1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <kunit/visibility.h> 4 #include <linux/kernel.h> 5 #include <linux/irqflags.h> 6 #include <linux/string.h> 7 #include <linux/errno.h> 8 #include <linux/bug.h> 9 #include "printk_ringbuffer.h" 10 #include "internal.h" 11 12 /** 13 * DOC: printk_ringbuffer overview 14 * 15 * Data Structure 16 * -------------- 17 * The printk_ringbuffer is made up of 3 internal ringbuffers: 18 * 19 * desc_ring 20 * A ring of descriptors and their meta data (such as sequence number, 21 * timestamp, loglevel, etc.) as well as internal state information about 22 * the record and logical positions specifying where in the other 23 * ringbuffer the text strings are located. 24 * 25 * text_data_ring 26 * A ring of data blocks. A data block consists of an unsigned long 27 * integer (ID) that maps to a desc_ring index followed by the text 28 * string of the record. 29 * 30 * The internal state information of a descriptor is the key element to allow 31 * readers and writers to locklessly synchronize access to the data. 32 * 33 * Implementation 34 * -------------- 35 * 36 * Descriptor Ring 37 * ~~~~~~~~~~~~~~~ 38 * The descriptor ring is an array of descriptors. A descriptor contains 39 * essential meta data to track the data of a printk record using 40 * blk_lpos structs pointing to associated text data blocks (see 41 * "Data Rings" below). Each descriptor is assigned an ID that maps 42 * directly to index values of the descriptor array and has a state. The ID 43 * and the state are bitwise combined into a single descriptor field named 44 * @state_var, allowing ID and state to be synchronously and atomically 45 * updated. 46 * 47 * Descriptors have four states: 48 * 49 * reserved 50 * A writer is modifying the record. 51 * 52 * committed 53 * The record and all its data are written. A writer can reopen the 54 * descriptor (transitioning it back to reserved), but in the committed 55 * state the data is consistent. 56 * 57 * finalized 58 * The record and all its data are complete and available for reading. A 59 * writer cannot reopen the descriptor. 60 * 61 * reusable 62 * The record exists, but its text and/or meta data may no longer be 63 * available. 64 * 65 * Querying the @state_var of a record requires providing the ID of the 66 * descriptor to query. This can yield a possible fifth (pseudo) state: 67 * 68 * miss 69 * The descriptor being queried has an unexpected ID. 70 * 71 * The descriptor ring has a @tail_id that contains the ID of the oldest 72 * descriptor and @head_id that contains the ID of the newest descriptor. 73 * 74 * When a new descriptor should be created (and the ring is full), the tail 75 * descriptor is invalidated by first transitioning to the reusable state and 76 * then invalidating all tail data blocks up to and including the data blocks 77 * associated with the tail descriptor (for the text ring). Then 78 * @tail_id is advanced, followed by advancing @head_id. And finally the 79 * @state_var of the new descriptor is initialized to the new ID and reserved 80 * state. 81 * 82 * The @tail_id can only be advanced if the new @tail_id would be in the 83 * committed or reusable queried state. This makes it possible that a valid 84 * sequence number of the tail is always available. 85 * 86 * Descriptor Finalization 87 * ~~~~~~~~~~~~~~~~~~~~~~~ 88 * When a writer calls the commit function prb_commit(), record data is 89 * fully stored and is consistent within the ringbuffer. However, a writer can 90 * reopen that record, claiming exclusive access (as with prb_reserve()), and 91 * modify that record. When finished, the writer must again commit the record. 92 * 93 * In order for a record to be made available to readers (and also become 94 * recyclable for writers), it must be finalized. A finalized record cannot be 95 * reopened and can never become "unfinalized". Record finalization can occur 96 * in three different scenarios: 97 * 98 * 1) A writer can simultaneously commit and finalize its record by calling 99 * prb_final_commit() instead of prb_commit(). 100 * 101 * 2) When a new record is reserved and the previous record has been 102 * committed via prb_commit(), that previous record is automatically 103 * finalized. 104 * 105 * 3) When a record is committed via prb_commit() and a newer record 106 * already exists, the record being committed is automatically finalized. 107 * 108 * Data Ring 109 * ~~~~~~~~~ 110 * The text data ring is a byte array composed of data blocks. Data blocks are 111 * referenced by blk_lpos structs that point to the logical position of the 112 * beginning of a data block and the beginning of the next adjacent data 113 * block. Logical positions are mapped directly to index values of the byte 114 * array ringbuffer. 115 * 116 * Each data block consists of an ID followed by the writer data. The ID is 117 * the identifier of a descriptor that is associated with the data block. A 118 * given data block is considered valid if all of the following conditions 119 * are met: 120 * 121 * 1) The descriptor associated with the data block is in the committed 122 * or finalized queried state. 123 * 124 * 2) The blk_lpos struct within the descriptor associated with the data 125 * block references back to the same data block. 126 * 127 * 3) The data block is within the head/tail logical position range. 128 * 129 * If the writer data of a data block would extend beyond the end of the 130 * byte array, only the ID of the data block is stored at the logical 131 * position and the full data block (ID and writer data) is stored at the 132 * beginning of the byte array. The referencing blk_lpos will point to the 133 * ID before the wrap and the next data block will be at the logical 134 * position adjacent the full data block after the wrap. 135 * 136 * Data rings have a @tail_lpos that points to the beginning of the oldest 137 * data block and a @head_lpos that points to the logical position of the 138 * next (not yet existing) data block. 139 * 140 * When a new data block should be created (and the ring is full), tail data 141 * blocks will first be invalidated by putting their associated descriptors 142 * into the reusable state and then pushing the @tail_lpos forward beyond 143 * them. Then the @head_lpos is pushed forward and is associated with a new 144 * descriptor. If a data block is not valid, the @tail_lpos cannot be 145 * advanced beyond it. 146 * 147 * Info Array 148 * ~~~~~~~~~~ 149 * The general meta data of printk records are stored in printk_info structs, 150 * stored in an array with the same number of elements as the descriptor ring. 151 * Each info corresponds to the descriptor of the same index in the 152 * descriptor ring. Info validity is confirmed by evaluating the corresponding 153 * descriptor before and after loading the info. 154 * 155 * Usage 156 * ----- 157 * Here are some simple examples demonstrating writers and readers. For the 158 * examples a global ringbuffer (test_rb) is available (which is not the 159 * actual ringbuffer used by printk):: 160 * 161 * DEFINE_PRINTKRB(test_rb, 15, 5); 162 * 163 * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of 164 * 1 MiB (2 ^ (15 + 5)) for text data. 165 * 166 * Sample writer code:: 167 * 168 * const char *textstr = "message text"; 169 * struct prb_reserved_entry e; 170 * struct printk_record r; 171 * 172 * // specify how much to allocate 173 * prb_rec_init_wr(&r, strlen(textstr) + 1); 174 * 175 * if (prb_reserve(&e, &test_rb, &r)) { 176 * snprintf(r.text_buf, r.text_buf_size, "%s", textstr); 177 * 178 * r.info->text_len = strlen(textstr); 179 * r.info->ts_nsec = local_clock(); 180 * r.info->caller_id = printk_caller_id(); 181 * 182 * // commit and finalize the record 183 * prb_final_commit(&e); 184 * } 185 * 186 * Note that additional writer functions are available to extend a record 187 * after it has been committed but not yet finalized. This can be done as 188 * long as no new records have been reserved and the caller is the same. 189 * 190 * Sample writer code (record extending):: 191 * 192 * // alternate rest of previous example 193 * 194 * r.info->text_len = strlen(textstr); 195 * r.info->ts_nsec = local_clock(); 196 * r.info->caller_id = printk_caller_id(); 197 * 198 * // commit the record (but do not finalize yet) 199 * prb_commit(&e); 200 * } 201 * 202 * ... 203 * 204 * // specify additional 5 bytes text space to extend 205 * prb_rec_init_wr(&r, 5); 206 * 207 * // try to extend, but only if it does not exceed 32 bytes 208 * if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id(), 32)) { 209 * snprintf(&r.text_buf[r.info->text_len], 210 * r.text_buf_size - r.info->text_len, "hello"); 211 * 212 * r.info->text_len += 5; 213 * 214 * // commit and finalize the record 215 * prb_final_commit(&e); 216 * } 217 * 218 * Sample reader code:: 219 * 220 * struct printk_info info; 221 * struct printk_record r; 222 * char text_buf[32]; 223 * u64 seq; 224 * 225 * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf)); 226 * 227 * prb_for_each_record(0, &test_rb, &seq, &r) { 228 * if (info.seq != seq) 229 * pr_warn("lost %llu records\n", info.seq - seq); 230 * 231 * if (info.text_len > r.text_buf_size) { 232 * pr_warn("record %llu text truncated\n", info.seq); 233 * text_buf[r.text_buf_size - 1] = 0; 234 * } 235 * 236 * pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec, 237 * &text_buf[0]); 238 * } 239 * 240 * Note that additional less convenient reader functions are available to 241 * allow complex record access. 242 * 243 * ABA Issues 244 * ~~~~~~~~~~ 245 * To help avoid ABA issues, descriptors are referenced by IDs (array index 246 * values combined with tagged bits counting array wraps) and data blocks are 247 * referenced by logical positions (array index values combined with tagged 248 * bits counting array wraps). However, on 32-bit systems the number of 249 * tagged bits is relatively small such that an ABA incident is (at least 250 * theoretically) possible. For example, if 4 million maximally sized (1KiB) 251 * printk messages were to occur in NMI context on a 32-bit system, the 252 * interrupted context would not be able to recognize that the 32-bit integer 253 * completely wrapped and thus represents a different data block than the one 254 * the interrupted context expects. 255 * 256 * To help combat this possibility, additional state checking is performed 257 * (such as using cmpxchg() even though set() would suffice). These extra 258 * checks are commented as such and will hopefully catch any ABA issue that 259 * a 32-bit system might experience. 260 * 261 * Memory Barriers 262 * ~~~~~~~~~~~~~~~ 263 * Multiple memory barriers are used. To simplify proving correctness and 264 * generating litmus tests, lines of code related to memory barriers 265 * (loads, stores, and the associated memory barriers) are labeled:: 266 * 267 * LMM(function:letter) 268 * 269 * Comments reference the labels using only the "function:letter" part. 270 * 271 * The memory barrier pairs and their ordering are: 272 * 273 * desc_reserve:D / desc_reserve:B 274 * push descriptor tail (id), then push descriptor head (id) 275 * 276 * desc_reserve:D / data_push_tail:B 277 * push data tail (lpos), then set new descriptor reserved (state) 278 * 279 * desc_reserve:D / desc_push_tail:C 280 * push descriptor tail (id), then set new descriptor reserved (state) 281 * 282 * desc_reserve:D / prb_first_seq:C 283 * push descriptor tail (id), then set new descriptor reserved (state) 284 * 285 * desc_reserve:F / desc_read:D 286 * set new descriptor id and reserved (state), then allow writer changes 287 * 288 * data_alloc:A (or data_realloc:A) / desc_read:D 289 * set old descriptor reusable (state), then modify new data block area 290 * 291 * data_alloc:A (or data_realloc:A) / data_push_tail:B 292 * push data tail (lpos), then modify new data block area 293 * 294 * _prb_commit:B / desc_read:B 295 * store writer changes, then set new descriptor committed (state) 296 * 297 * desc_reopen_last:A / _prb_commit:B 298 * set descriptor reserved (state), then read descriptor data 299 * 300 * _prb_commit:B / desc_reserve:D 301 * set new descriptor committed (state), then check descriptor head (id) 302 * 303 * data_push_tail:D / data_push_tail:A 304 * set descriptor reusable (state), then push data tail (lpos) 305 * 306 * desc_push_tail:B / desc_reserve:D 307 * set descriptor reusable (state), then push descriptor tail (id) 308 * 309 * desc_update_last_finalized:A / desc_last_finalized_seq:A 310 * store finalized record, then set new highest finalized sequence number 311 */ 312 313 #define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits) 314 #define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1) 315 316 #define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits) 317 #define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1) 318 319 /* Determine the data array index from a logical position. */ 320 #define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring)) 321 322 /* Determine the desc array index from an ID or sequence number. */ 323 #define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring)) 324 325 /* Determine how many times the data array has wrapped. */ 326 #define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits) 327 328 /* Determine if a logical position refers to a data-less block. */ 329 #define LPOS_DATALESS(lpos) ((lpos) & 1UL) 330 #define BLK_DATALESS(blk) (LPOS_DATALESS((blk)->begin) && \ 331 LPOS_DATALESS((blk)->next)) 332 333 /* Get the logical position at index 0 of the current wrap. */ 334 #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \ 335 ((lpos) & ~DATA_SIZE_MASK(data_ring)) 336 337 /* Get the ID for the same index of the previous wrap as the given ID. */ 338 #define DESC_ID_PREV_WRAP(desc_ring, id) \ 339 DESC_ID((id) - DESCS_COUNT(desc_ring)) 340 341 /* 342 * A data block: mapped directly to the beginning of the data block area 343 * specified as a logical position within the data ring. 344 * 345 * @id: the ID of the associated descriptor 346 * @data: the writer data 347 * 348 * Note that the size of a data block is only known by its associated 349 * descriptor. 350 */ 351 struct prb_data_block { 352 unsigned long id; 353 char data[]; 354 }; 355 356 /* 357 * Return the descriptor associated with @n. @n can be either a 358 * descriptor ID or a sequence number. 359 */ 360 static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n) 361 { 362 return &desc_ring->descs[DESC_INDEX(desc_ring, n)]; 363 } 364 365 /* 366 * Return the printk_info associated with @n. @n can be either a 367 * descriptor ID or a sequence number. 368 */ 369 static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n) 370 { 371 return &desc_ring->infos[DESC_INDEX(desc_ring, n)]; 372 } 373 374 static struct prb_data_block *to_block(struct prb_data_ring *data_ring, 375 unsigned long begin_lpos) 376 { 377 return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)]; 378 } 379 380 /* 381 * Increase the data size to account for data block meta data plus any 382 * padding so that the adjacent data block is aligned on the ID size. 383 */ 384 static unsigned int to_blk_size(unsigned int size) 385 { 386 struct prb_data_block *db = NULL; 387 388 size += sizeof(*db); 389 size = ALIGN(size, sizeof(db->id)); 390 return size; 391 } 392 393 /* 394 * Sanity checker for reserve size. The ringbuffer code assumes that a data 395 * block does not exceed the maximum possible size that could fit within the 396 * ringbuffer. This function provides that basic size check so that the 397 * assumption is safe. In particular, it guarantees that data_push_tail() will 398 * never attempt to push the tail beyond the head. 399 */ 400 static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size) 401 { 402 /* Data-less blocks take no space. */ 403 if (size == 0) 404 return true; 405 406 /* 407 * If data blocks were allowed to be larger than half the data ring 408 * size, a wrapping data block could require more space than the full 409 * ringbuffer. 410 */ 411 return to_blk_size(size) <= DATA_SIZE(data_ring) / 2; 412 } 413 414 /* Query the state of a descriptor. */ 415 static enum desc_state get_desc_state(unsigned long id, 416 unsigned long state_val) 417 { 418 if (id != DESC_ID(state_val)) 419 return desc_miss; 420 421 return DESC_STATE(state_val); 422 } 423 424 /* 425 * Get a copy of a specified descriptor and return its queried state. If the 426 * descriptor is in an inconsistent state (miss or reserved), the caller can 427 * only expect the descriptor's @state_var field to be valid. 428 * 429 * The sequence number and caller_id can be optionally retrieved. Like all 430 * non-state_var data, they are only valid if the descriptor is in a 431 * consistent state. 432 */ 433 static enum desc_state desc_read(struct prb_desc_ring *desc_ring, 434 unsigned long id, struct prb_desc *desc_out, 435 u64 *seq_out, u32 *caller_id_out) 436 { 437 struct printk_info *info = to_info(desc_ring, id); 438 struct prb_desc *desc = to_desc(desc_ring, id); 439 atomic_long_t *state_var = &desc->state_var; 440 enum desc_state d_state; 441 unsigned long state_val; 442 443 /* Check the descriptor state. */ 444 state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */ 445 d_state = get_desc_state(id, state_val); 446 if (d_state == desc_miss || d_state == desc_reserved) { 447 /* 448 * The descriptor is in an inconsistent state. Set at least 449 * @state_var so that the caller can see the details of 450 * the inconsistent state. 451 */ 452 goto out; 453 } 454 455 /* 456 * Guarantee the state is loaded before copying the descriptor 457 * content. This avoids copying obsolete descriptor content that might 458 * not apply to the descriptor state. This pairs with _prb_commit:B. 459 * 460 * Memory barrier involvement: 461 * 462 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads 463 * from _prb_commit:A. 464 * 465 * Relies on: 466 * 467 * WMB from _prb_commit:A to _prb_commit:B 468 * matching 469 * RMB from desc_read:A to desc_read:C 470 */ 471 smp_rmb(); /* LMM(desc_read:B) */ 472 473 /* 474 * Copy the descriptor data. The data is not valid until the 475 * state has been re-checked. A memcpy() for all of @desc 476 * cannot be used because of the atomic_t @state_var field. 477 */ 478 if (desc_out) { 479 memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos, 480 sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */ 481 } 482 if (seq_out) 483 *seq_out = info->seq; /* also part of desc_read:C */ 484 if (caller_id_out) 485 *caller_id_out = info->caller_id; /* also part of desc_read:C */ 486 487 /* 488 * 1. Guarantee the descriptor content is loaded before re-checking 489 * the state. This avoids reading an obsolete descriptor state 490 * that may not apply to the copied content. This pairs with 491 * desc_reserve:F. 492 * 493 * Memory barrier involvement: 494 * 495 * If desc_read:C reads from desc_reserve:G, then desc_read:E 496 * reads from desc_reserve:F. 497 * 498 * Relies on: 499 * 500 * WMB from desc_reserve:F to desc_reserve:G 501 * matching 502 * RMB from desc_read:C to desc_read:E 503 * 504 * 2. Guarantee the record data is loaded before re-checking the 505 * state. This avoids reading an obsolete descriptor state that may 506 * not apply to the copied data. This pairs with data_alloc:A and 507 * data_realloc:A. 508 * 509 * Memory barrier involvement: 510 * 511 * If copy_data:A reads from data_alloc:B, then desc_read:E 512 * reads from desc_make_reusable:A. 513 * 514 * Relies on: 515 * 516 * MB from desc_make_reusable:A to data_alloc:B 517 * matching 518 * RMB from desc_read:C to desc_read:E 519 * 520 * Note: desc_make_reusable:A and data_alloc:B can be different 521 * CPUs. However, the data_alloc:B CPU (which performs the 522 * full memory barrier) must have previously seen 523 * desc_make_reusable:A. 524 */ 525 smp_rmb(); /* LMM(desc_read:D) */ 526 527 /* 528 * The data has been copied. Return the current descriptor state, 529 * which may have changed since the load above. 530 */ 531 state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */ 532 d_state = get_desc_state(id, state_val); 533 out: 534 if (desc_out) 535 atomic_long_set(&desc_out->state_var, state_val); 536 return d_state; 537 } 538 539 /* 540 * Take a specified descriptor out of the finalized state by attempting 541 * the transition from finalized to reusable. Either this context or some 542 * other context will have been successful. 543 */ 544 static void desc_make_reusable(struct prb_desc_ring *desc_ring, 545 unsigned long id) 546 { 547 unsigned long val_finalized = DESC_SV(id, desc_finalized); 548 unsigned long val_reusable = DESC_SV(id, desc_reusable); 549 struct prb_desc *desc = to_desc(desc_ring, id); 550 atomic_long_t *state_var = &desc->state_var; 551 552 atomic_long_cmpxchg_relaxed(state_var, val_finalized, 553 val_reusable); /* LMM(desc_make_reusable:A) */ 554 } 555 556 /* 557 * Given the text data ring, put the associated descriptor of each 558 * data block from @lpos_begin until @lpos_end into the reusable state. 559 * 560 * If there is any problem making the associated descriptor reusable, either 561 * the descriptor has not yet been finalized or another writer context has 562 * already pushed the tail lpos past the problematic data block. Regardless, 563 * on error the caller can re-load the tail lpos to determine the situation. 564 */ 565 static bool data_make_reusable(struct printk_ringbuffer *rb, 566 unsigned long lpos_begin, 567 unsigned long lpos_end, 568 unsigned long *lpos_out) 569 { 570 571 struct prb_data_ring *data_ring = &rb->text_data_ring; 572 struct prb_desc_ring *desc_ring = &rb->desc_ring; 573 struct prb_data_block *blk; 574 enum desc_state d_state; 575 struct prb_desc desc; 576 struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos; 577 unsigned long id; 578 579 /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */ 580 while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) { 581 blk = to_block(data_ring, lpos_begin); 582 583 /* 584 * Load the block ID from the data block. This is a data race 585 * against a writer that may have newly reserved this data 586 * area. If the loaded value matches a valid descriptor ID, 587 * the blk_lpos of that descriptor will be checked to make 588 * sure it points back to this data block. If the check fails, 589 * the data area has been recycled by another writer. 590 */ 591 id = blk->id; /* LMM(data_make_reusable:A) */ 592 593 d_state = desc_read(desc_ring, id, &desc, 594 NULL, NULL); /* LMM(data_make_reusable:B) */ 595 596 switch (d_state) { 597 case desc_miss: 598 case desc_reserved: 599 case desc_committed: 600 return false; 601 case desc_finalized: 602 /* 603 * This data block is invalid if the descriptor 604 * does not point back to it. 605 */ 606 if (blk_lpos->begin != lpos_begin) 607 return false; 608 desc_make_reusable(desc_ring, id); 609 break; 610 case desc_reusable: 611 /* 612 * This data block is invalid if the descriptor 613 * does not point back to it. 614 */ 615 if (blk_lpos->begin != lpos_begin) 616 return false; 617 break; 618 } 619 620 /* Advance @lpos_begin to the next data block. */ 621 lpos_begin = blk_lpos->next; 622 } 623 624 *lpos_out = lpos_begin; 625 return true; 626 } 627 628 /* 629 * Advance the data ring tail to at least @lpos. This function puts 630 * descriptors into the reusable state if the tail is pushed beyond 631 * their associated data block. 632 */ 633 static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos) 634 { 635 struct prb_data_ring *data_ring = &rb->text_data_ring; 636 unsigned long tail_lpos_new; 637 unsigned long tail_lpos; 638 unsigned long next_lpos; 639 640 /* If @lpos is from a data-less block, there is nothing to do. */ 641 if (LPOS_DATALESS(lpos)) 642 return true; 643 644 /* 645 * Any descriptor states that have transitioned to reusable due to the 646 * data tail being pushed to this loaded value will be visible to this 647 * CPU. This pairs with data_push_tail:D. 648 * 649 * Memory barrier involvement: 650 * 651 * If data_push_tail:A reads from data_push_tail:D, then this CPU can 652 * see desc_make_reusable:A. 653 * 654 * Relies on: 655 * 656 * MB from desc_make_reusable:A to data_push_tail:D 657 * matches 658 * READFROM from data_push_tail:D to data_push_tail:A 659 * thus 660 * READFROM from desc_make_reusable:A to this CPU 661 */ 662 tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */ 663 664 /* 665 * Loop until the tail lpos is at or beyond @lpos. This condition 666 * may already be satisfied, resulting in no full memory barrier 667 * from data_push_tail:D being performed. However, since this CPU 668 * sees the new tail lpos, any descriptor states that transitioned to 669 * the reusable state must already be visible. 670 */ 671 while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) { 672 /* 673 * Make all descriptors reusable that are associated with 674 * data blocks before @lpos. 675 */ 676 if (!data_make_reusable(rb, tail_lpos, lpos, &next_lpos)) { 677 /* 678 * 1. Guarantee the block ID loaded in 679 * data_make_reusable() is performed before 680 * reloading the tail lpos. The failed 681 * data_make_reusable() may be due to a newly 682 * recycled data area causing the tail lpos to 683 * have been previously pushed. This pairs with 684 * data_alloc:A and data_realloc:A. 685 * 686 * Memory barrier involvement: 687 * 688 * If data_make_reusable:A reads from data_alloc:B, 689 * then data_push_tail:C reads from 690 * data_push_tail:D. 691 * 692 * Relies on: 693 * 694 * MB from data_push_tail:D to data_alloc:B 695 * matching 696 * RMB from data_make_reusable:A to 697 * data_push_tail:C 698 * 699 * Note: data_push_tail:D and data_alloc:B can be 700 * different CPUs. However, the data_alloc:B 701 * CPU (which performs the full memory 702 * barrier) must have previously seen 703 * data_push_tail:D. 704 * 705 * 2. Guarantee the descriptor state loaded in 706 * data_make_reusable() is performed before 707 * reloading the tail lpos. The failed 708 * data_make_reusable() may be due to a newly 709 * recycled descriptor causing the tail lpos to 710 * have been previously pushed. This pairs with 711 * desc_reserve:D. 712 * 713 * Memory barrier involvement: 714 * 715 * If data_make_reusable:B reads from 716 * desc_reserve:F, then data_push_tail:C reads 717 * from data_push_tail:D. 718 * 719 * Relies on: 720 * 721 * MB from data_push_tail:D to desc_reserve:F 722 * matching 723 * RMB from data_make_reusable:B to 724 * data_push_tail:C 725 * 726 * Note: data_push_tail:D and desc_reserve:F can 727 * be different CPUs. However, the 728 * desc_reserve:F CPU (which performs the 729 * full memory barrier) must have previously 730 * seen data_push_tail:D. 731 */ 732 smp_rmb(); /* LMM(data_push_tail:B) */ 733 734 tail_lpos_new = atomic_long_read(&data_ring->tail_lpos 735 ); /* LMM(data_push_tail:C) */ 736 if (tail_lpos_new == tail_lpos) 737 return false; 738 739 /* Another CPU pushed the tail. Try again. */ 740 tail_lpos = tail_lpos_new; 741 continue; 742 } 743 744 /* 745 * Guarantee any descriptor states that have transitioned to 746 * reusable are stored before pushing the tail lpos. A full 747 * memory barrier is needed since other CPUs may have made 748 * the descriptor states reusable. This pairs with 749 * data_push_tail:A. 750 */ 751 if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos, 752 next_lpos)) { /* LMM(data_push_tail:D) */ 753 break; 754 } 755 } 756 757 return true; 758 } 759 760 /* 761 * Advance the desc ring tail. This function advances the tail by one 762 * descriptor, thus invalidating the oldest descriptor. Before advancing 763 * the tail, the tail descriptor is made reusable and all data blocks up to 764 * and including the descriptor's data block are invalidated (i.e. the data 765 * ring tail is pushed past the data block of the descriptor being made 766 * reusable). 767 */ 768 static bool desc_push_tail(struct printk_ringbuffer *rb, 769 unsigned long tail_id) 770 { 771 struct prb_desc_ring *desc_ring = &rb->desc_ring; 772 enum desc_state d_state; 773 struct prb_desc desc; 774 775 d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL); 776 777 switch (d_state) { 778 case desc_miss: 779 /* 780 * If the ID is exactly 1 wrap behind the expected, it is 781 * in the process of being reserved by another writer and 782 * must be considered reserved. 783 */ 784 if (DESC_ID(atomic_long_read(&desc.state_var)) == 785 DESC_ID_PREV_WRAP(desc_ring, tail_id)) { 786 return false; 787 } 788 789 /* 790 * The ID has changed. Another writer must have pushed the 791 * tail and recycled the descriptor already. Success is 792 * returned because the caller is only interested in the 793 * specified tail being pushed, which it was. 794 */ 795 return true; 796 case desc_reserved: 797 case desc_committed: 798 return false; 799 case desc_finalized: 800 desc_make_reusable(desc_ring, tail_id); 801 break; 802 case desc_reusable: 803 break; 804 } 805 806 /* 807 * Data blocks must be invalidated before their associated 808 * descriptor can be made available for recycling. Invalidating 809 * them later is not possible because there is no way to trust 810 * data blocks once their associated descriptor is gone. 811 */ 812 813 if (!data_push_tail(rb, desc.text_blk_lpos.next)) 814 return false; 815 816 /* 817 * Check the next descriptor after @tail_id before pushing the tail 818 * to it because the tail must always be in a finalized or reusable 819 * state. The implementation of prb_first_seq() relies on this. 820 * 821 * A successful read implies that the next descriptor is less than or 822 * equal to @head_id so there is no risk of pushing the tail past the 823 * head. 824 */ 825 d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc, 826 NULL, NULL); /* LMM(desc_push_tail:A) */ 827 828 if (d_state == desc_finalized || d_state == desc_reusable) { 829 /* 830 * Guarantee any descriptor states that have transitioned to 831 * reusable are stored before pushing the tail ID. This allows 832 * verifying the recycled descriptor state. A full memory 833 * barrier is needed since other CPUs may have made the 834 * descriptor states reusable. This pairs with desc_reserve:D. 835 */ 836 atomic_long_cmpxchg(&desc_ring->tail_id, tail_id, 837 DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */ 838 } else { 839 /* 840 * Guarantee the last state load from desc_read() is before 841 * reloading @tail_id in order to see a new tail ID in the 842 * case that the descriptor has been recycled. This pairs 843 * with desc_reserve:D. 844 * 845 * Memory barrier involvement: 846 * 847 * If desc_push_tail:A reads from desc_reserve:F, then 848 * desc_push_tail:D reads from desc_push_tail:B. 849 * 850 * Relies on: 851 * 852 * MB from desc_push_tail:B to desc_reserve:F 853 * matching 854 * RMB from desc_push_tail:A to desc_push_tail:D 855 * 856 * Note: desc_push_tail:B and desc_reserve:F can be different 857 * CPUs. However, the desc_reserve:F CPU (which performs 858 * the full memory barrier) must have previously seen 859 * desc_push_tail:B. 860 */ 861 smp_rmb(); /* LMM(desc_push_tail:C) */ 862 863 /* 864 * Re-check the tail ID. The descriptor following @tail_id is 865 * not in an allowed tail state. But if the tail has since 866 * been moved by another CPU, then it does not matter. 867 */ 868 if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */ 869 return false; 870 } 871 872 return true; 873 } 874 875 /* Reserve a new descriptor, invalidating the oldest if necessary. */ 876 static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out) 877 { 878 struct prb_desc_ring *desc_ring = &rb->desc_ring; 879 unsigned long prev_state_val; 880 unsigned long id_prev_wrap; 881 struct prb_desc *desc; 882 unsigned long head_id; 883 unsigned long id; 884 885 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */ 886 887 do { 888 id = DESC_ID(head_id + 1); 889 id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id); 890 891 /* 892 * Guarantee the head ID is read before reading the tail ID. 893 * Since the tail ID is updated before the head ID, this 894 * guarantees that @id_prev_wrap is never ahead of the tail 895 * ID. This pairs with desc_reserve:D. 896 * 897 * Memory barrier involvement: 898 * 899 * If desc_reserve:A reads from desc_reserve:D, then 900 * desc_reserve:C reads from desc_push_tail:B. 901 * 902 * Relies on: 903 * 904 * MB from desc_push_tail:B to desc_reserve:D 905 * matching 906 * RMB from desc_reserve:A to desc_reserve:C 907 * 908 * Note: desc_push_tail:B and desc_reserve:D can be different 909 * CPUs. However, the desc_reserve:D CPU (which performs 910 * the full memory barrier) must have previously seen 911 * desc_push_tail:B. 912 */ 913 smp_rmb(); /* LMM(desc_reserve:B) */ 914 915 if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id 916 )) { /* LMM(desc_reserve:C) */ 917 /* 918 * Make space for the new descriptor by 919 * advancing the tail. 920 */ 921 if (!desc_push_tail(rb, id_prev_wrap)) 922 return false; 923 } 924 925 /* 926 * 1. Guarantee the tail ID is read before validating the 927 * recycled descriptor state. A read memory barrier is 928 * sufficient for this. This pairs with desc_push_tail:B. 929 * 930 * Memory barrier involvement: 931 * 932 * If desc_reserve:C reads from desc_push_tail:B, then 933 * desc_reserve:E reads from desc_make_reusable:A. 934 * 935 * Relies on: 936 * 937 * MB from desc_make_reusable:A to desc_push_tail:B 938 * matching 939 * RMB from desc_reserve:C to desc_reserve:E 940 * 941 * Note: desc_make_reusable:A and desc_push_tail:B can be 942 * different CPUs. However, the desc_push_tail:B CPU 943 * (which performs the full memory barrier) must have 944 * previously seen desc_make_reusable:A. 945 * 946 * 2. Guarantee the tail ID is stored before storing the head 947 * ID. This pairs with desc_reserve:B. 948 * 949 * 3. Guarantee any data ring tail changes are stored before 950 * recycling the descriptor. Data ring tail changes can 951 * happen via desc_push_tail()->data_push_tail(). A full 952 * memory barrier is needed since another CPU may have 953 * pushed the data ring tails. This pairs with 954 * data_push_tail:B. 955 * 956 * 4. Guarantee a new tail ID is stored before recycling the 957 * descriptor. A full memory barrier is needed since 958 * another CPU may have pushed the tail ID. This pairs 959 * with desc_push_tail:C and this also pairs with 960 * prb_first_seq:C. 961 * 962 * 5. Guarantee the head ID is stored before trying to 963 * finalize the previous descriptor. This pairs with 964 * _prb_commit:B. 965 */ 966 } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id, 967 id)); /* LMM(desc_reserve:D) */ 968 969 desc = to_desc(desc_ring, id); 970 971 /* 972 * If the descriptor has been recycled, verify the old state val. 973 * See "ABA Issues" about why this verification is performed. 974 */ 975 prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */ 976 if (prev_state_val && 977 get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) { 978 WARN_ON_ONCE(1); 979 return false; 980 } 981 982 /* 983 * Assign the descriptor a new ID and set its state to reserved. 984 * See "ABA Issues" about why cmpxchg() instead of set() is used. 985 * 986 * Guarantee the new descriptor ID and state is stored before making 987 * any other changes. A write memory barrier is sufficient for this. 988 * This pairs with desc_read:D. 989 */ 990 if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val, 991 DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */ 992 WARN_ON_ONCE(1); 993 return false; 994 } 995 996 /* Now data in @desc can be modified: LMM(desc_reserve:G) */ 997 998 *id_out = id; 999 return true; 1000 } 1001 1002 /* Determine the end of a data block. */ 1003 static unsigned long get_next_lpos(struct prb_data_ring *data_ring, 1004 unsigned long lpos, unsigned int size) 1005 { 1006 unsigned long begin_lpos; 1007 unsigned long next_lpos; 1008 1009 begin_lpos = lpos; 1010 next_lpos = lpos + size; 1011 1012 /* First check if the data block does not wrap. */ 1013 if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos)) 1014 return next_lpos; 1015 1016 /* Wrapping data blocks store their data at the beginning. */ 1017 return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size); 1018 } 1019 1020 /* 1021 * Allocate a new data block, invalidating the oldest data block(s) 1022 * if necessary. This function also associates the data block with 1023 * a specified descriptor. 1024 */ 1025 static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size, 1026 struct prb_data_blk_lpos *blk_lpos, unsigned long id) 1027 { 1028 struct prb_data_ring *data_ring = &rb->text_data_ring; 1029 struct prb_data_block *blk; 1030 unsigned long begin_lpos; 1031 unsigned long next_lpos; 1032 1033 if (size == 0) { 1034 /* 1035 * Data blocks are not created for empty lines. Instead, the 1036 * reader will recognize these special lpos values and handle 1037 * it appropriately. 1038 */ 1039 blk_lpos->begin = EMPTY_LINE_LPOS; 1040 blk_lpos->next = EMPTY_LINE_LPOS; 1041 return NULL; 1042 } 1043 1044 size = to_blk_size(size); 1045 1046 begin_lpos = atomic_long_read(&data_ring->head_lpos); 1047 1048 do { 1049 next_lpos = get_next_lpos(data_ring, begin_lpos, size); 1050 1051 /* 1052 * data_check_size() prevents data block allocation that could 1053 * cause illegal ringbuffer states. But double check that the 1054 * used space will not be bigger than the ring buffer. Wrapped 1055 * messages need to reserve more space, see get_next_lpos(). 1056 * 1057 * Specify a data-less block when the check or the allocation 1058 * fails. 1059 */ 1060 if (WARN_ON_ONCE(next_lpos - begin_lpos > DATA_SIZE(data_ring)) || 1061 !data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) { 1062 blk_lpos->begin = FAILED_LPOS; 1063 blk_lpos->next = FAILED_LPOS; 1064 return NULL; 1065 } 1066 1067 /* 1068 * 1. Guarantee any descriptor states that have transitioned 1069 * to reusable are stored before modifying the newly 1070 * allocated data area. A full memory barrier is needed 1071 * since other CPUs may have made the descriptor states 1072 * reusable. See data_push_tail:A about why the reusable 1073 * states are visible. This pairs with desc_read:D. 1074 * 1075 * 2. Guarantee any updated tail lpos is stored before 1076 * modifying the newly allocated data area. Another CPU may 1077 * be in data_make_reusable() and is reading a block ID 1078 * from this area. data_make_reusable() can handle reading 1079 * a garbage block ID value, but then it must be able to 1080 * load a new tail lpos. A full memory barrier is needed 1081 * since other CPUs may have updated the tail lpos. This 1082 * pairs with data_push_tail:B. 1083 */ 1084 } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos, 1085 next_lpos)); /* LMM(data_alloc:A) */ 1086 1087 blk = to_block(data_ring, begin_lpos); 1088 blk->id = id; /* LMM(data_alloc:B) */ 1089 1090 if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) { 1091 /* Wrapping data blocks store their data at the beginning. */ 1092 blk = to_block(data_ring, 0); 1093 1094 /* 1095 * Store the ID on the wrapped block for consistency. 1096 * The printk_ringbuffer does not actually use it. 1097 */ 1098 blk->id = id; 1099 } 1100 1101 blk_lpos->begin = begin_lpos; 1102 blk_lpos->next = next_lpos; 1103 1104 return &blk->data[0]; 1105 } 1106 1107 /* 1108 * Try to resize an existing data block associated with the descriptor 1109 * specified by @id. If the resized data block should become wrapped, it 1110 * copies the old data to the new data block. If @size yields a data block 1111 * with the same or less size, the data block is left as is. 1112 * 1113 * Fail if this is not the last allocated data block or if there is not 1114 * enough space or it is not possible make enough space. 1115 * 1116 * Return a pointer to the beginning of the entire data buffer or NULL on 1117 * failure. 1118 */ 1119 static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size, 1120 struct prb_data_blk_lpos *blk_lpos, unsigned long id) 1121 { 1122 struct prb_data_ring *data_ring = &rb->text_data_ring; 1123 struct prb_data_block *blk; 1124 unsigned long head_lpos; 1125 unsigned long next_lpos; 1126 bool wrapped; 1127 1128 /* Reallocation only works if @blk_lpos is the newest data block. */ 1129 head_lpos = atomic_long_read(&data_ring->head_lpos); 1130 if (head_lpos != blk_lpos->next) 1131 return NULL; 1132 1133 /* Keep track if @blk_lpos was a wrapping data block. */ 1134 wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next)); 1135 1136 size = to_blk_size(size); 1137 1138 next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size); 1139 1140 /* If the data block does not increase, there is nothing to do. */ 1141 if (head_lpos - next_lpos < DATA_SIZE(data_ring)) { 1142 if (wrapped) 1143 blk = to_block(data_ring, 0); 1144 else 1145 blk = to_block(data_ring, blk_lpos->begin); 1146 return &blk->data[0]; 1147 } 1148 1149 /* 1150 * data_check_size() prevents data block reallocation that could 1151 * cause illegal ringbuffer states. But double check that the 1152 * new used space will not be bigger than the ring buffer. Wrapped 1153 * messages need to reserve more space, see get_next_lpos(). 1154 * 1155 * Specify failure when the check or the allocation fails. 1156 */ 1157 if (WARN_ON_ONCE(next_lpos - blk_lpos->begin > DATA_SIZE(data_ring)) || 1158 !data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) { 1159 return NULL; 1160 } 1161 1162 /* The memory barrier involvement is the same as data_alloc:A. */ 1163 if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos, 1164 next_lpos)) { /* LMM(data_realloc:A) */ 1165 return NULL; 1166 } 1167 1168 blk = to_block(data_ring, blk_lpos->begin); 1169 1170 if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) { 1171 struct prb_data_block *old_blk = blk; 1172 1173 /* Wrapping data blocks store their data at the beginning. */ 1174 blk = to_block(data_ring, 0); 1175 1176 /* 1177 * Store the ID on the wrapped block for consistency. 1178 * The printk_ringbuffer does not actually use it. 1179 */ 1180 blk->id = id; 1181 1182 if (!wrapped) { 1183 /* 1184 * Since the allocated space is now in the newly 1185 * created wrapping data block, copy the content 1186 * from the old data block. 1187 */ 1188 memcpy(&blk->data[0], &old_blk->data[0], 1189 (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id)); 1190 } 1191 } 1192 1193 blk_lpos->next = next_lpos; 1194 1195 return &blk->data[0]; 1196 } 1197 1198 /* Return the number of bytes used by a data block. */ 1199 static unsigned int space_used(struct prb_data_ring *data_ring, 1200 struct prb_data_blk_lpos *blk_lpos) 1201 { 1202 /* Data-less blocks take no space. */ 1203 if (BLK_DATALESS(blk_lpos)) 1204 return 0; 1205 1206 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) { 1207 /* Data block does not wrap. */ 1208 return (DATA_INDEX(data_ring, blk_lpos->next) - 1209 DATA_INDEX(data_ring, blk_lpos->begin)); 1210 } 1211 1212 /* 1213 * For wrapping data blocks, the trailing (wasted) space is 1214 * also counted. 1215 */ 1216 return (DATA_INDEX(data_ring, blk_lpos->next) + 1217 DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin)); 1218 } 1219 1220 /* 1221 * Given @blk_lpos, return a pointer to the writer data from the data block 1222 * and calculate the size of the data part. A NULL pointer is returned if 1223 * @blk_lpos specifies values that could never be legal. 1224 * 1225 * This function (used by readers) performs strict validation on the lpos 1226 * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is 1227 * triggered if an internal error is detected. 1228 */ 1229 static const char *get_data(struct prb_data_ring *data_ring, 1230 struct prb_data_blk_lpos *blk_lpos, 1231 unsigned int *data_size) 1232 { 1233 struct prb_data_block *db; 1234 1235 /* Data-less data block description. */ 1236 if (BLK_DATALESS(blk_lpos)) { 1237 /* 1238 * Records that are just empty lines are also valid, even 1239 * though they do not have a data block. For such records 1240 * explicitly return empty string data to signify success. 1241 */ 1242 if (blk_lpos->begin == EMPTY_LINE_LPOS && 1243 blk_lpos->next == EMPTY_LINE_LPOS) { 1244 *data_size = 0; 1245 return ""; 1246 } 1247 1248 /* Data lost, invalid, or otherwise unavailable. */ 1249 return NULL; 1250 } 1251 1252 /* Regular data block: @begin less than @next and in same wrap. */ 1253 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) && 1254 blk_lpos->begin < blk_lpos->next) { 1255 db = to_block(data_ring, blk_lpos->begin); 1256 *data_size = blk_lpos->next - blk_lpos->begin; 1257 1258 /* Wrapping data block: @begin is one wrap behind @next. */ 1259 } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) == 1260 DATA_WRAPS(data_ring, blk_lpos->next)) { 1261 db = to_block(data_ring, 0); 1262 *data_size = DATA_INDEX(data_ring, blk_lpos->next); 1263 1264 /* Illegal block description. */ 1265 } else { 1266 WARN_ON_ONCE(1); 1267 return NULL; 1268 } 1269 1270 /* A valid data block will always be aligned to the ID size. */ 1271 if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) || 1272 WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) { 1273 return NULL; 1274 } 1275 1276 /* A valid data block will always have at least an ID. */ 1277 if (WARN_ON_ONCE(*data_size < sizeof(db->id))) 1278 return NULL; 1279 1280 /* Subtract block ID space from size to reflect data size. */ 1281 *data_size -= sizeof(db->id); 1282 1283 return &db->data[0]; 1284 } 1285 1286 /* 1287 * Attempt to transition the newest descriptor from committed back to reserved 1288 * so that the record can be modified by a writer again. This is only possible 1289 * if the descriptor is not yet finalized and the provided @caller_id matches. 1290 */ 1291 static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring, 1292 u32 caller_id, unsigned long *id_out) 1293 { 1294 unsigned long prev_state_val; 1295 enum desc_state d_state; 1296 struct prb_desc desc; 1297 struct prb_desc *d; 1298 unsigned long id; 1299 u32 cid; 1300 1301 id = atomic_long_read(&desc_ring->head_id); 1302 1303 /* 1304 * To reduce unnecessarily reopening, first check if the descriptor 1305 * state and caller ID are correct. 1306 */ 1307 d_state = desc_read(desc_ring, id, &desc, NULL, &cid); 1308 if (d_state != desc_committed || cid != caller_id) 1309 return NULL; 1310 1311 d = to_desc(desc_ring, id); 1312 1313 prev_state_val = DESC_SV(id, desc_committed); 1314 1315 /* 1316 * Guarantee the reserved state is stored before reading any 1317 * record data. A full memory barrier is needed because @state_var 1318 * modification is followed by reading. This pairs with _prb_commit:B. 1319 * 1320 * Memory barrier involvement: 1321 * 1322 * If desc_reopen_last:A reads from _prb_commit:B, then 1323 * prb_reserve_in_last:A reads from _prb_commit:A. 1324 * 1325 * Relies on: 1326 * 1327 * WMB from _prb_commit:A to _prb_commit:B 1328 * matching 1329 * MB If desc_reopen_last:A to prb_reserve_in_last:A 1330 */ 1331 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val, 1332 DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */ 1333 return NULL; 1334 } 1335 1336 *id_out = id; 1337 return d; 1338 } 1339 1340 /** 1341 * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer 1342 * used by the newest record. 1343 * 1344 * @e: The entry structure to setup. 1345 * @rb: The ringbuffer to re-reserve and extend data in. 1346 * @r: The record structure to allocate buffers for. 1347 * @caller_id: The caller ID of the caller (reserving writer). 1348 * @max_size: Fail if the extended size would be greater than this. 1349 * 1350 * This is the public function available to writers to re-reserve and extend 1351 * data. 1352 * 1353 * The writer specifies the text size to extend (not the new total size) by 1354 * setting the @text_buf_size field of @r. To ensure proper initialization 1355 * of @r, prb_rec_init_wr() should be used. 1356 * 1357 * This function will fail if @caller_id does not match the caller ID of the 1358 * newest record. In that case the caller must reserve new data using 1359 * prb_reserve(). 1360 * 1361 * Context: Any context. Disables local interrupts on success. 1362 * Return: true if text data could be extended, otherwise false. 1363 * 1364 * On success: 1365 * 1366 * - @r->text_buf points to the beginning of the entire text buffer. 1367 * 1368 * - @r->text_buf_size is set to the new total size of the buffer. 1369 * 1370 * - @r->info is not touched so that @r->info->text_len could be used 1371 * to append the text. 1372 * 1373 * - prb_record_text_space() can be used on @e to query the new 1374 * actually used space. 1375 * 1376 * Important: All @r->info fields will already be set with the current values 1377 * for the record. I.e. @r->info->text_len will be less than 1378 * @text_buf_size. Writers can use @r->info->text_len to know 1379 * where concatenation begins and writers should update 1380 * @r->info->text_len after concatenating. 1381 */ 1382 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, 1383 struct printk_record *r, u32 caller_id, unsigned int max_size) 1384 { 1385 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1386 struct printk_info *info; 1387 unsigned int data_size; 1388 struct prb_desc *d; 1389 unsigned long id; 1390 1391 local_irq_save(e->irqflags); 1392 1393 /* Transition the newest descriptor back to the reserved state. */ 1394 d = desc_reopen_last(desc_ring, caller_id, &id); 1395 if (!d) { 1396 local_irq_restore(e->irqflags); 1397 goto fail_reopen; 1398 } 1399 1400 /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */ 1401 1402 info = to_info(desc_ring, id); 1403 1404 /* 1405 * Set the @e fields here so that prb_commit() can be used if 1406 * anything fails from now on. 1407 */ 1408 e->rb = rb; 1409 e->id = id; 1410 1411 /* 1412 * desc_reopen_last() checked the caller_id, but there was no 1413 * exclusive access at that point. The descriptor may have 1414 * changed since then. 1415 */ 1416 if (caller_id != info->caller_id) 1417 goto fail; 1418 1419 if (BLK_DATALESS(&d->text_blk_lpos)) { 1420 if (WARN_ON_ONCE(info->text_len != 0)) { 1421 pr_warn_once("wrong text_len value (%hu, expecting 0)\n", 1422 info->text_len); 1423 info->text_len = 0; 1424 } 1425 1426 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1427 goto fail; 1428 1429 if (r->text_buf_size > max_size) 1430 goto fail; 1431 1432 r->text_buf = data_alloc(rb, r->text_buf_size, 1433 &d->text_blk_lpos, id); 1434 } else { 1435 if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size)) 1436 goto fail; 1437 1438 /* 1439 * Increase the buffer size to include the original size. If 1440 * the meta data (@text_len) is not sane, use the full data 1441 * block size. 1442 */ 1443 if (WARN_ON_ONCE(info->text_len > data_size)) { 1444 pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n", 1445 info->text_len, data_size); 1446 info->text_len = data_size; 1447 } 1448 r->text_buf_size += info->text_len; 1449 1450 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1451 goto fail; 1452 1453 if (r->text_buf_size > max_size) 1454 goto fail; 1455 1456 r->text_buf = data_realloc(rb, r->text_buf_size, 1457 &d->text_blk_lpos, id); 1458 } 1459 if (r->text_buf_size && !r->text_buf) 1460 goto fail; 1461 1462 r->info = info; 1463 1464 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos); 1465 1466 return true; 1467 fail: 1468 prb_commit(e); 1469 /* prb_commit() re-enabled interrupts. */ 1470 fail_reopen: 1471 /* Make it clear to the caller that the re-reserve failed. */ 1472 memset(r, 0, sizeof(*r)); 1473 return false; 1474 } 1475 1476 /* 1477 * @last_finalized_seq value guarantees that all records up to and including 1478 * this sequence number are finalized and can be read. The only exception are 1479 * too old records which have already been overwritten. 1480 * 1481 * It is also guaranteed that @last_finalized_seq only increases. 1482 * 1483 * Be aware that finalized records following non-finalized records are not 1484 * reported because they are not yet available to the reader. For example, 1485 * a new record stored via printk() will not be available to a printer if 1486 * it follows a record that has not been finalized yet. However, once that 1487 * non-finalized record becomes finalized, @last_finalized_seq will be 1488 * appropriately updated and the full set of finalized records will be 1489 * available to the printer. And since each printk() caller will either 1490 * directly print or trigger deferred printing of all available unprinted 1491 * records, all printk() messages will get printed. 1492 */ 1493 static u64 desc_last_finalized_seq(struct printk_ringbuffer *rb) 1494 { 1495 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1496 unsigned long ulseq; 1497 1498 /* 1499 * Guarantee the sequence number is loaded before loading the 1500 * associated record in order to guarantee that the record can be 1501 * seen by this CPU. This pairs with desc_update_last_finalized:A. 1502 */ 1503 ulseq = atomic_long_read_acquire(&desc_ring->last_finalized_seq 1504 ); /* LMM(desc_last_finalized_seq:A) */ 1505 1506 return __ulseq_to_u64seq(rb, ulseq); 1507 } 1508 1509 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq, 1510 struct printk_record *r, unsigned int *line_count); 1511 1512 /* 1513 * Check if there are records directly following @last_finalized_seq that are 1514 * finalized. If so, update @last_finalized_seq to the latest of these 1515 * records. It is not allowed to skip over records that are not yet finalized. 1516 */ 1517 static void desc_update_last_finalized(struct printk_ringbuffer *rb) 1518 { 1519 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1520 u64 old_seq = desc_last_finalized_seq(rb); 1521 unsigned long oldval; 1522 unsigned long newval; 1523 u64 finalized_seq; 1524 u64 try_seq; 1525 1526 try_again: 1527 finalized_seq = old_seq; 1528 try_seq = finalized_seq + 1; 1529 1530 /* Try to find later finalized records. */ 1531 while (_prb_read_valid(rb, &try_seq, NULL, NULL)) { 1532 finalized_seq = try_seq; 1533 try_seq++; 1534 } 1535 1536 /* No update needed if no later finalized record was found. */ 1537 if (finalized_seq == old_seq) 1538 return; 1539 1540 oldval = __u64seq_to_ulseq(old_seq); 1541 newval = __u64seq_to_ulseq(finalized_seq); 1542 1543 /* 1544 * Set the sequence number of a later finalized record that has been 1545 * seen. 1546 * 1547 * Guarantee the record data is visible to other CPUs before storing 1548 * its sequence number. This pairs with desc_last_finalized_seq:A. 1549 * 1550 * Memory barrier involvement: 1551 * 1552 * If desc_last_finalized_seq:A reads from 1553 * desc_update_last_finalized:A, then desc_read:A reads from 1554 * _prb_commit:B. 1555 * 1556 * Relies on: 1557 * 1558 * RELEASE from _prb_commit:B to desc_update_last_finalized:A 1559 * matching 1560 * ACQUIRE from desc_last_finalized_seq:A to desc_read:A 1561 * 1562 * Note: _prb_commit:B and desc_update_last_finalized:A can be 1563 * different CPUs. However, the desc_update_last_finalized:A 1564 * CPU (which performs the release) must have previously seen 1565 * _prb_commit:B. 1566 */ 1567 if (!atomic_long_try_cmpxchg_release(&desc_ring->last_finalized_seq, 1568 &oldval, newval)) { /* LMM(desc_update_last_finalized:A) */ 1569 old_seq = __ulseq_to_u64seq(rb, oldval); 1570 goto try_again; 1571 } 1572 } 1573 1574 /* 1575 * Attempt to finalize a specified descriptor. If this fails, the descriptor 1576 * is either already final or it will finalize itself when the writer commits. 1577 */ 1578 static void desc_make_final(struct printk_ringbuffer *rb, unsigned long id) 1579 { 1580 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1581 unsigned long prev_state_val = DESC_SV(id, desc_committed); 1582 struct prb_desc *d = to_desc(desc_ring, id); 1583 1584 if (atomic_long_try_cmpxchg_relaxed(&d->state_var, &prev_state_val, 1585 DESC_SV(id, desc_finalized))) { /* LMM(desc_make_final:A) */ 1586 desc_update_last_finalized(rb); 1587 } 1588 } 1589 1590 /** 1591 * prb_reserve() - Reserve space in the ringbuffer. 1592 * 1593 * @e: The entry structure to setup. 1594 * @rb: The ringbuffer to reserve data in. 1595 * @r: The record structure to allocate buffers for. 1596 * 1597 * This is the public function available to writers to reserve data. 1598 * 1599 * The writer specifies the text size to reserve by setting the 1600 * @text_buf_size field of @r. To ensure proper initialization of @r, 1601 * prb_rec_init_wr() should be used. 1602 * 1603 * Context: Any context. Disables local interrupts on success. 1604 * Return: true if at least text data could be allocated, otherwise false. 1605 * 1606 * On success, the fields @info and @text_buf of @r will be set by this 1607 * function and should be filled in by the writer before committing. Also 1608 * on success, prb_record_text_space() can be used on @e to query the actual 1609 * space used for the text data block. 1610 * 1611 * Important: @info->text_len needs to be set correctly by the writer in 1612 * order for data to be readable and/or extended. Its value 1613 * is initialized to 0. 1614 */ 1615 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, 1616 struct printk_record *r) 1617 { 1618 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1619 struct printk_info *info; 1620 struct prb_desc *d; 1621 unsigned long id; 1622 u64 seq; 1623 1624 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1625 goto fail; 1626 1627 /* 1628 * Descriptors in the reserved state act as blockers to all further 1629 * reservations once the desc_ring has fully wrapped. Disable 1630 * interrupts during the reserve/commit window in order to minimize 1631 * the likelihood of this happening. 1632 */ 1633 local_irq_save(e->irqflags); 1634 1635 if (!desc_reserve(rb, &id)) { 1636 /* Descriptor reservation failures are tracked. */ 1637 atomic_long_inc(&rb->fail); 1638 local_irq_restore(e->irqflags); 1639 goto fail; 1640 } 1641 1642 d = to_desc(desc_ring, id); 1643 info = to_info(desc_ring, id); 1644 1645 /* 1646 * All @info fields (except @seq) are cleared and must be filled in 1647 * by the writer. Save @seq before clearing because it is used to 1648 * determine the new sequence number. 1649 */ 1650 seq = info->seq; 1651 memset(info, 0, sizeof(*info)); 1652 1653 /* 1654 * Set the @e fields here so that prb_commit() can be used if 1655 * text data allocation fails. 1656 */ 1657 e->rb = rb; 1658 e->id = id; 1659 1660 /* 1661 * Initialize the sequence number if it has "never been set". 1662 * Otherwise just increment it by a full wrap. 1663 * 1664 * @seq is considered "never been set" if it has a value of 0, 1665 * _except_ for @infos[0], which was specially setup by the ringbuffer 1666 * initializer and therefore is always considered as set. 1667 * 1668 * See the "Bootstrap" comment block in printk_ringbuffer.h for 1669 * details about how the initializer bootstraps the descriptors. 1670 */ 1671 if (seq == 0 && DESC_INDEX(desc_ring, id) != 0) 1672 info->seq = DESC_INDEX(desc_ring, id); 1673 else 1674 info->seq = seq + DESCS_COUNT(desc_ring); 1675 1676 /* 1677 * New data is about to be reserved. Once that happens, previous 1678 * descriptors are no longer able to be extended. Finalize the 1679 * previous descriptor now so that it can be made available to 1680 * readers. (For seq==0 there is no previous descriptor.) 1681 */ 1682 if (info->seq > 0) 1683 desc_make_final(rb, DESC_ID(id - 1)); 1684 1685 r->text_buf = data_alloc(rb, r->text_buf_size, &d->text_blk_lpos, id); 1686 /* If text data allocation fails, a data-less record is committed. */ 1687 if (r->text_buf_size && !r->text_buf) { 1688 prb_commit(e); 1689 /* prb_commit() re-enabled interrupts. */ 1690 goto fail; 1691 } 1692 1693 r->info = info; 1694 1695 /* Record full text space used by record. */ 1696 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos); 1697 1698 return true; 1699 fail: 1700 /* Make it clear to the caller that the reserve failed. */ 1701 memset(r, 0, sizeof(*r)); 1702 return false; 1703 } 1704 EXPORT_SYMBOL_IF_KUNIT(prb_reserve); 1705 1706 /* Commit the data (possibly finalizing it) and restore interrupts. */ 1707 static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val) 1708 { 1709 struct prb_desc_ring *desc_ring = &e->rb->desc_ring; 1710 struct prb_desc *d = to_desc(desc_ring, e->id); 1711 unsigned long prev_state_val = DESC_SV(e->id, desc_reserved); 1712 1713 /* Now the writer has finished all writing: LMM(_prb_commit:A) */ 1714 1715 /* 1716 * Set the descriptor as committed. See "ABA Issues" about why 1717 * cmpxchg() instead of set() is used. 1718 * 1719 * 1 Guarantee all record data is stored before the descriptor state 1720 * is stored as committed. A write memory barrier is sufficient 1721 * for this. This pairs with desc_read:B and desc_reopen_last:A. 1722 * 1723 * 2. Guarantee the descriptor state is stored as committed before 1724 * re-checking the head ID in order to possibly finalize this 1725 * descriptor. This pairs with desc_reserve:D. 1726 * 1727 * Memory barrier involvement: 1728 * 1729 * If prb_commit:A reads from desc_reserve:D, then 1730 * desc_make_final:A reads from _prb_commit:B. 1731 * 1732 * Relies on: 1733 * 1734 * MB _prb_commit:B to prb_commit:A 1735 * matching 1736 * MB desc_reserve:D to desc_make_final:A 1737 */ 1738 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val, 1739 DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */ 1740 WARN_ON_ONCE(1); 1741 } 1742 1743 /* Restore interrupts, the reserve/commit window is finished. */ 1744 local_irq_restore(e->irqflags); 1745 } 1746 1747 /** 1748 * prb_commit() - Commit (previously reserved) data to the ringbuffer. 1749 * 1750 * @e: The entry containing the reserved data information. 1751 * 1752 * This is the public function available to writers to commit data. 1753 * 1754 * Note that the data is not yet available to readers until it is finalized. 1755 * Finalizing happens automatically when space for the next record is 1756 * reserved. 1757 * 1758 * See prb_final_commit() for a version of this function that finalizes 1759 * immediately. 1760 * 1761 * Context: Any context. Enables local interrupts. 1762 */ 1763 void prb_commit(struct prb_reserved_entry *e) 1764 { 1765 struct prb_desc_ring *desc_ring = &e->rb->desc_ring; 1766 unsigned long head_id; 1767 1768 _prb_commit(e, desc_committed); 1769 1770 /* 1771 * If this descriptor is no longer the head (i.e. a new record has 1772 * been allocated), extending the data for this record is no longer 1773 * allowed and therefore it must be finalized. 1774 */ 1775 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */ 1776 if (head_id != e->id) 1777 desc_make_final(e->rb, e->id); 1778 } 1779 EXPORT_SYMBOL_IF_KUNIT(prb_commit); 1780 1781 /** 1782 * prb_final_commit() - Commit and finalize (previously reserved) data to 1783 * the ringbuffer. 1784 * 1785 * @e: The entry containing the reserved data information. 1786 * 1787 * This is the public function available to writers to commit+finalize data. 1788 * 1789 * By finalizing, the data is made immediately available to readers. 1790 * 1791 * This function should only be used if there are no intentions of extending 1792 * this data using prb_reserve_in_last(). 1793 * 1794 * Context: Any context. Enables local interrupts. 1795 */ 1796 void prb_final_commit(struct prb_reserved_entry *e) 1797 { 1798 _prb_commit(e, desc_finalized); 1799 1800 desc_update_last_finalized(e->rb); 1801 } 1802 1803 /* 1804 * Count the number of lines in provided text. All text has at least 1 line 1805 * (even if @text_size is 0). Each '\n' processed is counted as an additional 1806 * line. 1807 */ 1808 static unsigned int count_lines(const char *text, unsigned int text_size) 1809 { 1810 unsigned int next_size = text_size; 1811 unsigned int line_count = 1; 1812 const char *next = text; 1813 1814 while (next_size) { 1815 next = memchr(next, '\n', next_size); 1816 if (!next) 1817 break; 1818 line_count++; 1819 next++; 1820 next_size = text_size - (next - text); 1821 } 1822 1823 return line_count; 1824 } 1825 1826 /* 1827 * Given @blk_lpos, copy an expected @len of data into the provided buffer. 1828 * If @line_count is provided, count the number of lines in the data. 1829 * 1830 * This function (used by readers) performs strict validation on the data 1831 * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is 1832 * triggered if an internal error is detected. 1833 */ 1834 static bool copy_data(struct prb_data_ring *data_ring, 1835 struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf, 1836 unsigned int buf_size, unsigned int *line_count) 1837 { 1838 unsigned int data_size; 1839 const char *data; 1840 1841 /* Caller might not want any data. */ 1842 if ((!buf || !buf_size) && !line_count) 1843 return true; 1844 1845 data = get_data(data_ring, blk_lpos, &data_size); 1846 if (!data) 1847 return false; 1848 1849 /* 1850 * Actual cannot be less than expected. It can be more than expected 1851 * because of the trailing alignment padding. 1852 * 1853 * Note that invalid @len values can occur because the caller loads 1854 * the value during an allowed data race. 1855 */ 1856 if (data_size < (unsigned int)len) 1857 return false; 1858 1859 /* Caller interested in the line count? */ 1860 if (line_count) 1861 *line_count = count_lines(data, len); 1862 1863 /* Caller interested in the data content? */ 1864 if (!buf || !buf_size) 1865 return true; 1866 1867 data_size = min_t(unsigned int, buf_size, len); 1868 1869 memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */ 1870 return true; 1871 } 1872 1873 /* 1874 * This is an extended version of desc_read(). It gets a copy of a specified 1875 * descriptor. However, it also verifies that the record is finalized and has 1876 * the sequence number @seq. On success, 0 is returned. 1877 * 1878 * Error return values: 1879 * -EINVAL: A finalized record with sequence number @seq does not exist. 1880 * -ENOENT: A finalized record with sequence number @seq exists, but its data 1881 * is not available. This is a valid record, so readers should 1882 * continue with the next record. 1883 */ 1884 static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring, 1885 unsigned long id, u64 seq, 1886 struct prb_desc *desc_out) 1887 { 1888 struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos; 1889 enum desc_state d_state; 1890 u64 s; 1891 1892 d_state = desc_read(desc_ring, id, desc_out, &s, NULL); 1893 1894 /* 1895 * An unexpected @id (desc_miss) or @seq mismatch means the record 1896 * does not exist. A descriptor in the reserved or committed state 1897 * means the record does not yet exist for the reader. 1898 */ 1899 if (d_state == desc_miss || 1900 d_state == desc_reserved || 1901 d_state == desc_committed || 1902 s != seq) { 1903 return -EINVAL; 1904 } 1905 1906 /* 1907 * A descriptor in the reusable state may no longer have its data 1908 * available; report it as existing but with lost data. Or the record 1909 * may actually be a record with lost data. 1910 */ 1911 if (d_state == desc_reusable || 1912 (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) { 1913 return -ENOENT; 1914 } 1915 1916 return 0; 1917 } 1918 1919 /* 1920 * Copy the ringbuffer data from the record with @seq to the provided 1921 * @r buffer. On success, 0 is returned. 1922 * 1923 * See desc_read_finalized_seq() for error return values. 1924 */ 1925 static int prb_read(struct printk_ringbuffer *rb, u64 seq, 1926 struct printk_record *r, unsigned int *line_count) 1927 { 1928 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1929 struct printk_info *info = to_info(desc_ring, seq); 1930 struct prb_desc *rdesc = to_desc(desc_ring, seq); 1931 atomic_long_t *state_var = &rdesc->state_var; 1932 struct prb_desc desc; 1933 unsigned long id; 1934 int err; 1935 1936 /* Extract the ID, used to specify the descriptor to read. */ 1937 id = DESC_ID(atomic_long_read(state_var)); 1938 1939 /* Get a local copy of the correct descriptor (if available). */ 1940 err = desc_read_finalized_seq(desc_ring, id, seq, &desc); 1941 1942 /* 1943 * If @r is NULL, the caller is only interested in the availability 1944 * of the record. 1945 */ 1946 if (err || !r) 1947 return err; 1948 1949 /* If requested, copy meta data. */ 1950 if (r->info) 1951 memcpy(r->info, info, sizeof(*(r->info))); 1952 1953 /* Copy text data. If it fails, this is a data-less record. */ 1954 if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len, 1955 r->text_buf, r->text_buf_size, line_count)) { 1956 return -ENOENT; 1957 } 1958 1959 /* Ensure the record is still finalized and has the same @seq. */ 1960 return desc_read_finalized_seq(desc_ring, id, seq, &desc); 1961 } 1962 1963 /* Get the sequence number of the tail descriptor. */ 1964 u64 prb_first_seq(struct printk_ringbuffer *rb) 1965 { 1966 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1967 enum desc_state d_state; 1968 struct prb_desc desc; 1969 unsigned long id; 1970 u64 seq; 1971 1972 for (;;) { 1973 id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */ 1974 1975 d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */ 1976 1977 /* 1978 * This loop will not be infinite because the tail is 1979 * _always_ in the finalized or reusable state. 1980 */ 1981 if (d_state == desc_finalized || d_state == desc_reusable) 1982 break; 1983 1984 /* 1985 * Guarantee the last state load from desc_read() is before 1986 * reloading @tail_id in order to see a new tail in the case 1987 * that the descriptor has been recycled. This pairs with 1988 * desc_reserve:D. 1989 * 1990 * Memory barrier involvement: 1991 * 1992 * If prb_first_seq:B reads from desc_reserve:F, then 1993 * prb_first_seq:A reads from desc_push_tail:B. 1994 * 1995 * Relies on: 1996 * 1997 * MB from desc_push_tail:B to desc_reserve:F 1998 * matching 1999 * RMB prb_first_seq:B to prb_first_seq:A 2000 */ 2001 smp_rmb(); /* LMM(prb_first_seq:C) */ 2002 } 2003 2004 return seq; 2005 } 2006 2007 /** 2008 * prb_next_reserve_seq() - Get the sequence number after the most recently 2009 * reserved record. 2010 * 2011 * @rb: The ringbuffer to get the sequence number from. 2012 * 2013 * This is the public function available to readers to see what sequence 2014 * number will be assigned to the next reserved record. 2015 * 2016 * Note that depending on the situation, this value can be equal to or 2017 * higher than the sequence number returned by prb_next_seq(). 2018 * 2019 * Context: Any context. 2020 * Return: The sequence number that will be assigned to the next record 2021 * reserved. 2022 */ 2023 u64 prb_next_reserve_seq(struct printk_ringbuffer *rb) 2024 { 2025 struct prb_desc_ring *desc_ring = &rb->desc_ring; 2026 unsigned long last_finalized_id; 2027 atomic_long_t *state_var; 2028 u64 last_finalized_seq; 2029 unsigned long head_id; 2030 struct prb_desc desc; 2031 unsigned long diff; 2032 struct prb_desc *d; 2033 int err; 2034 2035 /* 2036 * It may not be possible to read a sequence number for @head_id. 2037 * So the ID of @last_finailzed_seq is used to calculate what the 2038 * sequence number of @head_id will be. 2039 */ 2040 2041 try_again: 2042 last_finalized_seq = desc_last_finalized_seq(rb); 2043 2044 /* 2045 * @head_id is loaded after @last_finalized_seq to ensure that 2046 * it points to the record with @last_finalized_seq or newer. 2047 * 2048 * Memory barrier involvement: 2049 * 2050 * If desc_last_finalized_seq:A reads from 2051 * desc_update_last_finalized:A, then 2052 * prb_next_reserve_seq:A reads from desc_reserve:D. 2053 * 2054 * Relies on: 2055 * 2056 * RELEASE from desc_reserve:D to desc_update_last_finalized:A 2057 * matching 2058 * ACQUIRE from desc_last_finalized_seq:A to prb_next_reserve_seq:A 2059 * 2060 * Note: desc_reserve:D and desc_update_last_finalized:A can be 2061 * different CPUs. However, the desc_update_last_finalized:A CPU 2062 * (which performs the release) must have previously seen 2063 * desc_read:C, which implies desc_reserve:D can be seen. 2064 */ 2065 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_next_reserve_seq:A) */ 2066 2067 d = to_desc(desc_ring, last_finalized_seq); 2068 state_var = &d->state_var; 2069 2070 /* Extract the ID, used to specify the descriptor to read. */ 2071 last_finalized_id = DESC_ID(atomic_long_read(state_var)); 2072 2073 /* Ensure @last_finalized_id is correct. */ 2074 err = desc_read_finalized_seq(desc_ring, last_finalized_id, last_finalized_seq, &desc); 2075 2076 if (err == -EINVAL) { 2077 if (last_finalized_seq == 0) { 2078 /* 2079 * No record has been finalized or even reserved yet. 2080 * 2081 * The @head_id is initialized such that the first 2082 * increment will yield the first record (seq=0). 2083 * Handle it separately to avoid a negative @diff 2084 * below. 2085 */ 2086 if (head_id == DESC0_ID(desc_ring->count_bits)) 2087 return 0; 2088 2089 /* 2090 * One or more descriptors are already reserved. Use 2091 * the descriptor ID of the first one (@seq=0) for 2092 * the @diff below. 2093 */ 2094 last_finalized_id = DESC0_ID(desc_ring->count_bits) + 1; 2095 } else { 2096 /* Record must have been overwritten. Try again. */ 2097 goto try_again; 2098 } 2099 } 2100 2101 /* Diff of known descriptor IDs to compute related sequence numbers. */ 2102 diff = head_id - last_finalized_id; 2103 2104 /* 2105 * @head_id points to the most recently reserved record, but this 2106 * function returns the sequence number that will be assigned to the 2107 * next (not yet reserved) record. Thus +1 is needed. 2108 */ 2109 return (last_finalized_seq + diff + 1); 2110 } 2111 2112 /* 2113 * Non-blocking read of a record. 2114 * 2115 * On success @seq is updated to the record that was read and (if provided) 2116 * @r and @line_count will contain the read/calculated data. 2117 * 2118 * On failure @seq is updated to a record that is not yet available to the 2119 * reader, but it will be the next record available to the reader. 2120 * 2121 * Note: When the current CPU is in panic, this function will skip over any 2122 * non-existent/non-finalized records in order to allow the panic CPU 2123 * to print any and all records that have been finalized. 2124 */ 2125 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq, 2126 struct printk_record *r, unsigned int *line_count) 2127 { 2128 u64 tail_seq; 2129 int err; 2130 2131 while ((err = prb_read(rb, *seq, r, line_count))) { 2132 tail_seq = prb_first_seq(rb); 2133 2134 if (*seq < tail_seq) { 2135 /* 2136 * Behind the tail. Catch up and try again. This 2137 * can happen for -ENOENT and -EINVAL cases. 2138 */ 2139 *seq = tail_seq; 2140 2141 } else if (err == -ENOENT) { 2142 /* Record exists, but the data was lost. Skip. */ 2143 (*seq)++; 2144 2145 } else { 2146 /* 2147 * Non-existent/non-finalized record. Must stop. 2148 * 2149 * For panic situations it cannot be expected that 2150 * non-finalized records will become finalized. But 2151 * there may be other finalized records beyond that 2152 * need to be printed for a panic situation. If this 2153 * is the panic CPU, skip this 2154 * non-existent/non-finalized record unless non-panic 2155 * CPUs are still running and their debugging is 2156 * explicitly enabled. 2157 * 2158 * Note that new messages printed on panic CPU are 2159 * finalized when we are here. The only exception 2160 * might be the last message without trailing newline. 2161 * But it would have the sequence number returned 2162 * by "prb_next_reserve_seq() - 1". 2163 */ 2164 if (panic_on_this_cpu() && 2165 (!debug_non_panic_cpus || legacy_allow_panic_sync) && 2166 ((*seq + 1) < prb_next_reserve_seq(rb))) { 2167 (*seq)++; 2168 } else { 2169 return false; 2170 } 2171 } 2172 } 2173 2174 return true; 2175 } 2176 2177 /** 2178 * prb_read_valid() - Non-blocking read of a requested record or (if gone) 2179 * the next available record. 2180 * 2181 * @rb: The ringbuffer to read from. 2182 * @seq: The sequence number of the record to read. 2183 * @r: A record data buffer to store the read record to. 2184 * 2185 * This is the public function available to readers to read a record. 2186 * 2187 * The reader provides the @info and @text_buf buffers of @r to be 2188 * filled in. Any of the buffer pointers can be set to NULL if the reader 2189 * is not interested in that data. To ensure proper initialization of @r, 2190 * prb_rec_init_rd() should be used. 2191 * 2192 * Context: Any context. 2193 * Return: true if a record was read, otherwise false. 2194 * 2195 * On success, the reader must check r->info.seq to see which record was 2196 * actually read. This allows the reader to detect dropped records. 2197 * 2198 * Failure means @seq refers to a record not yet available to the reader. 2199 */ 2200 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq, 2201 struct printk_record *r) 2202 { 2203 return _prb_read_valid(rb, &seq, r, NULL); 2204 } 2205 EXPORT_SYMBOL_IF_KUNIT(prb_read_valid); 2206 2207 /** 2208 * prb_read_valid_info() - Non-blocking read of meta data for a requested 2209 * record or (if gone) the next available record. 2210 * 2211 * @rb: The ringbuffer to read from. 2212 * @seq: The sequence number of the record to read. 2213 * @info: A buffer to store the read record meta data to. 2214 * @line_count: A buffer to store the number of lines in the record text. 2215 * 2216 * This is the public function available to readers to read only the 2217 * meta data of a record. 2218 * 2219 * The reader provides the @info, @line_count buffers to be filled in. 2220 * Either of the buffer pointers can be set to NULL if the reader is not 2221 * interested in that data. 2222 * 2223 * Context: Any context. 2224 * Return: true if a record's meta data was read, otherwise false. 2225 * 2226 * On success, the reader must check info->seq to see which record meta data 2227 * was actually read. This allows the reader to detect dropped records. 2228 * 2229 * Failure means @seq refers to a record not yet available to the reader. 2230 */ 2231 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq, 2232 struct printk_info *info, unsigned int *line_count) 2233 { 2234 struct printk_record r; 2235 2236 prb_rec_init_rd(&r, info, NULL, 0); 2237 2238 return _prb_read_valid(rb, &seq, &r, line_count); 2239 } 2240 2241 /** 2242 * prb_first_valid_seq() - Get the sequence number of the oldest available 2243 * record. 2244 * 2245 * @rb: The ringbuffer to get the sequence number from. 2246 * 2247 * This is the public function available to readers to see what the 2248 * first/oldest valid sequence number is. 2249 * 2250 * This provides readers a starting point to begin iterating the ringbuffer. 2251 * 2252 * Context: Any context. 2253 * Return: The sequence number of the first/oldest record or, if the 2254 * ringbuffer is empty, 0 is returned. 2255 */ 2256 u64 prb_first_valid_seq(struct printk_ringbuffer *rb) 2257 { 2258 u64 seq = 0; 2259 2260 if (!_prb_read_valid(rb, &seq, NULL, NULL)) 2261 return 0; 2262 2263 return seq; 2264 } 2265 2266 /** 2267 * prb_next_seq() - Get the sequence number after the last available record. 2268 * 2269 * @rb: The ringbuffer to get the sequence number from. 2270 * 2271 * This is the public function available to readers to see what the next 2272 * newest sequence number available to readers will be. 2273 * 2274 * This provides readers a sequence number to jump to if all currently 2275 * available records should be skipped. It is guaranteed that all records 2276 * previous to the returned value have been finalized and are (or were) 2277 * available to the reader. 2278 * 2279 * Context: Any context. 2280 * Return: The sequence number of the next newest (not yet available) record 2281 * for readers. 2282 */ 2283 u64 prb_next_seq(struct printk_ringbuffer *rb) 2284 { 2285 u64 seq; 2286 2287 seq = desc_last_finalized_seq(rb); 2288 2289 /* 2290 * Begin searching after the last finalized record. 2291 * 2292 * On 0, the search must begin at 0 because of hack#2 2293 * of the bootstrapping phase it is not known if a 2294 * record at index 0 exists. 2295 */ 2296 if (seq != 0) 2297 seq++; 2298 2299 /* 2300 * The information about the last finalized @seq might be inaccurate. 2301 * Search forward to find the current one. 2302 */ 2303 while (_prb_read_valid(rb, &seq, NULL, NULL)) 2304 seq++; 2305 2306 return seq; 2307 } 2308 2309 /** 2310 * prb_init() - Initialize a ringbuffer to use provided external buffers. 2311 * 2312 * @rb: The ringbuffer to initialize. 2313 * @text_buf: The data buffer for text data. 2314 * @textbits: The size of @text_buf as a power-of-2 value. 2315 * @descs: The descriptor buffer for ringbuffer records. 2316 * @descbits: The count of @descs items as a power-of-2 value. 2317 * @infos: The printk_info buffer for ringbuffer records. 2318 * 2319 * This is the public function available to writers to setup a ringbuffer 2320 * during runtime using provided buffers. 2321 * 2322 * This must match the initialization of DEFINE_PRINTKRB(). 2323 * 2324 * Context: Any context. 2325 */ 2326 void prb_init(struct printk_ringbuffer *rb, 2327 char *text_buf, unsigned int textbits, 2328 struct prb_desc *descs, unsigned int descbits, 2329 struct printk_info *infos) 2330 { 2331 memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0])); 2332 memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0])); 2333 2334 rb->desc_ring.count_bits = descbits; 2335 rb->desc_ring.descs = descs; 2336 rb->desc_ring.infos = infos; 2337 atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits)); 2338 atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits)); 2339 atomic_long_set(&rb->desc_ring.last_finalized_seq, 0); 2340 2341 rb->text_data_ring.size_bits = textbits; 2342 rb->text_data_ring.data = text_buf; 2343 atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits)); 2344 atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits)); 2345 2346 atomic_long_set(&rb->fail, 0); 2347 2348 atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits)); 2349 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS; 2350 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS; 2351 2352 infos[0].seq = -(u64)_DESCS_COUNT(descbits); 2353 infos[_DESCS_COUNT(descbits) - 1].seq = 0; 2354 } 2355 EXPORT_SYMBOL_IF_KUNIT(prb_init); 2356 2357 /** 2358 * prb_record_text_space() - Query the full actual used ringbuffer space for 2359 * the text data of a reserved entry. 2360 * 2361 * @e: The successfully reserved entry to query. 2362 * 2363 * This is the public function available to writers to see how much actual 2364 * space is used in the ringbuffer to store the text data of the specified 2365 * entry. 2366 * 2367 * This function is only valid if @e has been successfully reserved using 2368 * prb_reserve(). 2369 * 2370 * Context: Any context. 2371 * Return: The size in bytes used by the text data of the associated record. 2372 */ 2373 unsigned int prb_record_text_space(struct prb_reserved_entry *e) 2374 { 2375 return e->text_space; 2376 } 2377