xref: /linux/kernel/printk/printk_ringbuffer.c (revision 48e3694ae7fae347c1193c84f384f4ea41086075)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <kunit/visibility.h>
4 #include <linux/kernel.h>
5 #include <linux/irqflags.h>
6 #include <linux/string.h>
7 #include <linux/errno.h>
8 #include <linux/bug.h>
9 #include "printk_ringbuffer.h"
10 #include "internal.h"
11 
12 /**
13  * DOC: printk_ringbuffer overview
14  *
15  * Data Structure
16  * --------------
17  * The printk_ringbuffer is made up of 3 internal ringbuffers:
18  *
19  *   desc_ring
20  *     A ring of descriptors and their meta data (such as sequence number,
21  *     timestamp, loglevel, etc.) as well as internal state information about
22  *     the record and logical positions specifying where in the other
23  *     ringbuffer the text strings are located.
24  *
25  *   text_data_ring
26  *     A ring of data blocks. A data block consists of an unsigned long
27  *     integer (ID) that maps to a desc_ring index followed by the text
28  *     string of the record.
29  *
30  * The internal state information of a descriptor is the key element to allow
31  * readers and writers to locklessly synchronize access to the data.
32  *
33  * Implementation
34  * --------------
35  *
36  * Descriptor Ring
37  * ~~~~~~~~~~~~~~~
38  * The descriptor ring is an array of descriptors. A descriptor contains
39  * essential meta data to track the data of a printk record using
40  * blk_lpos structs pointing to associated text data blocks (see
41  * "Data Rings" below). Each descriptor is assigned an ID that maps
42  * directly to index values of the descriptor array and has a state. The ID
43  * and the state are bitwise combined into a single descriptor field named
44  * @state_var, allowing ID and state to be synchronously and atomically
45  * updated.
46  *
47  * Descriptors have four states:
48  *
49  *   reserved
50  *     A writer is modifying the record.
51  *
52  *   committed
53  *     The record and all its data are written. A writer can reopen the
54  *     descriptor (transitioning it back to reserved), but in the committed
55  *     state the data is consistent.
56  *
57  *   finalized
58  *     The record and all its data are complete and available for reading. A
59  *     writer cannot reopen the descriptor.
60  *
61  *   reusable
62  *     The record exists, but its text and/or meta data may no longer be
63  *     available.
64  *
65  * Querying the @state_var of a record requires providing the ID of the
66  * descriptor to query. This can yield a possible fifth (pseudo) state:
67  *
68  *   miss
69  *     The descriptor being queried has an unexpected ID.
70  *
71  * The descriptor ring has a @tail_id that contains the ID of the oldest
72  * descriptor and @head_id that contains the ID of the newest descriptor.
73  *
74  * When a new descriptor should be created (and the ring is full), the tail
75  * descriptor is invalidated by first transitioning to the reusable state and
76  * then invalidating all tail data blocks up to and including the data blocks
77  * associated with the tail descriptor (for the text ring). Then
78  * @tail_id is advanced, followed by advancing @head_id. And finally the
79  * @state_var of the new descriptor is initialized to the new ID and reserved
80  * state.
81  *
82  * The @tail_id can only be advanced if the new @tail_id would be in the
83  * committed or reusable queried state. This makes it possible that a valid
84  * sequence number of the tail is always available.
85  *
86  * Descriptor Finalization
87  * ~~~~~~~~~~~~~~~~~~~~~~~
88  * When a writer calls the commit function prb_commit(), record data is
89  * fully stored and is consistent within the ringbuffer. However, a writer can
90  * reopen that record, claiming exclusive access (as with prb_reserve()), and
91  * modify that record. When finished, the writer must again commit the record.
92  *
93  * In order for a record to be made available to readers (and also become
94  * recyclable for writers), it must be finalized. A finalized record cannot be
95  * reopened and can never become "unfinalized". Record finalization can occur
96  * in three different scenarios:
97  *
98  *   1) A writer can simultaneously commit and finalize its record by calling
99  *      prb_final_commit() instead of prb_commit().
100  *
101  *   2) When a new record is reserved and the previous record has been
102  *      committed via prb_commit(), that previous record is automatically
103  *      finalized.
104  *
105  *   3) When a record is committed via prb_commit() and a newer record
106  *      already exists, the record being committed is automatically finalized.
107  *
108  * Data Ring
109  * ~~~~~~~~~
110  * The text data ring is a byte array composed of data blocks. Data blocks are
111  * referenced by blk_lpos structs that point to the logical position of the
112  * beginning of a data block and the beginning of the next adjacent data
113  * block. Logical positions are mapped directly to index values of the byte
114  * array ringbuffer.
115  *
116  * Each data block consists of an ID followed by the writer data. The ID is
117  * the identifier of a descriptor that is associated with the data block. A
118  * given data block is considered valid if all of the following conditions
119  * are met:
120  *
121  *   1) The descriptor associated with the data block is in the committed
122  *      or finalized queried state.
123  *
124  *   2) The blk_lpos struct within the descriptor associated with the data
125  *      block references back to the same data block.
126  *
127  *   3) The data block is within the head/tail logical position range.
128  *
129  * If the writer data of a data block would extend beyond the end of the
130  * byte array, only the ID of the data block is stored at the logical
131  * position and the full data block (ID and writer data) is stored at the
132  * beginning of the byte array. The referencing blk_lpos will point to the
133  * ID before the wrap and the next data block will be at the logical
134  * position adjacent the full data block after the wrap.
135  *
136  * Data rings have a @tail_lpos that points to the beginning of the oldest
137  * data block and a @head_lpos that points to the logical position of the
138  * next (not yet existing) data block.
139  *
140  * When a new data block should be created (and the ring is full), tail data
141  * blocks will first be invalidated by putting their associated descriptors
142  * into the reusable state and then pushing the @tail_lpos forward beyond
143  * them. Then the @head_lpos is pushed forward and is associated with a new
144  * descriptor. If a data block is not valid, the @tail_lpos cannot be
145  * advanced beyond it.
146  *
147  * Info Array
148  * ~~~~~~~~~~
149  * The general meta data of printk records are stored in printk_info structs,
150  * stored in an array with the same number of elements as the descriptor ring.
151  * Each info corresponds to the descriptor of the same index in the
152  * descriptor ring. Info validity is confirmed by evaluating the corresponding
153  * descriptor before and after loading the info.
154  *
155  * Usage
156  * -----
157  * Here are some simple examples demonstrating writers and readers. For the
158  * examples a global ringbuffer (test_rb) is available (which is not the
159  * actual ringbuffer used by printk)::
160  *
161  *	DEFINE_PRINTKRB(test_rb, 15, 5);
162  *
163  * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
164  * 1 MiB (2 ^ (15 + 5)) for text data.
165  *
166  * Sample writer code::
167  *
168  *	const char *textstr = "message text";
169  *	struct prb_reserved_entry e;
170  *	struct printk_record r;
171  *
172  *	// specify how much to allocate
173  *	prb_rec_init_wr(&r, strlen(textstr) + 1);
174  *
175  *	if (prb_reserve(&e, &test_rb, &r)) {
176  *		snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
177  *
178  *		r.info->text_len = strlen(textstr);
179  *		r.info->ts_nsec = local_clock();
180  *		r.info->caller_id = printk_caller_id();
181  *
182  *		// commit and finalize the record
183  *		prb_final_commit(&e);
184  *	}
185  *
186  * Note that additional writer functions are available to extend a record
187  * after it has been committed but not yet finalized. This can be done as
188  * long as no new records have been reserved and the caller is the same.
189  *
190  * Sample writer code (record extending)::
191  *
192  *		// alternate rest of previous example
193  *
194  *		r.info->text_len = strlen(textstr);
195  *		r.info->ts_nsec = local_clock();
196  *		r.info->caller_id = printk_caller_id();
197  *
198  *		// commit the record (but do not finalize yet)
199  *		prb_commit(&e);
200  *	}
201  *
202  *	...
203  *
204  *	// specify additional 5 bytes text space to extend
205  *	prb_rec_init_wr(&r, 5);
206  *
207  *	// try to extend, but only if it does not exceed 32 bytes
208  *	if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id(), 32)) {
209  *		snprintf(&r.text_buf[r.info->text_len],
210  *			 r.text_buf_size - r.info->text_len, "hello");
211  *
212  *		r.info->text_len += 5;
213  *
214  *		// commit and finalize the record
215  *		prb_final_commit(&e);
216  *	}
217  *
218  * Sample reader code::
219  *
220  *	struct printk_info info;
221  *	struct printk_record r;
222  *	char text_buf[32];
223  *	u64 seq;
224  *
225  *	prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
226  *
227  *	prb_for_each_record(0, &test_rb, &seq, &r) {
228  *		if (info.seq != seq)
229  *			pr_warn("lost %llu records\n", info.seq - seq);
230  *
231  *		if (info.text_len > r.text_buf_size) {
232  *			pr_warn("record %llu text truncated\n", info.seq);
233  *			text_buf[r.text_buf_size - 1] = 0;
234  *		}
235  *
236  *		pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
237  *			&text_buf[0]);
238  *	}
239  *
240  * Note that additional less convenient reader functions are available to
241  * allow complex record access.
242  *
243  * ABA Issues
244  * ~~~~~~~~~~
245  * To help avoid ABA issues, descriptors are referenced by IDs (array index
246  * values combined with tagged bits counting array wraps) and data blocks are
247  * referenced by logical positions (array index values combined with tagged
248  * bits counting array wraps). However, on 32-bit systems the number of
249  * tagged bits is relatively small such that an ABA incident is (at least
250  * theoretically) possible. For example, if 4 million maximally sized (1KiB)
251  * printk messages were to occur in NMI context on a 32-bit system, the
252  * interrupted context would not be able to recognize that the 32-bit integer
253  * completely wrapped and thus represents a different data block than the one
254  * the interrupted context expects.
255  *
256  * To help combat this possibility, additional state checking is performed
257  * (such as using cmpxchg() even though set() would suffice). These extra
258  * checks are commented as such and will hopefully catch any ABA issue that
259  * a 32-bit system might experience.
260  *
261  * Memory Barriers
262  * ~~~~~~~~~~~~~~~
263  * Multiple memory barriers are used. To simplify proving correctness and
264  * generating litmus tests, lines of code related to memory barriers
265  * (loads, stores, and the associated memory barriers) are labeled::
266  *
267  *	LMM(function:letter)
268  *
269  * Comments reference the labels using only the "function:letter" part.
270  *
271  * The memory barrier pairs and their ordering are:
272  *
273  *   desc_reserve:D / desc_reserve:B
274  *     push descriptor tail (id), then push descriptor head (id)
275  *
276  *   desc_reserve:D / data_push_tail:B
277  *     push data tail (lpos), then set new descriptor reserved (state)
278  *
279  *   desc_reserve:D / desc_push_tail:C
280  *     push descriptor tail (id), then set new descriptor reserved (state)
281  *
282  *   desc_reserve:D / prb_first_seq:C
283  *     push descriptor tail (id), then set new descriptor reserved (state)
284  *
285  *   desc_reserve:F / desc_read:D
286  *     set new descriptor id and reserved (state), then allow writer changes
287  *
288  *   data_alloc:A (or data_realloc:A) / desc_read:D
289  *     set old descriptor reusable (state), then modify new data block area
290  *
291  *   data_alloc:A (or data_realloc:A) / data_push_tail:B
292  *     push data tail (lpos), then modify new data block area
293  *
294  *   _prb_commit:B / desc_read:B
295  *     store writer changes, then set new descriptor committed (state)
296  *
297  *   desc_reopen_last:A / _prb_commit:B
298  *     set descriptor reserved (state), then read descriptor data
299  *
300  *   _prb_commit:B / desc_reserve:D
301  *     set new descriptor committed (state), then check descriptor head (id)
302  *
303  *   data_push_tail:D / data_push_tail:A
304  *     set descriptor reusable (state), then push data tail (lpos)
305  *
306  *   desc_push_tail:B / desc_reserve:D
307  *     set descriptor reusable (state), then push descriptor tail (id)
308  *
309  *   desc_update_last_finalized:A / desc_last_finalized_seq:A
310  *     store finalized record, then set new highest finalized sequence number
311  */
312 
313 #define DATA_SIZE(data_ring)		_DATA_SIZE((data_ring)->size_bits)
314 #define DATA_SIZE_MASK(data_ring)	(DATA_SIZE(data_ring) - 1)
315 
316 #define DESCS_COUNT(desc_ring)		_DESCS_COUNT((desc_ring)->count_bits)
317 #define DESCS_COUNT_MASK(desc_ring)	(DESCS_COUNT(desc_ring) - 1)
318 
319 /* Determine the data array index from a logical position. */
320 #define DATA_INDEX(data_ring, lpos)	((lpos) & DATA_SIZE_MASK(data_ring))
321 
322 /* Determine the desc array index from an ID or sequence number. */
323 #define DESC_INDEX(desc_ring, n)	((n) & DESCS_COUNT_MASK(desc_ring))
324 
325 /* Determine how many times the data array has wrapped. */
326 #define DATA_WRAPS(data_ring, lpos)	((lpos) >> (data_ring)->size_bits)
327 
328 /* Determine if a logical position refers to a data-less block. */
329 #define LPOS_DATALESS(lpos)		((lpos) & 1UL)
330 #define BLK_DATALESS(blk)		(LPOS_DATALESS((blk)->begin) && \
331 					 LPOS_DATALESS((blk)->next))
332 
333 /* Get the logical position at index 0 of the current wrap. */
334 #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
335 ((lpos) & ~DATA_SIZE_MASK(data_ring))
336 
337 /* Get the ID for the same index of the previous wrap as the given ID. */
338 #define DESC_ID_PREV_WRAP(desc_ring, id) \
339 DESC_ID((id) - DESCS_COUNT(desc_ring))
340 
341 /*
342  * A data block: mapped directly to the beginning of the data block area
343  * specified as a logical position within the data ring.
344  *
345  * @id:   the ID of the associated descriptor
346  * @data: the writer data
347  *
348  * Note that the size of a data block is only known by its associated
349  * descriptor.
350  */
351 struct prb_data_block {
352 	unsigned long	id;
353 	char		data[];
354 };
355 
356 /*
357  * Return the descriptor associated with @n. @n can be either a
358  * descriptor ID or a sequence number.
359  */
360 static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
361 {
362 	return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
363 }
364 
365 /*
366  * Return the printk_info associated with @n. @n can be either a
367  * descriptor ID or a sequence number.
368  */
369 static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
370 {
371 	return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
372 }
373 
374 static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
375 				       unsigned long begin_lpos)
376 {
377 	return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
378 }
379 
380 /*
381  * Increase the data size to account for data block meta data plus any
382  * padding so that the adjacent data block is aligned on the ID size.
383  */
384 static unsigned int to_blk_size(unsigned int size)
385 {
386 	struct prb_data_block *db = NULL;
387 
388 	size += sizeof(*db);
389 	size = ALIGN(size, sizeof(db->id));
390 	return size;
391 }
392 
393 /*
394  * Sanity checker for reserve size. The ringbuffer code assumes that a data
395  * block does not exceed the maximum possible size that could fit within the
396  * ringbuffer. This function provides that basic size check so that the
397  * assumption is safe. In particular, it guarantees that data_push_tail() will
398  * never attempt to push the tail beyond the head.
399  */
400 static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
401 {
402 	/* Data-less blocks take no space. */
403 	if (size == 0)
404 		return true;
405 
406 	/*
407 	 * If data blocks were allowed to be larger than half the data ring
408 	 * size, a wrapping data block could require more space than the full
409 	 * ringbuffer.
410 	 */
411 	return to_blk_size(size) <= DATA_SIZE(data_ring) / 2;
412 }
413 
414 /* Query the state of a descriptor. */
415 static enum desc_state get_desc_state(unsigned long id,
416 				      unsigned long state_val)
417 {
418 	if (id != DESC_ID(state_val))
419 		return desc_miss;
420 
421 	return DESC_STATE(state_val);
422 }
423 
424 /*
425  * Get a copy of a specified descriptor and return its queried state. If the
426  * descriptor is in an inconsistent state (miss or reserved), the caller can
427  * only expect the descriptor's @state_var field to be valid.
428  *
429  * The sequence number and caller_id can be optionally retrieved. Like all
430  * non-state_var data, they are only valid if the descriptor is in a
431  * consistent state.
432  */
433 static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
434 				 unsigned long id, struct prb_desc *desc_out,
435 				 u64 *seq_out, u32 *caller_id_out)
436 {
437 	struct printk_info *info = to_info(desc_ring, id);
438 	struct prb_desc *desc = to_desc(desc_ring, id);
439 	atomic_long_t *state_var = &desc->state_var;
440 	enum desc_state d_state;
441 	unsigned long state_val;
442 
443 	/* Check the descriptor state. */
444 	state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
445 	d_state = get_desc_state(id, state_val);
446 	if (d_state == desc_miss || d_state == desc_reserved) {
447 		/*
448 		 * The descriptor is in an inconsistent state. Set at least
449 		 * @state_var so that the caller can see the details of
450 		 * the inconsistent state.
451 		 */
452 		goto out;
453 	}
454 
455 	/*
456 	 * Guarantee the state is loaded before copying the descriptor
457 	 * content. This avoids copying obsolete descriptor content that might
458 	 * not apply to the descriptor state. This pairs with _prb_commit:B.
459 	 *
460 	 * Memory barrier involvement:
461 	 *
462 	 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
463 	 * from _prb_commit:A.
464 	 *
465 	 * Relies on:
466 	 *
467 	 * WMB from _prb_commit:A to _prb_commit:B
468 	 *    matching
469 	 * RMB from desc_read:A to desc_read:C
470 	 */
471 	smp_rmb(); /* LMM(desc_read:B) */
472 
473 	/*
474 	 * Copy the descriptor data. The data is not valid until the
475 	 * state has been re-checked. A memcpy() for all of @desc
476 	 * cannot be used because of the atomic_t @state_var field.
477 	 */
478 	if (desc_out) {
479 		memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos,
480 		       sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
481 	}
482 	if (seq_out)
483 		*seq_out = info->seq; /* also part of desc_read:C */
484 	if (caller_id_out)
485 		*caller_id_out = info->caller_id; /* also part of desc_read:C */
486 
487 	/*
488 	 * 1. Guarantee the descriptor content is loaded before re-checking
489 	 *    the state. This avoids reading an obsolete descriptor state
490 	 *    that may not apply to the copied content. This pairs with
491 	 *    desc_reserve:F.
492 	 *
493 	 *    Memory barrier involvement:
494 	 *
495 	 *    If desc_read:C reads from desc_reserve:G, then desc_read:E
496 	 *    reads from desc_reserve:F.
497 	 *
498 	 *    Relies on:
499 	 *
500 	 *    WMB from desc_reserve:F to desc_reserve:G
501 	 *       matching
502 	 *    RMB from desc_read:C to desc_read:E
503 	 *
504 	 * 2. Guarantee the record data is loaded before re-checking the
505 	 *    state. This avoids reading an obsolete descriptor state that may
506 	 *    not apply to the copied data. This pairs with data_alloc:A and
507 	 *    data_realloc:A.
508 	 *
509 	 *    Memory barrier involvement:
510 	 *
511 	 *    If copy_data:A reads from data_alloc:B, then desc_read:E
512 	 *    reads from desc_make_reusable:A.
513 	 *
514 	 *    Relies on:
515 	 *
516 	 *    MB from desc_make_reusable:A to data_alloc:B
517 	 *       matching
518 	 *    RMB from desc_read:C to desc_read:E
519 	 *
520 	 *    Note: desc_make_reusable:A and data_alloc:B can be different
521 	 *          CPUs. However, the data_alloc:B CPU (which performs the
522 	 *          full memory barrier) must have previously seen
523 	 *          desc_make_reusable:A.
524 	 */
525 	smp_rmb(); /* LMM(desc_read:D) */
526 
527 	/*
528 	 * The data has been copied. Return the current descriptor state,
529 	 * which may have changed since the load above.
530 	 */
531 	state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
532 	d_state = get_desc_state(id, state_val);
533 out:
534 	if (desc_out)
535 		atomic_long_set(&desc_out->state_var, state_val);
536 	return d_state;
537 }
538 
539 /*
540  * Take a specified descriptor out of the finalized state by attempting
541  * the transition from finalized to reusable. Either this context or some
542  * other context will have been successful.
543  */
544 static void desc_make_reusable(struct prb_desc_ring *desc_ring,
545 			       unsigned long id)
546 {
547 	unsigned long val_finalized = DESC_SV(id, desc_finalized);
548 	unsigned long val_reusable = DESC_SV(id, desc_reusable);
549 	struct prb_desc *desc = to_desc(desc_ring, id);
550 	atomic_long_t *state_var = &desc->state_var;
551 
552 	atomic_long_cmpxchg_relaxed(state_var, val_finalized,
553 				    val_reusable); /* LMM(desc_make_reusable:A) */
554 }
555 
556 /*
557  * Given the text data ring, put the associated descriptor of each
558  * data block from @lpos_begin until @lpos_end into the reusable state.
559  *
560  * If there is any problem making the associated descriptor reusable, either
561  * the descriptor has not yet been finalized or another writer context has
562  * already pushed the tail lpos past the problematic data block. Regardless,
563  * on error the caller can re-load the tail lpos to determine the situation.
564  */
565 static bool data_make_reusable(struct printk_ringbuffer *rb,
566 			       unsigned long lpos_begin,
567 			       unsigned long lpos_end,
568 			       unsigned long *lpos_out)
569 {
570 
571 	struct prb_data_ring *data_ring = &rb->text_data_ring;
572 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
573 	struct prb_data_block *blk;
574 	enum desc_state d_state;
575 	struct prb_desc desc;
576 	struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
577 	unsigned long id;
578 
579 	/* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
580 	while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
581 		blk = to_block(data_ring, lpos_begin);
582 
583 		/*
584 		 * Load the block ID from the data block. This is a data race
585 		 * against a writer that may have newly reserved this data
586 		 * area. If the loaded value matches a valid descriptor ID,
587 		 * the blk_lpos of that descriptor will be checked to make
588 		 * sure it points back to this data block. If the check fails,
589 		 * the data area has been recycled by another writer.
590 		 */
591 		id = blk->id; /* LMM(data_make_reusable:A) */
592 
593 		d_state = desc_read(desc_ring, id, &desc,
594 				    NULL, NULL); /* LMM(data_make_reusable:B) */
595 
596 		switch (d_state) {
597 		case desc_miss:
598 		case desc_reserved:
599 		case desc_committed:
600 			return false;
601 		case desc_finalized:
602 			/*
603 			 * This data block is invalid if the descriptor
604 			 * does not point back to it.
605 			 */
606 			if (blk_lpos->begin != lpos_begin)
607 				return false;
608 			desc_make_reusable(desc_ring, id);
609 			break;
610 		case desc_reusable:
611 			/*
612 			 * This data block is invalid if the descriptor
613 			 * does not point back to it.
614 			 */
615 			if (blk_lpos->begin != lpos_begin)
616 				return false;
617 			break;
618 		}
619 
620 		/* Advance @lpos_begin to the next data block. */
621 		lpos_begin = blk_lpos->next;
622 	}
623 
624 	*lpos_out = lpos_begin;
625 	return true;
626 }
627 
628 /*
629  * Advance the data ring tail to at least @lpos. This function puts
630  * descriptors into the reusable state if the tail is pushed beyond
631  * their associated data block.
632  */
633 static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos)
634 {
635 	struct prb_data_ring *data_ring = &rb->text_data_ring;
636 	unsigned long tail_lpos_new;
637 	unsigned long tail_lpos;
638 	unsigned long next_lpos;
639 
640 	/* If @lpos is from a data-less block, there is nothing to do. */
641 	if (LPOS_DATALESS(lpos))
642 		return true;
643 
644 	/*
645 	 * Any descriptor states that have transitioned to reusable due to the
646 	 * data tail being pushed to this loaded value will be visible to this
647 	 * CPU. This pairs with data_push_tail:D.
648 	 *
649 	 * Memory barrier involvement:
650 	 *
651 	 * If data_push_tail:A reads from data_push_tail:D, then this CPU can
652 	 * see desc_make_reusable:A.
653 	 *
654 	 * Relies on:
655 	 *
656 	 * MB from desc_make_reusable:A to data_push_tail:D
657 	 *    matches
658 	 * READFROM from data_push_tail:D to data_push_tail:A
659 	 *    thus
660 	 * READFROM from desc_make_reusable:A to this CPU
661 	 */
662 	tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
663 
664 	/*
665 	 * Loop until the tail lpos is at or beyond @lpos. This condition
666 	 * may already be satisfied, resulting in no full memory barrier
667 	 * from data_push_tail:D being performed. However, since this CPU
668 	 * sees the new tail lpos, any descriptor states that transitioned to
669 	 * the reusable state must already be visible.
670 	 */
671 	while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
672 		/*
673 		 * Make all descriptors reusable that are associated with
674 		 * data blocks before @lpos.
675 		 */
676 		if (!data_make_reusable(rb, tail_lpos, lpos, &next_lpos)) {
677 			/*
678 			 * 1. Guarantee the block ID loaded in
679 			 *    data_make_reusable() is performed before
680 			 *    reloading the tail lpos. The failed
681 			 *    data_make_reusable() may be due to a newly
682 			 *    recycled data area causing the tail lpos to
683 			 *    have been previously pushed. This pairs with
684 			 *    data_alloc:A and data_realloc:A.
685 			 *
686 			 *    Memory barrier involvement:
687 			 *
688 			 *    If data_make_reusable:A reads from data_alloc:B,
689 			 *    then data_push_tail:C reads from
690 			 *    data_push_tail:D.
691 			 *
692 			 *    Relies on:
693 			 *
694 			 *    MB from data_push_tail:D to data_alloc:B
695 			 *       matching
696 			 *    RMB from data_make_reusable:A to
697 			 *    data_push_tail:C
698 			 *
699 			 *    Note: data_push_tail:D and data_alloc:B can be
700 			 *          different CPUs. However, the data_alloc:B
701 			 *          CPU (which performs the full memory
702 			 *          barrier) must have previously seen
703 			 *          data_push_tail:D.
704 			 *
705 			 * 2. Guarantee the descriptor state loaded in
706 			 *    data_make_reusable() is performed before
707 			 *    reloading the tail lpos. The failed
708 			 *    data_make_reusable() may be due to a newly
709 			 *    recycled descriptor causing the tail lpos to
710 			 *    have been previously pushed. This pairs with
711 			 *    desc_reserve:D.
712 			 *
713 			 *    Memory barrier involvement:
714 			 *
715 			 *    If data_make_reusable:B reads from
716 			 *    desc_reserve:F, then data_push_tail:C reads
717 			 *    from data_push_tail:D.
718 			 *
719 			 *    Relies on:
720 			 *
721 			 *    MB from data_push_tail:D to desc_reserve:F
722 			 *       matching
723 			 *    RMB from data_make_reusable:B to
724 			 *    data_push_tail:C
725 			 *
726 			 *    Note: data_push_tail:D and desc_reserve:F can
727 			 *          be different CPUs. However, the
728 			 *          desc_reserve:F CPU (which performs the
729 			 *          full memory barrier) must have previously
730 			 *          seen data_push_tail:D.
731 			 */
732 			smp_rmb(); /* LMM(data_push_tail:B) */
733 
734 			tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
735 							); /* LMM(data_push_tail:C) */
736 			if (tail_lpos_new == tail_lpos)
737 				return false;
738 
739 			/* Another CPU pushed the tail. Try again. */
740 			tail_lpos = tail_lpos_new;
741 			continue;
742 		}
743 
744 		/*
745 		 * Guarantee any descriptor states that have transitioned to
746 		 * reusable are stored before pushing the tail lpos. A full
747 		 * memory barrier is needed since other CPUs may have made
748 		 * the descriptor states reusable. This pairs with
749 		 * data_push_tail:A.
750 		 */
751 		if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
752 					    next_lpos)) { /* LMM(data_push_tail:D) */
753 			break;
754 		}
755 	}
756 
757 	return true;
758 }
759 
760 /*
761  * Advance the desc ring tail. This function advances the tail by one
762  * descriptor, thus invalidating the oldest descriptor. Before advancing
763  * the tail, the tail descriptor is made reusable and all data blocks up to
764  * and including the descriptor's data block are invalidated (i.e. the data
765  * ring tail is pushed past the data block of the descriptor being made
766  * reusable).
767  */
768 static bool desc_push_tail(struct printk_ringbuffer *rb,
769 			   unsigned long tail_id)
770 {
771 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
772 	enum desc_state d_state;
773 	struct prb_desc desc;
774 
775 	d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL);
776 
777 	switch (d_state) {
778 	case desc_miss:
779 		/*
780 		 * If the ID is exactly 1 wrap behind the expected, it is
781 		 * in the process of being reserved by another writer and
782 		 * must be considered reserved.
783 		 */
784 		if (DESC_ID(atomic_long_read(&desc.state_var)) ==
785 		    DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
786 			return false;
787 		}
788 
789 		/*
790 		 * The ID has changed. Another writer must have pushed the
791 		 * tail and recycled the descriptor already. Success is
792 		 * returned because the caller is only interested in the
793 		 * specified tail being pushed, which it was.
794 		 */
795 		return true;
796 	case desc_reserved:
797 	case desc_committed:
798 		return false;
799 	case desc_finalized:
800 		desc_make_reusable(desc_ring, tail_id);
801 		break;
802 	case desc_reusable:
803 		break;
804 	}
805 
806 	/*
807 	 * Data blocks must be invalidated before their associated
808 	 * descriptor can be made available for recycling. Invalidating
809 	 * them later is not possible because there is no way to trust
810 	 * data blocks once their associated descriptor is gone.
811 	 */
812 
813 	if (!data_push_tail(rb, desc.text_blk_lpos.next))
814 		return false;
815 
816 	/*
817 	 * Check the next descriptor after @tail_id before pushing the tail
818 	 * to it because the tail must always be in a finalized or reusable
819 	 * state. The implementation of prb_first_seq() relies on this.
820 	 *
821 	 * A successful read implies that the next descriptor is less than or
822 	 * equal to @head_id so there is no risk of pushing the tail past the
823 	 * head.
824 	 */
825 	d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc,
826 			    NULL, NULL); /* LMM(desc_push_tail:A) */
827 
828 	if (d_state == desc_finalized || d_state == desc_reusable) {
829 		/*
830 		 * Guarantee any descriptor states that have transitioned to
831 		 * reusable are stored before pushing the tail ID. This allows
832 		 * verifying the recycled descriptor state. A full memory
833 		 * barrier is needed since other CPUs may have made the
834 		 * descriptor states reusable. This pairs with desc_reserve:D.
835 		 */
836 		atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
837 				    DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
838 	} else {
839 		/*
840 		 * Guarantee the last state load from desc_read() is before
841 		 * reloading @tail_id in order to see a new tail ID in the
842 		 * case that the descriptor has been recycled. This pairs
843 		 * with desc_reserve:D.
844 		 *
845 		 * Memory barrier involvement:
846 		 *
847 		 * If desc_push_tail:A reads from desc_reserve:F, then
848 		 * desc_push_tail:D reads from desc_push_tail:B.
849 		 *
850 		 * Relies on:
851 		 *
852 		 * MB from desc_push_tail:B to desc_reserve:F
853 		 *    matching
854 		 * RMB from desc_push_tail:A to desc_push_tail:D
855 		 *
856 		 * Note: desc_push_tail:B and desc_reserve:F can be different
857 		 *       CPUs. However, the desc_reserve:F CPU (which performs
858 		 *       the full memory barrier) must have previously seen
859 		 *       desc_push_tail:B.
860 		 */
861 		smp_rmb(); /* LMM(desc_push_tail:C) */
862 
863 		/*
864 		 * Re-check the tail ID. The descriptor following @tail_id is
865 		 * not in an allowed tail state. But if the tail has since
866 		 * been moved by another CPU, then it does not matter.
867 		 */
868 		if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
869 			return false;
870 	}
871 
872 	return true;
873 }
874 
875 /* Reserve a new descriptor, invalidating the oldest if necessary. */
876 static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
877 {
878 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
879 	unsigned long prev_state_val;
880 	unsigned long id_prev_wrap;
881 	struct prb_desc *desc;
882 	unsigned long head_id;
883 	unsigned long id;
884 
885 	head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
886 
887 	do {
888 		id = DESC_ID(head_id + 1);
889 		id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
890 
891 		/*
892 		 * Guarantee the head ID is read before reading the tail ID.
893 		 * Since the tail ID is updated before the head ID, this
894 		 * guarantees that @id_prev_wrap is never ahead of the tail
895 		 * ID. This pairs with desc_reserve:D.
896 		 *
897 		 * Memory barrier involvement:
898 		 *
899 		 * If desc_reserve:A reads from desc_reserve:D, then
900 		 * desc_reserve:C reads from desc_push_tail:B.
901 		 *
902 		 * Relies on:
903 		 *
904 		 * MB from desc_push_tail:B to desc_reserve:D
905 		 *    matching
906 		 * RMB from desc_reserve:A to desc_reserve:C
907 		 *
908 		 * Note: desc_push_tail:B and desc_reserve:D can be different
909 		 *       CPUs. However, the desc_reserve:D CPU (which performs
910 		 *       the full memory barrier) must have previously seen
911 		 *       desc_push_tail:B.
912 		 */
913 		smp_rmb(); /* LMM(desc_reserve:B) */
914 
915 		if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
916 						    )) { /* LMM(desc_reserve:C) */
917 			/*
918 			 * Make space for the new descriptor by
919 			 * advancing the tail.
920 			 */
921 			if (!desc_push_tail(rb, id_prev_wrap))
922 				return false;
923 		}
924 
925 		/*
926 		 * 1. Guarantee the tail ID is read before validating the
927 		 *    recycled descriptor state. A read memory barrier is
928 		 *    sufficient for this. This pairs with desc_push_tail:B.
929 		 *
930 		 *    Memory barrier involvement:
931 		 *
932 		 *    If desc_reserve:C reads from desc_push_tail:B, then
933 		 *    desc_reserve:E reads from desc_make_reusable:A.
934 		 *
935 		 *    Relies on:
936 		 *
937 		 *    MB from desc_make_reusable:A to desc_push_tail:B
938 		 *       matching
939 		 *    RMB from desc_reserve:C to desc_reserve:E
940 		 *
941 		 *    Note: desc_make_reusable:A and desc_push_tail:B can be
942 		 *          different CPUs. However, the desc_push_tail:B CPU
943 		 *          (which performs the full memory barrier) must have
944 		 *          previously seen desc_make_reusable:A.
945 		 *
946 		 * 2. Guarantee the tail ID is stored before storing the head
947 		 *    ID. This pairs with desc_reserve:B.
948 		 *
949 		 * 3. Guarantee any data ring tail changes are stored before
950 		 *    recycling the descriptor. Data ring tail changes can
951 		 *    happen via desc_push_tail()->data_push_tail(). A full
952 		 *    memory barrier is needed since another CPU may have
953 		 *    pushed the data ring tails. This pairs with
954 		 *    data_push_tail:B.
955 		 *
956 		 * 4. Guarantee a new tail ID is stored before recycling the
957 		 *    descriptor. A full memory barrier is needed since
958 		 *    another CPU may have pushed the tail ID. This pairs
959 		 *    with desc_push_tail:C and this also pairs with
960 		 *    prb_first_seq:C.
961 		 *
962 		 * 5. Guarantee the head ID is stored before trying to
963 		 *    finalize the previous descriptor. This pairs with
964 		 *    _prb_commit:B.
965 		 */
966 	} while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
967 					  id)); /* LMM(desc_reserve:D) */
968 
969 	desc = to_desc(desc_ring, id);
970 
971 	/*
972 	 * If the descriptor has been recycled, verify the old state val.
973 	 * See "ABA Issues" about why this verification is performed.
974 	 */
975 	prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
976 	if (prev_state_val &&
977 	    get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) {
978 		WARN_ON_ONCE(1);
979 		return false;
980 	}
981 
982 	/*
983 	 * Assign the descriptor a new ID and set its state to reserved.
984 	 * See "ABA Issues" about why cmpxchg() instead of set() is used.
985 	 *
986 	 * Guarantee the new descriptor ID and state is stored before making
987 	 * any other changes. A write memory barrier is sufficient for this.
988 	 * This pairs with desc_read:D.
989 	 */
990 	if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
991 			DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
992 		WARN_ON_ONCE(1);
993 		return false;
994 	}
995 
996 	/* Now data in @desc can be modified: LMM(desc_reserve:G) */
997 
998 	*id_out = id;
999 	return true;
1000 }
1001 
1002 /* Determine the end of a data block. */
1003 static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1004 				   unsigned long lpos, unsigned int size)
1005 {
1006 	unsigned long begin_lpos;
1007 	unsigned long next_lpos;
1008 
1009 	begin_lpos = lpos;
1010 	next_lpos = lpos + size;
1011 
1012 	/* First check if the data block does not wrap. */
1013 	if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1014 		return next_lpos;
1015 
1016 	/* Wrapping data blocks store their data at the beginning. */
1017 	return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1018 }
1019 
1020 /*
1021  * Allocate a new data block, invalidating the oldest data block(s)
1022  * if necessary. This function also associates the data block with
1023  * a specified descriptor.
1024  */
1025 static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size,
1026 			struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1027 {
1028 	struct prb_data_ring *data_ring = &rb->text_data_ring;
1029 	struct prb_data_block *blk;
1030 	unsigned long begin_lpos;
1031 	unsigned long next_lpos;
1032 
1033 	if (size == 0) {
1034 		/*
1035 		 * Data blocks are not created for empty lines. Instead, the
1036 		 * reader will recognize these special lpos values and handle
1037 		 * it appropriately.
1038 		 */
1039 		blk_lpos->begin = EMPTY_LINE_LPOS;
1040 		blk_lpos->next = EMPTY_LINE_LPOS;
1041 		return NULL;
1042 	}
1043 
1044 	size = to_blk_size(size);
1045 
1046 	begin_lpos = atomic_long_read(&data_ring->head_lpos);
1047 
1048 	do {
1049 		next_lpos = get_next_lpos(data_ring, begin_lpos, size);
1050 
1051 		/*
1052 		 * data_check_size() prevents data block allocation that could
1053 		 * cause illegal ringbuffer states. But double check that the
1054 		 * used space will not be bigger than the ring buffer. Wrapped
1055 		 * messages need to reserve more space, see get_next_lpos().
1056 		 *
1057 		 * Specify a data-less block when the check or the allocation
1058 		 * fails.
1059 		 */
1060 		if (WARN_ON_ONCE(next_lpos - begin_lpos > DATA_SIZE(data_ring)) ||
1061 		    !data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) {
1062 			blk_lpos->begin = FAILED_LPOS;
1063 			blk_lpos->next = FAILED_LPOS;
1064 			return NULL;
1065 		}
1066 
1067 		/*
1068 		 * 1. Guarantee any descriptor states that have transitioned
1069 		 *    to reusable are stored before modifying the newly
1070 		 *    allocated data area. A full memory barrier is needed
1071 		 *    since other CPUs may have made the descriptor states
1072 		 *    reusable. See data_push_tail:A about why the reusable
1073 		 *    states are visible. This pairs with desc_read:D.
1074 		 *
1075 		 * 2. Guarantee any updated tail lpos is stored before
1076 		 *    modifying the newly allocated data area. Another CPU may
1077 		 *    be in data_make_reusable() and is reading a block ID
1078 		 *    from this area. data_make_reusable() can handle reading
1079 		 *    a garbage block ID value, but then it must be able to
1080 		 *    load a new tail lpos. A full memory barrier is needed
1081 		 *    since other CPUs may have updated the tail lpos. This
1082 		 *    pairs with data_push_tail:B.
1083 		 */
1084 	} while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
1085 					  next_lpos)); /* LMM(data_alloc:A) */
1086 
1087 	blk = to_block(data_ring, begin_lpos);
1088 	blk->id = id; /* LMM(data_alloc:B) */
1089 
1090 	if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1091 		/* Wrapping data blocks store their data at the beginning. */
1092 		blk = to_block(data_ring, 0);
1093 
1094 		/*
1095 		 * Store the ID on the wrapped block for consistency.
1096 		 * The printk_ringbuffer does not actually use it.
1097 		 */
1098 		blk->id = id;
1099 	}
1100 
1101 	blk_lpos->begin = begin_lpos;
1102 	blk_lpos->next = next_lpos;
1103 
1104 	return &blk->data[0];
1105 }
1106 
1107 /*
1108  * Try to resize an existing data block associated with the descriptor
1109  * specified by @id. If the resized data block should become wrapped, it
1110  * copies the old data to the new data block. If @size yields a data block
1111  * with the same or less size, the data block is left as is.
1112  *
1113  * Fail if this is not the last allocated data block or if there is not
1114  * enough space or it is not possible make enough space.
1115  *
1116  * Return a pointer to the beginning of the entire data buffer or NULL on
1117  * failure.
1118  */
1119 static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size,
1120 			  struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1121 {
1122 	struct prb_data_ring *data_ring = &rb->text_data_ring;
1123 	struct prb_data_block *blk;
1124 	unsigned long head_lpos;
1125 	unsigned long next_lpos;
1126 	bool wrapped;
1127 
1128 	/* Reallocation only works if @blk_lpos is the newest data block. */
1129 	head_lpos = atomic_long_read(&data_ring->head_lpos);
1130 	if (head_lpos != blk_lpos->next)
1131 		return NULL;
1132 
1133 	/* Keep track if @blk_lpos was a wrapping data block. */
1134 	wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1135 
1136 	size = to_blk_size(size);
1137 
1138 	next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size);
1139 
1140 	/* If the data block does not increase, there is nothing to do. */
1141 	if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1142 		if (wrapped)
1143 			blk = to_block(data_ring, 0);
1144 		else
1145 			blk = to_block(data_ring, blk_lpos->begin);
1146 		return &blk->data[0];
1147 	}
1148 
1149 	/*
1150 	 * data_check_size() prevents data block reallocation that could
1151 	 * cause illegal ringbuffer states. But double check that the
1152 	 * new used space will not be bigger than the ring buffer. Wrapped
1153 	 * messages need to reserve more space, see get_next_lpos().
1154 	 *
1155 	 * Specify failure when the check or the allocation fails.
1156 	 */
1157 	if (WARN_ON_ONCE(next_lpos - blk_lpos->begin > DATA_SIZE(data_ring)) ||
1158 	    !data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) {
1159 		return NULL;
1160 	}
1161 
1162 	/* The memory barrier involvement is the same as data_alloc:A. */
1163 	if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos,
1164 				     next_lpos)) { /* LMM(data_realloc:A) */
1165 		return NULL;
1166 	}
1167 
1168 	blk = to_block(data_ring, blk_lpos->begin);
1169 
1170 	if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1171 		struct prb_data_block *old_blk = blk;
1172 
1173 		/* Wrapping data blocks store their data at the beginning. */
1174 		blk = to_block(data_ring, 0);
1175 
1176 		/*
1177 		 * Store the ID on the wrapped block for consistency.
1178 		 * The printk_ringbuffer does not actually use it.
1179 		 */
1180 		blk->id = id;
1181 
1182 		if (!wrapped) {
1183 			/*
1184 			 * Since the allocated space is now in the newly
1185 			 * created wrapping data block, copy the content
1186 			 * from the old data block.
1187 			 */
1188 			memcpy(&blk->data[0], &old_blk->data[0],
1189 			       (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1190 		}
1191 	}
1192 
1193 	blk_lpos->next = next_lpos;
1194 
1195 	return &blk->data[0];
1196 }
1197 
1198 /* Return the number of bytes used by a data block. */
1199 static unsigned int space_used(struct prb_data_ring *data_ring,
1200 			       struct prb_data_blk_lpos *blk_lpos)
1201 {
1202 	/* Data-less blocks take no space. */
1203 	if (BLK_DATALESS(blk_lpos))
1204 		return 0;
1205 
1206 	if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1207 		/* Data block does not wrap. */
1208 		return (DATA_INDEX(data_ring, blk_lpos->next) -
1209 			DATA_INDEX(data_ring, blk_lpos->begin));
1210 	}
1211 
1212 	/*
1213 	 * For wrapping data blocks, the trailing (wasted) space is
1214 	 * also counted.
1215 	 */
1216 	return (DATA_INDEX(data_ring, blk_lpos->next) +
1217 		DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1218 }
1219 
1220 /*
1221  * Given @blk_lpos, return a pointer to the writer data from the data block
1222  * and calculate the size of the data part. A NULL pointer is returned if
1223  * @blk_lpos specifies values that could never be legal.
1224  *
1225  * This function (used by readers) performs strict validation on the lpos
1226  * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1227  * triggered if an internal error is detected.
1228  */
1229 static const char *get_data(struct prb_data_ring *data_ring,
1230 			    struct prb_data_blk_lpos *blk_lpos,
1231 			    unsigned int *data_size)
1232 {
1233 	struct prb_data_block *db;
1234 
1235 	/* Data-less data block description. */
1236 	if (BLK_DATALESS(blk_lpos)) {
1237 		/*
1238 		 * Records that are just empty lines are also valid, even
1239 		 * though they do not have a data block. For such records
1240 		 * explicitly return empty string data to signify success.
1241 		 */
1242 		if (blk_lpos->begin == EMPTY_LINE_LPOS &&
1243 		    blk_lpos->next == EMPTY_LINE_LPOS) {
1244 			*data_size = 0;
1245 			return "";
1246 		}
1247 
1248 		/* Data lost, invalid, or otherwise unavailable. */
1249 		return NULL;
1250 	}
1251 
1252 	/* Regular data block: @begin less than @next and in same wrap. */
1253 	if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1254 	    blk_lpos->begin < blk_lpos->next) {
1255 		db = to_block(data_ring, blk_lpos->begin);
1256 		*data_size = blk_lpos->next - blk_lpos->begin;
1257 
1258 	/* Wrapping data block: @begin is one wrap behind @next. */
1259 	} else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1260 		   DATA_WRAPS(data_ring, blk_lpos->next)) {
1261 		db = to_block(data_ring, 0);
1262 		*data_size = DATA_INDEX(data_ring, blk_lpos->next);
1263 
1264 	/* Illegal block description. */
1265 	} else {
1266 		WARN_ON_ONCE(1);
1267 		return NULL;
1268 	}
1269 
1270 	/* A valid data block will always be aligned to the ID size. */
1271 	if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1272 	    WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1273 		return NULL;
1274 	}
1275 
1276 	/* A valid data block will always have at least an ID. */
1277 	if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1278 		return NULL;
1279 
1280 	/* Subtract block ID space from size to reflect data size. */
1281 	*data_size -= sizeof(db->id);
1282 
1283 	return &db->data[0];
1284 }
1285 
1286 /*
1287  * Attempt to transition the newest descriptor from committed back to reserved
1288  * so that the record can be modified by a writer again. This is only possible
1289  * if the descriptor is not yet finalized and the provided @caller_id matches.
1290  */
1291 static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1292 					 u32 caller_id, unsigned long *id_out)
1293 {
1294 	unsigned long prev_state_val;
1295 	enum desc_state d_state;
1296 	struct prb_desc desc;
1297 	struct prb_desc *d;
1298 	unsigned long id;
1299 	u32 cid;
1300 
1301 	id = atomic_long_read(&desc_ring->head_id);
1302 
1303 	/*
1304 	 * To reduce unnecessarily reopening, first check if the descriptor
1305 	 * state and caller ID are correct.
1306 	 */
1307 	d_state = desc_read(desc_ring, id, &desc, NULL, &cid);
1308 	if (d_state != desc_committed || cid != caller_id)
1309 		return NULL;
1310 
1311 	d = to_desc(desc_ring, id);
1312 
1313 	prev_state_val = DESC_SV(id, desc_committed);
1314 
1315 	/*
1316 	 * Guarantee the reserved state is stored before reading any
1317 	 * record data. A full memory barrier is needed because @state_var
1318 	 * modification is followed by reading. This pairs with _prb_commit:B.
1319 	 *
1320 	 * Memory barrier involvement:
1321 	 *
1322 	 * If desc_reopen_last:A reads from _prb_commit:B, then
1323 	 * prb_reserve_in_last:A reads from _prb_commit:A.
1324 	 *
1325 	 * Relies on:
1326 	 *
1327 	 * WMB from _prb_commit:A to _prb_commit:B
1328 	 *    matching
1329 	 * MB If desc_reopen_last:A to prb_reserve_in_last:A
1330 	 */
1331 	if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1332 			DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1333 		return NULL;
1334 	}
1335 
1336 	*id_out = id;
1337 	return d;
1338 }
1339 
1340 /**
1341  * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1342  *                         used by the newest record.
1343  *
1344  * @e:         The entry structure to setup.
1345  * @rb:        The ringbuffer to re-reserve and extend data in.
1346  * @r:         The record structure to allocate buffers for.
1347  * @caller_id: The caller ID of the caller (reserving writer).
1348  * @max_size:  Fail if the extended size would be greater than this.
1349  *
1350  * This is the public function available to writers to re-reserve and extend
1351  * data.
1352  *
1353  * The writer specifies the text size to extend (not the new total size) by
1354  * setting the @text_buf_size field of @r. To ensure proper initialization
1355  * of @r, prb_rec_init_wr() should be used.
1356  *
1357  * This function will fail if @caller_id does not match the caller ID of the
1358  * newest record. In that case the caller must reserve new data using
1359  * prb_reserve().
1360  *
1361  * Context: Any context. Disables local interrupts on success.
1362  * Return: true if text data could be extended, otherwise false.
1363  *
1364  * On success:
1365  *
1366  *   - @r->text_buf points to the beginning of the entire text buffer.
1367  *
1368  *   - @r->text_buf_size is set to the new total size of the buffer.
1369  *
1370  *   - @r->info is not touched so that @r->info->text_len could be used
1371  *     to append the text.
1372  *
1373  *   - prb_record_text_space() can be used on @e to query the new
1374  *     actually used space.
1375  *
1376  * Important: All @r->info fields will already be set with the current values
1377  *            for the record. I.e. @r->info->text_len will be less than
1378  *            @text_buf_size. Writers can use @r->info->text_len to know
1379  *            where concatenation begins and writers should update
1380  *            @r->info->text_len after concatenating.
1381  */
1382 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1383 			 struct printk_record *r, u32 caller_id, unsigned int max_size)
1384 {
1385 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1386 	struct printk_info *info;
1387 	unsigned int data_size;
1388 	struct prb_desc *d;
1389 	unsigned long id;
1390 
1391 	local_irq_save(e->irqflags);
1392 
1393 	/* Transition the newest descriptor back to the reserved state. */
1394 	d = desc_reopen_last(desc_ring, caller_id, &id);
1395 	if (!d) {
1396 		local_irq_restore(e->irqflags);
1397 		goto fail_reopen;
1398 	}
1399 
1400 	/* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1401 
1402 	info = to_info(desc_ring, id);
1403 
1404 	/*
1405 	 * Set the @e fields here so that prb_commit() can be used if
1406 	 * anything fails from now on.
1407 	 */
1408 	e->rb = rb;
1409 	e->id = id;
1410 
1411 	/*
1412 	 * desc_reopen_last() checked the caller_id, but there was no
1413 	 * exclusive access at that point. The descriptor may have
1414 	 * changed since then.
1415 	 */
1416 	if (caller_id != info->caller_id)
1417 		goto fail;
1418 
1419 	if (BLK_DATALESS(&d->text_blk_lpos)) {
1420 		if (WARN_ON_ONCE(info->text_len != 0)) {
1421 			pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1422 				     info->text_len);
1423 			info->text_len = 0;
1424 		}
1425 
1426 		if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1427 			goto fail;
1428 
1429 		if (r->text_buf_size > max_size)
1430 			goto fail;
1431 
1432 		r->text_buf = data_alloc(rb, r->text_buf_size,
1433 					 &d->text_blk_lpos, id);
1434 	} else {
1435 		if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size))
1436 			goto fail;
1437 
1438 		/*
1439 		 * Increase the buffer size to include the original size. If
1440 		 * the meta data (@text_len) is not sane, use the full data
1441 		 * block size.
1442 		 */
1443 		if (WARN_ON_ONCE(info->text_len > data_size)) {
1444 			pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1445 				     info->text_len, data_size);
1446 			info->text_len = data_size;
1447 		}
1448 		r->text_buf_size += info->text_len;
1449 
1450 		if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1451 			goto fail;
1452 
1453 		if (r->text_buf_size > max_size)
1454 			goto fail;
1455 
1456 		r->text_buf = data_realloc(rb, r->text_buf_size,
1457 					   &d->text_blk_lpos, id);
1458 	}
1459 	if (r->text_buf_size && !r->text_buf)
1460 		goto fail;
1461 
1462 	r->info = info;
1463 
1464 	e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1465 
1466 	return true;
1467 fail:
1468 	prb_commit(e);
1469 	/* prb_commit() re-enabled interrupts. */
1470 fail_reopen:
1471 	/* Make it clear to the caller that the re-reserve failed. */
1472 	memset(r, 0, sizeof(*r));
1473 	return false;
1474 }
1475 
1476 /*
1477  * @last_finalized_seq value guarantees that all records up to and including
1478  * this sequence number are finalized and can be read. The only exception are
1479  * too old records which have already been overwritten.
1480  *
1481  * It is also guaranteed that @last_finalized_seq only increases.
1482  *
1483  * Be aware that finalized records following non-finalized records are not
1484  * reported because they are not yet available to the reader. For example,
1485  * a new record stored via printk() will not be available to a printer if
1486  * it follows a record that has not been finalized yet. However, once that
1487  * non-finalized record becomes finalized, @last_finalized_seq will be
1488  * appropriately updated and the full set of finalized records will be
1489  * available to the printer. And since each printk() caller will either
1490  * directly print or trigger deferred printing of all available unprinted
1491  * records, all printk() messages will get printed.
1492  */
1493 static u64 desc_last_finalized_seq(struct printk_ringbuffer *rb)
1494 {
1495 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1496 	unsigned long ulseq;
1497 
1498 	/*
1499 	 * Guarantee the sequence number is loaded before loading the
1500 	 * associated record in order to guarantee that the record can be
1501 	 * seen by this CPU. This pairs with desc_update_last_finalized:A.
1502 	 */
1503 	ulseq = atomic_long_read_acquire(&desc_ring->last_finalized_seq
1504 					); /* LMM(desc_last_finalized_seq:A) */
1505 
1506 	return __ulseq_to_u64seq(rb, ulseq);
1507 }
1508 
1509 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1510 			    struct printk_record *r, unsigned int *line_count);
1511 
1512 /*
1513  * Check if there are records directly following @last_finalized_seq that are
1514  * finalized. If so, update @last_finalized_seq to the latest of these
1515  * records. It is not allowed to skip over records that are not yet finalized.
1516  */
1517 static void desc_update_last_finalized(struct printk_ringbuffer *rb)
1518 {
1519 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1520 	u64 old_seq = desc_last_finalized_seq(rb);
1521 	unsigned long oldval;
1522 	unsigned long newval;
1523 	u64 finalized_seq;
1524 	u64 try_seq;
1525 
1526 try_again:
1527 	finalized_seq = old_seq;
1528 	try_seq = finalized_seq + 1;
1529 
1530 	/* Try to find later finalized records. */
1531 	while (_prb_read_valid(rb, &try_seq, NULL, NULL)) {
1532 		finalized_seq = try_seq;
1533 		try_seq++;
1534 	}
1535 
1536 	/* No update needed if no later finalized record was found. */
1537 	if (finalized_seq == old_seq)
1538 		return;
1539 
1540 	oldval = __u64seq_to_ulseq(old_seq);
1541 	newval = __u64seq_to_ulseq(finalized_seq);
1542 
1543 	/*
1544 	 * Set the sequence number of a later finalized record that has been
1545 	 * seen.
1546 	 *
1547 	 * Guarantee the record data is visible to other CPUs before storing
1548 	 * its sequence number. This pairs with desc_last_finalized_seq:A.
1549 	 *
1550 	 * Memory barrier involvement:
1551 	 *
1552 	 * If desc_last_finalized_seq:A reads from
1553 	 * desc_update_last_finalized:A, then desc_read:A reads from
1554 	 * _prb_commit:B.
1555 	 *
1556 	 * Relies on:
1557 	 *
1558 	 * RELEASE from _prb_commit:B to desc_update_last_finalized:A
1559 	 *    matching
1560 	 * ACQUIRE from desc_last_finalized_seq:A to desc_read:A
1561 	 *
1562 	 * Note: _prb_commit:B and desc_update_last_finalized:A can be
1563 	 *       different CPUs. However, the desc_update_last_finalized:A
1564 	 *       CPU (which performs the release) must have previously seen
1565 	 *       _prb_commit:B.
1566 	 */
1567 	if (!atomic_long_try_cmpxchg_release(&desc_ring->last_finalized_seq,
1568 				&oldval, newval)) { /* LMM(desc_update_last_finalized:A) */
1569 		old_seq = __ulseq_to_u64seq(rb, oldval);
1570 		goto try_again;
1571 	}
1572 }
1573 
1574 /*
1575  * Attempt to finalize a specified descriptor. If this fails, the descriptor
1576  * is either already final or it will finalize itself when the writer commits.
1577  */
1578 static void desc_make_final(struct printk_ringbuffer *rb, unsigned long id)
1579 {
1580 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1581 	unsigned long prev_state_val = DESC_SV(id, desc_committed);
1582 	struct prb_desc *d = to_desc(desc_ring, id);
1583 
1584 	if (atomic_long_try_cmpxchg_relaxed(&d->state_var, &prev_state_val,
1585 			DESC_SV(id, desc_finalized))) { /* LMM(desc_make_final:A) */
1586 		desc_update_last_finalized(rb);
1587 	}
1588 }
1589 
1590 /**
1591  * prb_reserve() - Reserve space in the ringbuffer.
1592  *
1593  * @e:  The entry structure to setup.
1594  * @rb: The ringbuffer to reserve data in.
1595  * @r:  The record structure to allocate buffers for.
1596  *
1597  * This is the public function available to writers to reserve data.
1598  *
1599  * The writer specifies the text size to reserve by setting the
1600  * @text_buf_size field of @r. To ensure proper initialization of @r,
1601  * prb_rec_init_wr() should be used.
1602  *
1603  * Context: Any context. Disables local interrupts on success.
1604  * Return: true if at least text data could be allocated, otherwise false.
1605  *
1606  * On success, the fields @info and @text_buf of @r will be set by this
1607  * function and should be filled in by the writer before committing. Also
1608  * on success, prb_record_text_space() can be used on @e to query the actual
1609  * space used for the text data block.
1610  *
1611  * Important: @info->text_len needs to be set correctly by the writer in
1612  *            order for data to be readable and/or extended. Its value
1613  *            is initialized to 0.
1614  */
1615 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1616 		 struct printk_record *r)
1617 {
1618 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1619 	struct printk_info *info;
1620 	struct prb_desc *d;
1621 	unsigned long id;
1622 	u64 seq;
1623 
1624 	if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1625 		goto fail;
1626 
1627 	/*
1628 	 * Descriptors in the reserved state act as blockers to all further
1629 	 * reservations once the desc_ring has fully wrapped. Disable
1630 	 * interrupts during the reserve/commit window in order to minimize
1631 	 * the likelihood of this happening.
1632 	 */
1633 	local_irq_save(e->irqflags);
1634 
1635 	if (!desc_reserve(rb, &id)) {
1636 		/* Descriptor reservation failures are tracked. */
1637 		atomic_long_inc(&rb->fail);
1638 		local_irq_restore(e->irqflags);
1639 		goto fail;
1640 	}
1641 
1642 	d = to_desc(desc_ring, id);
1643 	info = to_info(desc_ring, id);
1644 
1645 	/*
1646 	 * All @info fields (except @seq) are cleared and must be filled in
1647 	 * by the writer. Save @seq before clearing because it is used to
1648 	 * determine the new sequence number.
1649 	 */
1650 	seq = info->seq;
1651 	memset(info, 0, sizeof(*info));
1652 
1653 	/*
1654 	 * Set the @e fields here so that prb_commit() can be used if
1655 	 * text data allocation fails.
1656 	 */
1657 	e->rb = rb;
1658 	e->id = id;
1659 
1660 	/*
1661 	 * Initialize the sequence number if it has "never been set".
1662 	 * Otherwise just increment it by a full wrap.
1663 	 *
1664 	 * @seq is considered "never been set" if it has a value of 0,
1665 	 * _except_ for @infos[0], which was specially setup by the ringbuffer
1666 	 * initializer and therefore is always considered as set.
1667 	 *
1668 	 * See the "Bootstrap" comment block in printk_ringbuffer.h for
1669 	 * details about how the initializer bootstraps the descriptors.
1670 	 */
1671 	if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1672 		info->seq = DESC_INDEX(desc_ring, id);
1673 	else
1674 		info->seq = seq + DESCS_COUNT(desc_ring);
1675 
1676 	/*
1677 	 * New data is about to be reserved. Once that happens, previous
1678 	 * descriptors are no longer able to be extended. Finalize the
1679 	 * previous descriptor now so that it can be made available to
1680 	 * readers. (For seq==0 there is no previous descriptor.)
1681 	 */
1682 	if (info->seq > 0)
1683 		desc_make_final(rb, DESC_ID(id - 1));
1684 
1685 	r->text_buf = data_alloc(rb, r->text_buf_size, &d->text_blk_lpos, id);
1686 	/* If text data allocation fails, a data-less record is committed. */
1687 	if (r->text_buf_size && !r->text_buf) {
1688 		prb_commit(e);
1689 		/* prb_commit() re-enabled interrupts. */
1690 		goto fail;
1691 	}
1692 
1693 	r->info = info;
1694 
1695 	/* Record full text space used by record. */
1696 	e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1697 
1698 	return true;
1699 fail:
1700 	/* Make it clear to the caller that the reserve failed. */
1701 	memset(r, 0, sizeof(*r));
1702 	return false;
1703 }
1704 EXPORT_SYMBOL_IF_KUNIT(prb_reserve);
1705 
1706 /* Commit the data (possibly finalizing it) and restore interrupts. */
1707 static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1708 {
1709 	struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1710 	struct prb_desc *d = to_desc(desc_ring, e->id);
1711 	unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1712 
1713 	/* Now the writer has finished all writing: LMM(_prb_commit:A) */
1714 
1715 	/*
1716 	 * Set the descriptor as committed. See "ABA Issues" about why
1717 	 * cmpxchg() instead of set() is used.
1718 	 *
1719 	 * 1  Guarantee all record data is stored before the descriptor state
1720 	 *    is stored as committed. A write memory barrier is sufficient
1721 	 *    for this. This pairs with desc_read:B and desc_reopen_last:A.
1722 	 *
1723 	 * 2. Guarantee the descriptor state is stored as committed before
1724 	 *    re-checking the head ID in order to possibly finalize this
1725 	 *    descriptor. This pairs with desc_reserve:D.
1726 	 *
1727 	 *    Memory barrier involvement:
1728 	 *
1729 	 *    If prb_commit:A reads from desc_reserve:D, then
1730 	 *    desc_make_final:A reads from _prb_commit:B.
1731 	 *
1732 	 *    Relies on:
1733 	 *
1734 	 *    MB _prb_commit:B to prb_commit:A
1735 	 *       matching
1736 	 *    MB desc_reserve:D to desc_make_final:A
1737 	 */
1738 	if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1739 			DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1740 		WARN_ON_ONCE(1);
1741 	}
1742 
1743 	/* Restore interrupts, the reserve/commit window is finished. */
1744 	local_irq_restore(e->irqflags);
1745 }
1746 
1747 /**
1748  * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1749  *
1750  * @e: The entry containing the reserved data information.
1751  *
1752  * This is the public function available to writers to commit data.
1753  *
1754  * Note that the data is not yet available to readers until it is finalized.
1755  * Finalizing happens automatically when space for the next record is
1756  * reserved.
1757  *
1758  * See prb_final_commit() for a version of this function that finalizes
1759  * immediately.
1760  *
1761  * Context: Any context. Enables local interrupts.
1762  */
1763 void prb_commit(struct prb_reserved_entry *e)
1764 {
1765 	struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1766 	unsigned long head_id;
1767 
1768 	_prb_commit(e, desc_committed);
1769 
1770 	/*
1771 	 * If this descriptor is no longer the head (i.e. a new record has
1772 	 * been allocated), extending the data for this record is no longer
1773 	 * allowed and therefore it must be finalized.
1774 	 */
1775 	head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */
1776 	if (head_id != e->id)
1777 		desc_make_final(e->rb, e->id);
1778 }
1779 EXPORT_SYMBOL_IF_KUNIT(prb_commit);
1780 
1781 /**
1782  * prb_final_commit() - Commit and finalize (previously reserved) data to
1783  *                      the ringbuffer.
1784  *
1785  * @e: The entry containing the reserved data information.
1786  *
1787  * This is the public function available to writers to commit+finalize data.
1788  *
1789  * By finalizing, the data is made immediately available to readers.
1790  *
1791  * This function should only be used if there are no intentions of extending
1792  * this data using prb_reserve_in_last().
1793  *
1794  * Context: Any context. Enables local interrupts.
1795  */
1796 void prb_final_commit(struct prb_reserved_entry *e)
1797 {
1798 	_prb_commit(e, desc_finalized);
1799 
1800 	desc_update_last_finalized(e->rb);
1801 }
1802 
1803 /*
1804  * Count the number of lines in provided text. All text has at least 1 line
1805  * (even if @text_size is 0). Each '\n' processed is counted as an additional
1806  * line.
1807  */
1808 static unsigned int count_lines(const char *text, unsigned int text_size)
1809 {
1810 	unsigned int next_size = text_size;
1811 	unsigned int line_count = 1;
1812 	const char *next = text;
1813 
1814 	while (next_size) {
1815 		next = memchr(next, '\n', next_size);
1816 		if (!next)
1817 			break;
1818 		line_count++;
1819 		next++;
1820 		next_size = text_size - (next - text);
1821 	}
1822 
1823 	return line_count;
1824 }
1825 
1826 /*
1827  * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1828  * If @line_count is provided, count the number of lines in the data.
1829  *
1830  * This function (used by readers) performs strict validation on the data
1831  * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1832  * triggered if an internal error is detected.
1833  */
1834 static bool copy_data(struct prb_data_ring *data_ring,
1835 		      struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1836 		      unsigned int buf_size, unsigned int *line_count)
1837 {
1838 	unsigned int data_size;
1839 	const char *data;
1840 
1841 	/* Caller might not want any data. */
1842 	if ((!buf || !buf_size) && !line_count)
1843 		return true;
1844 
1845 	data = get_data(data_ring, blk_lpos, &data_size);
1846 	if (!data)
1847 		return false;
1848 
1849 	/*
1850 	 * Actual cannot be less than expected. It can be more than expected
1851 	 * because of the trailing alignment padding.
1852 	 *
1853 	 * Note that invalid @len values can occur because the caller loads
1854 	 * the value during an allowed data race.
1855 	 */
1856 	if (data_size < (unsigned int)len)
1857 		return false;
1858 
1859 	/* Caller interested in the line count? */
1860 	if (line_count)
1861 		*line_count = count_lines(data, len);
1862 
1863 	/* Caller interested in the data content? */
1864 	if (!buf || !buf_size)
1865 		return true;
1866 
1867 	data_size = min_t(unsigned int, buf_size, len);
1868 
1869 	memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
1870 	return true;
1871 }
1872 
1873 /*
1874  * This is an extended version of desc_read(). It gets a copy of a specified
1875  * descriptor. However, it also verifies that the record is finalized and has
1876  * the sequence number @seq. On success, 0 is returned.
1877  *
1878  * Error return values:
1879  * -EINVAL: A finalized record with sequence number @seq does not exist.
1880  * -ENOENT: A finalized record with sequence number @seq exists, but its data
1881  *          is not available. This is a valid record, so readers should
1882  *          continue with the next record.
1883  */
1884 static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1885 				   unsigned long id, u64 seq,
1886 				   struct prb_desc *desc_out)
1887 {
1888 	struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1889 	enum desc_state d_state;
1890 	u64 s;
1891 
1892 	d_state = desc_read(desc_ring, id, desc_out, &s, NULL);
1893 
1894 	/*
1895 	 * An unexpected @id (desc_miss) or @seq mismatch means the record
1896 	 * does not exist. A descriptor in the reserved or committed state
1897 	 * means the record does not yet exist for the reader.
1898 	 */
1899 	if (d_state == desc_miss ||
1900 	    d_state == desc_reserved ||
1901 	    d_state == desc_committed ||
1902 	    s != seq) {
1903 		return -EINVAL;
1904 	}
1905 
1906 	/*
1907 	 * A descriptor in the reusable state may no longer have its data
1908 	 * available; report it as existing but with lost data. Or the record
1909 	 * may actually be a record with lost data.
1910 	 */
1911 	if (d_state == desc_reusable ||
1912 	    (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1913 		return -ENOENT;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 /*
1920  * Copy the ringbuffer data from the record with @seq to the provided
1921  * @r buffer. On success, 0 is returned.
1922  *
1923  * See desc_read_finalized_seq() for error return values.
1924  */
1925 static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1926 		    struct printk_record *r, unsigned int *line_count)
1927 {
1928 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1929 	struct printk_info *info = to_info(desc_ring, seq);
1930 	struct prb_desc *rdesc = to_desc(desc_ring, seq);
1931 	atomic_long_t *state_var = &rdesc->state_var;
1932 	struct prb_desc desc;
1933 	unsigned long id;
1934 	int err;
1935 
1936 	/* Extract the ID, used to specify the descriptor to read. */
1937 	id = DESC_ID(atomic_long_read(state_var));
1938 
1939 	/* Get a local copy of the correct descriptor (if available). */
1940 	err = desc_read_finalized_seq(desc_ring, id, seq, &desc);
1941 
1942 	/*
1943 	 * If @r is NULL, the caller is only interested in the availability
1944 	 * of the record.
1945 	 */
1946 	if (err || !r)
1947 		return err;
1948 
1949 	/* If requested, copy meta data. */
1950 	if (r->info)
1951 		memcpy(r->info, info, sizeof(*(r->info)));
1952 
1953 	/* Copy text data. If it fails, this is a data-less record. */
1954 	if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len,
1955 		       r->text_buf, r->text_buf_size, line_count)) {
1956 		return -ENOENT;
1957 	}
1958 
1959 	/* Ensure the record is still finalized and has the same @seq. */
1960 	return desc_read_finalized_seq(desc_ring, id, seq, &desc);
1961 }
1962 
1963 /* Get the sequence number of the tail descriptor. */
1964 u64 prb_first_seq(struct printk_ringbuffer *rb)
1965 {
1966 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
1967 	enum desc_state d_state;
1968 	struct prb_desc desc;
1969 	unsigned long id;
1970 	u64 seq;
1971 
1972 	for (;;) {
1973 		id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1974 
1975 		d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */
1976 
1977 		/*
1978 		 * This loop will not be infinite because the tail is
1979 		 * _always_ in the finalized or reusable state.
1980 		 */
1981 		if (d_state == desc_finalized || d_state == desc_reusable)
1982 			break;
1983 
1984 		/*
1985 		 * Guarantee the last state load from desc_read() is before
1986 		 * reloading @tail_id in order to see a new tail in the case
1987 		 * that the descriptor has been recycled. This pairs with
1988 		 * desc_reserve:D.
1989 		 *
1990 		 * Memory barrier involvement:
1991 		 *
1992 		 * If prb_first_seq:B reads from desc_reserve:F, then
1993 		 * prb_first_seq:A reads from desc_push_tail:B.
1994 		 *
1995 		 * Relies on:
1996 		 *
1997 		 * MB from desc_push_tail:B to desc_reserve:F
1998 		 *    matching
1999 		 * RMB prb_first_seq:B to prb_first_seq:A
2000 		 */
2001 		smp_rmb(); /* LMM(prb_first_seq:C) */
2002 	}
2003 
2004 	return seq;
2005 }
2006 
2007 /**
2008  * prb_next_reserve_seq() - Get the sequence number after the most recently
2009  *                  reserved record.
2010  *
2011  * @rb:  The ringbuffer to get the sequence number from.
2012  *
2013  * This is the public function available to readers to see what sequence
2014  * number will be assigned to the next reserved record.
2015  *
2016  * Note that depending on the situation, this value can be equal to or
2017  * higher than the sequence number returned by prb_next_seq().
2018  *
2019  * Context: Any context.
2020  * Return: The sequence number that will be assigned to the next record
2021  *         reserved.
2022  */
2023 u64 prb_next_reserve_seq(struct printk_ringbuffer *rb)
2024 {
2025 	struct prb_desc_ring *desc_ring = &rb->desc_ring;
2026 	unsigned long last_finalized_id;
2027 	atomic_long_t *state_var;
2028 	u64 last_finalized_seq;
2029 	unsigned long head_id;
2030 	struct prb_desc desc;
2031 	unsigned long diff;
2032 	struct prb_desc *d;
2033 	int err;
2034 
2035 	/*
2036 	 * It may not be possible to read a sequence number for @head_id.
2037 	 * So the ID of @last_finailzed_seq is used to calculate what the
2038 	 * sequence number of @head_id will be.
2039 	 */
2040 
2041 try_again:
2042 	last_finalized_seq = desc_last_finalized_seq(rb);
2043 
2044 	/*
2045 	 * @head_id is loaded after @last_finalized_seq to ensure that
2046 	 * it points to the record with @last_finalized_seq or newer.
2047 	 *
2048 	 * Memory barrier involvement:
2049 	 *
2050 	 * If desc_last_finalized_seq:A reads from
2051 	 * desc_update_last_finalized:A, then
2052 	 * prb_next_reserve_seq:A reads from desc_reserve:D.
2053 	 *
2054 	 * Relies on:
2055 	 *
2056 	 * RELEASE from desc_reserve:D to desc_update_last_finalized:A
2057 	 *    matching
2058 	 * ACQUIRE from desc_last_finalized_seq:A to prb_next_reserve_seq:A
2059 	 *
2060 	 * Note: desc_reserve:D and desc_update_last_finalized:A can be
2061 	 *       different CPUs. However, the desc_update_last_finalized:A CPU
2062 	 *       (which performs the release) must have previously seen
2063 	 *       desc_read:C, which implies desc_reserve:D can be seen.
2064 	 */
2065 	head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_next_reserve_seq:A) */
2066 
2067 	d = to_desc(desc_ring, last_finalized_seq);
2068 	state_var = &d->state_var;
2069 
2070 	/* Extract the ID, used to specify the descriptor to read. */
2071 	last_finalized_id = DESC_ID(atomic_long_read(state_var));
2072 
2073 	/* Ensure @last_finalized_id is correct. */
2074 	err = desc_read_finalized_seq(desc_ring, last_finalized_id, last_finalized_seq, &desc);
2075 
2076 	if (err == -EINVAL) {
2077 		if (last_finalized_seq == 0) {
2078 			/*
2079 			 * No record has been finalized or even reserved yet.
2080 			 *
2081 			 * The @head_id is initialized such that the first
2082 			 * increment will yield the first record (seq=0).
2083 			 * Handle it separately to avoid a negative @diff
2084 			 * below.
2085 			 */
2086 			if (head_id == DESC0_ID(desc_ring->count_bits))
2087 				return 0;
2088 
2089 			/*
2090 			 * One or more descriptors are already reserved. Use
2091 			 * the descriptor ID of the first one (@seq=0) for
2092 			 * the @diff below.
2093 			 */
2094 			last_finalized_id = DESC0_ID(desc_ring->count_bits) + 1;
2095 		} else {
2096 			/* Record must have been overwritten. Try again. */
2097 			goto try_again;
2098 		}
2099 	}
2100 
2101 	/* Diff of known descriptor IDs to compute related sequence numbers. */
2102 	diff = head_id - last_finalized_id;
2103 
2104 	/*
2105 	 * @head_id points to the most recently reserved record, but this
2106 	 * function returns the sequence number that will be assigned to the
2107 	 * next (not yet reserved) record. Thus +1 is needed.
2108 	 */
2109 	return (last_finalized_seq + diff + 1);
2110 }
2111 
2112 /*
2113  * Non-blocking read of a record.
2114  *
2115  * On success @seq is updated to the record that was read and (if provided)
2116  * @r and @line_count will contain the read/calculated data.
2117  *
2118  * On failure @seq is updated to a record that is not yet available to the
2119  * reader, but it will be the next record available to the reader.
2120  *
2121  * Note: When the current CPU is in panic, this function will skip over any
2122  *       non-existent/non-finalized records in order to allow the panic CPU
2123  *       to print any and all records that have been finalized.
2124  */
2125 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
2126 			    struct printk_record *r, unsigned int *line_count)
2127 {
2128 	u64 tail_seq;
2129 	int err;
2130 
2131 	while ((err = prb_read(rb, *seq, r, line_count))) {
2132 		tail_seq = prb_first_seq(rb);
2133 
2134 		if (*seq < tail_seq) {
2135 			/*
2136 			 * Behind the tail. Catch up and try again. This
2137 			 * can happen for -ENOENT and -EINVAL cases.
2138 			 */
2139 			*seq = tail_seq;
2140 
2141 		} else if (err == -ENOENT) {
2142 			/* Record exists, but the data was lost. Skip. */
2143 			(*seq)++;
2144 
2145 		} else {
2146 			/*
2147 			 * Non-existent/non-finalized record. Must stop.
2148 			 *
2149 			 * For panic situations it cannot be expected that
2150 			 * non-finalized records will become finalized. But
2151 			 * there may be other finalized records beyond that
2152 			 * need to be printed for a panic situation. If this
2153 			 * is the panic CPU, skip this
2154 			 * non-existent/non-finalized record unless non-panic
2155 			 * CPUs are still running and their debugging is
2156 			 * explicitly enabled.
2157 			 *
2158 			 * Note that new messages printed on panic CPU are
2159 			 * finalized when we are here. The only exception
2160 			 * might be the last message without trailing newline.
2161 			 * But it would have the sequence number returned
2162 			 * by "prb_next_reserve_seq() - 1".
2163 			 */
2164 			if (panic_on_this_cpu() &&
2165 			    (!debug_non_panic_cpus || legacy_allow_panic_sync) &&
2166 			    ((*seq + 1) < prb_next_reserve_seq(rb))) {
2167 				(*seq)++;
2168 			} else {
2169 				return false;
2170 			}
2171 		}
2172 	}
2173 
2174 	return true;
2175 }
2176 
2177 /**
2178  * prb_read_valid() - Non-blocking read of a requested record or (if gone)
2179  *                    the next available record.
2180  *
2181  * @rb:  The ringbuffer to read from.
2182  * @seq: The sequence number of the record to read.
2183  * @r:   A record data buffer to store the read record to.
2184  *
2185  * This is the public function available to readers to read a record.
2186  *
2187  * The reader provides the @info and @text_buf buffers of @r to be
2188  * filled in. Any of the buffer pointers can be set to NULL if the reader
2189  * is not interested in that data. To ensure proper initialization of @r,
2190  * prb_rec_init_rd() should be used.
2191  *
2192  * Context: Any context.
2193  * Return: true if a record was read, otherwise false.
2194  *
2195  * On success, the reader must check r->info.seq to see which record was
2196  * actually read. This allows the reader to detect dropped records.
2197  *
2198  * Failure means @seq refers to a record not yet available to the reader.
2199  */
2200 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
2201 		    struct printk_record *r)
2202 {
2203 	return _prb_read_valid(rb, &seq, r, NULL);
2204 }
2205 EXPORT_SYMBOL_IF_KUNIT(prb_read_valid);
2206 
2207 /**
2208  * prb_read_valid_info() - Non-blocking read of meta data for a requested
2209  *                         record or (if gone) the next available record.
2210  *
2211  * @rb:         The ringbuffer to read from.
2212  * @seq:        The sequence number of the record to read.
2213  * @info:       A buffer to store the read record meta data to.
2214  * @line_count: A buffer to store the number of lines in the record text.
2215  *
2216  * This is the public function available to readers to read only the
2217  * meta data of a record.
2218  *
2219  * The reader provides the @info, @line_count buffers to be filled in.
2220  * Either of the buffer pointers can be set to NULL if the reader is not
2221  * interested in that data.
2222  *
2223  * Context: Any context.
2224  * Return: true if a record's meta data was read, otherwise false.
2225  *
2226  * On success, the reader must check info->seq to see which record meta data
2227  * was actually read. This allows the reader to detect dropped records.
2228  *
2229  * Failure means @seq refers to a record not yet available to the reader.
2230  */
2231 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
2232 			 struct printk_info *info, unsigned int *line_count)
2233 {
2234 	struct printk_record r;
2235 
2236 	prb_rec_init_rd(&r, info, NULL, 0);
2237 
2238 	return _prb_read_valid(rb, &seq, &r, line_count);
2239 }
2240 
2241 /**
2242  * prb_first_valid_seq() - Get the sequence number of the oldest available
2243  *                         record.
2244  *
2245  * @rb: The ringbuffer to get the sequence number from.
2246  *
2247  * This is the public function available to readers to see what the
2248  * first/oldest valid sequence number is.
2249  *
2250  * This provides readers a starting point to begin iterating the ringbuffer.
2251  *
2252  * Context: Any context.
2253  * Return: The sequence number of the first/oldest record or, if the
2254  *         ringbuffer is empty, 0 is returned.
2255  */
2256 u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
2257 {
2258 	u64 seq = 0;
2259 
2260 	if (!_prb_read_valid(rb, &seq, NULL, NULL))
2261 		return 0;
2262 
2263 	return seq;
2264 }
2265 
2266 /**
2267  * prb_next_seq() - Get the sequence number after the last available record.
2268  *
2269  * @rb:  The ringbuffer to get the sequence number from.
2270  *
2271  * This is the public function available to readers to see what the next
2272  * newest sequence number available to readers will be.
2273  *
2274  * This provides readers a sequence number to jump to if all currently
2275  * available records should be skipped. It is guaranteed that all records
2276  * previous to the returned value have been finalized and are (or were)
2277  * available to the reader.
2278  *
2279  * Context: Any context.
2280  * Return: The sequence number of the next newest (not yet available) record
2281  *         for readers.
2282  */
2283 u64 prb_next_seq(struct printk_ringbuffer *rb)
2284 {
2285 	u64 seq;
2286 
2287 	seq = desc_last_finalized_seq(rb);
2288 
2289 	/*
2290 	 * Begin searching after the last finalized record.
2291 	 *
2292 	 * On 0, the search must begin at 0 because of hack#2
2293 	 * of the bootstrapping phase it is not known if a
2294 	 * record at index 0 exists.
2295 	 */
2296 	if (seq != 0)
2297 		seq++;
2298 
2299 	/*
2300 	 * The information about the last finalized @seq might be inaccurate.
2301 	 * Search forward to find the current one.
2302 	 */
2303 	while (_prb_read_valid(rb, &seq, NULL, NULL))
2304 		seq++;
2305 
2306 	return seq;
2307 }
2308 
2309 /**
2310  * prb_init() - Initialize a ringbuffer to use provided external buffers.
2311  *
2312  * @rb:       The ringbuffer to initialize.
2313  * @text_buf: The data buffer for text data.
2314  * @textbits: The size of @text_buf as a power-of-2 value.
2315  * @descs:    The descriptor buffer for ringbuffer records.
2316  * @descbits: The count of @descs items as a power-of-2 value.
2317  * @infos:    The printk_info buffer for ringbuffer records.
2318  *
2319  * This is the public function available to writers to setup a ringbuffer
2320  * during runtime using provided buffers.
2321  *
2322  * This must match the initialization of DEFINE_PRINTKRB().
2323  *
2324  * Context: Any context.
2325  */
2326 void prb_init(struct printk_ringbuffer *rb,
2327 	      char *text_buf, unsigned int textbits,
2328 	      struct prb_desc *descs, unsigned int descbits,
2329 	      struct printk_info *infos)
2330 {
2331 	memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2332 	memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2333 
2334 	rb->desc_ring.count_bits = descbits;
2335 	rb->desc_ring.descs = descs;
2336 	rb->desc_ring.infos = infos;
2337 	atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
2338 	atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
2339 	atomic_long_set(&rb->desc_ring.last_finalized_seq, 0);
2340 
2341 	rb->text_data_ring.size_bits = textbits;
2342 	rb->text_data_ring.data = text_buf;
2343 	atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2344 	atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2345 
2346 	atomic_long_set(&rb->fail, 0);
2347 
2348 	atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2349 	descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2350 	descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2351 
2352 	infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2353 	infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2354 }
2355 EXPORT_SYMBOL_IF_KUNIT(prb_init);
2356 
2357 /**
2358  * prb_record_text_space() - Query the full actual used ringbuffer space for
2359  *                           the text data of a reserved entry.
2360  *
2361  * @e: The successfully reserved entry to query.
2362  *
2363  * This is the public function available to writers to see how much actual
2364  * space is used in the ringbuffer to store the text data of the specified
2365  * entry.
2366  *
2367  * This function is only valid if @e has been successfully reserved using
2368  * prb_reserve().
2369  *
2370  * Context: Any context.
2371  * Return: The size in bytes used by the text data of the associated record.
2372  */
2373 unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2374 {
2375 	return e->text_space;
2376 }
2377