xref: /linux/drivers/mfd/db8500-prcmu.c (revision 0ea5c948cb64bab5bc7a5516774eb8536f05aa0d)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * DB8500 PRCM Unit driver
4   *
5   * Copyright (C) STMicroelectronics 2009
6   * Copyright (C) ST-Ericsson SA 2010
7   *
8   * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9   * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10   * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11   *
12   * U8500 PRCM Unit interface driver
13   */
14  #include <linux/init.h>
15  #include <linux/export.h>
16  #include <linux/kernel.h>
17  #include <linux/delay.h>
18  #include <linux/errno.h>
19  #include <linux/err.h>
20  #include <linux/spinlock.h>
21  #include <linux/io.h>
22  #include <linux/slab.h>
23  #include <linux/mutex.h>
24  #include <linux/completion.h>
25  #include <linux/irq.h>
26  #include <linux/jiffies.h>
27  #include <linux/bitops.h>
28  #include <linux/fs.h>
29  #include <linux/of.h>
30  #include <linux/of_address.h>
31  #include <linux/of_irq.h>
32  #include <linux/platform_device.h>
33  #include <linux/uaccess.h>
34  #include <linux/mfd/core.h>
35  #include <linux/mfd/dbx500-prcmu.h>
36  #include <linux/mfd/abx500/ab8500.h>
37  #include <linux/regulator/db8500-prcmu.h>
38  #include <linux/regulator/machine.h>
39  #include "db8500-prcmu-regs.h"
40  
41  /* Index of different voltages to be used when accessing AVSData */
42  #define PRCM_AVS_BASE		0x2FC
43  #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
44  #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
45  #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
46  #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
47  #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
48  #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
49  #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
50  #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
51  #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
52  #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
53  #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
54  #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
55  #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
56  
57  #define PRCM_AVS_VOLTAGE		0
58  #define PRCM_AVS_VOLTAGE_MASK		0x3f
59  #define PRCM_AVS_ISSLOWSTARTUP		6
60  #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
61  #define PRCM_AVS_ISMODEENABLE		7
62  #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
63  
64  #define PRCM_BOOT_STATUS	0xFFF
65  #define PRCM_ROMCODE_A2P	0xFFE
66  #define PRCM_ROMCODE_P2A	0xFFD
67  #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
68  
69  #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70  
71  #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
72  #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
73  #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
74  #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
75  #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
76  #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
77  #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
78  #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
79  
80  /* Req Mailboxes */
81  #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
82  #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
83  #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
84  #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
85  #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
86  #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
87  
88  /* Ack Mailboxes */
89  #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
90  #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91  #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92  #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93  #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94  #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95  
96  /* Mailbox 0 headers */
97  #define MB0H_POWER_STATE_TRANS		0
98  #define MB0H_CONFIG_WAKEUPS_EXE		1
99  #define MB0H_READ_WAKEUP_ACK		3
100  #define MB0H_CONFIG_WAKEUPS_SLEEP	4
101  
102  #define MB0H_WAKEUP_EXE 2
103  #define MB0H_WAKEUP_SLEEP 5
104  
105  /* Mailbox 0 REQs */
106  #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
107  #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
108  #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
109  #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
110  #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
111  #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
112  
113  /* Mailbox 0 ACKs */
114  #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
115  #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
116  #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
117  #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
118  #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
119  #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
120  #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
121  
122  /* Mailbox 1 headers */
123  #define MB1H_ARM_APE_OPP 0x0
124  #define MB1H_RESET_MODEM 0x2
125  #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126  #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127  #define MB1H_RELEASE_USB_WAKEUP 0x5
128  #define MB1H_PLL_ON_OFF 0x6
129  
130  /* Mailbox 1 Requests */
131  #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
132  #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
133  #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
134  #define PLL_SOC0_OFF	0x1
135  #define PLL_SOC0_ON	0x2
136  #define PLL_SOC1_OFF	0x4
137  #define PLL_SOC1_ON	0x8
138  
139  /* Mailbox 1 ACKs */
140  #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
141  #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
142  #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
143  #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
144  
145  /* Mailbox 2 headers */
146  #define MB2H_DPS	0x0
147  #define MB2H_AUTO_PWR	0x1
148  
149  /* Mailbox 2 REQs */
150  #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
151  #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
152  #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
153  #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
154  #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
155  #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
156  #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
157  #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
158  #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
159  #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
160  
161  /* Mailbox 2 ACKs */
162  #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163  #define HWACC_PWR_ST_OK 0xFE
164  
165  /* Mailbox 3 headers */
166  #define MB3H_ANC	0x0
167  #define MB3H_SIDETONE	0x1
168  #define MB3H_SYSCLK	0xE
169  
170  /* Mailbox 3 Requests */
171  #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
172  #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
173  #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
174  #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
175  #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
176  #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
177  #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
178  
179  /* Mailbox 4 headers */
180  #define MB4H_DDR_INIT	0x0
181  #define MB4H_MEM_ST	0x1
182  #define MB4H_HOTDOG	0x12
183  #define MB4H_HOTMON	0x13
184  #define MB4H_HOT_PERIOD	0x14
185  #define MB4H_A9WDOG_CONF 0x16
186  #define MB4H_A9WDOG_EN   0x17
187  #define MB4H_A9WDOG_DIS  0x18
188  #define MB4H_A9WDOG_LOAD 0x19
189  #define MB4H_A9WDOG_KICK 0x20
190  
191  /* Mailbox 4 Requests */
192  #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
193  #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
194  #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
195  #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
196  #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
197  #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
198  #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
199  #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
200  #define HOTMON_CONFIG_LOW			BIT(0)
201  #define HOTMON_CONFIG_HIGH			BIT(1)
202  #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
203  #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
204  #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
205  #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
206  #define A9WDOG_AUTO_OFF_EN			BIT(7)
207  #define A9WDOG_AUTO_OFF_DIS			0
208  #define A9WDOG_ID_MASK				0xf
209  
210  /* Mailbox 5 Requests */
211  #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
212  #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
213  #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
214  #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
215  #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216  #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217  #define PRCMU_I2C_STOP_EN		BIT(3)
218  
219  /* Mailbox 5 ACKs */
220  #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
221  #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
222  #define I2C_WR_OK 0x1
223  #define I2C_RD_OK 0x2
224  
225  #define NUM_MB 8
226  #define MBOX_BIT BIT
227  #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228  
229  /*
230   * Wakeups/IRQs
231   */
232  
233  #define WAKEUP_BIT_RTC BIT(0)
234  #define WAKEUP_BIT_RTT0 BIT(1)
235  #define WAKEUP_BIT_RTT1 BIT(2)
236  #define WAKEUP_BIT_HSI0 BIT(3)
237  #define WAKEUP_BIT_HSI1 BIT(4)
238  #define WAKEUP_BIT_CA_WAKE BIT(5)
239  #define WAKEUP_BIT_USB BIT(6)
240  #define WAKEUP_BIT_ABB BIT(7)
241  #define WAKEUP_BIT_ABB_FIFO BIT(8)
242  #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243  #define WAKEUP_BIT_CA_SLEEP BIT(10)
244  #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245  #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246  #define WAKEUP_BIT_ANC_OK BIT(13)
247  #define WAKEUP_BIT_SW_ERROR BIT(14)
248  #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249  #define WAKEUP_BIT_ARM BIT(17)
250  #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251  #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252  #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253  #define WAKEUP_BIT_GPIO0 BIT(23)
254  #define WAKEUP_BIT_GPIO1 BIT(24)
255  #define WAKEUP_BIT_GPIO2 BIT(25)
256  #define WAKEUP_BIT_GPIO3 BIT(26)
257  #define WAKEUP_BIT_GPIO4 BIT(27)
258  #define WAKEUP_BIT_GPIO5 BIT(28)
259  #define WAKEUP_BIT_GPIO6 BIT(29)
260  #define WAKEUP_BIT_GPIO7 BIT(30)
261  #define WAKEUP_BIT_GPIO8 BIT(31)
262  
263  static struct {
264  	bool valid;
265  	struct prcmu_fw_version version;
266  } fw_info;
267  
268  static struct irq_domain *db8500_irq_domain;
269  
270  /*
271   * This vector maps irq numbers to the bits in the bit field used in
272   * communication with the PRCMU firmware.
273   *
274   * The reason for having this is to keep the irq numbers contiguous even though
275   * the bits in the bit field are not. (The bits also have a tendency to move
276   * around, to further complicate matters.)
277   */
278  #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279  #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280  
281  #define IRQ_PRCMU_RTC 0
282  #define IRQ_PRCMU_RTT0 1
283  #define IRQ_PRCMU_RTT1 2
284  #define IRQ_PRCMU_HSI0 3
285  #define IRQ_PRCMU_HSI1 4
286  #define IRQ_PRCMU_CA_WAKE 5
287  #define IRQ_PRCMU_USB 6
288  #define IRQ_PRCMU_ABB 7
289  #define IRQ_PRCMU_ABB_FIFO 8
290  #define IRQ_PRCMU_ARM 9
291  #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292  #define IRQ_PRCMU_GPIO0 11
293  #define IRQ_PRCMU_GPIO1 12
294  #define IRQ_PRCMU_GPIO2 13
295  #define IRQ_PRCMU_GPIO3 14
296  #define IRQ_PRCMU_GPIO4 15
297  #define IRQ_PRCMU_GPIO5 16
298  #define IRQ_PRCMU_GPIO6 17
299  #define IRQ_PRCMU_GPIO7 18
300  #define IRQ_PRCMU_GPIO8 19
301  #define IRQ_PRCMU_CA_SLEEP 20
302  #define IRQ_PRCMU_HOTMON_LOW 21
303  #define IRQ_PRCMU_HOTMON_HIGH 22
304  #define NUM_PRCMU_WAKEUPS 23
305  
306  static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307  	IRQ_ENTRY(RTC),
308  	IRQ_ENTRY(RTT0),
309  	IRQ_ENTRY(RTT1),
310  	IRQ_ENTRY(HSI0),
311  	IRQ_ENTRY(HSI1),
312  	IRQ_ENTRY(CA_WAKE),
313  	IRQ_ENTRY(USB),
314  	IRQ_ENTRY(ABB),
315  	IRQ_ENTRY(ABB_FIFO),
316  	IRQ_ENTRY(CA_SLEEP),
317  	IRQ_ENTRY(ARM),
318  	IRQ_ENTRY(HOTMON_LOW),
319  	IRQ_ENTRY(HOTMON_HIGH),
320  	IRQ_ENTRY(MODEM_SW_RESET_REQ),
321  	IRQ_ENTRY(GPIO0),
322  	IRQ_ENTRY(GPIO1),
323  	IRQ_ENTRY(GPIO2),
324  	IRQ_ENTRY(GPIO3),
325  	IRQ_ENTRY(GPIO4),
326  	IRQ_ENTRY(GPIO5),
327  	IRQ_ENTRY(GPIO6),
328  	IRQ_ENTRY(GPIO7),
329  	IRQ_ENTRY(GPIO8)
330  };
331  
332  #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333  #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334  static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335  	WAKEUP_ENTRY(RTC),
336  	WAKEUP_ENTRY(RTT0),
337  	WAKEUP_ENTRY(RTT1),
338  	WAKEUP_ENTRY(HSI0),
339  	WAKEUP_ENTRY(HSI1),
340  	WAKEUP_ENTRY(USB),
341  	WAKEUP_ENTRY(ABB),
342  	WAKEUP_ENTRY(ABB_FIFO),
343  	WAKEUP_ENTRY(ARM)
344  };
345  
346  /*
347   * mb0_transfer - state needed for mailbox 0 communication.
348   * @lock:		The transaction lock.
349   * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
350   *			the request data.
351   * @mask_work:		Work structure used for (un)masking wakeup interrupts.
352   * @req:		Request data that need to persist between requests.
353   */
354  static struct {
355  	spinlock_t lock;
356  	spinlock_t dbb_irqs_lock;
357  	struct work_struct mask_work;
358  	struct mutex ac_wake_lock;
359  	struct completion ac_wake_work;
360  	struct {
361  		u32 dbb_irqs;
362  		u32 dbb_wakeups;
363  		u32 abb_events;
364  	} req;
365  } mb0_transfer;
366  
367  /*
368   * mb1_transfer - state needed for mailbox 1 communication.
369   * @lock:	The transaction lock.
370   * @work:	The transaction completion structure.
371   * @ape_opp:	The current APE OPP.
372   * @ack:	Reply ("acknowledge") data.
373   */
374  static struct {
375  	struct mutex lock;
376  	struct completion work;
377  	u8 ape_opp;
378  	struct {
379  		u8 header;
380  		u8 arm_opp;
381  		u8 ape_opp;
382  		u8 ape_voltage_status;
383  	} ack;
384  } mb1_transfer;
385  
386  /*
387   * mb2_transfer - state needed for mailbox 2 communication.
388   * @lock:            The transaction lock.
389   * @work:            The transaction completion structure.
390   * @auto_pm_lock:    The autonomous power management configuration lock.
391   * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392   * @req:             Request data that need to persist between requests.
393   * @ack:             Reply ("acknowledge") data.
394   */
395  static struct {
396  	struct mutex lock;
397  	struct completion work;
398  	spinlock_t auto_pm_lock;
399  	bool auto_pm_enabled;
400  	struct {
401  		u8 status;
402  	} ack;
403  } mb2_transfer;
404  
405  /*
406   * mb3_transfer - state needed for mailbox 3 communication.
407   * @lock:		The request lock.
408   * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
409   * @sysclk_work:	Work structure used for sysclk requests.
410   */
411  static struct {
412  	spinlock_t lock;
413  	struct mutex sysclk_lock;
414  	struct completion sysclk_work;
415  } mb3_transfer;
416  
417  /*
418   * mb4_transfer - state needed for mailbox 4 communication.
419   * @lock:	The transaction lock.
420   * @work:	The transaction completion structure.
421   */
422  static struct {
423  	struct mutex lock;
424  	struct completion work;
425  } mb4_transfer;
426  
427  /*
428   * mb5_transfer - state needed for mailbox 5 communication.
429   * @lock:	The transaction lock.
430   * @work:	The transaction completion structure.
431   * @ack:	Reply ("acknowledge") data.
432   */
433  static struct {
434  	struct mutex lock;
435  	struct completion work;
436  	struct {
437  		u8 status;
438  		u8 value;
439  	} ack;
440  } mb5_transfer;
441  
442  static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443  
444  /* Spinlocks */
445  static DEFINE_SPINLOCK(prcmu_lock);
446  static DEFINE_SPINLOCK(clkout_lock);
447  
448  /* Global var to runtime determine TCDM base for v2 or v1 */
449  static __iomem void *tcdm_base;
450  static __iomem void *prcmu_base;
451  
452  struct clk_mgt {
453  	u32 offset;
454  	u32 pllsw;
455  	int branch;
456  	bool clk38div;
457  };
458  
459  enum {
460  	PLL_RAW,
461  	PLL_FIX,
462  	PLL_DIV
463  };
464  
465  static DEFINE_SPINLOCK(clk_mgt_lock);
466  
467  #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468  	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469  static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470  	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471  	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472  	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473  	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474  	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475  	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476  	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477  	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478  	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479  	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480  	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481  	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482  	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483  	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484  	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485  	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486  	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487  	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488  	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489  	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490  	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491  	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492  	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493  	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494  	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495  	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496  	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497  	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498  	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499  };
500  
501  struct dsiclk {
502  	u32 divsel_mask;
503  	u32 divsel_shift;
504  	u32 divsel;
505  };
506  
507  static struct dsiclk dsiclk[2] = {
508  	{
509  		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510  		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511  		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512  	},
513  	{
514  		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515  		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516  		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517  	}
518  };
519  
520  struct dsiescclk {
521  	u32 en;
522  	u32 div_mask;
523  	u32 div_shift;
524  };
525  
526  static struct dsiescclk dsiescclk[3] = {
527  	{
528  		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529  		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530  		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531  	},
532  	{
533  		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534  		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535  		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536  	},
537  	{
538  		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539  		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540  		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541  	}
542  };
543  
db8500_prcmu_read(unsigned int reg)544  u32 db8500_prcmu_read(unsigned int reg)
545  {
546  	return readl(prcmu_base + reg);
547  }
548  
db8500_prcmu_write(unsigned int reg,u32 value)549  void db8500_prcmu_write(unsigned int reg, u32 value)
550  {
551  	unsigned long flags;
552  
553  	spin_lock_irqsave(&prcmu_lock, flags);
554  	writel(value, (prcmu_base + reg));
555  	spin_unlock_irqrestore(&prcmu_lock, flags);
556  }
557  
db8500_prcmu_write_masked(unsigned int reg,u32 mask,u32 value)558  void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
559  {
560  	u32 val;
561  	unsigned long flags;
562  
563  	spin_lock_irqsave(&prcmu_lock, flags);
564  	val = readl(prcmu_base + reg);
565  	val = ((val & ~mask) | (value & mask));
566  	writel(val, (prcmu_base + reg));
567  	spin_unlock_irqrestore(&prcmu_lock, flags);
568  }
569  
prcmu_get_fw_version(void)570  struct prcmu_fw_version *prcmu_get_fw_version(void)
571  {
572  	return fw_info.valid ? &fw_info.version : NULL;
573  }
574  
prcmu_is_ulppll_disabled(void)575  static bool prcmu_is_ulppll_disabled(void)
576  {
577  	struct prcmu_fw_version *ver;
578  
579  	ver = prcmu_get_fw_version();
580  	return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
581  }
582  
prcmu_has_arm_maxopp(void)583  bool prcmu_has_arm_maxopp(void)
584  {
585  	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
586  		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
587  }
588  
589  /**
590   * prcmu_set_rc_a2p - This function is used to run few power state sequences
591   * @val: Value to be set, i.e. transition requested
592   * Returns: 0 on success, -EINVAL on invalid argument
593   *
594   * This function is used to run the following power state sequences -
595   * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
596   */
prcmu_set_rc_a2p(enum romcode_write val)597  int prcmu_set_rc_a2p(enum romcode_write val)
598  {
599  	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
600  		return -EINVAL;
601  	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
602  	return 0;
603  }
604  
605  /**
606   * prcmu_get_rc_p2a - This function is used to get power state sequences
607   * Returns: the power transition that has last happened
608   *
609   * This function can return the following transitions-
610   * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
611   */
prcmu_get_rc_p2a(void)612  enum romcode_read prcmu_get_rc_p2a(void)
613  {
614  	return readb(tcdm_base + PRCM_ROMCODE_P2A);
615  }
616  
617  /**
618   * prcmu_get_xp70_current_state - Return the current XP70 power mode
619   * Returns: Returns the current AP(ARM) power mode: init,
620   * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
621   */
prcmu_get_xp70_current_state(void)622  enum ap_pwrst prcmu_get_xp70_current_state(void)
623  {
624  	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
625  }
626  
627  /**
628   * prcmu_config_clkout - Configure one of the programmable clock outputs.
629   * @clkout:	The CLKOUT number (0 or 1).
630   * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
631   * @div:	The divider to be applied.
632   *
633   * Configures one of the programmable clock outputs (CLKOUTs).
634   * @div should be in the range [1,63] to request a configuration, or 0 to
635   * inform that the configuration is no longer requested.
636   */
prcmu_config_clkout(u8 clkout,u8 source,u8 div)637  int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
638  {
639  	static int requests[2];
640  	int r = 0;
641  	unsigned long flags;
642  	u32 val;
643  	u32 bits;
644  	u32 mask;
645  	u32 div_mask;
646  
647  	BUG_ON(clkout > 1);
648  	BUG_ON(div > 63);
649  	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
650  
651  	if (!div && !requests[clkout])
652  		return -EINVAL;
653  
654  	if (clkout == 0) {
655  		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
656  		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
657  		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
658  			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
659  	} else {
660  		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
661  		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
662  			PRCM_CLKOCR_CLK1TYPE);
663  		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
664  			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
665  	}
666  	bits &= mask;
667  
668  	spin_lock_irqsave(&clkout_lock, flags);
669  
670  	val = readl(PRCM_CLKOCR);
671  	if (val & div_mask) {
672  		if (div) {
673  			if ((val & mask) != bits) {
674  				r = -EBUSY;
675  				goto unlock_and_return;
676  			}
677  		} else {
678  			if ((val & mask & ~div_mask) != bits) {
679  				r = -EINVAL;
680  				goto unlock_and_return;
681  			}
682  		}
683  	}
684  	writel((bits | (val & ~mask)), PRCM_CLKOCR);
685  	requests[clkout] += (div ? 1 : -1);
686  
687  unlock_and_return:
688  	spin_unlock_irqrestore(&clkout_lock, flags);
689  
690  	return r;
691  }
692  
db8500_prcmu_set_power_state(u8 state,bool keep_ulp_clk,bool keep_ap_pll)693  int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
694  {
695  	unsigned long flags;
696  
697  	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
698  
699  	spin_lock_irqsave(&mb0_transfer.lock, flags);
700  
701  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
702  		cpu_relax();
703  
704  	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
705  	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
706  	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
707  	writeb((keep_ulp_clk ? 1 : 0),
708  		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
709  	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
710  	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
711  
712  	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
713  
714  	return 0;
715  }
716  
db8500_prcmu_get_power_state_result(void)717  u8 db8500_prcmu_get_power_state_result(void)
718  {
719  	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
720  }
721  
722  /* This function should only be called while mb0_transfer.lock is held. */
config_wakeups(void)723  static void config_wakeups(void)
724  {
725  	const u8 header[2] = {
726  		MB0H_CONFIG_WAKEUPS_EXE,
727  		MB0H_CONFIG_WAKEUPS_SLEEP
728  	};
729  	static u32 last_dbb_events;
730  	static u32 last_abb_events;
731  	u32 dbb_events;
732  	u32 abb_events;
733  	unsigned int i;
734  
735  	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
736  	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
737  
738  	abb_events = mb0_transfer.req.abb_events;
739  
740  	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
741  		return;
742  
743  	for (i = 0; i < 2; i++) {
744  		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
745  			cpu_relax();
746  		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
747  		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
748  		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
749  		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
750  	}
751  	last_dbb_events = dbb_events;
752  	last_abb_events = abb_events;
753  }
754  
db8500_prcmu_enable_wakeups(u32 wakeups)755  void db8500_prcmu_enable_wakeups(u32 wakeups)
756  {
757  	unsigned long flags;
758  	u32 bits;
759  	int i;
760  
761  	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
762  
763  	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
764  		if (wakeups & BIT(i))
765  			bits |= prcmu_wakeup_bit[i];
766  	}
767  
768  	spin_lock_irqsave(&mb0_transfer.lock, flags);
769  
770  	mb0_transfer.req.dbb_wakeups = bits;
771  	config_wakeups();
772  
773  	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
774  }
775  
db8500_prcmu_config_abb_event_readout(u32 abb_events)776  void db8500_prcmu_config_abb_event_readout(u32 abb_events)
777  {
778  	unsigned long flags;
779  
780  	spin_lock_irqsave(&mb0_transfer.lock, flags);
781  
782  	mb0_transfer.req.abb_events = abb_events;
783  	config_wakeups();
784  
785  	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
786  }
787  
db8500_prcmu_get_abb_event_buffer(void __iomem ** buf)788  void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
789  {
790  	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
791  		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
792  	else
793  		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
794  }
795  
796  /**
797   * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
798   * @opp: The new ARM operating point to which transition is to be made
799   * Returns: 0 on success, non-zero on failure
800   *
801   * This function sets the operating point of the ARM.
802   */
db8500_prcmu_set_arm_opp(u8 opp)803  int db8500_prcmu_set_arm_opp(u8 opp)
804  {
805  	int r;
806  
807  	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
808  		return -EINVAL;
809  
810  	r = 0;
811  
812  	mutex_lock(&mb1_transfer.lock);
813  
814  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
815  		cpu_relax();
816  
817  	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
818  	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
819  	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
820  
821  	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
822  	wait_for_completion(&mb1_transfer.work);
823  
824  	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
825  		(mb1_transfer.ack.arm_opp != opp))
826  		r = -EIO;
827  
828  	mutex_unlock(&mb1_transfer.lock);
829  
830  	return r;
831  }
832  
833  /**
834   * db8500_prcmu_get_arm_opp - get the current ARM OPP
835   *
836   * Returns: the current ARM OPP
837   */
db8500_prcmu_get_arm_opp(void)838  int db8500_prcmu_get_arm_opp(void)
839  {
840  	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
841  }
842  
843  /**
844   * db8500_prcmu_get_ddr_opp - get the current DDR OPP
845   *
846   * Returns: the current DDR OPP
847   */
db8500_prcmu_get_ddr_opp(void)848  int db8500_prcmu_get_ddr_opp(void)
849  {
850  	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
851  }
852  
853  /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
request_even_slower_clocks(bool enable)854  static void request_even_slower_clocks(bool enable)
855  {
856  	u32 clock_reg[] = {
857  		PRCM_ACLK_MGT,
858  		PRCM_DMACLK_MGT
859  	};
860  	unsigned long flags;
861  	unsigned int i;
862  
863  	spin_lock_irqsave(&clk_mgt_lock, flags);
864  
865  	/* Grab the HW semaphore. */
866  	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
867  		cpu_relax();
868  
869  	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
870  		u32 val;
871  		u32 div;
872  
873  		val = readl(prcmu_base + clock_reg[i]);
874  		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
875  		if (enable) {
876  			if ((div <= 1) || (div > 15)) {
877  				pr_err("prcmu: Bad clock divider %d in %s\n",
878  					div, __func__);
879  				goto unlock_and_return;
880  			}
881  			div <<= 1;
882  		} else {
883  			if (div <= 2)
884  				goto unlock_and_return;
885  			div >>= 1;
886  		}
887  		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
888  			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
889  		writel(val, prcmu_base + clock_reg[i]);
890  	}
891  
892  unlock_and_return:
893  	/* Release the HW semaphore. */
894  	writel(0, PRCM_SEM);
895  
896  	spin_unlock_irqrestore(&clk_mgt_lock, flags);
897  }
898  
899  /**
900   * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
901   * @opp: The new APE operating point to which transition is to be made
902   * Returns: 0 on success, non-zero on failure
903   *
904   * This function sets the operating point of the APE.
905   */
db8500_prcmu_set_ape_opp(u8 opp)906  int db8500_prcmu_set_ape_opp(u8 opp)
907  {
908  	int r = 0;
909  
910  	if (opp == mb1_transfer.ape_opp)
911  		return 0;
912  
913  	mutex_lock(&mb1_transfer.lock);
914  
915  	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
916  		request_even_slower_clocks(false);
917  
918  	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
919  		goto skip_message;
920  
921  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
922  		cpu_relax();
923  
924  	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
925  	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
926  	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
927  		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
928  
929  	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
930  	wait_for_completion(&mb1_transfer.work);
931  
932  	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
933  		(mb1_transfer.ack.ape_opp != opp))
934  		r = -EIO;
935  
936  skip_message:
937  	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
938  		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
939  		request_even_slower_clocks(true);
940  	if (!r)
941  		mb1_transfer.ape_opp = opp;
942  
943  	mutex_unlock(&mb1_transfer.lock);
944  
945  	return r;
946  }
947  
948  /**
949   * db8500_prcmu_get_ape_opp - get the current APE OPP
950   *
951   * Returns: the current APE OPP
952   */
db8500_prcmu_get_ape_opp(void)953  int db8500_prcmu_get_ape_opp(void)
954  {
955  	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
956  }
957  
958  /**
959   * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
960   * @enable: true to request the higher voltage, false to drop a request.
961   *
962   * Calls to this function to enable and disable requests must be balanced.
963   */
db8500_prcmu_request_ape_opp_100_voltage(bool enable)964  int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
965  {
966  	int r = 0;
967  	u8 header;
968  	static unsigned int requests;
969  
970  	mutex_lock(&mb1_transfer.lock);
971  
972  	if (enable) {
973  		if (0 != requests++)
974  			goto unlock_and_return;
975  		header = MB1H_REQUEST_APE_OPP_100_VOLT;
976  	} else {
977  		if (requests == 0) {
978  			r = -EIO;
979  			goto unlock_and_return;
980  		} else if (1 != requests--) {
981  			goto unlock_and_return;
982  		}
983  		header = MB1H_RELEASE_APE_OPP_100_VOLT;
984  	}
985  
986  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
987  		cpu_relax();
988  
989  	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
990  
991  	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
992  	wait_for_completion(&mb1_transfer.work);
993  
994  	if ((mb1_transfer.ack.header != header) ||
995  		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
996  		r = -EIO;
997  
998  unlock_and_return:
999  	mutex_unlock(&mb1_transfer.lock);
1000  
1001  	return r;
1002  }
1003  
1004  /**
1005   * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006   *
1007   * This function releases the power state requirements of a USB wakeup.
1008   */
prcmu_release_usb_wakeup_state(void)1009  int prcmu_release_usb_wakeup_state(void)
1010  {
1011  	int r = 0;
1012  
1013  	mutex_lock(&mb1_transfer.lock);
1014  
1015  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016  		cpu_relax();
1017  
1018  	writeb(MB1H_RELEASE_USB_WAKEUP,
1019  		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020  
1021  	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022  	wait_for_completion(&mb1_transfer.work);
1023  
1024  	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025  		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026  		r = -EIO;
1027  
1028  	mutex_unlock(&mb1_transfer.lock);
1029  
1030  	return r;
1031  }
1032  
request_pll(u8 clock,bool enable)1033  static int request_pll(u8 clock, bool enable)
1034  {
1035  	int r = 0;
1036  
1037  	if (clock == PRCMU_PLLSOC0)
1038  		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039  	else if (clock == PRCMU_PLLSOC1)
1040  		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041  	else
1042  		return -EINVAL;
1043  
1044  	mutex_lock(&mb1_transfer.lock);
1045  
1046  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047  		cpu_relax();
1048  
1049  	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050  	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051  
1052  	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053  	wait_for_completion(&mb1_transfer.work);
1054  
1055  	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056  		r = -EIO;
1057  
1058  	mutex_unlock(&mb1_transfer.lock);
1059  
1060  	return r;
1061  }
1062  
1063  /**
1064   * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065   * @epod_id: The EPOD to set
1066   * @epod_state: The new EPOD state
1067   *
1068   * This function sets the state of a EPOD (power domain). It may not be called
1069   * from interrupt context.
1070   */
db8500_prcmu_set_epod(u16 epod_id,u8 epod_state)1071  int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072  {
1073  	int r = 0;
1074  	bool ram_retention = false;
1075  	int i;
1076  
1077  	/* check argument */
1078  	BUG_ON(epod_id >= NUM_EPOD_ID);
1079  
1080  	/* set flag if retention is possible */
1081  	switch (epod_id) {
1082  	case EPOD_ID_SVAMMDSP:
1083  	case EPOD_ID_SIAMMDSP:
1084  	case EPOD_ID_ESRAM12:
1085  	case EPOD_ID_ESRAM34:
1086  		ram_retention = true;
1087  		break;
1088  	}
1089  
1090  	/* check argument */
1091  	BUG_ON(epod_state > EPOD_STATE_ON);
1092  	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093  
1094  	/* get lock */
1095  	mutex_lock(&mb2_transfer.lock);
1096  
1097  	/* wait for mailbox */
1098  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099  		cpu_relax();
1100  
1101  	/* fill in mailbox */
1102  	for (i = 0; i < NUM_EPOD_ID; i++)
1103  		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104  	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105  
1106  	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107  
1108  	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109  
1110  	/*
1111  	 * The current firmware version does not handle errors correctly,
1112  	 * and we cannot recover if there is an error.
1113  	 * This is expected to change when the firmware is updated.
1114  	 */
1115  	if (!wait_for_completion_timeout(&mb2_transfer.work,
1116  			msecs_to_jiffies(20000))) {
1117  		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118  			__func__);
1119  		r = -EIO;
1120  		goto unlock_and_return;
1121  	}
1122  
1123  	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124  		r = -EIO;
1125  
1126  unlock_and_return:
1127  	mutex_unlock(&mb2_transfer.lock);
1128  	return r;
1129  }
1130  
1131  /**
1132   * prcmu_configure_auto_pm - Configure autonomous power management.
1133   * @sleep: Configuration for ApSleep.
1134   * @idle:  Configuration for ApIdle.
1135   */
prcmu_configure_auto_pm(struct prcmu_auto_pm_config * sleep,struct prcmu_auto_pm_config * idle)1136  void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137  	struct prcmu_auto_pm_config *idle)
1138  {
1139  	u32 sleep_cfg;
1140  	u32 idle_cfg;
1141  	unsigned long flags;
1142  
1143  	BUG_ON((sleep == NULL) || (idle == NULL));
1144  
1145  	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146  	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147  	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148  	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149  	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150  	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151  
1152  	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153  	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154  	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155  	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156  	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157  	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158  
1159  	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160  
1161  	/*
1162  	 * The autonomous power management configuration is done through
1163  	 * fields in mailbox 2, but these fields are only used as shared
1164  	 * variables - i.e. there is no need to send a message.
1165  	 */
1166  	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167  	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168  
1169  	mb2_transfer.auto_pm_enabled =
1170  		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171  		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172  		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173  		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174  
1175  	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176  }
1177  EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178  
prcmu_is_auto_pm_enabled(void)1179  bool prcmu_is_auto_pm_enabled(void)
1180  {
1181  	return mb2_transfer.auto_pm_enabled;
1182  }
1183  
request_sysclk(bool enable)1184  static int request_sysclk(bool enable)
1185  {
1186  	int r;
1187  	unsigned long flags;
1188  
1189  	r = 0;
1190  
1191  	mutex_lock(&mb3_transfer.sysclk_lock);
1192  
1193  	spin_lock_irqsave(&mb3_transfer.lock, flags);
1194  
1195  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196  		cpu_relax();
1197  
1198  	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199  
1200  	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201  	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202  
1203  	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204  
1205  	/*
1206  	 * The firmware only sends an ACK if we want to enable the
1207  	 * SysClk, and it succeeds.
1208  	 */
1209  	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210  			msecs_to_jiffies(20000))) {
1211  		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212  			__func__);
1213  		r = -EIO;
1214  	}
1215  
1216  	mutex_unlock(&mb3_transfer.sysclk_lock);
1217  
1218  	return r;
1219  }
1220  
request_timclk(bool enable)1221  static int request_timclk(bool enable)
1222  {
1223  	u32 val;
1224  
1225  	/*
1226  	 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227  	 * PLL is disabled so we cannot use doze mode, this will
1228  	 * stop the clock on this firmware.
1229  	 */
1230  	if (prcmu_is_ulppll_disabled())
1231  		val = 0;
1232  	else
1233  		val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234  
1235  	if (!enable)
1236  		val |= PRCM_TCR_STOP_TIMERS |
1237  			PRCM_TCR_DOZE_MODE |
1238  			PRCM_TCR_TENSEL_MASK;
1239  
1240  	writel(val, PRCM_TCR);
1241  
1242  	return 0;
1243  }
1244  
request_clock(u8 clock,bool enable)1245  static int request_clock(u8 clock, bool enable)
1246  {
1247  	u32 val;
1248  	unsigned long flags;
1249  
1250  	spin_lock_irqsave(&clk_mgt_lock, flags);
1251  
1252  	/* Grab the HW semaphore. */
1253  	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254  		cpu_relax();
1255  
1256  	val = readl(prcmu_base + clk_mgt[clock].offset);
1257  	if (enable) {
1258  		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259  	} else {
1260  		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261  		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262  	}
1263  	writel(val, prcmu_base + clk_mgt[clock].offset);
1264  
1265  	/* Release the HW semaphore. */
1266  	writel(0, PRCM_SEM);
1267  
1268  	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269  
1270  	return 0;
1271  }
1272  
request_sga_clock(u8 clock,bool enable)1273  static int request_sga_clock(u8 clock, bool enable)
1274  {
1275  	u32 val;
1276  	int ret;
1277  
1278  	if (enable) {
1279  		val = readl(PRCM_CGATING_BYPASS);
1280  		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281  	}
1282  
1283  	ret = request_clock(clock, enable);
1284  
1285  	if (!ret && !enable) {
1286  		val = readl(PRCM_CGATING_BYPASS);
1287  		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288  	}
1289  
1290  	return ret;
1291  }
1292  
plldsi_locked(void)1293  static inline bool plldsi_locked(void)
1294  {
1295  	return (readl(PRCM_PLLDSI_LOCKP) &
1296  		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297  		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298  		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299  		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300  }
1301  
request_plldsi(bool enable)1302  static int request_plldsi(bool enable)
1303  {
1304  	int r = 0;
1305  	u32 val;
1306  
1307  	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308  		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309  		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310  
1311  	val = readl(PRCM_PLLDSI_ENABLE);
1312  	if (enable)
1313  		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314  	else
1315  		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316  	writel(val, PRCM_PLLDSI_ENABLE);
1317  
1318  	if (enable) {
1319  		unsigned int i;
1320  		bool locked = plldsi_locked();
1321  
1322  		for (i = 10; !locked && (i > 0); --i) {
1323  			udelay(100);
1324  			locked = plldsi_locked();
1325  		}
1326  		if (locked) {
1327  			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328  				PRCM_APE_RESETN_SET);
1329  		} else {
1330  			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331  				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332  				PRCM_MMIP_LS_CLAMP_SET);
1333  			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334  			writel(val, PRCM_PLLDSI_ENABLE);
1335  			r = -EAGAIN;
1336  		}
1337  	} else {
1338  		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339  	}
1340  	return r;
1341  }
1342  
request_dsiclk(u8 n,bool enable)1343  static int request_dsiclk(u8 n, bool enable)
1344  {
1345  	u32 val;
1346  
1347  	val = readl(PRCM_DSI_PLLOUT_SEL);
1348  	val &= ~dsiclk[n].divsel_mask;
1349  	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350  		dsiclk[n].divsel_shift);
1351  	writel(val, PRCM_DSI_PLLOUT_SEL);
1352  	return 0;
1353  }
1354  
request_dsiescclk(u8 n,bool enable)1355  static int request_dsiescclk(u8 n, bool enable)
1356  {
1357  	u32 val;
1358  
1359  	val = readl(PRCM_DSITVCLK_DIV);
1360  	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361  	writel(val, PRCM_DSITVCLK_DIV);
1362  	return 0;
1363  }
1364  
1365  /**
1366   * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367   * @clock:      The clock for which the request is made.
1368   * @enable:     Whether the clock should be enabled (true) or disabled (false).
1369   *
1370   * This function should only be used by the clock implementation.
1371   * Do not use it from any other place!
1372   */
db8500_prcmu_request_clock(u8 clock,bool enable)1373  int db8500_prcmu_request_clock(u8 clock, bool enable)
1374  {
1375  	if (clock == PRCMU_SGACLK)
1376  		return request_sga_clock(clock, enable);
1377  	else if (clock < PRCMU_NUM_REG_CLOCKS)
1378  		return request_clock(clock, enable);
1379  	else if (clock == PRCMU_TIMCLK)
1380  		return request_timclk(enable);
1381  	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382  		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383  	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384  		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385  	else if (clock == PRCMU_PLLDSI)
1386  		return request_plldsi(enable);
1387  	else if (clock == PRCMU_SYSCLK)
1388  		return request_sysclk(enable);
1389  	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390  		return request_pll(clock, enable);
1391  	else
1392  		return -EINVAL;
1393  }
1394  
pll_rate(void __iomem * reg,unsigned long src_rate,int branch)1395  static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396  	int branch)
1397  {
1398  	u64 rate;
1399  	u32 val;
1400  	u32 d;
1401  	u32 div = 1;
1402  
1403  	val = readl(reg);
1404  
1405  	rate = src_rate;
1406  	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407  
1408  	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409  	if (d > 1)
1410  		div *= d;
1411  
1412  	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413  	if (d > 1)
1414  		div *= d;
1415  
1416  	if (val & PRCM_PLL_FREQ_SELDIV2)
1417  		div *= 2;
1418  
1419  	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420  		(val & PRCM_PLL_FREQ_DIV2EN) &&
1421  		((reg == PRCM_PLLSOC0_FREQ) ||
1422  		 (reg == PRCM_PLLARM_FREQ) ||
1423  		 (reg == PRCM_PLLDDR_FREQ))))
1424  		div *= 2;
1425  
1426  	(void)do_div(rate, div);
1427  
1428  	return (unsigned long)rate;
1429  }
1430  
1431  #define ROOT_CLOCK_RATE 38400000
1432  
clock_rate(u8 clock)1433  static unsigned long clock_rate(u8 clock)
1434  {
1435  	u32 val;
1436  	u32 pllsw;
1437  	unsigned long rate = ROOT_CLOCK_RATE;
1438  
1439  	val = readl(prcmu_base + clk_mgt[clock].offset);
1440  
1441  	if (val & PRCM_CLK_MGT_CLK38) {
1442  		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443  			rate /= 2;
1444  		return rate;
1445  	}
1446  
1447  	val |= clk_mgt[clock].pllsw;
1448  	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449  
1450  	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451  		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452  	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453  		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454  	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455  		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456  	else
1457  		return 0;
1458  
1459  	if ((clock == PRCMU_SGACLK) &&
1460  		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461  		u64 r = (rate * 10);
1462  
1463  		(void)do_div(r, 25);
1464  		return (unsigned long)r;
1465  	}
1466  	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467  	if (val)
1468  		return rate / val;
1469  	else
1470  		return 0;
1471  }
1472  
armss_rate(void)1473  static unsigned long armss_rate(void)
1474  {
1475  	u32 r;
1476  	unsigned long rate;
1477  
1478  	r = readl(PRCM_ARM_CHGCLKREQ);
1479  
1480  	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481  		/* External ARMCLKFIX clock */
1482  
1483  		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484  
1485  		/* Check PRCM_ARM_CHGCLKREQ divider */
1486  		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487  			rate /= 2;
1488  
1489  		/* Check PRCM_ARMCLKFIX_MGT divider */
1490  		r = readl(PRCM_ARMCLKFIX_MGT);
1491  		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492  		rate /= r;
1493  
1494  	} else {/* ARM PLL */
1495  		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496  	}
1497  
1498  	return rate;
1499  }
1500  
dsiclk_rate(u8 n)1501  static unsigned long dsiclk_rate(u8 n)
1502  {
1503  	u32 divsel;
1504  	u32 div = 1;
1505  
1506  	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507  	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508  
1509  	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510  		divsel = dsiclk[n].divsel;
1511  	else
1512  		dsiclk[n].divsel = divsel;
1513  
1514  	switch (divsel) {
1515  	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516  		div *= 2;
1517  		fallthrough;
1518  	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519  		div *= 2;
1520  		fallthrough;
1521  	case PRCM_DSI_PLLOUT_SEL_PHI:
1522  		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523  			PLL_RAW) / div;
1524  	default:
1525  		return 0;
1526  	}
1527  }
1528  
dsiescclk_rate(u8 n)1529  static unsigned long dsiescclk_rate(u8 n)
1530  {
1531  	u32 div;
1532  
1533  	div = readl(PRCM_DSITVCLK_DIV);
1534  	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535  	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536  }
1537  
prcmu_clock_rate(u8 clock)1538  unsigned long prcmu_clock_rate(u8 clock)
1539  {
1540  	if (clock < PRCMU_NUM_REG_CLOCKS)
1541  		return clock_rate(clock);
1542  	else if (clock == PRCMU_TIMCLK)
1543  		return prcmu_is_ulppll_disabled() ?
1544  			32768 : ROOT_CLOCK_RATE / 16;
1545  	else if (clock == PRCMU_SYSCLK)
1546  		return ROOT_CLOCK_RATE;
1547  	else if (clock == PRCMU_PLLSOC0)
1548  		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549  	else if (clock == PRCMU_PLLSOC1)
1550  		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551  	else if (clock == PRCMU_ARMSS)
1552  		return armss_rate();
1553  	else if (clock == PRCMU_PLLDDR)
1554  		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555  	else if (clock == PRCMU_PLLDSI)
1556  		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557  			PLL_RAW);
1558  	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559  		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560  	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561  		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562  	else
1563  		return 0;
1564  }
1565  
clock_source_rate(u32 clk_mgt_val,int branch)1566  static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567  {
1568  	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569  		return ROOT_CLOCK_RATE;
1570  	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571  	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572  		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573  	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574  		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575  	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576  		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577  	else
1578  		return 0;
1579  }
1580  
clock_divider(unsigned long src_rate,unsigned long rate)1581  static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582  {
1583  	u32 div;
1584  
1585  	div = (src_rate / rate);
1586  	if (div == 0)
1587  		return 1;
1588  	if (rate < (src_rate / div))
1589  		div++;
1590  	return div;
1591  }
1592  
round_clock_rate(u8 clock,unsigned long rate)1593  static long round_clock_rate(u8 clock, unsigned long rate)
1594  {
1595  	u32 val;
1596  	u32 div;
1597  	unsigned long src_rate;
1598  	long rounded_rate;
1599  
1600  	val = readl(prcmu_base + clk_mgt[clock].offset);
1601  	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602  		clk_mgt[clock].branch);
1603  	div = clock_divider(src_rate, rate);
1604  	if (val & PRCM_CLK_MGT_CLK38) {
1605  		if (clk_mgt[clock].clk38div) {
1606  			if (div > 2)
1607  				div = 2;
1608  		} else {
1609  			div = 1;
1610  		}
1611  	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612  		u64 r = (src_rate * 10);
1613  
1614  		(void)do_div(r, 25);
1615  		if (r <= rate)
1616  			return (unsigned long)r;
1617  	}
1618  	rounded_rate = (src_rate / min(div, (u32)31));
1619  
1620  	return rounded_rate;
1621  }
1622  
1623  static const unsigned long db8500_armss_freqs[] = {
1624  	199680000,
1625  	399360000,
1626  	798720000,
1627  	998400000
1628  };
1629  
1630  /* The DB8520 has slightly higher ARMSS max frequency */
1631  static const unsigned long db8520_armss_freqs[] = {
1632  	199680000,
1633  	399360000,
1634  	798720000,
1635  	1152000000
1636  };
1637  
round_armss_rate(unsigned long rate)1638  static long round_armss_rate(unsigned long rate)
1639  {
1640  	unsigned long freq = 0;
1641  	const unsigned long *freqs;
1642  	int nfreqs;
1643  	int i;
1644  
1645  	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646  		freqs = db8520_armss_freqs;
1647  		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648  	} else {
1649  		freqs = db8500_armss_freqs;
1650  		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651  	}
1652  
1653  	/* Find the corresponding arm opp from the cpufreq table. */
1654  	for (i = 0; i < nfreqs; i++) {
1655  		freq = freqs[i];
1656  		if (rate <= freq)
1657  			break;
1658  	}
1659  
1660  	/* Return the last valid value, even if a match was not found. */
1661  	return freq;
1662  }
1663  
1664  #define MIN_PLL_VCO_RATE 600000000ULL
1665  #define MAX_PLL_VCO_RATE 1680640000ULL
1666  
round_plldsi_rate(unsigned long rate)1667  static long round_plldsi_rate(unsigned long rate)
1668  {
1669  	long rounded_rate = 0;
1670  	unsigned long src_rate;
1671  	unsigned long rem;
1672  	u32 r;
1673  
1674  	src_rate = clock_rate(PRCMU_HDMICLK);
1675  	rem = rate;
1676  
1677  	for (r = 7; (rem > 0) && (r > 0); r--) {
1678  		u64 d;
1679  
1680  		d = (r * rate);
1681  		(void)do_div(d, src_rate);
1682  		if (d < 6)
1683  			d = 6;
1684  		else if (d > 255)
1685  			d = 255;
1686  		d *= src_rate;
1687  		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688  			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689  			continue;
1690  		(void)do_div(d, r);
1691  		if (rate < d) {
1692  			if (rounded_rate == 0)
1693  				rounded_rate = (long)d;
1694  			break;
1695  		}
1696  		if ((rate - d) < rem) {
1697  			rem = (rate - d);
1698  			rounded_rate = (long)d;
1699  		}
1700  	}
1701  	return rounded_rate;
1702  }
1703  
round_dsiclk_rate(unsigned long rate)1704  static long round_dsiclk_rate(unsigned long rate)
1705  {
1706  	u32 div;
1707  	unsigned long src_rate;
1708  	long rounded_rate;
1709  
1710  	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711  		PLL_RAW);
1712  	div = clock_divider(src_rate, rate);
1713  	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714  
1715  	return rounded_rate;
1716  }
1717  
round_dsiescclk_rate(unsigned long rate)1718  static long round_dsiescclk_rate(unsigned long rate)
1719  {
1720  	u32 div;
1721  	unsigned long src_rate;
1722  	long rounded_rate;
1723  
1724  	src_rate = clock_rate(PRCMU_TVCLK);
1725  	div = clock_divider(src_rate, rate);
1726  	rounded_rate = (src_rate / min(div, (u32)255));
1727  
1728  	return rounded_rate;
1729  }
1730  
prcmu_round_clock_rate(u8 clock,unsigned long rate)1731  long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732  {
1733  	if (clock < PRCMU_NUM_REG_CLOCKS)
1734  		return round_clock_rate(clock, rate);
1735  	else if (clock == PRCMU_ARMSS)
1736  		return round_armss_rate(rate);
1737  	else if (clock == PRCMU_PLLDSI)
1738  		return round_plldsi_rate(rate);
1739  	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740  		return round_dsiclk_rate(rate);
1741  	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742  		return round_dsiescclk_rate(rate);
1743  	else
1744  		return (long)prcmu_clock_rate(clock);
1745  }
1746  
set_clock_rate(u8 clock,unsigned long rate)1747  static void set_clock_rate(u8 clock, unsigned long rate)
1748  {
1749  	u32 val;
1750  	u32 div;
1751  	unsigned long src_rate;
1752  	unsigned long flags;
1753  
1754  	spin_lock_irqsave(&clk_mgt_lock, flags);
1755  
1756  	/* Grab the HW semaphore. */
1757  	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758  		cpu_relax();
1759  
1760  	val = readl(prcmu_base + clk_mgt[clock].offset);
1761  	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762  		clk_mgt[clock].branch);
1763  	div = clock_divider(src_rate, rate);
1764  	if (val & PRCM_CLK_MGT_CLK38) {
1765  		if (clk_mgt[clock].clk38div) {
1766  			if (div > 1)
1767  				val |= PRCM_CLK_MGT_CLK38DIV;
1768  			else
1769  				val &= ~PRCM_CLK_MGT_CLK38DIV;
1770  		}
1771  	} else if (clock == PRCMU_SGACLK) {
1772  		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773  			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774  		if (div == 3) {
1775  			u64 r = (src_rate * 10);
1776  
1777  			(void)do_div(r, 25);
1778  			if (r <= rate) {
1779  				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780  				div = 0;
1781  			}
1782  		}
1783  		val |= min(div, (u32)31);
1784  	} else {
1785  		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786  		val |= min(div, (u32)31);
1787  	}
1788  	writel(val, prcmu_base + clk_mgt[clock].offset);
1789  
1790  	/* Release the HW semaphore. */
1791  	writel(0, PRCM_SEM);
1792  
1793  	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794  }
1795  
set_armss_rate(unsigned long rate)1796  static int set_armss_rate(unsigned long rate)
1797  {
1798  	unsigned long freq;
1799  	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800  	const unsigned long *freqs;
1801  	int nfreqs;
1802  	int i;
1803  
1804  	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805  		freqs = db8520_armss_freqs;
1806  		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807  	} else {
1808  		freqs = db8500_armss_freqs;
1809  		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810  	}
1811  
1812  	/* Find the corresponding arm opp from the cpufreq table. */
1813  	for (i = 0; i < nfreqs; i++) {
1814  		freq = freqs[i];
1815  		if (rate == freq)
1816  			break;
1817  	}
1818  
1819  	if (rate != freq)
1820  		return -EINVAL;
1821  
1822  	/* Set the new arm opp. */
1823  	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824  	return db8500_prcmu_set_arm_opp(opps[i]);
1825  }
1826  
set_plldsi_rate(unsigned long rate)1827  static int set_plldsi_rate(unsigned long rate)
1828  {
1829  	unsigned long src_rate;
1830  	unsigned long rem;
1831  	u32 pll_freq = 0;
1832  	u32 r;
1833  
1834  	src_rate = clock_rate(PRCMU_HDMICLK);
1835  	rem = rate;
1836  
1837  	for (r = 7; (rem > 0) && (r > 0); r--) {
1838  		u64 d;
1839  		u64 hwrate;
1840  
1841  		d = (r * rate);
1842  		(void)do_div(d, src_rate);
1843  		if (d < 6)
1844  			d = 6;
1845  		else if (d > 255)
1846  			d = 255;
1847  		hwrate = (d * src_rate);
1848  		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849  			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850  			continue;
1851  		(void)do_div(hwrate, r);
1852  		if (rate < hwrate) {
1853  			if (pll_freq == 0)
1854  				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855  					(r << PRCM_PLL_FREQ_R_SHIFT));
1856  			break;
1857  		}
1858  		if ((rate - hwrate) < rem) {
1859  			rem = (rate - hwrate);
1860  			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861  				(r << PRCM_PLL_FREQ_R_SHIFT));
1862  		}
1863  	}
1864  	if (pll_freq == 0)
1865  		return -EINVAL;
1866  
1867  	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868  	writel(pll_freq, PRCM_PLLDSI_FREQ);
1869  
1870  	return 0;
1871  }
1872  
set_dsiclk_rate(u8 n,unsigned long rate)1873  static void set_dsiclk_rate(u8 n, unsigned long rate)
1874  {
1875  	u32 val;
1876  	u32 div;
1877  
1878  	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879  			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880  
1881  	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882  			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883  			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1884  
1885  	val = readl(PRCM_DSI_PLLOUT_SEL);
1886  	val &= ~dsiclk[n].divsel_mask;
1887  	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888  	writel(val, PRCM_DSI_PLLOUT_SEL);
1889  }
1890  
set_dsiescclk_rate(u8 n,unsigned long rate)1891  static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892  {
1893  	u32 val;
1894  	u32 div;
1895  
1896  	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897  	val = readl(PRCM_DSITVCLK_DIV);
1898  	val &= ~dsiescclk[n].div_mask;
1899  	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900  	writel(val, PRCM_DSITVCLK_DIV);
1901  }
1902  
prcmu_set_clock_rate(u8 clock,unsigned long rate)1903  int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904  {
1905  	if (clock < PRCMU_NUM_REG_CLOCKS)
1906  		set_clock_rate(clock, rate);
1907  	else if (clock == PRCMU_ARMSS)
1908  		return set_armss_rate(rate);
1909  	else if (clock == PRCMU_PLLDSI)
1910  		return set_plldsi_rate(rate);
1911  	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912  		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913  	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914  		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915  	return 0;
1916  }
1917  
db8500_prcmu_config_esram0_deep_sleep(u8 state)1918  int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919  {
1920  	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921  	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922  		return -EINVAL;
1923  
1924  	mutex_lock(&mb4_transfer.lock);
1925  
1926  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927  		cpu_relax();
1928  
1929  	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930  	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931  	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932  	writeb(DDR_PWR_STATE_ON,
1933  	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934  	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935  
1936  	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937  	wait_for_completion(&mb4_transfer.work);
1938  
1939  	mutex_unlock(&mb4_transfer.lock);
1940  
1941  	return 0;
1942  }
1943  
db8500_prcmu_config_hotdog(u8 threshold)1944  int db8500_prcmu_config_hotdog(u8 threshold)
1945  {
1946  	mutex_lock(&mb4_transfer.lock);
1947  
1948  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949  		cpu_relax();
1950  
1951  	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952  	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953  
1954  	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955  	wait_for_completion(&mb4_transfer.work);
1956  
1957  	mutex_unlock(&mb4_transfer.lock);
1958  
1959  	return 0;
1960  }
1961  
db8500_prcmu_config_hotmon(u8 low,u8 high)1962  int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963  {
1964  	mutex_lock(&mb4_transfer.lock);
1965  
1966  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967  		cpu_relax();
1968  
1969  	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970  	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971  	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972  		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973  	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974  
1975  	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976  	wait_for_completion(&mb4_transfer.work);
1977  
1978  	mutex_unlock(&mb4_transfer.lock);
1979  
1980  	return 0;
1981  }
1982  EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983  
config_hot_period(u16 val)1984  static int config_hot_period(u16 val)
1985  {
1986  	mutex_lock(&mb4_transfer.lock);
1987  
1988  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989  		cpu_relax();
1990  
1991  	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992  	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993  
1994  	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995  	wait_for_completion(&mb4_transfer.work);
1996  
1997  	mutex_unlock(&mb4_transfer.lock);
1998  
1999  	return 0;
2000  }
2001  
db8500_prcmu_start_temp_sense(u16 cycles32k)2002  int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003  {
2004  	if (cycles32k == 0xFFFF)
2005  		return -EINVAL;
2006  
2007  	return config_hot_period(cycles32k);
2008  }
2009  EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010  
db8500_prcmu_stop_temp_sense(void)2011  int db8500_prcmu_stop_temp_sense(void)
2012  {
2013  	return config_hot_period(0xFFFF);
2014  }
2015  EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016  
prcmu_a9wdog(u8 cmd,u8 d0,u8 d1,u8 d2,u8 d3)2017  static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2018  {
2019  
2020  	mutex_lock(&mb4_transfer.lock);
2021  
2022  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023  		cpu_relax();
2024  
2025  	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026  	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027  	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028  	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029  
2030  	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031  
2032  	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033  	wait_for_completion(&mb4_transfer.work);
2034  
2035  	mutex_unlock(&mb4_transfer.lock);
2036  
2037  	return 0;
2038  
2039  }
2040  
db8500_prcmu_config_a9wdog(u8 num,bool sleep_auto_off)2041  int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042  {
2043  	BUG_ON(num == 0 || num > 0xf);
2044  	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045  			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046  			    A9WDOG_AUTO_OFF_DIS);
2047  }
2048  EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049  
db8500_prcmu_enable_a9wdog(u8 id)2050  int db8500_prcmu_enable_a9wdog(u8 id)
2051  {
2052  	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053  }
2054  EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055  
db8500_prcmu_disable_a9wdog(u8 id)2056  int db8500_prcmu_disable_a9wdog(u8 id)
2057  {
2058  	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059  }
2060  EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061  
db8500_prcmu_kick_a9wdog(u8 id)2062  int db8500_prcmu_kick_a9wdog(u8 id)
2063  {
2064  	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065  }
2066  EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067  
2068  /*
2069   * timeout is 28 bit, in ms.
2070   */
db8500_prcmu_load_a9wdog(u8 id,u32 timeout)2071  int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072  {
2073  	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074  			    (id & A9WDOG_ID_MASK) |
2075  			    /*
2076  			     * Put the lowest 28 bits of timeout at
2077  			     * offset 4. Four first bits are used for id.
2078  			     */
2079  			    (u8)((timeout << 4) & 0xf0),
2080  			    (u8)((timeout >> 4) & 0xff),
2081  			    (u8)((timeout >> 12) & 0xff),
2082  			    (u8)((timeout >> 20) & 0xff));
2083  }
2084  EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085  
2086  /**
2087   * prcmu_abb_read() - Read register value(s) from the ABB.
2088   * @slave:	The I2C slave address.
2089   * @reg:	The (start) register address.
2090   * @value:	The read out value(s).
2091   * @size:	The number of registers to read.
2092   *
2093   * Reads register value(s) from the ABB.
2094   * @size has to be 1 for the current firmware version.
2095   */
prcmu_abb_read(u8 slave,u8 reg,u8 * value,u8 size)2096  int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097  {
2098  	int r;
2099  
2100  	if (size != 1)
2101  		return -EINVAL;
2102  
2103  	mutex_lock(&mb5_transfer.lock);
2104  
2105  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106  		cpu_relax();
2107  
2108  	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109  	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110  	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111  	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112  	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113  
2114  	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115  
2116  	if (!wait_for_completion_timeout(&mb5_transfer.work,
2117  				msecs_to_jiffies(20000))) {
2118  		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119  			__func__);
2120  		r = -EIO;
2121  	} else {
2122  		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123  	}
2124  
2125  	if (!r)
2126  		*value = mb5_transfer.ack.value;
2127  
2128  	mutex_unlock(&mb5_transfer.lock);
2129  
2130  	return r;
2131  }
2132  
2133  /**
2134   * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135   * @slave:	The I2C slave address.
2136   * @reg:	The (start) register address.
2137   * @value:	The value(s) to write.
2138   * @mask:	The mask(s) to use.
2139   * @size:	The number of registers to write.
2140   *
2141   * Writes masked register value(s) to the ABB.
2142   * For each @value, only the bits set to 1 in the corresponding @mask
2143   * will be written. The other bits are not changed.
2144   * @size has to be 1 for the current firmware version.
2145   */
prcmu_abb_write_masked(u8 slave,u8 reg,u8 * value,u8 * mask,u8 size)2146  int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147  {
2148  	int r;
2149  
2150  	if (size != 1)
2151  		return -EINVAL;
2152  
2153  	mutex_lock(&mb5_transfer.lock);
2154  
2155  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156  		cpu_relax();
2157  
2158  	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159  	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160  	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161  	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162  	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163  
2164  	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165  
2166  	if (!wait_for_completion_timeout(&mb5_transfer.work,
2167  				msecs_to_jiffies(20000))) {
2168  		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169  			__func__);
2170  		r = -EIO;
2171  	} else {
2172  		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173  	}
2174  
2175  	mutex_unlock(&mb5_transfer.lock);
2176  
2177  	return r;
2178  }
2179  
2180  /**
2181   * prcmu_abb_write() - Write register value(s) to the ABB.
2182   * @slave:	The I2C slave address.
2183   * @reg:	The (start) register address.
2184   * @value:	The value(s) to write.
2185   * @size:	The number of registers to write.
2186   *
2187   * Writes register value(s) to the ABB.
2188   * @size has to be 1 for the current firmware version.
2189   */
prcmu_abb_write(u8 slave,u8 reg,u8 * value,u8 size)2190  int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191  {
2192  	u8 mask = ~0;
2193  
2194  	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195  }
2196  
2197  /**
2198   * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2199   */
prcmu_ac_wake_req(void)2200  int prcmu_ac_wake_req(void)
2201  {
2202  	u32 val;
2203  	int ret = 0;
2204  
2205  	mutex_lock(&mb0_transfer.ac_wake_lock);
2206  
2207  	val = readl(PRCM_HOSTACCESS_REQ);
2208  	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209  		goto unlock_and_return;
2210  
2211  	atomic_set(&ac_wake_req_state, 1);
2212  
2213  	/*
2214  	 * Force Modem Wake-up before hostaccess_req ping-pong.
2215  	 * It prevents Modem to enter in Sleep while acking the hostaccess
2216  	 * request. The 31us delay has been calculated by HWI.
2217  	 */
2218  	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219  	writel(val, PRCM_HOSTACCESS_REQ);
2220  
2221  	udelay(31);
2222  
2223  	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224  	writel(val, PRCM_HOSTACCESS_REQ);
2225  
2226  	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227  			msecs_to_jiffies(5000))) {
2228  		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229  			__func__);
2230  		ret = -EFAULT;
2231  	}
2232  
2233  unlock_and_return:
2234  	mutex_unlock(&mb0_transfer.ac_wake_lock);
2235  	return ret;
2236  }
2237  
2238  /**
2239   * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2240   */
prcmu_ac_sleep_req(void)2241  void prcmu_ac_sleep_req(void)
2242  {
2243  	u32 val;
2244  
2245  	mutex_lock(&mb0_transfer.ac_wake_lock);
2246  
2247  	val = readl(PRCM_HOSTACCESS_REQ);
2248  	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249  		goto unlock_and_return;
2250  
2251  	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252  		PRCM_HOSTACCESS_REQ);
2253  
2254  	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255  			msecs_to_jiffies(5000))) {
2256  		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257  			__func__);
2258  	}
2259  
2260  	atomic_set(&ac_wake_req_state, 0);
2261  
2262  unlock_and_return:
2263  	mutex_unlock(&mb0_transfer.ac_wake_lock);
2264  }
2265  
db8500_prcmu_is_ac_wake_requested(void)2266  bool db8500_prcmu_is_ac_wake_requested(void)
2267  {
2268  	return (atomic_read(&ac_wake_req_state) != 0);
2269  }
2270  
2271  /**
2272   * db8500_prcmu_system_reset - System reset
2273   *
2274   * Saves the reset reason code and then sets the APE_SOFTRST register which
2275   * fires interrupt to fw
2276   *
2277   * @reset_code: The reason for system reset
2278   */
db8500_prcmu_system_reset(u16 reset_code)2279  void db8500_prcmu_system_reset(u16 reset_code)
2280  {
2281  	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282  	writel(1, PRCM_APE_SOFTRST);
2283  }
2284  
2285  /**
2286   * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2287   *
2288   * Retrieves the reset reason code stored by prcmu_system_reset() before
2289   * last restart.
2290   */
db8500_prcmu_get_reset_code(void)2291  u16 db8500_prcmu_get_reset_code(void)
2292  {
2293  	return readw(tcdm_base + PRCM_SW_RST_REASON);
2294  }
2295  
2296  /**
2297   * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2298   */
db8500_prcmu_modem_reset(void)2299  void db8500_prcmu_modem_reset(void)
2300  {
2301  	mutex_lock(&mb1_transfer.lock);
2302  
2303  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304  		cpu_relax();
2305  
2306  	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307  	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308  	wait_for_completion(&mb1_transfer.work);
2309  
2310  	/*
2311  	 * No need to check return from PRCMU as modem should go in reset state
2312  	 * This state is already managed by upper layer
2313  	 */
2314  
2315  	mutex_unlock(&mb1_transfer.lock);
2316  }
2317  
ack_dbb_wakeup(void)2318  static void ack_dbb_wakeup(void)
2319  {
2320  	unsigned long flags;
2321  
2322  	spin_lock_irqsave(&mb0_transfer.lock, flags);
2323  
2324  	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325  		cpu_relax();
2326  
2327  	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328  	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329  
2330  	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331  }
2332  
print_unknown_header_warning(u8 n,u8 header)2333  static inline void print_unknown_header_warning(u8 n, u8 header)
2334  {
2335  	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336  		header, n);
2337  }
2338  
read_mailbox_0(void)2339  static bool read_mailbox_0(void)
2340  {
2341  	bool r;
2342  	u32 ev;
2343  	unsigned int n;
2344  	u8 header;
2345  
2346  	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347  	switch (header) {
2348  	case MB0H_WAKEUP_EXE:
2349  	case MB0H_WAKEUP_SLEEP:
2350  		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351  			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352  		else
2353  			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354  
2355  		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356  			complete(&mb0_transfer.ac_wake_work);
2357  		if (ev & WAKEUP_BIT_SYSCLK_OK)
2358  			complete(&mb3_transfer.sysclk_work);
2359  
2360  		ev &= mb0_transfer.req.dbb_irqs;
2361  
2362  		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363  			if (ev & prcmu_irq_bit[n])
2364  				generic_handle_domain_irq(db8500_irq_domain, n);
2365  		}
2366  		r = true;
2367  		break;
2368  	default:
2369  		print_unknown_header_warning(0, header);
2370  		r = false;
2371  		break;
2372  	}
2373  	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374  	return r;
2375  }
2376  
read_mailbox_1(void)2377  static bool read_mailbox_1(void)
2378  {
2379  	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380  	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381  		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382  	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383  		PRCM_ACK_MB1_CURRENT_APE_OPP);
2384  	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385  		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386  	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387  	complete(&mb1_transfer.work);
2388  	return false;
2389  }
2390  
read_mailbox_2(void)2391  static bool read_mailbox_2(void)
2392  {
2393  	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394  	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395  	complete(&mb2_transfer.work);
2396  	return false;
2397  }
2398  
read_mailbox_3(void)2399  static bool read_mailbox_3(void)
2400  {
2401  	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402  	return false;
2403  }
2404  
read_mailbox_4(void)2405  static bool read_mailbox_4(void)
2406  {
2407  	u8 header;
2408  	bool do_complete = true;
2409  
2410  	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411  	switch (header) {
2412  	case MB4H_MEM_ST:
2413  	case MB4H_HOTDOG:
2414  	case MB4H_HOTMON:
2415  	case MB4H_HOT_PERIOD:
2416  	case MB4H_A9WDOG_CONF:
2417  	case MB4H_A9WDOG_EN:
2418  	case MB4H_A9WDOG_DIS:
2419  	case MB4H_A9WDOG_LOAD:
2420  	case MB4H_A9WDOG_KICK:
2421  		break;
2422  	default:
2423  		print_unknown_header_warning(4, header);
2424  		do_complete = false;
2425  		break;
2426  	}
2427  
2428  	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429  
2430  	if (do_complete)
2431  		complete(&mb4_transfer.work);
2432  
2433  	return false;
2434  }
2435  
read_mailbox_5(void)2436  static bool read_mailbox_5(void)
2437  {
2438  	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439  	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440  	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441  	complete(&mb5_transfer.work);
2442  	return false;
2443  }
2444  
read_mailbox_6(void)2445  static bool read_mailbox_6(void)
2446  {
2447  	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448  	return false;
2449  }
2450  
read_mailbox_7(void)2451  static bool read_mailbox_7(void)
2452  {
2453  	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454  	return false;
2455  }
2456  
2457  static bool (* const read_mailbox[NUM_MB])(void) = {
2458  	read_mailbox_0,
2459  	read_mailbox_1,
2460  	read_mailbox_2,
2461  	read_mailbox_3,
2462  	read_mailbox_4,
2463  	read_mailbox_5,
2464  	read_mailbox_6,
2465  	read_mailbox_7
2466  };
2467  
prcmu_irq_handler(int irq,void * data)2468  static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469  {
2470  	u32 bits;
2471  	u8 n;
2472  	irqreturn_t r;
2473  
2474  	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475  	if (unlikely(!bits))
2476  		return IRQ_NONE;
2477  
2478  	r = IRQ_HANDLED;
2479  	for (n = 0; bits; n++) {
2480  		if (bits & MBOX_BIT(n)) {
2481  			bits -= MBOX_BIT(n);
2482  			if (read_mailbox[n]())
2483  				r = IRQ_WAKE_THREAD;
2484  		}
2485  	}
2486  	return r;
2487  }
2488  
prcmu_irq_thread_fn(int irq,void * data)2489  static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490  {
2491  	ack_dbb_wakeup();
2492  	return IRQ_HANDLED;
2493  }
2494  
prcmu_mask_work(struct work_struct * work)2495  static void prcmu_mask_work(struct work_struct *work)
2496  {
2497  	unsigned long flags;
2498  
2499  	spin_lock_irqsave(&mb0_transfer.lock, flags);
2500  
2501  	config_wakeups();
2502  
2503  	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504  }
2505  
prcmu_irq_mask(struct irq_data * d)2506  static void prcmu_irq_mask(struct irq_data *d)
2507  {
2508  	unsigned long flags;
2509  
2510  	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511  
2512  	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513  
2514  	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515  
2516  	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517  		schedule_work(&mb0_transfer.mask_work);
2518  }
2519  
prcmu_irq_unmask(struct irq_data * d)2520  static void prcmu_irq_unmask(struct irq_data *d)
2521  {
2522  	unsigned long flags;
2523  
2524  	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525  
2526  	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527  
2528  	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529  
2530  	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531  		schedule_work(&mb0_transfer.mask_work);
2532  }
2533  
noop(struct irq_data * d)2534  static void noop(struct irq_data *d)
2535  {
2536  }
2537  
2538  static struct irq_chip prcmu_irq_chip = {
2539  	.name		= "prcmu",
2540  	.irq_disable	= prcmu_irq_mask,
2541  	.irq_ack	= noop,
2542  	.irq_mask	= prcmu_irq_mask,
2543  	.irq_unmask	= prcmu_irq_unmask,
2544  };
2545  
fw_project_name(u32 project)2546  static char *fw_project_name(u32 project)
2547  {
2548  	switch (project) {
2549  	case PRCMU_FW_PROJECT_U8500:
2550  		return "U8500";
2551  	case PRCMU_FW_PROJECT_U8400:
2552  		return "U8400";
2553  	case PRCMU_FW_PROJECT_U9500:
2554  		return "U9500";
2555  	case PRCMU_FW_PROJECT_U8500_MBB:
2556  		return "U8500 MBB";
2557  	case PRCMU_FW_PROJECT_U8500_C1:
2558  		return "U8500 C1";
2559  	case PRCMU_FW_PROJECT_U8500_C2:
2560  		return "U8500 C2";
2561  	case PRCMU_FW_PROJECT_U8500_C3:
2562  		return "U8500 C3";
2563  	case PRCMU_FW_PROJECT_U8500_C4:
2564  		return "U8500 C4";
2565  	case PRCMU_FW_PROJECT_U9500_MBL:
2566  		return "U9500 MBL";
2567  	case PRCMU_FW_PROJECT_U8500_SSG1:
2568  		return "U8500 Samsung 1";
2569  	case PRCMU_FW_PROJECT_U8500_MBL2:
2570  		return "U8500 MBL2";
2571  	case PRCMU_FW_PROJECT_U8520:
2572  		return "U8520 MBL";
2573  	case PRCMU_FW_PROJECT_U8420:
2574  		return "U8420";
2575  	case PRCMU_FW_PROJECT_U8500_SSG2:
2576  		return "U8500 Samsung 2";
2577  	case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578  		return "U8420-sysclk";
2579  	case PRCMU_FW_PROJECT_U9540:
2580  		return "U9540";
2581  	case PRCMU_FW_PROJECT_A9420:
2582  		return "A9420";
2583  	case PRCMU_FW_PROJECT_L8540:
2584  		return "L8540";
2585  	case PRCMU_FW_PROJECT_L8580:
2586  		return "L8580";
2587  	default:
2588  		return "Unknown";
2589  	}
2590  }
2591  
db8500_irq_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hwirq)2592  static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593  				irq_hw_number_t hwirq)
2594  {
2595  	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596  				handle_simple_irq);
2597  
2598  	return 0;
2599  }
2600  
2601  static const struct irq_domain_ops db8500_irq_ops = {
2602  	.map    = db8500_irq_map,
2603  	.xlate  = irq_domain_xlate_twocell,
2604  };
2605  
db8500_irq_init(struct device_node * np)2606  static int db8500_irq_init(struct device_node *np)
2607  {
2608  	int i;
2609  
2610  	db8500_irq_domain = irq_domain_add_simple(
2611  		np, NUM_PRCMU_WAKEUPS, 0,
2612  		&db8500_irq_ops, NULL);
2613  
2614  	if (!db8500_irq_domain) {
2615  		pr_err("Failed to create irqdomain\n");
2616  		return -ENOSYS;
2617  	}
2618  
2619  	/* All wakeups will be used, so create mappings for all */
2620  	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621  		irq_create_mapping(db8500_irq_domain, i);
2622  
2623  	return 0;
2624  }
2625  
dbx500_fw_version_init(struct device_node * np)2626  static void dbx500_fw_version_init(struct device_node *np)
2627  {
2628  	void __iomem *tcpm_base;
2629  	u32 version;
2630  
2631  	tcpm_base = of_iomap(np, 1);
2632  	if (!tcpm_base) {
2633  		pr_err("no prcmu tcpm mem region provided\n");
2634  		return;
2635  	}
2636  
2637  	version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638  	fw_info.version.project = (version & 0xFF);
2639  	fw_info.version.api_version = (version >> 8) & 0xFF;
2640  	fw_info.version.func_version = (version >> 16) & 0xFF;
2641  	fw_info.version.errata = (version >> 24) & 0xFF;
2642  	strscpy(fw_info.version.project_name,
2643  		fw_project_name(fw_info.version.project),
2644  		sizeof(fw_info.version.project_name));
2645  	fw_info.valid = true;
2646  	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647  		fw_info.version.project_name,
2648  		fw_info.version.project,
2649  		fw_info.version.api_version,
2650  		fw_info.version.func_version,
2651  		fw_info.version.errata);
2652  	iounmap(tcpm_base);
2653  }
2654  
db8500_prcmu_early_init(void)2655  void __init db8500_prcmu_early_init(void)
2656  {
2657  	/*
2658  	 * This is a temporary remap to bring up the clocks. It is
2659  	 * subsequently replaces with a real remap. After the merge of
2660  	 * the mailbox subsystem all of this early code goes away, and the
2661  	 * clock driver can probe independently. An early initcall will
2662  	 * still be needed, but it can be diverted into drivers/clk/ux500.
2663  	 */
2664  	struct device_node *np;
2665  
2666  	np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667  	prcmu_base = of_iomap(np, 0);
2668  	if (!prcmu_base) {
2669  		of_node_put(np);
2670  		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671  		return;
2672  	}
2673  	dbx500_fw_version_init(np);
2674  	of_node_put(np);
2675  
2676  	spin_lock_init(&mb0_transfer.lock);
2677  	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678  	mutex_init(&mb0_transfer.ac_wake_lock);
2679  	init_completion(&mb0_transfer.ac_wake_work);
2680  	mutex_init(&mb1_transfer.lock);
2681  	init_completion(&mb1_transfer.work);
2682  	mb1_transfer.ape_opp = APE_NO_CHANGE;
2683  	mutex_init(&mb2_transfer.lock);
2684  	init_completion(&mb2_transfer.work);
2685  	spin_lock_init(&mb2_transfer.auto_pm_lock);
2686  	spin_lock_init(&mb3_transfer.lock);
2687  	mutex_init(&mb3_transfer.sysclk_lock);
2688  	init_completion(&mb3_transfer.sysclk_work);
2689  	mutex_init(&mb4_transfer.lock);
2690  	init_completion(&mb4_transfer.work);
2691  	mutex_init(&mb5_transfer.lock);
2692  	init_completion(&mb5_transfer.work);
2693  
2694  	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695  }
2696  
init_prcm_registers(void)2697  static void init_prcm_registers(void)
2698  {
2699  	u32 val;
2700  
2701  	val = readl(PRCM_A9PL_FORCE_CLKEN);
2702  	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703  		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704  	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2705  }
2706  
2707  /*
2708   * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709   */
2710  static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711  	REGULATOR_SUPPLY("v-ape", NULL),
2712  	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713  	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714  	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715  	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716  	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717  	/* "v-mmc" changed to "vcore" in the mainline kernel */
2718  	REGULATOR_SUPPLY("vcore", "sdi0"),
2719  	REGULATOR_SUPPLY("vcore", "sdi1"),
2720  	REGULATOR_SUPPLY("vcore", "sdi2"),
2721  	REGULATOR_SUPPLY("vcore", "sdi3"),
2722  	REGULATOR_SUPPLY("vcore", "sdi4"),
2723  	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724  	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725  	/* "v-uart" changed to "vcore" in the mainline kernel */
2726  	REGULATOR_SUPPLY("vcore", "uart0"),
2727  	REGULATOR_SUPPLY("vcore", "uart1"),
2728  	REGULATOR_SUPPLY("vcore", "uart2"),
2729  	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730  	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731  	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732  };
2733  
2734  static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2735  	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736  	/* AV8100 regulator */
2737  	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738  };
2739  
2740  static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741  	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742  	REGULATOR_SUPPLY("vsupply", "mcde"),
2743  };
2744  
2745  /* SVA MMDSP regulator switch */
2746  static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747  	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748  };
2749  
2750  /* SVA pipe regulator switch */
2751  static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752  	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753  };
2754  
2755  /* SIA MMDSP regulator switch */
2756  static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757  	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758  };
2759  
2760  /* SIA pipe regulator switch */
2761  static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762  	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763  };
2764  
2765  static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766  	REGULATOR_SUPPLY("v-mali", NULL),
2767  };
2768  
2769  /* ESRAM1 and 2 regulator switch */
2770  static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771  	REGULATOR_SUPPLY("esram12", "cm_control"),
2772  };
2773  
2774  /* ESRAM3 and 4 regulator switch */
2775  static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776  	REGULATOR_SUPPLY("v-esram34", "mcde"),
2777  	REGULATOR_SUPPLY("esram34", "cm_control"),
2778  	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779  };
2780  
2781  static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782  	[DB8500_REGULATOR_VAPE] = {
2783  		.constraints = {
2784  			.name = "db8500-vape",
2785  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786  			.always_on = true,
2787  		},
2788  		.consumer_supplies = db8500_vape_consumers,
2789  		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790  	},
2791  	[DB8500_REGULATOR_VARM] = {
2792  		.constraints = {
2793  			.name = "db8500-varm",
2794  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795  		},
2796  	},
2797  	[DB8500_REGULATOR_VMODEM] = {
2798  		.constraints = {
2799  			.name = "db8500-vmodem",
2800  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801  		},
2802  	},
2803  	[DB8500_REGULATOR_VPLL] = {
2804  		.constraints = {
2805  			.name = "db8500-vpll",
2806  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807  		},
2808  	},
2809  	[DB8500_REGULATOR_VSMPS1] = {
2810  		.constraints = {
2811  			.name = "db8500-vsmps1",
2812  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813  		},
2814  	},
2815  	[DB8500_REGULATOR_VSMPS2] = {
2816  		.constraints = {
2817  			.name = "db8500-vsmps2",
2818  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819  		},
2820  		.consumer_supplies = db8500_vsmps2_consumers,
2821  		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822  	},
2823  	[DB8500_REGULATOR_VSMPS3] = {
2824  		.constraints = {
2825  			.name = "db8500-vsmps3",
2826  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827  		},
2828  	},
2829  	[DB8500_REGULATOR_VRF1] = {
2830  		.constraints = {
2831  			.name = "db8500-vrf1",
2832  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833  		},
2834  	},
2835  	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836  		/* dependency to u8500-vape is handled outside regulator framework */
2837  		.constraints = {
2838  			.name = "db8500-sva-mmdsp",
2839  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840  		},
2841  		.consumer_supplies = db8500_svammdsp_consumers,
2842  		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843  	},
2844  	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845  		.constraints = {
2846  			/* "ret" means "retention" */
2847  			.name = "db8500-sva-mmdsp-ret",
2848  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849  		},
2850  	},
2851  	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852  		/* dependency to u8500-vape is handled outside regulator framework */
2853  		.constraints = {
2854  			.name = "db8500-sva-pipe",
2855  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856  		},
2857  		.consumer_supplies = db8500_svapipe_consumers,
2858  		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859  	},
2860  	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861  		/* dependency to u8500-vape is handled outside regulator framework */
2862  		.constraints = {
2863  			.name = "db8500-sia-mmdsp",
2864  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865  		},
2866  		.consumer_supplies = db8500_siammdsp_consumers,
2867  		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868  	},
2869  	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870  		.constraints = {
2871  			.name = "db8500-sia-mmdsp-ret",
2872  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873  		},
2874  	},
2875  	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876  		/* dependency to u8500-vape is handled outside regulator framework */
2877  		.constraints = {
2878  			.name = "db8500-sia-pipe",
2879  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880  		},
2881  		.consumer_supplies = db8500_siapipe_consumers,
2882  		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883  	},
2884  	[DB8500_REGULATOR_SWITCH_SGA] = {
2885  		.supply_regulator = "db8500-vape",
2886  		.constraints = {
2887  			.name = "db8500-sga",
2888  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889  		},
2890  		.consumer_supplies = db8500_sga_consumers,
2891  		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892  
2893  	},
2894  	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895  		.supply_regulator = "db8500-vape",
2896  		.constraints = {
2897  			.name = "db8500-b2r2-mcde",
2898  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899  		},
2900  		.consumer_supplies = db8500_b2r2_mcde_consumers,
2901  		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902  	},
2903  	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904  		/*
2905  		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906  		 * no need to hold Vape
2907  		 */
2908  		.constraints = {
2909  			.name = "db8500-esram12",
2910  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911  		},
2912  		.consumer_supplies = db8500_esram12_consumers,
2913  		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914  	},
2915  	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916  		.constraints = {
2917  			.name = "db8500-esram12-ret",
2918  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919  		},
2920  	},
2921  	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922  		/*
2923  		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924  		 * no need to hold Vape
2925  		 */
2926  		.constraints = {
2927  			.name = "db8500-esram34",
2928  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929  		},
2930  		.consumer_supplies = db8500_esram34_consumers,
2931  		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932  	},
2933  	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934  		.constraints = {
2935  			.name = "db8500-esram34-ret",
2936  			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937  		},
2938  	},
2939  };
2940  
2941  static const struct mfd_cell common_prcmu_devs[] = {
2942  	MFD_CELL_NAME("db8500_wdt"),
2943  	MFD_CELL_NAME("db8500-cpuidle"),
2944  };
2945  
2946  static const struct mfd_cell db8500_prcmu_devs[] = {
2947  	MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948  		    &db8500_regulators, sizeof(db8500_regulators), 0,
2949  		    "stericsson,db8500-prcmu-regulator"),
2950  	MFD_CELL_OF("db8500-thermal",
2951  		    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2952  };
2953  
db8500_prcmu_register_ab8500(struct device * parent)2954  static int db8500_prcmu_register_ab8500(struct device *parent)
2955  {
2956  	struct device_node *np;
2957  	struct resource ab850x_resource;
2958  	const struct mfd_cell ab8500_cell = {
2959  		.name = "ab8500-core",
2960  		.of_compatible = "stericsson,ab8500",
2961  		.id = AB8500_VERSION_AB8500,
2962  		.resources = &ab850x_resource,
2963  		.num_resources = 1,
2964  	};
2965  	const struct mfd_cell ab8505_cell = {
2966  		.name = "ab8505-core",
2967  		.of_compatible = "stericsson,ab8505",
2968  		.id = AB8500_VERSION_AB8505,
2969  		.resources = &ab850x_resource,
2970  		.num_resources = 1,
2971  	};
2972  	const struct mfd_cell *ab850x_cell;
2973  
2974  	if (!parent->of_node)
2975  		return -ENODEV;
2976  
2977  	/* Look up the device node, sneak the IRQ out of it */
2978  	for_each_child_of_node(parent->of_node, np) {
2979  		if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980  			ab850x_cell = &ab8500_cell;
2981  			break;
2982  		}
2983  		if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984  			ab850x_cell = &ab8505_cell;
2985  			break;
2986  		}
2987  	}
2988  	if (!np) {
2989  		dev_info(parent, "could not find AB850X node in the device tree\n");
2990  		return -ENODEV;
2991  	}
2992  	of_irq_to_resource_table(np, &ab850x_resource, 1);
2993  
2994  	return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995  }
2996  
db8500_prcmu_probe(struct platform_device * pdev)2997  static int db8500_prcmu_probe(struct platform_device *pdev)
2998  {
2999  	struct device_node *np = pdev->dev.of_node;
3000  	int irq = 0, err = 0;
3001  	struct resource *res;
3002  
3003  	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004  	if (!res) {
3005  		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006  		return -EINVAL;
3007  	}
3008  	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009  	if (!prcmu_base) {
3010  		dev_err(&pdev->dev,
3011  			"failed to ioremap prcmu register memory\n");
3012  		return -ENOMEM;
3013  	}
3014  	init_prcm_registers();
3015  	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016  	if (!res) {
3017  		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018  		return -EINVAL;
3019  	}
3020  	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021  			resource_size(res));
3022  	if (!tcdm_base) {
3023  		dev_err(&pdev->dev,
3024  			"failed to ioremap prcmu-tcdm register memory\n");
3025  		return -ENOMEM;
3026  	}
3027  
3028  	/* Clean up the mailbox interrupts after pre-kernel code. */
3029  	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030  
3031  	irq = platform_get_irq(pdev, 0);
3032  	if (irq <= 0)
3033  		return irq;
3034  
3035  	err = request_threaded_irq(irq, prcmu_irq_handler,
3036  	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037  	if (err < 0) {
3038  		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039  		return err;
3040  	}
3041  
3042  	db8500_irq_init(np);
3043  
3044  	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3045  
3046  	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047  			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048  	if (err) {
3049  		pr_err("prcmu: Failed to add subdevices\n");
3050  		return err;
3051  	}
3052  
3053  	/* TODO: Remove restriction when clk definitions are available. */
3054  	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055  		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056  				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057  				      db8500_irq_domain);
3058  		if (err) {
3059  			mfd_remove_devices(&pdev->dev);
3060  			pr_err("prcmu: Failed to add subdevices\n");
3061  			return err;
3062  		}
3063  	}
3064  
3065  	err = db8500_prcmu_register_ab8500(&pdev->dev);
3066  	if (err) {
3067  		mfd_remove_devices(&pdev->dev);
3068  		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069  		return err;
3070  	}
3071  
3072  	pr_info("DB8500 PRCMU initialized\n");
3073  	return err;
3074  }
3075  static const struct of_device_id db8500_prcmu_match[] = {
3076  	{ .compatible = "stericsson,db8500-prcmu"},
3077  	{ },
3078  };
3079  
3080  static struct platform_driver db8500_prcmu_driver = {
3081  	.driver = {
3082  		.name = "db8500-prcmu",
3083  		.of_match_table = db8500_prcmu_match,
3084  	},
3085  	.probe = db8500_prcmu_probe,
3086  };
3087  
db8500_prcmu_init(void)3088  static int __init db8500_prcmu_init(void)
3089  {
3090  	return platform_driver_register(&db8500_prcmu_driver);
3091  }
3092  core_initcall(db8500_prcmu_init);
3093