xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision ac9c34d1e45a4c25174ced4fc0cfc33ff3ed08c7)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem_odp.h>
34 #include <linux/kernel.h>
35 #include <linux/dma-buf.h>
36 #include <linux/dma-resv.h>
37 
38 #include "mlx5_ib.h"
39 #include "cmd.h"
40 #include "umr.h"
41 #include "qp.h"
42 
43 #include <linux/mlx5/eq.h>
44 
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47 	u32			bytes_committed;
48 	u64			token;
49 	u8			event_subtype;
50 	u8			type;
51 	union {
52 		/* Initiator or send message responder pagefault details. */
53 		struct {
54 			/* Received packet size, only valid for responders. */
55 			u32	packet_size;
56 			/*
57 			 * Number of resource holding WQE, depends on type.
58 			 */
59 			u32	wq_num;
60 			/*
61 			 * WQE index. Refers to either the send queue or
62 			 * receive queue, according to event_subtype.
63 			 */
64 			u16	wqe_index;
65 		} wqe;
66 		/* RDMA responder pagefault details */
67 		struct {
68 			u32	r_key;
69 			/*
70 			 * Received packet size, minimal size page fault
71 			 * resolution required for forward progress.
72 			 */
73 			u32	packet_size;
74 			u32	rdma_op_len;
75 			u64	rdma_va;
76 		} rdma;
77 		struct {
78 			u64	va;
79 			u32	mkey;
80 			u32	fault_byte_count;
81 			u32     prefetch_before_byte_count;
82 			u32     prefetch_after_byte_count;
83 			u8	flags;
84 		} memory;
85 	};
86 
87 	struct mlx5_ib_pf_eq	*eq;
88 	struct work_struct	work;
89 };
90 
91 #define MAX_PREFETCH_LEN (4*1024*1024U)
92 
93 /* Timeout in ms to wait for an active mmu notifier to complete when handling
94  * a pagefault. */
95 #define MMU_NOTIFIER_TIMEOUT 1000
96 
97 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
98 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
99 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
100 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
101 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
102 
103 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
104 
105 static u64 mlx5_imr_ksm_entries;
106 
populate_klm(struct mlx5_klm * pklm,size_t idx,size_t nentries,struct mlx5_ib_mr * imr,int flags)107 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
108 			struct mlx5_ib_mr *imr, int flags)
109 {
110 	struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev;
111 	struct mlx5_klm *end = pklm + nentries;
112 	int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0;
113 	__be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ?
114 			     cpu_to_be32(imr->null_mmkey.key) :
115 			     mr_to_mdev(imr)->mkeys.null_mkey;
116 	u64 va =
117 		MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0;
118 
119 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
120 		for (; pklm != end; pklm++, idx++, va += step) {
121 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
122 			pklm->key = key;
123 			pklm->va = cpu_to_be64(va);
124 		}
125 		return;
126 	}
127 
128 	/*
129 	 * The locking here is pretty subtle. Ideally the implicit_children
130 	 * xarray would be protected by the umem_mutex, however that is not
131 	 * possible. Instead this uses a weaker update-then-lock pattern:
132 	 *
133 	 *    xa_store()
134 	 *    mutex_lock(umem_mutex)
135 	 *     mlx5r_umr_update_xlt()
136 	 *    mutex_unlock(umem_mutex)
137 	 *    destroy lkey
138 	 *
139 	 * ie any change the xarray must be followed by the locked update_xlt
140 	 * before destroying.
141 	 *
142 	 * The umem_mutex provides the acquire/release semantic needed to make
143 	 * the xa_store() visible to a racing thread.
144 	 */
145 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
146 
147 	for (; pklm != end; pklm++, idx++, va += step) {
148 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
149 
150 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
151 		if (mtt) {
152 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
153 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
154 		} else {
155 			pklm->key = key;
156 			pklm->va = cpu_to_be64(va);
157 		}
158 	}
159 }
160 
umem_dma_to_mtt(dma_addr_t umem_dma)161 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
162 {
163 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
164 
165 	if (umem_dma & ODP_READ_ALLOWED_BIT)
166 		mtt_entry |= MLX5_IB_MTT_READ;
167 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
168 		mtt_entry |= MLX5_IB_MTT_WRITE;
169 
170 	return mtt_entry;
171 }
172 
populate_mtt(__be64 * pas,size_t idx,size_t nentries,struct mlx5_ib_mr * mr,int flags)173 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
174 			 struct mlx5_ib_mr *mr, int flags)
175 {
176 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
177 	dma_addr_t pa;
178 	size_t i;
179 
180 	if (flags & MLX5_IB_UPD_XLT_ZAP)
181 		return;
182 
183 	for (i = 0; i < nentries; i++) {
184 		pa = odp->dma_list[idx + i];
185 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
186 	}
187 }
188 
mlx5_odp_populate_xlt(void * xlt,size_t idx,size_t nentries,struct mlx5_ib_mr * mr,int flags)189 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
190 			   struct mlx5_ib_mr *mr, int flags)
191 {
192 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
193 		populate_klm(xlt, idx, nentries, mr, flags);
194 	} else {
195 		populate_mtt(xlt, idx, nentries, mr, flags);
196 	}
197 }
198 
199 /*
200  * This must be called after the mr has been removed from implicit_children.
201  * NOTE: The MR does not necessarily have to be
202  * empty here, parallel page faults could have raced with the free process and
203  * added pages to it.
204  */
free_implicit_child_mr_work(struct work_struct * work)205 static void free_implicit_child_mr_work(struct work_struct *work)
206 {
207 	struct mlx5_ib_mr *mr =
208 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
209 	struct mlx5_ib_mr *imr = mr->parent;
210 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
211 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
212 
213 	mlx5r_deref_wait_odp_mkey(&mr->mmkey);
214 
215 	mutex_lock(&odp_imr->umem_mutex);
216 	mlx5r_umr_update_xlt(mr->parent,
217 			     ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
218 			     MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
219 	mutex_unlock(&odp_imr->umem_mutex);
220 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
221 
222 	mlx5r_deref_odp_mkey(&imr->mmkey);
223 }
224 
destroy_unused_implicit_child_mr(struct mlx5_ib_mr * mr)225 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
226 {
227 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
228 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
229 	struct mlx5_ib_mr *imr = mr->parent;
230 
231 	/*
232 	 * If userspace is racing freeing the parent implicit ODP MR then we can
233 	 * loose the race with parent destruction. In this case
234 	 * mlx5_ib_free_odp_mr() will free everything in the implicit_children
235 	 * xarray so NOP is fine. This child MR cannot be destroyed here because
236 	 * we are under its umem_mutex.
237 	 */
238 	if (!refcount_inc_not_zero(&imr->mmkey.usecount))
239 		return;
240 
241 	xa_lock(&imr->implicit_children);
242 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_KERNEL) !=
243 	    mr) {
244 		xa_unlock(&imr->implicit_children);
245 		mlx5r_deref_odp_mkey(&imr->mmkey);
246 		return;
247 	}
248 
249 	if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault))
250 		__xa_erase(&mr_to_mdev(mr)->odp_mkeys,
251 			   mlx5_base_mkey(mr->mmkey.key));
252 	xa_unlock(&imr->implicit_children);
253 
254 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
255 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
256 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
257 }
258 
mlx5_ib_invalidate_range(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)259 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
260 				     const struct mmu_notifier_range *range,
261 				     unsigned long cur_seq)
262 {
263 	struct ib_umem_odp *umem_odp =
264 		container_of(mni, struct ib_umem_odp, notifier);
265 	struct mlx5_ib_mr *mr;
266 	const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
267 	u64 idx = 0, blk_start_idx = 0;
268 	u64 invalidations = 0;
269 	unsigned long start;
270 	unsigned long end;
271 	int in_block = 0;
272 	u64 addr;
273 
274 	if (!mmu_notifier_range_blockable(range))
275 		return false;
276 
277 	mutex_lock(&umem_odp->umem_mutex);
278 	mmu_interval_set_seq(mni, cur_seq);
279 	/*
280 	 * If npages is zero then umem_odp->private may not be setup yet. This
281 	 * does not complete until after the first page is mapped for DMA.
282 	 */
283 	if (!umem_odp->npages)
284 		goto out;
285 	mr = umem_odp->private;
286 	if (!mr)
287 		goto out;
288 
289 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
290 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
291 
292 	/*
293 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
294 	 * while we are doing the invalidation, no page fault will attempt to
295 	 * overwrite the same MTTs.  Concurent invalidations might race us,
296 	 * but they will write 0s as well, so no difference in the end result.
297 	 */
298 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
299 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
300 		/*
301 		 * Strive to write the MTTs in chunks, but avoid overwriting
302 		 * non-existing MTTs. The huristic here can be improved to
303 		 * estimate the cost of another UMR vs. the cost of bigger
304 		 * UMR.
305 		 */
306 		if (umem_odp->dma_list[idx] &
307 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
308 			if (!in_block) {
309 				blk_start_idx = idx;
310 				in_block = 1;
311 			}
312 
313 			/* Count page invalidations */
314 			invalidations += idx - blk_start_idx + 1;
315 		} else {
316 			u64 umr_offset = idx & umr_block_mask;
317 
318 			if (in_block && umr_offset == 0) {
319 				mlx5r_umr_update_xlt(mr, blk_start_idx,
320 						     idx - blk_start_idx, 0,
321 						     MLX5_IB_UPD_XLT_ZAP |
322 						     MLX5_IB_UPD_XLT_ATOMIC);
323 				in_block = 0;
324 			}
325 		}
326 	}
327 	if (in_block)
328 		mlx5r_umr_update_xlt(mr, blk_start_idx,
329 				     idx - blk_start_idx + 1, 0,
330 				     MLX5_IB_UPD_XLT_ZAP |
331 				     MLX5_IB_UPD_XLT_ATOMIC);
332 
333 	mlx5_update_odp_stats_with_handled(mr, invalidations, invalidations);
334 
335 	/*
336 	 * We are now sure that the device will not access the
337 	 * memory. We can safely unmap it, and mark it as dirty if
338 	 * needed.
339 	 */
340 
341 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
342 
343 	if (unlikely(!umem_odp->npages && mr->parent))
344 		destroy_unused_implicit_child_mr(mr);
345 out:
346 	mutex_unlock(&umem_odp->umem_mutex);
347 	return true;
348 }
349 
350 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
351 	.invalidate = mlx5_ib_invalidate_range,
352 };
353 
internal_fill_odp_caps(struct mlx5_ib_dev * dev)354 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
355 {
356 	struct ib_odp_caps *caps = &dev->odp_caps;
357 
358 	memset(caps, 0, sizeof(*caps));
359 
360 	if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
361 		return;
362 
363 	caps->general_caps = IB_ODP_SUPPORT;
364 
365 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
366 		dev->odp_max_size = U64_MAX;
367 	else
368 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
369 
370 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send))
371 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
372 
373 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive))
374 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
375 
376 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send))
377 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
378 
379 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive))
380 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
381 
382 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write))
383 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
384 
385 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read))
386 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
387 
388 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic))
389 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
390 
391 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive))
392 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
393 
394 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send))
395 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
396 
397 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive))
398 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
399 
400 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write))
401 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
402 
403 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read))
404 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
405 
406 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic))
407 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
408 
409 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive))
410 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
411 
412 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
413 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
414 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
415 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
416 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
417 }
418 
mlx5_ib_page_fault_resume(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,int error)419 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
420 				      struct mlx5_pagefault *pfault,
421 				      int error)
422 {
423 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
424 		     pfault->wqe.wq_num : pfault->token;
425 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
426 	void *info;
427 	int err;
428 
429 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
430 
431 	if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) {
432 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
433 				    page_fault_info.mem_page_fault_info);
434 		MLX5_SET(mem_page_fault_info, info, fault_token_31_0,
435 			 pfault->token & 0xffffffff);
436 		MLX5_SET(mem_page_fault_info, info, fault_token_47_32,
437 			 (pfault->token >> 32) & 0xffff);
438 		MLX5_SET(mem_page_fault_info, info, error, !!error);
439 	} else {
440 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
441 				    page_fault_info.trans_page_fault_info);
442 		MLX5_SET(trans_page_fault_info, info, page_fault_type,
443 			 pfault->type);
444 		MLX5_SET(trans_page_fault_info, info, fault_token,
445 			 pfault->token);
446 		MLX5_SET(trans_page_fault_info, info, wq_number, wq_num);
447 		MLX5_SET(trans_page_fault_info, info, error, !!error);
448 	}
449 
450 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
451 	if (err)
452 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
453 			    wq_num, err);
454 }
455 
implicit_get_child_mr(struct mlx5_ib_mr * imr,unsigned long idx)456 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
457 						unsigned long idx)
458 {
459 	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
460 	struct ib_umem_odp *odp;
461 	struct mlx5_ib_mr *mr;
462 	struct mlx5_ib_mr *ret;
463 	int err;
464 
465 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
466 				      idx * MLX5_IMR_MTT_SIZE,
467 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
468 	if (IS_ERR(odp))
469 		return ERR_CAST(odp);
470 
471 	mr = mlx5_mr_cache_alloc(dev, imr->access_flags,
472 				 MLX5_MKC_ACCESS_MODE_MTT,
473 				 MLX5_IMR_MTT_ENTRIES);
474 	if (IS_ERR(mr)) {
475 		ib_umem_odp_release(odp);
476 		return mr;
477 	}
478 
479 	mr->access_flags = imr->access_flags;
480 	mr->ibmr.pd = imr->ibmr.pd;
481 	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
482 	mr->umem = &odp->umem;
483 	mr->ibmr.lkey = mr->mmkey.key;
484 	mr->ibmr.rkey = mr->mmkey.key;
485 	mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
486 	mr->parent = imr;
487 	odp->private = mr;
488 
489 	/*
490 	 * First refcount is owned by the xarray and second refconut
491 	 * is returned to the caller.
492 	 */
493 	refcount_set(&mr->mmkey.usecount, 2);
494 
495 	err = mlx5r_umr_update_xlt(mr, 0,
496 				   MLX5_IMR_MTT_ENTRIES,
497 				   PAGE_SHIFT,
498 				   MLX5_IB_UPD_XLT_ZAP |
499 				   MLX5_IB_UPD_XLT_ENABLE);
500 	if (err) {
501 		ret = ERR_PTR(err);
502 		goto out_mr;
503 	}
504 
505 	xa_lock(&imr->implicit_children);
506 	ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
507 			   GFP_KERNEL);
508 	if (unlikely(ret)) {
509 		if (xa_is_err(ret)) {
510 			ret = ERR_PTR(xa_err(ret));
511 			goto out_lock;
512 		}
513 		/*
514 		 * Another thread beat us to creating the child mr, use
515 		 * theirs.
516 		 */
517 		refcount_inc(&ret->mmkey.usecount);
518 		goto out_lock;
519 	}
520 
521 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
522 		ret = __xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
523 				 &mr->mmkey, GFP_KERNEL);
524 		if (xa_is_err(ret)) {
525 			ret = ERR_PTR(xa_err(ret));
526 			__xa_erase(&imr->implicit_children, idx);
527 			goto out_lock;
528 		}
529 		mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD;
530 	}
531 	xa_unlock(&imr->implicit_children);
532 	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
533 	return mr;
534 
535 out_lock:
536 	xa_unlock(&imr->implicit_children);
537 out_mr:
538 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
539 	return ret;
540 }
541 
542 /*
543  * When using memory scheme ODP, implicit MRs can't use the reserved null mkey
544  * and each implicit MR needs to assign a private null mkey to get the page
545  * faults on.
546  * The null mkey is created with the properties to enable getting the page
547  * fault for every time it is accessed and having all relevant access flags.
548  */
alloc_implicit_mr_null_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * imr,struct mlx5_ib_pd * pd)549 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev,
550 				       struct mlx5_ib_mr *imr,
551 				       struct mlx5_ib_pd *pd)
552 {
553 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64;
554 	void *mkc;
555 	u32 *in;
556 	int err;
557 
558 	in = kzalloc(inlen, GFP_KERNEL);
559 	if (!in)
560 		return -ENOMEM;
561 
562 	MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4);
563 	MLX5_SET(create_mkey_in, in, pg_access, 1);
564 
565 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
566 	MLX5_SET(mkc, mkc, a, 1);
567 	MLX5_SET(mkc, mkc, rw, 1);
568 	MLX5_SET(mkc, mkc, rr, 1);
569 	MLX5_SET(mkc, mkc, lw, 1);
570 	MLX5_SET(mkc, mkc, lr, 1);
571 	MLX5_SET(mkc, mkc, free, 0);
572 	MLX5_SET(mkc, mkc, umr_en, 0);
573 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
574 
575 	MLX5_SET(mkc, mkc, translations_octword_size, 4);
576 	MLX5_SET(mkc, mkc, log_page_size, 61);
577 	MLX5_SET(mkc, mkc, length64, 1);
578 	MLX5_SET(mkc, mkc, pd, pd->pdn);
579 	MLX5_SET64(mkc, mkc, start_addr, 0);
580 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
581 
582 	err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen);
583 	if (err)
584 		goto free_in;
585 
586 	imr->null_mmkey.type = MLX5_MKEY_NULL;
587 
588 free_in:
589 	kfree(in);
590 	return err;
591 }
592 
mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd * pd,int access_flags)593 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
594 					     int access_flags)
595 {
596 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
597 	struct ib_umem_odp *umem_odp;
598 	struct mlx5_ib_mr *imr;
599 	int err;
600 
601 	if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
602 		return ERR_PTR(-EOPNOTSUPP);
603 
604 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
605 	if (IS_ERR(umem_odp))
606 		return ERR_CAST(umem_odp);
607 
608 	imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM,
609 				  mlx5_imr_ksm_entries);
610 	if (IS_ERR(imr)) {
611 		ib_umem_odp_release(umem_odp);
612 		return imr;
613 	}
614 
615 	imr->access_flags = access_flags;
616 	imr->ibmr.pd = &pd->ibpd;
617 	imr->ibmr.iova = 0;
618 	imr->umem = &umem_odp->umem;
619 	imr->ibmr.lkey = imr->mmkey.key;
620 	imr->ibmr.rkey = imr->mmkey.key;
621 	imr->ibmr.device = &dev->ib_dev;
622 	imr->is_odp_implicit = true;
623 	xa_init(&imr->implicit_children);
624 
625 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
626 		err = alloc_implicit_mr_null_mkey(dev, imr, pd);
627 		if (err)
628 			goto out_mr;
629 
630 		err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey);
631 		if (err)
632 			goto out_mr;
633 	}
634 
635 	err = mlx5r_umr_update_xlt(imr, 0,
636 				   mlx5_imr_ksm_entries,
637 				   MLX5_KSM_PAGE_SHIFT,
638 				   MLX5_IB_UPD_XLT_INDIRECT |
639 				   MLX5_IB_UPD_XLT_ZAP |
640 				   MLX5_IB_UPD_XLT_ENABLE);
641 	if (err)
642 		goto out_mr;
643 
644 	err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
645 	if (err)
646 		goto out_mr;
647 
648 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
649 	return imr;
650 out_mr:
651 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
652 	mlx5_ib_dereg_mr(&imr->ibmr, NULL);
653 	return ERR_PTR(err);
654 }
655 
mlx5_ib_free_odp_mr(struct mlx5_ib_mr * mr)656 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
657 {
658 	struct mlx5_ib_mr *mtt;
659 	unsigned long idx;
660 
661 	/*
662 	 * If this is an implicit MR it is already invalidated so we can just
663 	 * delete the children mkeys.
664 	 */
665 	xa_for_each(&mr->implicit_children, idx, mtt) {
666 		xa_erase(&mr->implicit_children, idx);
667 		mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
668 	}
669 
670 	if (mr->null_mmkey.key) {
671 		xa_erase(&mr_to_mdev(mr)->odp_mkeys,
672 			 mlx5_base_mkey(mr->null_mmkey.key));
673 
674 		mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev,
675 				       mr->null_mmkey.key);
676 	}
677 }
678 
679 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
680 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
681 #define MLX5_PF_FLAGS_ENABLE BIT(3)
pagefault_real_mr(struct mlx5_ib_mr * mr,struct ib_umem_odp * odp,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)682 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
683 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
684 			     u32 flags)
685 {
686 	int page_shift, ret, np;
687 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
688 	u64 access_mask;
689 	u64 start_idx;
690 	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
691 	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
692 
693 	if (flags & MLX5_PF_FLAGS_ENABLE)
694 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
695 
696 	page_shift = odp->page_shift;
697 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
698 	access_mask = ODP_READ_ALLOWED_BIT;
699 
700 	if (odp->umem.writable && !downgrade)
701 		access_mask |= ODP_WRITE_ALLOWED_BIT;
702 
703 	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
704 	if (np < 0)
705 		return np;
706 
707 	/*
708 	 * No need to check whether the MTTs really belong to this MR, since
709 	 * ib_umem_odp_map_dma_and_lock already checks this.
710 	 */
711 	ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
712 	mutex_unlock(&odp->umem_mutex);
713 
714 	if (ret < 0) {
715 		if (ret != -EAGAIN)
716 			mlx5_ib_err(mr_to_mdev(mr),
717 				    "Failed to update mkey page tables\n");
718 		goto out;
719 	}
720 
721 	if (bytes_mapped) {
722 		u32 new_mappings = (np << page_shift) -
723 			(user_va - round_down(user_va, 1 << page_shift));
724 
725 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
726 	}
727 
728 	return np << (page_shift - PAGE_SHIFT);
729 
730 out:
731 	return ret;
732 }
733 
pagefault_implicit_mr(struct mlx5_ib_mr * imr,struct ib_umem_odp * odp_imr,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)734 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
735 				 struct ib_umem_odp *odp_imr, u64 user_va,
736 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
737 {
738 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
739 	unsigned long upd_start_idx = end_idx + 1;
740 	unsigned long upd_len = 0;
741 	unsigned long npages = 0;
742 	int err;
743 	int ret;
744 
745 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
746 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
747 		return -EFAULT;
748 
749 	/* Fault each child mr that intersects with our interval. */
750 	while (bcnt) {
751 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
752 		struct ib_umem_odp *umem_odp;
753 		struct mlx5_ib_mr *mtt;
754 		u64 len;
755 
756 		xa_lock(&imr->implicit_children);
757 		mtt = xa_load(&imr->implicit_children, idx);
758 		if (unlikely(!mtt)) {
759 			xa_unlock(&imr->implicit_children);
760 			mtt = implicit_get_child_mr(imr, idx);
761 			if (IS_ERR(mtt)) {
762 				ret = PTR_ERR(mtt);
763 				goto out;
764 			}
765 			upd_start_idx = min(upd_start_idx, idx);
766 			upd_len = idx - upd_start_idx + 1;
767 		} else {
768 			refcount_inc(&mtt->mmkey.usecount);
769 			xa_unlock(&imr->implicit_children);
770 		}
771 
772 		umem_odp = to_ib_umem_odp(mtt->umem);
773 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
774 		      user_va;
775 
776 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
777 					bytes_mapped, flags);
778 
779 		mlx5r_deref_odp_mkey(&mtt->mmkey);
780 
781 		if (ret < 0)
782 			goto out;
783 		user_va += len;
784 		bcnt -= len;
785 		npages += ret;
786 	}
787 
788 	ret = npages;
789 
790 	/*
791 	 * Any time the implicit_children are changed we must perform an
792 	 * update of the xlt before exiting to ensure the HW and the
793 	 * implicit_children remains synchronized.
794 	 */
795 out:
796 	if (likely(!upd_len))
797 		return ret;
798 
799 	/*
800 	 * Notice this is not strictly ordered right, the KSM is updated after
801 	 * the implicit_children is updated, so a parallel page fault could
802 	 * see a MR that is not yet visible in the KSM.  This is similar to a
803 	 * parallel page fault seeing a MR that is being concurrently removed
804 	 * from the KSM. Both of these improbable situations are resolved
805 	 * safely by resuming the HW and then taking another page fault. The
806 	 * next pagefault handler will see the new information.
807 	 */
808 	mutex_lock(&odp_imr->umem_mutex);
809 	err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
810 				   MLX5_IB_UPD_XLT_INDIRECT |
811 					  MLX5_IB_UPD_XLT_ATOMIC);
812 	mutex_unlock(&odp_imr->umem_mutex);
813 	if (err) {
814 		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
815 		return err;
816 	}
817 	return ret;
818 }
819 
pagefault_dmabuf_mr(struct mlx5_ib_mr * mr,size_t bcnt,u32 * bytes_mapped,u32 flags)820 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
821 			       u32 *bytes_mapped, u32 flags)
822 {
823 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
824 	u32 xlt_flags = 0;
825 	int err;
826 	unsigned long page_size;
827 
828 	if (flags & MLX5_PF_FLAGS_ENABLE)
829 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
830 
831 	dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
832 	err = ib_umem_dmabuf_map_pages(umem_dmabuf);
833 	if (err) {
834 		dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
835 		return err;
836 	}
837 
838 	page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf);
839 	if (!page_size) {
840 		ib_umem_dmabuf_unmap_pages(umem_dmabuf);
841 		err = -EINVAL;
842 	} else {
843 		if (mr->data_direct)
844 			err = mlx5r_umr_update_data_direct_ksm_pas(mr, xlt_flags);
845 		else
846 			err = mlx5r_umr_update_mr_pas(mr, xlt_flags);
847 	}
848 	dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
849 
850 	if (err)
851 		return err;
852 
853 	if (bytes_mapped)
854 		*bytes_mapped += bcnt;
855 
856 	return ib_umem_num_pages(mr->umem);
857 }
858 
859 /*
860  * Returns:
861  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
862  *           not accessible, or the MR is no longer valid.
863  *  -EAGAIN/-ENOMEM: The operation should be retried
864  *
865  *  -EINVAL/others: General internal malfunction
866  *  >0: Number of pages mapped
867  */
pagefault_mr(struct mlx5_ib_mr * mr,u64 io_virt,size_t bcnt,u32 * bytes_mapped,u32 flags,bool permissive_fault)868 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
869 			u32 *bytes_mapped, u32 flags, bool permissive_fault)
870 {
871 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
872 
873 	if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault)
874 		return -EFAULT;
875 
876 	if (mr->umem->is_dmabuf)
877 		return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
878 
879 	if (!odp->is_implicit_odp) {
880 		u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova;
881 		u64 user_va;
882 
883 		if (check_add_overflow(offset, (u64)odp->umem.address,
884 				       &user_va))
885 			return -EFAULT;
886 
887 		if (permissive_fault) {
888 			if (user_va < ib_umem_start(odp))
889 				user_va = ib_umem_start(odp);
890 			if ((user_va + bcnt) > ib_umem_end(odp))
891 				bcnt = ib_umem_end(odp) - user_va;
892 		} else if (unlikely(user_va >= ib_umem_end(odp) ||
893 				    ib_umem_end(odp) - user_va < bcnt))
894 			return -EFAULT;
895 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
896 					 flags);
897 	}
898 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
899 				     flags);
900 }
901 
mlx5_ib_init_odp_mr(struct mlx5_ib_mr * mr)902 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
903 {
904 	int ret;
905 
906 	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
907 				mr->umem->length, NULL,
908 				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
909 	return ret >= 0 ? 0 : ret;
910 }
911 
mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr * mr)912 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
913 {
914 	int ret;
915 
916 	ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
917 				  MLX5_PF_FLAGS_ENABLE);
918 
919 	return ret >= 0 ? 0 : ret;
920 }
921 
922 struct pf_frame {
923 	struct pf_frame *next;
924 	u32 key;
925 	u64 io_virt;
926 	size_t bcnt;
927 	int depth;
928 };
929 
mkey_is_eq(struct mlx5_ib_mkey * mmkey,u32 key)930 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
931 {
932 	if (!mmkey)
933 		return false;
934 	if (mmkey->type == MLX5_MKEY_MW ||
935 	    mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
936 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
937 	return mmkey->key == key;
938 }
939 
find_odp_mkey(struct mlx5_ib_dev * dev,u32 key)940 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key)
941 {
942 	struct mlx5_ib_mkey *mmkey;
943 
944 	xa_lock(&dev->odp_mkeys);
945 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
946 	if (!mmkey) {
947 		mmkey = ERR_PTR(-ENOENT);
948 		goto out;
949 	}
950 	if (!mkey_is_eq(mmkey, key)) {
951 		mmkey = ERR_PTR(-EFAULT);
952 		goto out;
953 	}
954 	refcount_inc(&mmkey->usecount);
955 out:
956 	xa_unlock(&dev->odp_mkeys);
957 
958 	return mmkey;
959 }
960 
961 /*
962  * Handle a single data segment in a page-fault WQE or RDMA region.
963  *
964  * Returns zero on success. The caller may continue to the next data segment.
965  * Can return the following error codes:
966  * -EAGAIN to designate a temporary error. The caller will abort handling the
967  *  page fault and resolve it.
968  * -EFAULT when there's an error mapping the requested pages. The caller will
969  *  abort the page fault handling.
970  */
pagefault_single_data_segment(struct mlx5_ib_dev * dev,struct ib_pd * pd,u32 key,u64 io_virt,size_t bcnt,u32 * bytes_committed,u32 * bytes_mapped)971 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
972 					 struct ib_pd *pd, u32 key,
973 					 u64 io_virt, size_t bcnt,
974 					 u32 *bytes_committed,
975 					 u32 *bytes_mapped)
976 {
977 	int ret, i, outlen, cur_outlen = 0, depth = 0, pages_in_range;
978 	struct pf_frame *head = NULL, *frame;
979 	struct mlx5_ib_mkey *mmkey;
980 	struct mlx5_ib_mr *mr;
981 	struct mlx5_klm *pklm;
982 	u32 *out = NULL;
983 	size_t offset;
984 
985 	io_virt += *bytes_committed;
986 	bcnt -= *bytes_committed;
987 next_mr:
988 	mmkey = find_odp_mkey(dev, key);
989 	if (IS_ERR(mmkey)) {
990 		ret = PTR_ERR(mmkey);
991 		if (ret == -ENOENT) {
992 			mlx5_ib_dbg(
993 				dev,
994 				"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
995 				key);
996 			if (bytes_mapped)
997 				*bytes_mapped += bcnt;
998 			/*
999 			 * The user could specify a SGL with multiple lkeys and
1000 			 * only some of them are ODP. Treat the non-ODP ones as
1001 			 * fully faulted.
1002 			 */
1003 			ret = 0;
1004 		}
1005 		goto end;
1006 	}
1007 
1008 	switch (mmkey->type) {
1009 	case MLX5_MKEY_MR:
1010 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1011 
1012 		pages_in_range = (ALIGN(io_virt + bcnt, PAGE_SIZE) -
1013 				  (io_virt & PAGE_MASK)) >>
1014 				 PAGE_SHIFT;
1015 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false);
1016 		if (ret < 0)
1017 			goto end;
1018 
1019 		mlx5_update_odp_stats_with_handled(mr, faults, ret);
1020 
1021 		if (ret < pages_in_range) {
1022 			ret = -EFAULT;
1023 			goto end;
1024 		}
1025 
1026 		ret = 0;
1027 		break;
1028 
1029 	case MLX5_MKEY_MW:
1030 	case MLX5_MKEY_INDIRECT_DEVX:
1031 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
1032 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
1033 			ret = -EFAULT;
1034 			goto end;
1035 		}
1036 
1037 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1038 			sizeof(*pklm) * (mmkey->ndescs - 2);
1039 
1040 		if (outlen > cur_outlen) {
1041 			kfree(out);
1042 			out = kzalloc(outlen, GFP_KERNEL);
1043 			if (!out) {
1044 				ret = -ENOMEM;
1045 				goto end;
1046 			}
1047 			cur_outlen = outlen;
1048 		}
1049 
1050 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1051 						       bsf0_klm0_pas_mtt0_1);
1052 
1053 		ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
1054 		if (ret)
1055 			goto end;
1056 
1057 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
1058 					      memory_key_mkey_entry.start_addr);
1059 
1060 		for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
1061 			if (offset >= be32_to_cpu(pklm->bcount)) {
1062 				offset -= be32_to_cpu(pklm->bcount);
1063 				continue;
1064 			}
1065 
1066 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1067 			if (!frame) {
1068 				ret = -ENOMEM;
1069 				goto end;
1070 			}
1071 
1072 			frame->key = be32_to_cpu(pklm->key);
1073 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
1074 			frame->bcnt = min_t(size_t, bcnt,
1075 					    be32_to_cpu(pklm->bcount) - offset);
1076 			frame->depth = depth + 1;
1077 			frame->next = head;
1078 			head = frame;
1079 
1080 			bcnt -= frame->bcnt;
1081 			offset = 0;
1082 		}
1083 		break;
1084 
1085 	default:
1086 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1087 		ret = -EFAULT;
1088 		goto end;
1089 	}
1090 
1091 	if (head) {
1092 		frame = head;
1093 		head = frame->next;
1094 
1095 		key = frame->key;
1096 		io_virt = frame->io_virt;
1097 		bcnt = frame->bcnt;
1098 		depth = frame->depth;
1099 		kfree(frame);
1100 
1101 		mlx5r_deref_odp_mkey(mmkey);
1102 		goto next_mr;
1103 	}
1104 
1105 end:
1106 	if (!IS_ERR(mmkey))
1107 		mlx5r_deref_odp_mkey(mmkey);
1108 	while (head) {
1109 		frame = head;
1110 		head = frame->next;
1111 		kfree(frame);
1112 	}
1113 	kfree(out);
1114 
1115 	*bytes_committed = 0;
1116 	return ret;
1117 }
1118 
1119 /*
1120  * Parse a series of data segments for page fault handling.
1121  *
1122  * @dev:  Pointer to mlx5 IB device
1123  * @pfault: contains page fault information.
1124  * @wqe: points at the first data segment in the WQE.
1125  * @wqe_end: points after the end of the WQE.
1126  * @bytes_mapped: receives the number of bytes that the function was able to
1127  *                map. This allows the caller to decide intelligently whether
1128  *                enough memory was mapped to resolve the page fault
1129  *                successfully (e.g. enough for the next MTU, or the entire
1130  *                WQE).
1131  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1132  *                   the committed bytes).
1133  * @receive_queue: receive WQE end of sg list
1134  *
1135  * Returns zero for success or a negative error code.
1136  */
pagefault_data_segments(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,void * wqe,void * wqe_end,u32 * bytes_mapped,u32 * total_wqe_bytes,bool receive_queue)1137 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1138 				   struct mlx5_pagefault *pfault,
1139 				   void *wqe,
1140 				   void *wqe_end, u32 *bytes_mapped,
1141 				   u32 *total_wqe_bytes, bool receive_queue)
1142 {
1143 	int ret = 0;
1144 	u64 io_virt;
1145 	__be32 key;
1146 	u32 byte_count;
1147 	size_t bcnt;
1148 	int inline_segment;
1149 
1150 	if (bytes_mapped)
1151 		*bytes_mapped = 0;
1152 	if (total_wqe_bytes)
1153 		*total_wqe_bytes = 0;
1154 
1155 	while (wqe < wqe_end) {
1156 		struct mlx5_wqe_data_seg *dseg = wqe;
1157 
1158 		io_virt = be64_to_cpu(dseg->addr);
1159 		key = dseg->lkey;
1160 		byte_count = be32_to_cpu(dseg->byte_count);
1161 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1162 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1163 
1164 		if (inline_segment) {
1165 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1166 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1167 				     16);
1168 		} else {
1169 			wqe += sizeof(*dseg);
1170 		}
1171 
1172 		/* receive WQE end of sg list. */
1173 		if (receive_queue && bcnt == 0 &&
1174 		    key == dev->mkeys.terminate_scatter_list_mkey &&
1175 		    io_virt == 0)
1176 			break;
1177 
1178 		if (!inline_segment && total_wqe_bytes) {
1179 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1180 					pfault->bytes_committed);
1181 		}
1182 
1183 		/* A zero length data segment designates a length of 2GB. */
1184 		if (bcnt == 0)
1185 			bcnt = 1U << 31;
1186 
1187 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1188 			pfault->bytes_committed -=
1189 				min_t(size_t, bcnt,
1190 				      pfault->bytes_committed);
1191 			continue;
1192 		}
1193 
1194 		ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key),
1195 						    io_virt, bcnt,
1196 						    &pfault->bytes_committed,
1197 						    bytes_mapped);
1198 		if (ret < 0)
1199 			break;
1200 	}
1201 
1202 	return ret;
1203 }
1204 
1205 /*
1206  * Parse initiator WQE. Advances the wqe pointer to point at the
1207  * scatter-gather list, and set wqe_end to the end of the WQE.
1208  */
mlx5_ib_mr_initiator_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,struct mlx5_ib_qp * qp,void ** wqe,void ** wqe_end,int wqe_length)1209 static int mlx5_ib_mr_initiator_pfault_handler(
1210 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1211 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1212 {
1213 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1214 	u16 wqe_index = pfault->wqe.wqe_index;
1215 	struct mlx5_base_av *av;
1216 	unsigned ds, opcode;
1217 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1218 
1219 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1220 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1221 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1222 			    ds, wqe_length);
1223 		return -EFAULT;
1224 	}
1225 
1226 	if (ds == 0) {
1227 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1228 			    wqe_index, qpn);
1229 		return -EFAULT;
1230 	}
1231 
1232 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1233 	*wqe += sizeof(*ctrl);
1234 
1235 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1236 		 MLX5_WQE_CTRL_OPCODE_MASK;
1237 
1238 	if (qp->type == IB_QPT_XRC_INI)
1239 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1240 
1241 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1242 		av = *wqe;
1243 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1244 			*wqe += sizeof(struct mlx5_av);
1245 		else
1246 			*wqe += sizeof(struct mlx5_base_av);
1247 	}
1248 
1249 	switch (opcode) {
1250 	case MLX5_OPCODE_RDMA_WRITE:
1251 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1252 	case MLX5_OPCODE_RDMA_READ:
1253 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1254 		break;
1255 	case MLX5_OPCODE_ATOMIC_CS:
1256 	case MLX5_OPCODE_ATOMIC_FA:
1257 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1258 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1259 		break;
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Parse responder WQE and set wqe_end to the end of the WQE.
1267  */
mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev * dev,struct mlx5_ib_srq * srq,void ** wqe,void ** wqe_end,int wqe_length)1268 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1269 						   struct mlx5_ib_srq *srq,
1270 						   void **wqe, void **wqe_end,
1271 						   int wqe_length)
1272 {
1273 	int wqe_size = 1 << srq->msrq.wqe_shift;
1274 
1275 	if (wqe_size > wqe_length) {
1276 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1277 		return -EFAULT;
1278 	}
1279 
1280 	*wqe_end = *wqe + wqe_size;
1281 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1282 
1283 	return 0;
1284 }
1285 
mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev * dev,struct mlx5_ib_qp * qp,void * wqe,void ** wqe_end,int wqe_length)1286 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1287 						  struct mlx5_ib_qp *qp,
1288 						  void *wqe, void **wqe_end,
1289 						  int wqe_length)
1290 {
1291 	struct mlx5_ib_wq *wq = &qp->rq;
1292 	int wqe_size = 1 << wq->wqe_shift;
1293 
1294 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1295 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1296 		return -EFAULT;
1297 	}
1298 
1299 	if (wqe_size > wqe_length) {
1300 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1301 		return -EFAULT;
1302 	}
1303 
1304 	*wqe_end = wqe + wqe_size;
1305 
1306 	return 0;
1307 }
1308 
odp_get_rsc(struct mlx5_ib_dev * dev,u32 wq_num,int pf_type)1309 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1310 						       u32 wq_num, int pf_type)
1311 {
1312 	struct mlx5_core_rsc_common *common = NULL;
1313 	struct mlx5_core_srq *srq;
1314 
1315 	switch (pf_type) {
1316 	case MLX5_WQE_PF_TYPE_RMP:
1317 		srq = mlx5_cmd_get_srq(dev, wq_num);
1318 		if (srq)
1319 			common = &srq->common;
1320 		break;
1321 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1322 	case MLX5_WQE_PF_TYPE_RESP:
1323 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1324 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1325 		break;
1326 	default:
1327 		break;
1328 	}
1329 
1330 	return common;
1331 }
1332 
res_to_qp(struct mlx5_core_rsc_common * res)1333 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1334 {
1335 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1336 
1337 	return to_mibqp(mqp);
1338 }
1339 
res_to_srq(struct mlx5_core_rsc_common * res)1340 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1341 {
1342 	struct mlx5_core_srq *msrq =
1343 		container_of(res, struct mlx5_core_srq, common);
1344 
1345 	return to_mibsrq(msrq);
1346 }
1347 
mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1348 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1349 					  struct mlx5_pagefault *pfault)
1350 {
1351 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1352 	u16 wqe_index = pfault->wqe.wqe_index;
1353 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1354 	u32 bytes_mapped, total_wqe_bytes;
1355 	struct mlx5_core_rsc_common *res;
1356 	int resume_with_error = 1;
1357 	struct mlx5_ib_qp *qp;
1358 	size_t bytes_copied;
1359 	int ret = 0;
1360 
1361 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1362 	if (!res) {
1363 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1364 		return;
1365 	}
1366 
1367 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1368 	    res->res != MLX5_RES_XSRQ) {
1369 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1370 			    pfault->type);
1371 		goto resolve_page_fault;
1372 	}
1373 
1374 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1375 	if (!wqe_start) {
1376 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1377 		goto resolve_page_fault;
1378 	}
1379 
1380 	wqe = wqe_start;
1381 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1382 	if (qp && sq) {
1383 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1384 					  &bytes_copied);
1385 		if (ret)
1386 			goto read_user;
1387 		ret = mlx5_ib_mr_initiator_pfault_handler(
1388 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1389 	} else if (qp && !sq) {
1390 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1391 					  &bytes_copied);
1392 		if (ret)
1393 			goto read_user;
1394 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1395 			dev, qp, wqe, &wqe_end, bytes_copied);
1396 	} else if (!qp) {
1397 		struct mlx5_ib_srq *srq = res_to_srq(res);
1398 
1399 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1400 					   &bytes_copied);
1401 		if (ret)
1402 			goto read_user;
1403 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1404 			dev, srq, &wqe, &wqe_end, bytes_copied);
1405 	}
1406 
1407 	if (ret < 0 || wqe >= wqe_end)
1408 		goto resolve_page_fault;
1409 
1410 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1411 				      &total_wqe_bytes, !sq);
1412 	if (ret == -EAGAIN)
1413 		goto out;
1414 
1415 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1416 		goto resolve_page_fault;
1417 
1418 out:
1419 	ret = 0;
1420 	resume_with_error = 0;
1421 
1422 read_user:
1423 	if (ret)
1424 		mlx5_ib_err(
1425 			dev,
1426 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n",
1427 			ret, wqe_index, pfault->token);
1428 
1429 resolve_page_fault:
1430 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1431 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1432 		    pfault->wqe.wq_num, resume_with_error,
1433 		    pfault->type);
1434 	mlx5_core_res_put(res);
1435 	free_page((unsigned long)wqe_start);
1436 }
1437 
mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1438 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1439 					   struct mlx5_pagefault *pfault)
1440 {
1441 	u64 address;
1442 	u32 length;
1443 	u32 prefetch_len = pfault->bytes_committed;
1444 	int prefetch_activated = 0;
1445 	u32 rkey = pfault->rdma.r_key;
1446 	int ret;
1447 
1448 	/* The RDMA responder handler handles the page fault in two parts.
1449 	 * First it brings the necessary pages for the current packet
1450 	 * (and uses the pfault context), and then (after resuming the QP)
1451 	 * prefetches more pages. The second operation cannot use the pfault
1452 	 * context and therefore uses the dummy_pfault context allocated on
1453 	 * the stack */
1454 	pfault->rdma.rdma_va += pfault->bytes_committed;
1455 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1456 					 pfault->rdma.rdma_op_len);
1457 	pfault->bytes_committed = 0;
1458 
1459 	address = pfault->rdma.rdma_va;
1460 	length  = pfault->rdma.rdma_op_len;
1461 
1462 	/* For some operations, the hardware cannot tell the exact message
1463 	 * length, and in those cases it reports zero. Use prefetch
1464 	 * logic. */
1465 	if (length == 0) {
1466 		prefetch_activated = 1;
1467 		length = pfault->rdma.packet_size;
1468 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1469 	}
1470 
1471 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1472 					    &pfault->bytes_committed, NULL);
1473 	if (ret == -EAGAIN) {
1474 		/* We're racing with an invalidation, don't prefetch */
1475 		prefetch_activated = 0;
1476 	} else if (ret < 0) {
1477 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1478 		if (ret != -ENOENT)
1479 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n",
1480 				    ret, pfault->token, pfault->type);
1481 		return;
1482 	}
1483 
1484 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1485 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n",
1486 		    pfault->token, pfault->type,
1487 		    prefetch_activated);
1488 
1489 	/* At this point, there might be a new pagefault already arriving in
1490 	 * the eq, switch to the dummy pagefault for the rest of the
1491 	 * processing. We're still OK with the objects being alive as the
1492 	 * work-queue is being fenced. */
1493 
1494 	if (prefetch_activated) {
1495 		u32 bytes_committed = 0;
1496 
1497 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1498 						    prefetch_len,
1499 						    &bytes_committed, NULL);
1500 		if (ret < 0 && ret != -EAGAIN) {
1501 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n",
1502 				    ret, pfault->token, address, prefetch_len);
1503 		}
1504 	}
1505 }
1506 
1507 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7)
mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1508 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev,
1509 					     struct mlx5_pagefault *pfault)
1510 {
1511 	u64 prefetch_va =
1512 		pfault->memory.va - pfault->memory.prefetch_before_byte_count;
1513 	size_t prefetch_size = pfault->memory.prefetch_before_byte_count +
1514 			       pfault->memory.fault_byte_count +
1515 			       pfault->memory.prefetch_after_byte_count;
1516 	struct mlx5_ib_mkey *mmkey;
1517 	struct mlx5_ib_mr *mr, *child_mr;
1518 	int ret = 0;
1519 
1520 	mmkey = find_odp_mkey(dev, pfault->memory.mkey);
1521 	if (IS_ERR(mmkey))
1522 		goto err;
1523 
1524 	switch (mmkey->type) {
1525 	case MLX5_MKEY_IMPLICIT_CHILD:
1526 		child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1527 		mr = child_mr->parent;
1528 		break;
1529 	case MLX5_MKEY_NULL:
1530 		mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey);
1531 		break;
1532 	default:
1533 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1534 		break;
1535 	}
1536 
1537 	/* If prefetch fails, handle only demanded page fault */
1538 	ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true);
1539 	if (ret < 0) {
1540 		ret = pagefault_mr(mr, pfault->memory.va,
1541 				   pfault->memory.fault_byte_count, NULL, 0,
1542 				   true);
1543 		if (ret < 0)
1544 			goto err;
1545 	}
1546 
1547 	mlx5_update_odp_stats_with_handled(mr, faults, ret);
1548 	mlx5r_deref_odp_mkey(mmkey);
1549 
1550 	if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST)
1551 		mlx5_ib_page_fault_resume(dev, pfault, 0);
1552 
1553 	mlx5_ib_dbg(
1554 		dev,
1555 		"PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n",
1556 		pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ?
1557 			"" :
1558 			"without resume cmd",
1559 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1560 		pfault->memory.fault_byte_count);
1561 
1562 	return;
1563 
1564 err:
1565 	if (!IS_ERR(mmkey))
1566 		mlx5r_deref_odp_mkey(mmkey);
1567 	mlx5_ib_page_fault_resume(dev, pfault, 1);
1568 	mlx5_ib_dbg(
1569 		dev,
1570 		"PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n",
1571 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1572 		pfault->memory.fault_byte_count, ret);
1573 }
1574 
mlx5_ib_pfault(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1575 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1576 {
1577 	u8 event_subtype = pfault->event_subtype;
1578 
1579 	switch (event_subtype) {
1580 	case MLX5_PFAULT_SUBTYPE_WQE:
1581 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1582 		break;
1583 	case MLX5_PFAULT_SUBTYPE_RDMA:
1584 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1585 		break;
1586 	case MLX5_PFAULT_SUBTYPE_MEMORY:
1587 		mlx5_ib_mr_memory_pfault_handler(dev, pfault);
1588 		break;
1589 	default:
1590 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1591 			    event_subtype);
1592 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1593 	}
1594 }
1595 
mlx5_ib_eqe_pf_action(struct work_struct * work)1596 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1597 {
1598 	struct mlx5_pagefault *pfault = container_of(work,
1599 						     struct mlx5_pagefault,
1600 						     work);
1601 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1602 
1603 	mlx5_ib_pfault(eq->dev, pfault);
1604 	mempool_free(pfault, eq->pool);
1605 }
1606 
1607 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096
mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq * eq)1608 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1609 {
1610 	struct mlx5_eqe_page_fault *pf_eqe;
1611 	struct mlx5_pagefault *pfault;
1612 	struct mlx5_eqe *eqe;
1613 	int cc = 0;
1614 
1615 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1616 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1617 		if (!pfault) {
1618 			schedule_work(&eq->work);
1619 			break;
1620 		}
1621 
1622 		pf_eqe = &eqe->data.page_fault;
1623 		pfault->event_subtype = eqe->sub_type;
1624 
1625 		switch (eqe->sub_type) {
1626 		case MLX5_PFAULT_SUBTYPE_RDMA:
1627 			/* RDMA based event */
1628 			pfault->bytes_committed =
1629 				be32_to_cpu(pf_eqe->rdma.bytes_committed);
1630 			pfault->type =
1631 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1632 			pfault->token =
1633 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1634 				MLX5_24BIT_MASK;
1635 			pfault->rdma.r_key =
1636 				be32_to_cpu(pf_eqe->rdma.r_key);
1637 			pfault->rdma.packet_size =
1638 				be16_to_cpu(pf_eqe->rdma.packet_length);
1639 			pfault->rdma.rdma_op_len =
1640 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1641 			pfault->rdma.rdma_va =
1642 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1643 			mlx5_ib_dbg(
1644 				eq->dev,
1645 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n",
1646 				eqe->sub_type, pfault->bytes_committed,
1647 				pfault->type, pfault->token,
1648 				pfault->rdma.r_key);
1649 			mlx5_ib_dbg(eq->dev,
1650 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1651 				    pfault->rdma.rdma_op_len,
1652 				    pfault->rdma.rdma_va);
1653 			break;
1654 
1655 		case MLX5_PFAULT_SUBTYPE_WQE:
1656 			/* WQE based event */
1657 			pfault->bytes_committed =
1658 				be32_to_cpu(pf_eqe->wqe.bytes_committed);
1659 			pfault->type =
1660 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1661 			pfault->token =
1662 				be32_to_cpu(pf_eqe->wqe.token);
1663 			pfault->wqe.wq_num =
1664 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1665 				MLX5_24BIT_MASK;
1666 			pfault->wqe.wqe_index =
1667 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1668 			pfault->wqe.packet_size =
1669 				be16_to_cpu(pf_eqe->wqe.packet_length);
1670 			mlx5_ib_dbg(
1671 				eq->dev,
1672 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1673 				eqe->sub_type, pfault->bytes_committed,
1674 				pfault->type, pfault->token, pfault->wqe.wq_num,
1675 				pfault->wqe.wqe_index);
1676 			break;
1677 
1678 		case MLX5_PFAULT_SUBTYPE_MEMORY:
1679 			/* Memory based event */
1680 			pfault->bytes_committed = 0;
1681 			pfault->token =
1682 				be32_to_cpu(pf_eqe->memory.token31_0) |
1683 				((u64)be16_to_cpu(pf_eqe->memory.token47_32)
1684 				 << 32);
1685 			pfault->memory.va = be64_to_cpu(pf_eqe->memory.va);
1686 			pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey);
1687 			pfault->memory.fault_byte_count = (be32_to_cpu(
1688 				pf_eqe->memory.demand_fault_pages) >> 12) *
1689 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1690 			pfault->memory.prefetch_before_byte_count =
1691 				be16_to_cpu(
1692 					pf_eqe->memory.pre_demand_fault_pages) *
1693 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1694 			pfault->memory.prefetch_after_byte_count =
1695 				be16_to_cpu(
1696 					pf_eqe->memory.post_demand_fault_pages) *
1697 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1698 			pfault->memory.flags = pf_eqe->memory.flags;
1699 			mlx5_ib_dbg(
1700 				eq->dev,
1701 				"PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n",
1702 				eqe->sub_type, pfault->token,
1703 				pfault->memory.mkey,
1704 				pfault->memory.fault_byte_count,
1705 				pfault->memory.va, pfault->memory.flags);
1706 			mlx5_ib_dbg(
1707 				eq->dev,
1708 				"PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n",
1709 				pfault->memory.prefetch_before_byte_count,
1710 				pfault->memory.prefetch_after_byte_count);
1711 			break;
1712 
1713 		default:
1714 			mlx5_ib_warn(eq->dev,
1715 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1716 				     eqe->sub_type);
1717 			/* Unsupported page faults should still be
1718 			 * resolved by the page fault handler
1719 			 */
1720 		}
1721 
1722 		pfault->eq = eq;
1723 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1724 		queue_work(eq->wq, &pfault->work);
1725 
1726 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1727 	}
1728 
1729 	mlx5_eq_update_ci(eq->core, cc, 1);
1730 }
1731 
mlx5_ib_eq_pf_int(struct notifier_block * nb,unsigned long type,void * data)1732 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1733 			     void *data)
1734 {
1735 	struct mlx5_ib_pf_eq *eq =
1736 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1737 	unsigned long flags;
1738 
1739 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1740 		mlx5_ib_eq_pf_process(eq);
1741 		spin_unlock_irqrestore(&eq->lock, flags);
1742 	} else {
1743 		schedule_work(&eq->work);
1744 	}
1745 
1746 	return IRQ_HANDLED;
1747 }
1748 
1749 /* mempool_refill() was proposed but unfortunately wasn't accepted
1750  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1751  * Cheap workaround.
1752  */
mempool_refill(mempool_t * pool)1753 static void mempool_refill(mempool_t *pool)
1754 {
1755 	while (pool->curr_nr < pool->min_nr)
1756 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1757 }
1758 
mlx5_ib_eq_pf_action(struct work_struct * work)1759 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1760 {
1761 	struct mlx5_ib_pf_eq *eq =
1762 		container_of(work, struct mlx5_ib_pf_eq, work);
1763 
1764 	mempool_refill(eq->pool);
1765 
1766 	spin_lock_irq(&eq->lock);
1767 	mlx5_ib_eq_pf_process(eq);
1768 	spin_unlock_irq(&eq->lock);
1769 }
1770 
1771 enum {
1772 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1773 	MLX5_IB_NUM_PF_DRAIN	= 64,
1774 };
1775 
mlx5r_odp_create_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1776 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1777 {
1778 	struct mlx5_eq_param param = {};
1779 	int err = 0;
1780 
1781 	mutex_lock(&dev->odp_eq_mutex);
1782 	if (eq->core)
1783 		goto unlock;
1784 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1785 	spin_lock_init(&eq->lock);
1786 	eq->dev = dev;
1787 
1788 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1789 					       sizeof(struct mlx5_pagefault));
1790 	if (!eq->pool) {
1791 		err = -ENOMEM;
1792 		goto unlock;
1793 	}
1794 
1795 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1796 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1797 				 MLX5_NUM_CMD_EQE);
1798 	if (!eq->wq) {
1799 		err = -ENOMEM;
1800 		goto err_mempool;
1801 	}
1802 
1803 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1804 	param = (struct mlx5_eq_param) {
1805 		.nent = MLX5_IB_NUM_PF_EQE,
1806 	};
1807 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1808 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1809 	if (IS_ERR(eq->core)) {
1810 		err = PTR_ERR(eq->core);
1811 		goto err_wq;
1812 	}
1813 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1814 	if (err) {
1815 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1816 		goto err_eq;
1817 	}
1818 
1819 	mutex_unlock(&dev->odp_eq_mutex);
1820 	return 0;
1821 err_eq:
1822 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1823 err_wq:
1824 	eq->core = NULL;
1825 	destroy_workqueue(eq->wq);
1826 err_mempool:
1827 	mempool_destroy(eq->pool);
1828 unlock:
1829 	mutex_unlock(&dev->odp_eq_mutex);
1830 	return err;
1831 }
1832 
1833 static int
mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1834 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1835 {
1836 	int err;
1837 
1838 	if (!eq->core)
1839 		return 0;
1840 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1841 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1842 	cancel_work_sync(&eq->work);
1843 	destroy_workqueue(eq->wq);
1844 	mempool_destroy(eq->pool);
1845 
1846 	return err;
1847 }
1848 
mlx5_odp_init_mkey_cache(struct mlx5_ib_dev * dev)1849 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev)
1850 {
1851 	struct mlx5r_cache_rb_key rb_key = {
1852 		.access_mode = MLX5_MKC_ACCESS_MODE_KSM,
1853 		.ndescs = mlx5_imr_ksm_entries,
1854 	};
1855 	struct mlx5_cache_ent *ent;
1856 
1857 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1858 		return 0;
1859 
1860 	ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1861 	if (IS_ERR(ent))
1862 		return PTR_ERR(ent);
1863 
1864 	return 0;
1865 }
1866 
1867 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1868 	.advise_mr = mlx5_ib_advise_mr,
1869 };
1870 
mlx5_ib_odp_init_one(struct mlx5_ib_dev * dev)1871 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1872 {
1873 	internal_fill_odp_caps(dev);
1874 
1875 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1876 		return 0;
1877 
1878 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1879 
1880 	mutex_init(&dev->odp_eq_mutex);
1881 	return 0;
1882 }
1883 
mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev * dev)1884 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1885 {
1886 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1887 		return;
1888 
1889 	mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1890 }
1891 
mlx5_ib_odp_init(void)1892 int mlx5_ib_odp_init(void)
1893 {
1894 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1895 				       MLX5_IMR_MTT_BITS);
1896 
1897 	return 0;
1898 }
1899 
1900 struct prefetch_mr_work {
1901 	struct work_struct work;
1902 	u32 pf_flags;
1903 	u32 num_sge;
1904 	struct {
1905 		u64 io_virt;
1906 		struct mlx5_ib_mr *mr;
1907 		size_t length;
1908 	} frags[];
1909 };
1910 
destroy_prefetch_work(struct prefetch_mr_work * work)1911 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1912 {
1913 	u32 i;
1914 
1915 	for (i = 0; i < work->num_sge; ++i)
1916 		mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1917 
1918 	kvfree(work);
1919 }
1920 
1921 static struct mlx5_ib_mr *
get_prefetchable_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 lkey)1922 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1923 		    u32 lkey)
1924 {
1925 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1926 	struct mlx5_ib_mr *mr = NULL;
1927 	struct mlx5_ib_mkey *mmkey;
1928 
1929 	xa_lock(&dev->odp_mkeys);
1930 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1931 	if (!mmkey || mmkey->key != lkey) {
1932 		mr = ERR_PTR(-ENOENT);
1933 		goto end;
1934 	}
1935 	if (mmkey->type != MLX5_MKEY_MR) {
1936 		mr = ERR_PTR(-EINVAL);
1937 		goto end;
1938 	}
1939 
1940 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1941 
1942 	if (mr->ibmr.pd != pd) {
1943 		mr = ERR_PTR(-EPERM);
1944 		goto end;
1945 	}
1946 
1947 	/* prefetch with write-access must be supported by the MR */
1948 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1949 	    !mr->umem->writable) {
1950 		mr = ERR_PTR(-EPERM);
1951 		goto end;
1952 	}
1953 
1954 	refcount_inc(&mmkey->usecount);
1955 end:
1956 	xa_unlock(&dev->odp_mkeys);
1957 	return mr;
1958 }
1959 
mlx5_ib_prefetch_mr_work(struct work_struct * w)1960 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1961 {
1962 	struct prefetch_mr_work *work =
1963 		container_of(w, struct prefetch_mr_work, work);
1964 	u32 bytes_mapped = 0;
1965 	int ret;
1966 	u32 i;
1967 
1968 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1969 	WARN_ON(!work->num_sge);
1970 	for (i = 0; i < work->num_sge; ++i) {
1971 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1972 				   work->frags[i].length, &bytes_mapped,
1973 				   work->pf_flags, false);
1974 		if (ret <= 0)
1975 			continue;
1976 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1977 	}
1978 
1979 	destroy_prefetch_work(work);
1980 }
1981 
init_prefetch_work(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct prefetch_mr_work * work,struct ib_sge * sg_list,u32 num_sge)1982 static int init_prefetch_work(struct ib_pd *pd,
1983 			       enum ib_uverbs_advise_mr_advice advice,
1984 			       u32 pf_flags, struct prefetch_mr_work *work,
1985 			       struct ib_sge *sg_list, u32 num_sge)
1986 {
1987 	u32 i;
1988 
1989 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1990 	work->pf_flags = pf_flags;
1991 
1992 	for (i = 0; i < num_sge; ++i) {
1993 		struct mlx5_ib_mr *mr;
1994 
1995 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1996 		if (IS_ERR(mr)) {
1997 			work->num_sge = i;
1998 			return PTR_ERR(mr);
1999 		}
2000 		work->frags[i].io_virt = sg_list[i].addr;
2001 		work->frags[i].length = sg_list[i].length;
2002 		work->frags[i].mr = mr;
2003 	}
2004 	work->num_sge = num_sge;
2005 	return 0;
2006 }
2007 
mlx5_ib_prefetch_sg_list(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct ib_sge * sg_list,u32 num_sge)2008 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
2009 				    enum ib_uverbs_advise_mr_advice advice,
2010 				    u32 pf_flags, struct ib_sge *sg_list,
2011 				    u32 num_sge)
2012 {
2013 	u32 bytes_mapped = 0;
2014 	int ret = 0;
2015 	u32 i;
2016 
2017 	for (i = 0; i < num_sge; ++i) {
2018 		struct mlx5_ib_mr *mr;
2019 
2020 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2021 		if (IS_ERR(mr))
2022 			return PTR_ERR(mr);
2023 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
2024 				   &bytes_mapped, pf_flags, false);
2025 		if (ret < 0) {
2026 			mlx5r_deref_odp_mkey(&mr->mmkey);
2027 			return ret;
2028 		}
2029 		mlx5_update_odp_stats(mr, prefetch, ret);
2030 		mlx5r_deref_odp_mkey(&mr->mmkey);
2031 	}
2032 
2033 	return 0;
2034 }
2035 
mlx5_ib_advise_mr_prefetch(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2036 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
2037 			       enum ib_uverbs_advise_mr_advice advice,
2038 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
2039 {
2040 	u32 pf_flags = 0;
2041 	struct prefetch_mr_work *work;
2042 	int rc;
2043 
2044 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
2045 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
2046 
2047 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
2048 		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
2049 
2050 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
2051 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
2052 						num_sge);
2053 
2054 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
2055 	if (!work)
2056 		return -ENOMEM;
2057 
2058 	rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
2059 	if (rc) {
2060 		destroy_prefetch_work(work);
2061 		return rc;
2062 	}
2063 	queue_work(system_unbound_wq, &work->work);
2064 	return 0;
2065 }
2066