1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #define INSTANTIATE_EXPORTED_MIGRATE_DISABLE 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hrtimer_api.h> 14 #include <linux/ktime_api.h> 15 #include <linux/sched/signal.h> 16 #include <linux/syscalls_api.h> 17 #include <linux/debug_locks.h> 18 #include <linux/prefetch.h> 19 #include <linux/capability.h> 20 #include <linux/pgtable_api.h> 21 #include <linux/wait_bit.h> 22 #include <linux/jiffies.h> 23 #include <linux/spinlock_api.h> 24 #include <linux/cpumask_api.h> 25 #include <linux/lockdep_api.h> 26 #include <linux/hardirq.h> 27 #include <linux/softirq.h> 28 #include <linux/refcount_api.h> 29 #include <linux/topology.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/cond_resched.h> 32 #include <linux/sched/cputime.h> 33 #include <linux/sched/debug.h> 34 #include <linux/sched/hotplug.h> 35 #include <linux/sched/init.h> 36 #include <linux/sched/isolation.h> 37 #include <linux/sched/loadavg.h> 38 #include <linux/sched/mm.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/rseq_api.h> 41 #include <linux/sched/rt.h> 42 43 #include <linux/blkdev.h> 44 #include <linux/context_tracking.h> 45 #include <linux/cpuset.h> 46 #include <linux/delayacct.h> 47 #include <linux/init_task.h> 48 #include <linux/interrupt.h> 49 #include <linux/ioprio.h> 50 #include <linux/kallsyms.h> 51 #include <linux/kcov.h> 52 #include <linux/kprobes.h> 53 #include <linux/llist_api.h> 54 #include <linux/mmu_context.h> 55 #include <linux/mmzone.h> 56 #include <linux/mutex_api.h> 57 #include <linux/nmi.h> 58 #include <linux/nospec.h> 59 #include <linux/perf_event_api.h> 60 #include <linux/profile.h> 61 #include <linux/psi.h> 62 #include <linux/rcuwait_api.h> 63 #include <linux/rseq.h> 64 #include <linux/sched/wake_q.h> 65 #include <linux/scs.h> 66 #include <linux/slab.h> 67 #include <linux/syscalls.h> 68 #include <linux/vtime.h> 69 #include <linux/wait_api.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/livepatch_sched.h> 72 73 #ifdef CONFIG_PREEMPT_DYNAMIC 74 # ifdef CONFIG_GENERIC_IRQ_ENTRY 75 # include <linux/irq-entry-common.h> 76 # endif 77 #endif 78 79 #include <uapi/linux/sched/types.h> 80 81 #include <asm/irq_regs.h> 82 #include <asm/switch_to.h> 83 #include <asm/tlb.h> 84 85 #define CREATE_TRACE_POINTS 86 #include <linux/sched/rseq_api.h> 87 #include <trace/events/sched.h> 88 #include <trace/events/ipi.h> 89 #undef CREATE_TRACE_POINTS 90 91 #include "sched.h" 92 #include "stats.h" 93 94 #include "autogroup.h" 95 #include "pelt.h" 96 #include "smp.h" 97 98 #include "../workqueue_internal.h" 99 #include "../../io_uring/io-wq.h" 100 #include "../smpboot.h" 101 #include "../locking/mutex.h" 102 103 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 105 106 /* 107 * Export tracepoints that act as a bare tracehook (ie: have no trace event 108 * associated with them) to allow external modules to probe them. 109 */ 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 122 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_entry_tp); 123 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_exit_tp); 124 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_set_need_resched_tp); 125 126 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 127 DEFINE_PER_CPU(struct rnd_state, sched_rnd_state); 128 129 #ifdef CONFIG_SCHED_PROXY_EXEC 130 DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec); 131 static int __init setup_proxy_exec(char *str) 132 { 133 bool proxy_enable = true; 134 135 if (*str && kstrtobool(str + 1, &proxy_enable)) { 136 pr_warn("Unable to parse sched_proxy_exec=\n"); 137 return 0; 138 } 139 140 if (proxy_enable) { 141 pr_info("sched_proxy_exec enabled via boot arg\n"); 142 static_branch_enable(&__sched_proxy_exec); 143 } else { 144 pr_info("sched_proxy_exec disabled via boot arg\n"); 145 static_branch_disable(&__sched_proxy_exec); 146 } 147 return 1; 148 } 149 #else 150 static int __init setup_proxy_exec(char *str) 151 { 152 pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n"); 153 return 0; 154 } 155 #endif 156 __setup("sched_proxy_exec", setup_proxy_exec); 157 158 /* 159 * Debugging: various feature bits 160 * 161 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 162 * sysctl_sched_features, defined in sched.h, to allow constants propagation 163 * at compile time and compiler optimization based on features default. 164 */ 165 #define SCHED_FEAT(name, enabled) \ 166 (1UL << __SCHED_FEAT_##name) * enabled | 167 __read_mostly unsigned int sysctl_sched_features = 168 #include "features.h" 169 0; 170 #undef SCHED_FEAT 171 172 /* 173 * Print a warning if need_resched is set for the given duration (if 174 * LATENCY_WARN is enabled). 175 * 176 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 177 * per boot. 178 */ 179 __read_mostly int sysctl_resched_latency_warn_ms = 100; 180 __read_mostly int sysctl_resched_latency_warn_once = 1; 181 182 /* 183 * Number of tasks to iterate in a single balance run. 184 * Limited because this is done with IRQs disabled. 185 */ 186 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 187 188 __read_mostly int scheduler_running; 189 190 #ifdef CONFIG_SCHED_CORE 191 192 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 193 194 /* kernel prio, less is more */ 195 static inline int __task_prio(const struct task_struct *p) 196 { 197 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 198 return -2; 199 200 if (p->dl_server) 201 return -1; /* deadline */ 202 203 if (rt_or_dl_prio(p->prio)) 204 return p->prio; /* [-1, 99] */ 205 206 if (p->sched_class == &idle_sched_class) 207 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 208 209 if (task_on_scx(p)) 210 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 211 212 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 213 } 214 215 /* 216 * l(a,b) 217 * le(a,b) := !l(b,a) 218 * g(a,b) := l(b,a) 219 * ge(a,b) := !l(a,b) 220 */ 221 222 /* real prio, less is less */ 223 static inline bool prio_less(const struct task_struct *a, 224 const struct task_struct *b, bool in_fi) 225 { 226 227 int pa = __task_prio(a), pb = __task_prio(b); 228 229 if (-pa < -pb) 230 return true; 231 232 if (-pb < -pa) 233 return false; 234 235 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 236 const struct sched_dl_entity *a_dl, *b_dl; 237 238 a_dl = &a->dl; 239 /* 240 * Since,'a' and 'b' can be CFS tasks served by DL server, 241 * __task_prio() can return -1 (for DL) even for those. In that 242 * case, get to the dl_server's DL entity. 243 */ 244 if (a->dl_server) 245 a_dl = a->dl_server; 246 247 b_dl = &b->dl; 248 if (b->dl_server) 249 b_dl = b->dl_server; 250 251 return !dl_time_before(a_dl->deadline, b_dl->deadline); 252 } 253 254 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 255 return cfs_prio_less(a, b, in_fi); 256 257 #ifdef CONFIG_SCHED_CLASS_EXT 258 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 259 return scx_prio_less(a, b, in_fi); 260 #endif 261 262 return false; 263 } 264 265 static inline bool __sched_core_less(const struct task_struct *a, 266 const struct task_struct *b) 267 { 268 if (a->core_cookie < b->core_cookie) 269 return true; 270 271 if (a->core_cookie > b->core_cookie) 272 return false; 273 274 /* flip prio, so high prio is leftmost */ 275 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 276 return true; 277 278 return false; 279 } 280 281 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 282 283 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 284 { 285 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 286 } 287 288 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 289 { 290 const struct task_struct *p = __node_2_sc(node); 291 unsigned long cookie = (unsigned long)key; 292 293 if (cookie < p->core_cookie) 294 return -1; 295 296 if (cookie > p->core_cookie) 297 return 1; 298 299 return 0; 300 } 301 302 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 303 { 304 if (p->se.sched_delayed) 305 return; 306 307 rq->core->core_task_seq++; 308 309 if (!p->core_cookie) 310 return; 311 312 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 313 } 314 315 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 316 { 317 if (p->se.sched_delayed) 318 return; 319 320 rq->core->core_task_seq++; 321 322 if (sched_core_enqueued(p)) { 323 rb_erase(&p->core_node, &rq->core_tree); 324 RB_CLEAR_NODE(&p->core_node); 325 } 326 327 /* 328 * Migrating the last task off the cpu, with the cpu in forced idle 329 * state. Reschedule to create an accounting edge for forced idle, 330 * and re-examine whether the core is still in forced idle state. 331 */ 332 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 333 rq->core->core_forceidle_count && rq->curr == rq->idle) 334 resched_curr(rq); 335 } 336 337 static int sched_task_is_throttled(struct task_struct *p, int cpu) 338 { 339 if (p->sched_class->task_is_throttled) 340 return p->sched_class->task_is_throttled(p, cpu); 341 342 return 0; 343 } 344 345 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 346 { 347 struct rb_node *node = &p->core_node; 348 int cpu = task_cpu(p); 349 350 do { 351 node = rb_next(node); 352 if (!node) 353 return NULL; 354 355 p = __node_2_sc(node); 356 if (p->core_cookie != cookie) 357 return NULL; 358 359 } while (sched_task_is_throttled(p, cpu)); 360 361 return p; 362 } 363 364 /* 365 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 366 * If no suitable task is found, NULL will be returned. 367 */ 368 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 369 { 370 struct task_struct *p; 371 struct rb_node *node; 372 373 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 374 if (!node) 375 return NULL; 376 377 p = __node_2_sc(node); 378 if (!sched_task_is_throttled(p, rq->cpu)) 379 return p; 380 381 return sched_core_next(p, cookie); 382 } 383 384 /* 385 * Magic required such that: 386 * 387 * raw_spin_rq_lock(rq); 388 * ... 389 * raw_spin_rq_unlock(rq); 390 * 391 * ends up locking and unlocking the _same_ lock, and all CPUs 392 * always agree on what rq has what lock. 393 * 394 * XXX entirely possible to selectively enable cores, don't bother for now. 395 */ 396 397 static DEFINE_MUTEX(sched_core_mutex); 398 static atomic_t sched_core_count; 399 static struct cpumask sched_core_mask; 400 401 static void sched_core_lock(int cpu, unsigned long *flags) 402 __context_unsafe(/* acquires multiple */) 403 __acquires(&runqueues.__lock) /* overapproximation */ 404 { 405 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 406 int t, i = 0; 407 408 local_irq_save(*flags); 409 for_each_cpu(t, smt_mask) 410 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 411 } 412 413 static void sched_core_unlock(int cpu, unsigned long *flags) 414 __context_unsafe(/* releases multiple */) 415 __releases(&runqueues.__lock) /* overapproximation */ 416 { 417 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 418 int t; 419 420 for_each_cpu(t, smt_mask) 421 raw_spin_unlock(&cpu_rq(t)->__lock); 422 local_irq_restore(*flags); 423 } 424 425 static void __sched_core_flip(bool enabled) 426 { 427 unsigned long flags; 428 int cpu, t; 429 430 cpus_read_lock(); 431 432 /* 433 * Toggle the online cores, one by one. 434 */ 435 cpumask_copy(&sched_core_mask, cpu_online_mask); 436 for_each_cpu(cpu, &sched_core_mask) { 437 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 438 439 sched_core_lock(cpu, &flags); 440 441 for_each_cpu(t, smt_mask) 442 cpu_rq(t)->core_enabled = enabled; 443 444 cpu_rq(cpu)->core->core_forceidle_start = 0; 445 446 sched_core_unlock(cpu, &flags); 447 448 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 449 } 450 451 /* 452 * Toggle the offline CPUs. 453 */ 454 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 455 cpu_rq(cpu)->core_enabled = enabled; 456 457 cpus_read_unlock(); 458 } 459 460 static void sched_core_assert_empty(void) 461 { 462 int cpu; 463 464 for_each_possible_cpu(cpu) 465 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 466 } 467 468 static void __sched_core_enable(void) 469 { 470 static_branch_enable(&__sched_core_enabled); 471 /* 472 * Ensure all previous instances of raw_spin_rq_*lock() have finished 473 * and future ones will observe !sched_core_disabled(). 474 */ 475 synchronize_rcu(); 476 __sched_core_flip(true); 477 sched_core_assert_empty(); 478 } 479 480 static void __sched_core_disable(void) 481 { 482 sched_core_assert_empty(); 483 __sched_core_flip(false); 484 static_branch_disable(&__sched_core_enabled); 485 } 486 487 void sched_core_get(void) 488 { 489 if (atomic_inc_not_zero(&sched_core_count)) 490 return; 491 492 mutex_lock(&sched_core_mutex); 493 if (!atomic_read(&sched_core_count)) 494 __sched_core_enable(); 495 496 smp_mb__before_atomic(); 497 atomic_inc(&sched_core_count); 498 mutex_unlock(&sched_core_mutex); 499 } 500 501 static void __sched_core_put(struct work_struct *work) 502 { 503 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 504 __sched_core_disable(); 505 mutex_unlock(&sched_core_mutex); 506 } 507 } 508 509 void sched_core_put(void) 510 { 511 static DECLARE_WORK(_work, __sched_core_put); 512 513 /* 514 * "There can be only one" 515 * 516 * Either this is the last one, or we don't actually need to do any 517 * 'work'. If it is the last *again*, we rely on 518 * WORK_STRUCT_PENDING_BIT. 519 */ 520 if (!atomic_add_unless(&sched_core_count, -1, 1)) 521 schedule_work(&_work); 522 } 523 524 #else /* !CONFIG_SCHED_CORE: */ 525 526 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 527 static inline void 528 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 529 530 #endif /* !CONFIG_SCHED_CORE */ 531 532 /* need a wrapper since we may need to trace from modules */ 533 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); 534 535 /* Call via the helper macro trace_set_current_state. */ 536 void __trace_set_current_state(int state_value) 537 { 538 trace_sched_set_state_tp(current, state_value); 539 } 540 EXPORT_SYMBOL(__trace_set_current_state); 541 542 /* 543 * Serialization rules: 544 * 545 * Lock order: 546 * 547 * p->pi_lock 548 * rq->lock 549 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 550 * 551 * rq1->lock 552 * rq2->lock where: rq1 < rq2 553 * 554 * Regular state: 555 * 556 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 557 * local CPU's rq->lock, it optionally removes the task from the runqueue and 558 * always looks at the local rq data structures to find the most eligible task 559 * to run next. 560 * 561 * Task enqueue is also under rq->lock, possibly taken from another CPU. 562 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 563 * the local CPU to avoid bouncing the runqueue state around [ see 564 * ttwu_queue_wakelist() ] 565 * 566 * Task wakeup, specifically wakeups that involve migration, are horribly 567 * complicated to avoid having to take two rq->locks. 568 * 569 * Special state: 570 * 571 * System-calls and anything external will use task_rq_lock() which acquires 572 * both p->pi_lock and rq->lock. As a consequence the state they change is 573 * stable while holding either lock: 574 * 575 * - sched_setaffinity()/ 576 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 577 * - set_user_nice(): p->se.load, p->*prio 578 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 579 * p->se.load, p->rt_priority, 580 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 581 * - sched_setnuma(): p->numa_preferred_nid 582 * - sched_move_task(): p->sched_task_group 583 * - uclamp_update_active() p->uclamp* 584 * 585 * p->state <- TASK_*: 586 * 587 * is changed locklessly using set_current_state(), __set_current_state() or 588 * set_special_state(), see their respective comments, or by 589 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 590 * concurrent self. 591 * 592 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 593 * 594 * is set by activate_task() and cleared by deactivate_task()/block_task(), 595 * under rq->lock. Non-zero indicates the task is runnable, the special 596 * ON_RQ_MIGRATING state is used for migration without holding both 597 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 598 * 599 * Additionally it is possible to be ->on_rq but still be considered not 600 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 601 * but will be dequeued as soon as they get picked again. See the 602 * task_is_runnable() helper. 603 * 604 * p->on_cpu <- { 0, 1 }: 605 * 606 * is set by prepare_task() and cleared by finish_task() such that it will be 607 * set before p is scheduled-in and cleared after p is scheduled-out, both 608 * under rq->lock. Non-zero indicates the task is running on its CPU. 609 * 610 * [ The astute reader will observe that it is possible for two tasks on one 611 * CPU to have ->on_cpu = 1 at the same time. ] 612 * 613 * task_cpu(p): is changed by set_task_cpu(), the rules are: 614 * 615 * - Don't call set_task_cpu() on a blocked task: 616 * 617 * We don't care what CPU we're not running on, this simplifies hotplug, 618 * the CPU assignment of blocked tasks isn't required to be valid. 619 * 620 * - for try_to_wake_up(), called under p->pi_lock: 621 * 622 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 623 * 624 * - for migration called under rq->lock: 625 * [ see task_on_rq_migrating() in task_rq_lock() ] 626 * 627 * o move_queued_task() 628 * o detach_task() 629 * 630 * - for migration called under double_rq_lock(): 631 * 632 * o __migrate_swap_task() 633 * o push_rt_task() / pull_rt_task() 634 * o push_dl_task() / pull_dl_task() 635 * o dl_task_offline_migration() 636 * 637 */ 638 639 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 640 __context_unsafe() 641 { 642 raw_spinlock_t *lock; 643 644 /* Matches synchronize_rcu() in __sched_core_enable() */ 645 preempt_disable(); 646 if (sched_core_disabled()) { 647 raw_spin_lock_nested(&rq->__lock, subclass); 648 /* preempt_count *MUST* be > 1 */ 649 preempt_enable_no_resched(); 650 return; 651 } 652 653 for (;;) { 654 lock = __rq_lockp(rq); 655 raw_spin_lock_nested(lock, subclass); 656 if (likely(lock == __rq_lockp(rq))) { 657 /* preempt_count *MUST* be > 1 */ 658 preempt_enable_no_resched(); 659 return; 660 } 661 raw_spin_unlock(lock); 662 } 663 } 664 665 bool raw_spin_rq_trylock(struct rq *rq) 666 __context_unsafe() 667 { 668 raw_spinlock_t *lock; 669 bool ret; 670 671 /* Matches synchronize_rcu() in __sched_core_enable() */ 672 preempt_disable(); 673 if (sched_core_disabled()) { 674 ret = raw_spin_trylock(&rq->__lock); 675 preempt_enable(); 676 return ret; 677 } 678 679 for (;;) { 680 lock = __rq_lockp(rq); 681 ret = raw_spin_trylock(lock); 682 if (!ret || (likely(lock == __rq_lockp(rq)))) { 683 preempt_enable(); 684 return ret; 685 } 686 raw_spin_unlock(lock); 687 } 688 } 689 690 void raw_spin_rq_unlock(struct rq *rq) 691 { 692 raw_spin_unlock(rq_lockp(rq)); 693 } 694 695 /* 696 * double_rq_lock - safely lock two runqueues 697 */ 698 void double_rq_lock(struct rq *rq1, struct rq *rq2) 699 { 700 lockdep_assert_irqs_disabled(); 701 702 if (rq_order_less(rq2, rq1)) 703 swap(rq1, rq2); 704 705 raw_spin_rq_lock(rq1); 706 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 707 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 708 else 709 __acquire_ctx_lock(__rq_lockp(rq2)); /* fake acquire */ 710 711 double_rq_clock_clear_update(rq1, rq2); 712 } 713 714 /* 715 * ___task_rq_lock - lock the rq @p resides on. 716 */ 717 struct rq *___task_rq_lock(struct task_struct *p, struct rq_flags *rf) 718 { 719 struct rq *rq; 720 721 lockdep_assert_held(&p->pi_lock); 722 723 for (;;) { 724 rq = task_rq(p); 725 raw_spin_rq_lock(rq); 726 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 727 rq_pin_lock(rq, rf); 728 return rq; 729 } 730 raw_spin_rq_unlock(rq); 731 732 while (unlikely(task_on_rq_migrating(p))) 733 cpu_relax(); 734 } 735 } 736 737 /* 738 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 739 */ 740 struct rq *_task_rq_lock(struct task_struct *p, struct rq_flags *rf) 741 { 742 struct rq *rq; 743 744 for (;;) { 745 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 746 rq = task_rq(p); 747 raw_spin_rq_lock(rq); 748 /* 749 * move_queued_task() task_rq_lock() 750 * 751 * ACQUIRE (rq->lock) 752 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 753 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 754 * [S] ->cpu = new_cpu [L] task_rq() 755 * [L] ->on_rq 756 * RELEASE (rq->lock) 757 * 758 * If we observe the old CPU in task_rq_lock(), the acquire of 759 * the old rq->lock will fully serialize against the stores. 760 * 761 * If we observe the new CPU in task_rq_lock(), the address 762 * dependency headed by '[L] rq = task_rq()' and the acquire 763 * will pair with the WMB to ensure we then also see migrating. 764 */ 765 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 766 rq_pin_lock(rq, rf); 767 return rq; 768 } 769 raw_spin_rq_unlock(rq); 770 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 771 772 while (unlikely(task_on_rq_migrating(p))) 773 cpu_relax(); 774 } 775 } 776 777 /* 778 * RQ-clock updating methods: 779 */ 780 781 /* Use CONFIG_PARAVIRT as this will avoid more #ifdef in arch code. */ 782 #ifdef CONFIG_PARAVIRT 783 struct static_key paravirt_steal_rq_enabled; 784 #endif 785 786 static void update_rq_clock_task(struct rq *rq, s64 delta) 787 { 788 /* 789 * In theory, the compile should just see 0 here, and optimize out the call 790 * to sched_rt_avg_update. But I don't trust it... 791 */ 792 s64 __maybe_unused steal = 0, irq_delta = 0; 793 794 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 795 if (irqtime_enabled()) { 796 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 797 798 /* 799 * Since irq_time is only updated on {soft,}irq_exit, we might run into 800 * this case when a previous update_rq_clock() happened inside a 801 * {soft,}IRQ region. 802 * 803 * When this happens, we stop ->clock_task and only update the 804 * prev_irq_time stamp to account for the part that fit, so that a next 805 * update will consume the rest. This ensures ->clock_task is 806 * monotonic. 807 * 808 * It does however cause some slight miss-attribution of {soft,}IRQ 809 * time, a more accurate solution would be to update the irq_time using 810 * the current rq->clock timestamp, except that would require using 811 * atomic ops. 812 */ 813 if (irq_delta > delta) 814 irq_delta = delta; 815 816 rq->prev_irq_time += irq_delta; 817 delta -= irq_delta; 818 delayacct_irq(rq->curr, irq_delta); 819 } 820 #endif 821 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 822 if (static_key_false((¶virt_steal_rq_enabled))) { 823 u64 prev_steal; 824 825 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 826 steal -= rq->prev_steal_time_rq; 827 828 if (unlikely(steal > delta)) 829 steal = delta; 830 831 rq->prev_steal_time_rq = prev_steal; 832 delta -= steal; 833 } 834 #endif 835 836 rq->clock_task += delta; 837 838 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 839 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 840 update_irq_load_avg(rq, irq_delta + steal); 841 #endif 842 update_rq_clock_pelt(rq, delta); 843 } 844 845 void update_rq_clock(struct rq *rq) 846 { 847 s64 delta; 848 u64 clock; 849 850 lockdep_assert_rq_held(rq); 851 852 if (rq->clock_update_flags & RQCF_ACT_SKIP) 853 return; 854 855 if (sched_feat(WARN_DOUBLE_CLOCK)) 856 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 857 rq->clock_update_flags |= RQCF_UPDATED; 858 859 clock = sched_clock_cpu(cpu_of(rq)); 860 scx_rq_clock_update(rq, clock); 861 862 delta = clock - rq->clock; 863 if (delta < 0) 864 return; 865 rq->clock += delta; 866 867 update_rq_clock_task(rq, delta); 868 } 869 870 #ifdef CONFIG_SCHED_HRTICK 871 /* 872 * Use HR-timers to deliver accurate preemption points. 873 */ 874 875 static void hrtick_clear(struct rq *rq) 876 { 877 if (hrtimer_active(&rq->hrtick_timer)) 878 hrtimer_cancel(&rq->hrtick_timer); 879 } 880 881 /* 882 * High-resolution timer tick. 883 * Runs from hardirq context with interrupts disabled. 884 */ 885 static enum hrtimer_restart hrtick(struct hrtimer *timer) 886 { 887 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 888 struct rq_flags rf; 889 890 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 891 892 rq_lock(rq, &rf); 893 update_rq_clock(rq); 894 rq->donor->sched_class->task_tick(rq, rq->donor, 1); 895 rq_unlock(rq, &rf); 896 897 return HRTIMER_NORESTART; 898 } 899 900 static void __hrtick_restart(struct rq *rq) 901 { 902 struct hrtimer *timer = &rq->hrtick_timer; 903 ktime_t time = rq->hrtick_time; 904 905 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 906 } 907 908 /* 909 * called from hardirq (IPI) context 910 */ 911 static void __hrtick_start(void *arg) 912 { 913 struct rq *rq = arg; 914 struct rq_flags rf; 915 916 rq_lock(rq, &rf); 917 __hrtick_restart(rq); 918 rq_unlock(rq, &rf); 919 } 920 921 /* 922 * Called to set the hrtick timer state. 923 * 924 * called with rq->lock held and IRQs disabled 925 */ 926 void hrtick_start(struct rq *rq, u64 delay) 927 { 928 struct hrtimer *timer = &rq->hrtick_timer; 929 s64 delta; 930 931 /* 932 * Don't schedule slices shorter than 10000ns, that just 933 * doesn't make sense and can cause timer DoS. 934 */ 935 delta = max_t(s64, delay, 10000LL); 936 rq->hrtick_time = ktime_add_ns(hrtimer_cb_get_time(timer), delta); 937 938 if (rq == this_rq()) 939 __hrtick_restart(rq); 940 else 941 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 942 } 943 944 static void hrtick_rq_init(struct rq *rq) 945 { 946 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 947 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 948 } 949 #else /* !CONFIG_SCHED_HRTICK: */ 950 static inline void hrtick_clear(struct rq *rq) 951 { 952 } 953 954 static inline void hrtick_rq_init(struct rq *rq) 955 { 956 } 957 #endif /* !CONFIG_SCHED_HRTICK */ 958 959 /* 960 * try_cmpxchg based fetch_or() macro so it works for different integer types: 961 */ 962 #define fetch_or(ptr, mask) \ 963 ({ \ 964 typeof(ptr) _ptr = (ptr); \ 965 typeof(mask) _mask = (mask); \ 966 typeof(*_ptr) _val = *_ptr; \ 967 \ 968 do { \ 969 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 970 _val; \ 971 }) 972 973 #ifdef TIF_POLLING_NRFLAG 974 /* 975 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 976 * this avoids any races wrt polling state changes and thereby avoids 977 * spurious IPIs. 978 */ 979 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 980 { 981 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 982 } 983 984 /* 985 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 986 * 987 * If this returns true, then the idle task promises to call 988 * sched_ttwu_pending() and reschedule soon. 989 */ 990 static bool set_nr_if_polling(struct task_struct *p) 991 { 992 struct thread_info *ti = task_thread_info(p); 993 typeof(ti->flags) val = READ_ONCE(ti->flags); 994 995 do { 996 if (!(val & _TIF_POLLING_NRFLAG)) 997 return false; 998 if (val & _TIF_NEED_RESCHED) 999 return true; 1000 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 1001 1002 return true; 1003 } 1004 1005 #else 1006 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 1007 { 1008 set_ti_thread_flag(ti, tif); 1009 return true; 1010 } 1011 1012 static inline bool set_nr_if_polling(struct task_struct *p) 1013 { 1014 return false; 1015 } 1016 #endif 1017 1018 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 1019 { 1020 struct wake_q_node *node = &task->wake_q; 1021 1022 /* 1023 * Atomically grab the task, if ->wake_q is !nil already it means 1024 * it's already queued (either by us or someone else) and will get the 1025 * wakeup due to that. 1026 * 1027 * In order to ensure that a pending wakeup will observe our pending 1028 * state, even in the failed case, an explicit smp_mb() must be used. 1029 */ 1030 smp_mb__before_atomic(); 1031 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1032 return false; 1033 1034 /* 1035 * The head is context local, there can be no concurrency. 1036 */ 1037 *head->lastp = node; 1038 head->lastp = &node->next; 1039 return true; 1040 } 1041 1042 /** 1043 * wake_q_add() - queue a wakeup for 'later' waking. 1044 * @head: the wake_q_head to add @task to 1045 * @task: the task to queue for 'later' wakeup 1046 * 1047 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1048 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1049 * instantly. 1050 * 1051 * This function must be used as-if it were wake_up_process(); IOW the task 1052 * must be ready to be woken at this location. 1053 */ 1054 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1055 { 1056 if (__wake_q_add(head, task)) 1057 get_task_struct(task); 1058 } 1059 1060 /** 1061 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1062 * @head: the wake_q_head to add @task to 1063 * @task: the task to queue for 'later' wakeup 1064 * 1065 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1066 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1067 * instantly. 1068 * 1069 * This function must be used as-if it were wake_up_process(); IOW the task 1070 * must be ready to be woken at this location. 1071 * 1072 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1073 * that already hold reference to @task can call the 'safe' version and trust 1074 * wake_q to do the right thing depending whether or not the @task is already 1075 * queued for wakeup. 1076 */ 1077 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1078 { 1079 if (!__wake_q_add(head, task)) 1080 put_task_struct(task); 1081 } 1082 1083 void wake_up_q(struct wake_q_head *head) 1084 { 1085 struct wake_q_node *node = head->first; 1086 1087 while (node != WAKE_Q_TAIL) { 1088 struct task_struct *task; 1089 1090 task = container_of(node, struct task_struct, wake_q); 1091 node = node->next; 1092 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1093 WRITE_ONCE(task->wake_q.next, NULL); 1094 /* Task can safely be re-inserted now. */ 1095 1096 /* 1097 * wake_up_process() executes a full barrier, which pairs with 1098 * the queueing in wake_q_add() so as not to miss wakeups. 1099 */ 1100 wake_up_process(task); 1101 put_task_struct(task); 1102 } 1103 } 1104 1105 /* 1106 * resched_curr - mark rq's current task 'to be rescheduled now'. 1107 * 1108 * On UP this means the setting of the need_resched flag, on SMP it 1109 * might also involve a cross-CPU call to trigger the scheduler on 1110 * the target CPU. 1111 */ 1112 static void __resched_curr(struct rq *rq, int tif) 1113 { 1114 struct task_struct *curr = rq->curr; 1115 struct thread_info *cti = task_thread_info(curr); 1116 int cpu; 1117 1118 lockdep_assert_rq_held(rq); 1119 1120 /* 1121 * Always immediately preempt the idle task; no point in delaying doing 1122 * actual work. 1123 */ 1124 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1125 tif = TIF_NEED_RESCHED; 1126 1127 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1128 return; 1129 1130 cpu = cpu_of(rq); 1131 1132 trace_sched_set_need_resched_tp(curr, cpu, tif); 1133 if (cpu == smp_processor_id()) { 1134 set_ti_thread_flag(cti, tif); 1135 if (tif == TIF_NEED_RESCHED) 1136 set_preempt_need_resched(); 1137 return; 1138 } 1139 1140 if (set_nr_and_not_polling(cti, tif)) { 1141 if (tif == TIF_NEED_RESCHED) 1142 smp_send_reschedule(cpu); 1143 } else { 1144 trace_sched_wake_idle_without_ipi(cpu); 1145 } 1146 } 1147 1148 void __trace_set_need_resched(struct task_struct *curr, int tif) 1149 { 1150 trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif); 1151 } 1152 EXPORT_SYMBOL_GPL(__trace_set_need_resched); 1153 1154 void resched_curr(struct rq *rq) 1155 { 1156 __resched_curr(rq, TIF_NEED_RESCHED); 1157 } 1158 1159 #ifdef CONFIG_PREEMPT_DYNAMIC 1160 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1161 static __always_inline bool dynamic_preempt_lazy(void) 1162 { 1163 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1164 } 1165 #else 1166 static __always_inline bool dynamic_preempt_lazy(void) 1167 { 1168 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1169 } 1170 #endif 1171 1172 static __always_inline int get_lazy_tif_bit(void) 1173 { 1174 if (dynamic_preempt_lazy()) 1175 return TIF_NEED_RESCHED_LAZY; 1176 1177 return TIF_NEED_RESCHED; 1178 } 1179 1180 void resched_curr_lazy(struct rq *rq) 1181 { 1182 __resched_curr(rq, get_lazy_tif_bit()); 1183 } 1184 1185 void resched_cpu(int cpu) 1186 { 1187 struct rq *rq = cpu_rq(cpu); 1188 unsigned long flags; 1189 1190 raw_spin_rq_lock_irqsave(rq, flags); 1191 if (cpu_online(cpu) || cpu == smp_processor_id()) 1192 resched_curr(rq); 1193 raw_spin_rq_unlock_irqrestore(rq, flags); 1194 } 1195 1196 #ifdef CONFIG_NO_HZ_COMMON 1197 /* 1198 * In the semi idle case, use the nearest busy CPU for migrating timers 1199 * from an idle CPU. This is good for power-savings. 1200 * 1201 * We don't do similar optimization for completely idle system, as 1202 * selecting an idle CPU will add more delays to the timers than intended 1203 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1204 */ 1205 int get_nohz_timer_target(void) 1206 { 1207 int i, cpu = smp_processor_id(), default_cpu = -1; 1208 struct sched_domain *sd; 1209 const struct cpumask *hk_mask; 1210 1211 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1212 if (!idle_cpu(cpu)) 1213 return cpu; 1214 default_cpu = cpu; 1215 } 1216 1217 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1218 1219 guard(rcu)(); 1220 1221 for_each_domain(cpu, sd) { 1222 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1223 if (cpu == i) 1224 continue; 1225 1226 if (!idle_cpu(i)) 1227 return i; 1228 } 1229 } 1230 1231 if (default_cpu == -1) 1232 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1233 1234 return default_cpu; 1235 } 1236 1237 /* 1238 * When add_timer_on() enqueues a timer into the timer wheel of an 1239 * idle CPU then this timer might expire before the next timer event 1240 * which is scheduled to wake up that CPU. In case of a completely 1241 * idle system the next event might even be infinite time into the 1242 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1243 * leaves the inner idle loop so the newly added timer is taken into 1244 * account when the CPU goes back to idle and evaluates the timer 1245 * wheel for the next timer event. 1246 */ 1247 static void wake_up_idle_cpu(int cpu) 1248 { 1249 struct rq *rq = cpu_rq(cpu); 1250 1251 if (cpu == smp_processor_id()) 1252 return; 1253 1254 /* 1255 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1256 * part of the idle loop. This forces an exit from the idle loop 1257 * and a round trip to schedule(). Now this could be optimized 1258 * because a simple new idle loop iteration is enough to 1259 * re-evaluate the next tick. Provided some re-ordering of tick 1260 * nohz functions that would need to follow TIF_NR_POLLING 1261 * clearing: 1262 * 1263 * - On most architectures, a simple fetch_or on ti::flags with a 1264 * "0" value would be enough to know if an IPI needs to be sent. 1265 * 1266 * - x86 needs to perform a last need_resched() check between 1267 * monitor and mwait which doesn't take timers into account. 1268 * There a dedicated TIF_TIMER flag would be required to 1269 * fetch_or here and be checked along with TIF_NEED_RESCHED 1270 * before mwait(). 1271 * 1272 * However, remote timer enqueue is not such a frequent event 1273 * and testing of the above solutions didn't appear to report 1274 * much benefits. 1275 */ 1276 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1277 smp_send_reschedule(cpu); 1278 else 1279 trace_sched_wake_idle_without_ipi(cpu); 1280 } 1281 1282 static bool wake_up_full_nohz_cpu(int cpu) 1283 { 1284 /* 1285 * We just need the target to call irq_exit() and re-evaluate 1286 * the next tick. The nohz full kick at least implies that. 1287 * If needed we can still optimize that later with an 1288 * empty IRQ. 1289 */ 1290 if (cpu_is_offline(cpu)) 1291 return true; /* Don't try to wake offline CPUs. */ 1292 if (tick_nohz_full_cpu(cpu)) { 1293 if (cpu != smp_processor_id() || 1294 tick_nohz_tick_stopped()) 1295 tick_nohz_full_kick_cpu(cpu); 1296 return true; 1297 } 1298 1299 return false; 1300 } 1301 1302 /* 1303 * Wake up the specified CPU. If the CPU is going offline, it is the 1304 * caller's responsibility to deal with the lost wakeup, for example, 1305 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1306 */ 1307 void wake_up_nohz_cpu(int cpu) 1308 { 1309 if (!wake_up_full_nohz_cpu(cpu)) 1310 wake_up_idle_cpu(cpu); 1311 } 1312 1313 static void nohz_csd_func(void *info) 1314 { 1315 struct rq *rq = info; 1316 int cpu = cpu_of(rq); 1317 unsigned int flags; 1318 1319 /* 1320 * Release the rq::nohz_csd. 1321 */ 1322 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1323 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1324 1325 rq->idle_balance = idle_cpu(cpu); 1326 if (rq->idle_balance) { 1327 rq->nohz_idle_balance = flags; 1328 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1329 } 1330 } 1331 1332 #endif /* CONFIG_NO_HZ_COMMON */ 1333 1334 #ifdef CONFIG_NO_HZ_FULL 1335 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1336 { 1337 if (rq->nr_running != 1) 1338 return false; 1339 1340 if (p->sched_class != &fair_sched_class) 1341 return false; 1342 1343 if (!task_on_rq_queued(p)) 1344 return false; 1345 1346 return true; 1347 } 1348 1349 bool sched_can_stop_tick(struct rq *rq) 1350 { 1351 int fifo_nr_running; 1352 1353 /* Deadline tasks, even if single, need the tick */ 1354 if (rq->dl.dl_nr_running) 1355 return false; 1356 1357 /* 1358 * If there are more than one RR tasks, we need the tick to affect the 1359 * actual RR behaviour. 1360 */ 1361 if (rq->rt.rr_nr_running) { 1362 if (rq->rt.rr_nr_running == 1) 1363 return true; 1364 else 1365 return false; 1366 } 1367 1368 /* 1369 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1370 * forced preemption between FIFO tasks. 1371 */ 1372 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1373 if (fifo_nr_running) 1374 return true; 1375 1376 /* 1377 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1378 * left. For CFS, if there's more than one we need the tick for 1379 * involuntary preemption. For SCX, ask. 1380 */ 1381 if (scx_enabled() && !scx_can_stop_tick(rq)) 1382 return false; 1383 1384 if (rq->cfs.h_nr_queued > 1) 1385 return false; 1386 1387 /* 1388 * If there is one task and it has CFS runtime bandwidth constraints 1389 * and it's on the cpu now we don't want to stop the tick. 1390 * This check prevents clearing the bit if a newly enqueued task here is 1391 * dequeued by migrating while the constrained task continues to run. 1392 * E.g. going from 2->1 without going through pick_next_task(). 1393 */ 1394 if (__need_bw_check(rq, rq->curr)) { 1395 if (cfs_task_bw_constrained(rq->curr)) 1396 return false; 1397 } 1398 1399 return true; 1400 } 1401 #endif /* CONFIG_NO_HZ_FULL */ 1402 1403 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED) 1404 /* 1405 * Iterate task_group tree rooted at *from, calling @down when first entering a 1406 * node and @up when leaving it for the final time. 1407 * 1408 * Caller must hold rcu_lock or sufficient equivalent. 1409 */ 1410 int walk_tg_tree_from(struct task_group *from, 1411 tg_visitor down, tg_visitor up, void *data) 1412 { 1413 struct task_group *parent, *child; 1414 int ret; 1415 1416 parent = from; 1417 1418 down: 1419 ret = (*down)(parent, data); 1420 if (ret) 1421 goto out; 1422 list_for_each_entry_rcu(child, &parent->children, siblings) { 1423 parent = child; 1424 goto down; 1425 1426 up: 1427 continue; 1428 } 1429 ret = (*up)(parent, data); 1430 if (ret || parent == from) 1431 goto out; 1432 1433 child = parent; 1434 parent = parent->parent; 1435 if (parent) 1436 goto up; 1437 out: 1438 return ret; 1439 } 1440 1441 int tg_nop(struct task_group *tg, void *data) 1442 { 1443 return 0; 1444 } 1445 #endif 1446 1447 void set_load_weight(struct task_struct *p, bool update_load) 1448 { 1449 int prio = p->static_prio - MAX_RT_PRIO; 1450 struct load_weight lw; 1451 1452 if (task_has_idle_policy(p)) { 1453 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1454 lw.inv_weight = WMULT_IDLEPRIO; 1455 } else { 1456 lw.weight = scale_load(sched_prio_to_weight[prio]); 1457 lw.inv_weight = sched_prio_to_wmult[prio]; 1458 } 1459 1460 /* 1461 * SCHED_OTHER tasks have to update their load when changing their 1462 * weight 1463 */ 1464 if (update_load && p->sched_class->reweight_task) 1465 p->sched_class->reweight_task(task_rq(p), p, &lw); 1466 else 1467 p->se.load = lw; 1468 } 1469 1470 #ifdef CONFIG_UCLAMP_TASK 1471 /* 1472 * Serializes updates of utilization clamp values 1473 * 1474 * The (slow-path) user-space triggers utilization clamp value updates which 1475 * can require updates on (fast-path) scheduler's data structures used to 1476 * support enqueue/dequeue operations. 1477 * While the per-CPU rq lock protects fast-path update operations, user-space 1478 * requests are serialized using a mutex to reduce the risk of conflicting 1479 * updates or API abuses. 1480 */ 1481 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1482 1483 /* Max allowed minimum utilization */ 1484 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1485 1486 /* Max allowed maximum utilization */ 1487 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1488 1489 /* 1490 * By default RT tasks run at the maximum performance point/capacity of the 1491 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1492 * SCHED_CAPACITY_SCALE. 1493 * 1494 * This knob allows admins to change the default behavior when uclamp is being 1495 * used. In battery powered devices, particularly, running at the maximum 1496 * capacity and frequency will increase energy consumption and shorten the 1497 * battery life. 1498 * 1499 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1500 * 1501 * This knob will not override the system default sched_util_clamp_min defined 1502 * above. 1503 */ 1504 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1505 1506 /* All clamps are required to be less or equal than these values */ 1507 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1508 1509 /* 1510 * This static key is used to reduce the uclamp overhead in the fast path. It 1511 * primarily disables the call to uclamp_rq_{inc, dec}() in 1512 * enqueue/dequeue_task(). 1513 * 1514 * This allows users to continue to enable uclamp in their kernel config with 1515 * minimum uclamp overhead in the fast path. 1516 * 1517 * As soon as userspace modifies any of the uclamp knobs, the static key is 1518 * enabled, since we have an actual users that make use of uclamp 1519 * functionality. 1520 * 1521 * The knobs that would enable this static key are: 1522 * 1523 * * A task modifying its uclamp value with sched_setattr(). 1524 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1525 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1526 */ 1527 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1528 1529 static inline unsigned int 1530 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1531 unsigned int clamp_value) 1532 { 1533 /* 1534 * Avoid blocked utilization pushing up the frequency when we go 1535 * idle (which drops the max-clamp) by retaining the last known 1536 * max-clamp. 1537 */ 1538 if (clamp_id == UCLAMP_MAX) { 1539 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1540 return clamp_value; 1541 } 1542 1543 return uclamp_none(UCLAMP_MIN); 1544 } 1545 1546 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1547 unsigned int clamp_value) 1548 { 1549 /* Reset max-clamp retention only on idle exit */ 1550 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1551 return; 1552 1553 uclamp_rq_set(rq, clamp_id, clamp_value); 1554 } 1555 1556 static inline 1557 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1558 unsigned int clamp_value) 1559 { 1560 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1561 int bucket_id = UCLAMP_BUCKETS - 1; 1562 1563 /* 1564 * Since both min and max clamps are max aggregated, find the 1565 * top most bucket with tasks in. 1566 */ 1567 for ( ; bucket_id >= 0; bucket_id--) { 1568 if (!bucket[bucket_id].tasks) 1569 continue; 1570 return bucket[bucket_id].value; 1571 } 1572 1573 /* No tasks -- default clamp values */ 1574 return uclamp_idle_value(rq, clamp_id, clamp_value); 1575 } 1576 1577 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1578 { 1579 unsigned int default_util_min; 1580 struct uclamp_se *uc_se; 1581 1582 lockdep_assert_held(&p->pi_lock); 1583 1584 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1585 1586 /* Only sync if user didn't override the default */ 1587 if (uc_se->user_defined) 1588 return; 1589 1590 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1591 uclamp_se_set(uc_se, default_util_min, false); 1592 } 1593 1594 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1595 { 1596 if (!rt_task(p)) 1597 return; 1598 1599 /* Protect updates to p->uclamp_* */ 1600 guard(task_rq_lock)(p); 1601 __uclamp_update_util_min_rt_default(p); 1602 } 1603 1604 static inline struct uclamp_se 1605 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1606 { 1607 /* Copy by value as we could modify it */ 1608 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1609 #ifdef CONFIG_UCLAMP_TASK_GROUP 1610 unsigned int tg_min, tg_max, value; 1611 1612 /* 1613 * Tasks in autogroups or root task group will be 1614 * restricted by system defaults. 1615 */ 1616 if (task_group_is_autogroup(task_group(p))) 1617 return uc_req; 1618 if (task_group(p) == &root_task_group) 1619 return uc_req; 1620 1621 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1622 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1623 value = uc_req.value; 1624 value = clamp(value, tg_min, tg_max); 1625 uclamp_se_set(&uc_req, value, false); 1626 #endif 1627 1628 return uc_req; 1629 } 1630 1631 /* 1632 * The effective clamp bucket index of a task depends on, by increasing 1633 * priority: 1634 * - the task specific clamp value, when explicitly requested from userspace 1635 * - the task group effective clamp value, for tasks not either in the root 1636 * group or in an autogroup 1637 * - the system default clamp value, defined by the sysadmin 1638 */ 1639 static inline struct uclamp_se 1640 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1641 { 1642 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1643 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1644 1645 /* System default restrictions always apply */ 1646 if (unlikely(uc_req.value > uc_max.value)) 1647 return uc_max; 1648 1649 return uc_req; 1650 } 1651 1652 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1653 { 1654 struct uclamp_se uc_eff; 1655 1656 /* Task currently refcounted: use back-annotated (effective) value */ 1657 if (p->uclamp[clamp_id].active) 1658 return (unsigned long)p->uclamp[clamp_id].value; 1659 1660 uc_eff = uclamp_eff_get(p, clamp_id); 1661 1662 return (unsigned long)uc_eff.value; 1663 } 1664 1665 /* 1666 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1667 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1668 * updates the rq's clamp value if required. 1669 * 1670 * Tasks can have a task-specific value requested from user-space, track 1671 * within each bucket the maximum value for tasks refcounted in it. 1672 * This "local max aggregation" allows to track the exact "requested" value 1673 * for each bucket when all its RUNNABLE tasks require the same clamp. 1674 */ 1675 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1676 enum uclamp_id clamp_id) 1677 { 1678 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1679 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1680 struct uclamp_bucket *bucket; 1681 1682 lockdep_assert_rq_held(rq); 1683 1684 /* Update task effective clamp */ 1685 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1686 1687 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1688 bucket->tasks++; 1689 uc_se->active = true; 1690 1691 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1692 1693 /* 1694 * Local max aggregation: rq buckets always track the max 1695 * "requested" clamp value of its RUNNABLE tasks. 1696 */ 1697 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1698 bucket->value = uc_se->value; 1699 1700 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1701 uclamp_rq_set(rq, clamp_id, uc_se->value); 1702 } 1703 1704 /* 1705 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1706 * is released. If this is the last task reference counting the rq's max 1707 * active clamp value, then the rq's clamp value is updated. 1708 * 1709 * Both refcounted tasks and rq's cached clamp values are expected to be 1710 * always valid. If it's detected they are not, as defensive programming, 1711 * enforce the expected state and warn. 1712 */ 1713 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1714 enum uclamp_id clamp_id) 1715 { 1716 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1717 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1718 struct uclamp_bucket *bucket; 1719 unsigned int bkt_clamp; 1720 unsigned int rq_clamp; 1721 1722 lockdep_assert_rq_held(rq); 1723 1724 /* 1725 * If sched_uclamp_used was enabled after task @p was enqueued, 1726 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1727 * 1728 * In this case the uc_se->active flag should be false since no uclamp 1729 * accounting was performed at enqueue time and we can just return 1730 * here. 1731 * 1732 * Need to be careful of the following enqueue/dequeue ordering 1733 * problem too 1734 * 1735 * enqueue(taskA) 1736 * // sched_uclamp_used gets enabled 1737 * enqueue(taskB) 1738 * dequeue(taskA) 1739 * // Must not decrement bucket->tasks here 1740 * dequeue(taskB) 1741 * 1742 * where we could end up with stale data in uc_se and 1743 * bucket[uc_se->bucket_id]. 1744 * 1745 * The following check here eliminates the possibility of such race. 1746 */ 1747 if (unlikely(!uc_se->active)) 1748 return; 1749 1750 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1751 1752 WARN_ON_ONCE(!bucket->tasks); 1753 if (likely(bucket->tasks)) 1754 bucket->tasks--; 1755 1756 uc_se->active = false; 1757 1758 /* 1759 * Keep "local max aggregation" simple and accept to (possibly) 1760 * overboost some RUNNABLE tasks in the same bucket. 1761 * The rq clamp bucket value is reset to its base value whenever 1762 * there are no more RUNNABLE tasks refcounting it. 1763 */ 1764 if (likely(bucket->tasks)) 1765 return; 1766 1767 rq_clamp = uclamp_rq_get(rq, clamp_id); 1768 /* 1769 * Defensive programming: this should never happen. If it happens, 1770 * e.g. due to future modification, warn and fix up the expected value. 1771 */ 1772 WARN_ON_ONCE(bucket->value > rq_clamp); 1773 if (bucket->value >= rq_clamp) { 1774 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1775 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1776 } 1777 } 1778 1779 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) 1780 { 1781 enum uclamp_id clamp_id; 1782 1783 /* 1784 * Avoid any overhead until uclamp is actually used by the userspace. 1785 * 1786 * The condition is constructed such that a NOP is generated when 1787 * sched_uclamp_used is disabled. 1788 */ 1789 if (!uclamp_is_used()) 1790 return; 1791 1792 if (unlikely(!p->sched_class->uclamp_enabled)) 1793 return; 1794 1795 /* Only inc the delayed task which being woken up. */ 1796 if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) 1797 return; 1798 1799 for_each_clamp_id(clamp_id) 1800 uclamp_rq_inc_id(rq, p, clamp_id); 1801 1802 /* Reset clamp idle holding when there is one RUNNABLE task */ 1803 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1804 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1805 } 1806 1807 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1808 { 1809 enum uclamp_id clamp_id; 1810 1811 /* 1812 * Avoid any overhead until uclamp is actually used by the userspace. 1813 * 1814 * The condition is constructed such that a NOP is generated when 1815 * sched_uclamp_used is disabled. 1816 */ 1817 if (!uclamp_is_used()) 1818 return; 1819 1820 if (unlikely(!p->sched_class->uclamp_enabled)) 1821 return; 1822 1823 if (p->se.sched_delayed) 1824 return; 1825 1826 for_each_clamp_id(clamp_id) 1827 uclamp_rq_dec_id(rq, p, clamp_id); 1828 } 1829 1830 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1831 enum uclamp_id clamp_id) 1832 { 1833 if (!p->uclamp[clamp_id].active) 1834 return; 1835 1836 uclamp_rq_dec_id(rq, p, clamp_id); 1837 uclamp_rq_inc_id(rq, p, clamp_id); 1838 1839 /* 1840 * Make sure to clear the idle flag if we've transiently reached 0 1841 * active tasks on rq. 1842 */ 1843 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1844 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1845 } 1846 1847 static inline void 1848 uclamp_update_active(struct task_struct *p) 1849 { 1850 enum uclamp_id clamp_id; 1851 struct rq_flags rf; 1852 struct rq *rq; 1853 1854 /* 1855 * Lock the task and the rq where the task is (or was) queued. 1856 * 1857 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1858 * price to pay to safely serialize util_{min,max} updates with 1859 * enqueues, dequeues and migration operations. 1860 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1861 */ 1862 rq = task_rq_lock(p, &rf); 1863 1864 /* 1865 * Setting the clamp bucket is serialized by task_rq_lock(). 1866 * If the task is not yet RUNNABLE and its task_struct is not 1867 * affecting a valid clamp bucket, the next time it's enqueued, 1868 * it will already see the updated clamp bucket value. 1869 */ 1870 for_each_clamp_id(clamp_id) 1871 uclamp_rq_reinc_id(rq, p, clamp_id); 1872 1873 task_rq_unlock(rq, p, &rf); 1874 } 1875 1876 #ifdef CONFIG_UCLAMP_TASK_GROUP 1877 static inline void 1878 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1879 { 1880 struct css_task_iter it; 1881 struct task_struct *p; 1882 1883 css_task_iter_start(css, 0, &it); 1884 while ((p = css_task_iter_next(&it))) 1885 uclamp_update_active(p); 1886 css_task_iter_end(&it); 1887 } 1888 1889 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1890 #endif 1891 1892 #ifdef CONFIG_SYSCTL 1893 #ifdef CONFIG_UCLAMP_TASK_GROUP 1894 static void uclamp_update_root_tg(void) 1895 { 1896 struct task_group *tg = &root_task_group; 1897 1898 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1899 sysctl_sched_uclamp_util_min, false); 1900 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1901 sysctl_sched_uclamp_util_max, false); 1902 1903 guard(rcu)(); 1904 cpu_util_update_eff(&root_task_group.css); 1905 } 1906 #else 1907 static void uclamp_update_root_tg(void) { } 1908 #endif 1909 1910 static void uclamp_sync_util_min_rt_default(void) 1911 { 1912 struct task_struct *g, *p; 1913 1914 /* 1915 * copy_process() sysctl_uclamp 1916 * uclamp_min_rt = X; 1917 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1918 * // link thread smp_mb__after_spinlock() 1919 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1920 * sched_post_fork() for_each_process_thread() 1921 * __uclamp_sync_rt() __uclamp_sync_rt() 1922 * 1923 * Ensures that either sched_post_fork() will observe the new 1924 * uclamp_min_rt or for_each_process_thread() will observe the new 1925 * task. 1926 */ 1927 read_lock(&tasklist_lock); 1928 smp_mb__after_spinlock(); 1929 read_unlock(&tasklist_lock); 1930 1931 guard(rcu)(); 1932 for_each_process_thread(g, p) 1933 uclamp_update_util_min_rt_default(p); 1934 } 1935 1936 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1937 void *buffer, size_t *lenp, loff_t *ppos) 1938 { 1939 bool update_root_tg = false; 1940 int old_min, old_max, old_min_rt; 1941 int result; 1942 1943 guard(mutex)(&uclamp_mutex); 1944 1945 old_min = sysctl_sched_uclamp_util_min; 1946 old_max = sysctl_sched_uclamp_util_max; 1947 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1948 1949 result = proc_dointvec(table, write, buffer, lenp, ppos); 1950 if (result) 1951 goto undo; 1952 if (!write) 1953 return 0; 1954 1955 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1956 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1957 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1958 1959 result = -EINVAL; 1960 goto undo; 1961 } 1962 1963 if (old_min != sysctl_sched_uclamp_util_min) { 1964 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1965 sysctl_sched_uclamp_util_min, false); 1966 update_root_tg = true; 1967 } 1968 if (old_max != sysctl_sched_uclamp_util_max) { 1969 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1970 sysctl_sched_uclamp_util_max, false); 1971 update_root_tg = true; 1972 } 1973 1974 if (update_root_tg) { 1975 sched_uclamp_enable(); 1976 uclamp_update_root_tg(); 1977 } 1978 1979 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1980 sched_uclamp_enable(); 1981 uclamp_sync_util_min_rt_default(); 1982 } 1983 1984 /* 1985 * We update all RUNNABLE tasks only when task groups are in use. 1986 * Otherwise, keep it simple and do just a lazy update at each next 1987 * task enqueue time. 1988 */ 1989 return 0; 1990 1991 undo: 1992 sysctl_sched_uclamp_util_min = old_min; 1993 sysctl_sched_uclamp_util_max = old_max; 1994 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1995 return result; 1996 } 1997 #endif /* CONFIG_SYSCTL */ 1998 1999 static void uclamp_fork(struct task_struct *p) 2000 { 2001 enum uclamp_id clamp_id; 2002 2003 /* 2004 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 2005 * as the task is still at its early fork stages. 2006 */ 2007 for_each_clamp_id(clamp_id) 2008 p->uclamp[clamp_id].active = false; 2009 2010 if (likely(!p->sched_reset_on_fork)) 2011 return; 2012 2013 for_each_clamp_id(clamp_id) { 2014 uclamp_se_set(&p->uclamp_req[clamp_id], 2015 uclamp_none(clamp_id), false); 2016 } 2017 } 2018 2019 static void uclamp_post_fork(struct task_struct *p) 2020 { 2021 uclamp_update_util_min_rt_default(p); 2022 } 2023 2024 static void __init init_uclamp_rq(struct rq *rq) 2025 { 2026 enum uclamp_id clamp_id; 2027 struct uclamp_rq *uc_rq = rq->uclamp; 2028 2029 for_each_clamp_id(clamp_id) { 2030 uc_rq[clamp_id] = (struct uclamp_rq) { 2031 .value = uclamp_none(clamp_id) 2032 }; 2033 } 2034 2035 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2036 } 2037 2038 static void __init init_uclamp(void) 2039 { 2040 struct uclamp_se uc_max = {}; 2041 enum uclamp_id clamp_id; 2042 int cpu; 2043 2044 for_each_possible_cpu(cpu) 2045 init_uclamp_rq(cpu_rq(cpu)); 2046 2047 for_each_clamp_id(clamp_id) { 2048 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2049 uclamp_none(clamp_id), false); 2050 } 2051 2052 /* System defaults allow max clamp values for both indexes */ 2053 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2054 for_each_clamp_id(clamp_id) { 2055 uclamp_default[clamp_id] = uc_max; 2056 #ifdef CONFIG_UCLAMP_TASK_GROUP 2057 root_task_group.uclamp_req[clamp_id] = uc_max; 2058 root_task_group.uclamp[clamp_id] = uc_max; 2059 #endif 2060 } 2061 } 2062 2063 #else /* !CONFIG_UCLAMP_TASK: */ 2064 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } 2065 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2066 static inline void uclamp_fork(struct task_struct *p) { } 2067 static inline void uclamp_post_fork(struct task_struct *p) { } 2068 static inline void init_uclamp(void) { } 2069 #endif /* !CONFIG_UCLAMP_TASK */ 2070 2071 bool sched_task_on_rq(struct task_struct *p) 2072 { 2073 return task_on_rq_queued(p); 2074 } 2075 2076 unsigned long get_wchan(struct task_struct *p) 2077 { 2078 unsigned long ip = 0; 2079 unsigned int state; 2080 2081 if (!p || p == current) 2082 return 0; 2083 2084 /* Only get wchan if task is blocked and we can keep it that way. */ 2085 raw_spin_lock_irq(&p->pi_lock); 2086 state = READ_ONCE(p->__state); 2087 smp_rmb(); /* see try_to_wake_up() */ 2088 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2089 ip = __get_wchan(p); 2090 raw_spin_unlock_irq(&p->pi_lock); 2091 2092 return ip; 2093 } 2094 2095 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2096 { 2097 if (!(flags & ENQUEUE_NOCLOCK)) 2098 update_rq_clock(rq); 2099 2100 /* 2101 * Can be before ->enqueue_task() because uclamp considers the 2102 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared 2103 * in ->enqueue_task(). 2104 */ 2105 uclamp_rq_inc(rq, p, flags); 2106 2107 p->sched_class->enqueue_task(rq, p, flags); 2108 2109 psi_enqueue(p, flags); 2110 2111 if (!(flags & ENQUEUE_RESTORE)) 2112 sched_info_enqueue(rq, p); 2113 2114 if (sched_core_enabled(rq)) 2115 sched_core_enqueue(rq, p); 2116 } 2117 2118 /* 2119 * Must only return false when DEQUEUE_SLEEP. 2120 */ 2121 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2122 { 2123 if (sched_core_enabled(rq)) 2124 sched_core_dequeue(rq, p, flags); 2125 2126 if (!(flags & DEQUEUE_NOCLOCK)) 2127 update_rq_clock(rq); 2128 2129 if (!(flags & DEQUEUE_SAVE)) 2130 sched_info_dequeue(rq, p); 2131 2132 psi_dequeue(p, flags); 2133 2134 /* 2135 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2136 * and mark the task ->sched_delayed. 2137 */ 2138 uclamp_rq_dec(rq, p); 2139 return p->sched_class->dequeue_task(rq, p, flags); 2140 } 2141 2142 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2143 { 2144 if (task_on_rq_migrating(p)) 2145 flags |= ENQUEUE_MIGRATED; 2146 2147 enqueue_task(rq, p, flags); 2148 2149 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2150 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2151 } 2152 2153 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2154 { 2155 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2156 2157 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2158 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2159 2160 /* 2161 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2162 * dequeue_task() and cleared *after* enqueue_task(). 2163 */ 2164 2165 dequeue_task(rq, p, flags); 2166 } 2167 2168 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2169 { 2170 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2171 __block_task(rq, p); 2172 } 2173 2174 /** 2175 * task_curr - is this task currently executing on a CPU? 2176 * @p: the task in question. 2177 * 2178 * Return: 1 if the task is currently executing. 0 otherwise. 2179 */ 2180 inline int task_curr(const struct task_struct *p) 2181 { 2182 return cpu_curr(task_cpu(p)) == p; 2183 } 2184 2185 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2186 { 2187 struct task_struct *donor = rq->donor; 2188 2189 if (p->sched_class == rq->next_class) { 2190 rq->next_class->wakeup_preempt(rq, p, flags); 2191 2192 } else if (sched_class_above(p->sched_class, rq->next_class)) { 2193 rq->next_class->wakeup_preempt(rq, p, flags); 2194 resched_curr(rq); 2195 rq->next_class = p->sched_class; 2196 } 2197 2198 /* 2199 * A queue event has occurred, and we're going to schedule. In 2200 * this case, we can save a useless back to back clock update. 2201 */ 2202 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2203 rq_clock_skip_update(rq); 2204 } 2205 2206 static __always_inline 2207 int __task_state_match(struct task_struct *p, unsigned int state) 2208 { 2209 if (READ_ONCE(p->__state) & state) 2210 return 1; 2211 2212 if (READ_ONCE(p->saved_state) & state) 2213 return -1; 2214 2215 return 0; 2216 } 2217 2218 static __always_inline 2219 int task_state_match(struct task_struct *p, unsigned int state) 2220 { 2221 /* 2222 * Serialize against current_save_and_set_rtlock_wait_state(), 2223 * current_restore_rtlock_saved_state(), and __refrigerator(). 2224 */ 2225 guard(raw_spinlock_irq)(&p->pi_lock); 2226 return __task_state_match(p, state); 2227 } 2228 2229 /* 2230 * wait_task_inactive - wait for a thread to unschedule. 2231 * 2232 * Wait for the thread to block in any of the states set in @match_state. 2233 * If it changes, i.e. @p might have woken up, then return zero. When we 2234 * succeed in waiting for @p to be off its CPU, we return a positive number 2235 * (its total switch count). If a second call a short while later returns the 2236 * same number, the caller can be sure that @p has remained unscheduled the 2237 * whole time. 2238 * 2239 * The caller must ensure that the task *will* unschedule sometime soon, 2240 * else this function might spin for a *long* time. This function can't 2241 * be called with interrupts off, or it may introduce deadlock with 2242 * smp_call_function() if an IPI is sent by the same process we are 2243 * waiting to become inactive. 2244 */ 2245 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2246 { 2247 int running, queued, match; 2248 struct rq_flags rf; 2249 unsigned long ncsw; 2250 struct rq *rq; 2251 2252 for (;;) { 2253 /* 2254 * We do the initial early heuristics without holding 2255 * any task-queue locks at all. We'll only try to get 2256 * the runqueue lock when things look like they will 2257 * work out! 2258 */ 2259 rq = task_rq(p); 2260 2261 /* 2262 * If the task is actively running on another CPU 2263 * still, just relax and busy-wait without holding 2264 * any locks. 2265 * 2266 * NOTE! Since we don't hold any locks, it's not 2267 * even sure that "rq" stays as the right runqueue! 2268 * But we don't care, since "task_on_cpu()" will 2269 * return false if the runqueue has changed and p 2270 * is actually now running somewhere else! 2271 */ 2272 while (task_on_cpu(rq, p)) { 2273 if (!task_state_match(p, match_state)) 2274 return 0; 2275 cpu_relax(); 2276 } 2277 2278 /* 2279 * Ok, time to look more closely! We need the rq 2280 * lock now, to be *sure*. If we're wrong, we'll 2281 * just go back and repeat. 2282 */ 2283 rq = task_rq_lock(p, &rf); 2284 /* 2285 * If task is sched_delayed, force dequeue it, to avoid always 2286 * hitting the tick timeout in the queued case 2287 */ 2288 if (p->se.sched_delayed) 2289 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 2290 trace_sched_wait_task(p); 2291 running = task_on_cpu(rq, p); 2292 queued = task_on_rq_queued(p); 2293 ncsw = 0; 2294 if ((match = __task_state_match(p, match_state))) { 2295 /* 2296 * When matching on p->saved_state, consider this task 2297 * still queued so it will wait. 2298 */ 2299 if (match < 0) 2300 queued = 1; 2301 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2302 } 2303 task_rq_unlock(rq, p, &rf); 2304 2305 /* 2306 * If it changed from the expected state, bail out now. 2307 */ 2308 if (unlikely(!ncsw)) 2309 break; 2310 2311 /* 2312 * Was it really running after all now that we 2313 * checked with the proper locks actually held? 2314 * 2315 * Oops. Go back and try again.. 2316 */ 2317 if (unlikely(running)) { 2318 cpu_relax(); 2319 continue; 2320 } 2321 2322 /* 2323 * It's not enough that it's not actively running, 2324 * it must be off the runqueue _entirely_, and not 2325 * preempted! 2326 * 2327 * So if it was still runnable (but just not actively 2328 * running right now), it's preempted, and we should 2329 * yield - it could be a while. 2330 */ 2331 if (unlikely(queued)) { 2332 ktime_t to = NSEC_PER_SEC / HZ; 2333 2334 set_current_state(TASK_UNINTERRUPTIBLE); 2335 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2336 continue; 2337 } 2338 2339 /* 2340 * Ahh, all good. It wasn't running, and it wasn't 2341 * runnable, which means that it will never become 2342 * running in the future either. We're all done! 2343 */ 2344 break; 2345 } 2346 2347 return ncsw; 2348 } 2349 2350 static void 2351 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2352 2353 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2354 { 2355 struct affinity_context ac = { 2356 .new_mask = cpumask_of(rq->cpu), 2357 .flags = SCA_MIGRATE_DISABLE, 2358 }; 2359 2360 if (likely(!p->migration_disabled)) 2361 return; 2362 2363 if (p->cpus_ptr != &p->cpus_mask) 2364 return; 2365 2366 scoped_guard (task_rq_lock, p) 2367 do_set_cpus_allowed(p, &ac); 2368 } 2369 2370 void ___migrate_enable(void) 2371 { 2372 struct task_struct *p = current; 2373 struct affinity_context ac = { 2374 .new_mask = &p->cpus_mask, 2375 .flags = SCA_MIGRATE_ENABLE, 2376 }; 2377 2378 __set_cpus_allowed_ptr(p, &ac); 2379 } 2380 EXPORT_SYMBOL_GPL(___migrate_enable); 2381 2382 void migrate_disable(void) 2383 { 2384 __migrate_disable(); 2385 } 2386 EXPORT_SYMBOL_GPL(migrate_disable); 2387 2388 void migrate_enable(void) 2389 { 2390 __migrate_enable(); 2391 } 2392 EXPORT_SYMBOL_GPL(migrate_enable); 2393 2394 static inline bool rq_has_pinned_tasks(struct rq *rq) 2395 { 2396 return rq->nr_pinned; 2397 } 2398 2399 /* 2400 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2401 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2402 */ 2403 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2404 { 2405 /* When not in the task's cpumask, no point in looking further. */ 2406 if (!task_allowed_on_cpu(p, cpu)) 2407 return false; 2408 2409 /* migrate_disabled() must be allowed to finish. */ 2410 if (is_migration_disabled(p)) 2411 return cpu_online(cpu); 2412 2413 /* Non kernel threads are not allowed during either online or offline. */ 2414 if (!(p->flags & PF_KTHREAD)) 2415 return cpu_active(cpu); 2416 2417 /* KTHREAD_IS_PER_CPU is always allowed. */ 2418 if (kthread_is_per_cpu(p)) 2419 return cpu_online(cpu); 2420 2421 /* Regular kernel threads don't get to stay during offline. */ 2422 if (cpu_dying(cpu)) 2423 return false; 2424 2425 /* But are allowed during online. */ 2426 return cpu_online(cpu); 2427 } 2428 2429 /* 2430 * This is how migration works: 2431 * 2432 * 1) we invoke migration_cpu_stop() on the target CPU using 2433 * stop_one_cpu(). 2434 * 2) stopper starts to run (implicitly forcing the migrated thread 2435 * off the CPU) 2436 * 3) it checks whether the migrated task is still in the wrong runqueue. 2437 * 4) if it's in the wrong runqueue then the migration thread removes 2438 * it and puts it into the right queue. 2439 * 5) stopper completes and stop_one_cpu() returns and the migration 2440 * is done. 2441 */ 2442 2443 /* 2444 * move_queued_task - move a queued task to new rq. 2445 * 2446 * Returns (locked) new rq. Old rq's lock is released. 2447 */ 2448 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2449 struct task_struct *p, int new_cpu) 2450 __must_hold(__rq_lockp(rq)) 2451 { 2452 lockdep_assert_rq_held(rq); 2453 2454 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2455 set_task_cpu(p, new_cpu); 2456 rq_unlock(rq, rf); 2457 2458 rq = cpu_rq(new_cpu); 2459 2460 rq_lock(rq, rf); 2461 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2462 activate_task(rq, p, 0); 2463 wakeup_preempt(rq, p, 0); 2464 2465 return rq; 2466 } 2467 2468 struct migration_arg { 2469 struct task_struct *task; 2470 int dest_cpu; 2471 struct set_affinity_pending *pending; 2472 }; 2473 2474 /* 2475 * @refs: number of wait_for_completion() 2476 * @stop_pending: is @stop_work in use 2477 */ 2478 struct set_affinity_pending { 2479 refcount_t refs; 2480 unsigned int stop_pending; 2481 struct completion done; 2482 struct cpu_stop_work stop_work; 2483 struct migration_arg arg; 2484 }; 2485 2486 /* 2487 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2488 * this because either it can't run here any more (set_cpus_allowed() 2489 * away from this CPU, or CPU going down), or because we're 2490 * attempting to rebalance this task on exec (sched_exec). 2491 * 2492 * So we race with normal scheduler movements, but that's OK, as long 2493 * as the task is no longer on this CPU. 2494 */ 2495 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2496 struct task_struct *p, int dest_cpu) 2497 __must_hold(__rq_lockp(rq)) 2498 { 2499 /* Affinity changed (again). */ 2500 if (!is_cpu_allowed(p, dest_cpu)) 2501 return rq; 2502 2503 rq = move_queued_task(rq, rf, p, dest_cpu); 2504 2505 return rq; 2506 } 2507 2508 /* 2509 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2510 * and performs thread migration by bumping thread off CPU then 2511 * 'pushing' onto another runqueue. 2512 */ 2513 static int migration_cpu_stop(void *data) 2514 { 2515 struct migration_arg *arg = data; 2516 struct set_affinity_pending *pending = arg->pending; 2517 struct task_struct *p = arg->task; 2518 struct rq *rq = this_rq(); 2519 bool complete = false; 2520 struct rq_flags rf; 2521 2522 /* 2523 * The original target CPU might have gone down and we might 2524 * be on another CPU but it doesn't matter. 2525 */ 2526 local_irq_save(rf.flags); 2527 /* 2528 * We need to explicitly wake pending tasks before running 2529 * __migrate_task() such that we will not miss enforcing cpus_ptr 2530 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2531 */ 2532 flush_smp_call_function_queue(); 2533 2534 /* 2535 * We may change the underlying rq, but the locks held will 2536 * appropriately be "transferred" when switching. 2537 */ 2538 context_unsafe_alias(rq); 2539 2540 raw_spin_lock(&p->pi_lock); 2541 rq_lock(rq, &rf); 2542 2543 /* 2544 * If we were passed a pending, then ->stop_pending was set, thus 2545 * p->migration_pending must have remained stable. 2546 */ 2547 WARN_ON_ONCE(pending && pending != p->migration_pending); 2548 2549 /* 2550 * If task_rq(p) != rq, it cannot be migrated here, because we're 2551 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2552 * we're holding p->pi_lock. 2553 */ 2554 if (task_rq(p) == rq) { 2555 if (is_migration_disabled(p)) 2556 goto out; 2557 2558 if (pending) { 2559 p->migration_pending = NULL; 2560 complete = true; 2561 2562 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2563 goto out; 2564 } 2565 2566 if (task_on_rq_queued(p)) { 2567 update_rq_clock(rq); 2568 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2569 } else { 2570 p->wake_cpu = arg->dest_cpu; 2571 } 2572 2573 /* 2574 * XXX __migrate_task() can fail, at which point we might end 2575 * up running on a dodgy CPU, AFAICT this can only happen 2576 * during CPU hotplug, at which point we'll get pushed out 2577 * anyway, so it's probably not a big deal. 2578 */ 2579 2580 } else if (pending) { 2581 /* 2582 * This happens when we get migrated between migrate_enable()'s 2583 * preempt_enable() and scheduling the stopper task. At that 2584 * point we're a regular task again and not current anymore. 2585 * 2586 * A !PREEMPT kernel has a giant hole here, which makes it far 2587 * more likely. 2588 */ 2589 2590 /* 2591 * The task moved before the stopper got to run. We're holding 2592 * ->pi_lock, so the allowed mask is stable - if it got 2593 * somewhere allowed, we're done. 2594 */ 2595 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2596 p->migration_pending = NULL; 2597 complete = true; 2598 goto out; 2599 } 2600 2601 /* 2602 * When migrate_enable() hits a rq mis-match we can't reliably 2603 * determine is_migration_disabled() and so have to chase after 2604 * it. 2605 */ 2606 WARN_ON_ONCE(!pending->stop_pending); 2607 preempt_disable(); 2608 rq_unlock(rq, &rf); 2609 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2610 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2611 &pending->arg, &pending->stop_work); 2612 preempt_enable(); 2613 return 0; 2614 } 2615 out: 2616 if (pending) 2617 pending->stop_pending = false; 2618 rq_unlock(rq, &rf); 2619 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2620 2621 if (complete) 2622 complete_all(&pending->done); 2623 2624 return 0; 2625 } 2626 2627 int push_cpu_stop(void *arg) 2628 { 2629 struct rq *lowest_rq = NULL, *rq = this_rq(); 2630 struct task_struct *p = arg; 2631 2632 raw_spin_lock_irq(&p->pi_lock); 2633 raw_spin_rq_lock(rq); 2634 2635 if (task_rq(p) != rq) 2636 goto out_unlock; 2637 2638 if (is_migration_disabled(p)) { 2639 p->migration_flags |= MDF_PUSH; 2640 goto out_unlock; 2641 } 2642 2643 p->migration_flags &= ~MDF_PUSH; 2644 2645 if (p->sched_class->find_lock_rq) 2646 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2647 2648 if (!lowest_rq) 2649 goto out_unlock; 2650 2651 lockdep_assert_rq_held(lowest_rq); 2652 2653 // XXX validate p is still the highest prio task 2654 if (task_rq(p) == rq) { 2655 move_queued_task_locked(rq, lowest_rq, p); 2656 resched_curr(lowest_rq); 2657 } 2658 2659 double_unlock_balance(rq, lowest_rq); 2660 2661 out_unlock: 2662 rq->push_busy = false; 2663 raw_spin_rq_unlock(rq); 2664 raw_spin_unlock_irq(&p->pi_lock); 2665 2666 put_task_struct(p); 2667 return 0; 2668 } 2669 2670 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const cpumask_t *affmask); 2671 2672 /* 2673 * sched_class::set_cpus_allowed must do the below, but is not required to 2674 * actually call this function. 2675 */ 2676 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2677 { 2678 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2679 p->cpus_ptr = ctx->new_mask; 2680 return; 2681 } 2682 2683 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2684 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2685 mm_update_cpus_allowed(p->mm, ctx->new_mask); 2686 2687 /* 2688 * Swap in a new user_cpus_ptr if SCA_USER flag set 2689 */ 2690 if (ctx->flags & SCA_USER) 2691 swap(p->user_cpus_ptr, ctx->user_mask); 2692 } 2693 2694 static void 2695 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2696 { 2697 scoped_guard (sched_change, p, DEQUEUE_SAVE) 2698 p->sched_class->set_cpus_allowed(p, ctx); 2699 } 2700 2701 /* 2702 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2703 * affinity (if any) should be destroyed too. 2704 */ 2705 void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask) 2706 { 2707 struct affinity_context ac = { 2708 .new_mask = new_mask, 2709 .user_mask = NULL, 2710 .flags = SCA_USER, /* clear the user requested mask */ 2711 }; 2712 union cpumask_rcuhead { 2713 cpumask_t cpumask; 2714 struct rcu_head rcu; 2715 }; 2716 2717 scoped_guard (__task_rq_lock, p) 2718 do_set_cpus_allowed(p, &ac); 2719 2720 /* 2721 * Because this is called with p->pi_lock held, it is not possible 2722 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2723 * kfree_rcu(). 2724 */ 2725 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2726 } 2727 2728 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2729 int node) 2730 { 2731 cpumask_t *user_mask; 2732 unsigned long flags; 2733 2734 /* 2735 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2736 * may differ by now due to racing. 2737 */ 2738 dst->user_cpus_ptr = NULL; 2739 2740 /* 2741 * This check is racy and losing the race is a valid situation. 2742 * It is not worth the extra overhead of taking the pi_lock on 2743 * every fork/clone. 2744 */ 2745 if (data_race(!src->user_cpus_ptr)) 2746 return 0; 2747 2748 user_mask = alloc_user_cpus_ptr(node); 2749 if (!user_mask) 2750 return -ENOMEM; 2751 2752 /* 2753 * Use pi_lock to protect content of user_cpus_ptr 2754 * 2755 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2756 * set_cpus_allowed_force(). 2757 */ 2758 raw_spin_lock_irqsave(&src->pi_lock, flags); 2759 if (src->user_cpus_ptr) { 2760 swap(dst->user_cpus_ptr, user_mask); 2761 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2762 } 2763 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2764 2765 if (unlikely(user_mask)) 2766 kfree(user_mask); 2767 2768 return 0; 2769 } 2770 2771 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2772 { 2773 struct cpumask *user_mask = NULL; 2774 2775 swap(p->user_cpus_ptr, user_mask); 2776 2777 return user_mask; 2778 } 2779 2780 void release_user_cpus_ptr(struct task_struct *p) 2781 { 2782 kfree(clear_user_cpus_ptr(p)); 2783 } 2784 2785 /* 2786 * This function is wildly self concurrent; here be dragons. 2787 * 2788 * 2789 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2790 * designated task is enqueued on an allowed CPU. If that task is currently 2791 * running, we have to kick it out using the CPU stopper. 2792 * 2793 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2794 * Consider: 2795 * 2796 * Initial conditions: P0->cpus_mask = [0, 1] 2797 * 2798 * P0@CPU0 P1 2799 * 2800 * migrate_disable(); 2801 * <preempted> 2802 * set_cpus_allowed_ptr(P0, [1]); 2803 * 2804 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2805 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2806 * This means we need the following scheme: 2807 * 2808 * P0@CPU0 P1 2809 * 2810 * migrate_disable(); 2811 * <preempted> 2812 * set_cpus_allowed_ptr(P0, [1]); 2813 * <blocks> 2814 * <resumes> 2815 * migrate_enable(); 2816 * __set_cpus_allowed_ptr(); 2817 * <wakes local stopper> 2818 * `--> <woken on migration completion> 2819 * 2820 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2821 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2822 * task p are serialized by p->pi_lock, which we can leverage: the one that 2823 * should come into effect at the end of the Migrate-Disable region is the last 2824 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2825 * but we still need to properly signal those waiting tasks at the appropriate 2826 * moment. 2827 * 2828 * This is implemented using struct set_affinity_pending. The first 2829 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2830 * setup an instance of that struct and install it on the targeted task_struct. 2831 * Any and all further callers will reuse that instance. Those then wait for 2832 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2833 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2834 * 2835 * 2836 * (1) In the cases covered above. There is one more where the completion is 2837 * signaled within affine_move_task() itself: when a subsequent affinity request 2838 * occurs after the stopper bailed out due to the targeted task still being 2839 * Migrate-Disable. Consider: 2840 * 2841 * Initial conditions: P0->cpus_mask = [0, 1] 2842 * 2843 * CPU0 P1 P2 2844 * <P0> 2845 * migrate_disable(); 2846 * <preempted> 2847 * set_cpus_allowed_ptr(P0, [1]); 2848 * <blocks> 2849 * <migration/0> 2850 * migration_cpu_stop() 2851 * is_migration_disabled() 2852 * <bails> 2853 * set_cpus_allowed_ptr(P0, [0, 1]); 2854 * <signal completion> 2855 * <awakes> 2856 * 2857 * Note that the above is safe vs a concurrent migrate_enable(), as any 2858 * pending affinity completion is preceded by an uninstallation of 2859 * p->migration_pending done with p->pi_lock held. 2860 */ 2861 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2862 int dest_cpu, unsigned int flags) 2863 __releases(__rq_lockp(rq), &p->pi_lock) 2864 { 2865 struct set_affinity_pending my_pending = { }, *pending = NULL; 2866 bool stop_pending, complete = false; 2867 2868 /* 2869 * Can the task run on the task's current CPU? If so, we're done 2870 * 2871 * We are also done if the task is the current donor, boosting a lock- 2872 * holding proxy, (and potentially has been migrated outside its 2873 * current or previous affinity mask) 2874 */ 2875 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) || 2876 (task_current_donor(rq, p) && !task_current(rq, p))) { 2877 struct task_struct *push_task = NULL; 2878 2879 if ((flags & SCA_MIGRATE_ENABLE) && 2880 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2881 rq->push_busy = true; 2882 push_task = get_task_struct(p); 2883 } 2884 2885 /* 2886 * If there are pending waiters, but no pending stop_work, 2887 * then complete now. 2888 */ 2889 pending = p->migration_pending; 2890 if (pending && !pending->stop_pending) { 2891 p->migration_pending = NULL; 2892 complete = true; 2893 } 2894 2895 preempt_disable(); 2896 task_rq_unlock(rq, p, rf); 2897 if (push_task) { 2898 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2899 p, &rq->push_work); 2900 } 2901 preempt_enable(); 2902 2903 if (complete) 2904 complete_all(&pending->done); 2905 2906 return 0; 2907 } 2908 2909 if (!(flags & SCA_MIGRATE_ENABLE)) { 2910 /* serialized by p->pi_lock */ 2911 if (!p->migration_pending) { 2912 /* Install the request */ 2913 refcount_set(&my_pending.refs, 1); 2914 init_completion(&my_pending.done); 2915 my_pending.arg = (struct migration_arg) { 2916 .task = p, 2917 .dest_cpu = dest_cpu, 2918 .pending = &my_pending, 2919 }; 2920 2921 p->migration_pending = &my_pending; 2922 } else { 2923 pending = p->migration_pending; 2924 refcount_inc(&pending->refs); 2925 /* 2926 * Affinity has changed, but we've already installed a 2927 * pending. migration_cpu_stop() *must* see this, else 2928 * we risk a completion of the pending despite having a 2929 * task on a disallowed CPU. 2930 * 2931 * Serialized by p->pi_lock, so this is safe. 2932 */ 2933 pending->arg.dest_cpu = dest_cpu; 2934 } 2935 } 2936 pending = p->migration_pending; 2937 /* 2938 * - !MIGRATE_ENABLE: 2939 * we'll have installed a pending if there wasn't one already. 2940 * 2941 * - MIGRATE_ENABLE: 2942 * we're here because the current CPU isn't matching anymore, 2943 * the only way that can happen is because of a concurrent 2944 * set_cpus_allowed_ptr() call, which should then still be 2945 * pending completion. 2946 * 2947 * Either way, we really should have a @pending here. 2948 */ 2949 if (WARN_ON_ONCE(!pending)) { 2950 task_rq_unlock(rq, p, rf); 2951 return -EINVAL; 2952 } 2953 2954 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2955 /* 2956 * MIGRATE_ENABLE gets here because 'p == current', but for 2957 * anything else we cannot do is_migration_disabled(), punt 2958 * and have the stopper function handle it all race-free. 2959 */ 2960 stop_pending = pending->stop_pending; 2961 if (!stop_pending) 2962 pending->stop_pending = true; 2963 2964 if (flags & SCA_MIGRATE_ENABLE) 2965 p->migration_flags &= ~MDF_PUSH; 2966 2967 preempt_disable(); 2968 task_rq_unlock(rq, p, rf); 2969 if (!stop_pending) { 2970 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2971 &pending->arg, &pending->stop_work); 2972 } 2973 preempt_enable(); 2974 2975 if (flags & SCA_MIGRATE_ENABLE) 2976 return 0; 2977 } else { 2978 2979 if (!is_migration_disabled(p)) { 2980 if (task_on_rq_queued(p)) 2981 rq = move_queued_task(rq, rf, p, dest_cpu); 2982 2983 if (!pending->stop_pending) { 2984 p->migration_pending = NULL; 2985 complete = true; 2986 } 2987 } 2988 task_rq_unlock(rq, p, rf); 2989 2990 if (complete) 2991 complete_all(&pending->done); 2992 } 2993 2994 wait_for_completion(&pending->done); 2995 2996 if (refcount_dec_and_test(&pending->refs)) 2997 wake_up_var(&pending->refs); /* No UaF, just an address */ 2998 2999 /* 3000 * Block the original owner of &pending until all subsequent callers 3001 * have seen the completion and decremented the refcount 3002 */ 3003 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3004 3005 /* ARGH */ 3006 WARN_ON_ONCE(my_pending.stop_pending); 3007 3008 return 0; 3009 } 3010 3011 /* 3012 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3013 */ 3014 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3015 struct affinity_context *ctx, 3016 struct rq *rq, 3017 struct rq_flags *rf) 3018 __releases(__rq_lockp(rq), &p->pi_lock) 3019 { 3020 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3021 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3022 bool kthread = p->flags & PF_KTHREAD; 3023 unsigned int dest_cpu; 3024 int ret = 0; 3025 3026 if (kthread || is_migration_disabled(p)) { 3027 /* 3028 * Kernel threads are allowed on online && !active CPUs, 3029 * however, during cpu-hot-unplug, even these might get pushed 3030 * away if not KTHREAD_IS_PER_CPU. 3031 * 3032 * Specifically, migration_disabled() tasks must not fail the 3033 * cpumask_any_and_distribute() pick below, esp. so on 3034 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3035 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3036 */ 3037 cpu_valid_mask = cpu_online_mask; 3038 } 3039 3040 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3041 ret = -EINVAL; 3042 goto out; 3043 } 3044 3045 /* 3046 * Must re-check here, to close a race against __kthread_bind(), 3047 * sched_setaffinity() is not guaranteed to observe the flag. 3048 */ 3049 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3050 ret = -EINVAL; 3051 goto out; 3052 } 3053 3054 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3055 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3056 if (ctx->flags & SCA_USER) 3057 swap(p->user_cpus_ptr, ctx->user_mask); 3058 goto out; 3059 } 3060 3061 if (WARN_ON_ONCE(p == current && 3062 is_migration_disabled(p) && 3063 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3064 ret = -EBUSY; 3065 goto out; 3066 } 3067 } 3068 3069 /* 3070 * Picking a ~random cpu helps in cases where we are changing affinity 3071 * for groups of tasks (ie. cpuset), so that load balancing is not 3072 * immediately required to distribute the tasks within their new mask. 3073 */ 3074 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3075 if (dest_cpu >= nr_cpu_ids) { 3076 ret = -EINVAL; 3077 goto out; 3078 } 3079 3080 do_set_cpus_allowed(p, ctx); 3081 3082 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3083 3084 out: 3085 task_rq_unlock(rq, p, rf); 3086 3087 return ret; 3088 } 3089 3090 /* 3091 * Change a given task's CPU affinity. Migrate the thread to a 3092 * proper CPU and schedule it away if the CPU it's executing on 3093 * is removed from the allowed bitmask. 3094 * 3095 * NOTE: the caller must have a valid reference to the task, the 3096 * task must not exit() & deallocate itself prematurely. The 3097 * call is not atomic; no spinlocks may be held. 3098 */ 3099 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3100 { 3101 struct rq_flags rf; 3102 struct rq *rq; 3103 3104 rq = task_rq_lock(p, &rf); 3105 /* 3106 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3107 * flags are set. 3108 */ 3109 if (p->user_cpus_ptr && 3110 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3111 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3112 ctx->new_mask = rq->scratch_mask; 3113 3114 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3115 } 3116 3117 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3118 { 3119 struct affinity_context ac = { 3120 .new_mask = new_mask, 3121 .flags = 0, 3122 }; 3123 3124 return __set_cpus_allowed_ptr(p, &ac); 3125 } 3126 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3127 3128 /* 3129 * Change a given task's CPU affinity to the intersection of its current 3130 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3131 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3132 * affinity or use cpu_online_mask instead. 3133 * 3134 * If the resulting mask is empty, leave the affinity unchanged and return 3135 * -EINVAL. 3136 */ 3137 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3138 struct cpumask *new_mask, 3139 const struct cpumask *subset_mask) 3140 { 3141 struct affinity_context ac = { 3142 .new_mask = new_mask, 3143 .flags = 0, 3144 }; 3145 struct rq_flags rf; 3146 struct rq *rq; 3147 int err; 3148 3149 rq = task_rq_lock(p, &rf); 3150 3151 /* 3152 * Forcefully restricting the affinity of a deadline task is 3153 * likely to cause problems, so fail and noisily override the 3154 * mask entirely. 3155 */ 3156 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3157 err = -EPERM; 3158 goto err_unlock; 3159 } 3160 3161 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3162 err = -EINVAL; 3163 goto err_unlock; 3164 } 3165 3166 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3167 3168 err_unlock: 3169 task_rq_unlock(rq, p, &rf); 3170 return err; 3171 } 3172 3173 /* 3174 * Restrict the CPU affinity of task @p so that it is a subset of 3175 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3176 * old affinity mask. If the resulting mask is empty, we warn and walk 3177 * up the cpuset hierarchy until we find a suitable mask. 3178 */ 3179 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3180 { 3181 cpumask_var_t new_mask; 3182 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3183 3184 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3185 3186 /* 3187 * __migrate_task() can fail silently in the face of concurrent 3188 * offlining of the chosen destination CPU, so take the hotplug 3189 * lock to ensure that the migration succeeds. 3190 */ 3191 cpus_read_lock(); 3192 if (!cpumask_available(new_mask)) 3193 goto out_set_mask; 3194 3195 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3196 goto out_free_mask; 3197 3198 /* 3199 * We failed to find a valid subset of the affinity mask for the 3200 * task, so override it based on its cpuset hierarchy. 3201 */ 3202 cpuset_cpus_allowed(p, new_mask); 3203 override_mask = new_mask; 3204 3205 out_set_mask: 3206 if (printk_ratelimit()) { 3207 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3208 task_pid_nr(p), p->comm, 3209 cpumask_pr_args(override_mask)); 3210 } 3211 3212 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3213 out_free_mask: 3214 cpus_read_unlock(); 3215 free_cpumask_var(new_mask); 3216 } 3217 3218 /* 3219 * Restore the affinity of a task @p which was previously restricted by a 3220 * call to force_compatible_cpus_allowed_ptr(). 3221 * 3222 * It is the caller's responsibility to serialise this with any calls to 3223 * force_compatible_cpus_allowed_ptr(@p). 3224 */ 3225 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3226 { 3227 struct affinity_context ac = { 3228 .new_mask = task_user_cpus(p), 3229 .flags = 0, 3230 }; 3231 int ret; 3232 3233 /* 3234 * Try to restore the old affinity mask with __sched_setaffinity(). 3235 * Cpuset masking will be done there too. 3236 */ 3237 ret = __sched_setaffinity(p, &ac); 3238 WARN_ON_ONCE(ret); 3239 } 3240 3241 #ifdef CONFIG_SMP 3242 3243 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3244 { 3245 unsigned int state = READ_ONCE(p->__state); 3246 3247 /* 3248 * We should never call set_task_cpu() on a blocked task, 3249 * ttwu() will sort out the placement. 3250 */ 3251 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3252 3253 /* 3254 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3255 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3256 * time relying on p->on_rq. 3257 */ 3258 WARN_ON_ONCE(state == TASK_RUNNING && 3259 p->sched_class == &fair_sched_class && 3260 (p->on_rq && !task_on_rq_migrating(p))); 3261 3262 #ifdef CONFIG_LOCKDEP 3263 /* 3264 * The caller should hold either p->pi_lock or rq->lock, when changing 3265 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3266 * 3267 * sched_move_task() holds both and thus holding either pins the cgroup, 3268 * see task_group(). 3269 * 3270 * Furthermore, all task_rq users should acquire both locks, see 3271 * task_rq_lock(). 3272 */ 3273 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3274 lockdep_is_held(__rq_lockp(task_rq(p))))); 3275 #endif 3276 /* 3277 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3278 */ 3279 WARN_ON_ONCE(!cpu_online(new_cpu)); 3280 3281 WARN_ON_ONCE(is_migration_disabled(p)); 3282 3283 trace_sched_migrate_task(p, new_cpu); 3284 3285 if (task_cpu(p) != new_cpu) { 3286 if (p->sched_class->migrate_task_rq) 3287 p->sched_class->migrate_task_rq(p, new_cpu); 3288 p->se.nr_migrations++; 3289 perf_event_task_migrate(p); 3290 } 3291 3292 __set_task_cpu(p, new_cpu); 3293 } 3294 #endif /* CONFIG_SMP */ 3295 3296 #ifdef CONFIG_NUMA_BALANCING 3297 static void __migrate_swap_task(struct task_struct *p, int cpu) 3298 { 3299 if (task_on_rq_queued(p)) { 3300 struct rq *src_rq, *dst_rq; 3301 struct rq_flags srf, drf; 3302 3303 src_rq = task_rq(p); 3304 dst_rq = cpu_rq(cpu); 3305 3306 rq_pin_lock(src_rq, &srf); 3307 rq_pin_lock(dst_rq, &drf); 3308 3309 move_queued_task_locked(src_rq, dst_rq, p); 3310 wakeup_preempt(dst_rq, p, 0); 3311 3312 rq_unpin_lock(dst_rq, &drf); 3313 rq_unpin_lock(src_rq, &srf); 3314 3315 } else { 3316 /* 3317 * Task isn't running anymore; make it appear like we migrated 3318 * it before it went to sleep. This means on wakeup we make the 3319 * previous CPU our target instead of where it really is. 3320 */ 3321 p->wake_cpu = cpu; 3322 } 3323 } 3324 3325 struct migration_swap_arg { 3326 struct task_struct *src_task, *dst_task; 3327 int src_cpu, dst_cpu; 3328 }; 3329 3330 static int migrate_swap_stop(void *data) 3331 { 3332 struct migration_swap_arg *arg = data; 3333 struct rq *src_rq, *dst_rq; 3334 3335 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3336 return -EAGAIN; 3337 3338 src_rq = cpu_rq(arg->src_cpu); 3339 dst_rq = cpu_rq(arg->dst_cpu); 3340 3341 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3342 guard(double_rq_lock)(src_rq, dst_rq); 3343 3344 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3345 return -EAGAIN; 3346 3347 if (task_cpu(arg->src_task) != arg->src_cpu) 3348 return -EAGAIN; 3349 3350 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3351 return -EAGAIN; 3352 3353 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3354 return -EAGAIN; 3355 3356 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3357 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3358 3359 return 0; 3360 } 3361 3362 /* 3363 * Cross migrate two tasks 3364 */ 3365 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3366 int target_cpu, int curr_cpu) 3367 { 3368 struct migration_swap_arg arg; 3369 int ret = -EINVAL; 3370 3371 arg = (struct migration_swap_arg){ 3372 .src_task = cur, 3373 .src_cpu = curr_cpu, 3374 .dst_task = p, 3375 .dst_cpu = target_cpu, 3376 }; 3377 3378 if (arg.src_cpu == arg.dst_cpu) 3379 goto out; 3380 3381 /* 3382 * These three tests are all lockless; this is OK since all of them 3383 * will be re-checked with proper locks held further down the line. 3384 */ 3385 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3386 goto out; 3387 3388 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3389 goto out; 3390 3391 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3392 goto out; 3393 3394 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3395 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3396 3397 out: 3398 return ret; 3399 } 3400 #endif /* CONFIG_NUMA_BALANCING */ 3401 3402 /*** 3403 * kick_process - kick a running thread to enter/exit the kernel 3404 * @p: the to-be-kicked thread 3405 * 3406 * Cause a process which is running on another CPU to enter 3407 * kernel-mode, without any delay. (to get signals handled.) 3408 * 3409 * NOTE: this function doesn't have to take the runqueue lock, 3410 * because all it wants to ensure is that the remote task enters 3411 * the kernel. If the IPI races and the task has been migrated 3412 * to another CPU then no harm is done and the purpose has been 3413 * achieved as well. 3414 */ 3415 void kick_process(struct task_struct *p) 3416 { 3417 guard(preempt)(); 3418 int cpu = task_cpu(p); 3419 3420 if ((cpu != smp_processor_id()) && task_curr(p)) 3421 smp_send_reschedule(cpu); 3422 } 3423 EXPORT_SYMBOL_GPL(kick_process); 3424 3425 /* 3426 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3427 * 3428 * A few notes on cpu_active vs cpu_online: 3429 * 3430 * - cpu_active must be a subset of cpu_online 3431 * 3432 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3433 * see __set_cpus_allowed_ptr(). At this point the newly online 3434 * CPU isn't yet part of the sched domains, and balancing will not 3435 * see it. 3436 * 3437 * - on CPU-down we clear cpu_active() to mask the sched domains and 3438 * avoid the load balancer to place new tasks on the to be removed 3439 * CPU. Existing tasks will remain running there and will be taken 3440 * off. 3441 * 3442 * This means that fallback selection must not select !active CPUs. 3443 * And can assume that any active CPU must be online. Conversely 3444 * select_task_rq() below may allow selection of !active CPUs in order 3445 * to satisfy the above rules. 3446 */ 3447 static int select_fallback_rq(int cpu, struct task_struct *p) 3448 { 3449 int nid = cpu_to_node(cpu); 3450 const struct cpumask *nodemask = NULL; 3451 enum { cpuset, possible, fail } state = cpuset; 3452 int dest_cpu; 3453 3454 /* 3455 * If the node that the CPU is on has been offlined, cpu_to_node() 3456 * will return -1. There is no CPU on the node, and we should 3457 * select the CPU on the other node. 3458 */ 3459 if (nid != -1) { 3460 nodemask = cpumask_of_node(nid); 3461 3462 /* Look for allowed, online CPU in same node. */ 3463 for_each_cpu(dest_cpu, nodemask) { 3464 if (is_cpu_allowed(p, dest_cpu)) 3465 return dest_cpu; 3466 } 3467 } 3468 3469 for (;;) { 3470 /* Any allowed, online CPU? */ 3471 for_each_cpu(dest_cpu, p->cpus_ptr) { 3472 if (!is_cpu_allowed(p, dest_cpu)) 3473 continue; 3474 3475 goto out; 3476 } 3477 3478 /* No more Mr. Nice Guy. */ 3479 switch (state) { 3480 case cpuset: 3481 if (cpuset_cpus_allowed_fallback(p)) { 3482 state = possible; 3483 break; 3484 } 3485 fallthrough; 3486 case possible: 3487 set_cpus_allowed_force(p, task_cpu_fallback_mask(p)); 3488 state = fail; 3489 break; 3490 case fail: 3491 BUG(); 3492 break; 3493 } 3494 } 3495 3496 out: 3497 if (state != cpuset) { 3498 /* 3499 * Don't tell them about moving exiting tasks or 3500 * kernel threads (both mm NULL), since they never 3501 * leave kernel. 3502 */ 3503 if (p->mm && printk_ratelimit()) { 3504 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3505 task_pid_nr(p), p->comm, cpu); 3506 } 3507 } 3508 3509 return dest_cpu; 3510 } 3511 3512 /* 3513 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3514 */ 3515 static inline 3516 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3517 { 3518 lockdep_assert_held(&p->pi_lock); 3519 3520 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3521 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3522 *wake_flags |= WF_RQ_SELECTED; 3523 } else { 3524 cpu = cpumask_any(p->cpus_ptr); 3525 } 3526 3527 /* 3528 * In order not to call set_task_cpu() on a blocking task we need 3529 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3530 * CPU. 3531 * 3532 * Since this is common to all placement strategies, this lives here. 3533 * 3534 * [ this allows ->select_task() to simply return task_cpu(p) and 3535 * not worry about this generic constraint ] 3536 */ 3537 if (unlikely(!is_cpu_allowed(p, cpu))) 3538 cpu = select_fallback_rq(task_cpu(p), p); 3539 3540 return cpu; 3541 } 3542 3543 void sched_set_stop_task(int cpu, struct task_struct *stop) 3544 { 3545 static struct lock_class_key stop_pi_lock; 3546 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3547 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3548 3549 if (stop) { 3550 /* 3551 * Make it appear like a SCHED_FIFO task, its something 3552 * userspace knows about and won't get confused about. 3553 * 3554 * Also, it will make PI more or less work without too 3555 * much confusion -- but then, stop work should not 3556 * rely on PI working anyway. 3557 */ 3558 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3559 3560 stop->sched_class = &stop_sched_class; 3561 3562 /* 3563 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3564 * adjust the effective priority of a task. As a result, 3565 * rt_mutex_setprio() can trigger (RT) balancing operations, 3566 * which can then trigger wakeups of the stop thread to push 3567 * around the current task. 3568 * 3569 * The stop task itself will never be part of the PI-chain, it 3570 * never blocks, therefore that ->pi_lock recursion is safe. 3571 * Tell lockdep about this by placing the stop->pi_lock in its 3572 * own class. 3573 */ 3574 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3575 } 3576 3577 cpu_rq(cpu)->stop = stop; 3578 3579 if (old_stop) { 3580 /* 3581 * Reset it back to a normal scheduling class so that 3582 * it can die in pieces. 3583 */ 3584 old_stop->sched_class = &rt_sched_class; 3585 } 3586 } 3587 3588 static void 3589 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3590 { 3591 struct rq *rq; 3592 3593 if (!schedstat_enabled()) 3594 return; 3595 3596 rq = this_rq(); 3597 3598 if (cpu == rq->cpu) { 3599 __schedstat_inc(rq->ttwu_local); 3600 __schedstat_inc(p->stats.nr_wakeups_local); 3601 } else { 3602 struct sched_domain *sd; 3603 3604 __schedstat_inc(p->stats.nr_wakeups_remote); 3605 3606 guard(rcu)(); 3607 for_each_domain(rq->cpu, sd) { 3608 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3609 __schedstat_inc(sd->ttwu_wake_remote); 3610 break; 3611 } 3612 } 3613 } 3614 3615 if (wake_flags & WF_MIGRATED) 3616 __schedstat_inc(p->stats.nr_wakeups_migrate); 3617 3618 __schedstat_inc(rq->ttwu_count); 3619 __schedstat_inc(p->stats.nr_wakeups); 3620 3621 if (wake_flags & WF_SYNC) 3622 __schedstat_inc(p->stats.nr_wakeups_sync); 3623 } 3624 3625 /* 3626 * Mark the task runnable. 3627 */ 3628 static inline void ttwu_do_wakeup(struct task_struct *p) 3629 { 3630 WRITE_ONCE(p->__state, TASK_RUNNING); 3631 trace_sched_wakeup(p); 3632 } 3633 3634 void update_rq_avg_idle(struct rq *rq) 3635 { 3636 u64 delta = rq_clock(rq) - rq->idle_stamp; 3637 u64 max = 2*rq->max_idle_balance_cost; 3638 3639 update_avg(&rq->avg_idle, delta); 3640 3641 if (rq->avg_idle > max) 3642 rq->avg_idle = max; 3643 rq->idle_stamp = 0; 3644 } 3645 3646 static void 3647 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3648 struct rq_flags *rf) 3649 { 3650 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3651 3652 lockdep_assert_rq_held(rq); 3653 3654 if (p->sched_contributes_to_load) 3655 rq->nr_uninterruptible--; 3656 3657 if (wake_flags & WF_RQ_SELECTED) 3658 en_flags |= ENQUEUE_RQ_SELECTED; 3659 if (wake_flags & WF_MIGRATED) 3660 en_flags |= ENQUEUE_MIGRATED; 3661 else 3662 if (p->in_iowait) { 3663 delayacct_blkio_end(p); 3664 atomic_dec(&task_rq(p)->nr_iowait); 3665 } 3666 3667 activate_task(rq, p, en_flags); 3668 wakeup_preempt(rq, p, wake_flags); 3669 3670 ttwu_do_wakeup(p); 3671 3672 if (p->sched_class->task_woken) { 3673 /* 3674 * Our task @p is fully woken up and running; so it's safe to 3675 * drop the rq->lock, hereafter rq is only used for statistics. 3676 */ 3677 rq_unpin_lock(rq, rf); 3678 p->sched_class->task_woken(rq, p); 3679 rq_repin_lock(rq, rf); 3680 } 3681 } 3682 3683 /* 3684 * Consider @p being inside a wait loop: 3685 * 3686 * for (;;) { 3687 * set_current_state(TASK_UNINTERRUPTIBLE); 3688 * 3689 * if (CONDITION) 3690 * break; 3691 * 3692 * schedule(); 3693 * } 3694 * __set_current_state(TASK_RUNNING); 3695 * 3696 * between set_current_state() and schedule(). In this case @p is still 3697 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3698 * an atomic manner. 3699 * 3700 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3701 * then schedule() must still happen and p->state can be changed to 3702 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3703 * need to do a full wakeup with enqueue. 3704 * 3705 * Returns: %true when the wakeup is done, 3706 * %false otherwise. 3707 */ 3708 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3709 { 3710 struct rq_flags rf; 3711 struct rq *rq; 3712 int ret = 0; 3713 3714 rq = __task_rq_lock(p, &rf); 3715 if (task_on_rq_queued(p)) { 3716 update_rq_clock(rq); 3717 if (p->se.sched_delayed) 3718 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3719 if (!task_on_cpu(rq, p)) { 3720 /* 3721 * When on_rq && !on_cpu the task is preempted, see if 3722 * it should preempt the task that is current now. 3723 */ 3724 wakeup_preempt(rq, p, wake_flags); 3725 } 3726 ttwu_do_wakeup(p); 3727 ret = 1; 3728 } 3729 __task_rq_unlock(rq, p, &rf); 3730 3731 return ret; 3732 } 3733 3734 void sched_ttwu_pending(void *arg) 3735 { 3736 struct llist_node *llist = arg; 3737 struct rq *rq = this_rq(); 3738 struct task_struct *p, *t; 3739 struct rq_flags rf; 3740 3741 if (!llist) 3742 return; 3743 3744 rq_lock_irqsave(rq, &rf); 3745 update_rq_clock(rq); 3746 3747 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3748 if (WARN_ON_ONCE(p->on_cpu)) 3749 smp_cond_load_acquire(&p->on_cpu, !VAL); 3750 3751 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3752 set_task_cpu(p, cpu_of(rq)); 3753 3754 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3755 } 3756 3757 /* 3758 * Must be after enqueueing at least once task such that 3759 * idle_cpu() does not observe a false-negative -- if it does, 3760 * it is possible for select_idle_siblings() to stack a number 3761 * of tasks on this CPU during that window. 3762 * 3763 * It is OK to clear ttwu_pending when another task pending. 3764 * We will receive IPI after local IRQ enabled and then enqueue it. 3765 * Since now nr_running > 0, idle_cpu() will always get correct result. 3766 */ 3767 WRITE_ONCE(rq->ttwu_pending, 0); 3768 rq_unlock_irqrestore(rq, &rf); 3769 } 3770 3771 /* 3772 * Prepare the scene for sending an IPI for a remote smp_call 3773 * 3774 * Returns true if the caller can proceed with sending the IPI. 3775 * Returns false otherwise. 3776 */ 3777 bool call_function_single_prep_ipi(int cpu) 3778 { 3779 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3780 trace_sched_wake_idle_without_ipi(cpu); 3781 return false; 3782 } 3783 3784 return true; 3785 } 3786 3787 /* 3788 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3789 * necessary. The wakee CPU on receipt of the IPI will queue the task 3790 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3791 * of the wakeup instead of the waker. 3792 */ 3793 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3794 { 3795 struct rq *rq = cpu_rq(cpu); 3796 3797 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3798 3799 WRITE_ONCE(rq->ttwu_pending, 1); 3800 #ifdef CONFIG_SMP 3801 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3802 #endif 3803 } 3804 3805 void wake_up_if_idle(int cpu) 3806 { 3807 struct rq *rq = cpu_rq(cpu); 3808 3809 guard(rcu)(); 3810 if (is_idle_task(rcu_dereference(rq->curr))) { 3811 guard(rq_lock_irqsave)(rq); 3812 if (is_idle_task(rq->curr)) 3813 resched_curr(rq); 3814 } 3815 } 3816 3817 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3818 { 3819 if (!sched_asym_cpucap_active()) 3820 return true; 3821 3822 if (this_cpu == that_cpu) 3823 return true; 3824 3825 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3826 } 3827 3828 bool cpus_share_cache(int this_cpu, int that_cpu) 3829 { 3830 if (this_cpu == that_cpu) 3831 return true; 3832 3833 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3834 } 3835 3836 /* 3837 * Whether CPUs are share cache resources, which means LLC on non-cluster 3838 * machines and LLC tag or L2 on machines with clusters. 3839 */ 3840 bool cpus_share_resources(int this_cpu, int that_cpu) 3841 { 3842 if (this_cpu == that_cpu) 3843 return true; 3844 3845 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3846 } 3847 3848 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3849 { 3850 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3851 if (!scx_allow_ttwu_queue(p)) 3852 return false; 3853 3854 #ifdef CONFIG_SMP 3855 if (p->sched_class == &stop_sched_class) 3856 return false; 3857 #endif 3858 3859 /* 3860 * Do not complicate things with the async wake_list while the CPU is 3861 * in hotplug state. 3862 */ 3863 if (!cpu_active(cpu)) 3864 return false; 3865 3866 /* Ensure the task will still be allowed to run on the CPU. */ 3867 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3868 return false; 3869 3870 /* 3871 * If the CPU does not share cache, then queue the task on the 3872 * remote rqs wakelist to avoid accessing remote data. 3873 */ 3874 if (!cpus_share_cache(smp_processor_id(), cpu)) 3875 return true; 3876 3877 if (cpu == smp_processor_id()) 3878 return false; 3879 3880 /* 3881 * If the wakee cpu is idle, or the task is descheduling and the 3882 * only running task on the CPU, then use the wakelist to offload 3883 * the task activation to the idle (or soon-to-be-idle) CPU as 3884 * the current CPU is likely busy. nr_running is checked to 3885 * avoid unnecessary task stacking. 3886 * 3887 * Note that we can only get here with (wakee) p->on_rq=0, 3888 * p->on_cpu can be whatever, we've done the dequeue, so 3889 * the wakee has been accounted out of ->nr_running. 3890 */ 3891 if (!cpu_rq(cpu)->nr_running) 3892 return true; 3893 3894 return false; 3895 } 3896 3897 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3898 { 3899 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3900 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3901 __ttwu_queue_wakelist(p, cpu, wake_flags); 3902 return true; 3903 } 3904 3905 return false; 3906 } 3907 3908 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3909 { 3910 struct rq *rq = cpu_rq(cpu); 3911 struct rq_flags rf; 3912 3913 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3914 return; 3915 3916 rq_lock(rq, &rf); 3917 update_rq_clock(rq); 3918 ttwu_do_activate(rq, p, wake_flags, &rf); 3919 rq_unlock(rq, &rf); 3920 } 3921 3922 /* 3923 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3924 * 3925 * The caller holds p::pi_lock if p != current or has preemption 3926 * disabled when p == current. 3927 * 3928 * The rules of saved_state: 3929 * 3930 * The related locking code always holds p::pi_lock when updating 3931 * p::saved_state, which means the code is fully serialized in both cases. 3932 * 3933 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3934 * No other bits set. This allows to distinguish all wakeup scenarios. 3935 * 3936 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3937 * allows us to prevent early wakeup of tasks before they can be run on 3938 * asymmetric ISA architectures (eg ARMv9). 3939 */ 3940 static __always_inline 3941 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3942 { 3943 int match; 3944 3945 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3946 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3947 state != TASK_RTLOCK_WAIT); 3948 } 3949 3950 *success = !!(match = __task_state_match(p, state)); 3951 3952 /* 3953 * Saved state preserves the task state across blocking on 3954 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3955 * set p::saved_state to TASK_RUNNING, but do not wake the task 3956 * because it waits for a lock wakeup or __thaw_task(). Also 3957 * indicate success because from the regular waker's point of 3958 * view this has succeeded. 3959 * 3960 * After acquiring the lock the task will restore p::__state 3961 * from p::saved_state which ensures that the regular 3962 * wakeup is not lost. The restore will also set 3963 * p::saved_state to TASK_RUNNING so any further tests will 3964 * not result in false positives vs. @success 3965 */ 3966 if (match < 0) 3967 p->saved_state = TASK_RUNNING; 3968 3969 return match > 0; 3970 } 3971 3972 /* 3973 * Notes on Program-Order guarantees on SMP systems. 3974 * 3975 * MIGRATION 3976 * 3977 * The basic program-order guarantee on SMP systems is that when a task [t] 3978 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3979 * execution on its new CPU [c1]. 3980 * 3981 * For migration (of runnable tasks) this is provided by the following means: 3982 * 3983 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3984 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3985 * rq(c1)->lock (if not at the same time, then in that order). 3986 * C) LOCK of the rq(c1)->lock scheduling in task 3987 * 3988 * Release/acquire chaining guarantees that B happens after A and C after B. 3989 * Note: the CPU doing B need not be c0 or c1 3990 * 3991 * Example: 3992 * 3993 * CPU0 CPU1 CPU2 3994 * 3995 * LOCK rq(0)->lock 3996 * sched-out X 3997 * sched-in Y 3998 * UNLOCK rq(0)->lock 3999 * 4000 * LOCK rq(0)->lock // orders against CPU0 4001 * dequeue X 4002 * UNLOCK rq(0)->lock 4003 * 4004 * LOCK rq(1)->lock 4005 * enqueue X 4006 * UNLOCK rq(1)->lock 4007 * 4008 * LOCK rq(1)->lock // orders against CPU2 4009 * sched-out Z 4010 * sched-in X 4011 * UNLOCK rq(1)->lock 4012 * 4013 * 4014 * BLOCKING -- aka. SLEEP + WAKEUP 4015 * 4016 * For blocking we (obviously) need to provide the same guarantee as for 4017 * migration. However the means are completely different as there is no lock 4018 * chain to provide order. Instead we do: 4019 * 4020 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4021 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4022 * 4023 * Example: 4024 * 4025 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4026 * 4027 * LOCK rq(0)->lock LOCK X->pi_lock 4028 * dequeue X 4029 * sched-out X 4030 * smp_store_release(X->on_cpu, 0); 4031 * 4032 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4033 * X->state = WAKING 4034 * set_task_cpu(X,2) 4035 * 4036 * LOCK rq(2)->lock 4037 * enqueue X 4038 * X->state = RUNNING 4039 * UNLOCK rq(2)->lock 4040 * 4041 * LOCK rq(2)->lock // orders against CPU1 4042 * sched-out Z 4043 * sched-in X 4044 * UNLOCK rq(2)->lock 4045 * 4046 * UNLOCK X->pi_lock 4047 * UNLOCK rq(0)->lock 4048 * 4049 * 4050 * However, for wakeups there is a second guarantee we must provide, namely we 4051 * must ensure that CONDITION=1 done by the caller can not be reordered with 4052 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4053 */ 4054 4055 /** 4056 * try_to_wake_up - wake up a thread 4057 * @p: the thread to be awakened 4058 * @state: the mask of task states that can be woken 4059 * @wake_flags: wake modifier flags (WF_*) 4060 * 4061 * Conceptually does: 4062 * 4063 * If (@state & @p->state) @p->state = TASK_RUNNING. 4064 * 4065 * If the task was not queued/runnable, also place it back on a runqueue. 4066 * 4067 * This function is atomic against schedule() which would dequeue the task. 4068 * 4069 * It issues a full memory barrier before accessing @p->state, see the comment 4070 * with set_current_state(). 4071 * 4072 * Uses p->pi_lock to serialize against concurrent wake-ups. 4073 * 4074 * Relies on p->pi_lock stabilizing: 4075 * - p->sched_class 4076 * - p->cpus_ptr 4077 * - p->sched_task_group 4078 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4079 * 4080 * Tries really hard to only take one task_rq(p)->lock for performance. 4081 * Takes rq->lock in: 4082 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4083 * - ttwu_queue() -- new rq, for enqueue of the task; 4084 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4085 * 4086 * As a consequence we race really badly with just about everything. See the 4087 * many memory barriers and their comments for details. 4088 * 4089 * Return: %true if @p->state changes (an actual wakeup was done), 4090 * %false otherwise. 4091 */ 4092 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4093 { 4094 guard(preempt)(); 4095 int cpu, success = 0; 4096 4097 wake_flags |= WF_TTWU; 4098 4099 if (p == current) { 4100 /* 4101 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4102 * == smp_processor_id()'. Together this means we can special 4103 * case the whole 'p->on_rq && ttwu_runnable()' case below 4104 * without taking any locks. 4105 * 4106 * Specifically, given current runs ttwu() we must be before 4107 * schedule()'s block_task(), as such this must not observe 4108 * sched_delayed. 4109 * 4110 * In particular: 4111 * - we rely on Program-Order guarantees for all the ordering, 4112 * - we're serialized against set_special_state() by virtue of 4113 * it disabling IRQs (this allows not taking ->pi_lock). 4114 */ 4115 WARN_ON_ONCE(p->se.sched_delayed); 4116 if (!ttwu_state_match(p, state, &success)) 4117 goto out; 4118 4119 trace_sched_waking(p); 4120 ttwu_do_wakeup(p); 4121 goto out; 4122 } 4123 4124 /* 4125 * If we are going to wake up a thread waiting for CONDITION we 4126 * need to ensure that CONDITION=1 done by the caller can not be 4127 * reordered with p->state check below. This pairs with smp_store_mb() 4128 * in set_current_state() that the waiting thread does. 4129 */ 4130 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4131 smp_mb__after_spinlock(); 4132 if (!ttwu_state_match(p, state, &success)) 4133 break; 4134 4135 trace_sched_waking(p); 4136 4137 /* 4138 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4139 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4140 * in smp_cond_load_acquire() below. 4141 * 4142 * sched_ttwu_pending() try_to_wake_up() 4143 * STORE p->on_rq = 1 LOAD p->state 4144 * UNLOCK rq->lock 4145 * 4146 * __schedule() (switch to task 'p') 4147 * LOCK rq->lock smp_rmb(); 4148 * smp_mb__after_spinlock(); 4149 * UNLOCK rq->lock 4150 * 4151 * [task p] 4152 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4153 * 4154 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4155 * __schedule(). See the comment for smp_mb__after_spinlock(). 4156 * 4157 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4158 */ 4159 smp_rmb(); 4160 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4161 break; 4162 4163 /* 4164 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4165 * possible to, falsely, observe p->on_cpu == 0. 4166 * 4167 * One must be running (->on_cpu == 1) in order to remove oneself 4168 * from the runqueue. 4169 * 4170 * __schedule() (switch to task 'p') try_to_wake_up() 4171 * STORE p->on_cpu = 1 LOAD p->on_rq 4172 * UNLOCK rq->lock 4173 * 4174 * __schedule() (put 'p' to sleep) 4175 * LOCK rq->lock smp_rmb(); 4176 * smp_mb__after_spinlock(); 4177 * STORE p->on_rq = 0 LOAD p->on_cpu 4178 * 4179 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4180 * __schedule(). See the comment for smp_mb__after_spinlock(). 4181 * 4182 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4183 * schedule()'s block_task() has 'happened' and p will no longer 4184 * care about it's own p->state. See the comment in __schedule(). 4185 */ 4186 smp_acquire__after_ctrl_dep(); 4187 4188 /* 4189 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4190 * == 0), which means we need to do an enqueue, change p->state to 4191 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4192 * enqueue, such as ttwu_queue_wakelist(). 4193 */ 4194 WRITE_ONCE(p->__state, TASK_WAKING); 4195 4196 /* 4197 * If the owning (remote) CPU is still in the middle of schedule() with 4198 * this task as prev, considering queueing p on the remote CPUs wake_list 4199 * which potentially sends an IPI instead of spinning on p->on_cpu to 4200 * let the waker make forward progress. This is safe because IRQs are 4201 * disabled and the IPI will deliver after on_cpu is cleared. 4202 * 4203 * Ensure we load task_cpu(p) after p->on_cpu: 4204 * 4205 * set_task_cpu(p, cpu); 4206 * STORE p->cpu = @cpu 4207 * __schedule() (switch to task 'p') 4208 * LOCK rq->lock 4209 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4210 * STORE p->on_cpu = 1 LOAD p->cpu 4211 * 4212 * to ensure we observe the correct CPU on which the task is currently 4213 * scheduling. 4214 */ 4215 if (smp_load_acquire(&p->on_cpu) && 4216 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4217 break; 4218 4219 /* 4220 * If the owning (remote) CPU is still in the middle of schedule() with 4221 * this task as prev, wait until it's done referencing the task. 4222 * 4223 * Pairs with the smp_store_release() in finish_task(). 4224 * 4225 * This ensures that tasks getting woken will be fully ordered against 4226 * their previous state and preserve Program Order. 4227 */ 4228 smp_cond_load_acquire(&p->on_cpu, !VAL); 4229 4230 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4231 if (task_cpu(p) != cpu) { 4232 if (p->in_iowait) { 4233 delayacct_blkio_end(p); 4234 atomic_dec(&task_rq(p)->nr_iowait); 4235 } 4236 4237 wake_flags |= WF_MIGRATED; 4238 psi_ttwu_dequeue(p); 4239 set_task_cpu(p, cpu); 4240 } 4241 4242 ttwu_queue(p, cpu, wake_flags); 4243 } 4244 out: 4245 if (success) 4246 ttwu_stat(p, task_cpu(p), wake_flags); 4247 4248 return success; 4249 } 4250 4251 static bool __task_needs_rq_lock(struct task_struct *p) 4252 { 4253 unsigned int state = READ_ONCE(p->__state); 4254 4255 /* 4256 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4257 * the task is blocked. Make sure to check @state since ttwu() can drop 4258 * locks at the end, see ttwu_queue_wakelist(). 4259 */ 4260 if (state == TASK_RUNNING || state == TASK_WAKING) 4261 return true; 4262 4263 /* 4264 * Ensure we load p->on_rq after p->__state, otherwise it would be 4265 * possible to, falsely, observe p->on_rq == 0. 4266 * 4267 * See try_to_wake_up() for a longer comment. 4268 */ 4269 smp_rmb(); 4270 if (p->on_rq) 4271 return true; 4272 4273 /* 4274 * Ensure the task has finished __schedule() and will not be referenced 4275 * anymore. Again, see try_to_wake_up() for a longer comment. 4276 */ 4277 smp_rmb(); 4278 smp_cond_load_acquire(&p->on_cpu, !VAL); 4279 4280 return false; 4281 } 4282 4283 /** 4284 * task_call_func - Invoke a function on task in fixed state 4285 * @p: Process for which the function is to be invoked, can be @current. 4286 * @func: Function to invoke. 4287 * @arg: Argument to function. 4288 * 4289 * Fix the task in it's current state by avoiding wakeups and or rq operations 4290 * and call @func(@arg) on it. This function can use task_is_runnable() and 4291 * task_curr() to work out what the state is, if required. Given that @func 4292 * can be invoked with a runqueue lock held, it had better be quite 4293 * lightweight. 4294 * 4295 * Returns: 4296 * Whatever @func returns 4297 */ 4298 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4299 { 4300 struct rq_flags rf; 4301 int ret; 4302 4303 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4304 4305 if (__task_needs_rq_lock(p)) { 4306 struct rq *rq = __task_rq_lock(p, &rf); 4307 4308 /* 4309 * At this point the task is pinned; either: 4310 * - blocked and we're holding off wakeups (pi->lock) 4311 * - woken, and we're holding off enqueue (rq->lock) 4312 * - queued, and we're holding off schedule (rq->lock) 4313 * - running, and we're holding off de-schedule (rq->lock) 4314 * 4315 * The called function (@func) can use: task_curr(), p->on_rq and 4316 * p->__state to differentiate between these states. 4317 */ 4318 ret = func(p, arg); 4319 4320 __task_rq_unlock(rq, p, &rf); 4321 } else { 4322 ret = func(p, arg); 4323 } 4324 4325 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4326 return ret; 4327 } 4328 4329 /** 4330 * cpu_curr_snapshot - Return a snapshot of the currently running task 4331 * @cpu: The CPU on which to snapshot the task. 4332 * 4333 * Returns the task_struct pointer of the task "currently" running on 4334 * the specified CPU. 4335 * 4336 * If the specified CPU was offline, the return value is whatever it 4337 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4338 * task, but there is no guarantee. Callers wishing a useful return 4339 * value must take some action to ensure that the specified CPU remains 4340 * online throughout. 4341 * 4342 * This function executes full memory barriers before and after fetching 4343 * the pointer, which permits the caller to confine this function's fetch 4344 * with respect to the caller's accesses to other shared variables. 4345 */ 4346 struct task_struct *cpu_curr_snapshot(int cpu) 4347 { 4348 struct rq *rq = cpu_rq(cpu); 4349 struct task_struct *t; 4350 struct rq_flags rf; 4351 4352 rq_lock_irqsave(rq, &rf); 4353 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4354 t = rcu_dereference(cpu_curr(cpu)); 4355 rq_unlock_irqrestore(rq, &rf); 4356 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4357 4358 return t; 4359 } 4360 4361 /** 4362 * wake_up_process - Wake up a specific process 4363 * @p: The process to be woken up. 4364 * 4365 * Attempt to wake up the nominated process and move it to the set of runnable 4366 * processes. 4367 * 4368 * Return: 1 if the process was woken up, 0 if it was already running. 4369 * 4370 * This function executes a full memory barrier before accessing the task state. 4371 */ 4372 int wake_up_process(struct task_struct *p) 4373 { 4374 return try_to_wake_up(p, TASK_NORMAL, 0); 4375 } 4376 EXPORT_SYMBOL(wake_up_process); 4377 4378 int wake_up_state(struct task_struct *p, unsigned int state) 4379 { 4380 return try_to_wake_up(p, state, 0); 4381 } 4382 4383 /* 4384 * Perform scheduler related setup for a newly forked process p. 4385 * p is forked by current. 4386 * 4387 * __sched_fork() is basic setup which is also used by sched_init() to 4388 * initialize the boot CPU's idle task. 4389 */ 4390 static void __sched_fork(u64 clone_flags, struct task_struct *p) 4391 { 4392 p->on_rq = 0; 4393 4394 p->se.on_rq = 0; 4395 p->se.exec_start = 0; 4396 p->se.sum_exec_runtime = 0; 4397 p->se.prev_sum_exec_runtime = 0; 4398 p->se.nr_migrations = 0; 4399 p->se.vruntime = 0; 4400 p->se.vlag = 0; 4401 INIT_LIST_HEAD(&p->se.group_node); 4402 4403 /* A delayed task cannot be in clone(). */ 4404 WARN_ON_ONCE(p->se.sched_delayed); 4405 4406 #ifdef CONFIG_FAIR_GROUP_SCHED 4407 p->se.cfs_rq = NULL; 4408 #ifdef CONFIG_CFS_BANDWIDTH 4409 init_cfs_throttle_work(p); 4410 #endif 4411 #endif 4412 4413 #ifdef CONFIG_SCHEDSTATS 4414 /* Even if schedstat is disabled, there should not be garbage */ 4415 memset(&p->stats, 0, sizeof(p->stats)); 4416 #endif 4417 4418 init_dl_entity(&p->dl); 4419 4420 INIT_LIST_HEAD(&p->rt.run_list); 4421 p->rt.timeout = 0; 4422 p->rt.time_slice = sched_rr_timeslice; 4423 p->rt.on_rq = 0; 4424 p->rt.on_list = 0; 4425 4426 #ifdef CONFIG_SCHED_CLASS_EXT 4427 init_scx_entity(&p->scx); 4428 #endif 4429 4430 #ifdef CONFIG_PREEMPT_NOTIFIERS 4431 INIT_HLIST_HEAD(&p->preempt_notifiers); 4432 #endif 4433 4434 #ifdef CONFIG_COMPACTION 4435 p->capture_control = NULL; 4436 #endif 4437 init_numa_balancing(clone_flags, p); 4438 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4439 p->migration_pending = NULL; 4440 } 4441 4442 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4443 4444 #ifdef CONFIG_NUMA_BALANCING 4445 4446 int sysctl_numa_balancing_mode; 4447 4448 static void __set_numabalancing_state(bool enabled) 4449 { 4450 if (enabled) 4451 static_branch_enable(&sched_numa_balancing); 4452 else 4453 static_branch_disable(&sched_numa_balancing); 4454 } 4455 4456 void set_numabalancing_state(bool enabled) 4457 { 4458 if (enabled) 4459 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4460 else 4461 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4462 __set_numabalancing_state(enabled); 4463 } 4464 4465 #ifdef CONFIG_PROC_SYSCTL 4466 static void reset_memory_tiering(void) 4467 { 4468 struct pglist_data *pgdat; 4469 4470 for_each_online_pgdat(pgdat) { 4471 pgdat->nbp_threshold = 0; 4472 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4473 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4474 } 4475 } 4476 4477 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4478 void *buffer, size_t *lenp, loff_t *ppos) 4479 { 4480 struct ctl_table t; 4481 int err; 4482 int state = sysctl_numa_balancing_mode; 4483 4484 if (write && !capable(CAP_SYS_ADMIN)) 4485 return -EPERM; 4486 4487 t = *table; 4488 t.data = &state; 4489 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4490 if (err < 0) 4491 return err; 4492 if (write) { 4493 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4494 (state & NUMA_BALANCING_MEMORY_TIERING)) 4495 reset_memory_tiering(); 4496 sysctl_numa_balancing_mode = state; 4497 __set_numabalancing_state(state); 4498 } 4499 return err; 4500 } 4501 #endif /* CONFIG_PROC_SYSCTL */ 4502 #endif /* CONFIG_NUMA_BALANCING */ 4503 4504 #ifdef CONFIG_SCHEDSTATS 4505 4506 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4507 4508 static void set_schedstats(bool enabled) 4509 { 4510 if (enabled) 4511 static_branch_enable(&sched_schedstats); 4512 else 4513 static_branch_disable(&sched_schedstats); 4514 } 4515 4516 void force_schedstat_enabled(void) 4517 { 4518 if (!schedstat_enabled()) { 4519 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4520 static_branch_enable(&sched_schedstats); 4521 } 4522 } 4523 4524 static int __init setup_schedstats(char *str) 4525 { 4526 int ret = 0; 4527 if (!str) 4528 goto out; 4529 4530 if (!strcmp(str, "enable")) { 4531 set_schedstats(true); 4532 ret = 1; 4533 } else if (!strcmp(str, "disable")) { 4534 set_schedstats(false); 4535 ret = 1; 4536 } 4537 out: 4538 if (!ret) 4539 pr_warn("Unable to parse schedstats=\n"); 4540 4541 return ret; 4542 } 4543 __setup("schedstats=", setup_schedstats); 4544 4545 #ifdef CONFIG_PROC_SYSCTL 4546 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4547 size_t *lenp, loff_t *ppos) 4548 { 4549 struct ctl_table t; 4550 int err; 4551 int state = static_branch_likely(&sched_schedstats); 4552 4553 if (write && !capable(CAP_SYS_ADMIN)) 4554 return -EPERM; 4555 4556 t = *table; 4557 t.data = &state; 4558 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4559 if (err < 0) 4560 return err; 4561 if (write) 4562 set_schedstats(state); 4563 return err; 4564 } 4565 #endif /* CONFIG_PROC_SYSCTL */ 4566 #endif /* CONFIG_SCHEDSTATS */ 4567 4568 #ifdef CONFIG_SYSCTL 4569 static const struct ctl_table sched_core_sysctls[] = { 4570 #ifdef CONFIG_SCHEDSTATS 4571 { 4572 .procname = "sched_schedstats", 4573 .data = NULL, 4574 .maxlen = sizeof(unsigned int), 4575 .mode = 0644, 4576 .proc_handler = sysctl_schedstats, 4577 .extra1 = SYSCTL_ZERO, 4578 .extra2 = SYSCTL_ONE, 4579 }, 4580 #endif /* CONFIG_SCHEDSTATS */ 4581 #ifdef CONFIG_UCLAMP_TASK 4582 { 4583 .procname = "sched_util_clamp_min", 4584 .data = &sysctl_sched_uclamp_util_min, 4585 .maxlen = sizeof(unsigned int), 4586 .mode = 0644, 4587 .proc_handler = sysctl_sched_uclamp_handler, 4588 }, 4589 { 4590 .procname = "sched_util_clamp_max", 4591 .data = &sysctl_sched_uclamp_util_max, 4592 .maxlen = sizeof(unsigned int), 4593 .mode = 0644, 4594 .proc_handler = sysctl_sched_uclamp_handler, 4595 }, 4596 { 4597 .procname = "sched_util_clamp_min_rt_default", 4598 .data = &sysctl_sched_uclamp_util_min_rt_default, 4599 .maxlen = sizeof(unsigned int), 4600 .mode = 0644, 4601 .proc_handler = sysctl_sched_uclamp_handler, 4602 }, 4603 #endif /* CONFIG_UCLAMP_TASK */ 4604 #ifdef CONFIG_NUMA_BALANCING 4605 { 4606 .procname = "numa_balancing", 4607 .data = NULL, /* filled in by handler */ 4608 .maxlen = sizeof(unsigned int), 4609 .mode = 0644, 4610 .proc_handler = sysctl_numa_balancing, 4611 .extra1 = SYSCTL_ZERO, 4612 .extra2 = SYSCTL_FOUR, 4613 }, 4614 #endif /* CONFIG_NUMA_BALANCING */ 4615 }; 4616 static int __init sched_core_sysctl_init(void) 4617 { 4618 register_sysctl_init("kernel", sched_core_sysctls); 4619 return 0; 4620 } 4621 late_initcall(sched_core_sysctl_init); 4622 #endif /* CONFIG_SYSCTL */ 4623 4624 /* 4625 * fork()/clone()-time setup: 4626 */ 4627 int sched_fork(u64 clone_flags, struct task_struct *p) 4628 { 4629 __sched_fork(clone_flags, p); 4630 /* 4631 * We mark the process as NEW here. This guarantees that 4632 * nobody will actually run it, and a signal or other external 4633 * event cannot wake it up and insert it on the runqueue either. 4634 */ 4635 p->__state = TASK_NEW; 4636 4637 /* 4638 * Make sure we do not leak PI boosting priority to the child. 4639 */ 4640 p->prio = current->normal_prio; 4641 4642 uclamp_fork(p); 4643 4644 /* 4645 * Revert to default priority/policy on fork if requested. 4646 */ 4647 if (unlikely(p->sched_reset_on_fork)) { 4648 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4649 p->policy = SCHED_NORMAL; 4650 p->static_prio = NICE_TO_PRIO(0); 4651 p->rt_priority = 0; 4652 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4653 p->static_prio = NICE_TO_PRIO(0); 4654 4655 p->prio = p->normal_prio = p->static_prio; 4656 set_load_weight(p, false); 4657 p->se.custom_slice = 0; 4658 p->se.slice = sysctl_sched_base_slice; 4659 4660 /* 4661 * We don't need the reset flag anymore after the fork. It has 4662 * fulfilled its duty: 4663 */ 4664 p->sched_reset_on_fork = 0; 4665 } 4666 4667 if (dl_prio(p->prio)) 4668 return -EAGAIN; 4669 4670 scx_pre_fork(p); 4671 4672 if (rt_prio(p->prio)) { 4673 p->sched_class = &rt_sched_class; 4674 #ifdef CONFIG_SCHED_CLASS_EXT 4675 } else if (task_should_scx(p->policy)) { 4676 p->sched_class = &ext_sched_class; 4677 #endif 4678 } else { 4679 p->sched_class = &fair_sched_class; 4680 } 4681 4682 init_entity_runnable_average(&p->se); 4683 4684 4685 #ifdef CONFIG_SCHED_INFO 4686 if (likely(sched_info_on())) 4687 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4688 #endif 4689 p->on_cpu = 0; 4690 init_task_preempt_count(p); 4691 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4692 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4693 4694 return 0; 4695 } 4696 4697 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4698 { 4699 unsigned long flags; 4700 4701 /* 4702 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4703 * required yet, but lockdep gets upset if rules are violated. 4704 */ 4705 raw_spin_lock_irqsave(&p->pi_lock, flags); 4706 #ifdef CONFIG_CGROUP_SCHED 4707 if (1) { 4708 struct task_group *tg; 4709 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4710 struct task_group, css); 4711 tg = autogroup_task_group(p, tg); 4712 p->sched_task_group = tg; 4713 } 4714 #endif 4715 /* 4716 * We're setting the CPU for the first time, we don't migrate, 4717 * so use __set_task_cpu(). 4718 */ 4719 __set_task_cpu(p, smp_processor_id()); 4720 if (p->sched_class->task_fork) 4721 p->sched_class->task_fork(p); 4722 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4723 4724 return scx_fork(p); 4725 } 4726 4727 void sched_cancel_fork(struct task_struct *p) 4728 { 4729 scx_cancel_fork(p); 4730 } 4731 4732 void sched_post_fork(struct task_struct *p) 4733 { 4734 uclamp_post_fork(p); 4735 scx_post_fork(p); 4736 } 4737 4738 unsigned long to_ratio(u64 period, u64 runtime) 4739 { 4740 if (runtime == RUNTIME_INF) 4741 return BW_UNIT; 4742 4743 /* 4744 * Doing this here saves a lot of checks in all 4745 * the calling paths, and returning zero seems 4746 * safe for them anyway. 4747 */ 4748 if (period == 0) 4749 return 0; 4750 4751 return div64_u64(runtime << BW_SHIFT, period); 4752 } 4753 4754 /* 4755 * wake_up_new_task - wake up a newly created task for the first time. 4756 * 4757 * This function will do some initial scheduler statistics housekeeping 4758 * that must be done for every newly created context, then puts the task 4759 * on the runqueue and wakes it. 4760 */ 4761 void wake_up_new_task(struct task_struct *p) 4762 { 4763 struct rq_flags rf; 4764 struct rq *rq; 4765 int wake_flags = WF_FORK; 4766 4767 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4768 WRITE_ONCE(p->__state, TASK_RUNNING); 4769 /* 4770 * Fork balancing, do it here and not earlier because: 4771 * - cpus_ptr can change in the fork path 4772 * - any previously selected CPU might disappear through hotplug 4773 * 4774 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4775 * as we're not fully set-up yet. 4776 */ 4777 p->recent_used_cpu = task_cpu(p); 4778 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4779 rq = __task_rq_lock(p, &rf); 4780 update_rq_clock(rq); 4781 post_init_entity_util_avg(p); 4782 4783 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4784 trace_sched_wakeup_new(p); 4785 wakeup_preempt(rq, p, wake_flags); 4786 if (p->sched_class->task_woken) { 4787 /* 4788 * Nothing relies on rq->lock after this, so it's fine to 4789 * drop it. 4790 */ 4791 rq_unpin_lock(rq, &rf); 4792 p->sched_class->task_woken(rq, p); 4793 rq_repin_lock(rq, &rf); 4794 } 4795 task_rq_unlock(rq, p, &rf); 4796 } 4797 4798 #ifdef CONFIG_PREEMPT_NOTIFIERS 4799 4800 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4801 4802 void preempt_notifier_inc(void) 4803 { 4804 static_branch_inc(&preempt_notifier_key); 4805 } 4806 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4807 4808 void preempt_notifier_dec(void) 4809 { 4810 static_branch_dec(&preempt_notifier_key); 4811 } 4812 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4813 4814 /** 4815 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4816 * @notifier: notifier struct to register 4817 */ 4818 void preempt_notifier_register(struct preempt_notifier *notifier) 4819 { 4820 if (!static_branch_unlikely(&preempt_notifier_key)) 4821 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4822 4823 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4824 } 4825 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4826 4827 /** 4828 * preempt_notifier_unregister - no longer interested in preemption notifications 4829 * @notifier: notifier struct to unregister 4830 * 4831 * This is *not* safe to call from within a preemption notifier. 4832 */ 4833 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4834 { 4835 hlist_del(¬ifier->link); 4836 } 4837 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4838 4839 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4840 { 4841 struct preempt_notifier *notifier; 4842 4843 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4844 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4845 } 4846 4847 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4848 { 4849 if (static_branch_unlikely(&preempt_notifier_key)) 4850 __fire_sched_in_preempt_notifiers(curr); 4851 } 4852 4853 static void 4854 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4855 struct task_struct *next) 4856 { 4857 struct preempt_notifier *notifier; 4858 4859 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4860 notifier->ops->sched_out(notifier, next); 4861 } 4862 4863 static __always_inline void 4864 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4865 struct task_struct *next) 4866 { 4867 if (static_branch_unlikely(&preempt_notifier_key)) 4868 __fire_sched_out_preempt_notifiers(curr, next); 4869 } 4870 4871 #else /* !CONFIG_PREEMPT_NOTIFIERS: */ 4872 4873 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4874 { 4875 } 4876 4877 static inline void 4878 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4879 struct task_struct *next) 4880 { 4881 } 4882 4883 #endif /* !CONFIG_PREEMPT_NOTIFIERS */ 4884 4885 static inline void prepare_task(struct task_struct *next) 4886 { 4887 /* 4888 * Claim the task as running, we do this before switching to it 4889 * such that any running task will have this set. 4890 * 4891 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4892 * its ordering comment. 4893 */ 4894 WRITE_ONCE(next->on_cpu, 1); 4895 } 4896 4897 static inline void finish_task(struct task_struct *prev) 4898 { 4899 /* 4900 * This must be the very last reference to @prev from this CPU. After 4901 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4902 * must ensure this doesn't happen until the switch is completely 4903 * finished. 4904 * 4905 * In particular, the load of prev->state in finish_task_switch() must 4906 * happen before this. 4907 * 4908 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4909 */ 4910 smp_store_release(&prev->on_cpu, 0); 4911 } 4912 4913 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4914 { 4915 void (*func)(struct rq *rq); 4916 struct balance_callback *next; 4917 4918 lockdep_assert_rq_held(rq); 4919 4920 while (head) { 4921 func = (void (*)(struct rq *))head->func; 4922 next = head->next; 4923 head->next = NULL; 4924 head = next; 4925 4926 func(rq); 4927 } 4928 } 4929 4930 static void balance_push(struct rq *rq); 4931 4932 /* 4933 * balance_push_callback is a right abuse of the callback interface and plays 4934 * by significantly different rules. 4935 * 4936 * Where the normal balance_callback's purpose is to be ran in the same context 4937 * that queued it (only later, when it's safe to drop rq->lock again), 4938 * balance_push_callback is specifically targeted at __schedule(). 4939 * 4940 * This abuse is tolerated because it places all the unlikely/odd cases behind 4941 * a single test, namely: rq->balance_callback == NULL. 4942 */ 4943 struct balance_callback balance_push_callback = { 4944 .next = NULL, 4945 .func = balance_push, 4946 }; 4947 4948 static inline struct balance_callback * 4949 __splice_balance_callbacks(struct rq *rq, bool split) 4950 { 4951 struct balance_callback *head = rq->balance_callback; 4952 4953 if (likely(!head)) 4954 return NULL; 4955 4956 lockdep_assert_rq_held(rq); 4957 /* 4958 * Must not take balance_push_callback off the list when 4959 * splice_balance_callbacks() and balance_callbacks() are not 4960 * in the same rq->lock section. 4961 * 4962 * In that case it would be possible for __schedule() to interleave 4963 * and observe the list empty. 4964 */ 4965 if (split && head == &balance_push_callback) 4966 head = NULL; 4967 else 4968 rq->balance_callback = NULL; 4969 4970 return head; 4971 } 4972 4973 struct balance_callback *splice_balance_callbacks(struct rq *rq) 4974 { 4975 return __splice_balance_callbacks(rq, true); 4976 } 4977 4978 void __balance_callbacks(struct rq *rq, struct rq_flags *rf) 4979 { 4980 if (rf) 4981 rq_unpin_lock(rq, rf); 4982 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4983 if (rf) 4984 rq_repin_lock(rq, rf); 4985 } 4986 4987 void balance_callbacks(struct rq *rq, struct balance_callback *head) 4988 { 4989 unsigned long flags; 4990 4991 if (unlikely(head)) { 4992 raw_spin_rq_lock_irqsave(rq, flags); 4993 do_balance_callbacks(rq, head); 4994 raw_spin_rq_unlock_irqrestore(rq, flags); 4995 } 4996 } 4997 4998 static inline void 4999 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5000 __releases(__rq_lockp(rq)) 5001 __acquires(__rq_lockp(this_rq())) 5002 { 5003 /* 5004 * Since the runqueue lock will be released by the next 5005 * task (which is an invalid locking op but in the case 5006 * of the scheduler it's an obvious special-case), so we 5007 * do an early lockdep release here: 5008 */ 5009 rq_unpin_lock(rq, rf); 5010 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5011 #ifdef CONFIG_DEBUG_SPINLOCK 5012 /* this is a valid case when another task releases the spinlock */ 5013 rq_lockp(rq)->owner = next; 5014 #endif 5015 /* 5016 * Model the rq reference switcheroo. 5017 */ 5018 __release(__rq_lockp(rq)); 5019 __acquire(__rq_lockp(this_rq())); 5020 } 5021 5022 static inline void finish_lock_switch(struct rq *rq) 5023 __releases(__rq_lockp(rq)) 5024 { 5025 /* 5026 * If we are tracking spinlock dependencies then we have to 5027 * fix up the runqueue lock - which gets 'carried over' from 5028 * prev into current: 5029 */ 5030 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5031 __balance_callbacks(rq, NULL); 5032 raw_spin_rq_unlock_irq(rq); 5033 } 5034 5035 /* 5036 * NOP if the arch has not defined these: 5037 */ 5038 5039 #ifndef prepare_arch_switch 5040 # define prepare_arch_switch(next) do { } while (0) 5041 #endif 5042 5043 #ifndef finish_arch_post_lock_switch 5044 # define finish_arch_post_lock_switch() do { } while (0) 5045 #endif 5046 5047 static inline void kmap_local_sched_out(void) 5048 { 5049 #ifdef CONFIG_KMAP_LOCAL 5050 if (unlikely(current->kmap_ctrl.idx)) 5051 __kmap_local_sched_out(); 5052 #endif 5053 } 5054 5055 static inline void kmap_local_sched_in(void) 5056 { 5057 #ifdef CONFIG_KMAP_LOCAL 5058 if (unlikely(current->kmap_ctrl.idx)) 5059 __kmap_local_sched_in(); 5060 #endif 5061 } 5062 5063 /** 5064 * prepare_task_switch - prepare to switch tasks 5065 * @rq: the runqueue preparing to switch 5066 * @prev: the current task that is being switched out 5067 * @next: the task we are going to switch to. 5068 * 5069 * This is called with the rq lock held and interrupts off. It must 5070 * be paired with a subsequent finish_task_switch after the context 5071 * switch. 5072 * 5073 * prepare_task_switch sets up locking and calls architecture specific 5074 * hooks. 5075 */ 5076 static inline void 5077 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5078 struct task_struct *next) 5079 __must_hold(__rq_lockp(rq)) 5080 { 5081 kcov_prepare_switch(prev); 5082 sched_info_switch(rq, prev, next); 5083 perf_event_task_sched_out(prev, next); 5084 fire_sched_out_preempt_notifiers(prev, next); 5085 kmap_local_sched_out(); 5086 prepare_task(next); 5087 prepare_arch_switch(next); 5088 } 5089 5090 /** 5091 * finish_task_switch - clean up after a task-switch 5092 * @prev: the thread we just switched away from. 5093 * 5094 * finish_task_switch must be called after the context switch, paired 5095 * with a prepare_task_switch call before the context switch. 5096 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5097 * and do any other architecture-specific cleanup actions. 5098 * 5099 * Note that we may have delayed dropping an mm in context_switch(). If 5100 * so, we finish that here outside of the runqueue lock. (Doing it 5101 * with the lock held can cause deadlocks; see schedule() for 5102 * details.) 5103 * 5104 * The context switch have flipped the stack from under us and restored the 5105 * local variables which were saved when this task called schedule() in the 5106 * past. 'prev == current' is still correct but we need to recalculate this_rq 5107 * because prev may have moved to another CPU. 5108 */ 5109 static struct rq *finish_task_switch(struct task_struct *prev) 5110 __releases(__rq_lockp(this_rq())) 5111 { 5112 struct rq *rq = this_rq(); 5113 struct mm_struct *mm = rq->prev_mm; 5114 unsigned int prev_state; 5115 5116 /* 5117 * The previous task will have left us with a preempt_count of 2 5118 * because it left us after: 5119 * 5120 * schedule() 5121 * preempt_disable(); // 1 5122 * __schedule() 5123 * raw_spin_lock_irq(&rq->lock) // 2 5124 * 5125 * Also, see FORK_PREEMPT_COUNT. 5126 */ 5127 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5128 "corrupted preempt_count: %s/%d/0x%x\n", 5129 current->comm, current->pid, preempt_count())) 5130 preempt_count_set(FORK_PREEMPT_COUNT); 5131 5132 rq->prev_mm = NULL; 5133 5134 /* 5135 * A task struct has one reference for the use as "current". 5136 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5137 * schedule one last time. The schedule call will never return, and 5138 * the scheduled task must drop that reference. 5139 * 5140 * We must observe prev->state before clearing prev->on_cpu (in 5141 * finish_task), otherwise a concurrent wakeup can get prev 5142 * running on another CPU and we could rave with its RUNNING -> DEAD 5143 * transition, resulting in a double drop. 5144 */ 5145 prev_state = READ_ONCE(prev->__state); 5146 vtime_task_switch(prev); 5147 perf_event_task_sched_in(prev, current); 5148 finish_task(prev); 5149 tick_nohz_task_switch(); 5150 finish_lock_switch(rq); 5151 finish_arch_post_lock_switch(); 5152 kcov_finish_switch(current); 5153 /* 5154 * kmap_local_sched_out() is invoked with rq::lock held and 5155 * interrupts disabled. There is no requirement for that, but the 5156 * sched out code does not have an interrupt enabled section. 5157 * Restoring the maps on sched in does not require interrupts being 5158 * disabled either. 5159 */ 5160 kmap_local_sched_in(); 5161 5162 fire_sched_in_preempt_notifiers(current); 5163 /* 5164 * When switching through a kernel thread, the loop in 5165 * membarrier_{private,global}_expedited() may have observed that 5166 * kernel thread and not issued an IPI. It is therefore possible to 5167 * schedule between user->kernel->user threads without passing though 5168 * switch_mm(). Membarrier requires a barrier after storing to 5169 * rq->curr, before returning to userspace, so provide them here: 5170 * 5171 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5172 * provided by mmdrop_lazy_tlb(), 5173 * - a sync_core for SYNC_CORE. 5174 */ 5175 if (mm) { 5176 membarrier_mm_sync_core_before_usermode(mm); 5177 mmdrop_lazy_tlb_sched(mm); 5178 } 5179 5180 if (unlikely(prev_state == TASK_DEAD)) { 5181 if (prev->sched_class->task_dead) 5182 prev->sched_class->task_dead(prev); 5183 5184 /* 5185 * sched_ext_dead() must come before cgroup_task_dead() to 5186 * prevent cgroups from being removed while its member tasks are 5187 * visible to SCX schedulers. 5188 */ 5189 sched_ext_dead(prev); 5190 cgroup_task_dead(prev); 5191 5192 /* Task is done with its stack. */ 5193 put_task_stack(prev); 5194 5195 put_task_struct_rcu_user(prev); 5196 } 5197 5198 return rq; 5199 } 5200 5201 /** 5202 * schedule_tail - first thing a freshly forked thread must call. 5203 * @prev: the thread we just switched away from. 5204 */ 5205 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5206 __releases(__rq_lockp(this_rq())) 5207 { 5208 /* 5209 * New tasks start with FORK_PREEMPT_COUNT, see there and 5210 * finish_task_switch() for details. 5211 * 5212 * finish_task_switch() will drop rq->lock() and lower preempt_count 5213 * and the preempt_enable() will end up enabling preemption (on 5214 * PREEMPT_COUNT kernels). 5215 */ 5216 5217 finish_task_switch(prev); 5218 /* 5219 * This is a special case: the newly created task has just 5220 * switched the context for the first time. It is returning from 5221 * schedule for the first time in this path. 5222 */ 5223 trace_sched_exit_tp(true); 5224 preempt_enable(); 5225 5226 if (current->set_child_tid) 5227 put_user(task_pid_vnr(current), current->set_child_tid); 5228 5229 calculate_sigpending(); 5230 } 5231 5232 /* 5233 * context_switch - switch to the new MM and the new thread's register state. 5234 */ 5235 static __always_inline struct rq * 5236 context_switch(struct rq *rq, struct task_struct *prev, 5237 struct task_struct *next, struct rq_flags *rf) 5238 __releases(__rq_lockp(rq)) 5239 { 5240 prepare_task_switch(rq, prev, next); 5241 5242 /* 5243 * For paravirt, this is coupled with an exit in switch_to to 5244 * combine the page table reload and the switch backend into 5245 * one hypercall. 5246 */ 5247 arch_start_context_switch(prev); 5248 5249 /* 5250 * kernel -> kernel lazy + transfer active 5251 * user -> kernel lazy + mmgrab_lazy_tlb() active 5252 * 5253 * kernel -> user switch + mmdrop_lazy_tlb() active 5254 * user -> user switch 5255 */ 5256 if (!next->mm) { // to kernel 5257 enter_lazy_tlb(prev->active_mm, next); 5258 5259 next->active_mm = prev->active_mm; 5260 if (prev->mm) // from user 5261 mmgrab_lazy_tlb(prev->active_mm); 5262 else 5263 prev->active_mm = NULL; 5264 } else { // to user 5265 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5266 /* 5267 * sys_membarrier() requires an smp_mb() between setting 5268 * rq->curr / membarrier_switch_mm() and returning to userspace. 5269 * 5270 * The below provides this either through switch_mm(), or in 5271 * case 'prev->active_mm == next->mm' through 5272 * finish_task_switch()'s mmdrop(). 5273 */ 5274 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5275 lru_gen_use_mm(next->mm); 5276 5277 if (!prev->mm) { // from kernel 5278 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5279 rq->prev_mm = prev->active_mm; 5280 prev->active_mm = NULL; 5281 } 5282 } 5283 5284 mm_cid_switch_to(prev, next); 5285 5286 /* 5287 * Tell rseq that the task was scheduled in. Must be after 5288 * switch_mm_cid() to get the TIF flag set. 5289 */ 5290 rseq_sched_switch_event(next); 5291 5292 prepare_lock_switch(rq, next, rf); 5293 5294 /* Here we just switch the register state and the stack. */ 5295 switch_to(prev, next, prev); 5296 barrier(); 5297 5298 return finish_task_switch(prev); 5299 } 5300 5301 /* 5302 * nr_running and nr_context_switches: 5303 * 5304 * externally visible scheduler statistics: current number of runnable 5305 * threads, total number of context switches performed since bootup. 5306 */ 5307 unsigned int nr_running(void) 5308 { 5309 unsigned int i, sum = 0; 5310 5311 for_each_online_cpu(i) 5312 sum += cpu_rq(i)->nr_running; 5313 5314 return sum; 5315 } 5316 5317 /* 5318 * Check if only the current task is running on the CPU. 5319 * 5320 * Caution: this function does not check that the caller has disabled 5321 * preemption, thus the result might have a time-of-check-to-time-of-use 5322 * race. The caller is responsible to use it correctly, for example: 5323 * 5324 * - from a non-preemptible section (of course) 5325 * 5326 * - from a thread that is bound to a single CPU 5327 * 5328 * - in a loop with very short iterations (e.g. a polling loop) 5329 */ 5330 bool single_task_running(void) 5331 { 5332 return raw_rq()->nr_running == 1; 5333 } 5334 EXPORT_SYMBOL(single_task_running); 5335 5336 unsigned long long nr_context_switches_cpu(int cpu) 5337 { 5338 return cpu_rq(cpu)->nr_switches; 5339 } 5340 5341 unsigned long long nr_context_switches(void) 5342 { 5343 int i; 5344 unsigned long long sum = 0; 5345 5346 for_each_possible_cpu(i) 5347 sum += cpu_rq(i)->nr_switches; 5348 5349 return sum; 5350 } 5351 5352 /* 5353 * Consumers of these two interfaces, like for example the cpuidle menu 5354 * governor, are using nonsensical data. Preferring shallow idle state selection 5355 * for a CPU that has IO-wait which might not even end up running the task when 5356 * it does become runnable. 5357 */ 5358 5359 unsigned int nr_iowait_cpu(int cpu) 5360 { 5361 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5362 } 5363 5364 /* 5365 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5366 * 5367 * The idea behind IO-wait account is to account the idle time that we could 5368 * have spend running if it were not for IO. That is, if we were to improve the 5369 * storage performance, we'd have a proportional reduction in IO-wait time. 5370 * 5371 * This all works nicely on UP, where, when a task blocks on IO, we account 5372 * idle time as IO-wait, because if the storage were faster, it could've been 5373 * running and we'd not be idle. 5374 * 5375 * This has been extended to SMP, by doing the same for each CPU. This however 5376 * is broken. 5377 * 5378 * Imagine for instance the case where two tasks block on one CPU, only the one 5379 * CPU will have IO-wait accounted, while the other has regular idle. Even 5380 * though, if the storage were faster, both could've ran at the same time, 5381 * utilising both CPUs. 5382 * 5383 * This means, that when looking globally, the current IO-wait accounting on 5384 * SMP is a lower bound, by reason of under accounting. 5385 * 5386 * Worse, since the numbers are provided per CPU, they are sometimes 5387 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5388 * associated with any one particular CPU, it can wake to another CPU than it 5389 * blocked on. This means the per CPU IO-wait number is meaningless. 5390 * 5391 * Task CPU affinities can make all that even more 'interesting'. 5392 */ 5393 5394 unsigned int nr_iowait(void) 5395 { 5396 unsigned int i, sum = 0; 5397 5398 for_each_possible_cpu(i) 5399 sum += nr_iowait_cpu(i); 5400 5401 return sum; 5402 } 5403 5404 /* 5405 * sched_exec - execve() is a valuable balancing opportunity, because at 5406 * this point the task has the smallest effective memory and cache footprint. 5407 */ 5408 void sched_exec(void) 5409 { 5410 struct task_struct *p = current; 5411 struct migration_arg arg; 5412 int dest_cpu; 5413 5414 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5415 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5416 if (dest_cpu == smp_processor_id()) 5417 return; 5418 5419 if (unlikely(!cpu_active(dest_cpu))) 5420 return; 5421 5422 arg = (struct migration_arg){ p, dest_cpu }; 5423 } 5424 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5425 } 5426 5427 DEFINE_PER_CPU(struct kernel_stat, kstat); 5428 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5429 5430 EXPORT_PER_CPU_SYMBOL(kstat); 5431 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5432 5433 /* 5434 * The function fair_sched_class.update_curr accesses the struct curr 5435 * and its field curr->exec_start; when called from task_sched_runtime(), 5436 * we observe a high rate of cache misses in practice. 5437 * Prefetching this data results in improved performance. 5438 */ 5439 static inline void prefetch_curr_exec_start(struct task_struct *p) 5440 { 5441 #ifdef CONFIG_FAIR_GROUP_SCHED 5442 struct sched_entity *curr = p->se.cfs_rq->curr; 5443 #else 5444 struct sched_entity *curr = task_rq(p)->cfs.curr; 5445 #endif 5446 prefetch(curr); 5447 prefetch(&curr->exec_start); 5448 } 5449 5450 /* 5451 * Return accounted runtime for the task. 5452 * In case the task is currently running, return the runtime plus current's 5453 * pending runtime that have not been accounted yet. 5454 */ 5455 unsigned long long task_sched_runtime(struct task_struct *p) 5456 { 5457 struct rq_flags rf; 5458 struct rq *rq; 5459 u64 ns; 5460 5461 #ifdef CONFIG_64BIT 5462 /* 5463 * 64-bit doesn't need locks to atomically read a 64-bit value. 5464 * So we have a optimization chance when the task's delta_exec is 0. 5465 * Reading ->on_cpu is racy, but this is OK. 5466 * 5467 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5468 * If we race with it entering CPU, unaccounted time is 0. This is 5469 * indistinguishable from the read occurring a few cycles earlier. 5470 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5471 * been accounted, so we're correct here as well. 5472 */ 5473 if (!p->on_cpu || !task_on_rq_queued(p)) 5474 return p->se.sum_exec_runtime; 5475 #endif 5476 5477 rq = task_rq_lock(p, &rf); 5478 /* 5479 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5480 * project cycles that may never be accounted to this 5481 * thread, breaking clock_gettime(). 5482 */ 5483 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5484 prefetch_curr_exec_start(p); 5485 update_rq_clock(rq); 5486 p->sched_class->update_curr(rq); 5487 } 5488 ns = p->se.sum_exec_runtime; 5489 task_rq_unlock(rq, p, &rf); 5490 5491 return ns; 5492 } 5493 5494 static u64 cpu_resched_latency(struct rq *rq) 5495 { 5496 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5497 u64 resched_latency, now = rq_clock(rq); 5498 static bool warned_once; 5499 5500 if (sysctl_resched_latency_warn_once && warned_once) 5501 return 0; 5502 5503 if (!need_resched() || !latency_warn_ms) 5504 return 0; 5505 5506 if (system_state == SYSTEM_BOOTING) 5507 return 0; 5508 5509 if (!rq->last_seen_need_resched_ns) { 5510 rq->last_seen_need_resched_ns = now; 5511 rq->ticks_without_resched = 0; 5512 return 0; 5513 } 5514 5515 rq->ticks_without_resched++; 5516 resched_latency = now - rq->last_seen_need_resched_ns; 5517 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5518 return 0; 5519 5520 warned_once = true; 5521 5522 return resched_latency; 5523 } 5524 5525 static int __init setup_resched_latency_warn_ms(char *str) 5526 { 5527 long val; 5528 5529 if ((kstrtol(str, 0, &val))) { 5530 pr_warn("Unable to set resched_latency_warn_ms\n"); 5531 return 1; 5532 } 5533 5534 sysctl_resched_latency_warn_ms = val; 5535 return 1; 5536 } 5537 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5538 5539 /* 5540 * This function gets called by the timer code, with HZ frequency. 5541 * We call it with interrupts disabled. 5542 */ 5543 void sched_tick(void) 5544 { 5545 int cpu = smp_processor_id(); 5546 struct rq *rq = cpu_rq(cpu); 5547 /* accounting goes to the donor task */ 5548 struct task_struct *donor; 5549 struct rq_flags rf; 5550 unsigned long hw_pressure; 5551 u64 resched_latency; 5552 5553 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5554 arch_scale_freq_tick(); 5555 5556 sched_clock_tick(); 5557 5558 rq_lock(rq, &rf); 5559 donor = rq->donor; 5560 5561 psi_account_irqtime(rq, donor, NULL); 5562 5563 update_rq_clock(rq); 5564 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5565 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5566 5567 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5568 resched_curr(rq); 5569 5570 donor->sched_class->task_tick(rq, donor, 0); 5571 if (sched_feat(LATENCY_WARN)) 5572 resched_latency = cpu_resched_latency(rq); 5573 calc_global_load_tick(rq); 5574 sched_core_tick(rq); 5575 scx_tick(rq); 5576 5577 rq_unlock(rq, &rf); 5578 5579 if (sched_feat(LATENCY_WARN) && resched_latency) 5580 resched_latency_warn(cpu, resched_latency); 5581 5582 perf_event_task_tick(); 5583 5584 if (donor->flags & PF_WQ_WORKER) 5585 wq_worker_tick(donor); 5586 5587 if (!scx_switched_all()) { 5588 rq->idle_balance = idle_cpu(cpu); 5589 sched_balance_trigger(rq); 5590 } 5591 } 5592 5593 #ifdef CONFIG_NO_HZ_FULL 5594 5595 struct tick_work { 5596 int cpu; 5597 atomic_t state; 5598 struct delayed_work work; 5599 }; 5600 /* Values for ->state, see diagram below. */ 5601 #define TICK_SCHED_REMOTE_OFFLINE 0 5602 #define TICK_SCHED_REMOTE_OFFLINING 1 5603 #define TICK_SCHED_REMOTE_RUNNING 2 5604 5605 /* 5606 * State diagram for ->state: 5607 * 5608 * 5609 * TICK_SCHED_REMOTE_OFFLINE 5610 * | ^ 5611 * | | 5612 * | | sched_tick_remote() 5613 * | | 5614 * | | 5615 * +--TICK_SCHED_REMOTE_OFFLINING 5616 * | ^ 5617 * | | 5618 * sched_tick_start() | | sched_tick_stop() 5619 * | | 5620 * V | 5621 * TICK_SCHED_REMOTE_RUNNING 5622 * 5623 * 5624 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5625 * and sched_tick_start() are happy to leave the state in RUNNING. 5626 */ 5627 5628 static struct tick_work __percpu *tick_work_cpu; 5629 5630 static void sched_tick_remote(struct work_struct *work) 5631 { 5632 struct delayed_work *dwork = to_delayed_work(work); 5633 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5634 int cpu = twork->cpu; 5635 struct rq *rq = cpu_rq(cpu); 5636 int os; 5637 5638 /* 5639 * Handle the tick only if it appears the remote CPU is running in full 5640 * dynticks mode. The check is racy by nature, but missing a tick or 5641 * having one too much is no big deal because the scheduler tick updates 5642 * statistics and checks timeslices in a time-independent way, regardless 5643 * of when exactly it is running. 5644 */ 5645 if (tick_nohz_tick_stopped_cpu(cpu)) { 5646 guard(rq_lock_irq)(rq); 5647 struct task_struct *curr = rq->curr; 5648 5649 if (cpu_online(cpu)) { 5650 /* 5651 * Since this is a remote tick for full dynticks mode, 5652 * we are always sure that there is no proxy (only a 5653 * single task is running). 5654 */ 5655 WARN_ON_ONCE(rq->curr != rq->donor); 5656 update_rq_clock(rq); 5657 5658 if (!is_idle_task(curr)) { 5659 /* 5660 * Make sure the next tick runs within a 5661 * reasonable amount of time. 5662 */ 5663 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5664 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 30); 5665 } 5666 curr->sched_class->task_tick(rq, curr, 0); 5667 5668 calc_load_nohz_remote(rq); 5669 } 5670 } 5671 5672 /* 5673 * Run the remote tick once per second (1Hz). This arbitrary 5674 * frequency is large enough to avoid overload but short enough 5675 * to keep scheduler internal stats reasonably up to date. But 5676 * first update state to reflect hotplug activity if required. 5677 */ 5678 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5679 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5680 if (os == TICK_SCHED_REMOTE_RUNNING) 5681 queue_delayed_work(system_unbound_wq, dwork, HZ); 5682 } 5683 5684 static void sched_tick_start(int cpu) 5685 { 5686 int os; 5687 struct tick_work *twork; 5688 5689 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5690 return; 5691 5692 WARN_ON_ONCE(!tick_work_cpu); 5693 5694 twork = per_cpu_ptr(tick_work_cpu, cpu); 5695 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5696 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5697 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5698 twork->cpu = cpu; 5699 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5700 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5701 } 5702 } 5703 5704 #ifdef CONFIG_HOTPLUG_CPU 5705 static void sched_tick_stop(int cpu) 5706 { 5707 struct tick_work *twork; 5708 int os; 5709 5710 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5711 return; 5712 5713 WARN_ON_ONCE(!tick_work_cpu); 5714 5715 twork = per_cpu_ptr(tick_work_cpu, cpu); 5716 /* There cannot be competing actions, but don't rely on stop-machine. */ 5717 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5718 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5719 /* Don't cancel, as this would mess up the state machine. */ 5720 } 5721 #endif /* CONFIG_HOTPLUG_CPU */ 5722 5723 int __init sched_tick_offload_init(void) 5724 { 5725 tick_work_cpu = alloc_percpu(struct tick_work); 5726 BUG_ON(!tick_work_cpu); 5727 return 0; 5728 } 5729 5730 #else /* !CONFIG_NO_HZ_FULL: */ 5731 static inline void sched_tick_start(int cpu) { } 5732 static inline void sched_tick_stop(int cpu) { } 5733 #endif /* !CONFIG_NO_HZ_FULL */ 5734 5735 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5736 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5737 /* 5738 * If the value passed in is equal to the current preempt count 5739 * then we just disabled preemption. Start timing the latency. 5740 */ 5741 static inline void preempt_latency_start(int val) 5742 { 5743 if (preempt_count() == val) { 5744 unsigned long ip = get_lock_parent_ip(); 5745 #ifdef CONFIG_DEBUG_PREEMPT 5746 current->preempt_disable_ip = ip; 5747 #endif 5748 trace_preempt_off(CALLER_ADDR0, ip); 5749 } 5750 } 5751 5752 void preempt_count_add(int val) 5753 { 5754 #ifdef CONFIG_DEBUG_PREEMPT 5755 /* 5756 * Underflow? 5757 */ 5758 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5759 return; 5760 #endif 5761 __preempt_count_add(val); 5762 #ifdef CONFIG_DEBUG_PREEMPT 5763 /* 5764 * Spinlock count overflowing soon? 5765 */ 5766 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5767 PREEMPT_MASK - 10); 5768 #endif 5769 preempt_latency_start(val); 5770 } 5771 EXPORT_SYMBOL(preempt_count_add); 5772 NOKPROBE_SYMBOL(preempt_count_add); 5773 5774 /* 5775 * If the value passed in equals to the current preempt count 5776 * then we just enabled preemption. Stop timing the latency. 5777 */ 5778 static inline void preempt_latency_stop(int val) 5779 { 5780 if (preempt_count() == val) 5781 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5782 } 5783 5784 void preempt_count_sub(int val) 5785 { 5786 #ifdef CONFIG_DEBUG_PREEMPT 5787 /* 5788 * Underflow? 5789 */ 5790 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5791 return; 5792 /* 5793 * Is the spinlock portion underflowing? 5794 */ 5795 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5796 !(preempt_count() & PREEMPT_MASK))) 5797 return; 5798 #endif 5799 5800 preempt_latency_stop(val); 5801 __preempt_count_sub(val); 5802 } 5803 EXPORT_SYMBOL(preempt_count_sub); 5804 NOKPROBE_SYMBOL(preempt_count_sub); 5805 5806 #else 5807 static inline void preempt_latency_start(int val) { } 5808 static inline void preempt_latency_stop(int val) { } 5809 #endif 5810 5811 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5812 { 5813 #ifdef CONFIG_DEBUG_PREEMPT 5814 return p->preempt_disable_ip; 5815 #else 5816 return 0; 5817 #endif 5818 } 5819 5820 /* 5821 * Print scheduling while atomic bug: 5822 */ 5823 static noinline void __schedule_bug(struct task_struct *prev) 5824 { 5825 /* Save this before calling printk(), since that will clobber it */ 5826 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5827 5828 if (oops_in_progress) 5829 return; 5830 5831 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5832 prev->comm, prev->pid, preempt_count()); 5833 5834 debug_show_held_locks(prev); 5835 print_modules(); 5836 if (irqs_disabled()) 5837 print_irqtrace_events(prev); 5838 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5839 pr_err("Preemption disabled at:"); 5840 print_ip_sym(KERN_ERR, preempt_disable_ip); 5841 } 5842 check_panic_on_warn("scheduling while atomic"); 5843 5844 dump_stack(); 5845 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5846 } 5847 5848 /* 5849 * Various schedule()-time debugging checks and statistics: 5850 */ 5851 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5852 { 5853 #ifdef CONFIG_SCHED_STACK_END_CHECK 5854 if (task_stack_end_corrupted(prev)) 5855 panic("corrupted stack end detected inside scheduler\n"); 5856 5857 if (task_scs_end_corrupted(prev)) 5858 panic("corrupted shadow stack detected inside scheduler\n"); 5859 #endif 5860 5861 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5862 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5863 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5864 prev->comm, prev->pid, prev->non_block_count); 5865 dump_stack(); 5866 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5867 } 5868 #endif 5869 5870 if (unlikely(in_atomic_preempt_off())) { 5871 __schedule_bug(prev); 5872 preempt_count_set(PREEMPT_DISABLED); 5873 } 5874 rcu_sleep_check(); 5875 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5876 5877 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5878 5879 schedstat_inc(this_rq()->sched_count); 5880 } 5881 5882 static void prev_balance(struct rq *rq, struct task_struct *prev, 5883 struct rq_flags *rf) 5884 { 5885 const struct sched_class *start_class = prev->sched_class; 5886 const struct sched_class *class; 5887 5888 /* 5889 * We must do the balancing pass before put_prev_task(), such 5890 * that when we release the rq->lock the task is in the same 5891 * state as before we took rq->lock. 5892 * 5893 * We can terminate the balance pass as soon as we know there is 5894 * a runnable task of @class priority or higher. 5895 */ 5896 for_active_class_range(class, start_class, &idle_sched_class) { 5897 if (class->balance && class->balance(rq, prev, rf)) 5898 break; 5899 } 5900 } 5901 5902 /* 5903 * Pick up the highest-prio task: 5904 */ 5905 static inline struct task_struct * 5906 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5907 __must_hold(__rq_lockp(rq)) 5908 { 5909 const struct sched_class *class; 5910 struct task_struct *p; 5911 5912 rq->dl_server = NULL; 5913 5914 if (scx_enabled()) 5915 goto restart; 5916 5917 /* 5918 * Optimization: we know that if all tasks are in the fair class we can 5919 * call that function directly, but only if the @prev task wasn't of a 5920 * higher scheduling class, because otherwise those lose the 5921 * opportunity to pull in more work from other CPUs. 5922 */ 5923 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5924 rq->nr_running == rq->cfs.h_nr_queued)) { 5925 5926 p = pick_next_task_fair(rq, prev, rf); 5927 if (unlikely(p == RETRY_TASK)) 5928 goto restart; 5929 5930 /* Assume the next prioritized class is idle_sched_class */ 5931 if (!p) { 5932 p = pick_task_idle(rq, rf); 5933 put_prev_set_next_task(rq, prev, p); 5934 } 5935 5936 return p; 5937 } 5938 5939 restart: 5940 prev_balance(rq, prev, rf); 5941 5942 for_each_active_class(class) { 5943 if (class->pick_next_task) { 5944 p = class->pick_next_task(rq, prev, rf); 5945 if (unlikely(p == RETRY_TASK)) 5946 goto restart; 5947 if (p) 5948 return p; 5949 } else { 5950 p = class->pick_task(rq, rf); 5951 if (unlikely(p == RETRY_TASK)) 5952 goto restart; 5953 if (p) { 5954 put_prev_set_next_task(rq, prev, p); 5955 return p; 5956 } 5957 } 5958 } 5959 5960 BUG(); /* The idle class should always have a runnable task. */ 5961 } 5962 5963 #ifdef CONFIG_SCHED_CORE 5964 static inline bool is_task_rq_idle(struct task_struct *t) 5965 { 5966 return (task_rq(t)->idle == t); 5967 } 5968 5969 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5970 { 5971 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5972 } 5973 5974 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5975 { 5976 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5977 return true; 5978 5979 return a->core_cookie == b->core_cookie; 5980 } 5981 5982 /* 5983 * Careful; this can return RETRY_TASK, it does not include the retry-loop 5984 * itself due to the whole SMT pick retry thing below. 5985 */ 5986 static inline struct task_struct *pick_task(struct rq *rq, struct rq_flags *rf) 5987 { 5988 const struct sched_class *class; 5989 struct task_struct *p; 5990 5991 rq->dl_server = NULL; 5992 5993 for_each_active_class(class) { 5994 p = class->pick_task(rq, rf); 5995 if (p) 5996 return p; 5997 } 5998 5999 BUG(); /* The idle class should always have a runnable task. */ 6000 } 6001 6002 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6003 6004 static void queue_core_balance(struct rq *rq); 6005 6006 static struct task_struct * 6007 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6008 __must_hold(__rq_lockp(rq)) 6009 { 6010 struct task_struct *next, *p, *max; 6011 const struct cpumask *smt_mask; 6012 bool fi_before = false; 6013 bool core_clock_updated = (rq == rq->core); 6014 unsigned long cookie; 6015 int i, cpu, occ = 0; 6016 struct rq *rq_i; 6017 bool need_sync; 6018 6019 if (!sched_core_enabled(rq)) 6020 return __pick_next_task(rq, prev, rf); 6021 6022 cpu = cpu_of(rq); 6023 6024 /* Stopper task is switching into idle, no need core-wide selection. */ 6025 if (cpu_is_offline(cpu)) { 6026 /* 6027 * Reset core_pick so that we don't enter the fastpath when 6028 * coming online. core_pick would already be migrated to 6029 * another cpu during offline. 6030 */ 6031 rq->core_pick = NULL; 6032 rq->core_dl_server = NULL; 6033 return __pick_next_task(rq, prev, rf); 6034 } 6035 6036 /* 6037 * If there were no {en,de}queues since we picked (IOW, the task 6038 * pointers are all still valid), and we haven't scheduled the last 6039 * pick yet, do so now. 6040 * 6041 * rq->core_pick can be NULL if no selection was made for a CPU because 6042 * it was either offline or went offline during a sibling's core-wide 6043 * selection. In this case, do a core-wide selection. 6044 */ 6045 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6046 rq->core->core_pick_seq != rq->core_sched_seq && 6047 rq->core_pick) { 6048 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6049 6050 next = rq->core_pick; 6051 rq->dl_server = rq->core_dl_server; 6052 rq->core_pick = NULL; 6053 rq->core_dl_server = NULL; 6054 goto out_set_next; 6055 } 6056 6057 prev_balance(rq, prev, rf); 6058 6059 smt_mask = cpu_smt_mask(cpu); 6060 need_sync = !!rq->core->core_cookie; 6061 6062 /* reset state */ 6063 rq->core->core_cookie = 0UL; 6064 if (rq->core->core_forceidle_count) { 6065 if (!core_clock_updated) { 6066 update_rq_clock(rq->core); 6067 core_clock_updated = true; 6068 } 6069 sched_core_account_forceidle(rq); 6070 /* reset after accounting force idle */ 6071 rq->core->core_forceidle_start = 0; 6072 rq->core->core_forceidle_count = 0; 6073 rq->core->core_forceidle_occupation = 0; 6074 need_sync = true; 6075 fi_before = true; 6076 } 6077 6078 /* 6079 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6080 * 6081 * @task_seq guards the task state ({en,de}queues) 6082 * @pick_seq is the @task_seq we did a selection on 6083 * @sched_seq is the @pick_seq we scheduled 6084 * 6085 * However, preemptions can cause multiple picks on the same task set. 6086 * 'Fix' this by also increasing @task_seq for every pick. 6087 */ 6088 rq->core->core_task_seq++; 6089 6090 /* 6091 * Optimize for common case where this CPU has no cookies 6092 * and there are no cookied tasks running on siblings. 6093 */ 6094 if (!need_sync) { 6095 restart_single: 6096 next = pick_task(rq, rf); 6097 if (unlikely(next == RETRY_TASK)) 6098 goto restart_single; 6099 if (!next->core_cookie) { 6100 rq->core_pick = NULL; 6101 rq->core_dl_server = NULL; 6102 /* 6103 * For robustness, update the min_vruntime_fi for 6104 * unconstrained picks as well. 6105 */ 6106 WARN_ON_ONCE(fi_before); 6107 task_vruntime_update(rq, next, false); 6108 goto out_set_next; 6109 } 6110 } 6111 6112 /* 6113 * For each thread: do the regular task pick and find the max prio task 6114 * amongst them. 6115 * 6116 * Tie-break prio towards the current CPU 6117 */ 6118 restart_multi: 6119 max = NULL; 6120 for_each_cpu_wrap(i, smt_mask, cpu) { 6121 rq_i = cpu_rq(i); 6122 6123 /* 6124 * Current cpu always has its clock updated on entrance to 6125 * pick_next_task(). If the current cpu is not the core, 6126 * the core may also have been updated above. 6127 */ 6128 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6129 update_rq_clock(rq_i); 6130 6131 p = pick_task(rq_i, rf); 6132 if (unlikely(p == RETRY_TASK)) 6133 goto restart_multi; 6134 6135 rq_i->core_pick = p; 6136 rq_i->core_dl_server = rq_i->dl_server; 6137 6138 if (!max || prio_less(max, p, fi_before)) 6139 max = p; 6140 } 6141 6142 cookie = rq->core->core_cookie = max->core_cookie; 6143 6144 /* 6145 * For each thread: try and find a runnable task that matches @max or 6146 * force idle. 6147 */ 6148 for_each_cpu(i, smt_mask) { 6149 rq_i = cpu_rq(i); 6150 p = rq_i->core_pick; 6151 6152 if (!cookie_equals(p, cookie)) { 6153 p = NULL; 6154 if (cookie) 6155 p = sched_core_find(rq_i, cookie); 6156 if (!p) 6157 p = idle_sched_class.pick_task(rq_i, rf); 6158 } 6159 6160 rq_i->core_pick = p; 6161 rq_i->core_dl_server = NULL; 6162 6163 if (p == rq_i->idle) { 6164 if (rq_i->nr_running) { 6165 rq->core->core_forceidle_count++; 6166 if (!fi_before) 6167 rq->core->core_forceidle_seq++; 6168 } 6169 } else { 6170 occ++; 6171 } 6172 } 6173 6174 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6175 rq->core->core_forceidle_start = rq_clock(rq->core); 6176 rq->core->core_forceidle_occupation = occ; 6177 } 6178 6179 rq->core->core_pick_seq = rq->core->core_task_seq; 6180 next = rq->core_pick; 6181 rq->core_sched_seq = rq->core->core_pick_seq; 6182 6183 /* Something should have been selected for current CPU */ 6184 WARN_ON_ONCE(!next); 6185 6186 /* 6187 * Reschedule siblings 6188 * 6189 * NOTE: L1TF -- at this point we're no longer running the old task and 6190 * sending an IPI (below) ensures the sibling will no longer be running 6191 * their task. This ensures there is no inter-sibling overlap between 6192 * non-matching user state. 6193 */ 6194 for_each_cpu(i, smt_mask) { 6195 rq_i = cpu_rq(i); 6196 6197 /* 6198 * An online sibling might have gone offline before a task 6199 * could be picked for it, or it might be offline but later 6200 * happen to come online, but its too late and nothing was 6201 * picked for it. That's Ok - it will pick tasks for itself, 6202 * so ignore it. 6203 */ 6204 if (!rq_i->core_pick) 6205 continue; 6206 6207 /* 6208 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6209 * fi_before fi update? 6210 * 0 0 1 6211 * 0 1 1 6212 * 1 0 1 6213 * 1 1 0 6214 */ 6215 if (!(fi_before && rq->core->core_forceidle_count)) 6216 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6217 6218 rq_i->core_pick->core_occupation = occ; 6219 6220 if (i == cpu) { 6221 rq_i->core_pick = NULL; 6222 rq_i->core_dl_server = NULL; 6223 continue; 6224 } 6225 6226 /* Did we break L1TF mitigation requirements? */ 6227 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6228 6229 if (rq_i->curr == rq_i->core_pick) { 6230 rq_i->core_pick = NULL; 6231 rq_i->core_dl_server = NULL; 6232 continue; 6233 } 6234 6235 resched_curr(rq_i); 6236 } 6237 6238 out_set_next: 6239 put_prev_set_next_task(rq, prev, next); 6240 if (rq->core->core_forceidle_count && next == rq->idle) 6241 queue_core_balance(rq); 6242 6243 return next; 6244 } 6245 6246 static bool try_steal_cookie(int this, int that) 6247 { 6248 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6249 struct task_struct *p; 6250 unsigned long cookie; 6251 bool success = false; 6252 6253 guard(irq)(); 6254 guard(double_rq_lock)(dst, src); 6255 6256 cookie = dst->core->core_cookie; 6257 if (!cookie) 6258 return false; 6259 6260 if (dst->curr != dst->idle) 6261 return false; 6262 6263 p = sched_core_find(src, cookie); 6264 if (!p) 6265 return false; 6266 6267 do { 6268 if (p == src->core_pick || p == src->curr) 6269 goto next; 6270 6271 if (!is_cpu_allowed(p, this)) 6272 goto next; 6273 6274 if (p->core_occupation > dst->idle->core_occupation) 6275 goto next; 6276 /* 6277 * sched_core_find() and sched_core_next() will ensure 6278 * that task @p is not throttled now, we also need to 6279 * check whether the runqueue of the destination CPU is 6280 * being throttled. 6281 */ 6282 if (sched_task_is_throttled(p, this)) 6283 goto next; 6284 6285 move_queued_task_locked(src, dst, p); 6286 resched_curr(dst); 6287 6288 success = true; 6289 break; 6290 6291 next: 6292 p = sched_core_next(p, cookie); 6293 } while (p); 6294 6295 return success; 6296 } 6297 6298 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6299 { 6300 int i; 6301 6302 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6303 if (i == cpu) 6304 continue; 6305 6306 if (need_resched()) 6307 break; 6308 6309 if (try_steal_cookie(cpu, i)) 6310 return true; 6311 } 6312 6313 return false; 6314 } 6315 6316 static void sched_core_balance(struct rq *rq) 6317 __must_hold(__rq_lockp(rq)) 6318 { 6319 struct sched_domain *sd; 6320 int cpu = cpu_of(rq); 6321 6322 guard(preempt)(); 6323 guard(rcu)(); 6324 6325 raw_spin_rq_unlock_irq(rq); 6326 for_each_domain(cpu, sd) { 6327 if (need_resched()) 6328 break; 6329 6330 if (steal_cookie_task(cpu, sd)) 6331 break; 6332 } 6333 raw_spin_rq_lock_irq(rq); 6334 } 6335 6336 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6337 6338 static void queue_core_balance(struct rq *rq) 6339 { 6340 if (!sched_core_enabled(rq)) 6341 return; 6342 6343 if (!rq->core->core_cookie) 6344 return; 6345 6346 if (!rq->nr_running) /* not forced idle */ 6347 return; 6348 6349 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6350 } 6351 6352 DEFINE_LOCK_GUARD_1(core_lock, int, 6353 sched_core_lock(*_T->lock, &_T->flags), 6354 sched_core_unlock(*_T->lock, &_T->flags), 6355 unsigned long flags) 6356 6357 static void sched_core_cpu_starting(unsigned int cpu) 6358 { 6359 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6360 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6361 int t; 6362 6363 guard(core_lock)(&cpu); 6364 6365 WARN_ON_ONCE(rq->core != rq); 6366 6367 /* if we're the first, we'll be our own leader */ 6368 if (cpumask_weight(smt_mask) == 1) 6369 return; 6370 6371 /* find the leader */ 6372 for_each_cpu(t, smt_mask) { 6373 if (t == cpu) 6374 continue; 6375 rq = cpu_rq(t); 6376 if (rq->core == rq) { 6377 core_rq = rq; 6378 break; 6379 } 6380 } 6381 6382 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6383 return; 6384 6385 /* install and validate core_rq */ 6386 for_each_cpu(t, smt_mask) { 6387 rq = cpu_rq(t); 6388 6389 if (t == cpu) 6390 rq->core = core_rq; 6391 6392 WARN_ON_ONCE(rq->core != core_rq); 6393 } 6394 } 6395 6396 static void sched_core_cpu_deactivate(unsigned int cpu) 6397 { 6398 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6399 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6400 int t; 6401 6402 guard(core_lock)(&cpu); 6403 6404 /* if we're the last man standing, nothing to do */ 6405 if (cpumask_weight(smt_mask) == 1) { 6406 WARN_ON_ONCE(rq->core != rq); 6407 return; 6408 } 6409 6410 /* if we're not the leader, nothing to do */ 6411 if (rq->core != rq) 6412 return; 6413 6414 /* find a new leader */ 6415 for_each_cpu(t, smt_mask) { 6416 if (t == cpu) 6417 continue; 6418 core_rq = cpu_rq(t); 6419 break; 6420 } 6421 6422 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6423 return; 6424 6425 /* copy the shared state to the new leader */ 6426 core_rq->core_task_seq = rq->core_task_seq; 6427 core_rq->core_pick_seq = rq->core_pick_seq; 6428 core_rq->core_cookie = rq->core_cookie; 6429 core_rq->core_forceidle_count = rq->core_forceidle_count; 6430 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6431 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6432 6433 /* 6434 * Accounting edge for forced idle is handled in pick_next_task(). 6435 * Don't need another one here, since the hotplug thread shouldn't 6436 * have a cookie. 6437 */ 6438 core_rq->core_forceidle_start = 0; 6439 6440 /* install new leader */ 6441 for_each_cpu(t, smt_mask) { 6442 rq = cpu_rq(t); 6443 rq->core = core_rq; 6444 } 6445 } 6446 6447 static inline void sched_core_cpu_dying(unsigned int cpu) 6448 { 6449 struct rq *rq = cpu_rq(cpu); 6450 6451 if (rq->core != rq) 6452 rq->core = rq; 6453 } 6454 6455 #else /* !CONFIG_SCHED_CORE: */ 6456 6457 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6458 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6459 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6460 6461 static struct task_struct * 6462 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6463 __must_hold(__rq_lockp(rq)) 6464 { 6465 return __pick_next_task(rq, prev, rf); 6466 } 6467 6468 #endif /* !CONFIG_SCHED_CORE */ 6469 6470 /* 6471 * Constants for the sched_mode argument of __schedule(). 6472 * 6473 * The mode argument allows RT enabled kernels to differentiate a 6474 * preemption from blocking on an 'sleeping' spin/rwlock. 6475 */ 6476 #define SM_IDLE (-1) 6477 #define SM_NONE 0 6478 #define SM_PREEMPT 1 6479 #define SM_RTLOCK_WAIT 2 6480 6481 /* 6482 * Helper function for __schedule() 6483 * 6484 * Tries to deactivate the task, unless the should_block arg 6485 * is false or if a signal is pending. In the case a signal 6486 * is pending, marks the task's __state as RUNNING (and clear 6487 * blocked_on). 6488 */ 6489 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6490 unsigned long *task_state_p, bool should_block) 6491 { 6492 unsigned long task_state = *task_state_p; 6493 int flags = DEQUEUE_NOCLOCK; 6494 6495 if (signal_pending_state(task_state, p)) { 6496 WRITE_ONCE(p->__state, TASK_RUNNING); 6497 *task_state_p = TASK_RUNNING; 6498 return false; 6499 } 6500 6501 /* 6502 * We check should_block after signal_pending because we 6503 * will want to wake the task in that case. But if 6504 * should_block is false, its likely due to the task being 6505 * blocked on a mutex, and we want to keep it on the runqueue 6506 * to be selectable for proxy-execution. 6507 */ 6508 if (!should_block) 6509 return false; 6510 6511 p->sched_contributes_to_load = 6512 (task_state & TASK_UNINTERRUPTIBLE) && 6513 !(task_state & TASK_NOLOAD) && 6514 !(task_state & TASK_FROZEN); 6515 6516 if (unlikely(is_special_task_state(task_state))) 6517 flags |= DEQUEUE_SPECIAL; 6518 6519 /* 6520 * __schedule() ttwu() 6521 * prev_state = prev->state; if (p->on_rq && ...) 6522 * if (prev_state) goto out; 6523 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6524 * p->state = TASK_WAKING 6525 * 6526 * Where __schedule() and ttwu() have matching control dependencies. 6527 * 6528 * After this, schedule() must not care about p->state any more. 6529 */ 6530 block_task(rq, p, flags); 6531 return true; 6532 } 6533 6534 #ifdef CONFIG_SCHED_PROXY_EXEC 6535 static inline struct task_struct *proxy_resched_idle(struct rq *rq) 6536 { 6537 put_prev_set_next_task(rq, rq->donor, rq->idle); 6538 rq_set_donor(rq, rq->idle); 6539 set_tsk_need_resched(rq->idle); 6540 return rq->idle; 6541 } 6542 6543 static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor) 6544 { 6545 unsigned long state = READ_ONCE(donor->__state); 6546 6547 /* Don't deactivate if the state has been changed to TASK_RUNNING */ 6548 if (state == TASK_RUNNING) 6549 return false; 6550 /* 6551 * Because we got donor from pick_next_task(), it is *crucial* 6552 * that we call proxy_resched_idle() before we deactivate it. 6553 * As once we deactivate donor, donor->on_rq is set to zero, 6554 * which allows ttwu() to immediately try to wake the task on 6555 * another rq. So we cannot use *any* references to donor 6556 * after that point. So things like cfs_rq->curr or rq->donor 6557 * need to be changed from next *before* we deactivate. 6558 */ 6559 proxy_resched_idle(rq); 6560 return try_to_block_task(rq, donor, &state, true); 6561 } 6562 6563 static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor) 6564 { 6565 if (!__proxy_deactivate(rq, donor)) { 6566 /* 6567 * XXX: For now, if deactivation failed, set donor 6568 * as unblocked, as we aren't doing proxy-migrations 6569 * yet (more logic will be needed then). 6570 */ 6571 donor->blocked_on = NULL; 6572 } 6573 return NULL; 6574 } 6575 6576 /* 6577 * Find runnable lock owner to proxy for mutex blocked donor 6578 * 6579 * Follow the blocked-on relation: 6580 * task->blocked_on -> mutex->owner -> task... 6581 * 6582 * Lock order: 6583 * 6584 * p->pi_lock 6585 * rq->lock 6586 * mutex->wait_lock 6587 * 6588 * Returns the task that is going to be used as execution context (the one 6589 * that is actually going to be run on cpu_of(rq)). 6590 */ 6591 static struct task_struct * 6592 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6593 { 6594 struct task_struct *owner = NULL; 6595 int this_cpu = cpu_of(rq); 6596 struct task_struct *p; 6597 struct mutex *mutex; 6598 6599 /* Follow blocked_on chain. */ 6600 for (p = donor; task_is_blocked(p); p = owner) { 6601 mutex = p->blocked_on; 6602 /* Something changed in the chain, so pick again */ 6603 if (!mutex) 6604 return NULL; 6605 /* 6606 * By taking mutex->wait_lock we hold off concurrent mutex_unlock() 6607 * and ensure @owner sticks around. 6608 */ 6609 guard(raw_spinlock)(&mutex->wait_lock); 6610 6611 /* Check again that p is blocked with wait_lock held */ 6612 if (mutex != __get_task_blocked_on(p)) { 6613 /* 6614 * Something changed in the blocked_on chain and 6615 * we don't know if only at this level. So, let's 6616 * just bail out completely and let __schedule() 6617 * figure things out (pick_again loop). 6618 */ 6619 return NULL; 6620 } 6621 6622 owner = __mutex_owner(mutex); 6623 if (!owner) { 6624 __clear_task_blocked_on(p, mutex); 6625 return p; 6626 } 6627 6628 if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) { 6629 /* XXX Don't handle blocked owners/delayed dequeue yet */ 6630 return proxy_deactivate(rq, donor); 6631 } 6632 6633 if (task_cpu(owner) != this_cpu) { 6634 /* XXX Don't handle migrations yet */ 6635 return proxy_deactivate(rq, donor); 6636 } 6637 6638 if (task_on_rq_migrating(owner)) { 6639 /* 6640 * One of the chain of mutex owners is currently migrating to this 6641 * CPU, but has not yet been enqueued because we are holding the 6642 * rq lock. As a simple solution, just schedule rq->idle to give 6643 * the migration a chance to complete. Much like the migrate_task 6644 * case we should end up back in find_proxy_task(), this time 6645 * hopefully with all relevant tasks already enqueued. 6646 */ 6647 return proxy_resched_idle(rq); 6648 } 6649 6650 /* 6651 * Its possible to race where after we check owner->on_rq 6652 * but before we check (owner_cpu != this_cpu) that the 6653 * task on another cpu was migrated back to this cpu. In 6654 * that case it could slip by our checks. So double check 6655 * we are still on this cpu and not migrating. If we get 6656 * inconsistent results, try again. 6657 */ 6658 if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu) 6659 return NULL; 6660 6661 if (owner == p) { 6662 /* 6663 * It's possible we interleave with mutex_unlock like: 6664 * 6665 * lock(&rq->lock); 6666 * find_proxy_task() 6667 * mutex_unlock() 6668 * lock(&wait_lock); 6669 * donor(owner) = current->blocked_donor; 6670 * unlock(&wait_lock); 6671 * 6672 * wake_up_q(); 6673 * ... 6674 * ttwu_runnable() 6675 * __task_rq_lock() 6676 * lock(&wait_lock); 6677 * owner == p 6678 * 6679 * Which leaves us to finish the ttwu_runnable() and make it go. 6680 * 6681 * So schedule rq->idle so that ttwu_runnable() can get the rq 6682 * lock and mark owner as running. 6683 */ 6684 return proxy_resched_idle(rq); 6685 } 6686 /* 6687 * OK, now we're absolutely sure @owner is on this 6688 * rq, therefore holding @rq->lock is sufficient to 6689 * guarantee its existence, as per ttwu_remote(). 6690 */ 6691 } 6692 6693 WARN_ON_ONCE(owner && !owner->on_rq); 6694 return owner; 6695 } 6696 #else /* SCHED_PROXY_EXEC */ 6697 static struct task_struct * 6698 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6699 { 6700 WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n"); 6701 return donor; 6702 } 6703 #endif /* SCHED_PROXY_EXEC */ 6704 6705 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner) 6706 { 6707 if (!sched_proxy_exec()) 6708 return; 6709 /* 6710 * pick_next_task() calls set_next_task() on the chosen task 6711 * at some point, which ensures it is not push/pullable. 6712 * However, the chosen/donor task *and* the mutex owner form an 6713 * atomic pair wrt push/pull. 6714 * 6715 * Make sure owner we run is not pushable. Unfortunately we can 6716 * only deal with that by means of a dequeue/enqueue cycle. :-/ 6717 */ 6718 dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE); 6719 enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE); 6720 } 6721 6722 /* 6723 * __schedule() is the main scheduler function. 6724 * 6725 * The main means of driving the scheduler and thus entering this function are: 6726 * 6727 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6728 * 6729 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6730 * paths. For example, see arch/x86/entry_64.S. 6731 * 6732 * To drive preemption between tasks, the scheduler sets the flag in timer 6733 * interrupt handler sched_tick(). 6734 * 6735 * 3. Wakeups don't really cause entry into schedule(). They add a 6736 * task to the run-queue and that's it. 6737 * 6738 * Now, if the new task added to the run-queue preempts the current 6739 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6740 * called on the nearest possible occasion: 6741 * 6742 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6743 * 6744 * - in syscall or exception context, at the next outmost 6745 * preempt_enable(). (this might be as soon as the wake_up()'s 6746 * spin_unlock()!) 6747 * 6748 * - in IRQ context, return from interrupt-handler to 6749 * preemptible context 6750 * 6751 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6752 * then at the next: 6753 * 6754 * - cond_resched() call 6755 * - explicit schedule() call 6756 * - return from syscall or exception to user-space 6757 * - return from interrupt-handler to user-space 6758 * 6759 * WARNING: must be called with preemption disabled! 6760 */ 6761 static void __sched notrace __schedule(int sched_mode) 6762 { 6763 struct task_struct *prev, *next; 6764 /* 6765 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6766 * as a preemption by schedule_debug() and RCU. 6767 */ 6768 bool preempt = sched_mode > SM_NONE; 6769 bool is_switch = false; 6770 unsigned long *switch_count; 6771 unsigned long prev_state; 6772 struct rq_flags rf; 6773 struct rq *rq; 6774 int cpu; 6775 6776 /* Trace preemptions consistently with task switches */ 6777 trace_sched_entry_tp(sched_mode == SM_PREEMPT); 6778 6779 cpu = smp_processor_id(); 6780 rq = cpu_rq(cpu); 6781 prev = rq->curr; 6782 6783 schedule_debug(prev, preempt); 6784 6785 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6786 hrtick_clear(rq); 6787 6788 klp_sched_try_switch(prev); 6789 6790 local_irq_disable(); 6791 rcu_note_context_switch(preempt); 6792 migrate_disable_switch(rq, prev); 6793 6794 /* 6795 * Make sure that signal_pending_state()->signal_pending() below 6796 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6797 * done by the caller to avoid the race with signal_wake_up(): 6798 * 6799 * __set_current_state(@state) signal_wake_up() 6800 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6801 * wake_up_state(p, state) 6802 * LOCK rq->lock LOCK p->pi_state 6803 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6804 * if (signal_pending_state()) if (p->state & @state) 6805 * 6806 * Also, the membarrier system call requires a full memory barrier 6807 * after coming from user-space, before storing to rq->curr; this 6808 * barrier matches a full barrier in the proximity of the membarrier 6809 * system call exit. 6810 */ 6811 rq_lock(rq, &rf); 6812 smp_mb__after_spinlock(); 6813 6814 /* Promote REQ to ACT */ 6815 rq->clock_update_flags <<= 1; 6816 update_rq_clock(rq); 6817 rq->clock_update_flags = RQCF_UPDATED; 6818 6819 switch_count = &prev->nivcsw; 6820 6821 /* Task state changes only considers SM_PREEMPT as preemption */ 6822 preempt = sched_mode == SM_PREEMPT; 6823 6824 /* 6825 * We must load prev->state once (task_struct::state is volatile), such 6826 * that we form a control dependency vs deactivate_task() below. 6827 */ 6828 prev_state = READ_ONCE(prev->__state); 6829 if (sched_mode == SM_IDLE) { 6830 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6831 if (!rq->nr_running && !scx_enabled()) { 6832 next = prev; 6833 goto picked; 6834 } 6835 } else if (!preempt && prev_state) { 6836 /* 6837 * We pass task_is_blocked() as the should_block arg 6838 * in order to keep mutex-blocked tasks on the runqueue 6839 * for slection with proxy-exec (without proxy-exec 6840 * task_is_blocked() will always be false). 6841 */ 6842 try_to_block_task(rq, prev, &prev_state, 6843 !task_is_blocked(prev)); 6844 switch_count = &prev->nvcsw; 6845 } 6846 6847 pick_again: 6848 next = pick_next_task(rq, rq->donor, &rf); 6849 rq_set_donor(rq, next); 6850 rq->next_class = next->sched_class; 6851 if (unlikely(task_is_blocked(next))) { 6852 next = find_proxy_task(rq, next, &rf); 6853 if (!next) 6854 goto pick_again; 6855 if (next == rq->idle) 6856 goto keep_resched; 6857 } 6858 picked: 6859 clear_tsk_need_resched(prev); 6860 clear_preempt_need_resched(); 6861 keep_resched: 6862 rq->last_seen_need_resched_ns = 0; 6863 6864 is_switch = prev != next; 6865 if (likely(is_switch)) { 6866 rq->nr_switches++; 6867 /* 6868 * RCU users of rcu_dereference(rq->curr) may not see 6869 * changes to task_struct made by pick_next_task(). 6870 */ 6871 RCU_INIT_POINTER(rq->curr, next); 6872 6873 if (!task_current_donor(rq, next)) 6874 proxy_tag_curr(rq, next); 6875 6876 /* 6877 * The membarrier system call requires each architecture 6878 * to have a full memory barrier after updating 6879 * rq->curr, before returning to user-space. 6880 * 6881 * Here are the schemes providing that barrier on the 6882 * various architectures: 6883 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6884 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6885 * on PowerPC and on RISC-V. 6886 * - finish_lock_switch() for weakly-ordered 6887 * architectures where spin_unlock is a full barrier, 6888 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6889 * is a RELEASE barrier), 6890 * 6891 * The barrier matches a full barrier in the proximity of 6892 * the membarrier system call entry. 6893 * 6894 * On RISC-V, this barrier pairing is also needed for the 6895 * SYNC_CORE command when switching between processes, cf. 6896 * the inline comments in membarrier_arch_switch_mm(). 6897 */ 6898 ++*switch_count; 6899 6900 psi_account_irqtime(rq, prev, next); 6901 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6902 prev->se.sched_delayed); 6903 6904 trace_sched_switch(preempt, prev, next, prev_state); 6905 6906 /* Also unlocks the rq: */ 6907 rq = context_switch(rq, prev, next, &rf); 6908 } else { 6909 /* In case next was already curr but just got blocked_donor */ 6910 if (!task_current_donor(rq, next)) 6911 proxy_tag_curr(rq, next); 6912 6913 rq_unpin_lock(rq, &rf); 6914 __balance_callbacks(rq, NULL); 6915 raw_spin_rq_unlock_irq(rq); 6916 } 6917 trace_sched_exit_tp(is_switch); 6918 } 6919 6920 void __noreturn do_task_dead(void) 6921 { 6922 /* Causes final put_task_struct in finish_task_switch(): */ 6923 set_special_state(TASK_DEAD); 6924 6925 /* Tell freezer to ignore us: */ 6926 current->flags |= PF_NOFREEZE; 6927 6928 __schedule(SM_NONE); 6929 BUG(); 6930 6931 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6932 for (;;) 6933 cpu_relax(); 6934 } 6935 6936 static inline void sched_submit_work(struct task_struct *tsk) 6937 { 6938 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6939 unsigned int task_flags; 6940 6941 /* 6942 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6943 * will use a blocking primitive -- which would lead to recursion. 6944 */ 6945 lock_map_acquire_try(&sched_map); 6946 6947 task_flags = tsk->flags; 6948 /* 6949 * If a worker goes to sleep, notify and ask workqueue whether it 6950 * wants to wake up a task to maintain concurrency. 6951 */ 6952 if (task_flags & PF_WQ_WORKER) 6953 wq_worker_sleeping(tsk); 6954 else if (task_flags & PF_IO_WORKER) 6955 io_wq_worker_sleeping(tsk); 6956 6957 /* 6958 * spinlock and rwlock must not flush block requests. This will 6959 * deadlock if the callback attempts to acquire a lock which is 6960 * already acquired. 6961 */ 6962 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 6963 6964 /* 6965 * If we are going to sleep and we have plugged IO queued, 6966 * make sure to submit it to avoid deadlocks. 6967 */ 6968 blk_flush_plug(tsk->plug, true); 6969 6970 lock_map_release(&sched_map); 6971 } 6972 6973 static void sched_update_worker(struct task_struct *tsk) 6974 { 6975 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6976 if (tsk->flags & PF_BLOCK_TS) 6977 blk_plug_invalidate_ts(tsk); 6978 if (tsk->flags & PF_WQ_WORKER) 6979 wq_worker_running(tsk); 6980 else if (tsk->flags & PF_IO_WORKER) 6981 io_wq_worker_running(tsk); 6982 } 6983 } 6984 6985 static __always_inline void __schedule_loop(int sched_mode) 6986 { 6987 do { 6988 preempt_disable(); 6989 __schedule(sched_mode); 6990 sched_preempt_enable_no_resched(); 6991 } while (need_resched()); 6992 } 6993 6994 asmlinkage __visible void __sched schedule(void) 6995 { 6996 struct task_struct *tsk = current; 6997 6998 #ifdef CONFIG_RT_MUTEXES 6999 lockdep_assert(!tsk->sched_rt_mutex); 7000 #endif 7001 7002 if (!task_is_running(tsk)) 7003 sched_submit_work(tsk); 7004 __schedule_loop(SM_NONE); 7005 sched_update_worker(tsk); 7006 } 7007 EXPORT_SYMBOL(schedule); 7008 7009 /* 7010 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 7011 * state (have scheduled out non-voluntarily) by making sure that all 7012 * tasks have either left the run queue or have gone into user space. 7013 * As idle tasks do not do either, they must not ever be preempted 7014 * (schedule out non-voluntarily). 7015 * 7016 * schedule_idle() is similar to schedule_preempt_disable() except that it 7017 * never enables preemption because it does not call sched_submit_work(). 7018 */ 7019 void __sched schedule_idle(void) 7020 { 7021 /* 7022 * As this skips calling sched_submit_work(), which the idle task does 7023 * regardless because that function is a NOP when the task is in a 7024 * TASK_RUNNING state, make sure this isn't used someplace that the 7025 * current task can be in any other state. Note, idle is always in the 7026 * TASK_RUNNING state. 7027 */ 7028 WARN_ON_ONCE(current->__state); 7029 do { 7030 __schedule(SM_IDLE); 7031 } while (need_resched()); 7032 } 7033 7034 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 7035 asmlinkage __visible void __sched schedule_user(void) 7036 { 7037 /* 7038 * If we come here after a random call to set_need_resched(), 7039 * or we have been woken up remotely but the IPI has not yet arrived, 7040 * we haven't yet exited the RCU idle mode. Do it here manually until 7041 * we find a better solution. 7042 * 7043 * NB: There are buggy callers of this function. Ideally we 7044 * should warn if prev_state != CT_STATE_USER, but that will trigger 7045 * too frequently to make sense yet. 7046 */ 7047 enum ctx_state prev_state = exception_enter(); 7048 schedule(); 7049 exception_exit(prev_state); 7050 } 7051 #endif 7052 7053 /** 7054 * schedule_preempt_disabled - called with preemption disabled 7055 * 7056 * Returns with preemption disabled. Note: preempt_count must be 1 7057 */ 7058 void __sched schedule_preempt_disabled(void) 7059 { 7060 sched_preempt_enable_no_resched(); 7061 schedule(); 7062 preempt_disable(); 7063 } 7064 7065 #ifdef CONFIG_PREEMPT_RT 7066 void __sched notrace schedule_rtlock(void) 7067 { 7068 __schedule_loop(SM_RTLOCK_WAIT); 7069 } 7070 NOKPROBE_SYMBOL(schedule_rtlock); 7071 #endif 7072 7073 static void __sched notrace preempt_schedule_common(void) 7074 { 7075 do { 7076 /* 7077 * Because the function tracer can trace preempt_count_sub() 7078 * and it also uses preempt_enable/disable_notrace(), if 7079 * NEED_RESCHED is set, the preempt_enable_notrace() called 7080 * by the function tracer will call this function again and 7081 * cause infinite recursion. 7082 * 7083 * Preemption must be disabled here before the function 7084 * tracer can trace. Break up preempt_disable() into two 7085 * calls. One to disable preemption without fear of being 7086 * traced. The other to still record the preemption latency, 7087 * which can also be traced by the function tracer. 7088 */ 7089 preempt_disable_notrace(); 7090 preempt_latency_start(1); 7091 __schedule(SM_PREEMPT); 7092 preempt_latency_stop(1); 7093 preempt_enable_no_resched_notrace(); 7094 7095 /* 7096 * Check again in case we missed a preemption opportunity 7097 * between schedule and now. 7098 */ 7099 } while (need_resched()); 7100 } 7101 7102 #ifdef CONFIG_PREEMPTION 7103 /* 7104 * This is the entry point to schedule() from in-kernel preemption 7105 * off of preempt_enable. 7106 */ 7107 asmlinkage __visible void __sched notrace preempt_schedule(void) 7108 { 7109 /* 7110 * If there is a non-zero preempt_count or interrupts are disabled, 7111 * we do not want to preempt the current task. Just return.. 7112 */ 7113 if (likely(!preemptible())) 7114 return; 7115 preempt_schedule_common(); 7116 } 7117 NOKPROBE_SYMBOL(preempt_schedule); 7118 EXPORT_SYMBOL(preempt_schedule); 7119 7120 #ifdef CONFIG_PREEMPT_DYNAMIC 7121 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7122 # ifndef preempt_schedule_dynamic_enabled 7123 # define preempt_schedule_dynamic_enabled preempt_schedule 7124 # define preempt_schedule_dynamic_disabled NULL 7125 # endif 7126 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 7127 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 7128 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7129 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 7130 void __sched notrace dynamic_preempt_schedule(void) 7131 { 7132 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 7133 return; 7134 preempt_schedule(); 7135 } 7136 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 7137 EXPORT_SYMBOL(dynamic_preempt_schedule); 7138 # endif 7139 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7140 7141 /** 7142 * preempt_schedule_notrace - preempt_schedule called by tracing 7143 * 7144 * The tracing infrastructure uses preempt_enable_notrace to prevent 7145 * recursion and tracing preempt enabling caused by the tracing 7146 * infrastructure itself. But as tracing can happen in areas coming 7147 * from userspace or just about to enter userspace, a preempt enable 7148 * can occur before user_exit() is called. This will cause the scheduler 7149 * to be called when the system is still in usermode. 7150 * 7151 * To prevent this, the preempt_enable_notrace will use this function 7152 * instead of preempt_schedule() to exit user context if needed before 7153 * calling the scheduler. 7154 */ 7155 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7156 { 7157 enum ctx_state prev_ctx; 7158 7159 if (likely(!preemptible())) 7160 return; 7161 7162 do { 7163 /* 7164 * Because the function tracer can trace preempt_count_sub() 7165 * and it also uses preempt_enable/disable_notrace(), if 7166 * NEED_RESCHED is set, the preempt_enable_notrace() called 7167 * by the function tracer will call this function again and 7168 * cause infinite recursion. 7169 * 7170 * Preemption must be disabled here before the function 7171 * tracer can trace. Break up preempt_disable() into two 7172 * calls. One to disable preemption without fear of being 7173 * traced. The other to still record the preemption latency, 7174 * which can also be traced by the function tracer. 7175 */ 7176 preempt_disable_notrace(); 7177 preempt_latency_start(1); 7178 /* 7179 * Needs preempt disabled in case user_exit() is traced 7180 * and the tracer calls preempt_enable_notrace() causing 7181 * an infinite recursion. 7182 */ 7183 prev_ctx = exception_enter(); 7184 __schedule(SM_PREEMPT); 7185 exception_exit(prev_ctx); 7186 7187 preempt_latency_stop(1); 7188 preempt_enable_no_resched_notrace(); 7189 } while (need_resched()); 7190 } 7191 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7192 7193 #ifdef CONFIG_PREEMPT_DYNAMIC 7194 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7195 # ifndef preempt_schedule_notrace_dynamic_enabled 7196 # define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7197 # define preempt_schedule_notrace_dynamic_disabled NULL 7198 # endif 7199 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7200 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7201 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7202 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7203 void __sched notrace dynamic_preempt_schedule_notrace(void) 7204 { 7205 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7206 return; 7207 preempt_schedule_notrace(); 7208 } 7209 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7210 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7211 # endif 7212 #endif 7213 7214 #endif /* CONFIG_PREEMPTION */ 7215 7216 /* 7217 * This is the entry point to schedule() from kernel preemption 7218 * off of IRQ context. 7219 * Note, that this is called and return with IRQs disabled. This will 7220 * protect us against recursive calling from IRQ contexts. 7221 */ 7222 asmlinkage __visible void __sched preempt_schedule_irq(void) 7223 { 7224 enum ctx_state prev_state; 7225 7226 /* Catch callers which need to be fixed */ 7227 BUG_ON(preempt_count() || !irqs_disabled()); 7228 7229 prev_state = exception_enter(); 7230 7231 do { 7232 preempt_disable(); 7233 local_irq_enable(); 7234 __schedule(SM_PREEMPT); 7235 local_irq_disable(); 7236 sched_preempt_enable_no_resched(); 7237 } while (need_resched()); 7238 7239 exception_exit(prev_state); 7240 } 7241 7242 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7243 void *key) 7244 { 7245 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7246 return try_to_wake_up(curr->private, mode, wake_flags); 7247 } 7248 EXPORT_SYMBOL(default_wake_function); 7249 7250 const struct sched_class *__setscheduler_class(int policy, int prio) 7251 { 7252 if (dl_prio(prio)) 7253 return &dl_sched_class; 7254 7255 if (rt_prio(prio)) 7256 return &rt_sched_class; 7257 7258 #ifdef CONFIG_SCHED_CLASS_EXT 7259 if (task_should_scx(policy)) 7260 return &ext_sched_class; 7261 #endif 7262 7263 return &fair_sched_class; 7264 } 7265 7266 #ifdef CONFIG_RT_MUTEXES 7267 7268 /* 7269 * Would be more useful with typeof()/auto_type but they don't mix with 7270 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7271 * name such that if someone were to implement this function we get to compare 7272 * notes. 7273 */ 7274 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7275 7276 void rt_mutex_pre_schedule(void) 7277 { 7278 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7279 sched_submit_work(current); 7280 } 7281 7282 void rt_mutex_schedule(void) 7283 { 7284 lockdep_assert(current->sched_rt_mutex); 7285 __schedule_loop(SM_NONE); 7286 } 7287 7288 void rt_mutex_post_schedule(void) 7289 { 7290 sched_update_worker(current); 7291 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7292 } 7293 7294 /* 7295 * rt_mutex_setprio - set the current priority of a task 7296 * @p: task to boost 7297 * @pi_task: donor task 7298 * 7299 * This function changes the 'effective' priority of a task. It does 7300 * not touch ->normal_prio like __setscheduler(). 7301 * 7302 * Used by the rt_mutex code to implement priority inheritance 7303 * logic. Call site only calls if the priority of the task changed. 7304 */ 7305 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7306 { 7307 int prio, oldprio, queue_flag = 7308 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7309 const struct sched_class *prev_class, *next_class; 7310 struct rq_flags rf; 7311 struct rq *rq; 7312 7313 /* XXX used to be waiter->prio, not waiter->task->prio */ 7314 prio = __rt_effective_prio(pi_task, p->normal_prio); 7315 7316 /* 7317 * If nothing changed; bail early. 7318 */ 7319 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7320 return; 7321 7322 rq = __task_rq_lock(p, &rf); 7323 update_rq_clock(rq); 7324 /* 7325 * Set under pi_lock && rq->lock, such that the value can be used under 7326 * either lock. 7327 * 7328 * Note that there is loads of tricky to make this pointer cache work 7329 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7330 * ensure a task is de-boosted (pi_task is set to NULL) before the 7331 * task is allowed to run again (and can exit). This ensures the pointer 7332 * points to a blocked task -- which guarantees the task is present. 7333 */ 7334 p->pi_top_task = pi_task; 7335 7336 /* 7337 * For FIFO/RR we only need to set prio, if that matches we're done. 7338 */ 7339 if (prio == p->prio && !dl_prio(prio)) 7340 goto out_unlock; 7341 7342 /* 7343 * Idle task boosting is a no-no in general. There is one 7344 * exception, when PREEMPT_RT and NOHZ is active: 7345 * 7346 * The idle task calls get_next_timer_interrupt() and holds 7347 * the timer wheel base->lock on the CPU and another CPU wants 7348 * to access the timer (probably to cancel it). We can safely 7349 * ignore the boosting request, as the idle CPU runs this code 7350 * with interrupts disabled and will complete the lock 7351 * protected section without being interrupted. So there is no 7352 * real need to boost. 7353 */ 7354 if (unlikely(p == rq->idle)) { 7355 WARN_ON(p != rq->curr); 7356 WARN_ON(p->pi_blocked_on); 7357 goto out_unlock; 7358 } 7359 7360 trace_sched_pi_setprio(p, pi_task); 7361 oldprio = p->prio; 7362 7363 if (oldprio == prio && !dl_prio(prio)) 7364 queue_flag &= ~DEQUEUE_MOVE; 7365 7366 prev_class = p->sched_class; 7367 next_class = __setscheduler_class(p->policy, prio); 7368 7369 if (prev_class != next_class) 7370 queue_flag |= DEQUEUE_CLASS; 7371 7372 scoped_guard (sched_change, p, queue_flag) { 7373 /* 7374 * Boosting condition are: 7375 * 1. -rt task is running and holds mutex A 7376 * --> -dl task blocks on mutex A 7377 * 7378 * 2. -dl task is running and holds mutex A 7379 * --> -dl task blocks on mutex A and could preempt the 7380 * running task 7381 */ 7382 if (dl_prio(prio)) { 7383 if (!dl_prio(p->normal_prio) || 7384 (pi_task && dl_prio(pi_task->prio) && 7385 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7386 p->dl.pi_se = pi_task->dl.pi_se; 7387 scope->flags |= ENQUEUE_REPLENISH; 7388 } else { 7389 p->dl.pi_se = &p->dl; 7390 } 7391 } else if (rt_prio(prio)) { 7392 if (dl_prio(oldprio)) 7393 p->dl.pi_se = &p->dl; 7394 if (oldprio < prio) 7395 scope->flags |= ENQUEUE_HEAD; 7396 } else { 7397 if (dl_prio(oldprio)) 7398 p->dl.pi_se = &p->dl; 7399 if (rt_prio(oldprio)) 7400 p->rt.timeout = 0; 7401 } 7402 7403 p->sched_class = next_class; 7404 p->prio = prio; 7405 } 7406 out_unlock: 7407 /* Caller holds task_struct::pi_lock, IRQs are still disabled */ 7408 7409 __balance_callbacks(rq, &rf); 7410 __task_rq_unlock(rq, p, &rf); 7411 } 7412 #endif /* CONFIG_RT_MUTEXES */ 7413 7414 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7415 int __sched __cond_resched(void) 7416 { 7417 if (should_resched(0) && !irqs_disabled()) { 7418 preempt_schedule_common(); 7419 return 1; 7420 } 7421 /* 7422 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7423 * whether the current CPU is in an RCU read-side critical section, 7424 * so the tick can report quiescent states even for CPUs looping 7425 * in kernel context. In contrast, in non-preemptible kernels, 7426 * RCU readers leave no in-memory hints, which means that CPU-bound 7427 * processes executing in kernel context might never report an 7428 * RCU quiescent state. Therefore, the following code causes 7429 * cond_resched() to report a quiescent state, but only when RCU 7430 * is in urgent need of one. 7431 * A third case, preemptible, but non-PREEMPT_RCU provides for 7432 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7433 */ 7434 #ifndef CONFIG_PREEMPT_RCU 7435 rcu_all_qs(); 7436 #endif 7437 return 0; 7438 } 7439 EXPORT_SYMBOL(__cond_resched); 7440 #endif 7441 7442 #ifdef CONFIG_PREEMPT_DYNAMIC 7443 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7444 # define cond_resched_dynamic_enabled __cond_resched 7445 # define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7446 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7447 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7448 7449 # define might_resched_dynamic_enabled __cond_resched 7450 # define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7451 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7452 EXPORT_STATIC_CALL_TRAMP(might_resched); 7453 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7454 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7455 int __sched dynamic_cond_resched(void) 7456 { 7457 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7458 return 0; 7459 return __cond_resched(); 7460 } 7461 EXPORT_SYMBOL(dynamic_cond_resched); 7462 7463 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7464 int __sched dynamic_might_resched(void) 7465 { 7466 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7467 return 0; 7468 return __cond_resched(); 7469 } 7470 EXPORT_SYMBOL(dynamic_might_resched); 7471 # endif 7472 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7473 7474 /* 7475 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7476 * call schedule, and on return reacquire the lock. 7477 * 7478 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7479 * operations here to prevent schedule() from being called twice (once via 7480 * spin_unlock(), once by hand). 7481 */ 7482 int __cond_resched_lock(spinlock_t *lock) 7483 { 7484 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7485 int ret = 0; 7486 7487 lockdep_assert_held(lock); 7488 7489 if (spin_needbreak(lock) || resched) { 7490 spin_unlock(lock); 7491 if (!_cond_resched()) 7492 cpu_relax(); 7493 ret = 1; 7494 spin_lock(lock); 7495 } 7496 return ret; 7497 } 7498 EXPORT_SYMBOL(__cond_resched_lock); 7499 7500 int __cond_resched_rwlock_read(rwlock_t *lock) 7501 { 7502 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7503 int ret = 0; 7504 7505 lockdep_assert_held_read(lock); 7506 7507 if (rwlock_needbreak(lock) || resched) { 7508 read_unlock(lock); 7509 if (!_cond_resched()) 7510 cpu_relax(); 7511 ret = 1; 7512 read_lock(lock); 7513 } 7514 return ret; 7515 } 7516 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7517 7518 int __cond_resched_rwlock_write(rwlock_t *lock) 7519 { 7520 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7521 int ret = 0; 7522 7523 lockdep_assert_held_write(lock); 7524 7525 if (rwlock_needbreak(lock) || resched) { 7526 write_unlock(lock); 7527 if (!_cond_resched()) 7528 cpu_relax(); 7529 ret = 1; 7530 write_lock(lock); 7531 } 7532 return ret; 7533 } 7534 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7535 7536 #ifdef CONFIG_PREEMPT_DYNAMIC 7537 7538 # ifdef CONFIG_GENERIC_IRQ_ENTRY 7539 # include <linux/irq-entry-common.h> 7540 # endif 7541 7542 /* 7543 * SC:cond_resched 7544 * SC:might_resched 7545 * SC:preempt_schedule 7546 * SC:preempt_schedule_notrace 7547 * SC:irqentry_exit_cond_resched 7548 * 7549 * 7550 * NONE: 7551 * cond_resched <- __cond_resched 7552 * might_resched <- RET0 7553 * preempt_schedule <- NOP 7554 * preempt_schedule_notrace <- NOP 7555 * irqentry_exit_cond_resched <- NOP 7556 * dynamic_preempt_lazy <- false 7557 * 7558 * VOLUNTARY: 7559 * cond_resched <- __cond_resched 7560 * might_resched <- __cond_resched 7561 * preempt_schedule <- NOP 7562 * preempt_schedule_notrace <- NOP 7563 * irqentry_exit_cond_resched <- NOP 7564 * dynamic_preempt_lazy <- false 7565 * 7566 * FULL: 7567 * cond_resched <- RET0 7568 * might_resched <- RET0 7569 * preempt_schedule <- preempt_schedule 7570 * preempt_schedule_notrace <- preempt_schedule_notrace 7571 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7572 * dynamic_preempt_lazy <- false 7573 * 7574 * LAZY: 7575 * cond_resched <- RET0 7576 * might_resched <- RET0 7577 * preempt_schedule <- preempt_schedule 7578 * preempt_schedule_notrace <- preempt_schedule_notrace 7579 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7580 * dynamic_preempt_lazy <- true 7581 */ 7582 7583 enum { 7584 preempt_dynamic_undefined = -1, 7585 preempt_dynamic_none, 7586 preempt_dynamic_voluntary, 7587 preempt_dynamic_full, 7588 preempt_dynamic_lazy, 7589 }; 7590 7591 int preempt_dynamic_mode = preempt_dynamic_undefined; 7592 7593 int sched_dynamic_mode(const char *str) 7594 { 7595 # if !(defined(CONFIG_PREEMPT_RT) || defined(CONFIG_ARCH_HAS_PREEMPT_LAZY)) 7596 if (!strcmp(str, "none")) 7597 return preempt_dynamic_none; 7598 7599 if (!strcmp(str, "voluntary")) 7600 return preempt_dynamic_voluntary; 7601 # endif 7602 7603 if (!strcmp(str, "full")) 7604 return preempt_dynamic_full; 7605 7606 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7607 if (!strcmp(str, "lazy")) 7608 return preempt_dynamic_lazy; 7609 # endif 7610 7611 return -EINVAL; 7612 } 7613 7614 # define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7615 # define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7616 7617 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7618 # define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7619 # define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7620 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7621 # define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7622 # define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7623 # else 7624 # error "Unsupported PREEMPT_DYNAMIC mechanism" 7625 # endif 7626 7627 static DEFINE_MUTEX(sched_dynamic_mutex); 7628 7629 static void __sched_dynamic_update(int mode) 7630 { 7631 /* 7632 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7633 * the ZERO state, which is invalid. 7634 */ 7635 preempt_dynamic_enable(cond_resched); 7636 preempt_dynamic_enable(might_resched); 7637 preempt_dynamic_enable(preempt_schedule); 7638 preempt_dynamic_enable(preempt_schedule_notrace); 7639 preempt_dynamic_enable(irqentry_exit_cond_resched); 7640 preempt_dynamic_key_disable(preempt_lazy); 7641 7642 switch (mode) { 7643 case preempt_dynamic_none: 7644 preempt_dynamic_enable(cond_resched); 7645 preempt_dynamic_disable(might_resched); 7646 preempt_dynamic_disable(preempt_schedule); 7647 preempt_dynamic_disable(preempt_schedule_notrace); 7648 preempt_dynamic_disable(irqentry_exit_cond_resched); 7649 preempt_dynamic_key_disable(preempt_lazy); 7650 if (mode != preempt_dynamic_mode) 7651 pr_info("Dynamic Preempt: none\n"); 7652 break; 7653 7654 case preempt_dynamic_voluntary: 7655 preempt_dynamic_enable(cond_resched); 7656 preempt_dynamic_enable(might_resched); 7657 preempt_dynamic_disable(preempt_schedule); 7658 preempt_dynamic_disable(preempt_schedule_notrace); 7659 preempt_dynamic_disable(irqentry_exit_cond_resched); 7660 preempt_dynamic_key_disable(preempt_lazy); 7661 if (mode != preempt_dynamic_mode) 7662 pr_info("Dynamic Preempt: voluntary\n"); 7663 break; 7664 7665 case preempt_dynamic_full: 7666 preempt_dynamic_disable(cond_resched); 7667 preempt_dynamic_disable(might_resched); 7668 preempt_dynamic_enable(preempt_schedule); 7669 preempt_dynamic_enable(preempt_schedule_notrace); 7670 preempt_dynamic_enable(irqentry_exit_cond_resched); 7671 preempt_dynamic_key_disable(preempt_lazy); 7672 if (mode != preempt_dynamic_mode) 7673 pr_info("Dynamic Preempt: full\n"); 7674 break; 7675 7676 case preempt_dynamic_lazy: 7677 preempt_dynamic_disable(cond_resched); 7678 preempt_dynamic_disable(might_resched); 7679 preempt_dynamic_enable(preempt_schedule); 7680 preempt_dynamic_enable(preempt_schedule_notrace); 7681 preempt_dynamic_enable(irqentry_exit_cond_resched); 7682 preempt_dynamic_key_enable(preempt_lazy); 7683 if (mode != preempt_dynamic_mode) 7684 pr_info("Dynamic Preempt: lazy\n"); 7685 break; 7686 } 7687 7688 preempt_dynamic_mode = mode; 7689 } 7690 7691 void sched_dynamic_update(int mode) 7692 { 7693 mutex_lock(&sched_dynamic_mutex); 7694 __sched_dynamic_update(mode); 7695 mutex_unlock(&sched_dynamic_mutex); 7696 } 7697 7698 static int __init setup_preempt_mode(char *str) 7699 { 7700 int mode = sched_dynamic_mode(str); 7701 if (mode < 0) { 7702 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7703 return 0; 7704 } 7705 7706 sched_dynamic_update(mode); 7707 return 1; 7708 } 7709 __setup("preempt=", setup_preempt_mode); 7710 7711 static void __init preempt_dynamic_init(void) 7712 { 7713 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7714 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7715 sched_dynamic_update(preempt_dynamic_none); 7716 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7717 sched_dynamic_update(preempt_dynamic_voluntary); 7718 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7719 sched_dynamic_update(preempt_dynamic_lazy); 7720 } else { 7721 /* Default static call setting, nothing to do */ 7722 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7723 preempt_dynamic_mode = preempt_dynamic_full; 7724 pr_info("Dynamic Preempt: full\n"); 7725 } 7726 } 7727 } 7728 7729 # define PREEMPT_MODEL_ACCESSOR(mode) \ 7730 bool preempt_model_##mode(void) \ 7731 { \ 7732 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7733 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7734 } \ 7735 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7736 7737 PREEMPT_MODEL_ACCESSOR(none); 7738 PREEMPT_MODEL_ACCESSOR(voluntary); 7739 PREEMPT_MODEL_ACCESSOR(full); 7740 PREEMPT_MODEL_ACCESSOR(lazy); 7741 7742 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7743 7744 #define preempt_dynamic_mode -1 7745 7746 static inline void preempt_dynamic_init(void) { } 7747 7748 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7749 7750 const char *preempt_modes[] = { 7751 "none", "voluntary", "full", "lazy", NULL, 7752 }; 7753 7754 const char *preempt_model_str(void) 7755 { 7756 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7757 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7758 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7759 static char buf[128]; 7760 7761 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7762 struct seq_buf s; 7763 7764 seq_buf_init(&s, buf, sizeof(buf)); 7765 seq_buf_puts(&s, "PREEMPT"); 7766 7767 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7768 seq_buf_printf(&s, "%sRT%s", 7769 brace ? "_{" : "_", 7770 brace ? "," : ""); 7771 7772 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7773 seq_buf_printf(&s, "(%s)%s", 7774 preempt_dynamic_mode >= 0 ? 7775 preempt_modes[preempt_dynamic_mode] : "undef", 7776 brace ? "}" : ""); 7777 return seq_buf_str(&s); 7778 } 7779 7780 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7781 seq_buf_printf(&s, "LAZY%s", 7782 brace ? "}" : ""); 7783 return seq_buf_str(&s); 7784 } 7785 7786 return seq_buf_str(&s); 7787 } 7788 7789 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7790 return "VOLUNTARY"; 7791 7792 return "NONE"; 7793 } 7794 7795 int io_schedule_prepare(void) 7796 { 7797 int old_iowait = current->in_iowait; 7798 7799 current->in_iowait = 1; 7800 blk_flush_plug(current->plug, true); 7801 return old_iowait; 7802 } 7803 7804 void io_schedule_finish(int token) 7805 { 7806 current->in_iowait = token; 7807 } 7808 7809 /* 7810 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7811 * that process accounting knows that this is a task in IO wait state. 7812 */ 7813 long __sched io_schedule_timeout(long timeout) 7814 { 7815 int token; 7816 long ret; 7817 7818 token = io_schedule_prepare(); 7819 ret = schedule_timeout(timeout); 7820 io_schedule_finish(token); 7821 7822 return ret; 7823 } 7824 EXPORT_SYMBOL(io_schedule_timeout); 7825 7826 void __sched io_schedule(void) 7827 { 7828 int token; 7829 7830 token = io_schedule_prepare(); 7831 schedule(); 7832 io_schedule_finish(token); 7833 } 7834 EXPORT_SYMBOL(io_schedule); 7835 7836 void sched_show_task(struct task_struct *p) 7837 { 7838 unsigned long free; 7839 int ppid; 7840 7841 if (!try_get_task_stack(p)) 7842 return; 7843 7844 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7845 7846 if (task_is_running(p)) 7847 pr_cont(" running task "); 7848 free = stack_not_used(p); 7849 ppid = 0; 7850 rcu_read_lock(); 7851 if (pid_alive(p)) 7852 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7853 rcu_read_unlock(); 7854 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7855 free, task_pid_nr(p), task_tgid_nr(p), 7856 ppid, p->flags, read_task_thread_flags(p)); 7857 7858 print_worker_info(KERN_INFO, p); 7859 print_stop_info(KERN_INFO, p); 7860 print_scx_info(KERN_INFO, p); 7861 show_stack(p, NULL, KERN_INFO); 7862 put_task_stack(p); 7863 } 7864 EXPORT_SYMBOL_GPL(sched_show_task); 7865 7866 static inline bool 7867 state_filter_match(unsigned long state_filter, struct task_struct *p) 7868 { 7869 unsigned int state = READ_ONCE(p->__state); 7870 7871 /* no filter, everything matches */ 7872 if (!state_filter) 7873 return true; 7874 7875 /* filter, but doesn't match */ 7876 if (!(state & state_filter)) 7877 return false; 7878 7879 /* 7880 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7881 * TASK_KILLABLE). 7882 */ 7883 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7884 return false; 7885 7886 return true; 7887 } 7888 7889 7890 void show_state_filter(unsigned int state_filter) 7891 { 7892 struct task_struct *g, *p; 7893 7894 rcu_read_lock(); 7895 for_each_process_thread(g, p) { 7896 /* 7897 * reset the NMI-timeout, listing all files on a slow 7898 * console might take a lot of time: 7899 * Also, reset softlockup watchdogs on all CPUs, because 7900 * another CPU might be blocked waiting for us to process 7901 * an IPI. 7902 */ 7903 touch_nmi_watchdog(); 7904 touch_all_softlockup_watchdogs(); 7905 if (state_filter_match(state_filter, p)) 7906 sched_show_task(p); 7907 } 7908 7909 if (!state_filter) 7910 sysrq_sched_debug_show(); 7911 7912 rcu_read_unlock(); 7913 /* 7914 * Only show locks if all tasks are dumped: 7915 */ 7916 if (!state_filter) 7917 debug_show_all_locks(); 7918 } 7919 7920 /** 7921 * init_idle - set up an idle thread for a given CPU 7922 * @idle: task in question 7923 * @cpu: CPU the idle task belongs to 7924 * 7925 * NOTE: this function does not set the idle thread's NEED_RESCHED 7926 * flag, to make booting more robust. 7927 */ 7928 void __init init_idle(struct task_struct *idle, int cpu) 7929 { 7930 struct affinity_context ac = (struct affinity_context) { 7931 .new_mask = cpumask_of(cpu), 7932 .flags = 0, 7933 }; 7934 struct rq *rq = cpu_rq(cpu); 7935 unsigned long flags; 7936 7937 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7938 raw_spin_rq_lock(rq); 7939 7940 idle->__state = TASK_RUNNING; 7941 idle->se.exec_start = sched_clock(); 7942 /* 7943 * PF_KTHREAD should already be set at this point; regardless, make it 7944 * look like a proper per-CPU kthread. 7945 */ 7946 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7947 kthread_set_per_cpu(idle, cpu); 7948 7949 /* 7950 * No validation and serialization required at boot time and for 7951 * setting up the idle tasks of not yet online CPUs. 7952 */ 7953 set_cpus_allowed_common(idle, &ac); 7954 /* 7955 * We're having a chicken and egg problem, even though we are 7956 * holding rq->lock, the CPU isn't yet set to this CPU so the 7957 * lockdep check in task_group() will fail. 7958 * 7959 * Similar case to sched_fork(). / Alternatively we could 7960 * use task_rq_lock() here and obtain the other rq->lock. 7961 * 7962 * Silence PROVE_RCU 7963 */ 7964 rcu_read_lock(); 7965 __set_task_cpu(idle, cpu); 7966 rcu_read_unlock(); 7967 7968 rq->idle = idle; 7969 rq_set_donor(rq, idle); 7970 rcu_assign_pointer(rq->curr, idle); 7971 idle->on_rq = TASK_ON_RQ_QUEUED; 7972 idle->on_cpu = 1; 7973 raw_spin_rq_unlock(rq); 7974 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7975 7976 /* Set the preempt count _outside_ the spinlocks! */ 7977 init_idle_preempt_count(idle, cpu); 7978 7979 /* 7980 * The idle tasks have their own, simple scheduling class: 7981 */ 7982 idle->sched_class = &idle_sched_class; 7983 ftrace_graph_init_idle_task(idle, cpu); 7984 vtime_init_idle(idle, cpu); 7985 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7986 } 7987 7988 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7989 const struct cpumask *trial) 7990 { 7991 int ret = 1; 7992 7993 if (cpumask_empty(cur)) 7994 return ret; 7995 7996 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7997 7998 return ret; 7999 } 8000 8001 int task_can_attach(struct task_struct *p) 8002 { 8003 int ret = 0; 8004 8005 /* 8006 * Kthreads which disallow setaffinity shouldn't be moved 8007 * to a new cpuset; we don't want to change their CPU 8008 * affinity and isolating such threads by their set of 8009 * allowed nodes is unnecessary. Thus, cpusets are not 8010 * applicable for such threads. This prevents checking for 8011 * success of set_cpus_allowed_ptr() on all attached tasks 8012 * before cpus_mask may be changed. 8013 */ 8014 if (p->flags & PF_NO_SETAFFINITY) 8015 ret = -EINVAL; 8016 8017 return ret; 8018 } 8019 8020 bool sched_smp_initialized __read_mostly; 8021 8022 #ifdef CONFIG_NUMA_BALANCING 8023 /* Migrate current task p to target_cpu */ 8024 int migrate_task_to(struct task_struct *p, int target_cpu) 8025 { 8026 struct migration_arg arg = { p, target_cpu }; 8027 int curr_cpu = task_cpu(p); 8028 8029 if (curr_cpu == target_cpu) 8030 return 0; 8031 8032 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 8033 return -EINVAL; 8034 8035 /* TODO: This is not properly updating schedstats */ 8036 8037 trace_sched_move_numa(p, curr_cpu, target_cpu); 8038 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8039 } 8040 8041 /* 8042 * Requeue a task on a given node and accurately track the number of NUMA 8043 * tasks on the runqueues 8044 */ 8045 void sched_setnuma(struct task_struct *p, int nid) 8046 { 8047 guard(task_rq_lock)(p); 8048 scoped_guard (sched_change, p, DEQUEUE_SAVE) 8049 p->numa_preferred_nid = nid; 8050 } 8051 #endif /* CONFIG_NUMA_BALANCING */ 8052 8053 #ifdef CONFIG_HOTPLUG_CPU 8054 /* 8055 * Invoked on the outgoing CPU in context of the CPU hotplug thread 8056 * after ensuring that there are no user space tasks left on the CPU. 8057 * 8058 * If there is a lazy mm in use on the hotplug thread, drop it and 8059 * switch to init_mm. 8060 * 8061 * The reference count on init_mm is dropped in finish_cpu(). 8062 */ 8063 static void sched_force_init_mm(void) 8064 { 8065 struct mm_struct *mm = current->active_mm; 8066 8067 if (mm != &init_mm) { 8068 mmgrab_lazy_tlb(&init_mm); 8069 local_irq_disable(); 8070 current->active_mm = &init_mm; 8071 switch_mm_irqs_off(mm, &init_mm, current); 8072 local_irq_enable(); 8073 finish_arch_post_lock_switch(); 8074 mmdrop_lazy_tlb(mm); 8075 } 8076 8077 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8078 } 8079 8080 static int __balance_push_cpu_stop(void *arg) 8081 { 8082 struct task_struct *p = arg; 8083 struct rq *rq = this_rq(); 8084 struct rq_flags rf; 8085 int cpu; 8086 8087 scoped_guard (raw_spinlock_irq, &p->pi_lock) { 8088 /* 8089 * We may change the underlying rq, but the locks held will 8090 * appropriately be "transferred" when switching. 8091 */ 8092 context_unsafe_alias(rq); 8093 8094 cpu = select_fallback_rq(rq->cpu, p); 8095 8096 rq_lock(rq, &rf); 8097 update_rq_clock(rq); 8098 if (task_rq(p) == rq && task_on_rq_queued(p)) 8099 rq = __migrate_task(rq, &rf, p, cpu); 8100 rq_unlock(rq, &rf); 8101 } 8102 8103 put_task_struct(p); 8104 8105 return 0; 8106 } 8107 8108 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8109 8110 /* 8111 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8112 * 8113 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8114 * effective when the hotplug motion is down. 8115 */ 8116 static void balance_push(struct rq *rq) 8117 __must_hold(__rq_lockp(rq)) 8118 { 8119 struct task_struct *push_task = rq->curr; 8120 8121 lockdep_assert_rq_held(rq); 8122 8123 /* 8124 * Ensure the thing is persistent until balance_push_set(.on = false); 8125 */ 8126 rq->balance_callback = &balance_push_callback; 8127 8128 /* 8129 * Only active while going offline and when invoked on the outgoing 8130 * CPU. 8131 */ 8132 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8133 return; 8134 8135 /* 8136 * Both the cpu-hotplug and stop task are in this case and are 8137 * required to complete the hotplug process. 8138 */ 8139 if (kthread_is_per_cpu(push_task) || 8140 is_migration_disabled(push_task)) { 8141 8142 /* 8143 * If this is the idle task on the outgoing CPU try to wake 8144 * up the hotplug control thread which might wait for the 8145 * last task to vanish. The rcuwait_active() check is 8146 * accurate here because the waiter is pinned on this CPU 8147 * and can't obviously be running in parallel. 8148 * 8149 * On RT kernels this also has to check whether there are 8150 * pinned and scheduled out tasks on the runqueue. They 8151 * need to leave the migrate disabled section first. 8152 */ 8153 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8154 rcuwait_active(&rq->hotplug_wait)) { 8155 raw_spin_rq_unlock(rq); 8156 rcuwait_wake_up(&rq->hotplug_wait); 8157 raw_spin_rq_lock(rq); 8158 } 8159 return; 8160 } 8161 8162 get_task_struct(push_task); 8163 /* 8164 * Temporarily drop rq->lock such that we can wake-up the stop task. 8165 * Both preemption and IRQs are still disabled. 8166 */ 8167 preempt_disable(); 8168 raw_spin_rq_unlock(rq); 8169 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8170 this_cpu_ptr(&push_work)); 8171 preempt_enable(); 8172 /* 8173 * At this point need_resched() is true and we'll take the loop in 8174 * schedule(). The next pick is obviously going to be the stop task 8175 * which kthread_is_per_cpu() and will push this task away. 8176 */ 8177 raw_spin_rq_lock(rq); 8178 } 8179 8180 static void balance_push_set(int cpu, bool on) 8181 { 8182 struct rq *rq = cpu_rq(cpu); 8183 struct rq_flags rf; 8184 8185 rq_lock_irqsave(rq, &rf); 8186 if (on) { 8187 WARN_ON_ONCE(rq->balance_callback); 8188 rq->balance_callback = &balance_push_callback; 8189 } else if (rq->balance_callback == &balance_push_callback) { 8190 rq->balance_callback = NULL; 8191 } 8192 rq_unlock_irqrestore(rq, &rf); 8193 } 8194 8195 /* 8196 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8197 * inactive. All tasks which are not per CPU kernel threads are either 8198 * pushed off this CPU now via balance_push() or placed on a different CPU 8199 * during wakeup. Wait until the CPU is quiescent. 8200 */ 8201 static void balance_hotplug_wait(void) 8202 { 8203 struct rq *rq = this_rq(); 8204 8205 rcuwait_wait_event(&rq->hotplug_wait, 8206 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8207 TASK_UNINTERRUPTIBLE); 8208 } 8209 8210 #else /* !CONFIG_HOTPLUG_CPU: */ 8211 8212 static inline void balance_push(struct rq *rq) 8213 { 8214 } 8215 8216 static inline void balance_push_set(int cpu, bool on) 8217 { 8218 } 8219 8220 static inline void balance_hotplug_wait(void) 8221 { 8222 } 8223 8224 #endif /* !CONFIG_HOTPLUG_CPU */ 8225 8226 void set_rq_online(struct rq *rq) 8227 { 8228 if (!rq->online) { 8229 const struct sched_class *class; 8230 8231 cpumask_set_cpu(rq->cpu, rq->rd->online); 8232 rq->online = 1; 8233 8234 for_each_class(class) { 8235 if (class->rq_online) 8236 class->rq_online(rq); 8237 } 8238 } 8239 } 8240 8241 void set_rq_offline(struct rq *rq) 8242 { 8243 if (rq->online) { 8244 const struct sched_class *class; 8245 8246 update_rq_clock(rq); 8247 for_each_class(class) { 8248 if (class->rq_offline) 8249 class->rq_offline(rq); 8250 } 8251 8252 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8253 rq->online = 0; 8254 } 8255 } 8256 8257 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8258 { 8259 struct rq_flags rf; 8260 8261 rq_lock_irqsave(rq, &rf); 8262 if (rq->rd) { 8263 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8264 set_rq_online(rq); 8265 } 8266 rq_unlock_irqrestore(rq, &rf); 8267 } 8268 8269 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8270 { 8271 struct rq_flags rf; 8272 8273 rq_lock_irqsave(rq, &rf); 8274 if (rq->rd) { 8275 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8276 set_rq_offline(rq); 8277 } 8278 rq_unlock_irqrestore(rq, &rf); 8279 } 8280 8281 /* 8282 * used to mark begin/end of suspend/resume: 8283 */ 8284 static int num_cpus_frozen; 8285 8286 /* 8287 * Update cpusets according to cpu_active mask. If cpusets are 8288 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8289 * around partition_sched_domains(). 8290 * 8291 * If we come here as part of a suspend/resume, don't touch cpusets because we 8292 * want to restore it back to its original state upon resume anyway. 8293 */ 8294 static void cpuset_cpu_active(void) 8295 { 8296 if (cpuhp_tasks_frozen) { 8297 /* 8298 * num_cpus_frozen tracks how many CPUs are involved in suspend 8299 * resume sequence. As long as this is not the last online 8300 * operation in the resume sequence, just build a single sched 8301 * domain, ignoring cpusets. 8302 */ 8303 cpuset_reset_sched_domains(); 8304 if (--num_cpus_frozen) 8305 return; 8306 /* 8307 * This is the last CPU online operation. So fall through and 8308 * restore the original sched domains by considering the 8309 * cpuset configurations. 8310 */ 8311 cpuset_force_rebuild(); 8312 } 8313 cpuset_update_active_cpus(); 8314 } 8315 8316 static void cpuset_cpu_inactive(unsigned int cpu) 8317 { 8318 if (!cpuhp_tasks_frozen) { 8319 cpuset_update_active_cpus(); 8320 } else { 8321 num_cpus_frozen++; 8322 cpuset_reset_sched_domains(); 8323 } 8324 } 8325 8326 static inline void sched_smt_present_inc(int cpu) 8327 { 8328 #ifdef CONFIG_SCHED_SMT 8329 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8330 static_branch_inc_cpuslocked(&sched_smt_present); 8331 #endif 8332 } 8333 8334 static inline void sched_smt_present_dec(int cpu) 8335 { 8336 #ifdef CONFIG_SCHED_SMT 8337 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8338 static_branch_dec_cpuslocked(&sched_smt_present); 8339 #endif 8340 } 8341 8342 int sched_cpu_activate(unsigned int cpu) 8343 { 8344 struct rq *rq = cpu_rq(cpu); 8345 8346 /* 8347 * Clear the balance_push callback and prepare to schedule 8348 * regular tasks. 8349 */ 8350 balance_push_set(cpu, false); 8351 8352 /* 8353 * When going up, increment the number of cores with SMT present. 8354 */ 8355 sched_smt_present_inc(cpu); 8356 set_cpu_active(cpu, true); 8357 8358 if (sched_smp_initialized) { 8359 sched_update_numa(cpu, true); 8360 sched_domains_numa_masks_set(cpu); 8361 cpuset_cpu_active(); 8362 } 8363 8364 scx_rq_activate(rq); 8365 8366 /* 8367 * Put the rq online, if not already. This happens: 8368 * 8369 * 1) In the early boot process, because we build the real domains 8370 * after all CPUs have been brought up. 8371 * 8372 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8373 * domains. 8374 */ 8375 sched_set_rq_online(rq, cpu); 8376 8377 return 0; 8378 } 8379 8380 int sched_cpu_deactivate(unsigned int cpu) 8381 { 8382 struct rq *rq = cpu_rq(cpu); 8383 int ret; 8384 8385 ret = dl_bw_deactivate(cpu); 8386 8387 if (ret) 8388 return ret; 8389 8390 /* 8391 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8392 * load balancing when not active 8393 */ 8394 nohz_balance_exit_idle(rq); 8395 8396 set_cpu_active(cpu, false); 8397 8398 /* 8399 * From this point forward, this CPU will refuse to run any task that 8400 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8401 * push those tasks away until this gets cleared, see 8402 * sched_cpu_dying(). 8403 */ 8404 balance_push_set(cpu, true); 8405 8406 /* 8407 * We've cleared cpu_active_mask / set balance_push, wait for all 8408 * preempt-disabled and RCU users of this state to go away such that 8409 * all new such users will observe it. 8410 * 8411 * Specifically, we rely on ttwu to no longer target this CPU, see 8412 * ttwu_queue_cond() and is_cpu_allowed(). 8413 * 8414 * Do sync before park smpboot threads to take care the RCU boost case. 8415 */ 8416 synchronize_rcu(); 8417 8418 sched_set_rq_offline(rq, cpu); 8419 8420 scx_rq_deactivate(rq); 8421 8422 /* 8423 * When going down, decrement the number of cores with SMT present. 8424 */ 8425 sched_smt_present_dec(cpu); 8426 8427 #ifdef CONFIG_SCHED_SMT 8428 sched_core_cpu_deactivate(cpu); 8429 #endif 8430 8431 if (!sched_smp_initialized) 8432 return 0; 8433 8434 sched_update_numa(cpu, false); 8435 cpuset_cpu_inactive(cpu); 8436 sched_domains_numa_masks_clear(cpu); 8437 return 0; 8438 } 8439 8440 static void sched_rq_cpu_starting(unsigned int cpu) 8441 { 8442 struct rq *rq = cpu_rq(cpu); 8443 8444 rq->calc_load_update = calc_load_update; 8445 update_max_interval(); 8446 } 8447 8448 int sched_cpu_starting(unsigned int cpu) 8449 { 8450 sched_core_cpu_starting(cpu); 8451 sched_rq_cpu_starting(cpu); 8452 sched_tick_start(cpu); 8453 return 0; 8454 } 8455 8456 #ifdef CONFIG_HOTPLUG_CPU 8457 8458 /* 8459 * Invoked immediately before the stopper thread is invoked to bring the 8460 * CPU down completely. At this point all per CPU kthreads except the 8461 * hotplug thread (current) and the stopper thread (inactive) have been 8462 * either parked or have been unbound from the outgoing CPU. Ensure that 8463 * any of those which might be on the way out are gone. 8464 * 8465 * If after this point a bound task is being woken on this CPU then the 8466 * responsible hotplug callback has failed to do it's job. 8467 * sched_cpu_dying() will catch it with the appropriate fireworks. 8468 */ 8469 int sched_cpu_wait_empty(unsigned int cpu) 8470 { 8471 balance_hotplug_wait(); 8472 sched_force_init_mm(); 8473 return 0; 8474 } 8475 8476 /* 8477 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8478 * might have. Called from the CPU stopper task after ensuring that the 8479 * stopper is the last running task on the CPU, so nr_active count is 8480 * stable. We need to take the tear-down thread which is calling this into 8481 * account, so we hand in adjust = 1 to the load calculation. 8482 * 8483 * Also see the comment "Global load-average calculations". 8484 */ 8485 static void calc_load_migrate(struct rq *rq) 8486 { 8487 long delta = calc_load_fold_active(rq, 1); 8488 8489 if (delta) 8490 atomic_long_add(delta, &calc_load_tasks); 8491 } 8492 8493 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8494 { 8495 struct task_struct *g, *p; 8496 int cpu = cpu_of(rq); 8497 8498 lockdep_assert_rq_held(rq); 8499 8500 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8501 for_each_process_thread(g, p) { 8502 if (task_cpu(p) != cpu) 8503 continue; 8504 8505 if (!task_on_rq_queued(p)) 8506 continue; 8507 8508 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8509 } 8510 } 8511 8512 int sched_cpu_dying(unsigned int cpu) 8513 { 8514 struct rq *rq = cpu_rq(cpu); 8515 struct rq_flags rf; 8516 8517 /* Handle pending wakeups and then migrate everything off */ 8518 sched_tick_stop(cpu); 8519 8520 rq_lock_irqsave(rq, &rf); 8521 update_rq_clock(rq); 8522 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8523 WARN(true, "Dying CPU not properly vacated!"); 8524 dump_rq_tasks(rq, KERN_WARNING); 8525 } 8526 dl_server_stop(&rq->fair_server); 8527 #ifdef CONFIG_SCHED_CLASS_EXT 8528 dl_server_stop(&rq->ext_server); 8529 #endif 8530 rq_unlock_irqrestore(rq, &rf); 8531 8532 calc_load_migrate(rq); 8533 update_max_interval(); 8534 hrtick_clear(rq); 8535 sched_core_cpu_dying(cpu); 8536 return 0; 8537 } 8538 #endif /* CONFIG_HOTPLUG_CPU */ 8539 8540 void __init sched_init_smp(void) 8541 { 8542 sched_init_numa(NUMA_NO_NODE); 8543 8544 prandom_init_once(&sched_rnd_state); 8545 8546 /* 8547 * There's no userspace yet to cause hotplug operations; hence all the 8548 * CPU masks are stable and all blatant races in the below code cannot 8549 * happen. 8550 */ 8551 sched_domains_mutex_lock(); 8552 sched_init_domains(cpu_active_mask); 8553 sched_domains_mutex_unlock(); 8554 8555 /* Move init over to a non-isolated CPU */ 8556 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8557 BUG(); 8558 current->flags &= ~PF_NO_SETAFFINITY; 8559 sched_init_granularity(); 8560 8561 init_sched_rt_class(); 8562 init_sched_dl_class(); 8563 8564 sched_init_dl_servers(); 8565 8566 sched_smp_initialized = true; 8567 } 8568 8569 static int __init migration_init(void) 8570 { 8571 sched_cpu_starting(smp_processor_id()); 8572 return 0; 8573 } 8574 early_initcall(migration_init); 8575 8576 int in_sched_functions(unsigned long addr) 8577 { 8578 return in_lock_functions(addr) || 8579 (addr >= (unsigned long)__sched_text_start 8580 && addr < (unsigned long)__sched_text_end); 8581 } 8582 8583 #ifdef CONFIG_CGROUP_SCHED 8584 /* 8585 * Default task group. 8586 * Every task in system belongs to this group at bootup. 8587 */ 8588 struct task_group root_task_group; 8589 LIST_HEAD(task_groups); 8590 8591 /* Cacheline aligned slab cache for task_group */ 8592 static struct kmem_cache *task_group_cache __ro_after_init; 8593 #endif 8594 8595 void __init sched_init(void) 8596 { 8597 unsigned long ptr = 0; 8598 int i; 8599 8600 /* Make sure the linker didn't screw up */ 8601 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8602 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8603 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8604 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8605 #ifdef CONFIG_SCHED_CLASS_EXT 8606 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8607 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8608 #endif 8609 8610 wait_bit_init(); 8611 8612 #ifdef CONFIG_FAIR_GROUP_SCHED 8613 ptr += 2 * nr_cpu_ids * sizeof(void **); 8614 #endif 8615 #ifdef CONFIG_RT_GROUP_SCHED 8616 ptr += 2 * nr_cpu_ids * sizeof(void **); 8617 #endif 8618 if (ptr) { 8619 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8620 8621 #ifdef CONFIG_FAIR_GROUP_SCHED 8622 root_task_group.se = (struct sched_entity **)ptr; 8623 ptr += nr_cpu_ids * sizeof(void **); 8624 8625 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8626 ptr += nr_cpu_ids * sizeof(void **); 8627 8628 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8629 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8630 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8631 #ifdef CONFIG_EXT_GROUP_SCHED 8632 scx_tg_init(&root_task_group); 8633 #endif /* CONFIG_EXT_GROUP_SCHED */ 8634 #ifdef CONFIG_RT_GROUP_SCHED 8635 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8636 ptr += nr_cpu_ids * sizeof(void **); 8637 8638 root_task_group.rt_rq = (struct rt_rq **)ptr; 8639 ptr += nr_cpu_ids * sizeof(void **); 8640 8641 #endif /* CONFIG_RT_GROUP_SCHED */ 8642 } 8643 8644 init_defrootdomain(); 8645 8646 #ifdef CONFIG_RT_GROUP_SCHED 8647 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8648 global_rt_period(), global_rt_runtime()); 8649 #endif /* CONFIG_RT_GROUP_SCHED */ 8650 8651 #ifdef CONFIG_CGROUP_SCHED 8652 task_group_cache = KMEM_CACHE(task_group, 0); 8653 8654 list_add(&root_task_group.list, &task_groups); 8655 INIT_LIST_HEAD(&root_task_group.children); 8656 INIT_LIST_HEAD(&root_task_group.siblings); 8657 autogroup_init(&init_task); 8658 #endif /* CONFIG_CGROUP_SCHED */ 8659 8660 for_each_possible_cpu(i) { 8661 struct rq *rq; 8662 8663 rq = cpu_rq(i); 8664 raw_spin_lock_init(&rq->__lock); 8665 rq->nr_running = 0; 8666 rq->calc_load_active = 0; 8667 rq->calc_load_update = jiffies + LOAD_FREQ; 8668 init_cfs_rq(&rq->cfs); 8669 init_rt_rq(&rq->rt); 8670 init_dl_rq(&rq->dl); 8671 #ifdef CONFIG_FAIR_GROUP_SCHED 8672 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8673 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8674 /* 8675 * How much CPU bandwidth does root_task_group get? 8676 * 8677 * In case of task-groups formed through the cgroup filesystem, it 8678 * gets 100% of the CPU resources in the system. This overall 8679 * system CPU resource is divided among the tasks of 8680 * root_task_group and its child task-groups in a fair manner, 8681 * based on each entity's (task or task-group's) weight 8682 * (se->load.weight). 8683 * 8684 * In other words, if root_task_group has 10 tasks of weight 8685 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8686 * then A0's share of the CPU resource is: 8687 * 8688 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8689 * 8690 * We achieve this by letting root_task_group's tasks sit 8691 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8692 */ 8693 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8694 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8695 8696 #ifdef CONFIG_RT_GROUP_SCHED 8697 /* 8698 * This is required for init cpu because rt.c:__enable_runtime() 8699 * starts working after scheduler_running, which is not the case 8700 * yet. 8701 */ 8702 rq->rt.rt_runtime = global_rt_runtime(); 8703 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8704 #endif 8705 rq->next_class = &idle_sched_class; 8706 8707 rq->sd = NULL; 8708 rq->rd = NULL; 8709 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8710 rq->balance_callback = &balance_push_callback; 8711 rq->active_balance = 0; 8712 rq->next_balance = jiffies; 8713 rq->push_cpu = 0; 8714 rq->cpu = i; 8715 rq->online = 0; 8716 rq->idle_stamp = 0; 8717 rq->avg_idle = 2*sysctl_sched_migration_cost; 8718 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8719 8720 INIT_LIST_HEAD(&rq->cfs_tasks); 8721 8722 rq_attach_root(rq, &def_root_domain); 8723 #ifdef CONFIG_NO_HZ_COMMON 8724 rq->last_blocked_load_update_tick = jiffies; 8725 atomic_set(&rq->nohz_flags, 0); 8726 8727 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8728 #endif 8729 #ifdef CONFIG_HOTPLUG_CPU 8730 rcuwait_init(&rq->hotplug_wait); 8731 #endif 8732 hrtick_rq_init(rq); 8733 atomic_set(&rq->nr_iowait, 0); 8734 fair_server_init(rq); 8735 #ifdef CONFIG_SCHED_CLASS_EXT 8736 ext_server_init(rq); 8737 #endif 8738 8739 #ifdef CONFIG_SCHED_CORE 8740 rq->core = rq; 8741 rq->core_pick = NULL; 8742 rq->core_dl_server = NULL; 8743 rq->core_enabled = 0; 8744 rq->core_tree = RB_ROOT; 8745 rq->core_forceidle_count = 0; 8746 rq->core_forceidle_occupation = 0; 8747 rq->core_forceidle_start = 0; 8748 8749 rq->core_cookie = 0UL; 8750 #endif 8751 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8752 } 8753 8754 set_load_weight(&init_task, false); 8755 init_task.se.slice = sysctl_sched_base_slice, 8756 8757 /* 8758 * The boot idle thread does lazy MMU switching as well: 8759 */ 8760 mmgrab_lazy_tlb(&init_mm); 8761 enter_lazy_tlb(&init_mm, current); 8762 8763 /* 8764 * The idle task doesn't need the kthread struct to function, but it 8765 * is dressed up as a per-CPU kthread and thus needs to play the part 8766 * if we want to avoid special-casing it in code that deals with per-CPU 8767 * kthreads. 8768 */ 8769 WARN_ON(!set_kthread_struct(current)); 8770 8771 /* 8772 * Make us the idle thread. Technically, schedule() should not be 8773 * called from this thread, however somewhere below it might be, 8774 * but because we are the idle thread, we just pick up running again 8775 * when this runqueue becomes "idle". 8776 */ 8777 __sched_fork(0, current); 8778 init_idle(current, smp_processor_id()); 8779 8780 calc_load_update = jiffies + LOAD_FREQ; 8781 8782 idle_thread_set_boot_cpu(); 8783 8784 balance_push_set(smp_processor_id(), false); 8785 init_sched_fair_class(); 8786 init_sched_ext_class(); 8787 8788 psi_init(); 8789 8790 init_uclamp(); 8791 8792 preempt_dynamic_init(); 8793 8794 scheduler_running = 1; 8795 } 8796 8797 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8798 8799 void __might_sleep(const char *file, int line) 8800 { 8801 unsigned int state = get_current_state(); 8802 /* 8803 * Blocking primitives will set (and therefore destroy) current->state, 8804 * since we will exit with TASK_RUNNING make sure we enter with it, 8805 * otherwise we will destroy state. 8806 */ 8807 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8808 "do not call blocking ops when !TASK_RUNNING; " 8809 "state=%x set at [<%p>] %pS\n", state, 8810 (void *)current->task_state_change, 8811 (void *)current->task_state_change); 8812 8813 __might_resched(file, line, 0); 8814 } 8815 EXPORT_SYMBOL(__might_sleep); 8816 8817 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8818 { 8819 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8820 return; 8821 8822 if (preempt_count() == preempt_offset) 8823 return; 8824 8825 pr_err("Preemption disabled at:"); 8826 print_ip_sym(KERN_ERR, ip); 8827 } 8828 8829 static inline bool resched_offsets_ok(unsigned int offsets) 8830 { 8831 unsigned int nested = preempt_count(); 8832 8833 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8834 8835 return nested == offsets; 8836 } 8837 8838 void __might_resched(const char *file, int line, unsigned int offsets) 8839 { 8840 /* Ratelimiting timestamp: */ 8841 static unsigned long prev_jiffy; 8842 8843 unsigned long preempt_disable_ip; 8844 8845 /* WARN_ON_ONCE() by default, no rate limit required: */ 8846 rcu_sleep_check(); 8847 8848 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8849 !is_idle_task(current) && !current->non_block_count) || 8850 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8851 oops_in_progress) 8852 return; 8853 8854 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8855 return; 8856 prev_jiffy = jiffies; 8857 8858 /* Save this before calling printk(), since that will clobber it: */ 8859 preempt_disable_ip = get_preempt_disable_ip(current); 8860 8861 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8862 file, line); 8863 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8864 in_atomic(), irqs_disabled(), current->non_block_count, 8865 current->pid, current->comm); 8866 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8867 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8868 8869 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8870 pr_err("RCU nest depth: %d, expected: %u\n", 8871 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8872 } 8873 8874 if (task_stack_end_corrupted(current)) 8875 pr_emerg("Thread overran stack, or stack corrupted\n"); 8876 8877 debug_show_held_locks(current); 8878 if (irqs_disabled()) 8879 print_irqtrace_events(current); 8880 8881 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8882 preempt_disable_ip); 8883 8884 dump_stack(); 8885 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8886 } 8887 EXPORT_SYMBOL(__might_resched); 8888 8889 void __cant_sleep(const char *file, int line, int preempt_offset) 8890 { 8891 static unsigned long prev_jiffy; 8892 8893 if (irqs_disabled()) 8894 return; 8895 8896 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8897 return; 8898 8899 if (preempt_count() > preempt_offset) 8900 return; 8901 8902 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8903 return; 8904 prev_jiffy = jiffies; 8905 8906 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8907 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8908 in_atomic(), irqs_disabled(), 8909 current->pid, current->comm); 8910 8911 debug_show_held_locks(current); 8912 dump_stack(); 8913 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8914 } 8915 EXPORT_SYMBOL_GPL(__cant_sleep); 8916 8917 # ifdef CONFIG_SMP 8918 void __cant_migrate(const char *file, int line) 8919 { 8920 static unsigned long prev_jiffy; 8921 8922 if (irqs_disabled()) 8923 return; 8924 8925 if (is_migration_disabled(current)) 8926 return; 8927 8928 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8929 return; 8930 8931 if (preempt_count() > 0) 8932 return; 8933 8934 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8935 return; 8936 prev_jiffy = jiffies; 8937 8938 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8939 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8940 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8941 current->pid, current->comm); 8942 8943 debug_show_held_locks(current); 8944 dump_stack(); 8945 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8946 } 8947 EXPORT_SYMBOL_GPL(__cant_migrate); 8948 # endif /* CONFIG_SMP */ 8949 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */ 8950 8951 #ifdef CONFIG_MAGIC_SYSRQ 8952 void normalize_rt_tasks(void) 8953 { 8954 struct task_struct *g, *p; 8955 struct sched_attr attr = { 8956 .sched_policy = SCHED_NORMAL, 8957 }; 8958 8959 read_lock(&tasklist_lock); 8960 for_each_process_thread(g, p) { 8961 /* 8962 * Only normalize user tasks: 8963 */ 8964 if (p->flags & PF_KTHREAD) 8965 continue; 8966 8967 p->se.exec_start = 0; 8968 schedstat_set(p->stats.wait_start, 0); 8969 schedstat_set(p->stats.sleep_start, 0); 8970 schedstat_set(p->stats.block_start, 0); 8971 8972 if (!rt_or_dl_task(p)) { 8973 /* 8974 * Renice negative nice level userspace 8975 * tasks back to 0: 8976 */ 8977 if (task_nice(p) < 0) 8978 set_user_nice(p, 0); 8979 continue; 8980 } 8981 8982 __sched_setscheduler(p, &attr, false, false); 8983 } 8984 read_unlock(&tasklist_lock); 8985 } 8986 8987 #endif /* CONFIG_MAGIC_SYSRQ */ 8988 8989 #ifdef CONFIG_KGDB_KDB 8990 /* 8991 * These functions are only useful for KDB. 8992 * 8993 * They can only be called when the whole system has been 8994 * stopped - every CPU needs to be quiescent, and no scheduling 8995 * activity can take place. Using them for anything else would 8996 * be a serious bug, and as a result, they aren't even visible 8997 * under any other configuration. 8998 */ 8999 9000 /** 9001 * curr_task - return the current task for a given CPU. 9002 * @cpu: the processor in question. 9003 * 9004 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9005 * 9006 * Return: The current task for @cpu. 9007 */ 9008 struct task_struct *curr_task(int cpu) 9009 { 9010 return cpu_curr(cpu); 9011 } 9012 9013 #endif /* CONFIG_KGDB_KDB */ 9014 9015 #ifdef CONFIG_CGROUP_SCHED 9016 /* task_group_lock serializes the addition/removal of task groups */ 9017 static DEFINE_SPINLOCK(task_group_lock); 9018 9019 static inline void alloc_uclamp_sched_group(struct task_group *tg, 9020 struct task_group *parent) 9021 { 9022 #ifdef CONFIG_UCLAMP_TASK_GROUP 9023 enum uclamp_id clamp_id; 9024 9025 for_each_clamp_id(clamp_id) { 9026 uclamp_se_set(&tg->uclamp_req[clamp_id], 9027 uclamp_none(clamp_id), false); 9028 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 9029 } 9030 #endif 9031 } 9032 9033 static void sched_free_group(struct task_group *tg) 9034 { 9035 free_fair_sched_group(tg); 9036 free_rt_sched_group(tg); 9037 autogroup_free(tg); 9038 kmem_cache_free(task_group_cache, tg); 9039 } 9040 9041 static void sched_free_group_rcu(struct rcu_head *rcu) 9042 { 9043 sched_free_group(container_of(rcu, struct task_group, rcu)); 9044 } 9045 9046 static void sched_unregister_group(struct task_group *tg) 9047 { 9048 unregister_fair_sched_group(tg); 9049 unregister_rt_sched_group(tg); 9050 /* 9051 * We have to wait for yet another RCU grace period to expire, as 9052 * print_cfs_stats() might run concurrently. 9053 */ 9054 call_rcu(&tg->rcu, sched_free_group_rcu); 9055 } 9056 9057 /* allocate runqueue etc for a new task group */ 9058 struct task_group *sched_create_group(struct task_group *parent) 9059 { 9060 struct task_group *tg; 9061 9062 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9063 if (!tg) 9064 return ERR_PTR(-ENOMEM); 9065 9066 if (!alloc_fair_sched_group(tg, parent)) 9067 goto err; 9068 9069 if (!alloc_rt_sched_group(tg, parent)) 9070 goto err; 9071 9072 scx_tg_init(tg); 9073 alloc_uclamp_sched_group(tg, parent); 9074 9075 return tg; 9076 9077 err: 9078 sched_free_group(tg); 9079 return ERR_PTR(-ENOMEM); 9080 } 9081 9082 void sched_online_group(struct task_group *tg, struct task_group *parent) 9083 { 9084 unsigned long flags; 9085 9086 spin_lock_irqsave(&task_group_lock, flags); 9087 list_add_tail_rcu(&tg->list, &task_groups); 9088 9089 /* Root should already exist: */ 9090 WARN_ON(!parent); 9091 9092 tg->parent = parent; 9093 INIT_LIST_HEAD(&tg->children); 9094 list_add_rcu(&tg->siblings, &parent->children); 9095 spin_unlock_irqrestore(&task_group_lock, flags); 9096 9097 online_fair_sched_group(tg); 9098 } 9099 9100 /* RCU callback to free various structures associated with a task group */ 9101 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9102 { 9103 /* Now it should be safe to free those cfs_rqs: */ 9104 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9105 } 9106 9107 void sched_destroy_group(struct task_group *tg) 9108 { 9109 /* Wait for possible concurrent references to cfs_rqs complete: */ 9110 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9111 } 9112 9113 void sched_release_group(struct task_group *tg) 9114 { 9115 unsigned long flags; 9116 9117 /* 9118 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9119 * sched_cfs_period_timer()). 9120 * 9121 * For this to be effective, we have to wait for all pending users of 9122 * this task group to leave their RCU critical section to ensure no new 9123 * user will see our dying task group any more. Specifically ensure 9124 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9125 * 9126 * We therefore defer calling unregister_fair_sched_group() to 9127 * sched_unregister_group() which is guarantied to get called only after the 9128 * current RCU grace period has expired. 9129 */ 9130 spin_lock_irqsave(&task_group_lock, flags); 9131 list_del_rcu(&tg->list); 9132 list_del_rcu(&tg->siblings); 9133 spin_unlock_irqrestore(&task_group_lock, flags); 9134 } 9135 9136 static void sched_change_group(struct task_struct *tsk) 9137 { 9138 struct task_group *tg; 9139 9140 /* 9141 * All callers are synchronized by task_rq_lock(); we do not use RCU 9142 * which is pointless here. Thus, we pass "true" to task_css_check() 9143 * to prevent lockdep warnings. 9144 */ 9145 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9146 struct task_group, css); 9147 tg = autogroup_task_group(tsk, tg); 9148 tsk->sched_task_group = tg; 9149 9150 #ifdef CONFIG_FAIR_GROUP_SCHED 9151 if (tsk->sched_class->task_change_group) 9152 tsk->sched_class->task_change_group(tsk); 9153 else 9154 #endif 9155 set_task_rq(tsk, task_cpu(tsk)); 9156 } 9157 9158 /* 9159 * Change task's runqueue when it moves between groups. 9160 * 9161 * The caller of this function should have put the task in its new group by 9162 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9163 * its new group. 9164 */ 9165 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9166 { 9167 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 9168 bool resched = false; 9169 bool queued = false; 9170 struct rq *rq; 9171 9172 CLASS(task_rq_lock, rq_guard)(tsk); 9173 rq = rq_guard.rq; 9174 9175 scoped_guard (sched_change, tsk, queue_flags) { 9176 sched_change_group(tsk); 9177 if (!for_autogroup) 9178 scx_cgroup_move_task(tsk); 9179 if (scope->running) 9180 resched = true; 9181 queued = scope->queued; 9182 } 9183 9184 if (resched) 9185 resched_curr(rq); 9186 else if (queued) 9187 wakeup_preempt(rq, tsk, 0); 9188 9189 __balance_callbacks(rq, &rq_guard.rf); 9190 } 9191 9192 static struct cgroup_subsys_state * 9193 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9194 { 9195 struct task_group *parent = css_tg(parent_css); 9196 struct task_group *tg; 9197 9198 if (!parent) { 9199 /* This is early initialization for the top cgroup */ 9200 return &root_task_group.css; 9201 } 9202 9203 tg = sched_create_group(parent); 9204 if (IS_ERR(tg)) 9205 return ERR_PTR(-ENOMEM); 9206 9207 return &tg->css; 9208 } 9209 9210 /* Expose task group only after completing cgroup initialization */ 9211 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9212 { 9213 struct task_group *tg = css_tg(css); 9214 struct task_group *parent = css_tg(css->parent); 9215 int ret; 9216 9217 ret = scx_tg_online(tg); 9218 if (ret) 9219 return ret; 9220 9221 if (parent) 9222 sched_online_group(tg, parent); 9223 9224 #ifdef CONFIG_UCLAMP_TASK_GROUP 9225 /* Propagate the effective uclamp value for the new group */ 9226 guard(mutex)(&uclamp_mutex); 9227 guard(rcu)(); 9228 cpu_util_update_eff(css); 9229 #endif 9230 9231 return 0; 9232 } 9233 9234 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9235 { 9236 struct task_group *tg = css_tg(css); 9237 9238 scx_tg_offline(tg); 9239 } 9240 9241 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9242 { 9243 struct task_group *tg = css_tg(css); 9244 9245 sched_release_group(tg); 9246 } 9247 9248 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9249 { 9250 struct task_group *tg = css_tg(css); 9251 9252 /* 9253 * Relies on the RCU grace period between css_released() and this. 9254 */ 9255 sched_unregister_group(tg); 9256 } 9257 9258 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9259 { 9260 #ifdef CONFIG_RT_GROUP_SCHED 9261 struct task_struct *task; 9262 struct cgroup_subsys_state *css; 9263 9264 if (!rt_group_sched_enabled()) 9265 goto scx_check; 9266 9267 cgroup_taskset_for_each(task, css, tset) { 9268 if (!sched_rt_can_attach(css_tg(css), task)) 9269 return -EINVAL; 9270 } 9271 scx_check: 9272 #endif /* CONFIG_RT_GROUP_SCHED */ 9273 return scx_cgroup_can_attach(tset); 9274 } 9275 9276 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9277 { 9278 struct task_struct *task; 9279 struct cgroup_subsys_state *css; 9280 9281 cgroup_taskset_for_each(task, css, tset) 9282 sched_move_task(task, false); 9283 } 9284 9285 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9286 { 9287 scx_cgroup_cancel_attach(tset); 9288 } 9289 9290 #ifdef CONFIG_UCLAMP_TASK_GROUP 9291 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9292 { 9293 struct cgroup_subsys_state *top_css = css; 9294 struct uclamp_se *uc_parent = NULL; 9295 struct uclamp_se *uc_se = NULL; 9296 unsigned int eff[UCLAMP_CNT]; 9297 enum uclamp_id clamp_id; 9298 unsigned int clamps; 9299 9300 lockdep_assert_held(&uclamp_mutex); 9301 WARN_ON_ONCE(!rcu_read_lock_held()); 9302 9303 css_for_each_descendant_pre(css, top_css) { 9304 uc_parent = css_tg(css)->parent 9305 ? css_tg(css)->parent->uclamp : NULL; 9306 9307 for_each_clamp_id(clamp_id) { 9308 /* Assume effective clamps matches requested clamps */ 9309 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9310 /* Cap effective clamps with parent's effective clamps */ 9311 if (uc_parent && 9312 eff[clamp_id] > uc_parent[clamp_id].value) { 9313 eff[clamp_id] = uc_parent[clamp_id].value; 9314 } 9315 } 9316 /* Ensure protection is always capped by limit */ 9317 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9318 9319 /* Propagate most restrictive effective clamps */ 9320 clamps = 0x0; 9321 uc_se = css_tg(css)->uclamp; 9322 for_each_clamp_id(clamp_id) { 9323 if (eff[clamp_id] == uc_se[clamp_id].value) 9324 continue; 9325 uc_se[clamp_id].value = eff[clamp_id]; 9326 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9327 clamps |= (0x1 << clamp_id); 9328 } 9329 if (!clamps) { 9330 css = css_rightmost_descendant(css); 9331 continue; 9332 } 9333 9334 /* Immediately update descendants RUNNABLE tasks */ 9335 uclamp_update_active_tasks(css); 9336 } 9337 } 9338 9339 /* 9340 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9341 * C expression. Since there is no way to convert a macro argument (N) into a 9342 * character constant, use two levels of macros. 9343 */ 9344 #define _POW10(exp) ((unsigned int)1e##exp) 9345 #define POW10(exp) _POW10(exp) 9346 9347 struct uclamp_request { 9348 #define UCLAMP_PERCENT_SHIFT 2 9349 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9350 s64 percent; 9351 u64 util; 9352 int ret; 9353 }; 9354 9355 static inline struct uclamp_request 9356 capacity_from_percent(char *buf) 9357 { 9358 struct uclamp_request req = { 9359 .percent = UCLAMP_PERCENT_SCALE, 9360 .util = SCHED_CAPACITY_SCALE, 9361 .ret = 0, 9362 }; 9363 9364 buf = strim(buf); 9365 if (strcmp(buf, "max")) { 9366 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9367 &req.percent); 9368 if (req.ret) 9369 return req; 9370 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9371 req.ret = -ERANGE; 9372 return req; 9373 } 9374 9375 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9376 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9377 } 9378 9379 return req; 9380 } 9381 9382 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9383 size_t nbytes, loff_t off, 9384 enum uclamp_id clamp_id) 9385 { 9386 struct uclamp_request req; 9387 struct task_group *tg; 9388 9389 req = capacity_from_percent(buf); 9390 if (req.ret) 9391 return req.ret; 9392 9393 sched_uclamp_enable(); 9394 9395 guard(mutex)(&uclamp_mutex); 9396 guard(rcu)(); 9397 9398 tg = css_tg(of_css(of)); 9399 if (tg->uclamp_req[clamp_id].value != req.util) 9400 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9401 9402 /* 9403 * Because of not recoverable conversion rounding we keep track of the 9404 * exact requested value 9405 */ 9406 tg->uclamp_pct[clamp_id] = req.percent; 9407 9408 /* Update effective clamps to track the most restrictive value */ 9409 cpu_util_update_eff(of_css(of)); 9410 9411 return nbytes; 9412 } 9413 9414 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9415 char *buf, size_t nbytes, 9416 loff_t off) 9417 { 9418 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9419 } 9420 9421 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9422 char *buf, size_t nbytes, 9423 loff_t off) 9424 { 9425 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9426 } 9427 9428 static inline void cpu_uclamp_print(struct seq_file *sf, 9429 enum uclamp_id clamp_id) 9430 { 9431 struct task_group *tg; 9432 u64 util_clamp; 9433 u64 percent; 9434 u32 rem; 9435 9436 scoped_guard (rcu) { 9437 tg = css_tg(seq_css(sf)); 9438 util_clamp = tg->uclamp_req[clamp_id].value; 9439 } 9440 9441 if (util_clamp == SCHED_CAPACITY_SCALE) { 9442 seq_puts(sf, "max\n"); 9443 return; 9444 } 9445 9446 percent = tg->uclamp_pct[clamp_id]; 9447 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9448 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9449 } 9450 9451 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9452 { 9453 cpu_uclamp_print(sf, UCLAMP_MIN); 9454 return 0; 9455 } 9456 9457 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9458 { 9459 cpu_uclamp_print(sf, UCLAMP_MAX); 9460 return 0; 9461 } 9462 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9463 9464 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9465 static unsigned long tg_weight(struct task_group *tg) 9466 { 9467 #ifdef CONFIG_FAIR_GROUP_SCHED 9468 return scale_load_down(tg->shares); 9469 #else 9470 return sched_weight_from_cgroup(tg->scx.weight); 9471 #endif 9472 } 9473 9474 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9475 struct cftype *cftype, u64 shareval) 9476 { 9477 int ret; 9478 9479 if (shareval > scale_load_down(ULONG_MAX)) 9480 shareval = MAX_SHARES; 9481 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9482 if (!ret) 9483 scx_group_set_weight(css_tg(css), 9484 sched_weight_to_cgroup(shareval)); 9485 return ret; 9486 } 9487 9488 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9489 struct cftype *cft) 9490 { 9491 return tg_weight(css_tg(css)); 9492 } 9493 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9494 9495 #ifdef CONFIG_CFS_BANDWIDTH 9496 static DEFINE_MUTEX(cfs_constraints_mutex); 9497 9498 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9499 9500 static int tg_set_cfs_bandwidth(struct task_group *tg, 9501 u64 period_us, u64 quota_us, u64 burst_us) 9502 { 9503 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9504 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9505 u64 period, quota, burst; 9506 9507 period = (u64)period_us * NSEC_PER_USEC; 9508 9509 if (quota_us == RUNTIME_INF) 9510 quota = RUNTIME_INF; 9511 else 9512 quota = (u64)quota_us * NSEC_PER_USEC; 9513 9514 burst = (u64)burst_us * NSEC_PER_USEC; 9515 9516 /* 9517 * Prevent race between setting of cfs_rq->runtime_enabled and 9518 * unthrottle_offline_cfs_rqs(). 9519 */ 9520 guard(cpus_read_lock)(); 9521 guard(mutex)(&cfs_constraints_mutex); 9522 9523 ret = __cfs_schedulable(tg, period, quota); 9524 if (ret) 9525 return ret; 9526 9527 runtime_enabled = quota != RUNTIME_INF; 9528 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9529 /* 9530 * If we need to toggle cfs_bandwidth_used, off->on must occur 9531 * before making related changes, and on->off must occur afterwards 9532 */ 9533 if (runtime_enabled && !runtime_was_enabled) 9534 cfs_bandwidth_usage_inc(); 9535 9536 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9537 cfs_b->period = ns_to_ktime(period); 9538 cfs_b->quota = quota; 9539 cfs_b->burst = burst; 9540 9541 __refill_cfs_bandwidth_runtime(cfs_b); 9542 9543 /* 9544 * Restart the period timer (if active) to handle new 9545 * period expiry: 9546 */ 9547 if (runtime_enabled) 9548 start_cfs_bandwidth(cfs_b); 9549 } 9550 9551 for_each_online_cpu(i) { 9552 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9553 struct rq *rq = cfs_rq->rq; 9554 9555 guard(rq_lock_irq)(rq); 9556 cfs_rq->runtime_enabled = runtime_enabled; 9557 cfs_rq->runtime_remaining = 1; 9558 9559 if (cfs_rq->throttled) 9560 unthrottle_cfs_rq(cfs_rq); 9561 } 9562 9563 if (runtime_was_enabled && !runtime_enabled) 9564 cfs_bandwidth_usage_dec(); 9565 9566 return 0; 9567 } 9568 9569 static u64 tg_get_cfs_period(struct task_group *tg) 9570 { 9571 u64 cfs_period_us; 9572 9573 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9574 do_div(cfs_period_us, NSEC_PER_USEC); 9575 9576 return cfs_period_us; 9577 } 9578 9579 static u64 tg_get_cfs_quota(struct task_group *tg) 9580 { 9581 u64 quota_us; 9582 9583 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9584 return RUNTIME_INF; 9585 9586 quota_us = tg->cfs_bandwidth.quota; 9587 do_div(quota_us, NSEC_PER_USEC); 9588 9589 return quota_us; 9590 } 9591 9592 static u64 tg_get_cfs_burst(struct task_group *tg) 9593 { 9594 u64 burst_us; 9595 9596 burst_us = tg->cfs_bandwidth.burst; 9597 do_div(burst_us, NSEC_PER_USEC); 9598 9599 return burst_us; 9600 } 9601 9602 struct cfs_schedulable_data { 9603 struct task_group *tg; 9604 u64 period, quota; 9605 }; 9606 9607 /* 9608 * normalize group quota/period to be quota/max_period 9609 * note: units are usecs 9610 */ 9611 static u64 normalize_cfs_quota(struct task_group *tg, 9612 struct cfs_schedulable_data *d) 9613 { 9614 u64 quota, period; 9615 9616 if (tg == d->tg) { 9617 period = d->period; 9618 quota = d->quota; 9619 } else { 9620 period = tg_get_cfs_period(tg); 9621 quota = tg_get_cfs_quota(tg); 9622 } 9623 9624 /* note: these should typically be equivalent */ 9625 if (quota == RUNTIME_INF || quota == -1) 9626 return RUNTIME_INF; 9627 9628 return to_ratio(period, quota); 9629 } 9630 9631 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9632 { 9633 struct cfs_schedulable_data *d = data; 9634 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9635 s64 quota = 0, parent_quota = -1; 9636 9637 if (!tg->parent) { 9638 quota = RUNTIME_INF; 9639 } else { 9640 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9641 9642 quota = normalize_cfs_quota(tg, d); 9643 parent_quota = parent_b->hierarchical_quota; 9644 9645 /* 9646 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9647 * always take the non-RUNTIME_INF min. On cgroup1, only 9648 * inherit when no limit is set. In both cases this is used 9649 * by the scheduler to determine if a given CFS task has a 9650 * bandwidth constraint at some higher level. 9651 */ 9652 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9653 if (quota == RUNTIME_INF) 9654 quota = parent_quota; 9655 else if (parent_quota != RUNTIME_INF) 9656 quota = min(quota, parent_quota); 9657 } else { 9658 if (quota == RUNTIME_INF) 9659 quota = parent_quota; 9660 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9661 return -EINVAL; 9662 } 9663 } 9664 cfs_b->hierarchical_quota = quota; 9665 9666 return 0; 9667 } 9668 9669 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9670 { 9671 struct cfs_schedulable_data data = { 9672 .tg = tg, 9673 .period = period, 9674 .quota = quota, 9675 }; 9676 9677 if (quota != RUNTIME_INF) { 9678 do_div(data.period, NSEC_PER_USEC); 9679 do_div(data.quota, NSEC_PER_USEC); 9680 } 9681 9682 guard(rcu)(); 9683 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9684 } 9685 9686 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9687 { 9688 struct task_group *tg = css_tg(seq_css(sf)); 9689 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9690 9691 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9692 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9693 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9694 9695 if (schedstat_enabled() && tg != &root_task_group) { 9696 struct sched_statistics *stats; 9697 u64 ws = 0; 9698 int i; 9699 9700 for_each_possible_cpu(i) { 9701 stats = __schedstats_from_se(tg->se[i]); 9702 ws += schedstat_val(stats->wait_sum); 9703 } 9704 9705 seq_printf(sf, "wait_sum %llu\n", ws); 9706 } 9707 9708 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9709 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9710 9711 return 0; 9712 } 9713 9714 static u64 throttled_time_self(struct task_group *tg) 9715 { 9716 int i; 9717 u64 total = 0; 9718 9719 for_each_possible_cpu(i) { 9720 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9721 } 9722 9723 return total; 9724 } 9725 9726 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9727 { 9728 struct task_group *tg = css_tg(seq_css(sf)); 9729 9730 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9731 9732 return 0; 9733 } 9734 #endif /* CONFIG_CFS_BANDWIDTH */ 9735 9736 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9737 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */ 9738 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */ 9739 /* More than 203 days if BW_SHIFT equals 20. */ 9740 static const u64 max_bw_runtime_us = MAX_BW; 9741 9742 static void tg_bandwidth(struct task_group *tg, 9743 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p) 9744 { 9745 #ifdef CONFIG_CFS_BANDWIDTH 9746 if (period_us_p) 9747 *period_us_p = tg_get_cfs_period(tg); 9748 if (quota_us_p) 9749 *quota_us_p = tg_get_cfs_quota(tg); 9750 if (burst_us_p) 9751 *burst_us_p = tg_get_cfs_burst(tg); 9752 #else /* !CONFIG_CFS_BANDWIDTH */ 9753 if (period_us_p) 9754 *period_us_p = tg->scx.bw_period_us; 9755 if (quota_us_p) 9756 *quota_us_p = tg->scx.bw_quota_us; 9757 if (burst_us_p) 9758 *burst_us_p = tg->scx.bw_burst_us; 9759 #endif /* CONFIG_CFS_BANDWIDTH */ 9760 } 9761 9762 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css, 9763 struct cftype *cft) 9764 { 9765 u64 period_us; 9766 9767 tg_bandwidth(css_tg(css), &period_us, NULL, NULL); 9768 return period_us; 9769 } 9770 9771 static int tg_set_bandwidth(struct task_group *tg, 9772 u64 period_us, u64 quota_us, u64 burst_us) 9773 { 9774 const u64 max_usec = U64_MAX / NSEC_PER_USEC; 9775 int ret = 0; 9776 9777 if (tg == &root_task_group) 9778 return -EINVAL; 9779 9780 /* Values should survive translation to nsec */ 9781 if (period_us > max_usec || 9782 (quota_us != RUNTIME_INF && quota_us > max_usec) || 9783 burst_us > max_usec) 9784 return -EINVAL; 9785 9786 /* 9787 * Ensure we have some amount of bandwidth every period. This is to 9788 * prevent reaching a state of large arrears when throttled via 9789 * entity_tick() resulting in prolonged exit starvation. 9790 */ 9791 if (quota_us < min_bw_quota_period_us || 9792 period_us < min_bw_quota_period_us) 9793 return -EINVAL; 9794 9795 /* 9796 * Likewise, bound things on the other side by preventing insane quota 9797 * periods. This also allows us to normalize in computing quota 9798 * feasibility. 9799 */ 9800 if (period_us > max_bw_quota_period_us) 9801 return -EINVAL; 9802 9803 /* 9804 * Bound quota to defend quota against overflow during bandwidth shift. 9805 */ 9806 if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us) 9807 return -EINVAL; 9808 9809 if (quota_us != RUNTIME_INF && (burst_us > quota_us || 9810 burst_us + quota_us > max_bw_runtime_us)) 9811 return -EINVAL; 9812 9813 #ifdef CONFIG_CFS_BANDWIDTH 9814 ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us); 9815 #endif /* CONFIG_CFS_BANDWIDTH */ 9816 if (!ret) 9817 scx_group_set_bandwidth(tg, period_us, quota_us, burst_us); 9818 return ret; 9819 } 9820 9821 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css, 9822 struct cftype *cft) 9823 { 9824 u64 quota_us; 9825 9826 tg_bandwidth(css_tg(css), NULL, "a_us, NULL); 9827 return quota_us; /* (s64)RUNTIME_INF becomes -1 */ 9828 } 9829 9830 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css, 9831 struct cftype *cft) 9832 { 9833 u64 burst_us; 9834 9835 tg_bandwidth(css_tg(css), NULL, NULL, &burst_us); 9836 return burst_us; 9837 } 9838 9839 static int cpu_period_write_u64(struct cgroup_subsys_state *css, 9840 struct cftype *cftype, u64 period_us) 9841 { 9842 struct task_group *tg = css_tg(css); 9843 u64 quota_us, burst_us; 9844 9845 tg_bandwidth(tg, NULL, "a_us, &burst_us); 9846 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9847 } 9848 9849 static int cpu_quota_write_s64(struct cgroup_subsys_state *css, 9850 struct cftype *cftype, s64 quota_us) 9851 { 9852 struct task_group *tg = css_tg(css); 9853 u64 period_us, burst_us; 9854 9855 if (quota_us < 0) 9856 quota_us = RUNTIME_INF; 9857 9858 tg_bandwidth(tg, &period_us, NULL, &burst_us); 9859 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9860 } 9861 9862 static int cpu_burst_write_u64(struct cgroup_subsys_state *css, 9863 struct cftype *cftype, u64 burst_us) 9864 { 9865 struct task_group *tg = css_tg(css); 9866 u64 period_us, quota_us; 9867 9868 tg_bandwidth(tg, &period_us, "a_us, NULL); 9869 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9870 } 9871 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 9872 9873 #ifdef CONFIG_RT_GROUP_SCHED 9874 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9875 struct cftype *cft, s64 val) 9876 { 9877 return sched_group_set_rt_runtime(css_tg(css), val); 9878 } 9879 9880 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9881 struct cftype *cft) 9882 { 9883 return sched_group_rt_runtime(css_tg(css)); 9884 } 9885 9886 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9887 struct cftype *cftype, u64 rt_period_us) 9888 { 9889 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9890 } 9891 9892 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9893 struct cftype *cft) 9894 { 9895 return sched_group_rt_period(css_tg(css)); 9896 } 9897 #endif /* CONFIG_RT_GROUP_SCHED */ 9898 9899 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9900 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9901 struct cftype *cft) 9902 { 9903 return css_tg(css)->idle; 9904 } 9905 9906 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9907 struct cftype *cft, s64 idle) 9908 { 9909 int ret; 9910 9911 ret = sched_group_set_idle(css_tg(css), idle); 9912 if (!ret) 9913 scx_group_set_idle(css_tg(css), idle); 9914 return ret; 9915 } 9916 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9917 9918 static struct cftype cpu_legacy_files[] = { 9919 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9920 { 9921 .name = "shares", 9922 .read_u64 = cpu_shares_read_u64, 9923 .write_u64 = cpu_shares_write_u64, 9924 }, 9925 { 9926 .name = "idle", 9927 .read_s64 = cpu_idle_read_s64, 9928 .write_s64 = cpu_idle_write_s64, 9929 }, 9930 #endif 9931 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9932 { 9933 .name = "cfs_period_us", 9934 .read_u64 = cpu_period_read_u64, 9935 .write_u64 = cpu_period_write_u64, 9936 }, 9937 { 9938 .name = "cfs_quota_us", 9939 .read_s64 = cpu_quota_read_s64, 9940 .write_s64 = cpu_quota_write_s64, 9941 }, 9942 { 9943 .name = "cfs_burst_us", 9944 .read_u64 = cpu_burst_read_u64, 9945 .write_u64 = cpu_burst_write_u64, 9946 }, 9947 #endif 9948 #ifdef CONFIG_CFS_BANDWIDTH 9949 { 9950 .name = "stat", 9951 .seq_show = cpu_cfs_stat_show, 9952 }, 9953 { 9954 .name = "stat.local", 9955 .seq_show = cpu_cfs_local_stat_show, 9956 }, 9957 #endif 9958 #ifdef CONFIG_UCLAMP_TASK_GROUP 9959 { 9960 .name = "uclamp.min", 9961 .flags = CFTYPE_NOT_ON_ROOT, 9962 .seq_show = cpu_uclamp_min_show, 9963 .write = cpu_uclamp_min_write, 9964 }, 9965 { 9966 .name = "uclamp.max", 9967 .flags = CFTYPE_NOT_ON_ROOT, 9968 .seq_show = cpu_uclamp_max_show, 9969 .write = cpu_uclamp_max_write, 9970 }, 9971 #endif 9972 { } /* Terminate */ 9973 }; 9974 9975 #ifdef CONFIG_RT_GROUP_SCHED 9976 static struct cftype rt_group_files[] = { 9977 { 9978 .name = "rt_runtime_us", 9979 .read_s64 = cpu_rt_runtime_read, 9980 .write_s64 = cpu_rt_runtime_write, 9981 }, 9982 { 9983 .name = "rt_period_us", 9984 .read_u64 = cpu_rt_period_read_uint, 9985 .write_u64 = cpu_rt_period_write_uint, 9986 }, 9987 { } /* Terminate */ 9988 }; 9989 9990 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 9991 DEFINE_STATIC_KEY_FALSE(rt_group_sched); 9992 # else 9993 DEFINE_STATIC_KEY_TRUE(rt_group_sched); 9994 # endif 9995 9996 static int __init setup_rt_group_sched(char *str) 9997 { 9998 long val; 9999 10000 if (kstrtol(str, 0, &val) || val < 0 || val > 1) { 10001 pr_warn("Unable to set rt_group_sched\n"); 10002 return 1; 10003 } 10004 if (val) 10005 static_branch_enable(&rt_group_sched); 10006 else 10007 static_branch_disable(&rt_group_sched); 10008 10009 return 1; 10010 } 10011 __setup("rt_group_sched=", setup_rt_group_sched); 10012 10013 static int __init cpu_rt_group_init(void) 10014 { 10015 if (!rt_group_sched_enabled()) 10016 return 0; 10017 10018 WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); 10019 return 0; 10020 } 10021 subsys_initcall(cpu_rt_group_init); 10022 #endif /* CONFIG_RT_GROUP_SCHED */ 10023 10024 static int cpu_extra_stat_show(struct seq_file *sf, 10025 struct cgroup_subsys_state *css) 10026 { 10027 #ifdef CONFIG_CFS_BANDWIDTH 10028 { 10029 struct task_group *tg = css_tg(css); 10030 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10031 u64 throttled_usec, burst_usec; 10032 10033 throttled_usec = cfs_b->throttled_time; 10034 do_div(throttled_usec, NSEC_PER_USEC); 10035 burst_usec = cfs_b->burst_time; 10036 do_div(burst_usec, NSEC_PER_USEC); 10037 10038 seq_printf(sf, "nr_periods %d\n" 10039 "nr_throttled %d\n" 10040 "throttled_usec %llu\n" 10041 "nr_bursts %d\n" 10042 "burst_usec %llu\n", 10043 cfs_b->nr_periods, cfs_b->nr_throttled, 10044 throttled_usec, cfs_b->nr_burst, burst_usec); 10045 } 10046 #endif /* CONFIG_CFS_BANDWIDTH */ 10047 return 0; 10048 } 10049 10050 static int cpu_local_stat_show(struct seq_file *sf, 10051 struct cgroup_subsys_state *css) 10052 { 10053 #ifdef CONFIG_CFS_BANDWIDTH 10054 { 10055 struct task_group *tg = css_tg(css); 10056 u64 throttled_self_usec; 10057 10058 throttled_self_usec = throttled_time_self(tg); 10059 do_div(throttled_self_usec, NSEC_PER_USEC); 10060 10061 seq_printf(sf, "throttled_usec %llu\n", 10062 throttled_self_usec); 10063 } 10064 #endif 10065 return 0; 10066 } 10067 10068 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10069 10070 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10071 struct cftype *cft) 10072 { 10073 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 10074 } 10075 10076 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10077 struct cftype *cft, u64 cgrp_weight) 10078 { 10079 unsigned long weight; 10080 int ret; 10081 10082 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 10083 return -ERANGE; 10084 10085 weight = sched_weight_from_cgroup(cgrp_weight); 10086 10087 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10088 if (!ret) 10089 scx_group_set_weight(css_tg(css), cgrp_weight); 10090 return ret; 10091 } 10092 10093 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10094 struct cftype *cft) 10095 { 10096 unsigned long weight = tg_weight(css_tg(css)); 10097 int last_delta = INT_MAX; 10098 int prio, delta; 10099 10100 /* find the closest nice value to the current weight */ 10101 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10102 delta = abs(sched_prio_to_weight[prio] - weight); 10103 if (delta >= last_delta) 10104 break; 10105 last_delta = delta; 10106 } 10107 10108 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10109 } 10110 10111 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10112 struct cftype *cft, s64 nice) 10113 { 10114 unsigned long weight; 10115 int idx, ret; 10116 10117 if (nice < MIN_NICE || nice > MAX_NICE) 10118 return -ERANGE; 10119 10120 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10121 idx = array_index_nospec(idx, 40); 10122 weight = sched_prio_to_weight[idx]; 10123 10124 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10125 if (!ret) 10126 scx_group_set_weight(css_tg(css), 10127 sched_weight_to_cgroup(weight)); 10128 return ret; 10129 } 10130 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 10131 10132 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10133 long period, long quota) 10134 { 10135 if (quota < 0) 10136 seq_puts(sf, "max"); 10137 else 10138 seq_printf(sf, "%ld", quota); 10139 10140 seq_printf(sf, " %ld\n", period); 10141 } 10142 10143 /* caller should put the current value in *@periodp before calling */ 10144 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p, 10145 u64 *quota_us_p) 10146 { 10147 char tok[21]; /* U64_MAX */ 10148 10149 if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1) 10150 return -EINVAL; 10151 10152 if (sscanf(tok, "%llu", quota_us_p) < 1) { 10153 if (!strcmp(tok, "max")) 10154 *quota_us_p = RUNTIME_INF; 10155 else 10156 return -EINVAL; 10157 } 10158 10159 return 0; 10160 } 10161 10162 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10163 static int cpu_max_show(struct seq_file *sf, void *v) 10164 { 10165 struct task_group *tg = css_tg(seq_css(sf)); 10166 u64 period_us, quota_us; 10167 10168 tg_bandwidth(tg, &period_us, "a_us, NULL); 10169 cpu_period_quota_print(sf, period_us, quota_us); 10170 return 0; 10171 } 10172 10173 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10174 char *buf, size_t nbytes, loff_t off) 10175 { 10176 struct task_group *tg = css_tg(of_css(of)); 10177 u64 period_us, quota_us, burst_us; 10178 int ret; 10179 10180 tg_bandwidth(tg, &period_us, NULL, &burst_us); 10181 ret = cpu_period_quota_parse(buf, &period_us, "a_us); 10182 if (!ret) 10183 ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us); 10184 return ret ?: nbytes; 10185 } 10186 #endif /* CONFIG_CFS_BANDWIDTH */ 10187 10188 static struct cftype cpu_files[] = { 10189 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10190 { 10191 .name = "weight", 10192 .flags = CFTYPE_NOT_ON_ROOT, 10193 .read_u64 = cpu_weight_read_u64, 10194 .write_u64 = cpu_weight_write_u64, 10195 }, 10196 { 10197 .name = "weight.nice", 10198 .flags = CFTYPE_NOT_ON_ROOT, 10199 .read_s64 = cpu_weight_nice_read_s64, 10200 .write_s64 = cpu_weight_nice_write_s64, 10201 }, 10202 { 10203 .name = "idle", 10204 .flags = CFTYPE_NOT_ON_ROOT, 10205 .read_s64 = cpu_idle_read_s64, 10206 .write_s64 = cpu_idle_write_s64, 10207 }, 10208 #endif 10209 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10210 { 10211 .name = "max", 10212 .flags = CFTYPE_NOT_ON_ROOT, 10213 .seq_show = cpu_max_show, 10214 .write = cpu_max_write, 10215 }, 10216 { 10217 .name = "max.burst", 10218 .flags = CFTYPE_NOT_ON_ROOT, 10219 .read_u64 = cpu_burst_read_u64, 10220 .write_u64 = cpu_burst_write_u64, 10221 }, 10222 #endif /* CONFIG_CFS_BANDWIDTH */ 10223 #ifdef CONFIG_UCLAMP_TASK_GROUP 10224 { 10225 .name = "uclamp.min", 10226 .flags = CFTYPE_NOT_ON_ROOT, 10227 .seq_show = cpu_uclamp_min_show, 10228 .write = cpu_uclamp_min_write, 10229 }, 10230 { 10231 .name = "uclamp.max", 10232 .flags = CFTYPE_NOT_ON_ROOT, 10233 .seq_show = cpu_uclamp_max_show, 10234 .write = cpu_uclamp_max_write, 10235 }, 10236 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10237 { } /* terminate */ 10238 }; 10239 10240 struct cgroup_subsys cpu_cgrp_subsys = { 10241 .css_alloc = cpu_cgroup_css_alloc, 10242 .css_online = cpu_cgroup_css_online, 10243 .css_offline = cpu_cgroup_css_offline, 10244 .css_released = cpu_cgroup_css_released, 10245 .css_free = cpu_cgroup_css_free, 10246 .css_extra_stat_show = cpu_extra_stat_show, 10247 .css_local_stat_show = cpu_local_stat_show, 10248 .can_attach = cpu_cgroup_can_attach, 10249 .attach = cpu_cgroup_attach, 10250 .cancel_attach = cpu_cgroup_cancel_attach, 10251 .legacy_cftypes = cpu_legacy_files, 10252 .dfl_cftypes = cpu_files, 10253 .early_init = true, 10254 .threaded = true, 10255 }; 10256 10257 #endif /* CONFIG_CGROUP_SCHED */ 10258 10259 void dump_cpu_task(int cpu) 10260 { 10261 if (in_hardirq() && cpu == smp_processor_id()) { 10262 struct pt_regs *regs; 10263 10264 regs = get_irq_regs(); 10265 if (regs) { 10266 show_regs(regs); 10267 return; 10268 } 10269 } 10270 10271 if (trigger_single_cpu_backtrace(cpu)) 10272 return; 10273 10274 pr_info("Task dump for CPU %d:\n", cpu); 10275 sched_show_task(cpu_curr(cpu)); 10276 } 10277 10278 /* 10279 * Nice levels are multiplicative, with a gentle 10% change for every 10280 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10281 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10282 * that remained on nice 0. 10283 * 10284 * The "10% effect" is relative and cumulative: from _any_ nice level, 10285 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10286 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10287 * If a task goes up by ~10% and another task goes down by ~10% then 10288 * the relative distance between them is ~25%.) 10289 */ 10290 const int sched_prio_to_weight[40] = { 10291 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10292 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10293 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10294 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10295 /* 0 */ 1024, 820, 655, 526, 423, 10296 /* 5 */ 335, 272, 215, 172, 137, 10297 /* 10 */ 110, 87, 70, 56, 45, 10298 /* 15 */ 36, 29, 23, 18, 15, 10299 }; 10300 10301 /* 10302 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10303 * 10304 * In cases where the weight does not change often, we can use the 10305 * pre-calculated inverse to speed up arithmetics by turning divisions 10306 * into multiplications: 10307 */ 10308 const u32 sched_prio_to_wmult[40] = { 10309 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10310 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10311 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10312 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10313 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10314 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10315 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10316 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10317 }; 10318 10319 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10320 { 10321 trace_sched_update_nr_running_tp(rq, count); 10322 } 10323 10324 #ifdef CONFIG_SCHED_MM_CID 10325 /* 10326 * Concurrency IDentifier management 10327 * 10328 * Serialization rules: 10329 * 10330 * mm::mm_cid::mutex: Serializes fork() and exit() and therefore 10331 * protects mm::mm_cid::users and mode switch 10332 * transitions 10333 * 10334 * mm::mm_cid::lock: Serializes mm_update_max_cids() and 10335 * mm_update_cpus_allowed(). Nests in mm_cid::mutex 10336 * and runqueue lock. 10337 * 10338 * The mm_cidmask bitmap is not protected by any of the mm::mm_cid locks 10339 * and can only be modified with atomic operations. 10340 * 10341 * The mm::mm_cid:pcpu per CPU storage is protected by the CPUs runqueue 10342 * lock. 10343 * 10344 * CID ownership: 10345 * 10346 * A CID is either owned by a task (stored in task_struct::mm_cid.cid) or 10347 * by a CPU (stored in mm::mm_cid.pcpu::cid). CIDs owned by CPUs have the 10348 * MM_CID_ONCPU bit set. 10349 * 10350 * During the transition of ownership mode, the MM_CID_TRANSIT bit is set 10351 * on the CIDs. When this bit is set the tasks drop the CID back into the 10352 * pool when scheduling out. 10353 * 10354 * Both bits (ONCPU and TRANSIT) are filtered out by task_cid() when the 10355 * CID is actually handed over to user space in the RSEQ memory. 10356 * 10357 * Mode switching: 10358 * 10359 * The ownership mode is per process and stored in mm:mm_cid::mode with the 10360 * following possible states: 10361 * 10362 * 0: Per task ownership 10363 * 0 | MM_CID_TRANSIT: Transition from per CPU to per task 10364 * MM_CID_ONCPU: Per CPU ownership 10365 * MM_CID_ONCPU | MM_CID_TRANSIT: Transition from per task to per CPU 10366 * 10367 * All transitions of ownership mode happen in two phases: 10368 * 10369 * 1) mm:mm_cid::mode has the MM_CID_TRANSIT bit set. This is OR'ed on the 10370 * CIDs and denotes that the CID is only temporarily owned by a 10371 * task. When the task schedules out it drops the CID back into the 10372 * pool if this bit is set. 10373 * 10374 * 2) The initiating context walks the per CPU space or the tasks to fixup 10375 * or drop the CIDs and after completion it clears MM_CID_TRANSIT in 10376 * mm:mm_cid::mode. After that point the CIDs are strictly task or CPU 10377 * owned again. 10378 * 10379 * This two phase transition is required to prevent CID space exhaustion 10380 * during the transition as a direct transfer of ownership would fail: 10381 * 10382 * - On task to CPU mode switch if a task is scheduled in on one CPU and 10383 * then migrated to another CPU before the fixup freed enough per task 10384 * CIDs. 10385 * 10386 * - On CPU to task mode switch if two tasks are scheduled in on the same 10387 * CPU before the fixup freed per CPU CIDs. 10388 * 10389 * Both scenarios can result in a live lock because sched_in() is invoked 10390 * with runqueue lock held and loops in search of a CID and the fixup 10391 * thread can't make progress freeing them up because it is stuck on the 10392 * same runqueue lock. 10393 * 10394 * While MM_CID_TRANSIT is active during the transition phase the MM_CID 10395 * bitmap can be contended, but that's a temporary contention bound to the 10396 * transition period. After that everything goes back into steady state and 10397 * nothing except fork() and exit() will touch the bitmap. This is an 10398 * acceptable tradeoff as it completely avoids complex serialization, 10399 * memory barriers and atomic operations for the common case. 10400 * 10401 * Aside of that this mechanism also ensures RT compability: 10402 * 10403 * - The task which runs the fixup is fully preemptible except for the 10404 * short runqueue lock held sections. 10405 * 10406 * - The transient impact of the bitmap contention is only problematic 10407 * when there is a thundering herd scenario of tasks scheduling in and 10408 * out concurrently. There is not much which can be done about that 10409 * except for avoiding mode switching by a proper overall system 10410 * configuration. 10411 * 10412 * Switching to per CPU mode happens when the user count becomes greater 10413 * than the maximum number of CIDs, which is calculated by: 10414 * 10415 * opt_cids = min(mm_cid::nr_cpus_allowed, mm_cid::users); 10416 * max_cids = min(1.25 * opt_cids, num_possible_cpus()); 10417 * 10418 * The +25% allowance is useful for tight CPU masks in scenarios where only 10419 * a few threads are created and destroyed to avoid frequent mode 10420 * switches. Though this allowance shrinks, the closer opt_cids becomes to 10421 * num_possible_cpus(), which is the (unfortunate) hard ABI limit. 10422 * 10423 * At the point of switching to per CPU mode the new user is not yet 10424 * visible in the system, so the task which initiated the fork() runs the 10425 * fixup function. mm_cid_fixup_tasks_to_cpu() walks the thread list and 10426 * either marks each task owned CID with MM_CID_TRANSIT if the task is 10427 * running on a CPU or drops it into the CID pool if a task is not on a 10428 * CPU. Tasks which schedule in before the task walk reaches them do the 10429 * handover in mm_cid_schedin(). When mm_cid_fixup_tasks_to_cpus() 10430 * completes it is guaranteed that no task related to that MM owns a CID 10431 * anymore. 10432 * 10433 * Switching back to task mode happens when the user count goes below the 10434 * threshold which was recorded on the per CPU mode switch: 10435 * 10436 * pcpu_thrs = min(opt_cids - (opt_cids / 4), num_possible_cpus() / 2); 10437 * 10438 * This threshold is updated when a affinity change increases the number of 10439 * allowed CPUs for the MM, which might cause a switch back to per task 10440 * mode. 10441 * 10442 * If the switch back was initiated by a exiting task, then that task runs 10443 * the fixup function. If it was initiated by a affinity change, then it's 10444 * run either in the deferred update function in context of a workqueue or 10445 * by a task which forks a new one or by a task which exits. Whatever 10446 * happens first. mm_cid_fixup_cpus_to_task() walks through the possible 10447 * CPUs and either marks the CPU owned CIDs with MM_CID_TRANSIT if a 10448 * related task is running on the CPU or drops it into the pool. Tasks 10449 * which are scheduled in before the fixup covered them do the handover 10450 * themself. When mm_cid_fixup_cpus_to_tasks() completes it is guaranteed 10451 * that no CID related to that MM is owned by a CPU anymore. 10452 */ 10453 10454 /* 10455 * Update the CID range properties when the constraints change. Invoked via 10456 * fork(), exit() and affinity changes 10457 */ 10458 static void __mm_update_max_cids(struct mm_mm_cid *mc) 10459 { 10460 unsigned int opt_cids, max_cids; 10461 10462 /* Calculate the new optimal constraint */ 10463 opt_cids = min(mc->nr_cpus_allowed, mc->users); 10464 10465 /* Adjust the maximum CIDs to +25% limited by the number of possible CPUs */ 10466 max_cids = min(opt_cids + (opt_cids / 4), num_possible_cpus()); 10467 WRITE_ONCE(mc->max_cids, max_cids); 10468 } 10469 10470 static inline unsigned int mm_cid_calc_pcpu_thrs(struct mm_mm_cid *mc) 10471 { 10472 unsigned int opt_cids; 10473 10474 opt_cids = min(mc->nr_cpus_allowed, mc->users); 10475 /* Has to be at least 1 because 0 indicates PCPU mode off */ 10476 return max(min(opt_cids - opt_cids / 4, num_possible_cpus() / 2), 1); 10477 } 10478 10479 static bool mm_update_max_cids(struct mm_struct *mm) 10480 { 10481 struct mm_mm_cid *mc = &mm->mm_cid; 10482 bool percpu = cid_on_cpu(mc->mode); 10483 10484 lockdep_assert_held(&mm->mm_cid.lock); 10485 10486 /* Clear deferred mode switch flag. A change is handled by the caller */ 10487 mc->update_deferred = false; 10488 __mm_update_max_cids(mc); 10489 10490 /* Check whether owner mode must be changed */ 10491 if (!percpu) { 10492 /* Enable per CPU mode when the number of users is above max_cids */ 10493 if (mc->users > mc->max_cids) 10494 mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc); 10495 } else { 10496 /* Switch back to per task if user count under threshold */ 10497 if (mc->users < mc->pcpu_thrs) 10498 mc->pcpu_thrs = 0; 10499 } 10500 10501 /* Mode change required? */ 10502 if (percpu == !!mc->pcpu_thrs) 10503 return false; 10504 10505 /* Flip the mode and set the transition flag to bridge the transfer */ 10506 WRITE_ONCE(mc->mode, mc->mode ^ (MM_CID_TRANSIT | MM_CID_ONCPU)); 10507 /* 10508 * Order the store against the subsequent fixups so that 10509 * acquire(rq::lock) cannot be reordered by the CPU before the 10510 * store. 10511 */ 10512 smp_mb(); 10513 return true; 10514 } 10515 10516 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) 10517 { 10518 struct cpumask *mm_allowed; 10519 struct mm_mm_cid *mc; 10520 unsigned int weight; 10521 10522 if (!mm || !READ_ONCE(mm->mm_cid.users)) 10523 return; 10524 /* 10525 * mm::mm_cid::mm_cpus_allowed is the superset of each threads 10526 * allowed CPUs mask which means it can only grow. 10527 */ 10528 mc = &mm->mm_cid; 10529 guard(raw_spinlock)(&mc->lock); 10530 mm_allowed = mm_cpus_allowed(mm); 10531 weight = cpumask_weighted_or(mm_allowed, mm_allowed, affmsk); 10532 if (weight == mc->nr_cpus_allowed) 10533 return; 10534 10535 WRITE_ONCE(mc->nr_cpus_allowed, weight); 10536 __mm_update_max_cids(mc); 10537 if (!cid_on_cpu(mc->mode)) 10538 return; 10539 10540 /* Adjust the threshold to the wider set */ 10541 mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc); 10542 /* Switch back to per task mode? */ 10543 if (mc->users >= mc->pcpu_thrs) 10544 return; 10545 10546 /* Don't queue twice */ 10547 if (mc->update_deferred) 10548 return; 10549 10550 /* Queue the irq work, which schedules the real work */ 10551 mc->update_deferred = true; 10552 irq_work_queue(&mc->irq_work); 10553 } 10554 10555 static inline void mm_cid_complete_transit(struct mm_struct *mm, unsigned int mode) 10556 { 10557 /* 10558 * Ensure that the store removing the TRANSIT bit cannot be 10559 * reordered by the CPU before the fixups have been completed. 10560 */ 10561 smp_mb(); 10562 WRITE_ONCE(mm->mm_cid.mode, mode); 10563 } 10564 10565 static inline void mm_cid_transit_to_task(struct task_struct *t, struct mm_cid_pcpu *pcp) 10566 { 10567 if (cid_on_cpu(t->mm_cid.cid)) { 10568 unsigned int cid = cpu_cid_to_cid(t->mm_cid.cid); 10569 10570 t->mm_cid.cid = cid_to_transit_cid(cid); 10571 pcp->cid = t->mm_cid.cid; 10572 } 10573 } 10574 10575 static void mm_cid_fixup_cpus_to_tasks(struct mm_struct *mm) 10576 { 10577 unsigned int cpu; 10578 10579 /* Walk the CPUs and fixup all stale CIDs */ 10580 for_each_possible_cpu(cpu) { 10581 struct mm_cid_pcpu *pcp = per_cpu_ptr(mm->mm_cid.pcpu, cpu); 10582 struct rq *rq = cpu_rq(cpu); 10583 10584 /* Remote access to mm::mm_cid::pcpu requires rq_lock */ 10585 guard(rq_lock_irq)(rq); 10586 /* Is the CID still owned by the CPU? */ 10587 if (cid_on_cpu(pcp->cid)) { 10588 /* 10589 * If rq->curr has @mm, transfer it with the 10590 * transition bit set. Otherwise drop it. 10591 */ 10592 if (rq->curr->mm == mm && rq->curr->mm_cid.active) 10593 mm_cid_transit_to_task(rq->curr, pcp); 10594 else 10595 mm_drop_cid_on_cpu(mm, pcp); 10596 10597 } else if (rq->curr->mm == mm && rq->curr->mm_cid.active) { 10598 unsigned int cid = rq->curr->mm_cid.cid; 10599 10600 /* Ensure it has the transition bit set */ 10601 if (!cid_in_transit(cid)) { 10602 cid = cid_to_transit_cid(cid); 10603 rq->curr->mm_cid.cid = cid; 10604 pcp->cid = cid; 10605 } 10606 } 10607 } 10608 mm_cid_complete_transit(mm, 0); 10609 } 10610 10611 static inline void mm_cid_transit_to_cpu(struct task_struct *t, struct mm_cid_pcpu *pcp) 10612 { 10613 if (cid_on_task(t->mm_cid.cid)) { 10614 t->mm_cid.cid = cid_to_transit_cid(t->mm_cid.cid); 10615 pcp->cid = t->mm_cid.cid; 10616 } 10617 } 10618 10619 static bool mm_cid_fixup_task_to_cpu(struct task_struct *t, struct mm_struct *mm) 10620 { 10621 /* Remote access to mm::mm_cid::pcpu requires rq_lock */ 10622 guard(task_rq_lock)(t); 10623 /* If the task is not active it is not in the users count */ 10624 if (!t->mm_cid.active) 10625 return false; 10626 if (cid_on_task(t->mm_cid.cid)) { 10627 /* If running on the CPU, put the CID in transit mode, otherwise drop it */ 10628 if (task_rq(t)->curr == t) 10629 mm_cid_transit_to_cpu(t, per_cpu_ptr(mm->mm_cid.pcpu, task_cpu(t))); 10630 else 10631 mm_unset_cid_on_task(t); 10632 } 10633 return true; 10634 } 10635 10636 static void mm_cid_do_fixup_tasks_to_cpus(struct mm_struct *mm) 10637 { 10638 struct task_struct *p, *t; 10639 unsigned int users; 10640 10641 /* 10642 * This can obviously race with a concurrent affinity change, which 10643 * increases the number of allowed CPUs for this mm, but that does 10644 * not affect the mode and only changes the CID constraints. A 10645 * possible switch back to per task mode happens either in the 10646 * deferred handler function or in the next fork()/exit(). 10647 * 10648 * The caller has already transferred. The newly incoming task is 10649 * already accounted for, but not yet visible. 10650 */ 10651 users = mm->mm_cid.users - 2; 10652 if (!users) 10653 return; 10654 10655 guard(rcu)(); 10656 for_other_threads(current, t) { 10657 if (mm_cid_fixup_task_to_cpu(t, mm)) 10658 users--; 10659 } 10660 10661 if (!users) 10662 return; 10663 10664 /* Happens only for VM_CLONE processes. */ 10665 for_each_process_thread(p, t) { 10666 if (t == current || t->mm != mm) 10667 continue; 10668 if (mm_cid_fixup_task_to_cpu(t, mm)) { 10669 if (--users == 0) 10670 return; 10671 } 10672 } 10673 } 10674 10675 static void mm_cid_fixup_tasks_to_cpus(void) 10676 { 10677 struct mm_struct *mm = current->mm; 10678 10679 mm_cid_do_fixup_tasks_to_cpus(mm); 10680 mm_cid_complete_transit(mm, MM_CID_ONCPU); 10681 } 10682 10683 static bool sched_mm_cid_add_user(struct task_struct *t, struct mm_struct *mm) 10684 { 10685 t->mm_cid.active = 1; 10686 mm->mm_cid.users++; 10687 return mm_update_max_cids(mm); 10688 } 10689 10690 void sched_mm_cid_fork(struct task_struct *t) 10691 { 10692 struct mm_struct *mm = t->mm; 10693 bool percpu; 10694 10695 WARN_ON_ONCE(!mm || t->mm_cid.cid != MM_CID_UNSET); 10696 10697 guard(mutex)(&mm->mm_cid.mutex); 10698 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10699 struct mm_cid_pcpu *pcp = this_cpu_ptr(mm->mm_cid.pcpu); 10700 10701 /* First user ? */ 10702 if (!mm->mm_cid.users) { 10703 sched_mm_cid_add_user(t, mm); 10704 t->mm_cid.cid = mm_get_cid(mm); 10705 /* Required for execve() */ 10706 pcp->cid = t->mm_cid.cid; 10707 return; 10708 } 10709 10710 if (!sched_mm_cid_add_user(t, mm)) { 10711 if (!cid_on_cpu(mm->mm_cid.mode)) 10712 t->mm_cid.cid = mm_get_cid(mm); 10713 return; 10714 } 10715 10716 /* Handle the mode change and transfer current's CID */ 10717 percpu = cid_on_cpu(mm->mm_cid.mode); 10718 if (!percpu) 10719 mm_cid_transit_to_task(current, pcp); 10720 else 10721 mm_cid_transit_to_cpu(current, pcp); 10722 } 10723 10724 if (percpu) { 10725 mm_cid_fixup_tasks_to_cpus(); 10726 } else { 10727 mm_cid_fixup_cpus_to_tasks(mm); 10728 t->mm_cid.cid = mm_get_cid(mm); 10729 } 10730 } 10731 10732 static bool sched_mm_cid_remove_user(struct task_struct *t) 10733 { 10734 t->mm_cid.active = 0; 10735 scoped_guard(preempt) { 10736 /* Clear the transition bit */ 10737 t->mm_cid.cid = cid_from_transit_cid(t->mm_cid.cid); 10738 mm_unset_cid_on_task(t); 10739 } 10740 t->mm->mm_cid.users--; 10741 return mm_update_max_cids(t->mm); 10742 } 10743 10744 static bool __sched_mm_cid_exit(struct task_struct *t) 10745 { 10746 struct mm_struct *mm = t->mm; 10747 10748 if (!sched_mm_cid_remove_user(t)) 10749 return false; 10750 /* 10751 * Contrary to fork() this only deals with a switch back to per 10752 * task mode either because the above decreased users or an 10753 * affinity change increased the number of allowed CPUs and the 10754 * deferred fixup did not run yet. 10755 */ 10756 if (WARN_ON_ONCE(cid_on_cpu(mm->mm_cid.mode))) 10757 return false; 10758 /* 10759 * A failed fork(2) cleanup never gets here, so @current must have 10760 * the same MM as @t. That's true for exit() and the failed 10761 * pthread_create() cleanup case. 10762 */ 10763 if (WARN_ON_ONCE(current->mm != mm)) 10764 return false; 10765 return true; 10766 } 10767 10768 /* 10769 * When a task exits, the MM CID held by the task is not longer required as 10770 * the task cannot return to user space. 10771 */ 10772 void sched_mm_cid_exit(struct task_struct *t) 10773 { 10774 struct mm_struct *mm = t->mm; 10775 10776 if (!mm || !t->mm_cid.active) 10777 return; 10778 /* 10779 * Ensure that only one instance is doing MM CID operations within 10780 * a MM. The common case is uncontended. The rare fixup case adds 10781 * some overhead. 10782 */ 10783 scoped_guard(mutex, &mm->mm_cid.mutex) { 10784 /* mm_cid::mutex is sufficient to protect mm_cid::users */ 10785 if (likely(mm->mm_cid.users > 1)) { 10786 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10787 if (!__sched_mm_cid_exit(t)) 10788 return; 10789 /* 10790 * Mode change. The task has the CID unset 10791 * already and dealt with an eventually set 10792 * TRANSIT bit. If the CID is owned by the CPU 10793 * then drop it. 10794 */ 10795 mm_drop_cid_on_cpu(mm, this_cpu_ptr(mm->mm_cid.pcpu)); 10796 } 10797 mm_cid_fixup_cpus_to_tasks(mm); 10798 return; 10799 } 10800 /* Last user */ 10801 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10802 /* Required across execve() */ 10803 if (t == current) 10804 mm_cid_transit_to_task(t, this_cpu_ptr(mm->mm_cid.pcpu)); 10805 /* Ignore mode change. There is nothing to do. */ 10806 sched_mm_cid_remove_user(t); 10807 } 10808 } 10809 10810 /* 10811 * As this is the last user (execve(), process exit or failed 10812 * fork(2)) there is no concurrency anymore. 10813 * 10814 * Synchronize eventually pending work to ensure that there are no 10815 * dangling references left. @t->mm_cid.users is zero so nothing 10816 * can queue this work anymore. 10817 */ 10818 irq_work_sync(&mm->mm_cid.irq_work); 10819 cancel_work_sync(&mm->mm_cid.work); 10820 } 10821 10822 /* Deactivate MM CID allocation across execve() */ 10823 void sched_mm_cid_before_execve(struct task_struct *t) 10824 { 10825 sched_mm_cid_exit(t); 10826 } 10827 10828 /* Reactivate MM CID after execve() */ 10829 void sched_mm_cid_after_execve(struct task_struct *t) 10830 { 10831 if (t->mm) 10832 sched_mm_cid_fork(t); 10833 } 10834 10835 static void mm_cid_work_fn(struct work_struct *work) 10836 { 10837 struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.work); 10838 10839 guard(mutex)(&mm->mm_cid.mutex); 10840 /* Did the last user task exit already? */ 10841 if (!mm->mm_cid.users) 10842 return; 10843 10844 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10845 /* Have fork() or exit() handled it already? */ 10846 if (!mm->mm_cid.update_deferred) 10847 return; 10848 /* This clears mm_cid::update_deferred */ 10849 if (!mm_update_max_cids(mm)) 10850 return; 10851 /* Affinity changes can only switch back to task mode */ 10852 if (WARN_ON_ONCE(cid_on_cpu(mm->mm_cid.mode))) 10853 return; 10854 } 10855 mm_cid_fixup_cpus_to_tasks(mm); 10856 } 10857 10858 static void mm_cid_irq_work(struct irq_work *work) 10859 { 10860 struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.irq_work); 10861 10862 /* 10863 * Needs to be unconditional because mm_cid::lock cannot be held 10864 * when scheduling work as mm_update_cpus_allowed() nests inside 10865 * rq::lock and schedule_work() might end up in wakeup... 10866 */ 10867 schedule_work(&mm->mm_cid.work); 10868 } 10869 10870 void mm_init_cid(struct mm_struct *mm, struct task_struct *p) 10871 { 10872 mm->mm_cid.max_cids = 0; 10873 mm->mm_cid.mode = 0; 10874 mm->mm_cid.nr_cpus_allowed = p->nr_cpus_allowed; 10875 mm->mm_cid.users = 0; 10876 mm->mm_cid.pcpu_thrs = 0; 10877 mm->mm_cid.update_deferred = 0; 10878 raw_spin_lock_init(&mm->mm_cid.lock); 10879 mutex_init(&mm->mm_cid.mutex); 10880 mm->mm_cid.irq_work = IRQ_WORK_INIT_HARD(mm_cid_irq_work); 10881 INIT_WORK(&mm->mm_cid.work, mm_cid_work_fn); 10882 cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask); 10883 bitmap_zero(mm_cidmask(mm), num_possible_cpus()); 10884 } 10885 #else /* CONFIG_SCHED_MM_CID */ 10886 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) { } 10887 #endif /* !CONFIG_SCHED_MM_CID */ 10888 10889 static DEFINE_PER_CPU(struct sched_change_ctx, sched_change_ctx); 10890 10891 struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags) 10892 { 10893 struct sched_change_ctx *ctx = this_cpu_ptr(&sched_change_ctx); 10894 struct rq *rq = task_rq(p); 10895 10896 /* 10897 * Must exclusively use matched flags since this is both dequeue and 10898 * enqueue. 10899 */ 10900 WARN_ON_ONCE(flags & 0xFFFF0000); 10901 10902 lockdep_assert_rq_held(rq); 10903 10904 if (!(flags & DEQUEUE_NOCLOCK)) { 10905 update_rq_clock(rq); 10906 flags |= DEQUEUE_NOCLOCK; 10907 } 10908 10909 if ((flags & DEQUEUE_CLASS) && p->sched_class->switching_from) 10910 p->sched_class->switching_from(rq, p); 10911 10912 *ctx = (struct sched_change_ctx){ 10913 .p = p, 10914 .class = p->sched_class, 10915 .flags = flags, 10916 .queued = task_on_rq_queued(p), 10917 .running = task_current_donor(rq, p), 10918 }; 10919 10920 if (!(flags & DEQUEUE_CLASS)) { 10921 if (p->sched_class->get_prio) 10922 ctx->prio = p->sched_class->get_prio(rq, p); 10923 else 10924 ctx->prio = p->prio; 10925 } 10926 10927 if (ctx->queued) 10928 dequeue_task(rq, p, flags); 10929 if (ctx->running) 10930 put_prev_task(rq, p); 10931 10932 if ((flags & DEQUEUE_CLASS) && p->sched_class->switched_from) 10933 p->sched_class->switched_from(rq, p); 10934 10935 return ctx; 10936 } 10937 10938 void sched_change_end(struct sched_change_ctx *ctx) 10939 { 10940 struct task_struct *p = ctx->p; 10941 struct rq *rq = task_rq(p); 10942 10943 lockdep_assert_rq_held(rq); 10944 10945 /* 10946 * Changing class without *QUEUE_CLASS is bad. 10947 */ 10948 WARN_ON_ONCE(p->sched_class != ctx->class && !(ctx->flags & ENQUEUE_CLASS)); 10949 10950 if ((ctx->flags & ENQUEUE_CLASS) && p->sched_class->switching_to) 10951 p->sched_class->switching_to(rq, p); 10952 10953 if (ctx->queued) 10954 enqueue_task(rq, p, ctx->flags); 10955 if (ctx->running) 10956 set_next_task(rq, p); 10957 10958 if (ctx->flags & ENQUEUE_CLASS) { 10959 if (p->sched_class->switched_to) 10960 p->sched_class->switched_to(rq, p); 10961 10962 if (ctx->running) { 10963 /* 10964 * If this was a class promotion; let the old class 10965 * know it got preempted. Note that none of the 10966 * switch*_from() methods know the new class and none 10967 * of the switch*_to() methods know the old class. 10968 */ 10969 if (sched_class_above(p->sched_class, ctx->class)) { 10970 rq->next_class->wakeup_preempt(rq, p, 0); 10971 rq->next_class = p->sched_class; 10972 } 10973 /* 10974 * If this was a degradation in class; make sure to 10975 * reschedule. 10976 */ 10977 if (sched_class_above(ctx->class, p->sched_class)) 10978 resched_curr(rq); 10979 } 10980 } else { 10981 p->sched_class->prio_changed(rq, p, ctx->prio); 10982 } 10983 } 10984