_read(&folio->_pincount))) {
963 bad_page(page, "nonzero pincount");
964 goto out;
965 }
966 break;
967 case 2:
968 /* the second tail page: deferred_list overlaps ->mapping */
969 if (unlikely(!list_empty(&folio->_deferred_list))) {
970 bad_page(page, "on deferred list");
971 goto out;
972 }
973 break;
974 default:
975 if (page->mapping != TAIL_MAPPING) {
976 bad_page(page, "corrupted mapping in tail page");
977 goto out;
978 }
979 break;
980 }
981 if (unlikely(!PageTail(page))) {
982 bad_page(page, "PageTail not set");
983 goto out;
984 }
985 if (unlikely(compound_head(page) != head_page)) {
986 bad_page(page, "compound_head not consistent");
987 goto out;
988 }
989 ret = 0;
990 out:
991 page->mapping = NULL;
992 clear_compound_head(page);
993 return ret;
994 }
995
996 /*
997 * Skip KASAN memory poisoning when either:
998 *
999 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1001 * using page tags instead (see below).
1002 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003 * that error detection is disabled for accesses via the page address.
1004 *
1005 * Pages will have match-all tags in the following circumstances:
1006 *
1007 * 1. Pages are being initialized for the first time, including during deferred
1008 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011 * 3. The allocation was excluded from being checked due to sampling,
1012 * see the call to kasan_unpoison_pages.
1013 *
1014 * Poisoning pages during deferred memory init will greatly lengthen the
1015 * process and cause problem in large memory systems as the deferred pages
1016 * initialization is done with interrupt disabled.
1017 *
1018 * Assuming that there will be no reference to those newly initialized
1019 * pages before they are ever allocated, this should have no effect on
1020 * KASAN memory tracking as the poison will be properly inserted at page
1021 * allocation time. The only corner case is when pages are allocated by
1022 * on-demand allocation and then freed again before the deferred pages
1023 * initialization is done, but this is not likely to happen.
1024 */
should_skip_kasan_poison(struct page * page)1025 static inline bool should_skip_kasan_poison(struct page *page)
1026 {
1027 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1028 return deferred_pages_enabled();
1029
1030 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1031 }
1032
kernel_init_pages(struct page * page,int numpages)1033 static void kernel_init_pages(struct page *page, int numpages)
1034 {
1035 int i;
1036
1037 /* s390's use of memset() could override KASAN redzones. */
1038 kasan_disable_current();
1039 for (i = 0; i < numpages; i++)
1040 clear_highpage_kasan_tagged(page + i);
1041 kasan_enable_current();
1042 }
1043
free_pages_prepare(struct page * page,unsigned int order)1044 __always_inline bool free_pages_prepare(struct page *page,
1045 unsigned int order)
1046 {
1047 int bad = 0;
1048 bool skip_kasan_poison = should_skip_kasan_poison(page);
1049 bool init = want_init_on_free();
1050 bool compound = PageCompound(page);
1051
1052 VM_BUG_ON_PAGE(PageTail(page), page);
1053
1054 trace_mm_page_free(page, order);
1055 kmsan_free_page(page, order);
1056
1057 if (memcg_kmem_online() && PageMemcgKmem(page))
1058 __memcg_kmem_uncharge_page(page, order);
1059
1060 if (unlikely(PageHWPoison(page)) && !order) {
1061 /* Do not let hwpoison pages hit pcplists/buddy */
1062 reset_page_owner(page, order);
1063 page_table_check_free(page, order);
1064 pgalloc_tag_sub(page, 1 << order);
1065
1066 /*
1067 * The page is isolated and accounted for.
1068 * Mark the codetag as empty to avoid accounting error
1069 * when the page is freed by unpoison_memory().
1070 */
1071 clear_page_tag_ref(page);
1072 return false;
1073 }
1074
1075 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1076
1077 /*
1078 * Check tail pages before head page information is cleared to
1079 * avoid checking PageCompound for order-0 pages.
1080 */
1081 if (unlikely(order)) {
1082 int i;
1083
1084 if (compound)
1085 page[1].flags &= ~PAGE_FLAGS_SECOND;
1086 for (i = 1; i < (1 << order); i++) {
1087 if (compound)
1088 bad += free_tail_page_prepare(page, page + i);
1089 if (is_check_pages_enabled()) {
1090 if (free_page_is_bad(page + i)) {
1091 bad++;
1092 continue;
1093 }
1094 }
1095 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1096 }
1097 }
1098 if (PageMappingFlags(page)) {
1099 if (PageAnon(page))
1100 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1101 page->mapping = NULL;
1102 }
1103 if (is_check_pages_enabled()) {
1104 if (free_page_is_bad(page))
1105 bad++;
1106 if (bad)
1107 return false;
1108 }
1109
1110 page_cpupid_reset_last(page);
1111 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1112 reset_page_owner(page, order);
1113 page_table_check_free(page, order);
1114 pgalloc_tag_sub(page, 1 << order);
1115
1116 if (!PageHighMem(page)) {
1117 debug_check_no_locks_freed(page_address(page),
1118 PAGE_SIZE << order);
1119 debug_check_no_obj_freed(page_address(page),
1120 PAGE_SIZE << order);
1121 }
1122
1123 kernel_poison_pages(page, 1 << order);
1124
1125 /*
1126 * As memory initialization might be integrated into KASAN,
1127 * KASAN poisoning and memory initialization code must be
1128 * kept together to avoid discrepancies in behavior.
1129 *
1130 * With hardware tag-based KASAN, memory tags must be set before the
1131 * page becomes unavailable via debug_pagealloc or arch_free_page.
1132 */
1133 if (!skip_kasan_poison) {
1134 kasan_poison_pages(page, order, init);
1135
1136 /* Memory is already initialized if KASAN did it internally. */
1137 if (kasan_has_integrated_init())
1138 init = false;
1139 }
1140 if (init)
1141 kernel_init_pages(page, 1 << order);
1142
1143 /*
1144 * arch_free_page() can make the page's contents inaccessible. s390
1145 * does this. So nothing which can access the page's contents should
1146 * happen after this.
1147 */
1148 arch_free_page(page, order);
1149
1150 debug_pagealloc_unmap_pages(page, 1 << order);
1151
1152 return true;
1153 }
1154
1155 /*
1156 * Frees a number of pages from the PCP lists
1157 * Assumes all pages on list are in same zone.
1158 * count is the number of pages to free.
1159 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1160 static void free_pcppages_bulk(struct zone *zone, int count,
1161 struct per_cpu_pages *pcp,
1162 int pindex)
1163 {
1164 unsigned long flags;
1165 unsigned int order;
1166 struct page *page;
1167
1168 /*
1169 * Ensure proper count is passed which otherwise would stuck in the
1170 * below while (list_empty(list)) loop.
1171 */
1172 count = min(pcp->count, count);
1173
1174 /* Ensure requested pindex is drained first. */
1175 pindex = pindex - 1;
1176
1177 spin_lock_irqsave(&zone->lock, flags);
1178
1179 while (count > 0) {
1180 struct list_head *list;
1181 int nr_pages;
1182
1183 /* Remove pages from lists in a round-robin fashion. */
1184 do {
1185 if (++pindex > NR_PCP_LISTS - 1)
1186 pindex = 0;
1187 list = &pcp->lists[pindex];
1188 } while (list_empty(list));
1189
1190 order = pindex_to_order(pindex);
1191 nr_pages = 1 << order;
1192 do {
1193 unsigned long pfn;
1194 int mt;
1195
1196 page = list_last_entry(list, struct page, pcp_list);
1197 pfn = page_to_pfn(page);
1198 mt = get_pfnblock_migratetype(page, pfn);
1199
1200 /* must delete to avoid corrupting pcp list */
1201 list_del(&page->pcp_list);
1202 count -= nr_pages;
1203 pcp->count -= nr_pages;
1204
1205 __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1206 trace_mm_page_pcpu_drain(page, order, mt);
1207 } while (count > 0 && !list_empty(list));
1208 }
1209
1210 spin_unlock_irqrestore(&zone->lock, flags);
1211 }
1212
1213 /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1214 static void split_large_buddy(struct zone *zone, struct page *page,
1215 unsigned long pfn, int order, fpi_t fpi)
1216 {
1217 unsigned long end = pfn + (1 << order);
1218
1219 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1220 /* Caller removed page from freelist, buddy info cleared! */
1221 VM_WARN_ON_ONCE(PageBuddy(page));
1222
1223 if (order > pageblock_order)
1224 order = pageblock_order;
1225
1226 while (pfn != end) {
1227 int mt = get_pfnblock_migratetype(page, pfn);
1228
1229 __free_one_page(page, pfn, zone, order, mt, fpi);
1230 pfn += 1 << order;
1231 page = pfn_to_page(pfn);
1232 }
1233 }
1234
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1235 static void free_one_page(struct zone *zone, struct page *page,
1236 unsigned long pfn, unsigned int order,
1237 fpi_t fpi_flags)
1238 {
1239 unsigned long flags;
1240
1241 spin_lock_irqsave(&zone->lock, flags);
1242 split_large_buddy(zone, page, pfn, order, fpi_flags);
1243 spin_unlock_irqrestore(&zone->lock, flags);
1244
1245 __count_vm_events(PGFREE, 1 << order);
1246 }
1247
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1248 static void __free_pages_ok(struct page *page, unsigned int order,
1249 fpi_t fpi_flags)
1250 {
1251 unsigned long pfn = page_to_pfn(page);
1252 struct zone *zone = page_zone(page);
1253
1254 if (free_pages_prepare(page, order))
1255 free_one_page(zone, page, pfn, order, fpi_flags);
1256 }
1257
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1258 void __meminit __free_pages_core(struct page *page, unsigned int order,
1259 enum meminit_context context)
1260 {
1261 unsigned int nr_pages = 1 << order;
1262 struct page *p = page;
1263 unsigned int loop;
1264
1265 /*
1266 * When initializing the memmap, __init_single_page() sets the refcount
1267 * of all pages to 1 ("allocated"/"not free"). We have to set the
1268 * refcount of all involved pages to 0.
1269 *
1270 * Note that hotplugged memory pages are initialized to PageOffline().
1271 * Pages freed from memblock might be marked as reserved.
1272 */
1273 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1274 unlikely(context == MEMINIT_HOTPLUG)) {
1275 for (loop = 0; loop < nr_pages; loop++, p++) {
1276 VM_WARN_ON_ONCE(PageReserved(p));
1277 __ClearPageOffline(p);
1278 set_page_count(p, 0);
1279 }
1280
1281 /*
1282 * Freeing the page with debug_pagealloc enabled will try to
1283 * unmap it; some archs don't like double-unmappings, so
1284 * map it first.
1285 */
1286 debug_pagealloc_map_pages(page, nr_pages);
1287 adjust_managed_page_count(page, nr_pages);
1288 } else {
1289 for (loop = 0; loop < nr_pages; loop++, p++) {
1290 __ClearPageReserved(p);
1291 set_page_count(p, 0);
1292 }
1293
1294 /* memblock adjusts totalram_pages() manually. */
1295 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1296 }
1297
1298 if (page_contains_unaccepted(page, order)) {
1299 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1300 return;
1301
1302 accept_memory(page_to_phys(page), PAGE_SIZE << order);
1303 }
1304
1305 /*
1306 * Bypass PCP and place fresh pages right to the tail, primarily
1307 * relevant for memory onlining.
1308 */
1309 __free_pages_ok(page, order, FPI_TO_TAIL);
1310 }
1311
1312 /*
1313 * Check that the whole (or subset of) a pageblock given by the interval of
1314 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1315 * with the migration of free compaction scanner.
1316 *
1317 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1318 *
1319 * It's possible on some configurations to have a setup like node0 node1 node0
1320 * i.e. it's possible that all pages within a zones range of pages do not
1321 * belong to a single zone. We assume that a border between node0 and node1
1322 * can occur within a single pageblock, but not a node0 node1 node0
1323 * interleaving within a single pageblock. It is therefore sufficient to check
1324 * the first and last page of a pageblock and avoid checking each individual
1325 * page in a pageblock.
1326 *
1327 * Note: the function may return non-NULL struct page even for a page block
1328 * which contains a memory hole (i.e. there is no physical memory for a subset
1329 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1330 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1331 * even though the start pfn is online and valid. This should be safe most of
1332 * the time because struct pages are still initialized via init_unavailable_range()
1333 * and pfn walkers shouldn't touch any physical memory range for which they do
1334 * not recognize any specific metadata in struct pages.
1335 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1336 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1337 unsigned long end_pfn, struct zone *zone)
1338 {
1339 struct page *start_page;
1340 struct page *end_page;
1341
1342 /* end_pfn is one past the range we are checking */
1343 end_pfn--;
1344
1345 if (!pfn_valid(end_pfn))
1346 return NULL;
1347
1348 start_page = pfn_to_online_page(start_pfn);
1349 if (!start_page)
1350 return NULL;
1351
1352 if (page_zone(start_page) != zone)
1353 return NULL;
1354
1355 end_page = pfn_to_page(end_pfn);
1356
1357 /* This gives a shorter code than deriving page_zone(end_page) */
1358 if (page_zone_id(start_page) != page_zone_id(end_page))
1359 return NULL;
1360
1361 return start_page;
1362 }
1363
1364 /*
1365 * The order of subdivision here is critical for the IO subsystem.
1366 * Please do not alter this order without good reasons and regression
1367 * testing. Specifically, as large blocks of memory are subdivided,
1368 * the order in which smaller blocks are delivered depends on the order
1369 * they're subdivided in this function. This is the primary factor
1370 * influencing the order in which pages are delivered to the IO
1371 * subsystem according to empirical testing, and this is also justified
1372 * by considering the behavior of a buddy system containing a single
1373 * large block of memory acted on by a series of small allocations.
1374 * This behavior is a critical factor in sglist merging's success.
1375 *
1376 * -- nyc
1377 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1378 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1379 int high, int migratetype)
1380 {
1381 unsigned int size = 1 << high;
1382 unsigned int nr_added = 0;
1383
1384 while (high > low) {
1385 high--;
1386 size >>= 1;
1387 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1388
1389 /*
1390 * Mark as guard pages (or page), that will allow to
1391 * merge back to allocator when buddy will be freed.
1392 * Corresponding page table entries will not be touched,
1393 * pages will stay not present in virtual address space
1394 */
1395 if (set_page_guard(zone, &page[size], high))
1396 continue;
1397
1398 __add_to_free_list(&page[size], zone, high, migratetype, false);
1399 set_buddy_order(&page[size], high);
1400 nr_added += size;
1401 }
1402
1403 return nr_added;
1404 }
1405
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1406 static __always_inline void page_del_and_expand(struct zone *zone,
1407 struct page *page, int low,
1408 int high, int migratetype)
1409 {
1410 int nr_pages = 1 << high;
1411
1412 __del_page_from_free_list(page, zone, high, migratetype);
1413 nr_pages -= expand(zone, page, low, high, migratetype);
1414 account_freepages(zone, -nr_pages, migratetype);
1415 }
1416
check_new_page_bad(struct page * page)1417 static void check_new_page_bad(struct page *page)
1418 {
1419 if (unlikely(page->flags & __PG_HWPOISON)) {
1420 /* Don't complain about hwpoisoned pages */
1421 if (PageBuddy(page))
1422 __ClearPageBuddy(page);
1423 return;
1424 }
1425
1426 bad_page(page,
1427 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1428 }
1429
1430 /*
1431 * This page is about to be returned from the page allocator
1432 */
check_new_page(struct page * page)1433 static bool check_new_page(struct page *page)
1434 {
1435 if (likely(page_expected_state(page,
1436 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1437 return false;
1438
1439 check_new_page_bad(page);
1440 return true;
1441 }
1442
check_new_pages(struct page * page,unsigned int order)1443 static inline bool check_new_pages(struct page *page, unsigned int order)
1444 {
1445 if (is_check_pages_enabled()) {
1446 for (int i = 0; i < (1 << order); i++) {
1447 struct page *p = page + i;
1448
1449 if (check_new_page(p))
1450 return true;
1451 }
1452 }
1453
1454 return false;
1455 }
1456
should_skip_kasan_unpoison(gfp_t flags)1457 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1458 {
1459 /* Don't skip if a software KASAN mode is enabled. */
1460 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1461 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1462 return false;
1463
1464 /* Skip, if hardware tag-based KASAN is not enabled. */
1465 if (!kasan_hw_tags_enabled())
1466 return true;
1467
1468 /*
1469 * With hardware tag-based KASAN enabled, skip if this has been
1470 * requested via __GFP_SKIP_KASAN.
1471 */
1472 return flags & __GFP_SKIP_KASAN;
1473 }
1474
should_skip_init(gfp_t flags)1475 static inline bool should_skip_init(gfp_t flags)
1476 {
1477 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1478 if (!kasan_hw_tags_enabled())
1479 return false;
1480
1481 /* For hardware tag-based KASAN, skip if requested. */
1482 return (flags & __GFP_SKIP_ZERO);
1483 }
1484
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1485 inline void post_alloc_hook(struct page *page, unsigned int order,
1486 gfp_t gfp_flags)
1487 {
1488 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1489 !should_skip_init(gfp_flags);
1490 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1491 int i;
1492
1493 set_page_private(page, 0);
1494 set_page_refcounted(page);
1495
1496 arch_alloc_page(page, order);
1497 debug_pagealloc_map_pages(page, 1 << order);
1498
1499 /*
1500 * Page unpoisoning must happen before memory initialization.
1501 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1502 * allocations and the page unpoisoning code will complain.
1503 */
1504 kernel_unpoison_pages(page, 1 << order);
1505
1506 /*
1507 * As memory initialization might be integrated into KASAN,
1508 * KASAN unpoisoning and memory initializion code must be
1509 * kept together to avoid discrepancies in behavior.
1510 */
1511
1512 /*
1513 * If memory tags should be zeroed
1514 * (which happens only when memory should be initialized as well).
1515 */
1516 if (zero_tags) {
1517 /* Initialize both memory and memory tags. */
1518 for (i = 0; i != 1 << order; ++i)
1519 tag_clear_highpage(page + i);
1520
1521 /* Take note that memory was initialized by the loop above. */
1522 init = false;
1523 }
1524 if (!should_skip_kasan_unpoison(gfp_flags) &&
1525 kasan_unpoison_pages(page, order, init)) {
1526 /* Take note that memory was initialized by KASAN. */
1527 if (kasan_has_integrated_init())
1528 init = false;
1529 } else {
1530 /*
1531 * If memory tags have not been set by KASAN, reset the page
1532 * tags to ensure page_address() dereferencing does not fault.
1533 */
1534 for (i = 0; i != 1 << order; ++i)
1535 page_kasan_tag_reset(page + i);
1536 }
1537 /* If memory is still not initialized, initialize it now. */
1538 if (init)
1539 kernel_init_pages(page, 1 << order);
1540
1541 set_page_owner(page, order, gfp_flags);
1542 page_table_check_alloc(page, order);
1543 pgalloc_tag_add(page, current, 1 << order);
1544 }
1545
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1546 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1547 unsigned int alloc_flags)
1548 {
1549 post_alloc_hook(page, order, gfp_flags);
1550
1551 if (order && (gfp_flags & __GFP_COMP))
1552 prep_compound_page(page, order);
1553
1554 /*
1555 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1556 * allocate the page. The expectation is that the caller is taking
1557 * steps that will free more memory. The caller should avoid the page
1558 * being used for !PFMEMALLOC purposes.
1559 */
1560 if (alloc_flags & ALLOC_NO_WATERMARKS)
1561 set_page_pfmemalloc(page);
1562 else
1563 clear_page_pfmemalloc(page);
1564 }
1565
1566 /*
1567 * Go through the free lists for the given migratetype and remove
1568 * the smallest available page from the freelists
1569 */
1570 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1571 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1572 int migratetype)
1573 {
1574 unsigned int current_order;
1575 struct free_area *area;
1576 struct page *page;
1577
1578 /* Find a page of the appropriate size in the preferred list */
1579 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1580 area = &(zone->free_area[current_order]);
1581 page = get_page_from_free_area(area, migratetype);
1582 if (!page)
1583 continue;
1584
1585 page_del_and_expand(zone, page, order, current_order,
1586 migratetype);
1587 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1588 pcp_allowed_order(order) &&
1589 migratetype < MIGRATE_PCPTYPES);
1590 return page;
1591 }
1592
1593 return NULL;
1594 }
1595
1596
1597 /*
1598 * This array describes the order lists are fallen back to when
1599 * the free lists for the desirable migrate type are depleted
1600 *
1601 * The other migratetypes do not have fallbacks.
1602 */
1603 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1604 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1605 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1606 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1607 };
1608
1609 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1610 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1611 unsigned int order)
1612 {
1613 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1614 }
1615 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1616 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1617 unsigned int order) { return NULL; }
1618 #endif
1619
1620 /*
1621 * Change the type of a block and move all its free pages to that
1622 * type's freelist.
1623 */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1624 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1625 int old_mt, int new_mt)
1626 {
1627 struct page *page;
1628 unsigned long pfn, end_pfn;
1629 unsigned int order;
1630 int pages_moved = 0;
1631
1632 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1633 end_pfn = pageblock_end_pfn(start_pfn);
1634
1635 for (pfn = start_pfn; pfn < end_pfn;) {
1636 page = pfn_to_page(pfn);
1637 if (!PageBuddy(page)) {
1638 pfn++;
1639 continue;
1640 }
1641
1642 /* Make sure we are not inadvertently changing nodes */
1643 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1644 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1645
1646 order = buddy_order(page);
1647
1648 move_to_free_list(page, zone, order, old_mt, new_mt);
1649
1650 pfn += 1 << order;
1651 pages_moved += 1 << order;
1652 }
1653
1654 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1655
1656 return pages_moved;
1657 }
1658
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1659 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1660 unsigned long *start_pfn,
1661 int *num_free, int *num_movable)
1662 {
1663 unsigned long pfn, start, end;
1664
1665 pfn = page_to_pfn(page);
1666 start = pageblock_start_pfn(pfn);
1667 end = pageblock_end_pfn(pfn);
1668
1669 /*
1670 * The caller only has the lock for @zone, don't touch ranges
1671 * that straddle into other zones. While we could move part of
1672 * the range that's inside the zone, this call is usually
1673 * accompanied by other operations such as migratetype updates
1674 * which also should be locked.
1675 */
1676 if (!zone_spans_pfn(zone, start))
1677 return false;
1678 if (!zone_spans_pfn(zone, end - 1))
1679 return false;
1680
1681 *start_pfn = start;
1682
1683 if (num_free) {
1684 *num_free = 0;
1685 *num_movable = 0;
1686 for (pfn = start; pfn < end;) {
1687 page = pfn_to_page(pfn);
1688 if (PageBuddy(page)) {
1689 int nr = 1 << buddy_order(page);
1690
1691 *num_free += nr;
1692 pfn += nr;
1693 continue;
1694 }
1695 /*
1696 * We assume that pages that could be isolated for
1697 * migration are movable. But we don't actually try
1698 * isolating, as that would be expensive.
1699 */
1700 if (PageLRU(page) || __PageMovable(page))
1701 (*num_movable)++;
1702 pfn++;
1703 }
1704 }
1705
1706 return true;
1707 }
1708
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)1709 static int move_freepages_block(struct zone *zone, struct page *page,
1710 int old_mt, int new_mt)
1711 {
1712 unsigned long start_pfn;
1713
1714 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1715 return -1;
1716
1717 return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1718 }
1719
1720 #ifdef CONFIG_MEMORY_ISOLATION
1721 /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)1722 static unsigned long find_large_buddy(unsigned long start_pfn)
1723 {
1724 int order = 0;
1725 struct page *page;
1726 unsigned long pfn = start_pfn;
1727
1728 while (!PageBuddy(page = pfn_to_page(pfn))) {
1729 /* Nothing found */
1730 if (++order > MAX_PAGE_ORDER)
1731 return start_pfn;
1732 pfn &= ~0UL << order;
1733 }
1734
1735 /*
1736 * Found a preceding buddy, but does it straddle?
1737 */
1738 if (pfn + (1 << buddy_order(page)) > start_pfn)
1739 return pfn;
1740
1741 /* Nothing found */
1742 return start_pfn;
1743 }
1744
1745 /**
1746 * move_freepages_block_isolate - move free pages in block for page isolation
1747 * @zone: the zone
1748 * @page: the pageblock page
1749 * @migratetype: migratetype to set on the pageblock
1750 *
1751 * This is similar to move_freepages_block(), but handles the special
1752 * case encountered in page isolation, where the block of interest
1753 * might be part of a larger buddy spanning multiple pageblocks.
1754 *
1755 * Unlike the regular page allocator path, which moves pages while
1756 * stealing buddies off the freelist, page isolation is interested in
1757 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1758 *
1759 * This function handles that. Straddling buddies are split into
1760 * individual pageblocks. Only the block of interest is moved.
1761 *
1762 * Returns %true if pages could be moved, %false otherwise.
1763 */
move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)1764 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1765 int migratetype)
1766 {
1767 unsigned long start_pfn, pfn;
1768
1769 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1770 return false;
1771
1772 /* No splits needed if buddies can't span multiple blocks */
1773 if (pageblock_order == MAX_PAGE_ORDER)
1774 goto move;
1775
1776 /* We're a tail block in a larger buddy */
1777 pfn = find_large_buddy(start_pfn);
1778 if (pfn != start_pfn) {
1779 struct page *buddy = pfn_to_page(pfn);
1780 int order = buddy_order(buddy);
1781
1782 del_page_from_free_list(buddy, zone, order,
1783 get_pfnblock_migratetype(buddy, pfn));
1784 set_pageblock_migratetype(page, migratetype);
1785 split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1786 return true;
1787 }
1788
1789 /* We're the starting block of a larger buddy */
1790 if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1791 int order = buddy_order(page);
1792
1793 del_page_from_free_list(page, zone, order,
1794 get_pfnblock_migratetype(page, pfn));
1795 set_pageblock_migratetype(page, migratetype);
1796 split_large_buddy(zone, page, pfn, order, FPI_NONE);
1797 return true;
1798 }
1799 move:
1800 __move_freepages_block(zone, start_pfn,
1801 get_pfnblock_migratetype(page, start_pfn),
1802 migratetype);
1803 return true;
1804 }
1805 #endif /* CONFIG_MEMORY_ISOLATION */
1806
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1807 static void change_pageblock_range(struct page *pageblock_page,
1808 int start_order, int migratetype)
1809 {
1810 int nr_pageblocks = 1 << (start_order - pageblock_order);
1811
1812 while (nr_pageblocks--) {
1813 set_pageblock_migratetype(pageblock_page, migratetype);
1814 pageblock_page += pageblock_nr_pages;
1815 }
1816 }
1817
1818 /*
1819 * When we are falling back to another migratetype during allocation, try to
1820 * steal extra free pages from the same pageblocks to satisfy further
1821 * allocations, instead of polluting multiple pageblocks.
1822 *
1823 * If we are stealing a relatively large buddy page, it is likely there will
1824 * be more free pages in the pageblock, so try to steal them all. For
1825 * reclaimable and unmovable allocations, we steal regardless of page size,
1826 * as fragmentation caused by those allocations polluting movable pageblocks
1827 * is worse than movable allocations stealing from unmovable and reclaimable
1828 * pageblocks.
1829 */
can_steal_fallback(unsigned int order,int start_mt)1830 static bool can_steal_fallback(unsigned int order, int start_mt)
1831 {
1832 /*
1833 * Leaving this order check is intended, although there is
1834 * relaxed order check in next check. The reason is that
1835 * we can actually steal whole pageblock if this condition met,
1836 * but, below check doesn't guarantee it and that is just heuristic
1837 * so could be changed anytime.
1838 */
1839 if (order >= pageblock_order)
1840 return true;
1841
1842 if (order >= pageblock_order / 2 ||
1843 start_mt == MIGRATE_RECLAIMABLE ||
1844 start_mt == MIGRATE_UNMOVABLE ||
1845 page_group_by_mobility_disabled)
1846 return true;
1847
1848 return false;
1849 }
1850
boost_watermark(struct zone * zone)1851 static inline bool boost_watermark(struct zone *zone)
1852 {
1853 unsigned long max_boost;
1854
1855 if (!watermark_boost_factor)
1856 return false;
1857 /*
1858 * Don't bother in zones that are unlikely to produce results.
1859 * On small machines, including kdump capture kernels running
1860 * in a small area, boosting the watermark can cause an out of
1861 * memory situation immediately.
1862 */
1863 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1864 return false;
1865
1866 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1867 watermark_boost_factor, 10000);
1868
1869 /*
1870 * high watermark may be uninitialised if fragmentation occurs
1871 * very early in boot so do not boost. We do not fall
1872 * through and boost by pageblock_nr_pages as failing
1873 * allocations that early means that reclaim is not going
1874 * to help and it may even be impossible to reclaim the
1875 * boosted watermark resulting in a hang.
1876 */
1877 if (!max_boost)
1878 return false;
1879
1880 max_boost = max(pageblock_nr_pages, max_boost);
1881
1882 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1883 max_boost);
1884
1885 return true;
1886 }
1887
1888 /*
1889 * This function implements actual steal behaviour. If order is large enough, we
1890 * can claim the whole pageblock for the requested migratetype. If not, we check
1891 * the pageblock for constituent pages; if at least half of the pages are free
1892 * or compatible, we can still claim the whole block, so pages freed in the
1893 * future will be put on the correct free list. Otherwise, we isolate exactly
1894 * the order we need from the fallback block and leave its migratetype alone.
1895 */
1896 static struct page *
steal_suitable_fallback(struct zone * zone,struct page * page,int current_order,int order,int start_type,unsigned int alloc_flags,bool whole_block)1897 steal_suitable_fallback(struct zone *zone, struct page *page,
1898 int current_order, int order, int start_type,
1899 unsigned int alloc_flags, bool whole_block)
1900 {
1901 int free_pages, movable_pages, alike_pages;
1902 unsigned long start_pfn;
1903 int block_type;
1904
1905 block_type = get_pageblock_migratetype(page);
1906
1907 /*
1908 * This can happen due to races and we want to prevent broken
1909 * highatomic accounting.
1910 */
1911 if (is_migrate_highatomic(block_type))
1912 goto single_page;
1913
1914 /* Take ownership for orders >= pageblock_order */
1915 if (current_order >= pageblock_order) {
1916 unsigned int nr_added;
1917
1918 del_page_from_free_list(page, zone, current_order, block_type);
1919 change_pageblock_range(page, current_order, start_type);
1920 nr_added = expand(zone, page, order, current_order, start_type);
1921 account_freepages(zone, nr_added, start_type);
1922 return page;
1923 }
1924
1925 /*
1926 * Boost watermarks to increase reclaim pressure to reduce the
1927 * likelihood of future fallbacks. Wake kswapd now as the node
1928 * may be balanced overall and kswapd will not wake naturally.
1929 */
1930 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1931 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1932
1933 /* We are not allowed to try stealing from the whole block */
1934 if (!whole_block)
1935 goto single_page;
1936
1937 /* moving whole block can fail due to zone boundary conditions */
1938 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1939 &movable_pages))
1940 goto single_page;
1941
1942 /*
1943 * Determine how many pages are compatible with our allocation.
1944 * For movable allocation, it's the number of movable pages which
1945 * we just obtained. For other types it's a bit more tricky.
1946 */
1947 if (start_type == MIGRATE_MOVABLE) {
1948 alike_pages = movable_pages;
1949 } else {
1950 /*
1951 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1952 * to MOVABLE pageblock, consider all non-movable pages as
1953 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1954 * vice versa, be conservative since we can't distinguish the
1955 * exact migratetype of non-movable pages.
1956 */
1957 if (block_type == MIGRATE_MOVABLE)
1958 alike_pages = pageblock_nr_pages
1959 - (free_pages + movable_pages);
1960 else
1961 alike_pages = 0;
1962 }
1963 /*
1964 * If a sufficient number of pages in the block are either free or of
1965 * compatible migratability as our allocation, claim the whole block.
1966 */
1967 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1968 page_group_by_mobility_disabled) {
1969 __move_freepages_block(zone, start_pfn, block_type, start_type);
1970 return __rmqueue_smallest(zone, order, start_type);
1971 }
1972
1973 single_page:
1974 page_del_and_expand(zone, page, order, current_order, block_type);
1975 return page;
1976 }
1977
1978 /*
1979 * Check whether there is a suitable fallback freepage with requested order.
1980 * If only_stealable is true, this function returns fallback_mt only if
1981 * we can steal other freepages all together. This would help to reduce
1982 * fragmentation due to mixed migratetype pages in one pageblock.
1983 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1984 int find_suitable_fallback(struct free_area *area, unsigned int order,
1985 int migratetype, bool only_stealable, bool *can_steal)
1986 {
1987 int i;
1988 int fallback_mt;
1989
1990 if (area->nr_free == 0)
1991 return -1;
1992
1993 *can_steal = false;
1994 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1995 fallback_mt = fallbacks[migratetype][i];
1996 if (free_area_empty(area, fallback_mt))
1997 continue;
1998
1999 if (can_steal_fallback(order, migratetype))
2000 *can_steal = true;
2001
2002 if (!only_stealable)
2003 return fallback_mt;
2004
2005 if (*can_steal)
2006 return fallback_mt;
2007 }
2008
2009 return -1;
2010 }
2011
2012 /*
2013 * Reserve the pageblock(s) surrounding an allocation request for
2014 * exclusive use of high-order atomic allocations if there are no
2015 * empty page blocks that contain a page with a suitable order
2016 */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)2017 static void reserve_highatomic_pageblock(struct page *page, int order,
2018 struct zone *zone)
2019 {
2020 int mt;
2021 unsigned long max_managed, flags;
2022
2023 /*
2024 * The number reserved as: minimum is 1 pageblock, maximum is
2025 * roughly 1% of a zone. But if 1% of a zone falls below a
2026 * pageblock size, then don't reserve any pageblocks.
2027 * Check is race-prone but harmless.
2028 */
2029 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2030 return;
2031 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2032 if (zone->nr_reserved_highatomic >= max_managed)
2033 return;
2034
2035 spin_lock_irqsave(&zone->lock, flags);
2036
2037 /* Recheck the nr_reserved_highatomic limit under the lock */
2038 if (zone->nr_reserved_highatomic >= max_managed)
2039 goto out_unlock;
2040
2041 /* Yoink! */
2042 mt = get_pageblock_migratetype(page);
2043 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2044 if (!migratetype_is_mergeable(mt))
2045 goto out_unlock;
2046
2047 if (order < pageblock_order) {
2048 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2049 goto out_unlock;
2050 zone->nr_reserved_highatomic += pageblock_nr_pages;
2051 } else {
2052 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2053 zone->nr_reserved_highatomic += 1 << order;
2054 }
2055
2056 out_unlock:
2057 spin_unlock_irqrestore(&zone->lock, flags);
2058 }
2059
2060 /*
2061 * Used when an allocation is about to fail under memory pressure. This
2062 * potentially hurts the reliability of high-order allocations when under
2063 * intense memory pressure but failed atomic allocations should be easier
2064 * to recover from than an OOM.
2065 *
2066 * If @force is true, try to unreserve pageblocks even though highatomic
2067 * pageblock is exhausted.
2068 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2069 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2070 bool force)
2071 {
2072 struct zonelist *zonelist = ac->zonelist;
2073 unsigned long flags;
2074 struct zoneref *z;
2075 struct zone *zone;
2076 struct page *page;
2077 int order;
2078 int ret;
2079
2080 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2081 ac->nodemask) {
2082 /*
2083 * Preserve at least one pageblock unless memory pressure
2084 * is really high.
2085 */
2086 if (!force && zone->nr_reserved_highatomic <=
2087 pageblock_nr_pages)
2088 continue;
2089
2090 spin_lock_irqsave(&zone->lock, flags);
2091 for (order = 0; order < NR_PAGE_ORDERS; order++) {
2092 struct free_area *area = &(zone->free_area[order]);
2093 int mt;
2094
2095 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2096 if (!page)
2097 continue;
2098
2099 mt = get_pageblock_migratetype(page);
2100 /*
2101 * In page freeing path, migratetype change is racy so
2102 * we can counter several free pages in a pageblock
2103 * in this loop although we changed the pageblock type
2104 * from highatomic to ac->migratetype. So we should
2105 * adjust the count once.
2106 */
2107 if (is_migrate_highatomic(mt)) {
2108 unsigned long size;
2109 /*
2110 * It should never happen but changes to
2111 * locking could inadvertently allow a per-cpu
2112 * drain to add pages to MIGRATE_HIGHATOMIC
2113 * while unreserving so be safe and watch for
2114 * underflows.
2115 */
2116 size = max(pageblock_nr_pages, 1UL << order);
2117 size = min(size, zone->nr_reserved_highatomic);
2118 zone->nr_reserved_highatomic -= size;
2119 }
2120
2121 /*
2122 * Convert to ac->migratetype and avoid the normal
2123 * pageblock stealing heuristics. Minimally, the caller
2124 * is doing the work and needs the pages. More
2125 * importantly, if the block was always converted to
2126 * MIGRATE_UNMOVABLE or another type then the number
2127 * of pageblocks that cannot be completely freed
2128 * may increase.
2129 */
2130 if (order < pageblock_order)
2131 ret = move_freepages_block(zone, page, mt,
2132 ac->migratetype);
2133 else {
2134 move_to_free_list(page, zone, order, mt,
2135 ac->migratetype);
2136 change_pageblock_range(page, order,
2137 ac->migratetype);
2138 ret = 1;
2139 }
2140 /*
2141 * Reserving the block(s) already succeeded,
2142 * so this should not fail on zone boundaries.
2143 */
2144 WARN_ON_ONCE(ret == -1);
2145 if (ret > 0) {
2146 spin_unlock_irqrestore(&zone->lock, flags);
2147 return ret;
2148 }
2149 }
2150 spin_unlock_irqrestore(&zone->lock, flags);
2151 }
2152
2153 return false;
2154 }
2155
2156 /*
2157 * Try finding a free buddy page on the fallback list and put it on the free
2158 * list of requested migratetype, possibly along with other pages from the same
2159 * block, depending on fragmentation avoidance heuristics. Returns true if
2160 * fallback was found so that __rmqueue_smallest() can grab it.
2161 *
2162 * The use of signed ints for order and current_order is a deliberate
2163 * deviation from the rest of this file, to make the for loop
2164 * condition simpler.
2165 */
2166 static __always_inline struct page *
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2167 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2168 unsigned int alloc_flags)
2169 {
2170 struct free_area *area;
2171 int current_order;
2172 int min_order = order;
2173 struct page *page;
2174 int fallback_mt;
2175 bool can_steal;
2176
2177 /*
2178 * Do not steal pages from freelists belonging to other pageblocks
2179 * i.e. orders < pageblock_order. If there are no local zones free,
2180 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2181 */
2182 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2183 min_order = pageblock_order;
2184
2185 /*
2186 * Find the largest available free page in the other list. This roughly
2187 * approximates finding the pageblock with the most free pages, which
2188 * would be too costly to do exactly.
2189 */
2190 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2191 --current_order) {
2192 area = &(zone->free_area[current_order]);
2193 fallback_mt = find_suitable_fallback(area, current_order,
2194 start_migratetype, false, &can_steal);
2195 if (fallback_mt == -1)
2196 continue;
2197
2198 /*
2199 * We cannot steal all free pages from the pageblock and the
2200 * requested migratetype is movable. In that case it's better to
2201 * steal and split the smallest available page instead of the
2202 * largest available page, because even if the next movable
2203 * allocation falls back into a different pageblock than this
2204 * one, it won't cause permanent fragmentation.
2205 */
2206 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2207 && current_order > order)
2208 goto find_smallest;
2209
2210 goto do_steal;
2211 }
2212
2213 return NULL;
2214
2215 find_smallest:
2216 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2217 area = &(zone->free_area[current_order]);
2218 fallback_mt = find_suitable_fallback(area, current_order,
2219 start_migratetype, false, &can_steal);
2220 if (fallback_mt != -1)
2221 break;
2222 }
2223
2224 /*
2225 * This should not happen - we already found a suitable fallback
2226 * when looking for the largest page.
2227 */
2228 VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2229
2230 do_steal:
2231 page = get_page_from_free_area(area, fallback_mt);
2232
2233 /* take off list, maybe claim block, expand remainder */
2234 page = steal_suitable_fallback(zone, page, current_order, order,
2235 start_migratetype, alloc_flags, can_steal);
2236
2237 trace_mm_page_alloc_extfrag(page, order, current_order,
2238 start_migratetype, fallback_mt);
2239
2240 return page;
2241 }
2242
2243 /*
2244 * Do the hard work of removing an element from the buddy allocator.
2245 * Call me with the zone->lock already held.
2246 */
2247 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2248 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2249 unsigned int alloc_flags)
2250 {
2251 struct page *page;
2252
2253 if (IS_ENABLED(CONFIG_CMA)) {
2254 /*
2255 * Balance movable allocations between regular and CMA areas by
2256 * allocating from CMA when over half of the zone's free memory
2257 * is in the CMA area.
2258 */
2259 if (alloc_flags & ALLOC_CMA &&
2260 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2261 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2262 page = __rmqueue_cma_fallback(zone, order);
2263 if (page)
2264 return page;
2265 }
2266 }
2267
2268 page = __rmqueue_smallest(zone, order, migratetype);
2269 if (unlikely(!page)) {
2270 if (alloc_flags & ALLOC_CMA)
2271 page = __rmqueue_cma_fallback(zone, order);
2272
2273 if (!page)
2274 page = __rmqueue_fallback(zone, order, migratetype,
2275 alloc_flags);
2276 }
2277 return page;
2278 }
2279
2280 /*
2281 * Obtain a specified number of elements from the buddy allocator, all under
2282 * a single hold of the lock, for efficiency. Add them to the supplied list.
2283 * Returns the number of new pages which were placed at *list.
2284 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2285 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2286 unsigned long count, struct list_head *list,
2287 int migratetype, unsigned int alloc_flags)
2288 {
2289 unsigned long flags;
2290 int i;
2291
2292 spin_lock_irqsave(&zone->lock, flags);
2293 for (i = 0; i < count; ++i) {
2294 struct page *page = __rmqueue(zone, order, migratetype,
2295 alloc_flags);
2296 if (unlikely(page == NULL))
2297 break;
2298
2299 /*
2300 * Split buddy pages returned by expand() are received here in
2301 * physical page order. The page is added to the tail of
2302 * caller's list. From the callers perspective, the linked list
2303 * is ordered by page number under some conditions. This is
2304 * useful for IO devices that can forward direction from the
2305 * head, thus also in the physical page order. This is useful
2306 * for IO devices that can merge IO requests if the physical
2307 * pages are ordered properly.
2308 */
2309 list_add_tail(&page->pcp_list, list);
2310 }
2311 spin_unlock_irqrestore(&zone->lock, flags);
2312
2313 return i;
2314 }
2315
2316 /*
2317 * Called from the vmstat counter updater to decay the PCP high.
2318 * Return whether there are addition works to do.
2319 */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2320 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2321 {
2322 int high_min, to_drain, batch;
2323 int todo = 0;
2324
2325 high_min = READ_ONCE(pcp->high_min);
2326 batch = READ_ONCE(pcp->batch);
2327 /*
2328 * Decrease pcp->high periodically to try to free possible
2329 * idle PCP pages. And, avoid to free too many pages to
2330 * control latency. This caps pcp->high decrement too.
2331 */
2332 if (pcp->high > high_min) {
2333 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2334 pcp->high - (pcp->high >> 3), high_min);
2335 if (pcp->high > high_min)
2336 todo++;
2337 }
2338
2339 to_drain = pcp->count - pcp->high;
2340 if (to_drain > 0) {
2341 spin_lock(&pcp->lock);
2342 free_pcppages_bulk(zone, to_drain, pcp, 0);
2343 spin_unlock(&pcp->lock);
2344 todo++;
2345 }
2346
2347 return todo;
2348 }
2349
2350 #ifdef CONFIG_NUMA
2351 /*
2352 * Called from the vmstat counter updater to drain pagesets of this
2353 * currently executing processor on remote nodes after they have
2354 * expired.
2355 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2356 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2357 {
2358 int to_drain, batch;
2359
2360 batch = READ_ONCE(pcp->batch);
2361 to_drain = min(pcp->count, batch);
2362 if (to_drain > 0) {
2363 spin_lock(&pcp->lock);
2364 free_pcppages_bulk(zone, to_drain, pcp, 0);
2365 spin_unlock(&pcp->lock);
2366 }
2367 }
2368 #endif
2369
2370 /*
2371 * Drain pcplists of the indicated processor and zone.
2372 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2373 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2374 {
2375 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2376 int count;
2377
2378 do {
2379 spin_lock(&pcp->lock);
2380 count = pcp->count;
2381 if (count) {
2382 int to_drain = min(count,
2383 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2384
2385 free_pcppages_bulk(zone, to_drain, pcp, 0);
2386 count -= to_drain;
2387 }
2388 spin_unlock(&pcp->lock);
2389 } while (count);
2390 }
2391
2392 /*
2393 * Drain pcplists of all zones on the indicated processor.
2394 */
drain_pages(unsigned int cpu)2395 static void drain_pages(unsigned int cpu)
2396 {
2397 struct zone *zone;
2398
2399 for_each_populated_zone(zone) {
2400 drain_pages_zone(cpu, zone);
2401 }
2402 }
2403
2404 /*
2405 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2406 */
drain_local_pages(struct zone * zone)2407 void drain_local_pages(struct zone *zone)
2408 {
2409 int cpu = smp_processor_id();
2410
2411 if (zone)
2412 drain_pages_zone(cpu, zone);
2413 else
2414 drain_pages(cpu);
2415 }
2416
2417 /*
2418 * The implementation of drain_all_pages(), exposing an extra parameter to
2419 * drain on all cpus.
2420 *
2421 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2422 * not empty. The check for non-emptiness can however race with a free to
2423 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2424 * that need the guarantee that every CPU has drained can disable the
2425 * optimizing racy check.
2426 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2427 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2428 {
2429 int cpu;
2430
2431 /*
2432 * Allocate in the BSS so we won't require allocation in
2433 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2434 */
2435 static cpumask_t cpus_with_pcps;
2436
2437 /*
2438 * Do not drain if one is already in progress unless it's specific to
2439 * a zone. Such callers are primarily CMA and memory hotplug and need
2440 * the drain to be complete when the call returns.
2441 */
2442 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2443 if (!zone)
2444 return;
2445 mutex_lock(&pcpu_drain_mutex);
2446 }
2447
2448 /*
2449 * We don't care about racing with CPU hotplug event
2450 * as offline notification will cause the notified
2451 * cpu to drain that CPU pcps and on_each_cpu_mask
2452 * disables preemption as part of its processing
2453 */
2454 for_each_online_cpu(cpu) {
2455 struct per_cpu_pages *pcp;
2456 struct zone *z;
2457 bool has_pcps = false;
2458
2459 if (force_all_cpus) {
2460 /*
2461 * The pcp.count check is racy, some callers need a
2462 * guarantee that no cpu is missed.
2463 */
2464 has_pcps = true;
2465 } else if (zone) {
2466 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2467 if (pcp->count)
2468 has_pcps = true;
2469 } else {
2470 for_each_populated_zone(z) {
2471 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2472 if (pcp->count) {
2473 has_pcps = true;
2474 break;
2475 }
2476 }
2477 }
2478
2479 if (has_pcps)
2480 cpumask_set_cpu(cpu, &cpus_with_pcps);
2481 else
2482 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2483 }
2484
2485 for_each_cpu(cpu, &cpus_with_pcps) {
2486 if (zone)
2487 drain_pages_zone(cpu, zone);
2488 else
2489 drain_pages(cpu);
2490 }
2491
2492 mutex_unlock(&pcpu_drain_mutex);
2493 }
2494
2495 /*
2496 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2497 *
2498 * When zone parameter is non-NULL, spill just the single zone's pages.
2499 */
drain_all_pages(struct zone * zone)2500 void drain_all_pages(struct zone *zone)
2501 {
2502 __drain_all_pages(zone, false);
2503 }
2504
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2505 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2506 {
2507 int min_nr_free, max_nr_free;
2508
2509 /* Free as much as possible if batch freeing high-order pages. */
2510 if (unlikely(free_high))
2511 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2512
2513 /* Check for PCP disabled or boot pageset */
2514 if (unlikely(high < batch))
2515 return 1;
2516
2517 /* Leave at least pcp->batch pages on the list */
2518 min_nr_free = batch;
2519 max_nr_free = high - batch;
2520
2521 /*
2522 * Increase the batch number to the number of the consecutive
2523 * freed pages to reduce zone lock contention.
2524 */
2525 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2526
2527 return batch;
2528 }
2529
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2530 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2531 int batch, bool free_high)
2532 {
2533 int high, high_min, high_max;
2534
2535 high_min = READ_ONCE(pcp->high_min);
2536 high_max = READ_ONCE(pcp->high_max);
2537 high = pcp->high = clamp(pcp->high, high_min, high_max);
2538
2539 if (unlikely(!high))
2540 return 0;
2541
2542 if (unlikely(free_high)) {
2543 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2544 high_min);
2545 return 0;
2546 }
2547
2548 /*
2549 * If reclaim is active, limit the number of pages that can be
2550 * stored on pcp lists
2551 */
2552 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2553 int free_count = max_t(int, pcp->free_count, batch);
2554
2555 pcp->high = max(high - free_count, high_min);
2556 return min(batch << 2, pcp->high);
2557 }
2558
2559 if (high_min == high_max)
2560 return high;
2561
2562 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2563 int free_count = max_t(int, pcp->free_count, batch);
2564
2565 pcp->high = max(high - free_count, high_min);
2566 high = max(pcp->count, high_min);
2567 } else if (pcp->count >= high) {
2568 int need_high = pcp->free_count + batch;
2569
2570 /* pcp->high should be large enough to hold batch freed pages */
2571 if (pcp->high < need_high)
2572 pcp->high = clamp(need_high, high_min, high_max);
2573 }
2574
2575 return high;
2576 }
2577
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2578 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2579 struct page *page, int migratetype,
2580 unsigned int order)
2581 {
2582 int high, batch;
2583 int pindex;
2584 bool free_high = false;
2585
2586 /*
2587 * On freeing, reduce the number of pages that are batch allocated.
2588 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2589 * allocations.
2590 */
2591 pcp->alloc_factor >>= 1;
2592 __count_vm_events(PGFREE, 1 << order);
2593 pindex = order_to_pindex(migratetype, order);
2594 list_add(&page->pcp_list, &pcp->lists[pindex]);
2595 pcp->count += 1 << order;
2596
2597 batch = READ_ONCE(pcp->batch);
2598 /*
2599 * As high-order pages other than THP's stored on PCP can contribute
2600 * to fragmentation, limit the number stored when PCP is heavily
2601 * freeing without allocation. The remainder after bulk freeing
2602 * stops will be drained from vmstat refresh context.
2603 */
2604 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2605 free_high = (pcp->free_count >= batch &&
2606 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2607 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2608 pcp->count >= READ_ONCE(batch)));
2609 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2610 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2611 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2612 }
2613 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2614 pcp->free_count += (1 << order);
2615 high = nr_pcp_high(pcp, zone, batch, free_high);
2616 if (pcp->count >= high) {
2617 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2618 pcp, pindex);
2619 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2620 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2621 ZONE_MOVABLE, 0))
2622 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2623 }
2624 }
2625
2626 /*
2627 * Free a pcp page
2628 */
free_unref_page(struct page * page,unsigned int order)2629 void free_unref_page(struct page *page, unsigned int order)
2630 {
2631 unsigned long __maybe_unused UP_flags;
2632 struct per_cpu_pages *pcp;
2633 struct zone *zone;
2634 unsigned long pfn = page_to_pfn(page);
2635 int migratetype;
2636
2637 if (!pcp_allowed_order(order)) {
2638 __free_pages_ok(page, order, FPI_NONE);
2639 return;
2640 }
2641
2642 if (!free_pages_prepare(page, order))
2643 return;
2644
2645 /*
2646 * We only track unmovable, reclaimable and movable on pcp lists.
2647 * Place ISOLATE pages on the isolated list because they are being
2648 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2649 * get those areas back if necessary. Otherwise, we may have to free
2650 * excessively into the page allocator
2651 */
2652 migratetype = get_pfnblock_migratetype(page, pfn);
2653 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2654 if (unlikely(is_migrate_isolate(migratetype))) {
2655 free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2656 return;
2657 }
2658 migratetype = MIGRATE_MOVABLE;
2659 }
2660
2661 zone = page_zone(page);
2662 pcp_trylock_prepare(UP_flags);
2663 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2664 if (pcp) {
2665 free_unref_page_commit(zone, pcp, page, migratetype, order);
2666 pcp_spin_unlock(pcp);
2667 } else {
2668 free_one_page(zone, page, pfn, order, FPI_NONE);
2669 }
2670 pcp_trylock_finish(UP_flags);
2671 }
2672
2673 /*
2674 * Free a batch of folios
2675 */
free_unref_folios(struct folio_batch * folios)2676 void free_unref_folios(struct folio_batch *folios)
2677 {
2678 unsigned long __maybe_unused UP_flags;
2679 struct per_cpu_pages *pcp = NULL;
2680 struct zone *locked_zone = NULL;
2681 int i, j;
2682
2683 /* Prepare folios for freeing */
2684 for (i = 0, j = 0; i < folios->nr; i++) {
2685 struct folio *folio = folios->folios[i];
2686 unsigned long pfn = folio_pfn(folio);
2687 unsigned int order = folio_order(folio);
2688
2689 if (!free_pages_prepare(&folio->page, order))
2690 continue;
2691 /*
2692 * Free orders not handled on the PCP directly to the
2693 * allocator.
2694 */
2695 if (!pcp_allowed_order(order)) {
2696 free_one_page(folio_zone(folio), &folio->page,
2697 pfn, order, FPI_NONE);
2698 continue;
2699 }
2700 folio->private = (void *)(unsigned long)order;
2701 if (j != i)
2702 folios->folios[j] = folio;
2703 j++;
2704 }
2705 folios->nr = j;
2706
2707 for (i = 0; i < folios->nr; i++) {
2708 struct folio *folio = folios->folios[i];
2709 struct zone *zone = folio_zone(folio);
2710 unsigned long pfn = folio_pfn(folio);
2711 unsigned int order = (unsigned long)folio->private;
2712 int migratetype;
2713
2714 folio->private = NULL;
2715 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2716
2717 /* Different zone requires a different pcp lock */
2718 if (zone != locked_zone ||
2719 is_migrate_isolate(migratetype)) {
2720 if (pcp) {
2721 pcp_spin_unlock(pcp);
2722 pcp_trylock_finish(UP_flags);
2723 locked_zone = NULL;
2724 pcp = NULL;
2725 }
2726
2727 /*
2728 * Free isolated pages directly to the
2729 * allocator, see comment in free_unref_page.
2730 */
2731 if (is_migrate_isolate(migratetype)) {
2732 free_one_page(zone, &folio->page, pfn,
2733 order, FPI_NONE);
2734 continue;
2735 }
2736
2737 /*
2738 * trylock is necessary as folios may be getting freed
2739 * from IRQ or SoftIRQ context after an IO completion.
2740 */
2741 pcp_trylock_prepare(UP_flags);
2742 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2743 if (unlikely(!pcp)) {
2744 pcp_trylock_finish(UP_flags);
2745 free_one_page(zone, &folio->page, pfn,
2746 order, FPI_NONE);
2747 continue;
2748 }
2749 locked_zone = zone;
2750 }
2751
2752 /*
2753 * Non-isolated types over MIGRATE_PCPTYPES get added
2754 * to the MIGRATE_MOVABLE pcp list.
2755 */
2756 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2757 migratetype = MIGRATE_MOVABLE;
2758
2759 trace_mm_page_free_batched(&folio->page);
2760 free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2761 order);
2762 }
2763
2764 if (pcp) {
2765 pcp_spin_unlock(pcp);
2766 pcp_trylock_finish(UP_flags);
2767 }
2768 folio_batch_reinit(folios);
2769 }
2770
2771 /*
2772 * split_page takes a non-compound higher-order page, and splits it into
2773 * n (1<<order) sub-pages: page[0..n]
2774 * Each sub-page must be freed individually.
2775 *
2776 * Note: this is probably too low level an operation for use in drivers.
2777 * Please consult with lkml before using this in your driver.
2778 */
split_page(struct page * page,unsigned int order)2779 void split_page(struct page *page, unsigned int order)
2780 {
2781 int i;
2782
2783 VM_BUG_ON_PAGE(PageCompound(page), page);
2784 VM_BUG_ON_PAGE(!page_count(page), page);
2785
2786 for (i = 1; i < (1 << order); i++)
2787 set_page_refcounted(page + i);
2788 split_page_owner(page, order, 0);
2789 pgalloc_tag_split(page_folio(page), order, 0);
2790 split_page_memcg(page, order, 0);
2791 }
2792 EXPORT_SYMBOL_GPL(split_page);
2793
__isolate_free_page(struct page * page,unsigned int order)2794 int __isolate_free_page(struct page *page, unsigned int order)
2795 {
2796 struct zone *zone = page_zone(page);
2797 int mt = get_pageblock_migratetype(page);
2798
2799 if (!is_migrate_isolate(mt)) {
2800 unsigned long watermark;
2801 /*
2802 * Obey watermarks as if the page was being allocated. We can
2803 * emulate a high-order watermark check with a raised order-0
2804 * watermark, because we already know our high-order page
2805 * exists.
2806 */
2807 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2808 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2809 return 0;
2810 }
2811
2812 del_page_from_free_list(page, zone, order, mt);
2813
2814 /*
2815 * Set the pageblock if the isolated page is at least half of a
2816 * pageblock
2817 */
2818 if (order >= pageblock_order - 1) {
2819 struct page *endpage = page + (1 << order) - 1;
2820 for (; page < endpage; page += pageblock_nr_pages) {
2821 int mt = get_pageblock_migratetype(page);
2822 /*
2823 * Only change normal pageblocks (i.e., they can merge
2824 * with others)
2825 */
2826 if (migratetype_is_mergeable(mt))
2827 move_freepages_block(zone, page, mt,
2828 MIGRATE_MOVABLE);
2829 }
2830 }
2831
2832 return 1UL << order;
2833 }
2834
2835 /**
2836 * __putback_isolated_page - Return a now-isolated page back where we got it
2837 * @page: Page that was isolated
2838 * @order: Order of the isolated page
2839 * @mt: The page's pageblock's migratetype
2840 *
2841 * This function is meant to return a page pulled from the free lists via
2842 * __isolate_free_page back to the free lists they were pulled from.
2843 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2844 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2845 {
2846 struct zone *zone = page_zone(page);
2847
2848 /* zone lock should be held when this function is called */
2849 lockdep_assert_held(&zone->lock);
2850
2851 /* Return isolated page to tail of freelist. */
2852 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2853 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2854 }
2855
2856 /*
2857 * Update NUMA hit/miss statistics
2858 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2859 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2860 long nr_account)
2861 {
2862 #ifdef CONFIG_NUMA
2863 enum numa_stat_item local_stat = NUMA_LOCAL;
2864
2865 /* skip numa counters update if numa stats is disabled */
2866 if (!static_branch_likely(&vm_numa_stat_key))
2867 return;
2868
2869 if (zone_to_nid(z) != numa_node_id())
2870 local_stat = NUMA_OTHER;
2871
2872 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2873 __count_numa_events(z, NUMA_HIT, nr_account);
2874 else {
2875 __count_numa_events(z, NUMA_MISS, nr_account);
2876 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2877 }
2878 __count_numa_events(z, local_stat, nr_account);
2879 #endif
2880 }
2881
2882 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2883 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2884 unsigned int order, unsigned int alloc_flags,
2885 int migratetype)
2886 {
2887 struct page *page;
2888 unsigned long flags;
2889
2890 do {
2891 page = NULL;
2892 spin_lock_irqsave(&zone->lock, flags);
2893 if (alloc_flags & ALLOC_HIGHATOMIC)
2894 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2895 if (!page) {
2896 page = __rmqueue(zone, order, migratetype, alloc_flags);
2897
2898 /*
2899 * If the allocation fails, allow OOM handling and
2900 * order-0 (atomic) allocs access to HIGHATOMIC
2901 * reserves as failing now is worse than failing a
2902 * high-order atomic allocation in the future.
2903 */
2904 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2905 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2906
2907 if (!page) {
2908 spin_unlock_irqrestore(&zone->lock, flags);
2909 return NULL;
2910 }
2911 }
2912 spin_unlock_irqrestore(&zone->lock, flags);
2913 } while (check_new_pages(page, order));
2914
2915 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2916 zone_statistics(preferred_zone, zone, 1);
2917
2918 return page;
2919 }
2920
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)2921 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2922 {
2923 int high, base_batch, batch, max_nr_alloc;
2924 int high_max, high_min;
2925
2926 base_batch = READ_ONCE(pcp->batch);
2927 high_min = READ_ONCE(pcp->high_min);
2928 high_max = READ_ONCE(pcp->high_max);
2929 high = pcp->high = clamp(pcp->high, high_min, high_max);
2930
2931 /* Check for PCP disabled or boot pageset */
2932 if (unlikely(high < base_batch))
2933 return 1;
2934
2935 if (order)
2936 batch = base_batch;
2937 else
2938 batch = (base_batch << pcp->alloc_factor);
2939
2940 /*
2941 * If we had larger pcp->high, we could avoid to allocate from
2942 * zone.
2943 */
2944 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2945 high = pcp->high = min(high + batch, high_max);
2946
2947 if (!order) {
2948 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2949 /*
2950 * Double the number of pages allocated each time there is
2951 * subsequent allocation of order-0 pages without any freeing.
2952 */
2953 if (batch <= max_nr_alloc &&
2954 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2955 pcp->alloc_factor++;
2956 batch = min(batch, max_nr_alloc);
2957 }
2958
2959 /*
2960 * Scale batch relative to order if batch implies free pages
2961 * can be stored on the PCP. Batch can be 1 for small zones or
2962 * for boot pagesets which should never store free pages as
2963 * the pages may belong to arbitrary zones.
2964 */
2965 if (batch > 1)
2966 batch = max(batch >> order, 2);
2967
2968 return batch;
2969 }
2970
2971 /* Remove page from the per-cpu list, caller must protect the list */
2972 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2973 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2974 int migratetype,
2975 unsigned int alloc_flags,
2976 struct per_cpu_pages *pcp,
2977 struct list_head *list)
2978 {
2979 struct page *page;
2980
2981 do {
2982 if (list_empty(list)) {
2983 int batch = nr_pcp_alloc(pcp, zone, order);
2984 int alloced;
2985
2986 alloced = rmqueue_bulk(zone, order,
2987 batch, list,
2988 migratetype, alloc_flags);
2989
2990 pcp->count += alloced << order;
2991 if (unlikely(list_empty(list)))
2992 return NULL;
2993 }
2994
2995 page = list_first_entry(list, struct page, pcp_list);
2996 list_del(&page->pcp_list);
2997 pcp->count -= 1 << order;
2998 } while (check_new_pages(page, order));
2999
3000 return page;
3001 }
3002
3003 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3004 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3005 struct zone *zone, unsigned int order,
3006 int migratetype, unsigned int alloc_flags)
3007 {
3008 struct per_cpu_pages *pcp;
3009 struct list_head *list;
3010 struct page *page;
3011 unsigned long __maybe_unused UP_flags;
3012
3013 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3014 pcp_trylock_prepare(UP_flags);
3015 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3016 if (!pcp) {
3017 pcp_trylock_finish(UP_flags);
3018 return NULL;
3019 }
3020
3021 /*
3022 * On allocation, reduce the number of pages that are batch freed.
3023 * See nr_pcp_free() where free_factor is increased for subsequent
3024 * frees.
3025 */
3026 pcp->free_count >>= 1;
3027 list = &pcp->lists[order_to_pindex(migratetype, order)];
3028 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3029 pcp_spin_unlock(pcp);
3030 pcp_trylock_finish(UP_flags);
3031 if (page) {
3032 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3033 zone_statistics(preferred_zone, zone, 1);
3034 }
3035 return page;
3036 }
3037
3038 /*
3039 * Allocate a page from the given zone.
3040 * Use pcplists for THP or "cheap" high-order allocations.
3041 */
3042
3043 /*
3044 * Do not instrument rmqueue() with KMSAN. This function may call
3045 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3046 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3047 * may call rmqueue() again, which will result in a deadlock.
3048 */
3049 __no_sanitize_memory
3050 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3051 struct page *rmqueue(struct zone *preferred_zone,
3052 struct zone *zone, unsigned int order,
3053 gfp_t gfp_flags, unsigned int alloc_flags,
3054 int migratetype)
3055 {
3056 struct page *page;
3057
3058 if (likely(pcp_allowed_order(order))) {
3059 page = rmqueue_pcplist(preferred_zone, zone, order,
3060 migratetype, alloc_flags);
3061 if (likely(page))
3062 goto out;
3063 }
3064
3065 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3066 migratetype);
3067
3068 out:
3069 /* Separate test+clear to avoid unnecessary atomics */
3070 if ((alloc_flags & ALLOC_KSWAPD) &&
3071 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3072 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3073 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3074 }
3075
3076 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3077 return page;
3078 }
3079
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3080 static inline long __zone_watermark_unusable_free(struct zone *z,
3081 unsigned int order, unsigned int alloc_flags)
3082 {
3083 long unusable_free = (1 << order) - 1;
3084
3085 /*
3086 * If the caller does not have rights to reserves below the min
3087 * watermark then subtract the free pages reserved for highatomic.
3088 */
3089 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3090 unusable_free += READ_ONCE(z->nr_free_highatomic);
3091
3092 #ifdef CONFIG_CMA
3093 /* If allocation can't use CMA areas don't use free CMA pages */
3094 if (!(alloc_flags & ALLOC_CMA))
3095 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3096 #endif
3097
3098 return unusable_free;
3099 }
3100
3101 /*
3102 * Return true if free base pages are above 'mark'. For high-order checks it
3103 * will return true of the order-0 watermark is reached and there is at least
3104 * one free page of a suitable size. Checking now avoids taking the zone lock
3105 * to check in the allocation paths if no pages are free.
3106 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3107 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3108 int highest_zoneidx, unsigned int alloc_flags,
3109 long free_pages)
3110 {
3111 long min = mark;
3112 int o;
3113
3114 /* free_pages may go negative - that's OK */
3115 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3116
3117 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3118 /*
3119 * __GFP_HIGH allows access to 50% of the min reserve as well
3120 * as OOM.
3121 */
3122 if (alloc_flags & ALLOC_MIN_RESERVE) {
3123 min -= min / 2;
3124
3125 /*
3126 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3127 * access more reserves than just __GFP_HIGH. Other
3128 * non-blocking allocations requests such as GFP_NOWAIT
3129 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3130 * access to the min reserve.
3131 */
3132 if (alloc_flags & ALLOC_NON_BLOCK)
3133 min -= min / 4;
3134 }
3135
3136 /*
3137 * OOM victims can try even harder than the normal reserve
3138 * users on the grounds that it's definitely going to be in
3139 * the exit path shortly and free memory. Any allocation it
3140 * makes during the free path will be small and short-lived.
3141 */
3142 if (alloc_flags & ALLOC_OOM)
3143 min -= min / 2;
3144 }
3145
3146 /*
3147 * Check watermarks for an order-0 allocation request. If these
3148 * are not met, then a high-order request also cannot go ahead
3149 * even if a suitable page happened to be free.
3150 */
3151 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3152 return false;
3153
3154 /* If this is an order-0 request then the watermark is fine */
3155 if (!order)
3156 return true;
3157
3158 /* For a high-order request, check at least one suitable page is free */
3159 for (o = order; o < NR_PAGE_ORDERS; o++) {
3160 struct free_area *area = &z->free_area[o];
3161 int mt;
3162
3163 if (!area->nr_free)
3164 continue;
3165
3166 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3167 if (!free_area_empty(area, mt))
3168 return true;
3169 }
3170
3171 #ifdef CONFIG_CMA
3172 if ((alloc_flags & ALLOC_CMA) &&
3173 !free_area_empty(area, MIGRATE_CMA)) {
3174 return true;
3175 }
3176 #endif
3177 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3178 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3179 return true;
3180 }
3181 }
3182 return false;
3183 }
3184
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3185 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3186 int highest_zoneidx, unsigned int alloc_flags)
3187 {
3188 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3189 zone_page_state(z, NR_FREE_PAGES));
3190 }
3191
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3192 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3193 unsigned long mark, int highest_zoneidx,
3194 unsigned int alloc_flags, gfp_t gfp_mask)
3195 {
3196 long free_pages;
3197
3198 free_pages = zone_page_state(z, NR_FREE_PAGES);
3199
3200 /*
3201 * Fast check for order-0 only. If this fails then the reserves
3202 * need to be calculated.
3203 */
3204 if (!order) {
3205 long usable_free;
3206 long reserved;
3207
3208 usable_free = free_pages;
3209 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3210
3211 /* reserved may over estimate high-atomic reserves. */
3212 usable_free -= min(usable_free, reserved);
3213 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3214 return true;
3215 }
3216
3217 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3218 free_pages))
3219 return true;
3220
3221 /*
3222 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3223 * when checking the min watermark. The min watermark is the
3224 * point where boosting is ignored so that kswapd is woken up
3225 * when below the low watermark.
3226 */
3227 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3228 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3229 mark = z->_watermark[WMARK_MIN];
3230 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3231 alloc_flags, free_pages);
3232 }
3233
3234 return false;
3235 }
3236
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3237 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3238 unsigned long mark, int highest_zoneidx)
3239 {
3240 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3241
3242 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3243 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3244
3245 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3246 free_pages);
3247 }
3248
3249 #ifdef CONFIG_NUMA
3250 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3251
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3252 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3253 {
3254 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3255 node_reclaim_distance;
3256 }
3257 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3258 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3259 {
3260 return true;
3261 }
3262 #endif /* CONFIG_NUMA */
3263
3264 /*
3265 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3266 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3267 * premature use of a lower zone may cause lowmem pressure problems that
3268 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3269 * probably too small. It only makes sense to spread allocations to avoid
3270 * fragmentation between the Normal and DMA32 zones.
3271 */
3272 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3273 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3274 {
3275 unsigned int alloc_flags;
3276
3277 /*
3278 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3279 * to save a branch.
3280 */
3281 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3282
3283 #ifdef CONFIG_ZONE_DMA32
3284 if (!zone)
3285 return alloc_flags;
3286
3287 if (zone_idx(zone) != ZONE_NORMAL)
3288 return alloc_flags;
3289
3290 /*
3291 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3292 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3293 * on UMA that if Normal is populated then so is DMA32.
3294 */
3295 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3296 if (nr_online_nodes > 1 && !populated_zone(--zone))
3297 return alloc_flags;
3298
3299 alloc_flags |= ALLOC_NOFRAGMENT;
3300 #endif /* CONFIG_ZONE_DMA32 */
3301 return alloc_flags;
3302 }
3303
3304 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3305 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3306 unsigned int alloc_flags)
3307 {
3308 #ifdef CONFIG_CMA
3309 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3310 alloc_flags |= ALLOC_CMA;
3311 #endif
3312 return alloc_flags;
3313 }
3314
3315 /*
3316 * get_page_from_freelist goes through the zonelist trying to allocate
3317 * a page.
3318 */
3319 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3320 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3321 const struct alloc_context *ac)
3322 {
3323 struct zoneref *z;
3324 struct zone *zone;
3325 struct pglist_data *last_pgdat = NULL;
3326 bool last_pgdat_dirty_ok = false;
3327 bool no_fallback;
3328
3329 retry:
3330 /*
3331 * Scan zonelist, looking for a zone with enough free.
3332 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3333 */
3334 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3335 z = ac->preferred_zoneref;
3336 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3337 ac->nodemask) {
3338 struct page *page;
3339 unsigned long mark;
3340
3341 if (cpusets_enabled() &&
3342 (alloc_flags & ALLOC_CPUSET) &&
3343 !__cpuset_zone_allowed(zone, gfp_mask))
3344 continue;
3345 /*
3346 * When allocating a page cache page for writing, we
3347 * want to get it from a node that is within its dirty
3348 * limit, such that no single node holds more than its
3349 * proportional share of globally allowed dirty pages.
3350 * The dirty limits take into account the node's
3351 * lowmem reserves and high watermark so that kswapd
3352 * should be able to balance it without having to
3353 * write pages from its LRU list.
3354 *
3355 * XXX: For now, allow allocations to potentially
3356 * exceed the per-node dirty limit in the slowpath
3357 * (spread_dirty_pages unset) before going into reclaim,
3358 * which is important when on a NUMA setup the allowed
3359 * nodes are together not big enough to reach the
3360 * global limit. The proper fix for these situations
3361 * will require awareness of nodes in the
3362 * dirty-throttling and the flusher threads.
3363 */
3364 if (ac->spread_dirty_pages) {
3365 if (last_pgdat != zone->zone_pgdat) {
3366 last_pgdat = zone->zone_pgdat;
3367 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3368 }
3369
3370 if (!last_pgdat_dirty_ok)
3371 continue;
3372 }
3373
3374 if (no_fallback && nr_online_nodes > 1 &&
3375 zone != zonelist_zone(ac->preferred_zoneref)) {
3376 int local_nid;
3377
3378 /*
3379 * If moving to a remote node, retry but allow
3380 * fragmenting fallbacks. Locality is more important
3381 * than fragmentation avoidance.
3382 */
3383 local_nid = zonelist_node_idx(ac->preferred_zoneref);
3384 if (zone_to_nid(zone) != local_nid) {
3385 alloc_flags &= ~ALLOC_NOFRAGMENT;
3386 goto retry;
3387 }
3388 }
3389
3390 cond_accept_memory(zone, order);
3391
3392 /*
3393 * Detect whether the number of free pages is below high
3394 * watermark. If so, we will decrease pcp->high and free
3395 * PCP pages in free path to reduce the possibility of
3396 * premature page reclaiming. Detection is done here to
3397 * avoid to do that in hotter free path.
3398 */
3399 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3400 goto check_alloc_wmark;
3401
3402 mark = high_wmark_pages(zone);
3403 if (zone_watermark_fast(zone, order, mark,
3404 ac->highest_zoneidx, alloc_flags,
3405 gfp_mask))
3406 goto try_this_zone;
3407 else
3408 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3409
3410 check_alloc_wmark:
3411 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3412 if (!zone_watermark_fast(zone, order, mark,
3413 ac->highest_zoneidx, alloc_flags,
3414 gfp_mask)) {
3415 int ret;
3416
3417 if (cond_accept_memory(zone, order))
3418 goto try_this_zone;
3419
3420 /*
3421 * Watermark failed for this zone, but see if we can
3422 * grow this zone if it contains deferred pages.
3423 */
3424 if (deferred_pages_enabled()) {
3425 if (_deferred_grow_zone(zone, order))
3426 goto try_this_zone;
3427 }
3428 /* Checked here to keep the fast path fast */
3429 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3430 if (alloc_flags & ALLOC_NO_WATERMARKS)
3431 goto try_this_zone;
3432
3433 if (!node_reclaim_enabled() ||
3434 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3435 continue;
3436
3437 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3438 switch (ret) {
3439 case NODE_RECLAIM_NOSCAN:
3440 /* did not scan */
3441 continue;
3442 case NODE_RECLAIM_FULL:
3443 /* scanned but unreclaimable */
3444 continue;
3445 default:
3446 /* did we reclaim enough */
3447 if (zone_watermark_ok(zone, order, mark,
3448 ac->highest_zoneidx, alloc_flags))
3449 goto try_this_zone;
3450
3451 continue;
3452 }
3453 }
3454
3455 try_this_zone:
3456 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3457 gfp_mask, alloc_flags, ac->migratetype);
3458 if (page) {
3459 prep_new_page(page, order, gfp_mask, alloc_flags);
3460
3461 /*
3462 * If this is a high-order atomic allocation then check
3463 * if the pageblock should be reserved for the future
3464 */
3465 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3466 reserve_highatomic_pageblock(page, order, zone);
3467
3468 return page;
3469 } else {
3470 if (cond_accept_memory(zone, order))
3471 goto try_this_zone;
3472
3473 /* Try again if zone has deferred pages */
3474 if (deferred_pages_enabled()) {
3475 if (_deferred_grow_zone(zone, order))
3476 goto try_this_zone;
3477 }
3478 }
3479 }
3480
3481 /*
3482 * It's possible on a UMA machine to get through all zones that are
3483 * fragmented. If avoiding fragmentation, reset and try again.
3484 */
3485 if (no_fallback) {
3486 alloc_flags &= ~ALLOC_NOFRAGMENT;
3487 goto retry;
3488 }
3489
3490 return NULL;
3491 }
3492
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3493 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3494 {
3495 unsigned int filter = SHOW_MEM_FILTER_NODES;
3496
3497 /*
3498 * This documents exceptions given to allocations in certain
3499 * contexts that are allowed to allocate outside current's set
3500 * of allowed nodes.
3501 */
3502 if (!(gfp_mask & __GFP_NOMEMALLOC))
3503 if (tsk_is_oom_victim(current) ||
3504 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3505 filter &= ~SHOW_MEM_FILTER_NODES;
3506 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3507 filter &= ~SHOW_MEM_FILTER_NODES;
3508
3509 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3510 }
3511
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3512 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3513 {
3514 struct va_format vaf;
3515 va_list args;
3516 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3517
3518 if ((gfp_mask & __GFP_NOWARN) ||
3519 !__ratelimit(&nopage_rs) ||
3520 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3521 return;
3522
3523 va_start(args, fmt);
3524 vaf.fmt = fmt;
3525 vaf.va = &args;
3526 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3527 current->comm, &vaf, gfp_mask, &gfp_mask,
3528 nodemask_pr_args(nodemask));
3529 va_end(args);
3530
3531 cpuset_print_current_mems_allowed();
3532 pr_cont("\n");
3533 dump_stack();
3534 warn_alloc_show_mem(gfp_mask, nodemask);
3535 }
3536
3537 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3538 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3539 unsigned int alloc_flags,
3540 const struct alloc_context *ac)
3541 {
3542 struct page *page;
3543
3544 page = get_page_from_freelist(gfp_mask, order,
3545 alloc_flags|ALLOC_CPUSET, ac);
3546 /*
3547 * fallback to ignore cpuset restriction if our nodes
3548 * are depleted
3549 */
3550 if (!page)
3551 page = get_page_from_freelist(gfp_mask, order,
3552 alloc_flags, ac);
3553
3554 return page;
3555 }
3556
3557 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3558 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3559 const struct alloc_context *ac, unsigned long *did_some_progress)
3560 {
3561 struct oom_control oc = {
3562 .zonelist = ac->zonelist,
3563 .nodemask = ac->nodemask,
3564 .memcg = NULL,
3565 .gfp_mask = gfp_mask,
3566 .order = order,
3567 };
3568 struct page *page;
3569
3570 *did_some_progress = 0;
3571
3572 /*
3573 * Acquire the oom lock. If that fails, somebody else is
3574 * making progress for us.
3575 */
3576 if (!mutex_trylock(&oom_lock)) {
3577 *did_some_progress = 1;
3578 schedule_timeout_uninterruptible(1);
3579 return NULL;
3580 }
3581
3582 /*
3583 * Go through the zonelist yet one more time, keep very high watermark
3584 * here, this is only to catch a parallel oom killing, we must fail if
3585 * we're still under heavy pressure. But make sure that this reclaim
3586 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3587 * allocation which will never fail due to oom_lock already held.
3588 */
3589 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3590 ~__GFP_DIRECT_RECLAIM, order,
3591 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3592 if (page)
3593 goto out;
3594
3595 /* Coredumps can quickly deplete all memory reserves */
3596 if (current->flags & PF_DUMPCORE)
3597 goto out;
3598 /* The OOM killer will not help higher order allocs */
3599 if (order > PAGE_ALLOC_COSTLY_ORDER)
3600 goto out;
3601 /*
3602 * We have already exhausted all our reclaim opportunities without any
3603 * success so it is time to admit defeat. We will skip the OOM killer
3604 * because it is very likely that the caller has a more reasonable
3605 * fallback than shooting a random task.
3606 *
3607 * The OOM killer may not free memory on a specific node.
3608 */
3609 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3610 goto out;
3611 /* The OOM killer does not needlessly kill tasks for lowmem */
3612 if (ac->highest_zoneidx < ZONE_NORMAL)
3613 goto out;
3614 if (pm_suspended_storage())
3615 goto out;
3616 /*
3617 * XXX: GFP_NOFS allocations should rather fail than rely on
3618 * other request to make a forward progress.
3619 * We are in an unfortunate situation where out_of_memory cannot
3620 * do much for this context but let's try it to at least get
3621 * access to memory reserved if the current task is killed (see
3622 * out_of_memory). Once filesystems are ready to handle allocation
3623 * failures more gracefully we should just bail out here.
3624 */
3625
3626 /* Exhausted what can be done so it's blame time */
3627 if (out_of_memory(&oc) ||
3628 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3629 *did_some_progress = 1;
3630
3631 /*
3632 * Help non-failing allocations by giving them access to memory
3633 * reserves
3634 */
3635 if (gfp_mask & __GFP_NOFAIL)
3636 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3637 ALLOC_NO_WATERMARKS, ac);
3638 }
3639 out:
3640 mutex_unlock(&oom_lock);
3641 return page;
3642 }
3643
3644 /*
3645 * Maximum number of compaction retries with a progress before OOM
3646 * killer is consider as the only way to move forward.
3647 */
3648 #define MAX_COMPACT_RETRIES 16
3649
3650 #ifdef CONFIG_COMPACTION
3651 /* Try memory compaction for high-order allocations before reclaim */
3652 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3653 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3654 unsigned int alloc_flags, const struct alloc_context *ac,
3655 enum compact_priority prio, enum compact_result *compact_result)
3656 {
3657 struct page *page = NULL;
3658 unsigned long pflags;
3659 unsigned int noreclaim_flag;
3660
3661 if (!order)
3662 return NULL;
3663
3664 psi_memstall_enter(&pflags);
3665 delayacct_compact_start();
3666 noreclaim_flag = memalloc_noreclaim_save();
3667
3668 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3669 prio, &page);
3670
3671 memalloc_noreclaim_restore(noreclaim_flag);
3672 psi_memstall_leave(&pflags);
3673 delayacct_compact_end();
3674
3675 if (*compact_result == COMPACT_SKIPPED)
3676 return NULL;
3677 /*
3678 * At least in one zone compaction wasn't deferred or skipped, so let's
3679 * count a compaction stall
3680 */
3681 count_vm_event(COMPACTSTALL);
3682
3683 /* Prep a captured page if available */
3684 if (page)
3685 prep_new_page(page, order, gfp_mask, alloc_flags);
3686
3687 /* Try get a page from the freelist if available */
3688 if (!page)
3689 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3690
3691 if (page) {
3692 struct zone *zone = page_zone(page);
3693
3694 zone->compact_blockskip_flush = false;
3695 compaction_defer_reset(zone, order, true);
3696 count_vm_event(COMPACTSUCCESS);
3697 return page;
3698 }
3699
3700 /*
3701 * It's bad if compaction run occurs and fails. The most likely reason
3702 * is that pages exist, but not enough to satisfy watermarks.
3703 */
3704 count_vm_event(COMPACTFAIL);
3705
3706 cond_resched();
3707
3708 return NULL;
3709 }
3710
3711 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3712 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3713 enum compact_result compact_result,
3714 enum compact_priority *compact_priority,
3715 int *compaction_retries)
3716 {
3717 int max_retries = MAX_COMPACT_RETRIES;
3718 int min_priority;
3719 bool ret = false;
3720 int retries = *compaction_retries;
3721 enum compact_priority priority = *compact_priority;
3722
3723 if (!order)
3724 return false;
3725
3726 if (fatal_signal_pending(current))
3727 return false;
3728
3729 /*
3730 * Compaction was skipped due to a lack of free order-0
3731 * migration targets. Continue if reclaim can help.
3732 */
3733 if (compact_result == COMPACT_SKIPPED) {
3734 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3735 goto out;
3736 }
3737
3738 /*
3739 * Compaction managed to coalesce some page blocks, but the
3740 * allocation failed presumably due to a race. Retry some.
3741 */
3742 if (compact_result == COMPACT_SUCCESS) {
3743 /*
3744 * !costly requests are much more important than
3745 * __GFP_RETRY_MAYFAIL costly ones because they are de
3746 * facto nofail and invoke OOM killer to move on while
3747 * costly can fail and users are ready to cope with
3748 * that. 1/4 retries is rather arbitrary but we would
3749 * need much more detailed feedback from compaction to
3750 * make a better decision.
3751 */
3752 if (order > PAGE_ALLOC_COSTLY_ORDER)
3753 max_retries /= 4;
3754
3755 if (++(*compaction_retries) <= max_retries) {
3756 ret = true;
3757 goto out;
3758 }
3759 }
3760
3761 /*
3762 * Compaction failed. Retry with increasing priority.
3763 */
3764 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3765 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3766
3767 if (*compact_priority > min_priority) {
3768 (*compact_priority)--;
3769 *compaction_retries = 0;
3770 ret = true;
3771 }
3772 out:
3773 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3774 return ret;
3775 }
3776 #else
3777 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3778 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3779 unsigned int alloc_flags, const struct alloc_context *ac,
3780 enum compact_priority prio, enum compact_result *compact_result)
3781 {
3782 *compact_result = COMPACT_SKIPPED;
3783 return NULL;
3784 }
3785
3786 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3787 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3788 enum compact_result compact_result,
3789 enum compact_priority *compact_priority,
3790 int *compaction_retries)
3791 {
3792 struct zone *zone;
3793 struct zoneref *z;
3794
3795 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3796 return false;
3797
3798 /*
3799 * There are setups with compaction disabled which would prefer to loop
3800 * inside the allocator rather than hit the oom killer prematurely.
3801 * Let's give them a good hope and keep retrying while the order-0
3802 * watermarks are OK.
3803 */
3804 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3805 ac->highest_zoneidx, ac->nodemask) {
3806 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3807 ac->highest_zoneidx, alloc_flags))
3808 return true;
3809 }
3810 return false;
3811 }
3812 #endif /* CONFIG_COMPACTION */
3813
3814 #ifdef CONFIG_LOCKDEP
3815 static struct lockdep_map __fs_reclaim_map =
3816 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3817
__need_reclaim(gfp_t gfp_mask)3818 static bool __need_reclaim(gfp_t gfp_mask)
3819 {
3820 /* no reclaim without waiting on it */
3821 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3822 return false;
3823
3824 /* this guy won't enter reclaim */
3825 if (current->flags & PF_MEMALLOC)
3826 return false;
3827
3828 if (gfp_mask & __GFP_NOLOCKDEP)
3829 return false;
3830
3831 return true;
3832 }
3833
__fs_reclaim_acquire(unsigned long ip)3834 void __fs_reclaim_acquire(unsigned long ip)
3835 {
3836 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3837 }
3838
__fs_reclaim_release(unsigned long ip)3839 void __fs_reclaim_release(unsigned long ip)
3840 {
3841 lock_release(&__fs_reclaim_map, ip);
3842 }
3843
fs_reclaim_acquire(gfp_t gfp_mask)3844 void fs_reclaim_acquire(gfp_t gfp_mask)
3845 {
3846 gfp_mask = current_gfp_context(gfp_mask);
3847
3848 if (__need_reclaim(gfp_mask)) {
3849 if (gfp_mask & __GFP_FS)
3850 __fs_reclaim_acquire(_RET_IP_);
3851
3852 #ifdef CONFIG_MMU_NOTIFIER
3853 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3854 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3855 #endif
3856
3857 }
3858 }
3859 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3860
fs_reclaim_release(gfp_t gfp_mask)3861 void fs_reclaim_release(gfp_t gfp_mask)
3862 {
3863 gfp_mask = current_gfp_context(gfp_mask);
3864
3865 if (__need_reclaim(gfp_mask)) {
3866 if (gfp_mask & __GFP_FS)
3867 __fs_reclaim_release(_RET_IP_);
3868 }
3869 }
3870 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3871 #endif
3872
3873 /*
3874 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3875 * have been rebuilt so allocation retries. Reader side does not lock and
3876 * retries the allocation if zonelist changes. Writer side is protected by the
3877 * embedded spin_lock.
3878 */
3879 static DEFINE_SEQLOCK(zonelist_update_seq);
3880
zonelist_iter_begin(void)3881 static unsigned int zonelist_iter_begin(void)
3882 {
3883 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3884 return read_seqbegin(&zonelist_update_seq);
3885
3886 return 0;
3887 }
3888
check_retry_zonelist(unsigned int seq)3889 static unsigned int check_retry_zonelist(unsigned int seq)
3890 {
3891 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3892 return read_seqretry(&zonelist_update_seq, seq);
3893
3894 return seq;
3895 }
3896
3897 /* Perform direct synchronous page reclaim */
3898 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3899 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3900 const struct alloc_context *ac)
3901 {
3902 unsigned int noreclaim_flag;
3903 unsigned long progress;
3904
3905 cond_resched();
3906
3907 /* We now go into synchronous reclaim */
3908 cpuset_memory_pressure_bump();
3909 fs_reclaim_acquire(gfp_mask);
3910 noreclaim_flag = memalloc_noreclaim_save();
3911
3912 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3913 ac->nodemask);
3914
3915 memalloc_noreclaim_restore(noreclaim_flag);
3916 fs_reclaim_release(gfp_mask);
3917
3918 cond_resched();
3919
3920 return progress;
3921 }
3922
3923 /* The really slow allocator path where we enter direct reclaim */
3924 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3925 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3926 unsigned int alloc_flags, const struct alloc_context *ac,
3927 unsigned long *did_some_progress)
3928 {
3929 struct page *page = NULL;
3930 unsigned long pflags;
3931 bool drained = false;
3932
3933 psi_memstall_enter(&pflags);
3934 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3935 if (unlikely(!(*did_some_progress)))
3936 goto out;
3937
3938 retry:
3939 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3940
3941 /*
3942 * If an allocation failed after direct reclaim, it could be because
3943 * pages are pinned on the per-cpu lists or in high alloc reserves.
3944 * Shrink them and try again
3945 */
3946 if (!page && !drained) {
3947 unreserve_highatomic_pageblock(ac, false);
3948 drain_all_pages(NULL);
3949 drained = true;
3950 goto retry;
3951 }
3952 out:
3953 psi_memstall_leave(&pflags);
3954
3955 return page;
3956 }
3957
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3958 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3959 const struct alloc_context *ac)
3960 {
3961 struct zoneref *z;
3962 struct zone *zone;
3963 pg_data_t *last_pgdat = NULL;
3964 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3965
3966 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3967 ac->nodemask) {
3968 if (!managed_zone(zone))
3969 continue;
3970 if (last_pgdat != zone->zone_pgdat) {
3971 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3972 last_pgdat = zone->zone_pgdat;
3973 }
3974 }
3975 }
3976
3977 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3978 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3979 {
3980 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3981
3982 /*
3983 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3984 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3985 * to save two branches.
3986 */
3987 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3988 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3989
3990 /*
3991 * The caller may dip into page reserves a bit more if the caller
3992 * cannot run direct reclaim, or if the caller has realtime scheduling
3993 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3994 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3995 */
3996 alloc_flags |= (__force int)
3997 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3998
3999 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4000 /*
4001 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4002 * if it can't schedule.
4003 */
4004 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4005 alloc_flags |= ALLOC_NON_BLOCK;
4006
4007 if (order > 0)
4008 alloc_flags |= ALLOC_HIGHATOMIC;
4009 }
4010
4011 /*
4012 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4013 * GFP_ATOMIC) rather than fail, see the comment for
4014 * cpuset_node_allowed().
4015 */
4016 if (alloc_flags & ALLOC_MIN_RESERVE)
4017 alloc_flags &= ~ALLOC_CPUSET;
4018 } else if (unlikely(rt_or_dl_task(current)) && in_task())
4019 alloc_flags |= ALLOC_MIN_RESERVE;
4020
4021 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4022
4023 return alloc_flags;
4024 }
4025
oom_reserves_allowed(struct task_struct * tsk)4026 static bool oom_reserves_allowed(struct task_struct *tsk)
4027 {
4028 if (!tsk_is_oom_victim(tsk))
4029 return false;
4030
4031 /*
4032 * !MMU doesn't have oom reaper so give access to memory reserves
4033 * only to the thread with TIF_MEMDIE set
4034 */
4035 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4036 return false;
4037
4038 return true;
4039 }
4040
4041 /*
4042 * Distinguish requests which really need access to full memory
4043 * reserves from oom victims which can live with a portion of it
4044 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4045 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4046 {
4047 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4048 return 0;
4049 if (gfp_mask & __GFP_MEMALLOC)
4050 return ALLOC_NO_WATERMARKS;
4051 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4052 return ALLOC_NO_WATERMARKS;
4053 if (!in_interrupt()) {
4054 if (current->flags & PF_MEMALLOC)
4055 return ALLOC_NO_WATERMARKS;
4056 else if (oom_reserves_allowed(current))
4057 return ALLOC_OOM;
4058 }
4059
4060 return 0;
4061 }
4062
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4063 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4064 {
4065 return !!__gfp_pfmemalloc_flags(gfp_mask);
4066 }
4067
4068 /*
4069 * Checks whether it makes sense to retry the reclaim to make a forward progress
4070 * for the given allocation request.
4071 *
4072 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4073 * without success, or when we couldn't even meet the watermark if we
4074 * reclaimed all remaining pages on the LRU lists.
4075 *
4076 * Returns true if a retry is viable or false to enter the oom path.
4077 */
4078 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4079 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4080 struct alloc_context *ac, int alloc_flags,
4081 bool did_some_progress, int *no_progress_loops)
4082 {
4083 struct zone *zone;
4084 struct zoneref *z;
4085 bool ret = false;
4086
4087 /*
4088 * Costly allocations might have made a progress but this doesn't mean
4089 * their order will become available due to high fragmentation so
4090 * always increment the no progress counter for them
4091 */
4092 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4093 *no_progress_loops = 0;
4094 else
4095 (*no_progress_loops)++;
4096
4097 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4098 goto out;
4099
4100
4101 /*
4102 * Keep reclaiming pages while there is a chance this will lead
4103 * somewhere. If none of the target zones can satisfy our allocation
4104 * request even if all reclaimable pages are considered then we are
4105 * screwed and have to go OOM.
4106 */
4107 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4108 ac->highest_zoneidx, ac->nodemask) {
4109 unsigned long available;
4110 unsigned long reclaimable;
4111 unsigned long min_wmark = min_wmark_pages(zone);
4112 bool wmark;
4113
4114 if (cpusets_enabled() &&
4115 (alloc_flags & ALLOC_CPUSET) &&
4116 !__cpuset_zone_allowed(zone, gfp_mask))
4117 continue;
4118
4119 available = reclaimable = zone_reclaimable_pages(zone);
4120 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4121
4122 /*
4123 * Would the allocation succeed if we reclaimed all
4124 * reclaimable pages?
4125 */
4126 wmark = __zone_watermark_ok(zone, order, min_wmark,
4127 ac->highest_zoneidx, alloc_flags, available);
4128 trace_reclaim_retry_zone(z, order, reclaimable,
4129 available, min_wmark, *no_progress_loops, wmark);
4130 if (wmark) {
4131 ret = true;
4132 break;
4133 }
4134 }
4135
4136 /*
4137 * Memory allocation/reclaim might be called from a WQ context and the
4138 * current implementation of the WQ concurrency control doesn't
4139 * recognize that a particular WQ is congested if the worker thread is
4140 * looping without ever sleeping. Therefore we have to do a short sleep
4141 * here rather than calling cond_resched().
4142 */
4143 if (current->flags & PF_WQ_WORKER)
4144 schedule_timeout_uninterruptible(1);
4145 else
4146 cond_resched();
4147 out:
4148 /* Before OOM, exhaust highatomic_reserve */
4149 if (!ret)
4150 return unreserve_highatomic_pageblock(ac, true);
4151
4152 return ret;
4153 }
4154
4155 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4156 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4157 {
4158 /*
4159 * It's possible that cpuset's mems_allowed and the nodemask from
4160 * mempolicy don't intersect. This should be normally dealt with by
4161 * policy_nodemask(), but it's possible to race with cpuset update in
4162 * such a way the check therein was true, and then it became false
4163 * before we got our cpuset_mems_cookie here.
4164 * This assumes that for all allocations, ac->nodemask can come only
4165 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4166 * when it does not intersect with the cpuset restrictions) or the
4167 * caller can deal with a violated nodemask.
4168 */
4169 if (cpusets_enabled() && ac->nodemask &&
4170 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4171 ac->nodemask = NULL;
4172 return true;
4173 }
4174
4175 /*
4176 * When updating a task's mems_allowed or mempolicy nodemask, it is
4177 * possible to race with parallel threads in such a way that our
4178 * allocation can fail while the mask is being updated. If we are about
4179 * to fail, check if the cpuset changed during allocation and if so,
4180 * retry.
4181 */
4182 if (read_mems_allowed_retry(cpuset_mems_cookie))
4183 return true;
4184
4185 return false;
4186 }
4187
4188 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4189 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4190 struct alloc_context *ac)
4191 {
4192 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4193 bool can_compact = gfp_compaction_allowed(gfp_mask);
4194 bool nofail = gfp_mask & __GFP_NOFAIL;
4195 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4196 struct page *page = NULL;
4197 unsigned int alloc_flags;
4198 unsigned long did_some_progress;
4199 enum compact_priority compact_priority;
4200 enum compact_result compact_result;
4201 int compaction_retries;
4202 int no_progress_loops;
4203 unsigned int cpuset_mems_cookie;
4204 unsigned int zonelist_iter_cookie;
4205 int reserve_flags;
4206
4207 if (unlikely(nofail)) {
4208 /*
4209 * We most definitely don't want callers attempting to
4210 * allocate greater than order-1 page units with __GFP_NOFAIL.
4211 */
4212 WARN_ON_ONCE(order > 1);
4213 /*
4214 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4215 * otherwise, we may result in lockup.
4216 */
4217 WARN_ON_ONCE(!can_direct_reclaim);
4218 /*
4219 * PF_MEMALLOC request from this context is rather bizarre
4220 * because we cannot reclaim anything and only can loop waiting
4221 * for somebody to do a work for us.
4222 */
4223 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4224 }
4225
4226 restart:
4227 compaction_retries = 0;
4228 no_progress_loops = 0;
4229 compact_priority = DEF_COMPACT_PRIORITY;
4230 cpuset_mems_cookie = read_mems_allowed_begin();
4231 zonelist_iter_cookie = zonelist_iter_begin();
4232
4233 /*
4234 * The fast path uses conservative alloc_flags to succeed only until
4235 * kswapd needs to be woken up, and to avoid the cost of setting up
4236 * alloc_flags precisely. So we do that now.
4237 */
4238 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4239
4240 /*
4241 * We need to recalculate the starting point for the zonelist iterator
4242 * because we might have used different nodemask in the fast path, or
4243 * there was a cpuset modification and we are retrying - otherwise we
4244 * could end up iterating over non-eligible zones endlessly.
4245 */
4246 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4247 ac->highest_zoneidx, ac->nodemask);
4248 if (!zonelist_zone(ac->preferred_zoneref))
4249 goto nopage;
4250
4251 /*
4252 * Check for insane configurations where the cpuset doesn't contain
4253 * any suitable zone to satisfy the request - e.g. non-movable
4254 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4255 */
4256 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4257 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4258 ac->highest_zoneidx,
4259 &cpuset_current_mems_allowed);
4260 if (!zonelist_zone(z))
4261 goto nopage;
4262 }
4263
4264 if (alloc_flags & ALLOC_KSWAPD)
4265 wake_all_kswapds(order, gfp_mask, ac);
4266
4267 /*
4268 * The adjusted alloc_flags might result in immediate success, so try
4269 * that first
4270 */
4271 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4272 if (page)
4273 goto got_pg;
4274
4275 /*
4276 * For costly allocations, try direct compaction first, as it's likely
4277 * that we have enough base pages and don't need to reclaim. For non-
4278 * movable high-order allocations, do that as well, as compaction will
4279 * try prevent permanent fragmentation by migrating from blocks of the
4280 * same migratetype.
4281 * Don't try this for allocations that are allowed to ignore
4282 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4283 */
4284 if (can_direct_reclaim && can_compact &&
4285 (costly_order ||
4286 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4287 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4288 page = __alloc_pages_direct_compact(gfp_mask, order,
4289 alloc_flags, ac,
4290 INIT_COMPACT_PRIORITY,
4291 &compact_result);
4292 if (page)
4293 goto got_pg;
4294
4295 /*
4296 * Checks for costly allocations with __GFP_NORETRY, which
4297 * includes some THP page fault allocations
4298 */
4299 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4300 /*
4301 * If allocating entire pageblock(s) and compaction
4302 * failed because all zones are below low watermarks
4303 * or is prohibited because it recently failed at this
4304 * order, fail immediately unless the allocator has
4305 * requested compaction and reclaim retry.
4306 *
4307 * Reclaim is
4308 * - potentially very expensive because zones are far
4309 * below their low watermarks or this is part of very
4310 * bursty high order allocations,
4311 * - not guaranteed to help because isolate_freepages()
4312 * may not iterate over freed pages as part of its
4313 * linear scan, and
4314 * - unlikely to make entire pageblocks free on its
4315 * own.
4316 */
4317 if (compact_result == COMPACT_SKIPPED ||
4318 compact_result == COMPACT_DEFERRED)
4319 goto nopage;
4320
4321 /*
4322 * Looks like reclaim/compaction is worth trying, but
4323 * sync compaction could be very expensive, so keep
4324 * using async compaction.
4325 */
4326 compact_priority = INIT_COMPACT_PRIORITY;
4327 }
4328 }
4329
4330 retry:
4331 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4332 if (alloc_flags & ALLOC_KSWAPD)
4333 wake_all_kswapds(order, gfp_mask, ac);
4334
4335 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4336 if (reserve_flags)
4337 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4338 (alloc_flags & ALLOC_KSWAPD);
4339
4340 /*
4341 * Reset the nodemask and zonelist iterators if memory policies can be
4342 * ignored. These allocations are high priority and system rather than
4343 * user oriented.
4344 */
4345 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4346 ac->nodemask = NULL;
4347 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4348 ac->highest_zoneidx, ac->nodemask);
4349 }
4350
4351 /* Attempt with potentially adjusted zonelist and alloc_flags */
4352 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4353 if (page)
4354 goto got_pg;
4355
4356 /* Caller is not willing to reclaim, we can't balance anything */
4357 if (!can_direct_reclaim)
4358 goto nopage;
4359
4360 /* Avoid recursion of direct reclaim */
4361 if (current->flags & PF_MEMALLOC)
4362 goto nopage;
4363
4364 /* Try direct reclaim and then allocating */
4365 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4366 &did_some_progress);
4367 if (page)
4368 goto got_pg;
4369
4370 /* Try direct compaction and then allocating */
4371 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4372 compact_priority, &compact_result);
4373 if (page)
4374 goto got_pg;
4375
4376 /* Do not loop if specifically requested */
4377 if (gfp_mask & __GFP_NORETRY)
4378 goto nopage;
4379
4380 /*
4381 * Do not retry costly high order allocations unless they are
4382 * __GFP_RETRY_MAYFAIL and we can compact
4383 */
4384 if (costly_order && (!can_compact ||
4385 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4386 goto nopage;
4387
4388 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4389 did_some_progress > 0, &no_progress_loops))
4390 goto retry;
4391
4392 /*
4393 * It doesn't make any sense to retry for the compaction if the order-0
4394 * reclaim is not able to make any progress because the current
4395 * implementation of the compaction depends on the sufficient amount
4396 * of free memory (see __compaction_suitable)
4397 */
4398 if (did_some_progress > 0 && can_compact &&
4399 should_compact_retry(ac, order, alloc_flags,
4400 compact_result, &compact_priority,
4401 &compaction_retries))
4402 goto retry;
4403
4404
4405 /*
4406 * Deal with possible cpuset update races or zonelist updates to avoid
4407 * a unnecessary OOM kill.
4408 */
4409 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4410 check_retry_zonelist(zonelist_iter_cookie))
4411 goto restart;
4412
4413 /* Reclaim has failed us, start killing things */
4414 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4415 if (page)
4416 goto got_pg;
4417
4418 /* Avoid allocations with no watermarks from looping endlessly */
4419 if (tsk_is_oom_victim(current) &&
4420 (alloc_flags & ALLOC_OOM ||
4421 (gfp_mask & __GFP_NOMEMALLOC)))
4422 goto nopage;
4423
4424 /* Retry as long as the OOM killer is making progress */
4425 if (did_some_progress) {
4426 no_progress_loops = 0;
4427 goto retry;
4428 }
4429
4430 nopage:
4431 /*
4432 * Deal with possible cpuset update races or zonelist updates to avoid
4433 * a unnecessary OOM kill.
4434 */
4435 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4436 check_retry_zonelist(zonelist_iter_cookie))
4437 goto restart;
4438
4439 /*
4440 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4441 * we always retry
4442 */
4443 if (unlikely(nofail)) {
4444 /*
4445 * Lacking direct_reclaim we can't do anything to reclaim memory,
4446 * we disregard these unreasonable nofail requests and still
4447 * return NULL
4448 */
4449 if (!can_direct_reclaim)
4450 goto fail;
4451
4452 /*
4453 * Help non-failing allocations by giving some access to memory
4454 * reserves normally used for high priority non-blocking
4455 * allocations but do not use ALLOC_NO_WATERMARKS because this
4456 * could deplete whole memory reserves which would just make
4457 * the situation worse.
4458 */
4459 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4460 if (page)
4461 goto got_pg;
4462
4463 cond_resched();
4464 goto retry;
4465 }
4466 fail:
4467 warn_alloc(gfp_mask, ac->nodemask,
4468 "page allocation failure: order:%u", order);
4469 got_pg:
4470 return page;
4471 }
4472
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4473 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4474 int preferred_nid, nodemask_t *nodemask,
4475 struct alloc_context *ac, gfp_t *alloc_gfp,
4476 unsigned int *alloc_flags)
4477 {
4478 ac->highest_zoneidx = gfp_zone(gfp_mask);
4479 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4480 ac->nodemask = nodemask;
4481 ac->migratetype = gfp_migratetype(gfp_mask);
4482
4483 if (cpusets_enabled()) {
4484 *alloc_gfp |= __GFP_HARDWALL;
4485 /*
4486 * When we are in the interrupt context, it is irrelevant
4487 * to the current task context. It means that any node ok.
4488 */
4489 if (in_task() && !ac->nodemask)
4490 ac->nodemask = &cpuset_current_mems_allowed;
4491 else
4492 *alloc_flags |= ALLOC_CPUSET;
4493 }
4494
4495 might_alloc(gfp_mask);
4496
4497 if (should_fail_alloc_page(gfp_mask, order))
4498 return false;
4499
4500 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4501
4502 /* Dirty zone balancing only done in the fast path */
4503 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4504
4505 /*
4506 * The preferred zone is used for statistics but crucially it is
4507 * also used as the starting point for the zonelist iterator. It
4508 * may get reset for allocations that ignore memory policies.
4509 */
4510 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4511 ac->highest_zoneidx, ac->nodemask);
4512
4513 return true;
4514 }
4515
4516 /*
4517 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4518 * @gfp: GFP flags for the allocation
4519 * @preferred_nid: The preferred NUMA node ID to allocate from
4520 * @nodemask: Set of nodes to allocate from, may be NULL
4521 * @nr_pages: The number of pages desired on the list or array
4522 * @page_list: Optional list to store the allocated pages
4523 * @page_array: Optional array to store the pages
4524 *
4525 * This is a batched version of the page allocator that attempts to
4526 * allocate nr_pages quickly. Pages are added to page_list if page_list
4527 * is not NULL, otherwise it is assumed that the page_array is valid.
4528 *
4529 * For lists, nr_pages is the number of pages that should be allocated.
4530 *
4531 * For arrays, only NULL elements are populated with pages and nr_pages
4532 * is the maximum number of pages that will be stored in the array.
4533 *
4534 * Returns the number of pages on the list or array.
4535 */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4536 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4537 nodemask_t *nodemask, int nr_pages,
4538 struct list_head *page_list,
4539 struct page **page_array)
4540 {
4541 struct page *page;
4542 unsigned long __maybe_unused UP_flags;
4543 struct zone *zone;
4544 struct zoneref *z;
4545 struct per_cpu_pages *pcp;
4546 struct list_head *pcp_list;
4547 struct alloc_context ac;
4548 gfp_t alloc_gfp;
4549 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4550 int nr_populated = 0, nr_account = 0;
4551
4552 /*
4553 * Skip populated array elements to determine if any pages need
4554 * to be allocated before disabling IRQs.
4555 */
4556 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4557 nr_populated++;
4558
4559 /* No pages requested? */
4560 if (unlikely(nr_pages <= 0))
4561 goto out;
4562
4563 /* Already populated array? */
4564 if (unlikely(page_array && nr_pages - nr_populated == 0))
4565 goto out;
4566
4567 /* Bulk allocator does not support memcg accounting. */
4568 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4569 goto failed;
4570
4571 /* Use the single page allocator for one page. */
4572 if (nr_pages - nr_populated == 1)
4573 goto failed;
4574
4575 #ifdef CONFIG_PAGE_OWNER
4576 /*
4577 * PAGE_OWNER may recurse into the allocator to allocate space to
4578 * save the stack with pagesets.lock held. Releasing/reacquiring
4579 * removes much of the performance benefit of bulk allocation so
4580 * force the caller to allocate one page at a time as it'll have
4581 * similar performance to added complexity to the bulk allocator.
4582 */
4583 if (static_branch_unlikely(&page_owner_inited))
4584 goto failed;
4585 #endif
4586
4587 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4588 gfp &= gfp_allowed_mask;
4589 alloc_gfp = gfp;
4590 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4591 goto out;
4592 gfp = alloc_gfp;
4593
4594 /* Find an allowed local zone that meets the low watermark. */
4595 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4596 unsigned long mark;
4597
4598 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4599 !__cpuset_zone_allowed(zone, gfp)) {
4600 continue;
4601 }
4602
4603 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4604 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4605 goto failed;
4606 }
4607
4608 cond_accept_memory(zone, 0);
4609 retry_this_zone:
4610 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4611 if (zone_watermark_fast(zone, 0, mark,
4612 zonelist_zone_idx(ac.preferred_zoneref),
4613 alloc_flags, gfp)) {
4614 break;
4615 }
4616
4617 if (cond_accept_memory(zone, 0))
4618 goto retry_this_zone;
4619
4620 /* Try again if zone has deferred pages */
4621 if (deferred_pages_enabled()) {
4622 if (_deferred_grow_zone(zone, 0))
4623 goto retry_this_zone;
4624 }
4625 }
4626
4627 /*
4628 * If there are no allowed local zones that meets the watermarks then
4629 * try to allocate a single page and reclaim if necessary.
4630 */
4631 if (unlikely(!zone))
4632 goto failed;
4633
4634 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4635 pcp_trylock_prepare(UP_flags);
4636 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4637 if (!pcp)
4638 goto failed_irq;
4639
4640 /* Attempt the batch allocation */
4641 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4642 while (nr_populated < nr_pages) {
4643
4644 /* Skip existing pages */
4645 if (page_array && page_array[nr_populated]) {
4646 nr_populated++;
4647 continue;
4648 }
4649
4650 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4651 pcp, pcp_list);
4652 if (unlikely(!page)) {
4653 /* Try and allocate at least one page */
4654 if (!nr_account) {
4655 pcp_spin_unlock(pcp);
4656 goto failed_irq;
4657 }
4658 break;
4659 }
4660 nr_account++;
4661
4662 prep_new_page(page, 0, gfp, 0);
4663 if (page_list)
4664 list_add(&page->lru, page_list);
4665 else
4666 page_array[nr_populated] = page;
4667 nr_populated++;
4668 }
4669
4670 pcp_spin_unlock(pcp);
4671 pcp_trylock_finish(UP_flags);
4672
4673 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4674 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4675
4676 out:
4677 return nr_populated;
4678
4679 failed_irq:
4680 pcp_trylock_finish(UP_flags);
4681
4682 failed:
4683 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4684 if (page) {
4685 if (page_list)
4686 list_add(&page->lru, page_list);
4687 else
4688 page_array[nr_populated] = page;
4689 nr_populated++;
4690 }
4691
4692 goto out;
4693 }
4694 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4695
4696 /*
4697 * This is the 'heart' of the zoned buddy allocator.
4698 */
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4699 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4700 int preferred_nid, nodemask_t *nodemask)
4701 {
4702 struct page *page;
4703 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4704 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4705 struct alloc_context ac = { };
4706
4707 /*
4708 * There are several places where we assume that the order value is sane
4709 * so bail out early if the request is out of bound.
4710 */
4711 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4712 return NULL;
4713
4714 gfp &= gfp_allowed_mask;
4715 /*
4716 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4717 * resp. GFP_NOIO which has to be inherited for all allocation requests
4718 * from a particular context which has been marked by
4719 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4720 * movable zones are not used during allocation.
4721 */
4722 gfp = current_gfp_context(gfp);
4723 alloc_gfp = gfp;
4724 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4725 &alloc_gfp, &alloc_flags))
4726 return NULL;
4727
4728 /*
4729 * Forbid the first pass from falling back to types that fragment
4730 * memory until all local zones are considered.
4731 */
4732 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4733
4734 /* First allocation attempt */
4735 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4736 if (likely(page))
4737 goto out;
4738
4739 alloc_gfp = gfp;
4740 ac.spread_dirty_pages = false;
4741
4742 /*
4743 * Restore the original nodemask if it was potentially replaced with
4744 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4745 */
4746 ac.nodemask = nodemask;
4747
4748 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4749
4750 out:
4751 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4752 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4753 __free_pages(page, order);
4754 page = NULL;
4755 }
4756
4757 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4758 kmsan_alloc_page(page, order, alloc_gfp);
4759
4760 return page;
4761 }
4762 EXPORT_SYMBOL(__alloc_pages_noprof);
4763
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4764 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4765 nodemask_t *nodemask)
4766 {
4767 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4768 preferred_nid, nodemask);
4769 return page_rmappable_folio(page);
4770 }
4771 EXPORT_SYMBOL(__folio_alloc_noprof);
4772
4773 /*
4774 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4775 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4776 * you need to access high mem.
4777 */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)4778 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4779 {
4780 struct page *page;
4781
4782 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4783 if (!page)
4784 return 0;
4785 return (unsigned long) page_address(page);
4786 }
4787 EXPORT_SYMBOL(get_free_pages_noprof);
4788
get_zeroed_page_noprof(gfp_t gfp_mask)4789 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4790 {
4791 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4792 }
4793 EXPORT_SYMBOL(get_zeroed_page_noprof);
4794
4795 /**
4796 * __free_pages - Free pages allocated with alloc_pages().
4797 * @page: The page pointer returned from alloc_pages().
4798 * @order: The order of the allocation.
4799 *
4800 * This function can free multi-page allocations that are not compound
4801 * pages. It does not check that the @order passed in matches that of
4802 * the allocation, so it is easy to leak memory. Freeing more memory
4803 * than was allocated will probably emit a warning.
4804 *
4805 * If the last reference to this page is speculative, it will be released
4806 * by put_page() which only frees the first page of a non-compound
4807 * allocation. To prevent the remaining pages from being leaked, we free
4808 * the subsequent pages here. If you want to use the page's reference
4809 * count to decide when to free the allocation, you should allocate a
4810 * compound page, and use put_page() instead of __free_pages().
4811 *
4812 * Context: May be called in interrupt context or while holding a normal
4813 * spinlock, but not in NMI context or while holding a raw spinlock.
4814 */
__free_pages(struct page * page,unsigned int order)4815 void __free_pages(struct page *page, unsigned int order)
4816 {
4817 /* get PageHead before we drop reference */
4818 int head = PageHead(page);
4819 struct alloc_tag *tag = pgalloc_tag_get(page);
4820
4821 if (put_page_testzero(page))
4822 free_unref_page(page, order);
4823 else if (!head) {
4824 pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4825 while (order-- > 0)
4826 free_unref_page(page + (1 << order), order);
4827 }
4828 }
4829 EXPORT_SYMBOL(__free_pages);
4830
free_pages(unsigned long addr,unsigned int order)4831 void free_pages(unsigned long addr, unsigned int order)
4832 {
4833 if (addr != 0) {
4834 VM_BUG_ON(!virt_addr_valid((void *)addr));
4835 __free_pages(virt_to_page((void *)addr), order);
4836 }
4837 }
4838
4839 EXPORT_SYMBOL(free_pages);
4840
4841 /*
4842 * Page Fragment:
4843 * An arbitrary-length arbitrary-offset area of memory which resides
4844 * within a 0 or higher order page. Multiple fragments within that page
4845 * are individually refcounted, in the page's reference counter.
4846 *
4847 * The page_frag functions below provide a simple allocation framework for
4848 * page fragments. This is used by the network stack and network device
4849 * drivers to provide a backing region of memory for use as either an
4850 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4851 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4852 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4853 gfp_t gfp_mask)
4854 {
4855 struct page *page = NULL;
4856 gfp_t gfp = gfp_mask;
4857
4858 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4859 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP |
4860 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4861 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4862 PAGE_FRAG_CACHE_MAX_ORDER);
4863 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4864 #endif
4865 if (unlikely(!page))
4866 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4867
4868 nc->va = page ? page_address(page) : NULL;
4869
4870 return page;
4871 }
4872
page_frag_cache_drain(struct page_frag_cache * nc)4873 void page_frag_cache_drain(struct page_frag_cache *nc)
4874 {
4875 if (!nc->va)
4876 return;
4877
4878 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4879 nc->va = NULL;
4880 }
4881 EXPORT_SYMBOL(page_frag_cache_drain);
4882
__page_frag_cache_drain(struct page * page,unsigned int count)4883 void __page_frag_cache_drain(struct page *page, unsigned int count)
4884 {
4885 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4886
4887 if (page_ref_sub_and_test(page, count))
4888 free_unref_page(page, compound_order(page));
4889 }
4890 EXPORT_SYMBOL(__page_frag_cache_drain);
4891
__page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4892 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4893 unsigned int fragsz, gfp_t gfp_mask,
4894 unsigned int align_mask)
4895 {
4896 unsigned int size = PAGE_SIZE;
4897 struct page *page;
4898 int offset;
4899
4900 if (unlikely(!nc->va)) {
4901 refill:
4902 page = __page_frag_cache_refill(nc, gfp_mask);
4903 if (!page)
4904 return NULL;
4905
4906 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4907 /* if size can vary use size else just use PAGE_SIZE */
4908 size = nc->size;
4909 #endif
4910 /* Even if we own the page, we do not use atomic_set().
4911 * This would break get_page_unless_zero() users.
4912 */
4913 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4914
4915 /* reset page count bias and offset to start of new frag */
4916 nc->pfmemalloc = page_is_pfmemalloc(page);
4917 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4918 nc->offset = size;
4919 }
4920
4921 offset = nc->offset - fragsz;
4922 if (unlikely(offset < 0)) {
4923 page = virt_to_page(nc->va);
4924
4925 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4926 goto refill;
4927
4928 if (unlikely(nc->pfmemalloc)) {
4929 free_unref_page(page, compound_order(page));
4930 goto refill;
4931 }
4932
4933 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4934 /* if size can vary use size else just use PAGE_SIZE */
4935 size = nc->size;
4936 #endif
4937 /* OK, page count is 0, we can safely set it */
4938 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4939
4940 /* reset page count bias and offset to start of new frag */
4941 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4942 offset = size - fragsz;
4943 if (unlikely(offset < 0)) {
4944 /*
4945 * The caller is trying to allocate a fragment
4946 * with fragsz > PAGE_SIZE but the cache isn't big
4947 * enough to satisfy the request, this may
4948 * happen in low memory conditions.
4949 * We don't release the cache page because
4950 * it could make memory pressure worse
4951 * so we simply return NULL here.
4952 */
4953 return NULL;
4954 }
4955 }
4956
4957 nc->pagecnt_bias--;
4958 offset &= align_mask;
4959 nc->offset = offset;
4960
4961 return nc->va + offset;
4962 }
4963 EXPORT_SYMBOL(__page_frag_alloc_align);
4964
4965 /*
4966 * Frees a page fragment allocated out of either a compound or order 0 page.
4967 */
page_frag_free(void * addr)4968 void page_frag_free(void *addr)
4969 {
4970 struct page *page = virt_to_head_page(addr);
4971
4972 if (unlikely(put_page_testzero(page)))
4973 free_unref_page(page, compound_order(page));
4974 }
4975 EXPORT_SYMBOL(page_frag_free);
4976
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4977 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4978 size_t size)
4979 {
4980 if (addr) {
4981 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4982 struct page *page = virt_to_page((void *)addr);
4983 struct page *last = page + nr;
4984
4985 split_page_owner(page, order, 0);
4986 pgalloc_tag_split(page_folio(page), order, 0);
4987 split_page_memcg(page, order, 0);
4988 while (page < --last)
4989 set_page_refcounted(last);
4990
4991 last = page + (1UL << order);
4992 for (page += nr; page < last; page++)
4993 __free_pages_ok(page, 0, FPI_TO_TAIL);
4994 }
4995 return (void *)addr;
4996 }
4997
4998 /**
4999 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5000 * @size: the number of bytes to allocate
5001 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5002 *
5003 * This function is similar to alloc_pages(), except that it allocates the
5004 * minimum number of pages to satisfy the request. alloc_pages() can only
5005 * allocate memory in power-of-two pages.
5006 *
5007 * This function is also limited by MAX_PAGE_ORDER.
5008 *
5009 * Memory allocated by this function must be released by free_pages_exact().
5010 *
5011 * Return: pointer to the allocated area or %NULL in case of error.
5012 */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)5013 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5014 {
5015 unsigned int order = get_order(size);
5016 unsigned long addr;
5017
5018 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5019 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5020
5021 addr = get_free_pages_noprof(gfp_mask, order);
5022 return make_alloc_exact(addr, order, size);
5023 }
5024 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5025
5026 /**
5027 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5028 * pages on a node.
5029 * @nid: the preferred node ID where memory should be allocated
5030 * @size: the number of bytes to allocate
5031 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5032 *
5033 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5034 * back.
5035 *
5036 * Return: pointer to the allocated area or %NULL in case of error.
5037 */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)5038 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5039 {
5040 unsigned int order = get_order(size);
5041 struct page *p;
5042
5043 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5044 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5045
5046 p = alloc_pages_node_noprof(nid, gfp_mask, order);
5047 if (!p)
5048 return NULL;
5049 return make_alloc_exact((unsigned long)page_address(p), order, size);
5050 }
5051
5052 /**
5053 * free_pages_exact - release memory allocated via alloc_pages_exact()
5054 * @virt: the value returned by alloc_pages_exact.
5055 * @size: size of allocation, same value as passed to alloc_pages_exact().
5056 *
5057 * Release the memory allocated by a previous call to alloc_pages_exact.
5058 */
free_pages_exact(void * virt,size_t size)5059 void free_pages_exact(void *virt, size_t size)
5060 {
5061 unsigned long addr = (unsigned long)virt;
5062 unsigned long end = addr + PAGE_ALIGN(size);
5063
5064 while (addr < end) {
5065 free_page(addr);
5066 addr += PAGE_SIZE;
5067 }
5068 }
5069 EXPORT_SYMBOL(free_pages_exact);
5070
5071 /**
5072 * nr_free_zone_pages - count number of pages beyond high watermark
5073 * @offset: The zone index of the highest zone
5074 *
5075 * nr_free_zone_pages() counts the number of pages which are beyond the
5076 * high watermark within all zones at or below a given zone index. For each
5077 * zone, the number of pages is calculated as:
5078 *
5079 * nr_free_zone_pages = managed_pages - high_pages
5080 *
5081 * Return: number of pages beyond high watermark.
5082 */
nr_free_zone_pages(int offset)5083 static unsigned long nr_free_zone_pages(int offset)
5084 {
5085 struct zoneref *z;
5086 struct zone *zone;
5087
5088 /* Just pick one node, since fallback list is circular */
5089 unsigned long sum = 0;
5090
5091 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5092
5093 for_each_zone_zonelist(zone, z, zonelist, offset) {
5094 unsigned long size = zone_managed_pages(zone);
5095 unsigned long high = high_wmark_pages(zone);
5096 if (size > high)
5097 sum += size - high;
5098 }
5099
5100 return sum;
5101 }
5102
5103 /**
5104 * nr_free_buffer_pages - count number of pages beyond high watermark
5105 *
5106 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5107 * watermark within ZONE_DMA and ZONE_NORMAL.
5108 *
5109 * Return: number of pages beyond high watermark within ZONE_DMA and
5110 * ZONE_NORMAL.
5111 */
nr_free_buffer_pages(void)5112 unsigned long nr_free_buffer_pages(void)
5113 {
5114 return nr_free_zone_pages(gfp_zone(GFP_USER));
5115 }
5116 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5117
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5118 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5119 {
5120 zoneref->zone = zone;
5121 zoneref->zone_idx = zone_idx(zone);
5122 }
5123
5124 /*
5125 * Builds allocation fallback zone lists.
5126 *
5127 * Add all populated zones of a node to the zonelist.
5128 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5129 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5130 {
5131 struct zone *zone;
5132 enum zone_type zone_type = MAX_NR_ZONES;
5133 int nr_zones = 0;
5134
5135 do {
5136 zone_type--;
5137 zone = pgdat->node_zones + zone_type;
5138 if (populated_zone(zone)) {
5139 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5140 check_highest_zone(zone_type);
5141 }
5142 } while (zone_type);
5143
5144 return nr_zones;
5145 }
5146
5147 #ifdef CONFIG_NUMA
5148
__parse_numa_zonelist_order(char * s)5149 static int __parse_numa_zonelist_order(char *s)
5150 {
5151 /*
5152 * We used to support different zonelists modes but they turned
5153 * out to be just not useful. Let's keep the warning in place
5154 * if somebody still use the cmd line parameter so that we do
5155 * not fail it silently
5156 */
5157 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5158 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5159 return -EINVAL;
5160 }
5161 return 0;
5162 }
5163
5164 static char numa_zonelist_order[] = "Node";
5165 #define NUMA_ZONELIST_ORDER_LEN 16
5166 /*
5167 * sysctl handler for numa_zonelist_order
5168 */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5169 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5170 void *buffer, size_t *length, loff_t *ppos)
5171 {
5172 if (write)
5173 return __parse_numa_zonelist_order(buffer);
5174 return proc_dostring(table, write, buffer, length, ppos);
5175 }
5176
5177 static int node_load[MAX_NUMNODES];
5178
5179 /**
5180 * find_next_best_node - find the next node that should appear in a given node's fallback list
5181 * @node: node whose fallback list we're appending
5182 * @used_node_mask: nodemask_t of already used nodes
5183 *
5184 * We use a number of factors to determine which is the next node that should
5185 * appear on a given node's fallback list. The node should not have appeared
5186 * already in @node's fallback list, and it should be the next closest node
5187 * according to the distance array (which contains arbitrary distance values
5188 * from each node to each node in the system), and should also prefer nodes
5189 * with no CPUs, since presumably they'll have very little allocation pressure
5190 * on them otherwise.
5191 *
5192 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5193 */
find_next_best_node(int node,nodemask_t * used_node_mask)5194 int find_next_best_node(int node, nodemask_t *used_node_mask)
5195 {
5196 int n, val;
5197 int min_val = INT_MAX;
5198 int best_node = NUMA_NO_NODE;
5199
5200 /*
5201 * Use the local node if we haven't already, but for memoryless local
5202 * node, we should skip it and fall back to other nodes.
5203 */
5204 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5205 node_set(node, *used_node_mask);
5206 return node;
5207 }
5208
5209 for_each_node_state(n, N_MEMORY) {
5210
5211 /* Don't want a node to appear more than once */
5212 if (node_isset(n, *used_node_mask))
5213 continue;
5214
5215 /* Use the distance array to find the distance */
5216 val = node_distance(node, n);
5217
5218 /* Penalize nodes under us ("prefer the next node") */
5219 val += (n < node);
5220
5221 /* Give preference to headless and unused nodes */
5222 if (!cpumask_empty(cpumask_of_node(n)))
5223 val += PENALTY_FOR_NODE_WITH_CPUS;
5224
5225 /* Slight preference for less loaded node */
5226 val *= MAX_NUMNODES;
5227 val += node_load[n];
5228
5229 if (val < min_val) {
5230 min_val = val;
5231 best_node = n;
5232 }
5233 }
5234
5235 if (best_node >= 0)
5236 node_set(best_node, *used_node_mask);
5237
5238 return best_node;
5239 }
5240
5241
5242 /*
5243 * Build zonelists ordered by node and zones within node.
5244 * This results in maximum locality--normal zone overflows into local
5245 * DMA zone, if any--but risks exhausting DMA zone.
5246 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5247 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5248 unsigned nr_nodes)
5249 {
5250 struct zoneref *zonerefs;
5251 int i;
5252
5253 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5254
5255 for (i = 0; i < nr_nodes; i++) {
5256 int nr_zones;
5257
5258 pg_data_t *node = NODE_DATA(node_order[i]);
5259
5260 nr_zones = build_zonerefs_node(node, zonerefs);
5261 zonerefs += nr_zones;
5262 }
5263 zonerefs->zone = NULL;
5264 zonerefs->zone_idx = 0;
5265 }
5266
5267 /*
5268 * Build __GFP_THISNODE zonelists
5269 */
build_thisnode_zonelists(pg_data_t * pgdat)5270 static void build_thisnode_zonelists(pg_data_t *pgdat)
5271 {
5272 struct zoneref *zonerefs;
5273 int nr_zones;
5274
5275 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5276 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5277 zonerefs += nr_zones;
5278 zonerefs->zone = NULL;
5279 zonerefs->zone_idx = 0;
5280 }
5281
5282 /*
5283 * Build zonelists ordered by zone and nodes within zones.
5284 * This results in conserving DMA zone[s] until all Normal memory is
5285 * exhausted, but results in overflowing to remote node while memory
5286 * may still exist in local DMA zone.
5287 */
5288
build_zonelists(pg_data_t * pgdat)5289 static void build_zonelists(pg_data_t *pgdat)
5290 {
5291 static int node_order[MAX_NUMNODES];
5292 int node, nr_nodes = 0;
5293 nodemask_t used_mask = NODE_MASK_NONE;
5294 int local_node, prev_node;
5295
5296 /* NUMA-aware ordering of nodes */
5297 local_node = pgdat->node_id;
5298 prev_node = local_node;
5299
5300 memset(node_order, 0, sizeof(node_order));
5301 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5302 /*
5303 * We don't want to pressure a particular node.
5304 * So adding penalty to the first node in same
5305 * distance group to make it round-robin.
5306 */
5307 if (node_distance(local_node, node) !=
5308 node_distance(local_node, prev_node))
5309 node_load[node] += 1;
5310
5311 node_order[nr_nodes++] = node;
5312 prev_node = node;
5313 }
5314
5315 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5316 build_thisnode_zonelists(pgdat);
5317 pr_info("Fallback order for Node %d: ", local_node);
5318 for (node = 0; node < nr_nodes; node++)
5319 pr_cont("%d ", node_order[node]);
5320 pr_cont("\n");
5321 }
5322
5323 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5324 /*
5325 * Return node id of node used for "local" allocations.
5326 * I.e., first node id of first zone in arg node's generic zonelist.
5327 * Used for initializing percpu 'numa_mem', which is used primarily
5328 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5329 */
local_memory_node(int node)5330 int local_memory_node(int node)
5331 {
5332 struct zoneref *z;
5333
5334 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5335 gfp_zone(GFP_KERNEL),
5336 NULL);
5337 return zonelist_node_idx(z);
5338 }
5339 #endif
5340
5341 static void setup_min_unmapped_ratio(void);
5342 static void setup_min_slab_ratio(void);
5343 #else /* CONFIG_NUMA */
5344
build_zonelists(pg_data_t * pgdat)5345 static void build_zonelists(pg_data_t *pgdat)
5346 {
5347 struct zoneref *zonerefs;
5348 int nr_zones;
5349
5350 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5351 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5352 zonerefs += nr_zones;
5353
5354 zonerefs->zone = NULL;
5355 zonerefs->zone_idx = 0;
5356 }
5357
5358 #endif /* CONFIG_NUMA */
5359
5360 /*
5361 * Boot pageset table. One per cpu which is going to be used for all
5362 * zones and all nodes. The parameters will be set in such a way
5363 * that an item put on a list will immediately be handed over to
5364 * the buddy list. This is safe since pageset manipulation is done
5365 * with interrupts disabled.
5366 *
5367 * The boot_pagesets must be kept even after bootup is complete for
5368 * unused processors and/or zones. They do play a role for bootstrapping
5369 * hotplugged processors.
5370 *
5371 * zoneinfo_show() and maybe other functions do
5372 * not check if the processor is online before following the pageset pointer.
5373 * Other parts of the kernel may not check if the zone is available.
5374 */
5375 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5376 /* These effectively disable the pcplists in the boot pageset completely */
5377 #define BOOT_PAGESET_HIGH 0
5378 #define BOOT_PAGESET_BATCH 1
5379 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5380 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5381
__build_all_zonelists(void * data)5382 static void __build_all_zonelists(void *data)
5383 {
5384 int nid;
5385 int __maybe_unused cpu;
5386 pg_data_t *self = data;
5387 unsigned long flags;
5388
5389 /*
5390 * The zonelist_update_seq must be acquired with irqsave because the
5391 * reader can be invoked from IRQ with GFP_ATOMIC.
5392 */
5393 write_seqlock_irqsave(&zonelist_update_seq, flags);
5394 /*
5395 * Also disable synchronous printk() to prevent any printk() from
5396 * trying to hold port->lock, for
5397 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5398 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5399 */
5400 printk_deferred_enter();
5401
5402 #ifdef CONFIG_NUMA
5403 memset(node_load, 0, sizeof(node_load));
5404 #endif
5405
5406 /*
5407 * This node is hotadded and no memory is yet present. So just
5408 * building zonelists is fine - no need to touch other nodes.
5409 */
5410 if (self && !node_online(self->node_id)) {
5411 build_zonelists(self);
5412 } else {
5413 /*
5414 * All possible nodes have pgdat preallocated
5415 * in free_area_init
5416 */
5417 for_each_node(nid) {
5418 pg_data_t *pgdat = NODE_DATA(nid);
5419
5420 build_zonelists(pgdat);
5421 }
5422
5423 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5424 /*
5425 * We now know the "local memory node" for each node--
5426 * i.e., the node of the first zone in the generic zonelist.
5427 * Set up numa_mem percpu variable for on-line cpus. During
5428 * boot, only the boot cpu should be on-line; we'll init the
5429 * secondary cpus' numa_mem as they come on-line. During
5430 * node/memory hotplug, we'll fixup all on-line cpus.
5431 */
5432 for_each_online_cpu(cpu)
5433 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5434 #endif
5435 }
5436
5437 printk_deferred_exit();
5438 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5439 }
5440
5441 static noinline void __init
build_all_zonelists_init(void)5442 build_all_zonelists_init(void)
5443 {
5444 int cpu;
5445
5446 __build_all_zonelists(NULL);
5447
5448 /*
5449 * Initialize the boot_pagesets that are going to be used
5450 * for bootstrapping processors. The real pagesets for
5451 * each zone will be allocated later when the per cpu
5452 * allocator is available.
5453 *
5454 * boot_pagesets are used also for bootstrapping offline
5455 * cpus if the system is already booted because the pagesets
5456 * are needed to initialize allocators on a specific cpu too.
5457 * F.e. the percpu allocator needs the page allocator which
5458 * needs the percpu allocator in order to allocate its pagesets
5459 * (a chicken-egg dilemma).
5460 */
5461 for_each_possible_cpu(cpu)
5462 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5463
5464 mminit_verify_zonelist();
5465 cpuset_init_current_mems_allowed();
5466 }
5467
5468 /*
5469 * unless system_state == SYSTEM_BOOTING.
5470 *
5471 * __ref due to call of __init annotated helper build_all_zonelists_init
5472 * [protected by SYSTEM_BOOTING].
5473 */
build_all_zonelists(pg_data_t * pgdat)5474 void __ref build_all_zonelists(pg_data_t *pgdat)
5475 {
5476 unsigned long vm_total_pages;
5477
5478 if (system_state == SYSTEM_BOOTING) {
5479 build_all_zonelists_init();
5480 } else {
5481 __build_all_zonelists(pgdat);
5482 /* cpuset refresh routine should be here */
5483 }
5484 /* Get the number of free pages beyond high watermark in all zones. */
5485 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5486 /*
5487 * Disable grouping by mobility if the number of pages in the
5488 * system is too low to allow the mechanism to work. It would be
5489 * more accurate, but expensive to check per-zone. This check is
5490 * made on memory-hotadd so a system can start with mobility
5491 * disabled and enable it later
5492 */
5493 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5494 page_group_by_mobility_disabled = 1;
5495 else
5496 page_group_by_mobility_disabled = 0;
5497
5498 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5499 nr_online_nodes,
5500 page_group_by_mobility_disabled ? "off" : "on",
5501 vm_total_pages);
5502 #ifdef CONFIG_NUMA
5503 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5504 #endif
5505 }
5506
zone_batchsize(struct zone * zone)5507 static int zone_batchsize(struct zone *zone)
5508 {
5509 #ifdef CONFIG_MMU
5510 int batch;
5511
5512 /*
5513 * The number of pages to batch allocate is either ~0.1%
5514 * of the zone or 1MB, whichever is smaller. The batch
5515 * size is striking a balance between allocation latency
5516 * and zone lock contention.
5517 */
5518 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5519 batch /= 4; /* We effectively *= 4 below */
5520 if (batch < 1)
5521 batch = 1;
5522
5523 /*
5524 * Clamp the batch to a 2^n - 1 value. Having a power
5525 * of 2 value was found to be more likely to have
5526 * suboptimal cache aliasing properties in some cases.
5527 *
5528 * For example if 2 tasks are alternately allocating
5529 * batches of pages, one task can end up with a lot
5530 * of pages of one half of the possible page colors
5531 * and the other with pages of the other colors.
5532 */
5533 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5534
5535 return batch;
5536
5537 #else
5538 /* The deferral and batching of frees should be suppressed under NOMMU
5539 * conditions.
5540 *
5541 * The problem is that NOMMU needs to be able to allocate large chunks
5542 * of contiguous memory as there's no hardware page translation to
5543 * assemble apparent contiguous memory from discontiguous pages.
5544 *
5545 * Queueing large contiguous runs of pages for batching, however,
5546 * causes the pages to actually be freed in smaller chunks. As there
5547 * can be a significant delay between the individual batches being
5548 * recycled, this leads to the once large chunks of space being
5549 * fragmented and becoming unavailable for high-order allocations.
5550 */
5551 return 0;
5552 #endif
5553 }
5554
5555 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5556 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5557 int high_fraction)
5558 {
5559 #ifdef CONFIG_MMU
5560 int high;
5561 int nr_split_cpus;
5562 unsigned long total_pages;
5563
5564 if (!high_fraction) {
5565 /*
5566 * By default, the high value of the pcp is based on the zone
5567 * low watermark so that if they are full then background
5568 * reclaim will not be started prematurely.
5569 */
5570 total_pages = low_wmark_pages(zone);
5571 } else {
5572 /*
5573 * If percpu_pagelist_high_fraction is configured, the high
5574 * value is based on a fraction of the managed pages in the
5575 * zone.
5576 */
5577 total_pages = zone_managed_pages(zone) / high_fraction;
5578 }
5579
5580 /*
5581 * Split the high value across all online CPUs local to the zone. Note
5582 * that early in boot that CPUs may not be online yet and that during
5583 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5584 * onlined. For memory nodes that have no CPUs, split the high value
5585 * across all online CPUs to mitigate the risk that reclaim is triggered
5586 * prematurely due to pages stored on pcp lists.
5587 */
5588 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5589 if (!nr_split_cpus)
5590 nr_split_cpus = num_online_cpus();
5591 high = total_pages / nr_split_cpus;
5592
5593 /*
5594 * Ensure high is at least batch*4. The multiple is based on the
5595 * historical relationship between high and batch.
5596 */
5597 high = max(high, batch << 2);
5598
5599 return high;
5600 #else
5601 return 0;
5602 #endif
5603 }
5604
5605 /*
5606 * pcp->high and pcp->batch values are related and generally batch is lower
5607 * than high. They are also related to pcp->count such that count is lower
5608 * than high, and as soon as it reaches high, the pcplist is flushed.
5609 *
5610 * However, guaranteeing these relations at all times would require e.g. write
5611 * barriers here but also careful usage of read barriers at the read side, and
5612 * thus be prone to error and bad for performance. Thus the update only prevents
5613 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5614 * should ensure they can cope with those fields changing asynchronously, and
5615 * fully trust only the pcp->count field on the local CPU with interrupts
5616 * disabled.
5617 *
5618 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5619 * outside of boot time (or some other assurance that no concurrent updaters
5620 * exist).
5621 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5622 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5623 unsigned long high_max, unsigned long batch)
5624 {
5625 WRITE_ONCE(pcp->batch, batch);
5626 WRITE_ONCE(pcp->high_min, high_min);
5627 WRITE_ONCE(pcp->high_max, high_max);
5628 }
5629
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5630 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5631 {
5632 int pindex;
5633
5634 memset(pcp, 0, sizeof(*pcp));
5635 memset(pzstats, 0, sizeof(*pzstats));
5636
5637 spin_lock_init(&pcp->lock);
5638 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5639 INIT_LIST_HEAD(&pcp->lists[pindex]);
5640
5641 /*
5642 * Set batch and high values safe for a boot pageset. A true percpu
5643 * pageset's initialization will update them subsequently. Here we don't
5644 * need to be as careful as pageset_update() as nobody can access the
5645 * pageset yet.
5646 */
5647 pcp->high_min = BOOT_PAGESET_HIGH;
5648 pcp->high_max = BOOT_PAGESET_HIGH;
5649 pcp->batch = BOOT_PAGESET_BATCH;
5650 pcp->free_count = 0;
5651 }
5652
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5653 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5654 unsigned long high_max, unsigned long batch)
5655 {
5656 struct per_cpu_pages *pcp;
5657 int cpu;
5658
5659 for_each_possible_cpu(cpu) {
5660 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5661 pageset_update(pcp, high_min, high_max, batch);
5662 }
5663 }
5664
5665 /*
5666 * Calculate and set new high and batch values for all per-cpu pagesets of a
5667 * zone based on the zone's size.
5668 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5669 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5670 {
5671 int new_high_min, new_high_max, new_batch;
5672
5673 new_batch = max(1, zone_batchsize(zone));
5674 if (percpu_pagelist_high_fraction) {
5675 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5676 percpu_pagelist_high_fraction);
5677 /*
5678 * PCP high is tuned manually, disable auto-tuning via
5679 * setting high_min and high_max to the manual value.
5680 */
5681 new_high_max = new_high_min;
5682 } else {
5683 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5684 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5685 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5686 }
5687
5688 if (zone->pageset_high_min == new_high_min &&
5689 zone->pageset_high_max == new_high_max &&
5690 zone->pageset_batch == new_batch)
5691 return;
5692
5693 zone->pageset_high_min = new_high_min;
5694 zone->pageset_high_max = new_high_max;
5695 zone->pageset_batch = new_batch;
5696
5697 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5698 new_batch);
5699 }
5700
setup_zone_pageset(struct zone * zone)5701 void __meminit setup_zone_pageset(struct zone *zone)
5702 {
5703 int cpu;
5704
5705 /* Size may be 0 on !SMP && !NUMA */
5706 if (sizeof(struct per_cpu_zonestat) > 0)
5707 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5708
5709 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5710 for_each_possible_cpu(cpu) {
5711 struct per_cpu_pages *pcp;
5712 struct per_cpu_zonestat *pzstats;
5713
5714 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5715 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5716 per_cpu_pages_init(pcp, pzstats);
5717 }
5718
5719 zone_set_pageset_high_and_batch(zone, 0);
5720 }
5721
5722 /*
5723 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5724 * page high values need to be recalculated.
5725 */
zone_pcp_update(struct zone * zone,int cpu_online)5726 static void zone_pcp_update(struct zone *zone, int cpu_online)
5727 {
5728 mutex_lock(&pcp_batch_high_lock);
5729 zone_set_pageset_high_and_batch(zone, cpu_online);
5730 mutex_unlock(&pcp_batch_high_lock);
5731 }
5732
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)5733 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5734 {
5735 struct per_cpu_pages *pcp;
5736 struct cpu_cacheinfo *cci;
5737
5738 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5739 cci = get_cpu_cacheinfo(cpu);
5740 /*
5741 * If data cache slice of CPU is large enough, "pcp->batch"
5742 * pages can be preserved in PCP before draining PCP for
5743 * consecutive high-order pages freeing without allocation.
5744 * This can reduce zone lock contention without hurting
5745 * cache-hot pages sharing.
5746 */
5747 spin_lock(&pcp->lock);
5748 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5749 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5750 else
5751 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5752 spin_unlock(&pcp->lock);
5753 }
5754
setup_pcp_cacheinfo(unsigned int cpu)5755 void setup_pcp_cacheinfo(unsigned int cpu)
5756 {
5757 struct zone *zone;
5758
5759 for_each_populated_zone(zone)
5760 zone_pcp_update_cacheinfo(zone, cpu);
5761 }
5762
5763 /*
5764 * Allocate per cpu pagesets and initialize them.
5765 * Before this call only boot pagesets were available.
5766 */
setup_per_cpu_pageset(void)5767 void __init setup_per_cpu_pageset(void)
5768 {
5769 struct pglist_data *pgdat;
5770 struct zone *zone;
5771 int __maybe_unused cpu;
5772
5773 for_each_populated_zone(zone)
5774 setup_zone_pageset(zone);
5775
5776 #ifdef CONFIG_NUMA
5777 /*
5778 * Unpopulated zones continue using the boot pagesets.
5779 * The numa stats for these pagesets need to be reset.
5780 * Otherwise, they will end up skewing the stats of
5781 * the nodes these zones are associated with.
5782 */
5783 for_each_possible_cpu(cpu) {
5784 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5785 memset(pzstats->vm_numa_event, 0,
5786 sizeof(pzstats->vm_numa_event));
5787 }
5788 #endif
5789
5790 for_each_online_pgdat(pgdat)
5791 pgdat->per_cpu_nodestats =
5792 alloc_percpu(struct per_cpu_nodestat);
5793 }
5794
zone_pcp_init(struct zone * zone)5795 __meminit void zone_pcp_init(struct zone *zone)
5796 {
5797 /*
5798 * per cpu subsystem is not up at this point. The following code
5799 * relies on the ability of the linker to provide the
5800 * offset of a (static) per cpu variable into the per cpu area.
5801 */
5802 zone->per_cpu_pageset = &boot_pageset;
5803 zone->per_cpu_zonestats = &boot_zonestats;
5804 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5805 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5806 zone->pageset_batch = BOOT_PAGESET_BATCH;
5807
5808 if (populated_zone(zone))
5809 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5810 zone->present_pages, zone_batchsize(zone));
5811 }
5812
adjust_managed_page_count(struct page * page,long count)5813 void adjust_managed_page_count(struct page *page, long count)
5814 {
5815 atomic_long_add(count, &page_zone(page)->managed_pages);
5816 totalram_pages_add(count);
5817 }
5818 EXPORT_SYMBOL(adjust_managed_page_count);
5819
free_reserved_area(void * start,void * end,int poison,const char * s)5820 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5821 {
5822 void *pos;
5823 unsigned long pages = 0;
5824
5825 start = (void *)PAGE_ALIGN((unsigned long)start);
5826 end = (void *)((unsigned long)end & PAGE_MASK);
5827 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5828 struct page *page = virt_to_page(pos);
5829 void *direct_map_addr;
5830
5831 /*
5832 * 'direct_map_addr' might be different from 'pos'
5833 * because some architectures' virt_to_page()
5834 * work with aliases. Getting the direct map
5835 * address ensures that we get a _writeable_
5836 * alias for the memset().
5837 */
5838 direct_map_addr = page_address(page);
5839 /*
5840 * Perform a kasan-unchecked memset() since this memory
5841 * has not been initialized.
5842 */
5843 direct_map_addr = kasan_reset_tag(direct_map_addr);
5844 if ((unsigned int)poison <= 0xFF)
5845 memset(direct_map_addr, poison, PAGE_SIZE);
5846
5847 free_reserved_page(page);
5848 }
5849
5850 if (pages && s)
5851 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5852
5853 return pages;
5854 }
5855
free_reserved_page(struct page * page)5856 void free_reserved_page(struct page *page)
5857 {
5858 clear_page_tag_ref(page);
5859 ClearPageReserved(page);
5860 init_page_count(page);
5861 __free_page(page);
5862 adjust_managed_page_count(page, 1);
5863 }
5864 EXPORT_SYMBOL(free_reserved_page);
5865
page_alloc_cpu_dead(unsigned int cpu)5866 static int page_alloc_cpu_dead(unsigned int cpu)
5867 {
5868 struct zone *zone;
5869
5870 lru_add_drain_cpu(cpu);
5871 mlock_drain_remote(cpu);
5872 drain_pages(cpu);
5873
5874 /*
5875 * Spill the event counters of the dead processor
5876 * into the current processors event counters.
5877 * This artificially elevates the count of the current
5878 * processor.
5879 */
5880 vm_events_fold_cpu(cpu);
5881
5882 /*
5883 * Zero the differential counters of the dead processor
5884 * so that the vm statistics are consistent.
5885 *
5886 * This is only okay since the processor is dead and cannot
5887 * race with what we are doing.
5888 */
5889 cpu_vm_stats_fold(cpu);
5890
5891 for_each_populated_zone(zone)
5892 zone_pcp_update(zone, 0);
5893
5894 return 0;
5895 }
5896
page_alloc_cpu_online(unsigned int cpu)5897 static int page_alloc_cpu_online(unsigned int cpu)
5898 {
5899 struct zone *zone;
5900
5901 for_each_populated_zone(zone)
5902 zone_pcp_update(zone, 1);
5903 return 0;
5904 }
5905
page_alloc_init_cpuhp(void)5906 void __init page_alloc_init_cpuhp(void)
5907 {
5908 int ret;
5909
5910 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5911 "mm/page_alloc:pcp",
5912 page_alloc_cpu_online,
5913 page_alloc_cpu_dead);
5914 WARN_ON(ret < 0);
5915 }
5916
5917 /*
5918 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5919 * or min_free_kbytes changes.
5920 */
calculate_totalreserve_pages(void)5921 static void calculate_totalreserve_pages(void)
5922 {
5923 struct pglist_data *pgdat;
5924 unsigned long reserve_pages = 0;
5925 enum zone_type i, j;
5926
5927 for_each_online_pgdat(pgdat) {
5928
5929 pgdat->totalreserve_pages = 0;
5930
5931 for (i = 0; i < MAX_NR_ZONES; i++) {
5932 struct zone *zone = pgdat->node_zones + i;
5933 long max = 0;
5934 unsigned long managed_pages = zone_managed_pages(zone);
5935
5936 /* Find valid and maximum lowmem_reserve in the zone */
5937 for (j = i; j < MAX_NR_ZONES; j++) {
5938 if (zone->lowmem_reserve[j] > max)
5939 max = zone->lowmem_reserve[j];
5940 }
5941
5942 /* we treat the high watermark as reserved pages. */
5943 max += high_wmark_pages(zone);
5944
5945 if (max > managed_pages)
5946 max = managed_pages;
5947
5948 pgdat->totalreserve_pages += max;
5949
5950 reserve_pages += max;
5951 }
5952 }
5953 totalreserve_pages = reserve_pages;
5954 }
5955
5956 /*
5957 * setup_per_zone_lowmem_reserve - called whenever
5958 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5959 * has a correct pages reserved value, so an adequate number of
5960 * pages are left in the zone after a successful __alloc_pages().
5961 */
setup_per_zone_lowmem_reserve(void)5962 static void setup_per_zone_lowmem_reserve(void)
5963 {
5964 struct pglist_data *pgdat;
5965 enum zone_type i, j;
5966
5967 for_each_online_pgdat(pgdat) {
5968 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5969 struct zone *zone = &pgdat->node_zones[i];
5970 int ratio = sysctl_lowmem_reserve_ratio[i];
5971 bool clear = !ratio || !zone_managed_pages(zone);
5972 unsigned long managed_pages = 0;
5973
5974 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5975 struct zone *upper_zone = &pgdat->node_zones[j];
5976 bool empty = !zone_managed_pages(upper_zone);
5977
5978 managed_pages += zone_managed_pages(upper_zone);
5979
5980 if (clear || empty)
5981 zone->lowmem_reserve[j] = 0;
5982 else
5983 zone->lowmem_reserve[j] = managed_pages / ratio;
5984 }
5985 }
5986 }
5987
5988 /* update totalreserve_pages */
5989 calculate_totalreserve_pages();
5990 }
5991
__setup_per_zone_wmarks(void)5992 static void __setup_per_zone_wmarks(void)
5993 {
5994 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5995 unsigned long lowmem_pages = 0;
5996 struct zone *zone;
5997 unsigned long flags;
5998
5999 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6000 for_each_zone(zone) {
6001 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6002 lowmem_pages += zone_managed_pages(zone);
6003 }
6004
6005 for_each_zone(zone) {
6006 u64 tmp;
6007
6008 spin_lock_irqsave(&zone->lock, flags);
6009 tmp = (u64)pages_min * zone_managed_pages(zone);
6010 tmp = div64_ul(tmp, lowmem_pages);
6011 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6012 /*
6013 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6014 * need highmem and movable zones pages, so cap pages_min
6015 * to a small value here.
6016 *
6017 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6018 * deltas control async page reclaim, and so should
6019 * not be capped for highmem and movable zones.
6020 */
6021 unsigned long min_pages;
6022
6023 min_pages = zone_managed_pages(zone) / 1024;
6024 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6025 zone->_watermark[WMARK_MIN] = min_pages;
6026 } else {
6027 /*
6028 * If it's a lowmem zone, reserve a number of pages
6029 * proportionate to the zone's size.
6030 */
6031 zone->_watermark[WMARK_MIN] = tmp;
6032 }
6033
6034 /*
6035 * Set the kswapd watermarks distance according to the
6036 * scale factor in proportion to available memory, but
6037 * ensure a minimum size on small systems.
6038 */
6039 tmp = max_t(u64, tmp >> 2,
6040 mult_frac(zone_managed_pages(zone),
6041 watermark_scale_factor, 10000));
6042
6043 zone->watermark_boost = 0;
6044 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6045 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6046 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6047
6048 spin_unlock_irqrestore(&zone->lock, flags);
6049 }
6050
6051 /* update totalreserve_pages */
6052 calculate_totalreserve_pages();
6053 }
6054
6055 /**
6056 * setup_per_zone_wmarks - called when min_free_kbytes changes
6057 * or when memory is hot-{added|removed}
6058 *
6059 * Ensures that the watermark[min,low,high] values for each zone are set
6060 * correctly with respect to min_free_kbytes.
6061 */
setup_per_zone_wmarks(void)6062 void setup_per_zone_wmarks(void)
6063 {
6064 struct zone *zone;
6065 static DEFINE_SPINLOCK(lock);
6066
6067 spin_lock(&lock);
6068 __setup_per_zone_wmarks();
6069 spin_unlock(&lock);
6070
6071 /*
6072 * The watermark size have changed so update the pcpu batch
6073 * and high limits or the limits may be inappropriate.
6074 */
6075 for_each_zone(zone)
6076 zone_pcp_update(zone, 0);
6077 }
6078
6079 /*
6080 * Initialise min_free_kbytes.
6081 *
6082 * For small machines we want it small (128k min). For large machines
6083 * we want it large (256MB max). But it is not linear, because network
6084 * bandwidth does not increase linearly with machine size. We use
6085 *
6086 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6087 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6088 *
6089 * which yields
6090 *
6091 * 16MB: 512k
6092 * 32MB: 724k
6093 * 64MB: 1024k
6094 * 128MB: 1448k
6095 * 256MB: 2048k
6096 * 512MB: 2896k
6097 * 1024MB: 4096k
6098 * 2048MB: 5792k
6099 * 4096MB: 8192k
6100 * 8192MB: 11584k
6101 * 16384MB: 16384k
6102 */
calculate_min_free_kbytes(void)6103 void calculate_min_free_kbytes(void)
6104 {
6105 unsigned long lowmem_kbytes;
6106 int new_min_free_kbytes;
6107
6108 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6109 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6110
6111 if (new_min_free_kbytes > user_min_free_kbytes)
6112 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6113 else
6114 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6115 new_min_free_kbytes, user_min_free_kbytes);
6116
6117 }
6118
init_per_zone_wmark_min(void)6119 int __meminit init_per_zone_wmark_min(void)
6120 {
6121 calculate_min_free_kbytes();
6122 setup_per_zone_wmarks();
6123 refresh_zone_stat_thresholds();
6124 setup_per_zone_lowmem_reserve();
6125
6126 #ifdef CONFIG_NUMA
6127 setup_min_unmapped_ratio();
6128 setup_min_slab_ratio();
6129 #endif
6130
6131 khugepaged_min_free_kbytes_update();
6132
6133 return 0;
6134 }
postcore_initcall(init_per_zone_wmark_min)6135 postcore_initcall(init_per_zone_wmark_min)
6136
6137 /*
6138 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6139 * that we can call two helper functions whenever min_free_kbytes
6140 * changes.
6141 */
6142 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6143 void *buffer, size_t *length, loff_t *ppos)
6144 {
6145 int rc;
6146
6147 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6148 if (rc)
6149 return rc;
6150
6151 if (write) {
6152 user_min_free_kbytes = min_free_kbytes;
6153 setup_per_zone_wmarks();
6154 }
6155 return 0;
6156 }
6157
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6158 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6159 void *buffer, size_t *length, loff_t *ppos)
6160 {
6161 int rc;
6162
6163 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6164 if (rc)
6165 return rc;
6166
6167 if (write)
6168 setup_per_zone_wmarks();
6169
6170 return 0;
6171 }
6172
6173 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6174 static void setup_min_unmapped_ratio(void)
6175 {
6176 pg_data_t *pgdat;
6177 struct zone *zone;
6178
6179 for_each_online_pgdat(pgdat)
6180 pgdat->min_unmapped_pages = 0;
6181
6182 for_each_zone(zone)
6183 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6184 sysctl_min_unmapped_ratio) / 100;
6185 }
6186
6187
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6188 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6189 void *buffer, size_t *length, loff_t *ppos)
6190 {
6191 int rc;
6192
6193 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6194 if (rc)
6195 return rc;
6196
6197 setup_min_unmapped_ratio();
6198
6199 return 0;
6200 }
6201
setup_min_slab_ratio(void)6202 static void setup_min_slab_ratio(void)
6203 {
6204 pg_data_t *pgdat;
6205 struct zone *zone;
6206
6207 for_each_online_pgdat(pgdat)
6208 pgdat->min_slab_pages = 0;
6209
6210 for_each_zone(zone)
6211 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6212 sysctl_min_slab_ratio) / 100;
6213 }
6214
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6215 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6216 void *buffer, size_t *length, loff_t *ppos)
6217 {
6218 int rc;
6219
6220 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6221 if (rc)
6222 return rc;
6223
6224 setup_min_slab_ratio();
6225
6226 return 0;
6227 }
6228 #endif
6229
6230 /*
6231 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6232 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6233 * whenever sysctl_lowmem_reserve_ratio changes.
6234 *
6235 * The reserve ratio obviously has absolutely no relation with the
6236 * minimum watermarks. The lowmem reserve ratio can only make sense
6237 * if in function of the boot time zone sizes.
6238 */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6239 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6240 int write, void *buffer, size_t *length, loff_t *ppos)
6241 {
6242 int i;
6243
6244 proc_dointvec_minmax(table, write, buffer, length, ppos);
6245
6246 for (i = 0; i < MAX_NR_ZONES; i++) {
6247 if (sysctl_lowmem_reserve_ratio[i] < 1)
6248 sysctl_lowmem_reserve_ratio[i] = 0;
6249 }
6250
6251 setup_per_zone_lowmem_reserve();
6252 return 0;
6253 }
6254
6255 /*
6256 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6257 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6258 * pagelist can have before it gets flushed back to buddy allocator.
6259 */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6260 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6261 int write, void *buffer, size_t *length, loff_t *ppos)
6262 {
6263 struct zone *zone;
6264 int old_percpu_pagelist_high_fraction;
6265 int ret;
6266
6267 mutex_lock(&pcp_batch_high_lock);
6268 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6269
6270 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6271 if (!write || ret < 0)
6272 goto out;
6273
6274 /* Sanity checking to avoid pcp imbalance */
6275 if (percpu_pagelist_high_fraction &&
6276 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6277 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6278 ret = -EINVAL;
6279 goto out;
6280 }
6281
6282 /* No change? */
6283 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6284 goto out;
6285
6286 for_each_populated_zone(zone)
6287 zone_set_pageset_high_and_batch(zone, 0);
6288 out:
6289 mutex_unlock(&pcp_batch_high_lock);
6290 return ret;
6291 }
6292
6293 static struct ctl_table page_alloc_sysctl_table[] = {
6294 {
6295 .procname = "min_free_kbytes",
6296 .data = &min_free_kbytes,
6297 .maxlen = sizeof(min_free_kbytes),
6298 .mode = 0644,
6299 .proc_handler = min_free_kbytes_sysctl_handler,
6300 .extra1 = SYSCTL_ZERO,
6301 },
6302 {
6303 .procname = "watermark_boost_factor",
6304 .data = &watermark_boost_factor,
6305 .maxlen = sizeof(watermark_boost_factor),
6306 .mode = 0644,
6307 .proc_handler = proc_dointvec_minmax,
6308 .extra1 = SYSCTL_ZERO,
6309 },
6310 {
6311 .procname = "watermark_scale_factor",
6312 .data = &watermark_scale_factor,
6313 .maxlen = sizeof(watermark_scale_factor),
6314 .mode = 0644,
6315 .proc_handler = watermark_scale_factor_sysctl_handler,
6316 .extra1 = SYSCTL_ONE,
6317 .extra2 = SYSCTL_THREE_THOUSAND,
6318 },
6319 {
6320 .procname = "percpu_pagelist_high_fraction",
6321 .data = &percpu_pagelist_high_fraction,
6322 .maxlen = sizeof(percpu_pagelist_high_fraction),
6323 .mode = 0644,
6324 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6325 .extra1 = SYSCTL_ZERO,
6326 },
6327 {
6328 .procname = "lowmem_reserve_ratio",
6329 .data = &sysctl_lowmem_reserve_ratio,
6330 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6331 .mode = 0644,
6332 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6333 },
6334 #ifdef CONFIG_NUMA
6335 {
6336 .procname = "numa_zonelist_order",
6337 .data = &numa_zonelist_order,
6338 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6339 .mode = 0644,
6340 .proc_handler = numa_zonelist_order_handler,
6341 },
6342 {
6343 .procname = "min_unmapped_ratio",
6344 .data = &sysctl_min_unmapped_ratio,
6345 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6346 .mode = 0644,
6347 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6348 .extra1 = SYSCTL_ZERO,
6349 .extra2 = SYSCTL_ONE_HUNDRED,
6350 },
6351 {
6352 .procname = "min_slab_ratio",
6353 .data = &sysctl_min_slab_ratio,
6354 .maxlen = sizeof(sysctl_min_slab_ratio),
6355 .mode = 0644,
6356 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6357 .extra1 = SYSCTL_ZERO,
6358 .extra2 = SYSCTL_ONE_HUNDRED,
6359 },
6360 #endif
6361 };
6362
page_alloc_sysctl_init(void)6363 void __init page_alloc_sysctl_init(void)
6364 {
6365 register_sysctl_init("vm", page_alloc_sysctl_table);
6366 }
6367
6368 #ifdef CONFIG_CONTIG_ALLOC
6369 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6370 static void alloc_contig_dump_pages(struct list_head *page_list)
6371 {
6372 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6373
6374 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6375 struct page *page;
6376
6377 dump_stack();
6378 list_for_each_entry(page, page_list, lru)
6379 dump_page(page, "migration failure");
6380 }
6381 }
6382
6383 /*
6384 * [start, end) must belong to a single zone.
6385 * @migratetype: using migratetype to filter the type of migration in
6386 * trace_mm_alloc_contig_migrate_range_info.
6387 */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6388 int __alloc_contig_migrate_range(struct compact_control *cc,
6389 unsigned long start, unsigned long end,
6390 int migratetype)
6391 {
6392 /* This function is based on compact_zone() from compaction.c. */
6393 unsigned int nr_reclaimed;
6394 unsigned long pfn = start;
6395 unsigned int tries = 0;
6396 int ret = 0;
6397 struct migration_target_control mtc = {
6398 .nid = zone_to_nid(cc->zone),
6399 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6400 .reason = MR_CONTIG_RANGE,
6401 };
6402 struct page *page;
6403 unsigned long total_mapped = 0;
6404 unsigned long total_migrated = 0;
6405 unsigned long total_reclaimed = 0;
6406
6407 lru_cache_disable();
6408
6409 while (pfn < end || !list_empty(&cc->migratepages)) {
6410 if (fatal_signal_pending(current)) {
6411 ret = -EINTR;
6412 break;
6413 }
6414
6415 if (list_empty(&cc->migratepages)) {
6416 cc->nr_migratepages = 0;
6417 ret = isolate_migratepages_range(cc, pfn, end);
6418 if (ret && ret != -EAGAIN)
6419 break;
6420 pfn = cc->migrate_pfn;
6421 tries = 0;
6422 } else if (++tries == 5) {
6423 ret = -EBUSY;
6424 break;
6425 }
6426
6427 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6428 &cc->migratepages);
6429 cc->nr_migratepages -= nr_reclaimed;
6430
6431 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6432 total_reclaimed += nr_reclaimed;
6433 list_for_each_entry(page, &cc->migratepages, lru) {
6434 struct folio *folio = page_folio(page);
6435
6436 total_mapped += folio_mapped(folio) *
6437 folio_nr_pages(folio);
6438 }
6439 }
6440
6441 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6442 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6443
6444 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6445 total_migrated += cc->nr_migratepages;
6446
6447 /*
6448 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6449 * to retry again over this error, so do the same here.
6450 */
6451 if (ret == -ENOMEM)
6452 break;
6453 }
6454
6455 lru_cache_enable();
6456 if (ret < 0) {
6457 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6458 alloc_contig_dump_pages(&cc->migratepages);
6459 putback_movable_pages(&cc->migratepages);
6460 }
6461
6462 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6463 total_migrated,
6464 total_reclaimed,
6465 total_mapped);
6466 return (ret < 0) ? ret : 0;
6467 }
6468
split_free_pages(struct list_head * list)6469 static void split_free_pages(struct list_head *list)
6470 {
6471 int order;
6472
6473 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6474 struct page *page, *next;
6475 int nr_pages = 1 << order;
6476
6477 list_for_each_entry_safe(page, next, &list[order], lru) {
6478 int i;
6479
6480 post_alloc_hook(page, order, __GFP_MOVABLE);
6481 if (!order)
6482 continue;
6483
6484 split_page(page, order);
6485
6486 /* Add all subpages to the order-0 head, in sequence. */
6487 list_del(&page->lru);
6488 for (i = 0; i < nr_pages; i++)
6489 list_add_tail(&page[i].lru, &list[0]);
6490 }
6491 }
6492 }
6493
6494 /**
6495 * alloc_contig_range() -- tries to allocate given range of pages
6496 * @start: start PFN to allocate
6497 * @end: one-past-the-last PFN to allocate
6498 * @migratetype: migratetype of the underlying pageblocks (either
6499 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6500 * in range must have the same migratetype and it must
6501 * be either of the two.
6502 * @gfp_mask: GFP mask to use during compaction
6503 *
6504 * The PFN range does not have to be pageblock aligned. The PFN range must
6505 * belong to a single zone.
6506 *
6507 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6508 * pageblocks in the range. Once isolated, the pageblocks should not
6509 * be modified by others.
6510 *
6511 * Return: zero on success or negative error code. On success all
6512 * pages which PFN is in [start, end) are allocated for the caller and
6513 * need to be freed with free_contig_range().
6514 */
alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6515 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6516 unsigned migratetype, gfp_t gfp_mask)
6517 {
6518 unsigned long outer_start, outer_end;
6519 int ret = 0;
6520
6521 struct compact_control cc = {
6522 .nr_migratepages = 0,
6523 .order = -1,
6524 .zone = page_zone(pfn_to_page(start)),
6525 .mode = MIGRATE_SYNC,
6526 .ignore_skip_hint = true,
6527 .no_set_skip_hint = true,
6528 .gfp_mask = current_gfp_context(gfp_mask),
6529 .alloc_contig = true,
6530 };
6531 INIT_LIST_HEAD(&cc.migratepages);
6532
6533 /*
6534 * What we do here is we mark all pageblocks in range as
6535 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6536 * have different sizes, and due to the way page allocator
6537 * work, start_isolate_page_range() has special handlings for this.
6538 *
6539 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6540 * migrate the pages from an unaligned range (ie. pages that
6541 * we are interested in). This will put all the pages in
6542 * range back to page allocator as MIGRATE_ISOLATE.
6543 *
6544 * When this is done, we take the pages in range from page
6545 * allocator removing them from the buddy system. This way
6546 * page allocator will never consider using them.
6547 *
6548 * This lets us mark the pageblocks back as
6549 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6550 * aligned range but not in the unaligned, original range are
6551 * put back to page allocator so that buddy can use them.
6552 */
6553
6554 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6555 if (ret)
6556 goto done;
6557
6558 drain_all_pages(cc.zone);
6559
6560 /*
6561 * In case of -EBUSY, we'd like to know which page causes problem.
6562 * So, just fall through. test_pages_isolated() has a tracepoint
6563 * which will report the busy page.
6564 *
6565 * It is possible that busy pages could become available before
6566 * the call to test_pages_isolated, and the range will actually be
6567 * allocated. So, if we fall through be sure to clear ret so that
6568 * -EBUSY is not accidentally used or returned to caller.
6569 */
6570 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6571 if (ret && ret != -EBUSY)
6572 goto done;
6573 ret = 0;
6574
6575 /*
6576 * Pages from [start, end) are within a pageblock_nr_pages
6577 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6578 * more, all pages in [start, end) are free in page allocator.
6579 * What we are going to do is to allocate all pages from
6580 * [start, end) (that is remove them from page allocator).
6581 *
6582 * The only problem is that pages at the beginning and at the
6583 * end of interesting range may be not aligned with pages that
6584 * page allocator holds, ie. they can be part of higher order
6585 * pages. Because of this, we reserve the bigger range and
6586 * once this is done free the pages we are not interested in.
6587 *
6588 * We don't have to hold zone->lock here because the pages are
6589 * isolated thus they won't get removed from buddy.
6590 */
6591 outer_start = find_large_buddy(start);
6592
6593 /* Make sure the range is really isolated. */
6594 if (test_pages_isolated(outer_start, end, 0)) {
6595 ret = -EBUSY;
6596 goto done;
6597 }
6598
6599 /* Grab isolated pages from freelists. */
6600 outer_end = isolate_freepages_range(&cc, outer_start, end);
6601 if (!outer_end) {
6602 ret = -EBUSY;
6603 goto done;
6604 }
6605
6606 if (!(gfp_mask & __GFP_COMP)) {
6607 split_free_pages(cc.freepages);
6608
6609 /* Free head and tail (if any) */
6610 if (start != outer_start)
6611 free_contig_range(outer_start, start - outer_start);
6612 if (end != outer_end)
6613 free_contig_range(end, outer_end - end);
6614 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6615 struct page *head = pfn_to_page(start);
6616 int order = ilog2(end - start);
6617
6618 check_new_pages(head, order);
6619 prep_new_page(head, order, gfp_mask, 0);
6620 } else {
6621 ret = -EINVAL;
6622 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6623 start, end, outer_start, outer_end);
6624 }
6625 done:
6626 undo_isolate_page_range(start, end, migratetype);
6627 return ret;
6628 }
6629 EXPORT_SYMBOL(alloc_contig_range_noprof);
6630
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6631 static int __alloc_contig_pages(unsigned long start_pfn,
6632 unsigned long nr_pages, gfp_t gfp_mask)
6633 {
6634 unsigned long end_pfn = start_pfn + nr_pages;
6635
6636 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6637 gfp_mask);
6638 }
6639
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6640 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6641 unsigned long nr_pages)
6642 {
6643 unsigned long i, end_pfn = start_pfn + nr_pages;
6644 struct page *page;
6645
6646 for (i = start_pfn; i < end_pfn; i++) {
6647 page = pfn_to_online_page(i);
6648 if (!page)
6649 return false;
6650
6651 if (page_zone(page) != z)
6652 return false;
6653
6654 if (PageReserved(page))
6655 return false;
6656
6657 if (PageHuge(page))
6658 return false;
6659 }
6660 return true;
6661 }
6662
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6663 static bool zone_spans_last_pfn(const struct zone *zone,
6664 unsigned long start_pfn, unsigned long nr_pages)
6665 {
6666 unsigned long last_pfn = start_pfn + nr_pages - 1;
6667
6668 return zone_spans_pfn(zone, last_pfn);
6669 }
6670
6671 /**
6672 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6673 * @nr_pages: Number of contiguous pages to allocate
6674 * @gfp_mask: GFP mask to limit search and used during compaction
6675 * @nid: Target node
6676 * @nodemask: Mask for other possible nodes
6677 *
6678 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6679 * on an applicable zonelist to find a contiguous pfn range which can then be
6680 * tried for allocation with alloc_contig_range(). This routine is intended
6681 * for allocation requests which can not be fulfilled with the buddy allocator.
6682 *
6683 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6684 * power of two, then allocated range is also guaranteed to be aligned to same
6685 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6686 *
6687 * Allocated pages can be freed with free_contig_range() or by manually calling
6688 * __free_page() on each allocated page.
6689 *
6690 * Return: pointer to contiguous pages on success, or NULL if not successful.
6691 */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6692 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6693 int nid, nodemask_t *nodemask)
6694 {
6695 unsigned long ret, pfn, flags;
6696 struct zonelist *zonelist;
6697 struct zone *zone;
6698 struct zoneref *z;
6699
6700 zonelist = node_zonelist(nid, gfp_mask);
6701 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6702 gfp_zone(gfp_mask), nodemask) {
6703 spin_lock_irqsave(&zone->lock, flags);
6704
6705 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6706 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6707 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6708 /*
6709 * We release the zone lock here because
6710 * alloc_contig_range() will also lock the zone
6711 * at some point. If there's an allocation
6712 * spinning on this lock, it may win the race
6713 * and cause alloc_contig_range() to fail...
6714 */
6715 spin_unlock_irqrestore(&zone->lock, flags);
6716 ret = __alloc_contig_pages(pfn, nr_pages,
6717 gfp_mask);
6718 if (!ret)
6719 return pfn_to_page(pfn);
6720 spin_lock_irqsave(&zone->lock, flags);
6721 }
6722 pfn += nr_pages;
6723 }
6724 spin_unlock_irqrestore(&zone->lock, flags);
6725 }
6726 return NULL;
6727 }
6728 #endif /* CONFIG_CONTIG_ALLOC */
6729
free_contig_range(unsigned long pfn,unsigned long nr_pages)6730 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6731 {
6732 unsigned long count = 0;
6733 struct folio *folio = pfn_folio(pfn);
6734
6735 if (folio_test_large(folio)) {
6736 int expected = folio_nr_pages(folio);
6737
6738 if (nr_pages == expected)
6739 folio_put(folio);
6740 else
6741 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6742 pfn, nr_pages, expected);
6743 return;
6744 }
6745
6746 for (; nr_pages--; pfn++) {
6747 struct page *page = pfn_to_page(pfn);
6748
6749 count += page_count(page) != 1;
6750 __free_page(page);
6751 }
6752 WARN(count != 0, "%lu pages are still in use!\n", count);
6753 }
6754 EXPORT_SYMBOL(free_contig_range);
6755
6756 /*
6757 * Effectively disable pcplists for the zone by setting the high limit to 0
6758 * and draining all cpus. A concurrent page freeing on another CPU that's about
6759 * to put the page on pcplist will either finish before the drain and the page
6760 * will be drained, or observe the new high limit and skip the pcplist.
6761 *
6762 * Must be paired with a call to zone_pcp_enable().
6763 */
zone_pcp_disable(struct zone * zone)6764 void zone_pcp_disable(struct zone *zone)
6765 {
6766 mutex_lock(&pcp_batch_high_lock);
6767 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6768 __drain_all_pages(zone, true);
6769 }
6770
zone_pcp_enable(struct zone * zone)6771 void zone_pcp_enable(struct zone *zone)
6772 {
6773 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6774 zone->pageset_high_max, zone->pageset_batch);
6775 mutex_unlock(&pcp_batch_high_lock);
6776 }
6777
zone_pcp_reset(struct zone * zone)6778 void zone_pcp_reset(struct zone *zone)
6779 {
6780 int cpu;
6781 struct per_cpu_zonestat *pzstats;
6782
6783 if (zone->per_cpu_pageset != &boot_pageset) {
6784 for_each_online_cpu(cpu) {
6785 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6786 drain_zonestat(zone, pzstats);
6787 }
6788 free_percpu(zone->per_cpu_pageset);
6789 zone->per_cpu_pageset = &boot_pageset;
6790 if (zone->per_cpu_zonestats != &boot_zonestats) {
6791 free_percpu(zone->per_cpu_zonestats);
6792 zone->per_cpu_zonestats = &boot_zonestats;
6793 }
6794 }
6795 }
6796
6797 #ifdef CONFIG_MEMORY_HOTREMOVE
6798 /*
6799 * All pages in the range must be in a single zone, must not contain holes,
6800 * must span full sections, and must be isolated before calling this function.
6801 *
6802 * Returns the number of managed (non-PageOffline()) pages in the range: the
6803 * number of pages for which memory offlining code must adjust managed page
6804 * counters using adjust_managed_page_count().
6805 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6806 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6807 unsigned long end_pfn)
6808 {
6809 unsigned long already_offline = 0, flags;
6810 unsigned long pfn = start_pfn;
6811 struct page *page;
6812 struct zone *zone;
6813 unsigned int order;
6814
6815 offline_mem_sections(pfn, end_pfn);
6816 zone = page_zone(pfn_to_page(pfn));
6817 spin_lock_irqsave(&zone->lock, flags);
6818 while (pfn < end_pfn) {
6819 page = pfn_to_page(pfn);
6820 /*
6821 * The HWPoisoned page may be not in buddy system, and
6822 * page_count() is not 0.
6823 */
6824 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6825 pfn++;
6826 continue;
6827 }
6828 /*
6829 * At this point all remaining PageOffline() pages have a
6830 * reference count of 0 and can simply be skipped.
6831 */
6832 if (PageOffline(page)) {
6833 BUG_ON(page_count(page));
6834 BUG_ON(PageBuddy(page));
6835 already_offline++;
6836 pfn++;
6837 continue;
6838 }
6839
6840 BUG_ON(page_count(page));
6841 BUG_ON(!PageBuddy(page));
6842 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6843 order = buddy_order(page);
6844 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6845 pfn += (1 << order);
6846 }
6847 spin_unlock_irqrestore(&zone->lock, flags);
6848
6849 return end_pfn - start_pfn - already_offline;
6850 }
6851 #endif
6852
6853 /*
6854 * This function returns a stable result only if called under zone lock.
6855 */
is_free_buddy_page(const struct page * page)6856 bool is_free_buddy_page(const struct page *page)
6857 {
6858 unsigned long pfn = page_to_pfn(page);
6859 unsigned int order;
6860
6861 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6862 const struct page *head = page - (pfn & ((1 << order) - 1));
6863
6864 if (PageBuddy(head) &&
6865 buddy_order_unsafe(head) >= order)
6866 break;
6867 }
6868
6869 return order <= MAX_PAGE_ORDER;
6870 }
6871 EXPORT_SYMBOL(is_free_buddy_page);
6872
6873 #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)6874 static inline void add_to_free_list(struct page *page, struct zone *zone,
6875 unsigned int order, int migratetype,
6876 bool tail)
6877 {
6878 __add_to_free_list(page, zone, order, migratetype, tail);
6879 account_freepages(zone, 1 << order, migratetype);
6880 }
6881
6882 /*
6883 * Break down a higher-order page in sub-pages, and keep our target out of
6884 * buddy allocator.
6885 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6886 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6887 struct page *target, int low, int high,
6888 int migratetype)
6889 {
6890 unsigned long size = 1 << high;
6891 struct page *current_buddy;
6892
6893 while (high > low) {
6894 high--;
6895 size >>= 1;
6896
6897 if (target >= &page[size]) {
6898 current_buddy = page;
6899 page = page + size;
6900 } else {
6901 current_buddy = page + size;
6902 }
6903
6904 if (set_page_guard(zone, current_buddy, high))
6905 continue;
6906
6907 add_to_free_list(current_buddy, zone, high, migratetype, false);
6908 set_buddy_order(current_buddy, high);
6909 }
6910 }
6911
6912 /*
6913 * Take a page that will be marked as poisoned off the buddy allocator.
6914 */
take_page_off_buddy(struct page * page)6915 bool take_page_off_buddy(struct page *page)
6916 {
6917 struct zone *zone = page_zone(page);
6918 unsigned long pfn = page_to_pfn(page);
6919 unsigned long flags;
6920 unsigned int order;
6921 bool ret = false;
6922
6923 spin_lock_irqsave(&zone->lock, flags);
6924 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6925 struct page *page_head = page - (pfn & ((1 << order) - 1));
6926 int page_order = buddy_order(page_head);
6927
6928 if (PageBuddy(page_head) && page_order >= order) {
6929 unsigned long pfn_head = page_to_pfn(page_head);
6930 int migratetype = get_pfnblock_migratetype(page_head,
6931 pfn_head);
6932
6933 del_page_from_free_list(page_head, zone, page_order,
6934 migratetype);
6935 break_down_buddy_pages(zone, page_head, page, 0,
6936 page_order, migratetype);
6937 SetPageHWPoisonTakenOff(page);
6938 ret = true;
6939 break;
6940 }
6941 if (page_count(page_head) > 0)
6942 break;
6943 }
6944 spin_unlock_irqrestore(&zone->lock, flags);
6945 return ret;
6946 }
6947
6948 /*
6949 * Cancel takeoff done by take_page_off_buddy().
6950 */
put_page_back_buddy(struct page * page)6951 bool put_page_back_buddy(struct page *page)
6952 {
6953 struct zone *zone = page_zone(page);
6954 unsigned long flags;
6955 bool ret = false;
6956
6957 spin_lock_irqsave(&zone->lock, flags);
6958 if (put_page_testzero(page)) {
6959 unsigned long pfn = page_to_pfn(page);
6960 int migratetype = get_pfnblock_migratetype(page, pfn);
6961
6962 ClearPageHWPoisonTakenOff(page);
6963 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6964 if (TestClearPageHWPoison(page)) {
6965 ret = true;
6966 }
6967 }
6968 spin_unlock_irqrestore(&zone->lock, flags);
6969
6970 return ret;
6971 }
6972 #endif
6973
6974 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6975 bool has_managed_dma(void)
6976 {
6977 struct pglist_data *pgdat;
6978
6979 for_each_online_pgdat(pgdat) {
6980 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6981
6982 if (managed_zone(zone))
6983 return true;
6984 }
6985 return false;
6986 }
6987 #endif /* CONFIG_ZONE_DMA */
6988
6989 #ifdef CONFIG_UNACCEPTED_MEMORY
6990
6991 /* Counts number of zones with unaccepted pages. */
6992 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6993
6994 static bool lazy_accept = true;
6995
accept_memory_parse(char * p)6996 static int __init accept_memory_parse(char *p)
6997 {
6998 if (!strcmp(p, "lazy")) {
6999 lazy_accept = true;
7000 return 0;
7001 } else if (!strcmp(p, "eager")) {
7002 lazy_accept = false;
7003 return 0;
7004 } else {
7005 return -EINVAL;
7006 }
7007 }
7008 early_param("accept_memory", accept_memory_parse);
7009
page_contains_unaccepted(struct page * page,unsigned int order)7010 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7011 {
7012 phys_addr_t start = page_to_phys(page);
7013
7014 return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7015 }
7016
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)7017 static void __accept_page(struct zone *zone, unsigned long *flags,
7018 struct page *page)
7019 {
7020 bool last;
7021
7022 list_del(&page->lru);
7023 last = list_empty(&zone->unaccepted_pages);
7024
7025 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7026 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7027 __ClearPageUnaccepted(page);
7028 spin_unlock_irqrestore(&zone->lock, *flags);
7029
7030 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7031
7032 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7033
7034 if (last)
7035 static_branch_dec(&zones_with_unaccepted_pages);
7036 }
7037
accept_page(struct page * page)7038 void accept_page(struct page *page)
7039 {
7040 struct zone *zone = page_zone(page);
7041 unsigned long flags;
7042
7043 spin_lock_irqsave(&zone->lock, flags);
7044 if (!PageUnaccepted(page)) {
7045 spin_unlock_irqrestore(&zone->lock, flags);
7046 return;
7047 }
7048
7049 /* Unlocks zone->lock */
7050 __accept_page(zone, &flags, page);
7051 }
7052
try_to_accept_memory_one(struct zone * zone)7053 static bool try_to_accept_memory_one(struct zone *zone)
7054 {
7055 unsigned long flags;
7056 struct page *page;
7057
7058 spin_lock_irqsave(&zone->lock, flags);
7059 page = list_first_entry_or_null(&zone->unaccepted_pages,
7060 struct page, lru);
7061 if (!page) {
7062 spin_unlock_irqrestore(&zone->lock, flags);
7063 return false;
7064 }
7065
7066 /* Unlocks zone->lock */
7067 __accept_page(zone, &flags, page);
7068
7069 return true;
7070 }
7071
has_unaccepted_memory(void)7072 static inline bool has_unaccepted_memory(void)
7073 {
7074 return static_branch_unlikely(&zones_with_unaccepted_pages);
7075 }
7076
cond_accept_memory(struct zone * zone,unsigned int order)7077 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7078 {
7079 long to_accept;
7080 bool ret = false;
7081
7082 if (!has_unaccepted_memory())
7083 return false;
7084
7085 if (list_empty(&zone->unaccepted_pages))
7086 return false;
7087
7088 /* How much to accept to get to promo watermark? */
7089 to_accept = promo_wmark_pages(zone) -
7090 (zone_page_state(zone, NR_FREE_PAGES) -
7091 __zone_watermark_unusable_free(zone, order, 0) -
7092 zone_page_state(zone, NR_UNACCEPTED));
7093
7094 while (to_accept > 0) {
7095 if (!try_to_accept_memory_one(zone))
7096 break;
7097 ret = true;
7098 to_accept -= MAX_ORDER_NR_PAGES;
7099 }
7100
7101 return ret;
7102 }
7103
__free_unaccepted(struct page * page)7104 static bool __free_unaccepted(struct page *page)
7105 {
7106 struct zone *zone = page_zone(page);
7107 unsigned long flags;
7108 bool first = false;
7109
7110 if (!lazy_accept)
7111 return false;
7112
7113 spin_lock_irqsave(&zone->lock, flags);
7114 first = list_empty(&zone->unaccepted_pages);
7115 list_add_tail(&page->lru, &zone->unaccepted_pages);
7116 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7117 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7118 __SetPageUnaccepted(page);
7119 spin_unlock_irqrestore(&zone->lock, flags);
7120
7121 if (first)
7122 static_branch_inc(&zones_with_unaccepted_pages);
7123
7124 return true;
7125 }
7126
7127 #else
7128
page_contains_unaccepted(struct page * page,unsigned int order)7129 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7130 {
7131 return false;
7132 }
7133
cond_accept_memory(struct zone * zone,unsigned int order)7134 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7135 {
7136 return false;
7137 }
7138
__free_unaccepted(struct page * page)7139 static bool __free_unaccepted(struct page *page)
7140 {
7141 BUILD_BUG();
7142 return false;
7143 }
7144
7145 #endif /* CONFIG_UNACCEPTED_MEMORY */
7146