1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58
59 #include "workqueue_internal.h"
60
61 enum worker_pool_flags {
62 /*
63 * worker_pool flags
64 *
65 * A bound pool is either associated or disassociated with its CPU.
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 * is in effect.
69 *
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 * be executing on any CPU. The pool behaves as an unbound one.
73 *
74 * Note that DISASSOCIATED should be flipped only while holding
75 * wq_pool_attach_mutex to avoid changing binding state while
76 * worker_attach_to_pool() is in progress.
77 *
78 * As there can only be one concurrent BH execution context per CPU, a
79 * BH pool is per-CPU and always DISASSOCIATED.
80 */
81 POOL_BH = 1 << 0, /* is a BH pool */
82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */
85 };
86
87 enum worker_flags {
88 /* worker flags */
89 WORKER_DIE = 1 << 1, /* die die die */
90 WORKER_IDLE = 1 << 2, /* is idle */
91 WORKER_PREP = 1 << 3, /* preparing to run works */
92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
94 WORKER_REBOUND = 1 << 8, /* worker was rebound */
95
96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
97 WORKER_UNBOUND | WORKER_REBOUND,
98 };
99
100 enum work_cancel_flags {
101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */
102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */
103 };
104
105 enum wq_internal_consts {
106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
107
108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
110
111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
113
114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
115 /* call for help after 10ms
116 (min two ticks) */
117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
118 CREATE_COOLDOWN = HZ, /* time to breath after fail */
119
120 /*
121 * Rescue workers are used only on emergencies and shared by
122 * all cpus. Give MIN_NICE.
123 */
124 RESCUER_NICE_LEVEL = MIN_NICE,
125 HIGHPRI_NICE_LEVEL = MIN_NICE,
126
127 WQ_NAME_LEN = 32,
128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130
131 /*
132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134 * msecs_to_jiffies() can't be an initializer.
135 */
136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS 10
138
139 /*
140 * Structure fields follow one of the following exclusion rules.
141 *
142 * I: Modifiable by initialization/destruction paths and read-only for
143 * everyone else.
144 *
145 * P: Preemption protected. Disabling preemption is enough and should
146 * only be modified and accessed from the local cpu.
147 *
148 * L: pool->lock protected. Access with pool->lock held.
149 *
150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151 * reads.
152 *
153 * K: Only modified by worker while holding pool->lock. Can be safely read by
154 * self, while holding pool->lock or from IRQ context if %current is the
155 * kworker.
156 *
157 * S: Only modified by worker self.
158 *
159 * A: wq_pool_attach_mutex protected.
160 *
161 * PL: wq_pool_mutex protected.
162 *
163 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
164 *
165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
166 *
167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
168 * RCU for reads.
169 *
170 * WQ: wq->mutex protected.
171 *
172 * WR: wq->mutex protected for writes. RCU protected for reads.
173 *
174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175 * with READ_ONCE() without locking.
176 *
177 * MD: wq_mayday_lock protected.
178 *
179 * WD: Used internally by the watchdog.
180 */
181
182 /* struct worker is defined in workqueue_internal.h */
183
184 struct worker_pool {
185 raw_spinlock_t lock; /* the pool lock */
186 int cpu; /* I: the associated cpu */
187 int node; /* I: the associated node ID */
188 int id; /* I: pool ID */
189 unsigned int flags; /* L: flags */
190
191 unsigned long watchdog_ts; /* L: watchdog timestamp */
192 bool cpu_stall; /* WD: stalled cpu bound pool */
193
194 /*
195 * The counter is incremented in a process context on the associated CPU
196 * w/ preemption disabled, and decremented or reset in the same context
197 * but w/ pool->lock held. The readers grab pool->lock and are
198 * guaranteed to see if the counter reached zero.
199 */
200 int nr_running;
201
202 struct list_head worklist; /* L: list of pending works */
203
204 int nr_workers; /* L: total number of workers */
205 int nr_idle; /* L: currently idle workers */
206
207 struct list_head idle_list; /* L: list of idle workers */
208 struct timer_list idle_timer; /* L: worker idle timeout */
209 struct work_struct idle_cull_work; /* L: worker idle cleanup */
210
211 struct timer_list mayday_timer; /* L: SOS timer for workers */
212
213 /* a workers is either on busy_hash or idle_list, or the manager */
214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 /* L: hash of busy workers */
216
217 struct worker *manager; /* L: purely informational */
218 struct list_head workers; /* A: attached workers */
219
220 struct ida worker_ida; /* worker IDs for task name */
221
222 struct workqueue_attrs *attrs; /* I: worker attributes */
223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
224 int refcnt; /* PL: refcnt for unbound pools */
225
226 /*
227 * Destruction of pool is RCU protected to allow dereferences
228 * from get_work_pool().
229 */
230 struct rcu_head rcu;
231 };
232
233 /*
234 * Per-pool_workqueue statistics. These can be monitored using
235 * tools/workqueue/wq_monitor.py.
236 */
237 enum pool_workqueue_stats {
238 PWQ_STAT_STARTED, /* work items started execution */
239 PWQ_STAT_COMPLETED, /* work items completed execution */
240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
244 PWQ_STAT_MAYDAY, /* maydays to rescuer */
245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
246
247 PWQ_NR_STATS,
248 };
249
250 /*
251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT
252 * of work_struct->data are used for flags and the remaining high bits
253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
254 * number of flag bits.
255 */
256 struct pool_workqueue {
257 struct worker_pool *pool; /* I: the associated pool */
258 struct workqueue_struct *wq; /* I: the owning workqueue */
259 int work_color; /* L: current color */
260 int flush_color; /* L: flushing color */
261 int refcnt; /* L: reference count */
262 int nr_in_flight[WORK_NR_COLORS];
263 /* L: nr of in_flight works */
264 bool plugged; /* L: execution suspended */
265
266 /*
267 * nr_active management and WORK_STRUCT_INACTIVE:
268 *
269 * When pwq->nr_active >= max_active, new work item is queued to
270 * pwq->inactive_works instead of pool->worklist and marked with
271 * WORK_STRUCT_INACTIVE.
272 *
273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 * nr_active and all work items in pwq->inactive_works are marked with
275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 * in pwq->inactive_works. Some of them are ready to run in
277 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 * wq_barrier which is used for flush_work() and should not participate
279 * in nr_active. For non-barrier work item, it is marked with
280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 */
282 int nr_active; /* L: nr of active works */
283 struct list_head inactive_works; /* L: inactive works */
284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
285 struct list_head pwqs_node; /* WR: node on wq->pwqs */
286 struct list_head mayday_node; /* MD: node on wq->maydays */
287
288 u64 stats[PWQ_NR_STATS];
289
290 /*
291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 * RCU protected so that the first pwq can be determined without
294 * grabbing wq->mutex.
295 */
296 struct kthread_work release_work;
297 struct rcu_head rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299
300 /*
301 * Structure used to wait for workqueue flush.
302 */
303 struct wq_flusher {
304 struct list_head list; /* WQ: list of flushers */
305 int flush_color; /* WQ: flush color waiting for */
306 struct completion done; /* flush completion */
307 };
308
309 struct wq_device;
310
311 /*
312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314 * As sharing a single nr_active across multiple sockets can be very expensive,
315 * the counting and enforcement is per NUMA node.
316 *
317 * The following struct is used to enforce per-node max_active. When a pwq wants
318 * to start executing a work item, it should increment ->nr using
319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322 * round-robin order.
323 */
324 struct wq_node_nr_active {
325 int max; /* per-node max_active */
326 atomic_t nr; /* per-node nr_active */
327 raw_spinlock_t lock; /* nests inside pool locks */
328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
329 };
330
331 /*
332 * The externally visible workqueue. It relays the issued work items to
333 * the appropriate worker_pool through its pool_workqueues.
334 */
335 struct workqueue_struct {
336 struct list_head pwqs; /* WR: all pwqs of this wq */
337 struct list_head list; /* PR: list of all workqueues */
338
339 struct mutex mutex; /* protects this wq */
340 int work_color; /* WQ: current work color */
341 int flush_color; /* WQ: current flush color */
342 atomic_t nr_pwqs_to_flush; /* flush in progress */
343 struct wq_flusher *first_flusher; /* WQ: first flusher */
344 struct list_head flusher_queue; /* WQ: flush waiters */
345 struct list_head flusher_overflow; /* WQ: flush overflow list */
346
347 struct list_head maydays; /* MD: pwqs requesting rescue */
348 struct worker *rescuer; /* MD: rescue worker */
349
350 int nr_drainers; /* WQ: drain in progress */
351
352 /* See alloc_workqueue() function comment for info on min/max_active */
353 int max_active; /* WO: max active works */
354 int min_active; /* WO: min active works */
355 int saved_max_active; /* WQ: saved max_active */
356 int saved_min_active; /* WQ: saved min_active */
357
358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
360
361 #ifdef CONFIG_SYSFS
362 struct wq_device *wq_dev; /* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 char *lock_name;
366 struct lock_class_key key;
367 struct lockdep_map __lockdep_map;
368 struct lockdep_map *lockdep_map;
369 #endif
370 char name[WQ_NAME_LEN]; /* I: workqueue name */
371
372 /*
373 * Destruction of workqueue_struct is RCU protected to allow walking
374 * the workqueues list without grabbing wq_pool_mutex.
375 * This is used to dump all workqueues from sysrq.
376 */
377 struct rcu_head rcu;
378
379 /* hot fields used during command issue, aligned to cacheline */
380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
381 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383 };
384
385 /*
386 * Each pod type describes how CPUs should be grouped for unbound workqueues.
387 * See the comment above workqueue_attrs->affn_scope.
388 */
389 struct wq_pod_type {
390 int nr_pods; /* number of pods */
391 cpumask_var_t *pod_cpus; /* pod -> cpus */
392 int *pod_node; /* pod -> node */
393 int *cpu_pod; /* cpu -> pod */
394 };
395
396 struct work_offq_data {
397 u32 pool_id;
398 u32 disable;
399 u32 flags;
400 };
401
402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403 [WQ_AFFN_DFL] = "default",
404 [WQ_AFFN_CPU] = "cpu",
405 [WQ_AFFN_SMT] = "smt",
406 [WQ_AFFN_CACHE] = "cache",
407 [WQ_AFFN_NUMA] = "numa",
408 [WQ_AFFN_SYSTEM] = "system",
409 };
410
411 /*
412 * Per-cpu work items which run for longer than the following threshold are
413 * automatically considered CPU intensive and excluded from concurrency
414 * management to prevent them from noticeably delaying other per-cpu work items.
415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416 * The actual value is initialized in wq_cpu_intensive_thresh_init().
417 */
418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh = 4;
422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423 #endif
424
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428
429 static bool wq_online; /* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly = false;
431
432 static struct kmem_cache *pwq_cache;
433
434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
439
440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445
446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
447 static bool workqueue_freezing; /* PL: have wqs started freezing? */
448
449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
450 static cpumask_var_t wq_online_cpumask;
451
452 /* PL&A: allowable cpus for unbound wqs and work items */
453 static cpumask_var_t wq_unbound_cpumask;
454
455 /* PL: user requested unbound cpumask via sysfs */
456 static cpumask_var_t wq_requested_unbound_cpumask;
457
458 /* PL: isolated cpumask to be excluded from unbound cpumask */
459 static cpumask_var_t wq_isolated_cpumask;
460
461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
462 static struct cpumask wq_cmdline_cpumask __initdata;
463
464 /* CPU where unbound work was last round robin scheduled from this CPU */
465 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
466
467 /*
468 * Local execution of unbound work items is no longer guaranteed. The
469 * following always forces round-robin CPU selection on unbound work items
470 * to uncover usages which depend on it.
471 */
472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
473 static bool wq_debug_force_rr_cpu = true;
474 #else
475 static bool wq_debug_force_rr_cpu = false;
476 #endif
477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
478
479 /* to raise softirq for the BH worker pools on other CPUs */
480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
481
482 /* the BH worker pools */
483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
484
485 /* the per-cpu worker pools */
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
487
488 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
489
490 /* PL: hash of all unbound pools keyed by pool->attrs */
491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492
493 /* I: attributes used when instantiating standard unbound pools on demand */
494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495
496 /* I: attributes used when instantiating ordered pools on demand */
497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498
499 /*
500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501 * process context while holding a pool lock. Bounce to a dedicated kthread
502 * worker to avoid A-A deadlocks.
503 */
504 static struct kthread_worker *pwq_release_worker __ro_after_init;
505
506 struct workqueue_struct *system_wq __ro_after_init;
507 EXPORT_SYMBOL(system_wq);
508 struct workqueue_struct *system_percpu_wq __ro_after_init;
509 EXPORT_SYMBOL(system_percpu_wq);
510 struct workqueue_struct *system_highpri_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_highpri_wq);
512 struct workqueue_struct *system_long_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_long_wq);
514 struct workqueue_struct *system_unbound_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_unbound_wq);
516 struct workqueue_struct *system_dfl_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_dfl_wq);
518 struct workqueue_struct *system_freezable_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_freezable_wq);
520 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
521 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
522 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
523 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
524 struct workqueue_struct *system_bh_wq;
525 EXPORT_SYMBOL_GPL(system_bh_wq);
526 struct workqueue_struct *system_bh_highpri_wq;
527 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
528
529 static int worker_thread(void *__worker);
530 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
531 static void show_pwq(struct pool_workqueue *pwq);
532 static void show_one_worker_pool(struct worker_pool *pool);
533
534 #define CREATE_TRACE_POINTS
535 #include <trace/events/workqueue.h>
536
537 #define assert_rcu_or_pool_mutex() \
538 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
539 !lockdep_is_held(&wq_pool_mutex), \
540 "RCU or wq_pool_mutex should be held")
541
542 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
543 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
544 !lockdep_is_held(&wq->mutex) && \
545 !lockdep_is_held(&wq_pool_mutex), \
546 "RCU, wq->mutex or wq_pool_mutex should be held")
547
548 #define for_each_bh_worker_pool(pool, cpu) \
549 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
550 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
551 (pool)++)
552
553 #define for_each_cpu_worker_pool(pool, cpu) \
554 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
555 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
556 (pool)++)
557
558 /**
559 * for_each_pool - iterate through all worker_pools in the system
560 * @pool: iteration cursor
561 * @pi: integer used for iteration
562 *
563 * This must be called either with wq_pool_mutex held or RCU read
564 * locked. If the pool needs to be used beyond the locking in effect, the
565 * caller is responsible for guaranteeing that the pool stays online.
566 *
567 * The if/else clause exists only for the lockdep assertion and can be
568 * ignored.
569 */
570 #define for_each_pool(pool, pi) \
571 idr_for_each_entry(&worker_pool_idr, pool, pi) \
572 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
573 else
574
575 /**
576 * for_each_pool_worker - iterate through all workers of a worker_pool
577 * @worker: iteration cursor
578 * @pool: worker_pool to iterate workers of
579 *
580 * This must be called with wq_pool_attach_mutex.
581 *
582 * The if/else clause exists only for the lockdep assertion and can be
583 * ignored.
584 */
585 #define for_each_pool_worker(worker, pool) \
586 list_for_each_entry((worker), &(pool)->workers, node) \
587 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
588 else
589
590 /**
591 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
592 * @pwq: iteration cursor
593 * @wq: the target workqueue
594 *
595 * This must be called either with wq->mutex held or RCU read locked.
596 * If the pwq needs to be used beyond the locking in effect, the caller is
597 * responsible for guaranteeing that the pwq stays online.
598 *
599 * The if/else clause exists only for the lockdep assertion and can be
600 * ignored.
601 */
602 #define for_each_pwq(pwq, wq) \
603 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
604 lockdep_is_held(&(wq->mutex)))
605
606 #ifdef CONFIG_DEBUG_OBJECTS_WORK
607
608 static const struct debug_obj_descr work_debug_descr;
609
work_debug_hint(void * addr)610 static void *work_debug_hint(void *addr)
611 {
612 return ((struct work_struct *) addr)->func;
613 }
614
work_is_static_object(void * addr)615 static bool work_is_static_object(void *addr)
616 {
617 struct work_struct *work = addr;
618
619 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
620 }
621
622 /*
623 * fixup_init is called when:
624 * - an active object is initialized
625 */
work_fixup_init(void * addr,enum debug_obj_state state)626 static bool work_fixup_init(void *addr, enum debug_obj_state state)
627 {
628 struct work_struct *work = addr;
629
630 switch (state) {
631 case ODEBUG_STATE_ACTIVE:
632 cancel_work_sync(work);
633 debug_object_init(work, &work_debug_descr);
634 return true;
635 default:
636 return false;
637 }
638 }
639
640 /*
641 * fixup_free is called when:
642 * - an active object is freed
643 */
work_fixup_free(void * addr,enum debug_obj_state state)644 static bool work_fixup_free(void *addr, enum debug_obj_state state)
645 {
646 struct work_struct *work = addr;
647
648 switch (state) {
649 case ODEBUG_STATE_ACTIVE:
650 cancel_work_sync(work);
651 debug_object_free(work, &work_debug_descr);
652 return true;
653 default:
654 return false;
655 }
656 }
657
658 static const struct debug_obj_descr work_debug_descr = {
659 .name = "work_struct",
660 .debug_hint = work_debug_hint,
661 .is_static_object = work_is_static_object,
662 .fixup_init = work_fixup_init,
663 .fixup_free = work_fixup_free,
664 };
665
debug_work_activate(struct work_struct * work)666 static inline void debug_work_activate(struct work_struct *work)
667 {
668 debug_object_activate(work, &work_debug_descr);
669 }
670
debug_work_deactivate(struct work_struct * work)671 static inline void debug_work_deactivate(struct work_struct *work)
672 {
673 debug_object_deactivate(work, &work_debug_descr);
674 }
675
__init_work(struct work_struct * work,int onstack)676 void __init_work(struct work_struct *work, int onstack)
677 {
678 if (onstack)
679 debug_object_init_on_stack(work, &work_debug_descr);
680 else
681 debug_object_init(work, &work_debug_descr);
682 }
683 EXPORT_SYMBOL_GPL(__init_work);
684
destroy_work_on_stack(struct work_struct * work)685 void destroy_work_on_stack(struct work_struct *work)
686 {
687 debug_object_free(work, &work_debug_descr);
688 }
689 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
690
destroy_delayed_work_on_stack(struct delayed_work * work)691 void destroy_delayed_work_on_stack(struct delayed_work *work)
692 {
693 timer_destroy_on_stack(&work->timer);
694 debug_object_free(&work->work, &work_debug_descr);
695 }
696 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
697
698 #else
debug_work_activate(struct work_struct * work)699 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)700 static inline void debug_work_deactivate(struct work_struct *work) { }
701 #endif
702
703 /**
704 * worker_pool_assign_id - allocate ID and assign it to @pool
705 * @pool: the pool pointer of interest
706 *
707 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
708 * successfully, -errno on failure.
709 */
worker_pool_assign_id(struct worker_pool * pool)710 static int worker_pool_assign_id(struct worker_pool *pool)
711 {
712 int ret;
713
714 lockdep_assert_held(&wq_pool_mutex);
715
716 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
717 GFP_KERNEL);
718 if (ret >= 0) {
719 pool->id = ret;
720 return 0;
721 }
722 return ret;
723 }
724
725 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)726 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
727 {
728 if (cpu >= 0)
729 return per_cpu_ptr(wq->cpu_pwq, cpu);
730 else
731 return &wq->dfl_pwq;
732 }
733
734 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)735 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
736 {
737 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
738 lockdep_is_held(&wq_pool_mutex) ||
739 lockdep_is_held(&wq->mutex));
740 }
741
742 /**
743 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
744 * @wq: workqueue of interest
745 *
746 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
747 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
748 * default pwq is always mapped to the pool with the current effective cpumask.
749 */
unbound_effective_cpumask(struct workqueue_struct * wq)750 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
751 {
752 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
753 }
754
work_color_to_flags(int color)755 static unsigned int work_color_to_flags(int color)
756 {
757 return color << WORK_STRUCT_COLOR_SHIFT;
758 }
759
get_work_color(unsigned long work_data)760 static int get_work_color(unsigned long work_data)
761 {
762 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
763 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
764 }
765
work_next_color(int color)766 static int work_next_color(int color)
767 {
768 return (color + 1) % WORK_NR_COLORS;
769 }
770
pool_offq_flags(struct worker_pool * pool)771 static unsigned long pool_offq_flags(struct worker_pool *pool)
772 {
773 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
774 }
775
776 /*
777 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
778 * contain the pointer to the queued pwq. Once execution starts, the flag
779 * is cleared and the high bits contain OFFQ flags and pool ID.
780 *
781 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
782 * can be used to set the pwq, pool or clear work->data. These functions should
783 * only be called while the work is owned - ie. while the PENDING bit is set.
784 *
785 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
786 * corresponding to a work. Pool is available once the work has been
787 * queued anywhere after initialization until it is sync canceled. pwq is
788 * available only while the work item is queued.
789 */
set_work_data(struct work_struct * work,unsigned long data)790 static inline void set_work_data(struct work_struct *work, unsigned long data)
791 {
792 WARN_ON_ONCE(!work_pending(work));
793 atomic_long_set(&work->data, data | work_static(work));
794 }
795
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)796 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
797 unsigned long flags)
798 {
799 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
800 WORK_STRUCT_PWQ | flags);
801 }
802
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)803 static void set_work_pool_and_keep_pending(struct work_struct *work,
804 int pool_id, unsigned long flags)
805 {
806 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
807 WORK_STRUCT_PENDING | flags);
808 }
809
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)810 static void set_work_pool_and_clear_pending(struct work_struct *work,
811 int pool_id, unsigned long flags)
812 {
813 /*
814 * The following wmb is paired with the implied mb in
815 * test_and_set_bit(PENDING) and ensures all updates to @work made
816 * here are visible to and precede any updates by the next PENDING
817 * owner.
818 */
819 smp_wmb();
820 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
821 flags);
822 /*
823 * The following mb guarantees that previous clear of a PENDING bit
824 * will not be reordered with any speculative LOADS or STORES from
825 * work->current_func, which is executed afterwards. This possible
826 * reordering can lead to a missed execution on attempt to queue
827 * the same @work. E.g. consider this case:
828 *
829 * CPU#0 CPU#1
830 * ---------------------------- --------------------------------
831 *
832 * 1 STORE event_indicated
833 * 2 queue_work_on() {
834 * 3 test_and_set_bit(PENDING)
835 * 4 } set_..._and_clear_pending() {
836 * 5 set_work_data() # clear bit
837 * 6 smp_mb()
838 * 7 work->current_func() {
839 * 8 LOAD event_indicated
840 * }
841 *
842 * Without an explicit full barrier speculative LOAD on line 8 can
843 * be executed before CPU#0 does STORE on line 1. If that happens,
844 * CPU#0 observes the PENDING bit is still set and new execution of
845 * a @work is not queued in a hope, that CPU#1 will eventually
846 * finish the queued @work. Meanwhile CPU#1 does not see
847 * event_indicated is set, because speculative LOAD was executed
848 * before actual STORE.
849 */
850 smp_mb();
851 }
852
work_struct_pwq(unsigned long data)853 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
854 {
855 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
856 }
857
get_work_pwq(struct work_struct * work)858 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
859 {
860 unsigned long data = atomic_long_read(&work->data);
861
862 if (data & WORK_STRUCT_PWQ)
863 return work_struct_pwq(data);
864 else
865 return NULL;
866 }
867
868 /**
869 * get_work_pool - return the worker_pool a given work was associated with
870 * @work: the work item of interest
871 *
872 * Pools are created and destroyed under wq_pool_mutex, and allows read
873 * access under RCU read lock. As such, this function should be
874 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
875 *
876 * All fields of the returned pool are accessible as long as the above
877 * mentioned locking is in effect. If the returned pool needs to be used
878 * beyond the critical section, the caller is responsible for ensuring the
879 * returned pool is and stays online.
880 *
881 * Return: The worker_pool @work was last associated with. %NULL if none.
882 */
get_work_pool(struct work_struct * work)883 static struct worker_pool *get_work_pool(struct work_struct *work)
884 {
885 unsigned long data = atomic_long_read(&work->data);
886 int pool_id;
887
888 assert_rcu_or_pool_mutex();
889
890 if (data & WORK_STRUCT_PWQ)
891 return work_struct_pwq(data)->pool;
892
893 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
894 if (pool_id == WORK_OFFQ_POOL_NONE)
895 return NULL;
896
897 return idr_find(&worker_pool_idr, pool_id);
898 }
899
shift_and_mask(unsigned long v,u32 shift,u32 bits)900 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
901 {
902 return (v >> shift) & ((1U << bits) - 1);
903 }
904
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)905 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
906 {
907 WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
908
909 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
910 WORK_OFFQ_POOL_BITS);
911 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
912 WORK_OFFQ_DISABLE_BITS);
913 offqd->flags = data & WORK_OFFQ_FLAG_MASK;
914 }
915
work_offqd_pack_flags(struct work_offq_data * offqd)916 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
917 {
918 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
919 ((unsigned long)offqd->flags);
920 }
921
922 /*
923 * Policy functions. These define the policies on how the global worker
924 * pools are managed. Unless noted otherwise, these functions assume that
925 * they're being called with pool->lock held.
926 */
927
928 /*
929 * Need to wake up a worker? Called from anything but currently
930 * running workers.
931 *
932 * Note that, because unbound workers never contribute to nr_running, this
933 * function will always return %true for unbound pools as long as the
934 * worklist isn't empty.
935 */
need_more_worker(struct worker_pool * pool)936 static bool need_more_worker(struct worker_pool *pool)
937 {
938 return !list_empty(&pool->worklist) && !pool->nr_running;
939 }
940
941 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)942 static bool may_start_working(struct worker_pool *pool)
943 {
944 return pool->nr_idle;
945 }
946
947 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)948 static bool keep_working(struct worker_pool *pool)
949 {
950 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
951 }
952
953 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)954 static bool need_to_create_worker(struct worker_pool *pool)
955 {
956 return need_more_worker(pool) && !may_start_working(pool);
957 }
958
959 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)960 static bool too_many_workers(struct worker_pool *pool)
961 {
962 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
963 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
964 int nr_busy = pool->nr_workers - nr_idle;
965
966 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
967 }
968
969 /**
970 * worker_set_flags - set worker flags and adjust nr_running accordingly
971 * @worker: self
972 * @flags: flags to set
973 *
974 * Set @flags in @worker->flags and adjust nr_running accordingly.
975 */
worker_set_flags(struct worker * worker,unsigned int flags)976 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
977 {
978 struct worker_pool *pool = worker->pool;
979
980 lockdep_assert_held(&pool->lock);
981
982 /* If transitioning into NOT_RUNNING, adjust nr_running. */
983 if ((flags & WORKER_NOT_RUNNING) &&
984 !(worker->flags & WORKER_NOT_RUNNING)) {
985 pool->nr_running--;
986 }
987
988 worker->flags |= flags;
989 }
990
991 /**
992 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
993 * @worker: self
994 * @flags: flags to clear
995 *
996 * Clear @flags in @worker->flags and adjust nr_running accordingly.
997 */
worker_clr_flags(struct worker * worker,unsigned int flags)998 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
999 {
1000 struct worker_pool *pool = worker->pool;
1001 unsigned int oflags = worker->flags;
1002
1003 lockdep_assert_held(&pool->lock);
1004
1005 worker->flags &= ~flags;
1006
1007 /*
1008 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1009 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1010 * of multiple flags, not a single flag.
1011 */
1012 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1013 if (!(worker->flags & WORKER_NOT_RUNNING))
1014 pool->nr_running++;
1015 }
1016
1017 /* Return the first idle worker. Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1018 static struct worker *first_idle_worker(struct worker_pool *pool)
1019 {
1020 if (unlikely(list_empty(&pool->idle_list)))
1021 return NULL;
1022
1023 return list_first_entry(&pool->idle_list, struct worker, entry);
1024 }
1025
1026 /**
1027 * worker_enter_idle - enter idle state
1028 * @worker: worker which is entering idle state
1029 *
1030 * @worker is entering idle state. Update stats and idle timer if
1031 * necessary.
1032 *
1033 * LOCKING:
1034 * raw_spin_lock_irq(pool->lock).
1035 */
worker_enter_idle(struct worker * worker)1036 static void worker_enter_idle(struct worker *worker)
1037 {
1038 struct worker_pool *pool = worker->pool;
1039
1040 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1041 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1042 (worker->hentry.next || worker->hentry.pprev)))
1043 return;
1044
1045 /* can't use worker_set_flags(), also called from create_worker() */
1046 worker->flags |= WORKER_IDLE;
1047 pool->nr_idle++;
1048 worker->last_active = jiffies;
1049
1050 /* idle_list is LIFO */
1051 list_add(&worker->entry, &pool->idle_list);
1052
1053 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1054 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1055
1056 /* Sanity check nr_running. */
1057 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1058 }
1059
1060 /**
1061 * worker_leave_idle - leave idle state
1062 * @worker: worker which is leaving idle state
1063 *
1064 * @worker is leaving idle state. Update stats.
1065 *
1066 * LOCKING:
1067 * raw_spin_lock_irq(pool->lock).
1068 */
worker_leave_idle(struct worker * worker)1069 static void worker_leave_idle(struct worker *worker)
1070 {
1071 struct worker_pool *pool = worker->pool;
1072
1073 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1074 return;
1075 worker_clr_flags(worker, WORKER_IDLE);
1076 pool->nr_idle--;
1077 list_del_init(&worker->entry);
1078 }
1079
1080 /**
1081 * find_worker_executing_work - find worker which is executing a work
1082 * @pool: pool of interest
1083 * @work: work to find worker for
1084 *
1085 * Find a worker which is executing @work on @pool by searching
1086 * @pool->busy_hash which is keyed by the address of @work. For a worker
1087 * to match, its current execution should match the address of @work and
1088 * its work function. This is to avoid unwanted dependency between
1089 * unrelated work executions through a work item being recycled while still
1090 * being executed.
1091 *
1092 * This is a bit tricky. A work item may be freed once its execution
1093 * starts and nothing prevents the freed area from being recycled for
1094 * another work item. If the same work item address ends up being reused
1095 * before the original execution finishes, workqueue will identify the
1096 * recycled work item as currently executing and make it wait until the
1097 * current execution finishes, introducing an unwanted dependency.
1098 *
1099 * This function checks the work item address and work function to avoid
1100 * false positives. Note that this isn't complete as one may construct a
1101 * work function which can introduce dependency onto itself through a
1102 * recycled work item. Well, if somebody wants to shoot oneself in the
1103 * foot that badly, there's only so much we can do, and if such deadlock
1104 * actually occurs, it should be easy to locate the culprit work function.
1105 *
1106 * CONTEXT:
1107 * raw_spin_lock_irq(pool->lock).
1108 *
1109 * Return:
1110 * Pointer to worker which is executing @work if found, %NULL
1111 * otherwise.
1112 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1113 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1114 struct work_struct *work)
1115 {
1116 struct worker *worker;
1117
1118 hash_for_each_possible(pool->busy_hash, worker, hentry,
1119 (unsigned long)work)
1120 if (worker->current_work == work &&
1121 worker->current_func == work->func)
1122 return worker;
1123
1124 return NULL;
1125 }
1126
1127 /**
1128 * move_linked_works - move linked works to a list
1129 * @work: start of series of works to be scheduled
1130 * @head: target list to append @work to
1131 * @nextp: out parameter for nested worklist walking
1132 *
1133 * Schedule linked works starting from @work to @head. Work series to be
1134 * scheduled starts at @work and includes any consecutive work with
1135 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1136 * @nextp.
1137 *
1138 * CONTEXT:
1139 * raw_spin_lock_irq(pool->lock).
1140 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1141 static void move_linked_works(struct work_struct *work, struct list_head *head,
1142 struct work_struct **nextp)
1143 {
1144 struct work_struct *n;
1145
1146 /*
1147 * Linked worklist will always end before the end of the list,
1148 * use NULL for list head.
1149 */
1150 list_for_each_entry_safe_from(work, n, NULL, entry) {
1151 list_move_tail(&work->entry, head);
1152 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1153 break;
1154 }
1155
1156 /*
1157 * If we're already inside safe list traversal and have moved
1158 * multiple works to the scheduled queue, the next position
1159 * needs to be updated.
1160 */
1161 if (nextp)
1162 *nextp = n;
1163 }
1164
1165 /**
1166 * assign_work - assign a work item and its linked work items to a worker
1167 * @work: work to assign
1168 * @worker: worker to assign to
1169 * @nextp: out parameter for nested worklist walking
1170 *
1171 * Assign @work and its linked work items to @worker. If @work is already being
1172 * executed by another worker in the same pool, it'll be punted there.
1173 *
1174 * If @nextp is not NULL, it's updated to point to the next work of the last
1175 * scheduled work. This allows assign_work() to be nested inside
1176 * list_for_each_entry_safe().
1177 *
1178 * Returns %true if @work was successfully assigned to @worker. %false if @work
1179 * was punted to another worker already executing it.
1180 */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1181 static bool assign_work(struct work_struct *work, struct worker *worker,
1182 struct work_struct **nextp)
1183 {
1184 struct worker_pool *pool = worker->pool;
1185 struct worker *collision;
1186
1187 lockdep_assert_held(&pool->lock);
1188
1189 /*
1190 * A single work shouldn't be executed concurrently by multiple workers.
1191 * __queue_work() ensures that @work doesn't jump to a different pool
1192 * while still running in the previous pool. Here, we should ensure that
1193 * @work is not executed concurrently by multiple workers from the same
1194 * pool. Check whether anyone is already processing the work. If so,
1195 * defer the work to the currently executing one.
1196 */
1197 collision = find_worker_executing_work(pool, work);
1198 if (unlikely(collision)) {
1199 move_linked_works(work, &collision->scheduled, nextp);
1200 return false;
1201 }
1202
1203 move_linked_works(work, &worker->scheduled, nextp);
1204 return true;
1205 }
1206
bh_pool_irq_work(struct worker_pool * pool)1207 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1208 {
1209 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1210
1211 return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1212 }
1213
kick_bh_pool(struct worker_pool * pool)1214 static void kick_bh_pool(struct worker_pool *pool)
1215 {
1216 #ifdef CONFIG_SMP
1217 /* see drain_dead_softirq_workfn() for BH_DRAINING */
1218 if (unlikely(pool->cpu != smp_processor_id() &&
1219 !(pool->flags & POOL_BH_DRAINING))) {
1220 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1221 return;
1222 }
1223 #endif
1224 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1225 raise_softirq_irqoff(HI_SOFTIRQ);
1226 else
1227 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1228 }
1229
1230 /**
1231 * kick_pool - wake up an idle worker if necessary
1232 * @pool: pool to kick
1233 *
1234 * @pool may have pending work items. Wake up worker if necessary. Returns
1235 * whether a worker was woken up.
1236 */
kick_pool(struct worker_pool * pool)1237 static bool kick_pool(struct worker_pool *pool)
1238 {
1239 struct worker *worker = first_idle_worker(pool);
1240 struct task_struct *p;
1241
1242 lockdep_assert_held(&pool->lock);
1243
1244 if (!need_more_worker(pool) || !worker)
1245 return false;
1246
1247 if (pool->flags & POOL_BH) {
1248 kick_bh_pool(pool);
1249 return true;
1250 }
1251
1252 p = worker->task;
1253
1254 #ifdef CONFIG_SMP
1255 /*
1256 * Idle @worker is about to execute @work and waking up provides an
1257 * opportunity to migrate @worker at a lower cost by setting the task's
1258 * wake_cpu field. Let's see if we want to move @worker to improve
1259 * execution locality.
1260 *
1261 * We're waking the worker that went idle the latest and there's some
1262 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1263 * so, setting the wake_cpu won't do anything. As this is a best-effort
1264 * optimization and the race window is narrow, let's leave as-is for
1265 * now. If this becomes pronounced, we can skip over workers which are
1266 * still on cpu when picking an idle worker.
1267 *
1268 * If @pool has non-strict affinity, @worker might have ended up outside
1269 * its affinity scope. Repatriate.
1270 */
1271 if (!pool->attrs->affn_strict &&
1272 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1273 struct work_struct *work = list_first_entry(&pool->worklist,
1274 struct work_struct, entry);
1275 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1276 cpu_online_mask);
1277 if (wake_cpu < nr_cpu_ids) {
1278 p->wake_cpu = wake_cpu;
1279 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1280 }
1281 }
1282 #endif
1283 wake_up_process(p);
1284 return true;
1285 }
1286
1287 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1288
1289 /*
1290 * Concurrency-managed per-cpu work items that hog CPU for longer than
1291 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1292 * which prevents them from stalling other concurrency-managed work items. If a
1293 * work function keeps triggering this mechanism, it's likely that the work item
1294 * should be using an unbound workqueue instead.
1295 *
1296 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1297 * and report them so that they can be examined and converted to use unbound
1298 * workqueues as appropriate. To avoid flooding the console, each violating work
1299 * function is tracked and reported with exponential backoff.
1300 */
1301 #define WCI_MAX_ENTS 128
1302
1303 struct wci_ent {
1304 work_func_t func;
1305 atomic64_t cnt;
1306 struct hlist_node hash_node;
1307 };
1308
1309 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1310 static int wci_nr_ents;
1311 static DEFINE_RAW_SPINLOCK(wci_lock);
1312 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1313
wci_find_ent(work_func_t func)1314 static struct wci_ent *wci_find_ent(work_func_t func)
1315 {
1316 struct wci_ent *ent;
1317
1318 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1319 (unsigned long)func) {
1320 if (ent->func == func)
1321 return ent;
1322 }
1323 return NULL;
1324 }
1325
wq_cpu_intensive_report(work_func_t func)1326 static void wq_cpu_intensive_report(work_func_t func)
1327 {
1328 struct wci_ent *ent;
1329
1330 restart:
1331 ent = wci_find_ent(func);
1332 if (ent) {
1333 u64 cnt;
1334
1335 /*
1336 * Start reporting from the warning_thresh and back off
1337 * exponentially.
1338 */
1339 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1340 if (wq_cpu_intensive_warning_thresh &&
1341 cnt >= wq_cpu_intensive_warning_thresh &&
1342 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1343 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1344 ent->func, wq_cpu_intensive_thresh_us,
1345 atomic64_read(&ent->cnt));
1346 return;
1347 }
1348
1349 /*
1350 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1351 * is exhausted, something went really wrong and we probably made enough
1352 * noise already.
1353 */
1354 if (wci_nr_ents >= WCI_MAX_ENTS)
1355 return;
1356
1357 raw_spin_lock(&wci_lock);
1358
1359 if (wci_nr_ents >= WCI_MAX_ENTS) {
1360 raw_spin_unlock(&wci_lock);
1361 return;
1362 }
1363
1364 if (wci_find_ent(func)) {
1365 raw_spin_unlock(&wci_lock);
1366 goto restart;
1367 }
1368
1369 ent = &wci_ents[wci_nr_ents++];
1370 ent->func = func;
1371 atomic64_set(&ent->cnt, 0);
1372 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1373
1374 raw_spin_unlock(&wci_lock);
1375
1376 goto restart;
1377 }
1378
1379 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1380 static void wq_cpu_intensive_report(work_func_t func) {}
1381 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1382
1383 /**
1384 * wq_worker_running - a worker is running again
1385 * @task: task waking up
1386 *
1387 * This function is called when a worker returns from schedule()
1388 */
wq_worker_running(struct task_struct * task)1389 void wq_worker_running(struct task_struct *task)
1390 {
1391 struct worker *worker = kthread_data(task);
1392
1393 if (!READ_ONCE(worker->sleeping))
1394 return;
1395
1396 /*
1397 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1398 * and the nr_running increment below, we may ruin the nr_running reset
1399 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1400 * pool. Protect against such race.
1401 */
1402 preempt_disable();
1403 if (!(worker->flags & WORKER_NOT_RUNNING))
1404 worker->pool->nr_running++;
1405 preempt_enable();
1406
1407 /*
1408 * CPU intensive auto-detection cares about how long a work item hogged
1409 * CPU without sleeping. Reset the starting timestamp on wakeup.
1410 */
1411 worker->current_at = worker->task->se.sum_exec_runtime;
1412
1413 WRITE_ONCE(worker->sleeping, 0);
1414 }
1415
1416 /**
1417 * wq_worker_sleeping - a worker is going to sleep
1418 * @task: task going to sleep
1419 *
1420 * This function is called from schedule() when a busy worker is
1421 * going to sleep.
1422 */
wq_worker_sleeping(struct task_struct * task)1423 void wq_worker_sleeping(struct task_struct *task)
1424 {
1425 struct worker *worker = kthread_data(task);
1426 struct worker_pool *pool;
1427
1428 /*
1429 * Rescuers, which may not have all the fields set up like normal
1430 * workers, also reach here, let's not access anything before
1431 * checking NOT_RUNNING.
1432 */
1433 if (worker->flags & WORKER_NOT_RUNNING)
1434 return;
1435
1436 pool = worker->pool;
1437
1438 /* Return if preempted before wq_worker_running() was reached */
1439 if (READ_ONCE(worker->sleeping))
1440 return;
1441
1442 WRITE_ONCE(worker->sleeping, 1);
1443 raw_spin_lock_irq(&pool->lock);
1444
1445 /*
1446 * Recheck in case unbind_workers() preempted us. We don't
1447 * want to decrement nr_running after the worker is unbound
1448 * and nr_running has been reset.
1449 */
1450 if (worker->flags & WORKER_NOT_RUNNING) {
1451 raw_spin_unlock_irq(&pool->lock);
1452 return;
1453 }
1454
1455 pool->nr_running--;
1456 if (kick_pool(pool))
1457 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1458
1459 raw_spin_unlock_irq(&pool->lock);
1460 }
1461
1462 /**
1463 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1464 * @task: task currently running
1465 *
1466 * Called from sched_tick(). We're in the IRQ context and the current
1467 * worker's fields which follow the 'K' locking rule can be accessed safely.
1468 */
wq_worker_tick(struct task_struct * task)1469 void wq_worker_tick(struct task_struct *task)
1470 {
1471 struct worker *worker = kthread_data(task);
1472 struct pool_workqueue *pwq = worker->current_pwq;
1473 struct worker_pool *pool = worker->pool;
1474
1475 if (!pwq)
1476 return;
1477
1478 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1479
1480 if (!wq_cpu_intensive_thresh_us)
1481 return;
1482
1483 /*
1484 * If the current worker is concurrency managed and hogged the CPU for
1485 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1486 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1487 *
1488 * Set @worker->sleeping means that @worker is in the process of
1489 * switching out voluntarily and won't be contributing to
1490 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1491 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1492 * double decrements. The task is releasing the CPU anyway. Let's skip.
1493 * We probably want to make this prettier in the future.
1494 */
1495 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1496 worker->task->se.sum_exec_runtime - worker->current_at <
1497 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1498 return;
1499
1500 raw_spin_lock(&pool->lock);
1501
1502 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1503 wq_cpu_intensive_report(worker->current_func);
1504 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1505
1506 if (kick_pool(pool))
1507 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1508
1509 raw_spin_unlock(&pool->lock);
1510 }
1511
1512 /**
1513 * wq_worker_last_func - retrieve worker's last work function
1514 * @task: Task to retrieve last work function of.
1515 *
1516 * Determine the last function a worker executed. This is called from
1517 * the scheduler to get a worker's last known identity.
1518 *
1519 * CONTEXT:
1520 * raw_spin_lock_irq(rq->lock)
1521 *
1522 * This function is called during schedule() when a kworker is going
1523 * to sleep. It's used by psi to identify aggregation workers during
1524 * dequeuing, to allow periodic aggregation to shut-off when that
1525 * worker is the last task in the system or cgroup to go to sleep.
1526 *
1527 * As this function doesn't involve any workqueue-related locking, it
1528 * only returns stable values when called from inside the scheduler's
1529 * queuing and dequeuing paths, when @task, which must be a kworker,
1530 * is guaranteed to not be processing any works.
1531 *
1532 * Return:
1533 * The last work function %current executed as a worker, NULL if it
1534 * hasn't executed any work yet.
1535 */
wq_worker_last_func(struct task_struct * task)1536 work_func_t wq_worker_last_func(struct task_struct *task)
1537 {
1538 struct worker *worker = kthread_data(task);
1539
1540 return worker->last_func;
1541 }
1542
1543 /**
1544 * wq_node_nr_active - Determine wq_node_nr_active to use
1545 * @wq: workqueue of interest
1546 * @node: NUMA node, can be %NUMA_NO_NODE
1547 *
1548 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1549 *
1550 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1551 *
1552 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1553 *
1554 * - Otherwise, node_nr_active[@node].
1555 */
wq_node_nr_active(struct workqueue_struct * wq,int node)1556 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1557 int node)
1558 {
1559 if (!(wq->flags & WQ_UNBOUND))
1560 return NULL;
1561
1562 if (node == NUMA_NO_NODE)
1563 node = nr_node_ids;
1564
1565 return wq->node_nr_active[node];
1566 }
1567
1568 /**
1569 * wq_update_node_max_active - Update per-node max_actives to use
1570 * @wq: workqueue to update
1571 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1572 *
1573 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1574 * distributed among nodes according to the proportions of numbers of online
1575 * cpus. The result is always between @wq->min_active and max_active.
1576 */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1577 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1578 {
1579 struct cpumask *effective = unbound_effective_cpumask(wq);
1580 int min_active = READ_ONCE(wq->min_active);
1581 int max_active = READ_ONCE(wq->max_active);
1582 int total_cpus, node;
1583
1584 lockdep_assert_held(&wq->mutex);
1585
1586 if (!wq_topo_initialized)
1587 return;
1588
1589 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1590 off_cpu = -1;
1591
1592 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1593 if (off_cpu >= 0)
1594 total_cpus--;
1595
1596 /* If all CPUs of the wq get offline, use the default values */
1597 if (unlikely(!total_cpus)) {
1598 for_each_node(node)
1599 wq_node_nr_active(wq, node)->max = min_active;
1600
1601 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1602 return;
1603 }
1604
1605 for_each_node(node) {
1606 int node_cpus;
1607
1608 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1609 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1610 node_cpus--;
1611
1612 wq_node_nr_active(wq, node)->max =
1613 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1614 min_active, max_active);
1615 }
1616
1617 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1618 }
1619
1620 /**
1621 * get_pwq - get an extra reference on the specified pool_workqueue
1622 * @pwq: pool_workqueue to get
1623 *
1624 * Obtain an extra reference on @pwq. The caller should guarantee that
1625 * @pwq has positive refcnt and be holding the matching pool->lock.
1626 */
get_pwq(struct pool_workqueue * pwq)1627 static void get_pwq(struct pool_workqueue *pwq)
1628 {
1629 lockdep_assert_held(&pwq->pool->lock);
1630 WARN_ON_ONCE(pwq->refcnt <= 0);
1631 pwq->refcnt++;
1632 }
1633
1634 /**
1635 * put_pwq - put a pool_workqueue reference
1636 * @pwq: pool_workqueue to put
1637 *
1638 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1639 * destruction. The caller should be holding the matching pool->lock.
1640 */
put_pwq(struct pool_workqueue * pwq)1641 static void put_pwq(struct pool_workqueue *pwq)
1642 {
1643 lockdep_assert_held(&pwq->pool->lock);
1644 if (likely(--pwq->refcnt))
1645 return;
1646 /*
1647 * @pwq can't be released under pool->lock, bounce to a dedicated
1648 * kthread_worker to avoid A-A deadlocks.
1649 */
1650 kthread_queue_work(pwq_release_worker, &pwq->release_work);
1651 }
1652
1653 /**
1654 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1655 * @pwq: pool_workqueue to put (can be %NULL)
1656 *
1657 * put_pwq() with locking. This function also allows %NULL @pwq.
1658 */
put_pwq_unlocked(struct pool_workqueue * pwq)1659 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1660 {
1661 if (pwq) {
1662 /*
1663 * As both pwqs and pools are RCU protected, the
1664 * following lock operations are safe.
1665 */
1666 raw_spin_lock_irq(&pwq->pool->lock);
1667 put_pwq(pwq);
1668 raw_spin_unlock_irq(&pwq->pool->lock);
1669 }
1670 }
1671
pwq_is_empty(struct pool_workqueue * pwq)1672 static bool pwq_is_empty(struct pool_workqueue *pwq)
1673 {
1674 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1675 }
1676
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1677 static void __pwq_activate_work(struct pool_workqueue *pwq,
1678 struct work_struct *work)
1679 {
1680 unsigned long *wdb = work_data_bits(work);
1681
1682 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1683 trace_workqueue_activate_work(work);
1684 if (list_empty(&pwq->pool->worklist))
1685 pwq->pool->watchdog_ts = jiffies;
1686 move_linked_works(work, &pwq->pool->worklist, NULL);
1687 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1688 }
1689
tryinc_node_nr_active(struct wq_node_nr_active * nna)1690 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1691 {
1692 int max = READ_ONCE(nna->max);
1693 int old = atomic_read(&nna->nr);
1694
1695 do {
1696 if (old >= max)
1697 return false;
1698 } while (!atomic_try_cmpxchg_relaxed(&nna->nr, &old, old + 1));
1699
1700 return true;
1701 }
1702
1703 /**
1704 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1705 * @pwq: pool_workqueue of interest
1706 * @fill: max_active may have increased, try to increase concurrency level
1707 *
1708 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1709 * successfully obtained. %false otherwise.
1710 */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1711 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1712 {
1713 struct workqueue_struct *wq = pwq->wq;
1714 struct worker_pool *pool = pwq->pool;
1715 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1716 bool obtained = false;
1717
1718 lockdep_assert_held(&pool->lock);
1719
1720 if (!nna) {
1721 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1722 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1723 goto out;
1724 }
1725
1726 if (unlikely(pwq->plugged))
1727 return false;
1728
1729 /*
1730 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1731 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1732 * concurrency level. Don't jump the line.
1733 *
1734 * We need to ignore the pending test after max_active has increased as
1735 * pwq_dec_nr_active() can only maintain the concurrency level but not
1736 * increase it. This is indicated by @fill.
1737 */
1738 if (!list_empty(&pwq->pending_node) && likely(!fill))
1739 goto out;
1740
1741 obtained = tryinc_node_nr_active(nna);
1742 if (obtained)
1743 goto out;
1744
1745 /*
1746 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1747 * and try again. The smp_mb() is paired with the implied memory barrier
1748 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1749 * we see the decremented $nna->nr or they see non-empty
1750 * $nna->pending_pwqs.
1751 */
1752 raw_spin_lock(&nna->lock);
1753
1754 if (list_empty(&pwq->pending_node))
1755 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1756 else if (likely(!fill))
1757 goto out_unlock;
1758
1759 smp_mb();
1760
1761 obtained = tryinc_node_nr_active(nna);
1762
1763 /*
1764 * If @fill, @pwq might have already been pending. Being spuriously
1765 * pending in cold paths doesn't affect anything. Let's leave it be.
1766 */
1767 if (obtained && likely(!fill))
1768 list_del_init(&pwq->pending_node);
1769
1770 out_unlock:
1771 raw_spin_unlock(&nna->lock);
1772 out:
1773 if (obtained)
1774 pwq->nr_active++;
1775 return obtained;
1776 }
1777
1778 /**
1779 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1780 * @pwq: pool_workqueue of interest
1781 * @fill: max_active may have increased, try to increase concurrency level
1782 *
1783 * Activate the first inactive work item of @pwq if available and allowed by
1784 * max_active limit.
1785 *
1786 * Returns %true if an inactive work item has been activated. %false if no
1787 * inactive work item is found or max_active limit is reached.
1788 */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1789 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1790 {
1791 struct work_struct *work =
1792 list_first_entry_or_null(&pwq->inactive_works,
1793 struct work_struct, entry);
1794
1795 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1796 __pwq_activate_work(pwq, work);
1797 return true;
1798 } else {
1799 return false;
1800 }
1801 }
1802
1803 /**
1804 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1805 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1806 *
1807 * This function should only be called for ordered workqueues where only the
1808 * oldest pwq is unplugged, the others are plugged to suspend execution to
1809 * ensure proper work item ordering::
1810 *
1811 * dfl_pwq --------------+ [P] - plugged
1812 * |
1813 * v
1814 * pwqs -> A -> B [P] -> C [P] (newest)
1815 * | | |
1816 * 1 3 5
1817 * | | |
1818 * 2 4 6
1819 *
1820 * When the oldest pwq is drained and removed, this function should be called
1821 * to unplug the next oldest one to start its work item execution. Note that
1822 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1823 * the list is the oldest.
1824 */
unplug_oldest_pwq(struct workqueue_struct * wq)1825 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1826 {
1827 struct pool_workqueue *pwq;
1828
1829 lockdep_assert_held(&wq->mutex);
1830
1831 /* Caller should make sure that pwqs isn't empty before calling */
1832 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1833 pwqs_node);
1834 raw_spin_lock_irq(&pwq->pool->lock);
1835 if (pwq->plugged) {
1836 pwq->plugged = false;
1837 if (pwq_activate_first_inactive(pwq, true))
1838 kick_pool(pwq->pool);
1839 }
1840 raw_spin_unlock_irq(&pwq->pool->lock);
1841 }
1842
1843 /**
1844 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1845 * @nna: wq_node_nr_active to activate a pending pwq for
1846 * @caller_pool: worker_pool the caller is locking
1847 *
1848 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1849 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1850 */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1851 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1852 struct worker_pool *caller_pool)
1853 {
1854 struct worker_pool *locked_pool = caller_pool;
1855 struct pool_workqueue *pwq;
1856 struct work_struct *work;
1857
1858 lockdep_assert_held(&caller_pool->lock);
1859
1860 raw_spin_lock(&nna->lock);
1861 retry:
1862 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1863 struct pool_workqueue, pending_node);
1864 if (!pwq)
1865 goto out_unlock;
1866
1867 /*
1868 * If @pwq is for a different pool than @locked_pool, we need to lock
1869 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1870 * / lock dance. For that, we also need to release @nna->lock as it's
1871 * nested inside pool locks.
1872 */
1873 if (pwq->pool != locked_pool) {
1874 raw_spin_unlock(&locked_pool->lock);
1875 locked_pool = pwq->pool;
1876 if (!raw_spin_trylock(&locked_pool->lock)) {
1877 raw_spin_unlock(&nna->lock);
1878 raw_spin_lock(&locked_pool->lock);
1879 raw_spin_lock(&nna->lock);
1880 goto retry;
1881 }
1882 }
1883
1884 /*
1885 * $pwq may not have any inactive work items due to e.g. cancellations.
1886 * Drop it from pending_pwqs and see if there's another one.
1887 */
1888 work = list_first_entry_or_null(&pwq->inactive_works,
1889 struct work_struct, entry);
1890 if (!work) {
1891 list_del_init(&pwq->pending_node);
1892 goto retry;
1893 }
1894
1895 /*
1896 * Acquire an nr_active count and activate the inactive work item. If
1897 * $pwq still has inactive work items, rotate it to the end of the
1898 * pending_pwqs so that we round-robin through them. This means that
1899 * inactive work items are not activated in queueing order which is fine
1900 * given that there has never been any ordering across different pwqs.
1901 */
1902 if (likely(tryinc_node_nr_active(nna))) {
1903 pwq->nr_active++;
1904 __pwq_activate_work(pwq, work);
1905
1906 if (list_empty(&pwq->inactive_works))
1907 list_del_init(&pwq->pending_node);
1908 else
1909 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1910
1911 /* if activating a foreign pool, make sure it's running */
1912 if (pwq->pool != caller_pool)
1913 kick_pool(pwq->pool);
1914 }
1915
1916 out_unlock:
1917 raw_spin_unlock(&nna->lock);
1918 if (locked_pool != caller_pool) {
1919 raw_spin_unlock(&locked_pool->lock);
1920 raw_spin_lock(&caller_pool->lock);
1921 }
1922 }
1923
1924 /**
1925 * pwq_dec_nr_active - Retire an active count
1926 * @pwq: pool_workqueue of interest
1927 *
1928 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1929 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1930 */
pwq_dec_nr_active(struct pool_workqueue * pwq)1931 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1932 {
1933 struct worker_pool *pool = pwq->pool;
1934 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1935
1936 lockdep_assert_held(&pool->lock);
1937
1938 /*
1939 * @pwq->nr_active should be decremented for both percpu and unbound
1940 * workqueues.
1941 */
1942 pwq->nr_active--;
1943
1944 /*
1945 * For a percpu workqueue, it's simple. Just need to kick the first
1946 * inactive work item on @pwq itself.
1947 */
1948 if (!nna) {
1949 pwq_activate_first_inactive(pwq, false);
1950 return;
1951 }
1952
1953 /*
1954 * If @pwq is for an unbound workqueue, it's more complicated because
1955 * multiple pwqs and pools may be sharing the nr_active count. When a
1956 * pwq needs to wait for an nr_active count, it puts itself on
1957 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1958 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1959 * guarantee that either we see non-empty pending_pwqs or they see
1960 * decremented $nna->nr.
1961 *
1962 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1963 * max_active gets updated. However, it is guaranteed to be equal to or
1964 * larger than @pwq->wq->min_active which is above zero unless freezing.
1965 * This maintains the forward progress guarantee.
1966 */
1967 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1968 return;
1969
1970 if (!list_empty(&nna->pending_pwqs))
1971 node_activate_pending_pwq(nna, pool);
1972 }
1973
1974 /**
1975 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1976 * @pwq: pwq of interest
1977 * @work_data: work_data of work which left the queue
1978 *
1979 * A work either has completed or is removed from pending queue,
1980 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1981 *
1982 * NOTE:
1983 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1984 * and thus should be called after all other state updates for the in-flight
1985 * work item is complete.
1986 *
1987 * CONTEXT:
1988 * raw_spin_lock_irq(pool->lock).
1989 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1990 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1991 {
1992 int color = get_work_color(work_data);
1993
1994 if (!(work_data & WORK_STRUCT_INACTIVE))
1995 pwq_dec_nr_active(pwq);
1996
1997 pwq->nr_in_flight[color]--;
1998
1999 /* is flush in progress and are we at the flushing tip? */
2000 if (likely(pwq->flush_color != color))
2001 goto out_put;
2002
2003 /* are there still in-flight works? */
2004 if (pwq->nr_in_flight[color])
2005 goto out_put;
2006
2007 /* this pwq is done, clear flush_color */
2008 pwq->flush_color = -1;
2009
2010 /*
2011 * If this was the last pwq, wake up the first flusher. It
2012 * will handle the rest.
2013 */
2014 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2015 complete(&pwq->wq->first_flusher->done);
2016 out_put:
2017 put_pwq(pwq);
2018 }
2019
2020 /**
2021 * try_to_grab_pending - steal work item from worklist and disable irq
2022 * @work: work item to steal
2023 * @cflags: %WORK_CANCEL_ flags
2024 * @irq_flags: place to store irq state
2025 *
2026 * Try to grab PENDING bit of @work. This function can handle @work in any
2027 * stable state - idle, on timer or on worklist.
2028 *
2029 * Return:
2030 *
2031 * ======== ================================================================
2032 * 1 if @work was pending and we successfully stole PENDING
2033 * 0 if @work was idle and we claimed PENDING
2034 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
2035 * ======== ================================================================
2036 *
2037 * Note:
2038 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
2039 * interrupted while holding PENDING and @work off queue, irq must be
2040 * disabled on entry. This, combined with delayed_work->timer being
2041 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2042 *
2043 * On successful return, >= 0, irq is disabled and the caller is
2044 * responsible for releasing it using local_irq_restore(*@irq_flags).
2045 *
2046 * This function is safe to call from any context including IRQ handler.
2047 */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2048 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2049 unsigned long *irq_flags)
2050 {
2051 struct worker_pool *pool;
2052 struct pool_workqueue *pwq;
2053
2054 local_irq_save(*irq_flags);
2055
2056 /* try to steal the timer if it exists */
2057 if (cflags & WORK_CANCEL_DELAYED) {
2058 struct delayed_work *dwork = to_delayed_work(work);
2059
2060 /*
2061 * dwork->timer is irqsafe. If timer_delete() fails, it's
2062 * guaranteed that the timer is not queued anywhere and not
2063 * running on the local CPU.
2064 */
2065 if (likely(timer_delete(&dwork->timer)))
2066 return 1;
2067 }
2068
2069 /* try to claim PENDING the normal way */
2070 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2071 return 0;
2072
2073 rcu_read_lock();
2074 /*
2075 * The queueing is in progress, or it is already queued. Try to
2076 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2077 */
2078 pool = get_work_pool(work);
2079 if (!pool)
2080 goto fail;
2081
2082 raw_spin_lock(&pool->lock);
2083 /*
2084 * work->data is guaranteed to point to pwq only while the work
2085 * item is queued on pwq->wq, and both updating work->data to point
2086 * to pwq on queueing and to pool on dequeueing are done under
2087 * pwq->pool->lock. This in turn guarantees that, if work->data
2088 * points to pwq which is associated with a locked pool, the work
2089 * item is currently queued on that pool.
2090 */
2091 pwq = get_work_pwq(work);
2092 if (pwq && pwq->pool == pool) {
2093 unsigned long work_data = *work_data_bits(work);
2094
2095 debug_work_deactivate(work);
2096
2097 /*
2098 * A cancelable inactive work item must be in the
2099 * pwq->inactive_works since a queued barrier can't be
2100 * canceled (see the comments in insert_wq_barrier()).
2101 *
2102 * An inactive work item cannot be deleted directly because
2103 * it might have linked barrier work items which, if left
2104 * on the inactive_works list, will confuse pwq->nr_active
2105 * management later on and cause stall. Move the linked
2106 * barrier work items to the worklist when deleting the grabbed
2107 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2108 * it doesn't participate in nr_active management in later
2109 * pwq_dec_nr_in_flight().
2110 */
2111 if (work_data & WORK_STRUCT_INACTIVE)
2112 move_linked_works(work, &pwq->pool->worklist, NULL);
2113
2114 list_del_init(&work->entry);
2115
2116 /*
2117 * work->data points to pwq iff queued. Let's point to pool. As
2118 * this destroys work->data needed by the next step, stash it.
2119 */
2120 set_work_pool_and_keep_pending(work, pool->id,
2121 pool_offq_flags(pool));
2122
2123 /* must be the last step, see the function comment */
2124 pwq_dec_nr_in_flight(pwq, work_data);
2125
2126 raw_spin_unlock(&pool->lock);
2127 rcu_read_unlock();
2128 return 1;
2129 }
2130 raw_spin_unlock(&pool->lock);
2131 fail:
2132 rcu_read_unlock();
2133 local_irq_restore(*irq_flags);
2134 return -EAGAIN;
2135 }
2136
2137 /**
2138 * work_grab_pending - steal work item from worklist and disable irq
2139 * @work: work item to steal
2140 * @cflags: %WORK_CANCEL_ flags
2141 * @irq_flags: place to store IRQ state
2142 *
2143 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2144 * or on worklist.
2145 *
2146 * Can be called from any context. IRQ is disabled on return with IRQ state
2147 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2148 * local_irq_restore().
2149 *
2150 * Returns %true if @work was pending. %false if idle.
2151 */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2152 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2153 unsigned long *irq_flags)
2154 {
2155 int ret;
2156
2157 while (true) {
2158 ret = try_to_grab_pending(work, cflags, irq_flags);
2159 if (ret >= 0)
2160 return ret;
2161 cpu_relax();
2162 }
2163 }
2164
2165 /**
2166 * insert_work - insert a work into a pool
2167 * @pwq: pwq @work belongs to
2168 * @work: work to insert
2169 * @head: insertion point
2170 * @extra_flags: extra WORK_STRUCT_* flags to set
2171 *
2172 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
2173 * work_struct flags.
2174 *
2175 * CONTEXT:
2176 * raw_spin_lock_irq(pool->lock).
2177 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2178 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2179 struct list_head *head, unsigned int extra_flags)
2180 {
2181 debug_work_activate(work);
2182
2183 /* record the work call stack in order to print it in KASAN reports */
2184 kasan_record_aux_stack(work);
2185
2186 /* we own @work, set data and link */
2187 set_work_pwq(work, pwq, extra_flags);
2188 list_add_tail(&work->entry, head);
2189 get_pwq(pwq);
2190 }
2191
2192 /*
2193 * Test whether @work is being queued from another work executing on the
2194 * same workqueue.
2195 */
is_chained_work(struct workqueue_struct * wq)2196 static bool is_chained_work(struct workqueue_struct *wq)
2197 {
2198 struct worker *worker;
2199
2200 worker = current_wq_worker();
2201 /*
2202 * Return %true iff I'm a worker executing a work item on @wq. If
2203 * I'm @worker, it's safe to dereference it without locking.
2204 */
2205 return worker && worker->current_pwq->wq == wq;
2206 }
2207
2208 /*
2209 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2210 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2211 * avoid perturbing sensitive tasks.
2212 */
wq_select_unbound_cpu(int cpu)2213 static int wq_select_unbound_cpu(int cpu)
2214 {
2215 int new_cpu;
2216
2217 if (likely(!wq_debug_force_rr_cpu)) {
2218 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2219 return cpu;
2220 } else {
2221 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2222 }
2223
2224 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2225 new_cpu = cpumask_next_and_wrap(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2226 if (unlikely(new_cpu >= nr_cpu_ids))
2227 return cpu;
2228 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2229
2230 return new_cpu;
2231 }
2232
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2233 static void __queue_work(int cpu, struct workqueue_struct *wq,
2234 struct work_struct *work)
2235 {
2236 struct pool_workqueue *pwq;
2237 struct worker_pool *last_pool, *pool;
2238 unsigned int work_flags;
2239 unsigned int req_cpu = cpu;
2240
2241 /*
2242 * While a work item is PENDING && off queue, a task trying to
2243 * steal the PENDING will busy-loop waiting for it to either get
2244 * queued or lose PENDING. Grabbing PENDING and queueing should
2245 * happen with IRQ disabled.
2246 */
2247 lockdep_assert_irqs_disabled();
2248
2249 /*
2250 * For a draining wq, only works from the same workqueue are
2251 * allowed. The __WQ_DESTROYING helps to spot the issue that
2252 * queues a new work item to a wq after destroy_workqueue(wq).
2253 */
2254 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2255 WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n",
2256 work->func, wq->name))) {
2257 return;
2258 }
2259 rcu_read_lock();
2260 retry:
2261 /* pwq which will be used unless @work is executing elsewhere */
2262 if (req_cpu == WORK_CPU_UNBOUND) {
2263 if (wq->flags & WQ_UNBOUND)
2264 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2265 else
2266 cpu = raw_smp_processor_id();
2267 }
2268
2269 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2270 pool = pwq->pool;
2271
2272 /*
2273 * If @work was previously on a different pool, it might still be
2274 * running there, in which case the work needs to be queued on that
2275 * pool to guarantee non-reentrancy.
2276 *
2277 * For ordered workqueue, work items must be queued on the newest pwq
2278 * for accurate order management. Guaranteed order also guarantees
2279 * non-reentrancy. See the comments above unplug_oldest_pwq().
2280 */
2281 last_pool = get_work_pool(work);
2282 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2283 struct worker *worker;
2284
2285 raw_spin_lock(&last_pool->lock);
2286
2287 worker = find_worker_executing_work(last_pool, work);
2288
2289 if (worker && worker->current_pwq->wq == wq) {
2290 pwq = worker->current_pwq;
2291 pool = pwq->pool;
2292 WARN_ON_ONCE(pool != last_pool);
2293 } else {
2294 /* meh... not running there, queue here */
2295 raw_spin_unlock(&last_pool->lock);
2296 raw_spin_lock(&pool->lock);
2297 }
2298 } else {
2299 raw_spin_lock(&pool->lock);
2300 }
2301
2302 /*
2303 * pwq is determined and locked. For unbound pools, we could have raced
2304 * with pwq release and it could already be dead. If its refcnt is zero,
2305 * repeat pwq selection. Note that unbound pwqs never die without
2306 * another pwq replacing it in cpu_pwq or while work items are executing
2307 * on it, so the retrying is guaranteed to make forward-progress.
2308 */
2309 if (unlikely(!pwq->refcnt)) {
2310 if (wq->flags & WQ_UNBOUND) {
2311 raw_spin_unlock(&pool->lock);
2312 cpu_relax();
2313 goto retry;
2314 }
2315 /* oops */
2316 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2317 wq->name, cpu);
2318 }
2319
2320 /* pwq determined, queue */
2321 trace_workqueue_queue_work(req_cpu, pwq, work);
2322
2323 if (WARN_ON(!list_empty(&work->entry)))
2324 goto out;
2325
2326 pwq->nr_in_flight[pwq->work_color]++;
2327 work_flags = work_color_to_flags(pwq->work_color);
2328
2329 /*
2330 * Limit the number of concurrently active work items to max_active.
2331 * @work must also queue behind existing inactive work items to maintain
2332 * ordering when max_active changes. See wq_adjust_max_active().
2333 */
2334 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2335 if (list_empty(&pool->worklist))
2336 pool->watchdog_ts = jiffies;
2337
2338 trace_workqueue_activate_work(work);
2339 insert_work(pwq, work, &pool->worklist, work_flags);
2340 kick_pool(pool);
2341 } else {
2342 work_flags |= WORK_STRUCT_INACTIVE;
2343 insert_work(pwq, work, &pwq->inactive_works, work_flags);
2344 }
2345
2346 out:
2347 raw_spin_unlock(&pool->lock);
2348 rcu_read_unlock();
2349 }
2350
clear_pending_if_disabled(struct work_struct * work)2351 static bool clear_pending_if_disabled(struct work_struct *work)
2352 {
2353 unsigned long data = *work_data_bits(work);
2354 struct work_offq_data offqd;
2355
2356 if (likely((data & WORK_STRUCT_PWQ) ||
2357 !(data & WORK_OFFQ_DISABLE_MASK)))
2358 return false;
2359
2360 work_offqd_unpack(&offqd, data);
2361 set_work_pool_and_clear_pending(work, offqd.pool_id,
2362 work_offqd_pack_flags(&offqd));
2363 return true;
2364 }
2365
2366 /**
2367 * queue_work_on - queue work on specific cpu
2368 * @cpu: CPU number to execute work on
2369 * @wq: workqueue to use
2370 * @work: work to queue
2371 *
2372 * We queue the work to a specific CPU, the caller must ensure it
2373 * can't go away. Callers that fail to ensure that the specified
2374 * CPU cannot go away will execute on a randomly chosen CPU.
2375 * But note well that callers specifying a CPU that never has been
2376 * online will get a splat.
2377 *
2378 * Return: %false if @work was already on a queue, %true otherwise.
2379 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2380 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2381 struct work_struct *work)
2382 {
2383 bool ret = false;
2384 unsigned long irq_flags;
2385
2386 local_irq_save(irq_flags);
2387
2388 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2389 !clear_pending_if_disabled(work)) {
2390 __queue_work(cpu, wq, work);
2391 ret = true;
2392 }
2393
2394 local_irq_restore(irq_flags);
2395 return ret;
2396 }
2397 EXPORT_SYMBOL(queue_work_on);
2398
2399 /**
2400 * select_numa_node_cpu - Select a CPU based on NUMA node
2401 * @node: NUMA node ID that we want to select a CPU from
2402 *
2403 * This function will attempt to find a "random" cpu available on a given
2404 * node. If there are no CPUs available on the given node it will return
2405 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2406 * available CPU if we need to schedule this work.
2407 */
select_numa_node_cpu(int node)2408 static int select_numa_node_cpu(int node)
2409 {
2410 int cpu;
2411
2412 /* Delay binding to CPU if node is not valid or online */
2413 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2414 return WORK_CPU_UNBOUND;
2415
2416 /* Use local node/cpu if we are already there */
2417 cpu = raw_smp_processor_id();
2418 if (node == cpu_to_node(cpu))
2419 return cpu;
2420
2421 /* Use "random" otherwise know as "first" online CPU of node */
2422 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2423
2424 /* If CPU is valid return that, otherwise just defer */
2425 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2426 }
2427
2428 /**
2429 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2430 * @node: NUMA node that we are targeting the work for
2431 * @wq: workqueue to use
2432 * @work: work to queue
2433 *
2434 * We queue the work to a "random" CPU within a given NUMA node. The basic
2435 * idea here is to provide a way to somehow associate work with a given
2436 * NUMA node.
2437 *
2438 * This function will only make a best effort attempt at getting this onto
2439 * the right NUMA node. If no node is requested or the requested node is
2440 * offline then we just fall back to standard queue_work behavior.
2441 *
2442 * Currently the "random" CPU ends up being the first available CPU in the
2443 * intersection of cpu_online_mask and the cpumask of the node, unless we
2444 * are running on the node. In that case we just use the current CPU.
2445 *
2446 * Return: %false if @work was already on a queue, %true otherwise.
2447 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2448 bool queue_work_node(int node, struct workqueue_struct *wq,
2449 struct work_struct *work)
2450 {
2451 unsigned long irq_flags;
2452 bool ret = false;
2453
2454 /*
2455 * This current implementation is specific to unbound workqueues.
2456 * Specifically we only return the first available CPU for a given
2457 * node instead of cycling through individual CPUs within the node.
2458 *
2459 * If this is used with a per-cpu workqueue then the logic in
2460 * workqueue_select_cpu_near would need to be updated to allow for
2461 * some round robin type logic.
2462 */
2463 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2464
2465 local_irq_save(irq_flags);
2466
2467 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2468 !clear_pending_if_disabled(work)) {
2469 int cpu = select_numa_node_cpu(node);
2470
2471 __queue_work(cpu, wq, work);
2472 ret = true;
2473 }
2474
2475 local_irq_restore(irq_flags);
2476 return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(queue_work_node);
2479
delayed_work_timer_fn(struct timer_list * t)2480 void delayed_work_timer_fn(struct timer_list *t)
2481 {
2482 struct delayed_work *dwork = timer_container_of(dwork, t, timer);
2483
2484 /* should have been called from irqsafe timer with irq already off */
2485 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2486 }
2487 EXPORT_SYMBOL(delayed_work_timer_fn);
2488
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2489 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2490 struct delayed_work *dwork, unsigned long delay)
2491 {
2492 struct timer_list *timer = &dwork->timer;
2493 struct work_struct *work = &dwork->work;
2494
2495 WARN_ON_ONCE(!wq);
2496 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2497 WARN_ON_ONCE(timer_pending(timer));
2498 WARN_ON_ONCE(!list_empty(&work->entry));
2499
2500 /*
2501 * If @delay is 0, queue @dwork->work immediately. This is for
2502 * both optimization and correctness. The earliest @timer can
2503 * expire is on the closest next tick and delayed_work users depend
2504 * on that there's no such delay when @delay is 0.
2505 */
2506 if (!delay) {
2507 __queue_work(cpu, wq, &dwork->work);
2508 return;
2509 }
2510
2511 WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu));
2512 dwork->wq = wq;
2513 dwork->cpu = cpu;
2514 timer->expires = jiffies + delay;
2515
2516 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2517 /* If the current cpu is a housekeeping cpu, use it. */
2518 cpu = smp_processor_id();
2519 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2520 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2521 add_timer_on(timer, cpu);
2522 } else {
2523 if (likely(cpu == WORK_CPU_UNBOUND))
2524 add_timer_global(timer);
2525 else
2526 add_timer_on(timer, cpu);
2527 }
2528 }
2529
2530 /**
2531 * queue_delayed_work_on - queue work on specific CPU after delay
2532 * @cpu: CPU number to execute work on
2533 * @wq: workqueue to use
2534 * @dwork: work to queue
2535 * @delay: number of jiffies to wait before queueing
2536 *
2537 * We queue the delayed_work to a specific CPU, for non-zero delays the
2538 * caller must ensure it is online and can't go away. Callers that fail
2539 * to ensure this, may get @dwork->timer queued to an offlined CPU and
2540 * this will prevent queueing of @dwork->work unless the offlined CPU
2541 * becomes online again.
2542 *
2543 * Return: %false if @work was already on a queue, %true otherwise. If
2544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2545 * execution.
2546 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2548 struct delayed_work *dwork, unsigned long delay)
2549 {
2550 struct work_struct *work = &dwork->work;
2551 bool ret = false;
2552 unsigned long irq_flags;
2553
2554 /* read the comment in __queue_work() */
2555 local_irq_save(irq_flags);
2556
2557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2558 !clear_pending_if_disabled(work)) {
2559 __queue_delayed_work(cpu, wq, dwork, delay);
2560 ret = true;
2561 }
2562
2563 local_irq_restore(irq_flags);
2564 return ret;
2565 }
2566 EXPORT_SYMBOL(queue_delayed_work_on);
2567
2568 /**
2569 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2570 * @cpu: CPU number to execute work on
2571 * @wq: workqueue to use
2572 * @dwork: work to queue
2573 * @delay: number of jiffies to wait before queueing
2574 *
2575 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2576 * modify @dwork's timer so that it expires after @delay. If @delay is
2577 * zero, @work is guaranteed to be scheduled immediately regardless of its
2578 * current state.
2579 *
2580 * Return: %false if @dwork was idle and queued, %true if @dwork was
2581 * pending and its timer was modified.
2582 *
2583 * This function is safe to call from any context including IRQ handler.
2584 * See try_to_grab_pending() for details.
2585 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2587 struct delayed_work *dwork, unsigned long delay)
2588 {
2589 unsigned long irq_flags;
2590 bool ret;
2591
2592 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2593
2594 if (!clear_pending_if_disabled(&dwork->work))
2595 __queue_delayed_work(cpu, wq, dwork, delay);
2596
2597 local_irq_restore(irq_flags);
2598 return ret;
2599 }
2600 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2601
rcu_work_rcufn(struct rcu_head * rcu)2602 static void rcu_work_rcufn(struct rcu_head *rcu)
2603 {
2604 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2605
2606 /* read the comment in __queue_work() */
2607 local_irq_disable();
2608 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2609 local_irq_enable();
2610 }
2611
2612 /**
2613 * queue_rcu_work - queue work after a RCU grace period
2614 * @wq: workqueue to use
2615 * @rwork: work to queue
2616 *
2617 * Return: %false if @rwork was already pending, %true otherwise. Note
2618 * that a full RCU grace period is guaranteed only after a %true return.
2619 * While @rwork is guaranteed to be executed after a %false return, the
2620 * execution may happen before a full RCU grace period has passed.
2621 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2622 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2623 {
2624 struct work_struct *work = &rwork->work;
2625
2626 /*
2627 * rcu_work can't be canceled or disabled. Warn if the user reached
2628 * inside @rwork and disabled the inner work.
2629 */
2630 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2631 !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2632 rwork->wq = wq;
2633 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2634 return true;
2635 }
2636
2637 return false;
2638 }
2639 EXPORT_SYMBOL(queue_rcu_work);
2640
alloc_worker(int node)2641 static struct worker *alloc_worker(int node)
2642 {
2643 struct worker *worker;
2644
2645 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2646 if (worker) {
2647 INIT_LIST_HEAD(&worker->entry);
2648 INIT_LIST_HEAD(&worker->scheduled);
2649 INIT_LIST_HEAD(&worker->node);
2650 /* on creation a worker is in !idle && prep state */
2651 worker->flags = WORKER_PREP;
2652 }
2653 return worker;
2654 }
2655
pool_allowed_cpus(struct worker_pool * pool)2656 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2657 {
2658 if (pool->cpu < 0 && pool->attrs->affn_strict)
2659 return pool->attrs->__pod_cpumask;
2660 else
2661 return pool->attrs->cpumask;
2662 }
2663
2664 /**
2665 * worker_attach_to_pool() - attach a worker to a pool
2666 * @worker: worker to be attached
2667 * @pool: the target pool
2668 *
2669 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2670 * cpu-binding of @worker are kept coordinated with the pool across
2671 * cpu-[un]hotplugs.
2672 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2673 static void worker_attach_to_pool(struct worker *worker,
2674 struct worker_pool *pool)
2675 {
2676 mutex_lock(&wq_pool_attach_mutex);
2677
2678 /*
2679 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2680 * across this function. See the comments above the flag definition for
2681 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2682 */
2683 if (pool->flags & POOL_DISASSOCIATED) {
2684 worker->flags |= WORKER_UNBOUND;
2685 } else {
2686 WARN_ON_ONCE(pool->flags & POOL_BH);
2687 kthread_set_per_cpu(worker->task, pool->cpu);
2688 }
2689
2690 if (worker->rescue_wq)
2691 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2692
2693 list_add_tail(&worker->node, &pool->workers);
2694 worker->pool = pool;
2695
2696 mutex_unlock(&wq_pool_attach_mutex);
2697 }
2698
unbind_worker(struct worker * worker)2699 static void unbind_worker(struct worker *worker)
2700 {
2701 lockdep_assert_held(&wq_pool_attach_mutex);
2702
2703 kthread_set_per_cpu(worker->task, -1);
2704 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2705 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2706 else
2707 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2708 }
2709
2710
detach_worker(struct worker * worker)2711 static void detach_worker(struct worker *worker)
2712 {
2713 lockdep_assert_held(&wq_pool_attach_mutex);
2714
2715 unbind_worker(worker);
2716 list_del(&worker->node);
2717 }
2718
2719 /**
2720 * worker_detach_from_pool() - detach a worker from its pool
2721 * @worker: worker which is attached to its pool
2722 *
2723 * Undo the attaching which had been done in worker_attach_to_pool(). The
2724 * caller worker shouldn't access to the pool after detached except it has
2725 * other reference to the pool.
2726 */
worker_detach_from_pool(struct worker * worker)2727 static void worker_detach_from_pool(struct worker *worker)
2728 {
2729 struct worker_pool *pool = worker->pool;
2730
2731 /* there is one permanent BH worker per CPU which should never detach */
2732 WARN_ON_ONCE(pool->flags & POOL_BH);
2733
2734 mutex_lock(&wq_pool_attach_mutex);
2735 detach_worker(worker);
2736 worker->pool = NULL;
2737 mutex_unlock(&wq_pool_attach_mutex);
2738
2739 /* clear leftover flags without pool->lock after it is detached */
2740 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2741 }
2742
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2743 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2744 struct worker_pool *pool)
2745 {
2746 if (worker->rescue_wq)
2747 return scnprintf(buf, size, "kworker/R-%s",
2748 worker->rescue_wq->name);
2749
2750 if (pool) {
2751 if (pool->cpu >= 0)
2752 return scnprintf(buf, size, "kworker/%d:%d%s",
2753 pool->cpu, worker->id,
2754 pool->attrs->nice < 0 ? "H" : "");
2755 else
2756 return scnprintf(buf, size, "kworker/u%d:%d",
2757 pool->id, worker->id);
2758 } else {
2759 return scnprintf(buf, size, "kworker/dying");
2760 }
2761 }
2762
2763 /**
2764 * create_worker - create a new workqueue worker
2765 * @pool: pool the new worker will belong to
2766 *
2767 * Create and start a new worker which is attached to @pool.
2768 *
2769 * CONTEXT:
2770 * Might sleep. Does GFP_KERNEL allocations.
2771 *
2772 * Return:
2773 * Pointer to the newly created worker.
2774 */
create_worker(struct worker_pool * pool)2775 static struct worker *create_worker(struct worker_pool *pool)
2776 {
2777 struct worker *worker;
2778 int id;
2779
2780 /* ID is needed to determine kthread name */
2781 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2782 if (id < 0) {
2783 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2784 ERR_PTR(id));
2785 return NULL;
2786 }
2787
2788 worker = alloc_worker(pool->node);
2789 if (!worker) {
2790 pr_err_once("workqueue: Failed to allocate a worker\n");
2791 goto fail;
2792 }
2793
2794 worker->id = id;
2795
2796 if (!(pool->flags & POOL_BH)) {
2797 char id_buf[WORKER_ID_LEN];
2798
2799 format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2800 worker->task = kthread_create_on_node(worker_thread, worker,
2801 pool->node, "%s", id_buf);
2802 if (IS_ERR(worker->task)) {
2803 if (PTR_ERR(worker->task) == -EINTR) {
2804 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2805 id_buf);
2806 } else {
2807 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2808 worker->task);
2809 }
2810 goto fail;
2811 }
2812
2813 set_user_nice(worker->task, pool->attrs->nice);
2814 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2815 }
2816
2817 /* successful, attach the worker to the pool */
2818 worker_attach_to_pool(worker, pool);
2819
2820 /* start the newly created worker */
2821 raw_spin_lock_irq(&pool->lock);
2822
2823 worker->pool->nr_workers++;
2824 worker_enter_idle(worker);
2825
2826 /*
2827 * @worker is waiting on a completion in kthread() and will trigger hung
2828 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2829 * wake it up explicitly.
2830 */
2831 if (worker->task)
2832 wake_up_process(worker->task);
2833
2834 raw_spin_unlock_irq(&pool->lock);
2835
2836 return worker;
2837
2838 fail:
2839 ida_free(&pool->worker_ida, id);
2840 kfree(worker);
2841 return NULL;
2842 }
2843
detach_dying_workers(struct list_head * cull_list)2844 static void detach_dying_workers(struct list_head *cull_list)
2845 {
2846 struct worker *worker;
2847
2848 list_for_each_entry(worker, cull_list, entry)
2849 detach_worker(worker);
2850 }
2851
reap_dying_workers(struct list_head * cull_list)2852 static void reap_dying_workers(struct list_head *cull_list)
2853 {
2854 struct worker *worker, *tmp;
2855
2856 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2857 list_del_init(&worker->entry);
2858 kthread_stop_put(worker->task);
2859 kfree(worker);
2860 }
2861 }
2862
2863 /**
2864 * set_worker_dying - Tag a worker for destruction
2865 * @worker: worker to be destroyed
2866 * @list: transfer worker away from its pool->idle_list and into list
2867 *
2868 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2869 * should be idle.
2870 *
2871 * CONTEXT:
2872 * raw_spin_lock_irq(pool->lock).
2873 */
set_worker_dying(struct worker * worker,struct list_head * list)2874 static void set_worker_dying(struct worker *worker, struct list_head *list)
2875 {
2876 struct worker_pool *pool = worker->pool;
2877
2878 lockdep_assert_held(&pool->lock);
2879 lockdep_assert_held(&wq_pool_attach_mutex);
2880
2881 /* sanity check frenzy */
2882 if (WARN_ON(worker->current_work) ||
2883 WARN_ON(!list_empty(&worker->scheduled)) ||
2884 WARN_ON(!(worker->flags & WORKER_IDLE)))
2885 return;
2886
2887 pool->nr_workers--;
2888 pool->nr_idle--;
2889
2890 worker->flags |= WORKER_DIE;
2891
2892 list_move(&worker->entry, list);
2893
2894 /* get an extra task struct reference for later kthread_stop_put() */
2895 get_task_struct(worker->task);
2896 }
2897
2898 /**
2899 * idle_worker_timeout - check if some idle workers can now be deleted.
2900 * @t: The pool's idle_timer that just expired
2901 *
2902 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2903 * worker_leave_idle(), as a worker flicking between idle and active while its
2904 * pool is at the too_many_workers() tipping point would cause too much timer
2905 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2906 * it expire and re-evaluate things from there.
2907 */
idle_worker_timeout(struct timer_list * t)2908 static void idle_worker_timeout(struct timer_list *t)
2909 {
2910 struct worker_pool *pool = timer_container_of(pool, t, idle_timer);
2911 bool do_cull = false;
2912
2913 if (work_pending(&pool->idle_cull_work))
2914 return;
2915
2916 raw_spin_lock_irq(&pool->lock);
2917
2918 if (too_many_workers(pool)) {
2919 struct worker *worker;
2920 unsigned long expires;
2921
2922 /* idle_list is kept in LIFO order, check the last one */
2923 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2924 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2925 do_cull = !time_before(jiffies, expires);
2926
2927 if (!do_cull)
2928 mod_timer(&pool->idle_timer, expires);
2929 }
2930 raw_spin_unlock_irq(&pool->lock);
2931
2932 if (do_cull)
2933 queue_work(system_unbound_wq, &pool->idle_cull_work);
2934 }
2935
2936 /**
2937 * idle_cull_fn - cull workers that have been idle for too long.
2938 * @work: the pool's work for handling these idle workers
2939 *
2940 * This goes through a pool's idle workers and gets rid of those that have been
2941 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2942 *
2943 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2944 * culled, so this also resets worker affinity. This requires a sleepable
2945 * context, hence the split between timer callback and work item.
2946 */
idle_cull_fn(struct work_struct * work)2947 static void idle_cull_fn(struct work_struct *work)
2948 {
2949 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2950 LIST_HEAD(cull_list);
2951
2952 /*
2953 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2954 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2955 * This is required as a previously-preempted worker could run after
2956 * set_worker_dying() has happened but before detach_dying_workers() did.
2957 */
2958 mutex_lock(&wq_pool_attach_mutex);
2959 raw_spin_lock_irq(&pool->lock);
2960
2961 while (too_many_workers(pool)) {
2962 struct worker *worker;
2963 unsigned long expires;
2964
2965 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2966 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2967
2968 if (time_before(jiffies, expires)) {
2969 mod_timer(&pool->idle_timer, expires);
2970 break;
2971 }
2972
2973 set_worker_dying(worker, &cull_list);
2974 }
2975
2976 raw_spin_unlock_irq(&pool->lock);
2977 detach_dying_workers(&cull_list);
2978 mutex_unlock(&wq_pool_attach_mutex);
2979
2980 reap_dying_workers(&cull_list);
2981 }
2982
send_mayday(struct work_struct * work)2983 static void send_mayday(struct work_struct *work)
2984 {
2985 struct pool_workqueue *pwq = get_work_pwq(work);
2986 struct workqueue_struct *wq = pwq->wq;
2987
2988 lockdep_assert_held(&wq_mayday_lock);
2989
2990 if (!wq->rescuer)
2991 return;
2992
2993 /* mayday mayday mayday */
2994 if (list_empty(&pwq->mayday_node)) {
2995 /*
2996 * If @pwq is for an unbound wq, its base ref may be put at
2997 * any time due to an attribute change. Pin @pwq until the
2998 * rescuer is done with it.
2999 */
3000 get_pwq(pwq);
3001 list_add_tail(&pwq->mayday_node, &wq->maydays);
3002 wake_up_process(wq->rescuer->task);
3003 pwq->stats[PWQ_STAT_MAYDAY]++;
3004 }
3005 }
3006
pool_mayday_timeout(struct timer_list * t)3007 static void pool_mayday_timeout(struct timer_list *t)
3008 {
3009 struct worker_pool *pool = timer_container_of(pool, t, mayday_timer);
3010 struct work_struct *work;
3011
3012 raw_spin_lock_irq(&pool->lock);
3013 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
3014
3015 if (need_to_create_worker(pool)) {
3016 /*
3017 * We've been trying to create a new worker but
3018 * haven't been successful. We might be hitting an
3019 * allocation deadlock. Send distress signals to
3020 * rescuers.
3021 */
3022 list_for_each_entry(work, &pool->worklist, entry)
3023 send_mayday(work);
3024 }
3025
3026 raw_spin_unlock(&wq_mayday_lock);
3027 raw_spin_unlock_irq(&pool->lock);
3028
3029 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3030 }
3031
3032 /**
3033 * maybe_create_worker - create a new worker if necessary
3034 * @pool: pool to create a new worker for
3035 *
3036 * Create a new worker for @pool if necessary. @pool is guaranteed to
3037 * have at least one idle worker on return from this function. If
3038 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3039 * sent to all rescuers with works scheduled on @pool to resolve
3040 * possible allocation deadlock.
3041 *
3042 * On return, need_to_create_worker() is guaranteed to be %false and
3043 * may_start_working() %true.
3044 *
3045 * LOCKING:
3046 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3047 * multiple times. Does GFP_KERNEL allocations. Called only from
3048 * manager.
3049 */
maybe_create_worker(struct worker_pool * pool)3050 static void maybe_create_worker(struct worker_pool *pool)
3051 __releases(&pool->lock)
3052 __acquires(&pool->lock)
3053 {
3054 restart:
3055 raw_spin_unlock_irq(&pool->lock);
3056
3057 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3058 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3059
3060 while (true) {
3061 if (create_worker(pool) || !need_to_create_worker(pool))
3062 break;
3063
3064 schedule_timeout_interruptible(CREATE_COOLDOWN);
3065
3066 if (!need_to_create_worker(pool))
3067 break;
3068 }
3069
3070 timer_delete_sync(&pool->mayday_timer);
3071 raw_spin_lock_irq(&pool->lock);
3072 /*
3073 * This is necessary even after a new worker was just successfully
3074 * created as @pool->lock was dropped and the new worker might have
3075 * already become busy.
3076 */
3077 if (need_to_create_worker(pool))
3078 goto restart;
3079 }
3080
3081 /**
3082 * manage_workers - manage worker pool
3083 * @worker: self
3084 *
3085 * Assume the manager role and manage the worker pool @worker belongs
3086 * to. At any given time, there can be only zero or one manager per
3087 * pool. The exclusion is handled automatically by this function.
3088 *
3089 * The caller can safely start processing works on false return. On
3090 * true return, it's guaranteed that need_to_create_worker() is false
3091 * and may_start_working() is true.
3092 *
3093 * CONTEXT:
3094 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3095 * multiple times. Does GFP_KERNEL allocations.
3096 *
3097 * Return:
3098 * %false if the pool doesn't need management and the caller can safely
3099 * start processing works, %true if management function was performed and
3100 * the conditions that the caller verified before calling the function may
3101 * no longer be true.
3102 */
manage_workers(struct worker * worker)3103 static bool manage_workers(struct worker *worker)
3104 {
3105 struct worker_pool *pool = worker->pool;
3106
3107 if (pool->flags & POOL_MANAGER_ACTIVE)
3108 return false;
3109
3110 pool->flags |= POOL_MANAGER_ACTIVE;
3111 pool->manager = worker;
3112
3113 maybe_create_worker(pool);
3114
3115 pool->manager = NULL;
3116 pool->flags &= ~POOL_MANAGER_ACTIVE;
3117 rcuwait_wake_up(&manager_wait);
3118 return true;
3119 }
3120
3121 /**
3122 * process_one_work - process single work
3123 * @worker: self
3124 * @work: work to process
3125 *
3126 * Process @work. This function contains all the logics necessary to
3127 * process a single work including synchronization against and
3128 * interaction with other workers on the same cpu, queueing and
3129 * flushing. As long as context requirement is met, any worker can
3130 * call this function to process a work.
3131 *
3132 * CONTEXT:
3133 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3134 */
process_one_work(struct worker * worker,struct work_struct * work)3135 static void process_one_work(struct worker *worker, struct work_struct *work)
3136 __releases(&pool->lock)
3137 __acquires(&pool->lock)
3138 {
3139 struct pool_workqueue *pwq = get_work_pwq(work);
3140 struct worker_pool *pool = worker->pool;
3141 unsigned long work_data;
3142 int lockdep_start_depth, rcu_start_depth;
3143 bool bh_draining = pool->flags & POOL_BH_DRAINING;
3144 #ifdef CONFIG_LOCKDEP
3145 /*
3146 * It is permissible to free the struct work_struct from
3147 * inside the function that is called from it, this we need to
3148 * take into account for lockdep too. To avoid bogus "held
3149 * lock freed" warnings as well as problems when looking into
3150 * work->lockdep_map, make a copy and use that here.
3151 */
3152 struct lockdep_map lockdep_map;
3153
3154 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3155 #endif
3156 /* ensure we're on the correct CPU */
3157 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3158 raw_smp_processor_id() != pool->cpu);
3159
3160 /* claim and dequeue */
3161 debug_work_deactivate(work);
3162 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3163 worker->current_work = work;
3164 worker->current_func = work->func;
3165 worker->current_pwq = pwq;
3166 if (worker->task)
3167 worker->current_at = worker->task->se.sum_exec_runtime;
3168 work_data = *work_data_bits(work);
3169 worker->current_color = get_work_color(work_data);
3170
3171 /*
3172 * Record wq name for cmdline and debug reporting, may get
3173 * overridden through set_worker_desc().
3174 */
3175 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3176
3177 list_del_init(&work->entry);
3178
3179 /*
3180 * CPU intensive works don't participate in concurrency management.
3181 * They're the scheduler's responsibility. This takes @worker out
3182 * of concurrency management and the next code block will chain
3183 * execution of the pending work items.
3184 */
3185 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3186 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3187
3188 /*
3189 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3190 * since nr_running would always be >= 1 at this point. This is used to
3191 * chain execution of the pending work items for WORKER_NOT_RUNNING
3192 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3193 */
3194 kick_pool(pool);
3195
3196 /*
3197 * Record the last pool and clear PENDING which should be the last
3198 * update to @work. Also, do this inside @pool->lock so that
3199 * PENDING and queued state changes happen together while IRQ is
3200 * disabled.
3201 */
3202 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3203
3204 pwq->stats[PWQ_STAT_STARTED]++;
3205 raw_spin_unlock_irq(&pool->lock);
3206
3207 rcu_start_depth = rcu_preempt_depth();
3208 lockdep_start_depth = lockdep_depth(current);
3209 /* see drain_dead_softirq_workfn() */
3210 if (!bh_draining)
3211 lock_map_acquire(pwq->wq->lockdep_map);
3212 lock_map_acquire(&lockdep_map);
3213 /*
3214 * Strictly speaking we should mark the invariant state without holding
3215 * any locks, that is, before these two lock_map_acquire()'s.
3216 *
3217 * However, that would result in:
3218 *
3219 * A(W1)
3220 * WFC(C)
3221 * A(W1)
3222 * C(C)
3223 *
3224 * Which would create W1->C->W1 dependencies, even though there is no
3225 * actual deadlock possible. There are two solutions, using a
3226 * read-recursive acquire on the work(queue) 'locks', but this will then
3227 * hit the lockdep limitation on recursive locks, or simply discard
3228 * these locks.
3229 *
3230 * AFAICT there is no possible deadlock scenario between the
3231 * flush_work() and complete() primitives (except for single-threaded
3232 * workqueues), so hiding them isn't a problem.
3233 */
3234 lockdep_invariant_state(true);
3235 trace_workqueue_execute_start(work);
3236 worker->current_func(work);
3237 /*
3238 * While we must be careful to not use "work" after this, the trace
3239 * point will only record its address.
3240 */
3241 trace_workqueue_execute_end(work, worker->current_func);
3242
3243 lock_map_release(&lockdep_map);
3244 if (!bh_draining)
3245 lock_map_release(pwq->wq->lockdep_map);
3246
3247 if (unlikely((worker->task && in_atomic()) ||
3248 lockdep_depth(current) != lockdep_start_depth ||
3249 rcu_preempt_depth() != rcu_start_depth)) {
3250 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3251 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3252 current->comm, task_pid_nr(current), preempt_count(),
3253 lockdep_start_depth, lockdep_depth(current),
3254 rcu_start_depth, rcu_preempt_depth(),
3255 worker->current_func);
3256 debug_show_held_locks(current);
3257 dump_stack();
3258 }
3259
3260 /*
3261 * The following prevents a kworker from hogging CPU on !PREEMPTION
3262 * kernels, where a requeueing work item waiting for something to
3263 * happen could deadlock with stop_machine as such work item could
3264 * indefinitely requeue itself while all other CPUs are trapped in
3265 * stop_machine. At the same time, report a quiescent RCU state so
3266 * the same condition doesn't freeze RCU.
3267 */
3268 if (worker->task)
3269 cond_resched();
3270
3271 raw_spin_lock_irq(&pool->lock);
3272
3273 pwq->stats[PWQ_STAT_COMPLETED]++;
3274
3275 /*
3276 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3277 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3278 * wq_cpu_intensive_thresh_us. Clear it.
3279 */
3280 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3281
3282 /* tag the worker for identification in schedule() */
3283 worker->last_func = worker->current_func;
3284
3285 /* we're done with it, release */
3286 hash_del(&worker->hentry);
3287 worker->current_work = NULL;
3288 worker->current_func = NULL;
3289 worker->current_pwq = NULL;
3290 worker->current_color = INT_MAX;
3291
3292 /* must be the last step, see the function comment */
3293 pwq_dec_nr_in_flight(pwq, work_data);
3294 }
3295
3296 /**
3297 * process_scheduled_works - process scheduled works
3298 * @worker: self
3299 *
3300 * Process all scheduled works. Please note that the scheduled list
3301 * may change while processing a work, so this function repeatedly
3302 * fetches a work from the top and executes it.
3303 *
3304 * CONTEXT:
3305 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3306 * multiple times.
3307 */
process_scheduled_works(struct worker * worker)3308 static void process_scheduled_works(struct worker *worker)
3309 {
3310 struct work_struct *work;
3311 bool first = true;
3312
3313 while ((work = list_first_entry_or_null(&worker->scheduled,
3314 struct work_struct, entry))) {
3315 if (first) {
3316 worker->pool->watchdog_ts = jiffies;
3317 first = false;
3318 }
3319 process_one_work(worker, work);
3320 }
3321 }
3322
set_pf_worker(bool val)3323 static void set_pf_worker(bool val)
3324 {
3325 mutex_lock(&wq_pool_attach_mutex);
3326 if (val)
3327 current->flags |= PF_WQ_WORKER;
3328 else
3329 current->flags &= ~PF_WQ_WORKER;
3330 mutex_unlock(&wq_pool_attach_mutex);
3331 }
3332
3333 /**
3334 * worker_thread - the worker thread function
3335 * @__worker: self
3336 *
3337 * The worker thread function. All workers belong to a worker_pool -
3338 * either a per-cpu one or dynamic unbound one. These workers process all
3339 * work items regardless of their specific target workqueue. The only
3340 * exception is work items which belong to workqueues with a rescuer which
3341 * will be explained in rescuer_thread().
3342 *
3343 * Return: 0
3344 */
worker_thread(void * __worker)3345 static int worker_thread(void *__worker)
3346 {
3347 struct worker *worker = __worker;
3348 struct worker_pool *pool = worker->pool;
3349
3350 /* tell the scheduler that this is a workqueue worker */
3351 set_pf_worker(true);
3352 woke_up:
3353 raw_spin_lock_irq(&pool->lock);
3354
3355 /* am I supposed to die? */
3356 if (unlikely(worker->flags & WORKER_DIE)) {
3357 raw_spin_unlock_irq(&pool->lock);
3358 set_pf_worker(false);
3359 /*
3360 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3361 * shouldn't be accessed, reset it to NULL in case otherwise.
3362 */
3363 worker->pool = NULL;
3364 ida_free(&pool->worker_ida, worker->id);
3365 return 0;
3366 }
3367
3368 worker_leave_idle(worker);
3369 recheck:
3370 /* no more worker necessary? */
3371 if (!need_more_worker(pool))
3372 goto sleep;
3373
3374 /* do we need to manage? */
3375 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3376 goto recheck;
3377
3378 /*
3379 * ->scheduled list can only be filled while a worker is
3380 * preparing to process a work or actually processing it.
3381 * Make sure nobody diddled with it while I was sleeping.
3382 */
3383 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3384
3385 /*
3386 * Finish PREP stage. We're guaranteed to have at least one idle
3387 * worker or that someone else has already assumed the manager
3388 * role. This is where @worker starts participating in concurrency
3389 * management if applicable and concurrency management is restored
3390 * after being rebound. See rebind_workers() for details.
3391 */
3392 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3393
3394 do {
3395 struct work_struct *work =
3396 list_first_entry(&pool->worklist,
3397 struct work_struct, entry);
3398
3399 if (assign_work(work, worker, NULL))
3400 process_scheduled_works(worker);
3401 } while (keep_working(pool));
3402
3403 worker_set_flags(worker, WORKER_PREP);
3404 sleep:
3405 /*
3406 * pool->lock is held and there's no work to process and no need to
3407 * manage, sleep. Workers are woken up only while holding
3408 * pool->lock or from local cpu, so setting the current state
3409 * before releasing pool->lock is enough to prevent losing any
3410 * event.
3411 */
3412 worker_enter_idle(worker);
3413 __set_current_state(TASK_IDLE);
3414 raw_spin_unlock_irq(&pool->lock);
3415 schedule();
3416 goto woke_up;
3417 }
3418
3419 /**
3420 * rescuer_thread - the rescuer thread function
3421 * @__rescuer: self
3422 *
3423 * Workqueue rescuer thread function. There's one rescuer for each
3424 * workqueue which has WQ_MEM_RECLAIM set.
3425 *
3426 * Regular work processing on a pool may block trying to create a new
3427 * worker which uses GFP_KERNEL allocation which has slight chance of
3428 * developing into deadlock if some works currently on the same queue
3429 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3430 * the problem rescuer solves.
3431 *
3432 * When such condition is possible, the pool summons rescuers of all
3433 * workqueues which have works queued on the pool and let them process
3434 * those works so that forward progress can be guaranteed.
3435 *
3436 * This should happen rarely.
3437 *
3438 * Return: 0
3439 */
rescuer_thread(void * __rescuer)3440 static int rescuer_thread(void *__rescuer)
3441 {
3442 struct worker *rescuer = __rescuer;
3443 struct workqueue_struct *wq = rescuer->rescue_wq;
3444 bool should_stop;
3445
3446 set_user_nice(current, RESCUER_NICE_LEVEL);
3447
3448 /*
3449 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3450 * doesn't participate in concurrency management.
3451 */
3452 set_pf_worker(true);
3453 repeat:
3454 set_current_state(TASK_IDLE);
3455
3456 /*
3457 * By the time the rescuer is requested to stop, the workqueue
3458 * shouldn't have any work pending, but @wq->maydays may still have
3459 * pwq(s) queued. This can happen by non-rescuer workers consuming
3460 * all the work items before the rescuer got to them. Go through
3461 * @wq->maydays processing before acting on should_stop so that the
3462 * list is always empty on exit.
3463 */
3464 should_stop = kthread_should_stop();
3465
3466 /* see whether any pwq is asking for help */
3467 raw_spin_lock_irq(&wq_mayday_lock);
3468
3469 while (!list_empty(&wq->maydays)) {
3470 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3471 struct pool_workqueue, mayday_node);
3472 struct worker_pool *pool = pwq->pool;
3473 struct work_struct *work, *n;
3474
3475 __set_current_state(TASK_RUNNING);
3476 list_del_init(&pwq->mayday_node);
3477
3478 raw_spin_unlock_irq(&wq_mayday_lock);
3479
3480 worker_attach_to_pool(rescuer, pool);
3481
3482 raw_spin_lock_irq(&pool->lock);
3483
3484 /*
3485 * Slurp in all works issued via this workqueue and
3486 * process'em.
3487 */
3488 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3489 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3490 if (get_work_pwq(work) == pwq &&
3491 assign_work(work, rescuer, &n))
3492 pwq->stats[PWQ_STAT_RESCUED]++;
3493 }
3494
3495 if (!list_empty(&rescuer->scheduled)) {
3496 process_scheduled_works(rescuer);
3497
3498 /*
3499 * The above execution of rescued work items could
3500 * have created more to rescue through
3501 * pwq_activate_first_inactive() or chained
3502 * queueing. Let's put @pwq back on mayday list so
3503 * that such back-to-back work items, which may be
3504 * being used to relieve memory pressure, don't
3505 * incur MAYDAY_INTERVAL delay inbetween.
3506 */
3507 if (pwq->nr_active && need_to_create_worker(pool)) {
3508 raw_spin_lock(&wq_mayday_lock);
3509 /*
3510 * Queue iff we aren't racing destruction
3511 * and somebody else hasn't queued it already.
3512 */
3513 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3514 get_pwq(pwq);
3515 list_add_tail(&pwq->mayday_node, &wq->maydays);
3516 }
3517 raw_spin_unlock(&wq_mayday_lock);
3518 }
3519 }
3520
3521 /*
3522 * Leave this pool. Notify regular workers; otherwise, we end up
3523 * with 0 concurrency and stalling the execution.
3524 */
3525 kick_pool(pool);
3526
3527 raw_spin_unlock_irq(&pool->lock);
3528
3529 worker_detach_from_pool(rescuer);
3530
3531 /*
3532 * Put the reference grabbed by send_mayday(). @pool might
3533 * go away any time after it.
3534 */
3535 put_pwq_unlocked(pwq);
3536
3537 raw_spin_lock_irq(&wq_mayday_lock);
3538 }
3539
3540 raw_spin_unlock_irq(&wq_mayday_lock);
3541
3542 if (should_stop) {
3543 __set_current_state(TASK_RUNNING);
3544 set_pf_worker(false);
3545 return 0;
3546 }
3547
3548 /* rescuers should never participate in concurrency management */
3549 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3550 schedule();
3551 goto repeat;
3552 }
3553
bh_worker(struct worker * worker)3554 static void bh_worker(struct worker *worker)
3555 {
3556 struct worker_pool *pool = worker->pool;
3557 int nr_restarts = BH_WORKER_RESTARTS;
3558 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3559
3560 raw_spin_lock_irq(&pool->lock);
3561 worker_leave_idle(worker);
3562
3563 /*
3564 * This function follows the structure of worker_thread(). See there for
3565 * explanations on each step.
3566 */
3567 if (!need_more_worker(pool))
3568 goto done;
3569
3570 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3571 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3572
3573 do {
3574 struct work_struct *work =
3575 list_first_entry(&pool->worklist,
3576 struct work_struct, entry);
3577
3578 if (assign_work(work, worker, NULL))
3579 process_scheduled_works(worker);
3580 } while (keep_working(pool) &&
3581 --nr_restarts && time_before(jiffies, end));
3582
3583 worker_set_flags(worker, WORKER_PREP);
3584 done:
3585 worker_enter_idle(worker);
3586 kick_pool(pool);
3587 raw_spin_unlock_irq(&pool->lock);
3588 }
3589
3590 /*
3591 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3592 *
3593 * This is currently called from tasklet[_hi]action() and thus is also called
3594 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3595 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3596 * can be dropped.
3597 *
3598 * After full conversion, we'll add worker->softirq_action, directly use the
3599 * softirq action and obtain the worker pointer from the softirq_action pointer.
3600 */
workqueue_softirq_action(bool highpri)3601 void workqueue_softirq_action(bool highpri)
3602 {
3603 struct worker_pool *pool =
3604 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3605 if (need_more_worker(pool))
3606 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3607 }
3608
3609 struct wq_drain_dead_softirq_work {
3610 struct work_struct work;
3611 struct worker_pool *pool;
3612 struct completion done;
3613 };
3614
drain_dead_softirq_workfn(struct work_struct * work)3615 static void drain_dead_softirq_workfn(struct work_struct *work)
3616 {
3617 struct wq_drain_dead_softirq_work *dead_work =
3618 container_of(work, struct wq_drain_dead_softirq_work, work);
3619 struct worker_pool *pool = dead_work->pool;
3620 bool repeat;
3621
3622 /*
3623 * @pool's CPU is dead and we want to execute its still pending work
3624 * items from this BH work item which is running on a different CPU. As
3625 * its CPU is dead, @pool can't be kicked and, as work execution path
3626 * will be nested, a lockdep annotation needs to be suppressed. Mark
3627 * @pool with %POOL_BH_DRAINING for the special treatments.
3628 */
3629 raw_spin_lock_irq(&pool->lock);
3630 pool->flags |= POOL_BH_DRAINING;
3631 raw_spin_unlock_irq(&pool->lock);
3632
3633 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3634
3635 raw_spin_lock_irq(&pool->lock);
3636 pool->flags &= ~POOL_BH_DRAINING;
3637 repeat = need_more_worker(pool);
3638 raw_spin_unlock_irq(&pool->lock);
3639
3640 /*
3641 * bh_worker() might hit consecutive execution limit and bail. If there
3642 * still are pending work items, reschedule self and return so that we
3643 * don't hog this CPU's BH.
3644 */
3645 if (repeat) {
3646 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3647 queue_work(system_bh_highpri_wq, work);
3648 else
3649 queue_work(system_bh_wq, work);
3650 } else {
3651 complete(&dead_work->done);
3652 }
3653 }
3654
3655 /*
3656 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3657 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3658 * have to worry about draining overlapping with CPU coming back online or
3659 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3660 * on). Let's keep it simple and drain them synchronously. These are BH work
3661 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3662 */
workqueue_softirq_dead(unsigned int cpu)3663 void workqueue_softirq_dead(unsigned int cpu)
3664 {
3665 int i;
3666
3667 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3668 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3669 struct wq_drain_dead_softirq_work dead_work;
3670
3671 if (!need_more_worker(pool))
3672 continue;
3673
3674 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3675 dead_work.pool = pool;
3676 init_completion(&dead_work.done);
3677
3678 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3679 queue_work(system_bh_highpri_wq, &dead_work.work);
3680 else
3681 queue_work(system_bh_wq, &dead_work.work);
3682
3683 wait_for_completion(&dead_work.done);
3684 destroy_work_on_stack(&dead_work.work);
3685 }
3686 }
3687
3688 /**
3689 * check_flush_dependency - check for flush dependency sanity
3690 * @target_wq: workqueue being flushed
3691 * @target_work: work item being flushed (NULL for workqueue flushes)
3692 * @from_cancel: are we called from the work cancel path
3693 *
3694 * %current is trying to flush the whole @target_wq or @target_work on it.
3695 * If this is not the cancel path (which implies work being flushed is either
3696 * already running, or will not be at all), check if @target_wq doesn't have
3697 * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3698 * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3699 * progress guarantee leading to a deadlock.
3700 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work,bool from_cancel)3701 static void check_flush_dependency(struct workqueue_struct *target_wq,
3702 struct work_struct *target_work,
3703 bool from_cancel)
3704 {
3705 work_func_t target_func;
3706 struct worker *worker;
3707
3708 if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3709 return;
3710
3711 worker = current_wq_worker();
3712 target_func = target_work ? target_work->func : NULL;
3713
3714 WARN_ONCE(current->flags & PF_MEMALLOC,
3715 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3716 current->pid, current->comm, target_wq->name, target_func);
3717 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3718 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3719 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3720 worker->current_pwq->wq->name, worker->current_func,
3721 target_wq->name, target_func);
3722 }
3723
3724 struct wq_barrier {
3725 struct work_struct work;
3726 struct completion done;
3727 struct task_struct *task; /* purely informational */
3728 };
3729
wq_barrier_func(struct work_struct * work)3730 static void wq_barrier_func(struct work_struct *work)
3731 {
3732 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3733 complete(&barr->done);
3734 }
3735
3736 /**
3737 * insert_wq_barrier - insert a barrier work
3738 * @pwq: pwq to insert barrier into
3739 * @barr: wq_barrier to insert
3740 * @target: target work to attach @barr to
3741 * @worker: worker currently executing @target, NULL if @target is not executing
3742 *
3743 * @barr is linked to @target such that @barr is completed only after
3744 * @target finishes execution. Please note that the ordering
3745 * guarantee is observed only with respect to @target and on the local
3746 * cpu.
3747 *
3748 * Currently, a queued barrier can't be canceled. This is because
3749 * try_to_grab_pending() can't determine whether the work to be
3750 * grabbed is at the head of the queue and thus can't clear LINKED
3751 * flag of the previous work while there must be a valid next work
3752 * after a work with LINKED flag set.
3753 *
3754 * Note that when @worker is non-NULL, @target may be modified
3755 * underneath us, so we can't reliably determine pwq from @target.
3756 *
3757 * CONTEXT:
3758 * raw_spin_lock_irq(pool->lock).
3759 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3760 static void insert_wq_barrier(struct pool_workqueue *pwq,
3761 struct wq_barrier *barr,
3762 struct work_struct *target, struct worker *worker)
3763 {
3764 static __maybe_unused struct lock_class_key bh_key, thr_key;
3765 unsigned int work_flags = 0;
3766 unsigned int work_color;
3767 struct list_head *head;
3768
3769 /*
3770 * debugobject calls are safe here even with pool->lock locked
3771 * as we know for sure that this will not trigger any of the
3772 * checks and call back into the fixup functions where we
3773 * might deadlock.
3774 *
3775 * BH and threaded workqueues need separate lockdep keys to avoid
3776 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3777 * usage".
3778 */
3779 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3780 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3781 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3782
3783 init_completion_map(&barr->done, &target->lockdep_map);
3784
3785 barr->task = current;
3786
3787 /* The barrier work item does not participate in nr_active. */
3788 work_flags |= WORK_STRUCT_INACTIVE;
3789
3790 /*
3791 * If @target is currently being executed, schedule the
3792 * barrier to the worker; otherwise, put it after @target.
3793 */
3794 if (worker) {
3795 head = worker->scheduled.next;
3796 work_color = worker->current_color;
3797 } else {
3798 unsigned long *bits = work_data_bits(target);
3799
3800 head = target->entry.next;
3801 /* there can already be other linked works, inherit and set */
3802 work_flags |= *bits & WORK_STRUCT_LINKED;
3803 work_color = get_work_color(*bits);
3804 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3805 }
3806
3807 pwq->nr_in_flight[work_color]++;
3808 work_flags |= work_color_to_flags(work_color);
3809
3810 insert_work(pwq, &barr->work, head, work_flags);
3811 }
3812
3813 /**
3814 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3815 * @wq: workqueue being flushed
3816 * @flush_color: new flush color, < 0 for no-op
3817 * @work_color: new work color, < 0 for no-op
3818 *
3819 * Prepare pwqs for workqueue flushing.
3820 *
3821 * If @flush_color is non-negative, flush_color on all pwqs should be
3822 * -1. If no pwq has in-flight commands at the specified color, all
3823 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3824 * has in flight commands, its pwq->flush_color is set to
3825 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3826 * wakeup logic is armed and %true is returned.
3827 *
3828 * The caller should have initialized @wq->first_flusher prior to
3829 * calling this function with non-negative @flush_color. If
3830 * @flush_color is negative, no flush color update is done and %false
3831 * is returned.
3832 *
3833 * If @work_color is non-negative, all pwqs should have the same
3834 * work_color which is previous to @work_color and all will be
3835 * advanced to @work_color.
3836 *
3837 * CONTEXT:
3838 * mutex_lock(wq->mutex).
3839 *
3840 * Return:
3841 * %true if @flush_color >= 0 and there's something to flush. %false
3842 * otherwise.
3843 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3844 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3845 int flush_color, int work_color)
3846 {
3847 bool wait = false;
3848 struct pool_workqueue *pwq;
3849 struct worker_pool *current_pool = NULL;
3850
3851 if (flush_color >= 0) {
3852 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3853 atomic_set(&wq->nr_pwqs_to_flush, 1);
3854 }
3855
3856 /*
3857 * For unbound workqueue, pwqs will map to only a few pools.
3858 * Most of the time, pwqs within the same pool will be linked
3859 * sequentially to wq->pwqs by cpu index. So in the majority
3860 * of pwq iters, the pool is the same, only doing lock/unlock
3861 * if the pool has changed. This can largely reduce expensive
3862 * lock operations.
3863 */
3864 for_each_pwq(pwq, wq) {
3865 if (current_pool != pwq->pool) {
3866 if (likely(current_pool))
3867 raw_spin_unlock_irq(¤t_pool->lock);
3868 current_pool = pwq->pool;
3869 raw_spin_lock_irq(¤t_pool->lock);
3870 }
3871
3872 if (flush_color >= 0) {
3873 WARN_ON_ONCE(pwq->flush_color != -1);
3874
3875 if (pwq->nr_in_flight[flush_color]) {
3876 pwq->flush_color = flush_color;
3877 atomic_inc(&wq->nr_pwqs_to_flush);
3878 wait = true;
3879 }
3880 }
3881
3882 if (work_color >= 0) {
3883 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3884 pwq->work_color = work_color;
3885 }
3886
3887 }
3888
3889 if (current_pool)
3890 raw_spin_unlock_irq(¤t_pool->lock);
3891
3892 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3893 complete(&wq->first_flusher->done);
3894
3895 return wait;
3896 }
3897
touch_wq_lockdep_map(struct workqueue_struct * wq)3898 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3899 {
3900 #ifdef CONFIG_LOCKDEP
3901 if (unlikely(!wq->lockdep_map))
3902 return;
3903
3904 if (wq->flags & WQ_BH)
3905 local_bh_disable();
3906
3907 lock_map_acquire(wq->lockdep_map);
3908 lock_map_release(wq->lockdep_map);
3909
3910 if (wq->flags & WQ_BH)
3911 local_bh_enable();
3912 #endif
3913 }
3914
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3915 static void touch_work_lockdep_map(struct work_struct *work,
3916 struct workqueue_struct *wq)
3917 {
3918 #ifdef CONFIG_LOCKDEP
3919 if (wq->flags & WQ_BH)
3920 local_bh_disable();
3921
3922 lock_map_acquire(&work->lockdep_map);
3923 lock_map_release(&work->lockdep_map);
3924
3925 if (wq->flags & WQ_BH)
3926 local_bh_enable();
3927 #endif
3928 }
3929
3930 /**
3931 * __flush_workqueue - ensure that any scheduled work has run to completion.
3932 * @wq: workqueue to flush
3933 *
3934 * This function sleeps until all work items which were queued on entry
3935 * have finished execution, but it is not livelocked by new incoming ones.
3936 */
__flush_workqueue(struct workqueue_struct * wq)3937 void __flush_workqueue(struct workqueue_struct *wq)
3938 {
3939 struct wq_flusher this_flusher = {
3940 .list = LIST_HEAD_INIT(this_flusher.list),
3941 .flush_color = -1,
3942 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3943 };
3944 int next_color;
3945
3946 if (WARN_ON(!wq_online))
3947 return;
3948
3949 touch_wq_lockdep_map(wq);
3950
3951 mutex_lock(&wq->mutex);
3952
3953 /*
3954 * Start-to-wait phase
3955 */
3956 next_color = work_next_color(wq->work_color);
3957
3958 if (next_color != wq->flush_color) {
3959 /*
3960 * Color space is not full. The current work_color
3961 * becomes our flush_color and work_color is advanced
3962 * by one.
3963 */
3964 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3965 this_flusher.flush_color = wq->work_color;
3966 wq->work_color = next_color;
3967
3968 if (!wq->first_flusher) {
3969 /* no flush in progress, become the first flusher */
3970 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3971
3972 wq->first_flusher = &this_flusher;
3973
3974 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3975 wq->work_color)) {
3976 /* nothing to flush, done */
3977 wq->flush_color = next_color;
3978 wq->first_flusher = NULL;
3979 goto out_unlock;
3980 }
3981 } else {
3982 /* wait in queue */
3983 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3984 list_add_tail(&this_flusher.list, &wq->flusher_queue);
3985 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3986 }
3987 } else {
3988 /*
3989 * Oops, color space is full, wait on overflow queue.
3990 * The next flush completion will assign us
3991 * flush_color and transfer to flusher_queue.
3992 */
3993 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3994 }
3995
3996 check_flush_dependency(wq, NULL, false);
3997
3998 mutex_unlock(&wq->mutex);
3999
4000 wait_for_completion(&this_flusher.done);
4001
4002 /*
4003 * Wake-up-and-cascade phase
4004 *
4005 * First flushers are responsible for cascading flushes and
4006 * handling overflow. Non-first flushers can simply return.
4007 */
4008 if (READ_ONCE(wq->first_flusher) != &this_flusher)
4009 return;
4010
4011 mutex_lock(&wq->mutex);
4012
4013 /* we might have raced, check again with mutex held */
4014 if (wq->first_flusher != &this_flusher)
4015 goto out_unlock;
4016
4017 WRITE_ONCE(wq->first_flusher, NULL);
4018
4019 WARN_ON_ONCE(!list_empty(&this_flusher.list));
4020 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4021
4022 while (true) {
4023 struct wq_flusher *next, *tmp;
4024
4025 /* complete all the flushers sharing the current flush color */
4026 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4027 if (next->flush_color != wq->flush_color)
4028 break;
4029 list_del_init(&next->list);
4030 complete(&next->done);
4031 }
4032
4033 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4034 wq->flush_color != work_next_color(wq->work_color));
4035
4036 /* this flush_color is finished, advance by one */
4037 wq->flush_color = work_next_color(wq->flush_color);
4038
4039 /* one color has been freed, handle overflow queue */
4040 if (!list_empty(&wq->flusher_overflow)) {
4041 /*
4042 * Assign the same color to all overflowed
4043 * flushers, advance work_color and append to
4044 * flusher_queue. This is the start-to-wait
4045 * phase for these overflowed flushers.
4046 */
4047 list_for_each_entry(tmp, &wq->flusher_overflow, list)
4048 tmp->flush_color = wq->work_color;
4049
4050 wq->work_color = work_next_color(wq->work_color);
4051
4052 list_splice_tail_init(&wq->flusher_overflow,
4053 &wq->flusher_queue);
4054 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4055 }
4056
4057 if (list_empty(&wq->flusher_queue)) {
4058 WARN_ON_ONCE(wq->flush_color != wq->work_color);
4059 break;
4060 }
4061
4062 /*
4063 * Need to flush more colors. Make the next flusher
4064 * the new first flusher and arm pwqs.
4065 */
4066 WARN_ON_ONCE(wq->flush_color == wq->work_color);
4067 WARN_ON_ONCE(wq->flush_color != next->flush_color);
4068
4069 list_del_init(&next->list);
4070 wq->first_flusher = next;
4071
4072 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4073 break;
4074
4075 /*
4076 * Meh... this color is already done, clear first
4077 * flusher and repeat cascading.
4078 */
4079 wq->first_flusher = NULL;
4080 }
4081
4082 out_unlock:
4083 mutex_unlock(&wq->mutex);
4084 }
4085 EXPORT_SYMBOL(__flush_workqueue);
4086
4087 /**
4088 * drain_workqueue - drain a workqueue
4089 * @wq: workqueue to drain
4090 *
4091 * Wait until the workqueue becomes empty. While draining is in progress,
4092 * only chain queueing is allowed. IOW, only currently pending or running
4093 * work items on @wq can queue further work items on it. @wq is flushed
4094 * repeatedly until it becomes empty. The number of flushing is determined
4095 * by the depth of chaining and should be relatively short. Whine if it
4096 * takes too long.
4097 */
drain_workqueue(struct workqueue_struct * wq)4098 void drain_workqueue(struct workqueue_struct *wq)
4099 {
4100 unsigned int flush_cnt = 0;
4101 struct pool_workqueue *pwq;
4102
4103 /*
4104 * __queue_work() needs to test whether there are drainers, is much
4105 * hotter than drain_workqueue() and already looks at @wq->flags.
4106 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4107 */
4108 mutex_lock(&wq->mutex);
4109 if (!wq->nr_drainers++)
4110 wq->flags |= __WQ_DRAINING;
4111 mutex_unlock(&wq->mutex);
4112 reflush:
4113 __flush_workqueue(wq);
4114
4115 mutex_lock(&wq->mutex);
4116
4117 for_each_pwq(pwq, wq) {
4118 bool drained;
4119
4120 raw_spin_lock_irq(&pwq->pool->lock);
4121 drained = pwq_is_empty(pwq);
4122 raw_spin_unlock_irq(&pwq->pool->lock);
4123
4124 if (drained)
4125 continue;
4126
4127 if (++flush_cnt == 10 ||
4128 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4129 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4130 wq->name, __func__, flush_cnt);
4131
4132 mutex_unlock(&wq->mutex);
4133 goto reflush;
4134 }
4135
4136 if (!--wq->nr_drainers)
4137 wq->flags &= ~__WQ_DRAINING;
4138 mutex_unlock(&wq->mutex);
4139 }
4140 EXPORT_SYMBOL_GPL(drain_workqueue);
4141
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4142 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4143 bool from_cancel)
4144 {
4145 struct worker *worker = NULL;
4146 struct worker_pool *pool;
4147 struct pool_workqueue *pwq;
4148 struct workqueue_struct *wq;
4149
4150 rcu_read_lock();
4151 pool = get_work_pool(work);
4152 if (!pool) {
4153 rcu_read_unlock();
4154 return false;
4155 }
4156
4157 raw_spin_lock_irq(&pool->lock);
4158 /* see the comment in try_to_grab_pending() with the same code */
4159 pwq = get_work_pwq(work);
4160 if (pwq) {
4161 if (unlikely(pwq->pool != pool))
4162 goto already_gone;
4163 } else {
4164 worker = find_worker_executing_work(pool, work);
4165 if (!worker)
4166 goto already_gone;
4167 pwq = worker->current_pwq;
4168 }
4169
4170 wq = pwq->wq;
4171 check_flush_dependency(wq, work, from_cancel);
4172
4173 insert_wq_barrier(pwq, barr, work, worker);
4174 raw_spin_unlock_irq(&pool->lock);
4175
4176 touch_work_lockdep_map(work, wq);
4177
4178 /*
4179 * Force a lock recursion deadlock when using flush_work() inside a
4180 * single-threaded or rescuer equipped workqueue.
4181 *
4182 * For single threaded workqueues the deadlock happens when the work
4183 * is after the work issuing the flush_work(). For rescuer equipped
4184 * workqueues the deadlock happens when the rescuer stalls, blocking
4185 * forward progress.
4186 */
4187 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4188 touch_wq_lockdep_map(wq);
4189
4190 rcu_read_unlock();
4191 return true;
4192 already_gone:
4193 raw_spin_unlock_irq(&pool->lock);
4194 rcu_read_unlock();
4195 return false;
4196 }
4197
__flush_work(struct work_struct * work,bool from_cancel)4198 static bool __flush_work(struct work_struct *work, bool from_cancel)
4199 {
4200 struct wq_barrier barr;
4201
4202 if (WARN_ON(!wq_online))
4203 return false;
4204
4205 if (WARN_ON(!work->func))
4206 return false;
4207
4208 if (!start_flush_work(work, &barr, from_cancel))
4209 return false;
4210
4211 /*
4212 * start_flush_work() returned %true. If @from_cancel is set, we know
4213 * that @work must have been executing during start_flush_work() and
4214 * can't currently be queued. Its data must contain OFFQ bits. If @work
4215 * was queued on a BH workqueue, we also know that it was running in the
4216 * BH context and thus can be busy-waited.
4217 */
4218 if (from_cancel) {
4219 unsigned long data = *work_data_bits(work);
4220
4221 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4222 (data & WORK_OFFQ_BH)) {
4223 /*
4224 * On RT, prevent a live lock when %current preempted
4225 * soft interrupt processing or prevents ksoftirqd from
4226 * running by keeping flipping BH. If the BH work item
4227 * runs on a different CPU then this has no effect other
4228 * than doing the BH disable/enable dance for nothing.
4229 * This is copied from
4230 * kernel/softirq.c::tasklet_unlock_spin_wait().
4231 */
4232 while (!try_wait_for_completion(&barr.done)) {
4233 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4234 local_bh_disable();
4235 local_bh_enable();
4236 } else {
4237 cpu_relax();
4238 }
4239 }
4240 goto out_destroy;
4241 }
4242 }
4243
4244 wait_for_completion(&barr.done);
4245
4246 out_destroy:
4247 destroy_work_on_stack(&barr.work);
4248 return true;
4249 }
4250
4251 /**
4252 * flush_work - wait for a work to finish executing the last queueing instance
4253 * @work: the work to flush
4254 *
4255 * Wait until @work has finished execution. @work is guaranteed to be idle
4256 * on return if it hasn't been requeued since flush started.
4257 *
4258 * Return:
4259 * %true if flush_work() waited for the work to finish execution,
4260 * %false if it was already idle.
4261 */
flush_work(struct work_struct * work)4262 bool flush_work(struct work_struct *work)
4263 {
4264 might_sleep();
4265 return __flush_work(work, false);
4266 }
4267 EXPORT_SYMBOL_GPL(flush_work);
4268
4269 /**
4270 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4271 * @dwork: the delayed work to flush
4272 *
4273 * Delayed timer is cancelled and the pending work is queued for
4274 * immediate execution. Like flush_work(), this function only
4275 * considers the last queueing instance of @dwork.
4276 *
4277 * Return:
4278 * %true if flush_work() waited for the work to finish execution,
4279 * %false if it was already idle.
4280 */
flush_delayed_work(struct delayed_work * dwork)4281 bool flush_delayed_work(struct delayed_work *dwork)
4282 {
4283 local_irq_disable();
4284 if (timer_delete_sync(&dwork->timer))
4285 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
4286 local_irq_enable();
4287 return flush_work(&dwork->work);
4288 }
4289 EXPORT_SYMBOL(flush_delayed_work);
4290
4291 /**
4292 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4293 * @rwork: the rcu work to flush
4294 *
4295 * Return:
4296 * %true if flush_rcu_work() waited for the work to finish execution,
4297 * %false if it was already idle.
4298 */
flush_rcu_work(struct rcu_work * rwork)4299 bool flush_rcu_work(struct rcu_work *rwork)
4300 {
4301 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4302 rcu_barrier();
4303 flush_work(&rwork->work);
4304 return true;
4305 } else {
4306 return flush_work(&rwork->work);
4307 }
4308 }
4309 EXPORT_SYMBOL(flush_rcu_work);
4310
work_offqd_disable(struct work_offq_data * offqd)4311 static void work_offqd_disable(struct work_offq_data *offqd)
4312 {
4313 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4314
4315 if (likely(offqd->disable < max))
4316 offqd->disable++;
4317 else
4318 WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4319 }
4320
work_offqd_enable(struct work_offq_data * offqd)4321 static void work_offqd_enable(struct work_offq_data *offqd)
4322 {
4323 if (likely(offqd->disable > 0))
4324 offqd->disable--;
4325 else
4326 WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4327 }
4328
__cancel_work(struct work_struct * work,u32 cflags)4329 static bool __cancel_work(struct work_struct *work, u32 cflags)
4330 {
4331 struct work_offq_data offqd;
4332 unsigned long irq_flags;
4333 int ret;
4334
4335 ret = work_grab_pending(work, cflags, &irq_flags);
4336
4337 work_offqd_unpack(&offqd, *work_data_bits(work));
4338
4339 if (cflags & WORK_CANCEL_DISABLE)
4340 work_offqd_disable(&offqd);
4341
4342 set_work_pool_and_clear_pending(work, offqd.pool_id,
4343 work_offqd_pack_flags(&offqd));
4344 local_irq_restore(irq_flags);
4345 return ret;
4346 }
4347
__cancel_work_sync(struct work_struct * work,u32 cflags)4348 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4349 {
4350 bool ret;
4351
4352 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4353
4354 if (*work_data_bits(work) & WORK_OFFQ_BH)
4355 WARN_ON_ONCE(in_hardirq());
4356 else
4357 might_sleep();
4358
4359 /*
4360 * Skip __flush_work() during early boot when we know that @work isn't
4361 * executing. This allows canceling during early boot.
4362 */
4363 if (wq_online)
4364 __flush_work(work, true);
4365
4366 if (!(cflags & WORK_CANCEL_DISABLE))
4367 enable_work(work);
4368
4369 return ret;
4370 }
4371
4372 /*
4373 * See cancel_delayed_work()
4374 */
cancel_work(struct work_struct * work)4375 bool cancel_work(struct work_struct *work)
4376 {
4377 return __cancel_work(work, 0);
4378 }
4379 EXPORT_SYMBOL(cancel_work);
4380
4381 /**
4382 * cancel_work_sync - cancel a work and wait for it to finish
4383 * @work: the work to cancel
4384 *
4385 * Cancel @work and wait for its execution to finish. This function can be used
4386 * even if the work re-queues itself or migrates to another workqueue. On return
4387 * from this function, @work is guaranteed to be not pending or executing on any
4388 * CPU as long as there aren't racing enqueues.
4389 *
4390 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4391 * Use cancel_delayed_work_sync() instead.
4392 *
4393 * Must be called from a sleepable context if @work was last queued on a non-BH
4394 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4395 * if @work was last queued on a BH workqueue.
4396 *
4397 * Returns %true if @work was pending, %false otherwise.
4398 */
cancel_work_sync(struct work_struct * work)4399 bool cancel_work_sync(struct work_struct *work)
4400 {
4401 return __cancel_work_sync(work, 0);
4402 }
4403 EXPORT_SYMBOL_GPL(cancel_work_sync);
4404
4405 /**
4406 * cancel_delayed_work - cancel a delayed work
4407 * @dwork: delayed_work to cancel
4408 *
4409 * Kill off a pending delayed_work.
4410 *
4411 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4412 * pending.
4413 *
4414 * Note:
4415 * The work callback function may still be running on return, unless
4416 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4417 * use cancel_delayed_work_sync() to wait on it.
4418 *
4419 * This function is safe to call from any context including IRQ handler.
4420 */
cancel_delayed_work(struct delayed_work * dwork)4421 bool cancel_delayed_work(struct delayed_work *dwork)
4422 {
4423 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4424 }
4425 EXPORT_SYMBOL(cancel_delayed_work);
4426
4427 /**
4428 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4429 * @dwork: the delayed work cancel
4430 *
4431 * This is cancel_work_sync() for delayed works.
4432 *
4433 * Return:
4434 * %true if @dwork was pending, %false otherwise.
4435 */
cancel_delayed_work_sync(struct delayed_work * dwork)4436 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4437 {
4438 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4439 }
4440 EXPORT_SYMBOL(cancel_delayed_work_sync);
4441
4442 /**
4443 * disable_work - Disable and cancel a work item
4444 * @work: work item to disable
4445 *
4446 * Disable @work by incrementing its disable count and cancel it if currently
4447 * pending. As long as the disable count is non-zero, any attempt to queue @work
4448 * will fail and return %false. The maximum supported disable depth is 2 to the
4449 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4450 *
4451 * Can be called from any context. Returns %true if @work was pending, %false
4452 * otherwise.
4453 */
disable_work(struct work_struct * work)4454 bool disable_work(struct work_struct *work)
4455 {
4456 return __cancel_work(work, WORK_CANCEL_DISABLE);
4457 }
4458 EXPORT_SYMBOL_GPL(disable_work);
4459
4460 /**
4461 * disable_work_sync - Disable, cancel and drain a work item
4462 * @work: work item to disable
4463 *
4464 * Similar to disable_work() but also wait for @work to finish if currently
4465 * executing.
4466 *
4467 * Must be called from a sleepable context if @work was last queued on a non-BH
4468 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4469 * if @work was last queued on a BH workqueue.
4470 *
4471 * Returns %true if @work was pending, %false otherwise.
4472 */
disable_work_sync(struct work_struct * work)4473 bool disable_work_sync(struct work_struct *work)
4474 {
4475 return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4476 }
4477 EXPORT_SYMBOL_GPL(disable_work_sync);
4478
4479 /**
4480 * enable_work - Enable a work item
4481 * @work: work item to enable
4482 *
4483 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4484 * only be queued if its disable count is 0.
4485 *
4486 * Can be called from any context. Returns %true if the disable count reached 0.
4487 * Otherwise, %false.
4488 */
enable_work(struct work_struct * work)4489 bool enable_work(struct work_struct *work)
4490 {
4491 struct work_offq_data offqd;
4492 unsigned long irq_flags;
4493
4494 work_grab_pending(work, 0, &irq_flags);
4495
4496 work_offqd_unpack(&offqd, *work_data_bits(work));
4497 work_offqd_enable(&offqd);
4498 set_work_pool_and_clear_pending(work, offqd.pool_id,
4499 work_offqd_pack_flags(&offqd));
4500 local_irq_restore(irq_flags);
4501
4502 return !offqd.disable;
4503 }
4504 EXPORT_SYMBOL_GPL(enable_work);
4505
4506 /**
4507 * disable_delayed_work - Disable and cancel a delayed work item
4508 * @dwork: delayed work item to disable
4509 *
4510 * disable_work() for delayed work items.
4511 */
disable_delayed_work(struct delayed_work * dwork)4512 bool disable_delayed_work(struct delayed_work *dwork)
4513 {
4514 return __cancel_work(&dwork->work,
4515 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4516 }
4517 EXPORT_SYMBOL_GPL(disable_delayed_work);
4518
4519 /**
4520 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4521 * @dwork: delayed work item to disable
4522 *
4523 * disable_work_sync() for delayed work items.
4524 */
disable_delayed_work_sync(struct delayed_work * dwork)4525 bool disable_delayed_work_sync(struct delayed_work *dwork)
4526 {
4527 return __cancel_work_sync(&dwork->work,
4528 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4529 }
4530 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4531
4532 /**
4533 * enable_delayed_work - Enable a delayed work item
4534 * @dwork: delayed work item to enable
4535 *
4536 * enable_work() for delayed work items.
4537 */
enable_delayed_work(struct delayed_work * dwork)4538 bool enable_delayed_work(struct delayed_work *dwork)
4539 {
4540 return enable_work(&dwork->work);
4541 }
4542 EXPORT_SYMBOL_GPL(enable_delayed_work);
4543
4544 /**
4545 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4546 * @func: the function to call
4547 *
4548 * schedule_on_each_cpu() executes @func on each online CPU using the
4549 * system workqueue and blocks until all CPUs have completed.
4550 * schedule_on_each_cpu() is very slow.
4551 *
4552 * Return:
4553 * 0 on success, -errno on failure.
4554 */
schedule_on_each_cpu(work_func_t func)4555 int schedule_on_each_cpu(work_func_t func)
4556 {
4557 int cpu;
4558 struct work_struct __percpu *works;
4559
4560 works = alloc_percpu(struct work_struct);
4561 if (!works)
4562 return -ENOMEM;
4563
4564 cpus_read_lock();
4565
4566 for_each_online_cpu(cpu) {
4567 struct work_struct *work = per_cpu_ptr(works, cpu);
4568
4569 INIT_WORK(work, func);
4570 schedule_work_on(cpu, work);
4571 }
4572
4573 for_each_online_cpu(cpu)
4574 flush_work(per_cpu_ptr(works, cpu));
4575
4576 cpus_read_unlock();
4577 free_percpu(works);
4578 return 0;
4579 }
4580
4581 /**
4582 * execute_in_process_context - reliably execute the routine with user context
4583 * @fn: the function to execute
4584 * @ew: guaranteed storage for the execute work structure (must
4585 * be available when the work executes)
4586 *
4587 * Executes the function immediately if process context is available,
4588 * otherwise schedules the function for delayed execution.
4589 *
4590 * Return: 0 - function was executed
4591 * 1 - function was scheduled for execution
4592 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4593 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4594 {
4595 if (!in_interrupt()) {
4596 fn(&ew->work);
4597 return 0;
4598 }
4599
4600 INIT_WORK(&ew->work, fn);
4601 schedule_work(&ew->work);
4602
4603 return 1;
4604 }
4605 EXPORT_SYMBOL_GPL(execute_in_process_context);
4606
4607 /**
4608 * free_workqueue_attrs - free a workqueue_attrs
4609 * @attrs: workqueue_attrs to free
4610 *
4611 * Undo alloc_workqueue_attrs().
4612 */
free_workqueue_attrs(struct workqueue_attrs * attrs)4613 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4614 {
4615 if (attrs) {
4616 free_cpumask_var(attrs->cpumask);
4617 free_cpumask_var(attrs->__pod_cpumask);
4618 kfree(attrs);
4619 }
4620 }
4621
4622 /**
4623 * alloc_workqueue_attrs - allocate a workqueue_attrs
4624 *
4625 * Allocate a new workqueue_attrs, initialize with default settings and
4626 * return it.
4627 *
4628 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4629 */
alloc_workqueue_attrs_noprof(void)4630 struct workqueue_attrs *alloc_workqueue_attrs_noprof(void)
4631 {
4632 struct workqueue_attrs *attrs;
4633
4634 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4635 if (!attrs)
4636 goto fail;
4637 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4638 goto fail;
4639 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4640 goto fail;
4641
4642 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4643 attrs->affn_scope = WQ_AFFN_DFL;
4644 return attrs;
4645 fail:
4646 free_workqueue_attrs(attrs);
4647 return NULL;
4648 }
4649
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4650 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4651 const struct workqueue_attrs *from)
4652 {
4653 to->nice = from->nice;
4654 cpumask_copy(to->cpumask, from->cpumask);
4655 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4656 to->affn_strict = from->affn_strict;
4657
4658 /*
4659 * Unlike hash and equality test, copying shouldn't ignore wq-only
4660 * fields as copying is used for both pool and wq attrs. Instead,
4661 * get_unbound_pool() explicitly clears the fields.
4662 */
4663 to->affn_scope = from->affn_scope;
4664 to->ordered = from->ordered;
4665 }
4666
4667 /*
4668 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4669 * comments in 'struct workqueue_attrs' definition.
4670 */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4671 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4672 {
4673 attrs->affn_scope = WQ_AFFN_NR_TYPES;
4674 attrs->ordered = false;
4675 if (attrs->affn_strict)
4676 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4677 }
4678
4679 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4680 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4681 {
4682 u32 hash = 0;
4683
4684 hash = jhash_1word(attrs->nice, hash);
4685 hash = jhash_1word(attrs->affn_strict, hash);
4686 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4687 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4688 if (!attrs->affn_strict)
4689 hash = jhash(cpumask_bits(attrs->cpumask),
4690 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4691 return hash;
4692 }
4693
4694 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4695 static bool wqattrs_equal(const struct workqueue_attrs *a,
4696 const struct workqueue_attrs *b)
4697 {
4698 if (a->nice != b->nice)
4699 return false;
4700 if (a->affn_strict != b->affn_strict)
4701 return false;
4702 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4703 return false;
4704 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4705 return false;
4706 return true;
4707 }
4708
4709 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4710 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4711 const cpumask_t *unbound_cpumask)
4712 {
4713 /*
4714 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4715 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4716 * @unbound_cpumask.
4717 */
4718 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4719 if (unlikely(cpumask_empty(attrs->cpumask)))
4720 cpumask_copy(attrs->cpumask, unbound_cpumask);
4721 }
4722
4723 /* find wq_pod_type to use for @attrs */
4724 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4725 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4726 {
4727 enum wq_affn_scope scope;
4728 struct wq_pod_type *pt;
4729
4730 /* to synchronize access to wq_affn_dfl */
4731 lockdep_assert_held(&wq_pool_mutex);
4732
4733 if (attrs->affn_scope == WQ_AFFN_DFL)
4734 scope = wq_affn_dfl;
4735 else
4736 scope = attrs->affn_scope;
4737
4738 pt = &wq_pod_types[scope];
4739
4740 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4741 likely(pt->nr_pods))
4742 return pt;
4743
4744 /*
4745 * Before workqueue_init_topology(), only SYSTEM is available which is
4746 * initialized in workqueue_init_early().
4747 */
4748 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4749 BUG_ON(!pt->nr_pods);
4750 return pt;
4751 }
4752
4753 /**
4754 * init_worker_pool - initialize a newly zalloc'd worker_pool
4755 * @pool: worker_pool to initialize
4756 *
4757 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
4758 *
4759 * Return: 0 on success, -errno on failure. Even on failure, all fields
4760 * inside @pool proper are initialized and put_unbound_pool() can be called
4761 * on @pool safely to release it.
4762 */
init_worker_pool(struct worker_pool * pool)4763 static int init_worker_pool(struct worker_pool *pool)
4764 {
4765 raw_spin_lock_init(&pool->lock);
4766 pool->id = -1;
4767 pool->cpu = -1;
4768 pool->node = NUMA_NO_NODE;
4769 pool->flags |= POOL_DISASSOCIATED;
4770 pool->watchdog_ts = jiffies;
4771 INIT_LIST_HEAD(&pool->worklist);
4772 INIT_LIST_HEAD(&pool->idle_list);
4773 hash_init(pool->busy_hash);
4774
4775 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4776 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4777
4778 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4779
4780 INIT_LIST_HEAD(&pool->workers);
4781
4782 ida_init(&pool->worker_ida);
4783 INIT_HLIST_NODE(&pool->hash_node);
4784 pool->refcnt = 1;
4785
4786 /* shouldn't fail above this point */
4787 pool->attrs = alloc_workqueue_attrs();
4788 if (!pool->attrs)
4789 return -ENOMEM;
4790
4791 wqattrs_clear_for_pool(pool->attrs);
4792
4793 return 0;
4794 }
4795
4796 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4797 static void wq_init_lockdep(struct workqueue_struct *wq)
4798 {
4799 char *lock_name;
4800
4801 lockdep_register_key(&wq->key);
4802 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4803 if (!lock_name)
4804 lock_name = wq->name;
4805
4806 wq->lock_name = lock_name;
4807 wq->lockdep_map = &wq->__lockdep_map;
4808 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4809 }
4810
wq_unregister_lockdep(struct workqueue_struct * wq)4811 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4812 {
4813 if (wq->lockdep_map != &wq->__lockdep_map)
4814 return;
4815
4816 lockdep_unregister_key(&wq->key);
4817 }
4818
wq_free_lockdep(struct workqueue_struct * wq)4819 static void wq_free_lockdep(struct workqueue_struct *wq)
4820 {
4821 if (wq->lockdep_map != &wq->__lockdep_map)
4822 return;
4823
4824 if (wq->lock_name != wq->name)
4825 kfree(wq->lock_name);
4826 }
4827 #else
wq_init_lockdep(struct workqueue_struct * wq)4828 static void wq_init_lockdep(struct workqueue_struct *wq)
4829 {
4830 }
4831
wq_unregister_lockdep(struct workqueue_struct * wq)4832 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4833 {
4834 }
4835
wq_free_lockdep(struct workqueue_struct * wq)4836 static void wq_free_lockdep(struct workqueue_struct *wq)
4837 {
4838 }
4839 #endif
4840
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4841 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4842 {
4843 int node;
4844
4845 for_each_node(node) {
4846 kfree(nna_ar[node]);
4847 nna_ar[node] = NULL;
4848 }
4849
4850 kfree(nna_ar[nr_node_ids]);
4851 nna_ar[nr_node_ids] = NULL;
4852 }
4853
init_node_nr_active(struct wq_node_nr_active * nna)4854 static void init_node_nr_active(struct wq_node_nr_active *nna)
4855 {
4856 nna->max = WQ_DFL_MIN_ACTIVE;
4857 atomic_set(&nna->nr, 0);
4858 raw_spin_lock_init(&nna->lock);
4859 INIT_LIST_HEAD(&nna->pending_pwqs);
4860 }
4861
4862 /*
4863 * Each node's nr_active counter will be accessed mostly from its own node and
4864 * should be allocated in the node.
4865 */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4866 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4867 {
4868 struct wq_node_nr_active *nna;
4869 int node;
4870
4871 for_each_node(node) {
4872 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4873 if (!nna)
4874 goto err_free;
4875 init_node_nr_active(nna);
4876 nna_ar[node] = nna;
4877 }
4878
4879 /* [nr_node_ids] is used as the fallback */
4880 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4881 if (!nna)
4882 goto err_free;
4883 init_node_nr_active(nna);
4884 nna_ar[nr_node_ids] = nna;
4885
4886 return 0;
4887
4888 err_free:
4889 free_node_nr_active(nna_ar);
4890 return -ENOMEM;
4891 }
4892
rcu_free_wq(struct rcu_head * rcu)4893 static void rcu_free_wq(struct rcu_head *rcu)
4894 {
4895 struct workqueue_struct *wq =
4896 container_of(rcu, struct workqueue_struct, rcu);
4897
4898 if (wq->flags & WQ_UNBOUND)
4899 free_node_nr_active(wq->node_nr_active);
4900
4901 wq_free_lockdep(wq);
4902 free_percpu(wq->cpu_pwq);
4903 free_workqueue_attrs(wq->unbound_attrs);
4904 kfree(wq);
4905 }
4906
rcu_free_pool(struct rcu_head * rcu)4907 static void rcu_free_pool(struct rcu_head *rcu)
4908 {
4909 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4910
4911 ida_destroy(&pool->worker_ida);
4912 free_workqueue_attrs(pool->attrs);
4913 kfree(pool);
4914 }
4915
4916 /**
4917 * put_unbound_pool - put a worker_pool
4918 * @pool: worker_pool to put
4919 *
4920 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
4921 * safe manner. get_unbound_pool() calls this function on its failure path
4922 * and this function should be able to release pools which went through,
4923 * successfully or not, init_worker_pool().
4924 *
4925 * Should be called with wq_pool_mutex held.
4926 */
put_unbound_pool(struct worker_pool * pool)4927 static void put_unbound_pool(struct worker_pool *pool)
4928 {
4929 struct worker *worker;
4930 LIST_HEAD(cull_list);
4931
4932 lockdep_assert_held(&wq_pool_mutex);
4933
4934 if (--pool->refcnt)
4935 return;
4936
4937 /* sanity checks */
4938 if (WARN_ON(!(pool->cpu < 0)) ||
4939 WARN_ON(!list_empty(&pool->worklist)))
4940 return;
4941
4942 /* release id and unhash */
4943 if (pool->id >= 0)
4944 idr_remove(&worker_pool_idr, pool->id);
4945 hash_del(&pool->hash_node);
4946
4947 /*
4948 * Become the manager and destroy all workers. This prevents
4949 * @pool's workers from blocking on attach_mutex. We're the last
4950 * manager and @pool gets freed with the flag set.
4951 *
4952 * Having a concurrent manager is quite unlikely to happen as we can
4953 * only get here with
4954 * pwq->refcnt == pool->refcnt == 0
4955 * which implies no work queued to the pool, which implies no worker can
4956 * become the manager. However a worker could have taken the role of
4957 * manager before the refcnts dropped to 0, since maybe_create_worker()
4958 * drops pool->lock
4959 */
4960 while (true) {
4961 rcuwait_wait_event(&manager_wait,
4962 !(pool->flags & POOL_MANAGER_ACTIVE),
4963 TASK_UNINTERRUPTIBLE);
4964
4965 mutex_lock(&wq_pool_attach_mutex);
4966 raw_spin_lock_irq(&pool->lock);
4967 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4968 pool->flags |= POOL_MANAGER_ACTIVE;
4969 break;
4970 }
4971 raw_spin_unlock_irq(&pool->lock);
4972 mutex_unlock(&wq_pool_attach_mutex);
4973 }
4974
4975 while ((worker = first_idle_worker(pool)))
4976 set_worker_dying(worker, &cull_list);
4977 WARN_ON(pool->nr_workers || pool->nr_idle);
4978 raw_spin_unlock_irq(&pool->lock);
4979
4980 detach_dying_workers(&cull_list);
4981
4982 mutex_unlock(&wq_pool_attach_mutex);
4983
4984 reap_dying_workers(&cull_list);
4985
4986 /* shut down the timers */
4987 timer_delete_sync(&pool->idle_timer);
4988 cancel_work_sync(&pool->idle_cull_work);
4989 timer_delete_sync(&pool->mayday_timer);
4990
4991 /* RCU protected to allow dereferences from get_work_pool() */
4992 call_rcu(&pool->rcu, rcu_free_pool);
4993 }
4994
4995 /**
4996 * get_unbound_pool - get a worker_pool with the specified attributes
4997 * @attrs: the attributes of the worker_pool to get
4998 *
4999 * Obtain a worker_pool which has the same attributes as @attrs, bump the
5000 * reference count and return it. If there already is a matching
5001 * worker_pool, it will be used; otherwise, this function attempts to
5002 * create a new one.
5003 *
5004 * Should be called with wq_pool_mutex held.
5005 *
5006 * Return: On success, a worker_pool with the same attributes as @attrs.
5007 * On failure, %NULL.
5008 */
get_unbound_pool(const struct workqueue_attrs * attrs)5009 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5010 {
5011 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5012 u32 hash = wqattrs_hash(attrs);
5013 struct worker_pool *pool;
5014 int pod, node = NUMA_NO_NODE;
5015
5016 lockdep_assert_held(&wq_pool_mutex);
5017
5018 /* do we already have a matching pool? */
5019 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5020 if (wqattrs_equal(pool->attrs, attrs)) {
5021 pool->refcnt++;
5022 return pool;
5023 }
5024 }
5025
5026 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5027 for (pod = 0; pod < pt->nr_pods; pod++) {
5028 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5029 node = pt->pod_node[pod];
5030 break;
5031 }
5032 }
5033
5034 /* nope, create a new one */
5035 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5036 if (!pool || init_worker_pool(pool) < 0)
5037 goto fail;
5038
5039 pool->node = node;
5040 copy_workqueue_attrs(pool->attrs, attrs);
5041 wqattrs_clear_for_pool(pool->attrs);
5042
5043 if (worker_pool_assign_id(pool) < 0)
5044 goto fail;
5045
5046 /* create and start the initial worker */
5047 if (wq_online && !create_worker(pool))
5048 goto fail;
5049
5050 /* install */
5051 hash_add(unbound_pool_hash, &pool->hash_node, hash);
5052
5053 return pool;
5054 fail:
5055 if (pool)
5056 put_unbound_pool(pool);
5057 return NULL;
5058 }
5059
5060 /*
5061 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5062 * refcnt and needs to be destroyed.
5063 */
pwq_release_workfn(struct kthread_work * work)5064 static void pwq_release_workfn(struct kthread_work *work)
5065 {
5066 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5067 release_work);
5068 struct workqueue_struct *wq = pwq->wq;
5069 struct worker_pool *pool = pwq->pool;
5070 bool is_last = false;
5071
5072 /*
5073 * When @pwq is not linked, it doesn't hold any reference to the
5074 * @wq, and @wq is invalid to access.
5075 */
5076 if (!list_empty(&pwq->pwqs_node)) {
5077 mutex_lock(&wq->mutex);
5078 list_del_rcu(&pwq->pwqs_node);
5079 is_last = list_empty(&wq->pwqs);
5080
5081 /*
5082 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5083 */
5084 if (!is_last && (wq->flags & __WQ_ORDERED))
5085 unplug_oldest_pwq(wq);
5086
5087 mutex_unlock(&wq->mutex);
5088 }
5089
5090 if (wq->flags & WQ_UNBOUND) {
5091 mutex_lock(&wq_pool_mutex);
5092 put_unbound_pool(pool);
5093 mutex_unlock(&wq_pool_mutex);
5094 }
5095
5096 if (!list_empty(&pwq->pending_node)) {
5097 struct wq_node_nr_active *nna =
5098 wq_node_nr_active(pwq->wq, pwq->pool->node);
5099
5100 raw_spin_lock_irq(&nna->lock);
5101 list_del_init(&pwq->pending_node);
5102 raw_spin_unlock_irq(&nna->lock);
5103 }
5104
5105 kfree_rcu(pwq, rcu);
5106
5107 /*
5108 * If we're the last pwq going away, @wq is already dead and no one
5109 * is gonna access it anymore. Schedule RCU free.
5110 */
5111 if (is_last) {
5112 wq_unregister_lockdep(wq);
5113 call_rcu(&wq->rcu, rcu_free_wq);
5114 }
5115 }
5116
5117 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5118 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5119 struct worker_pool *pool)
5120 {
5121 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5122
5123 memset(pwq, 0, sizeof(*pwq));
5124
5125 pwq->pool = pool;
5126 pwq->wq = wq;
5127 pwq->flush_color = -1;
5128 pwq->refcnt = 1;
5129 INIT_LIST_HEAD(&pwq->inactive_works);
5130 INIT_LIST_HEAD(&pwq->pending_node);
5131 INIT_LIST_HEAD(&pwq->pwqs_node);
5132 INIT_LIST_HEAD(&pwq->mayday_node);
5133 kthread_init_work(&pwq->release_work, pwq_release_workfn);
5134 }
5135
5136 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5137 static void link_pwq(struct pool_workqueue *pwq)
5138 {
5139 struct workqueue_struct *wq = pwq->wq;
5140
5141 lockdep_assert_held(&wq->mutex);
5142
5143 /* may be called multiple times, ignore if already linked */
5144 if (!list_empty(&pwq->pwqs_node))
5145 return;
5146
5147 /* set the matching work_color */
5148 pwq->work_color = wq->work_color;
5149
5150 /* link in @pwq */
5151 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5152 }
5153
5154 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5155 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5156 const struct workqueue_attrs *attrs)
5157 {
5158 struct worker_pool *pool;
5159 struct pool_workqueue *pwq;
5160
5161 lockdep_assert_held(&wq_pool_mutex);
5162
5163 pool = get_unbound_pool(attrs);
5164 if (!pool)
5165 return NULL;
5166
5167 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5168 if (!pwq) {
5169 put_unbound_pool(pool);
5170 return NULL;
5171 }
5172
5173 init_pwq(pwq, wq, pool);
5174 return pwq;
5175 }
5176
apply_wqattrs_lock(void)5177 static void apply_wqattrs_lock(void)
5178 {
5179 mutex_lock(&wq_pool_mutex);
5180 }
5181
apply_wqattrs_unlock(void)5182 static void apply_wqattrs_unlock(void)
5183 {
5184 mutex_unlock(&wq_pool_mutex);
5185 }
5186
5187 /**
5188 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5189 * @attrs: the wq_attrs of the default pwq of the target workqueue
5190 * @cpu: the target CPU
5191 *
5192 * Calculate the cpumask a workqueue with @attrs should use on @pod.
5193 * The result is stored in @attrs->__pod_cpumask.
5194 *
5195 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5196 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5197 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5198 *
5199 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5200 */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5201 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5202 {
5203 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5204 int pod = pt->cpu_pod[cpu];
5205
5206 /* calculate possible CPUs in @pod that @attrs wants */
5207 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5208 /* does @pod have any online CPUs @attrs wants? */
5209 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5210 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5211 return;
5212 }
5213 }
5214
5215 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5216 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5217 int cpu, struct pool_workqueue *pwq)
5218 {
5219 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5220 struct pool_workqueue *old_pwq;
5221
5222 lockdep_assert_held(&wq_pool_mutex);
5223 lockdep_assert_held(&wq->mutex);
5224
5225 /* link_pwq() can handle duplicate calls */
5226 link_pwq(pwq);
5227
5228 old_pwq = rcu_access_pointer(*slot);
5229 rcu_assign_pointer(*slot, pwq);
5230 return old_pwq;
5231 }
5232
5233 /* context to store the prepared attrs & pwqs before applying */
5234 struct apply_wqattrs_ctx {
5235 struct workqueue_struct *wq; /* target workqueue */
5236 struct workqueue_attrs *attrs; /* attrs to apply */
5237 struct list_head list; /* queued for batching commit */
5238 struct pool_workqueue *dfl_pwq;
5239 struct pool_workqueue *pwq_tbl[];
5240 };
5241
5242 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5243 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5244 {
5245 if (ctx) {
5246 int cpu;
5247
5248 for_each_possible_cpu(cpu)
5249 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5250 put_pwq_unlocked(ctx->dfl_pwq);
5251
5252 free_workqueue_attrs(ctx->attrs);
5253
5254 kfree(ctx);
5255 }
5256 }
5257
5258 /* allocate the attrs and pwqs for later installation */
5259 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5260 apply_wqattrs_prepare(struct workqueue_struct *wq,
5261 const struct workqueue_attrs *attrs,
5262 const cpumask_var_t unbound_cpumask)
5263 {
5264 struct apply_wqattrs_ctx *ctx;
5265 struct workqueue_attrs *new_attrs;
5266 int cpu;
5267
5268 lockdep_assert_held(&wq_pool_mutex);
5269
5270 if (WARN_ON(attrs->affn_scope < 0 ||
5271 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5272 return ERR_PTR(-EINVAL);
5273
5274 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5275
5276 new_attrs = alloc_workqueue_attrs();
5277 if (!ctx || !new_attrs)
5278 goto out_free;
5279
5280 /*
5281 * If something goes wrong during CPU up/down, we'll fall back to
5282 * the default pwq covering whole @attrs->cpumask. Always create
5283 * it even if we don't use it immediately.
5284 */
5285 copy_workqueue_attrs(new_attrs, attrs);
5286 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5287 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5288 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5289 if (!ctx->dfl_pwq)
5290 goto out_free;
5291
5292 for_each_possible_cpu(cpu) {
5293 if (new_attrs->ordered) {
5294 ctx->dfl_pwq->refcnt++;
5295 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5296 } else {
5297 wq_calc_pod_cpumask(new_attrs, cpu);
5298 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5299 if (!ctx->pwq_tbl[cpu])
5300 goto out_free;
5301 }
5302 }
5303
5304 /* save the user configured attrs and sanitize it. */
5305 copy_workqueue_attrs(new_attrs, attrs);
5306 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5307 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5308 ctx->attrs = new_attrs;
5309
5310 /*
5311 * For initialized ordered workqueues, there should only be one pwq
5312 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5313 * of newly queued work items until execution of older work items in
5314 * the old pwq's have completed.
5315 */
5316 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5317 ctx->dfl_pwq->plugged = true;
5318
5319 ctx->wq = wq;
5320 return ctx;
5321
5322 out_free:
5323 free_workqueue_attrs(new_attrs);
5324 apply_wqattrs_cleanup(ctx);
5325 return ERR_PTR(-ENOMEM);
5326 }
5327
5328 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5329 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5330 {
5331 int cpu;
5332
5333 /* all pwqs have been created successfully, let's install'em */
5334 mutex_lock(&ctx->wq->mutex);
5335
5336 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5337
5338 /* save the previous pwqs and install the new ones */
5339 for_each_possible_cpu(cpu)
5340 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5341 ctx->pwq_tbl[cpu]);
5342 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5343
5344 /* update node_nr_active->max */
5345 wq_update_node_max_active(ctx->wq, -1);
5346
5347 /* rescuer needs to respect wq cpumask changes */
5348 if (ctx->wq->rescuer)
5349 set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5350 unbound_effective_cpumask(ctx->wq));
5351
5352 mutex_unlock(&ctx->wq->mutex);
5353 }
5354
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5355 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5356 const struct workqueue_attrs *attrs)
5357 {
5358 struct apply_wqattrs_ctx *ctx;
5359
5360 /* only unbound workqueues can change attributes */
5361 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5362 return -EINVAL;
5363
5364 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5365 if (IS_ERR(ctx))
5366 return PTR_ERR(ctx);
5367
5368 /* the ctx has been prepared successfully, let's commit it */
5369 apply_wqattrs_commit(ctx);
5370 apply_wqattrs_cleanup(ctx);
5371
5372 return 0;
5373 }
5374
5375 /**
5376 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5377 * @wq: the target workqueue
5378 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5379 *
5380 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5381 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5382 * work items are affine to the pod it was issued on. Older pwqs are released as
5383 * in-flight work items finish. Note that a work item which repeatedly requeues
5384 * itself back-to-back will stay on its current pwq.
5385 *
5386 * Performs GFP_KERNEL allocations.
5387 *
5388 * Return: 0 on success and -errno on failure.
5389 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5390 int apply_workqueue_attrs(struct workqueue_struct *wq,
5391 const struct workqueue_attrs *attrs)
5392 {
5393 int ret;
5394
5395 mutex_lock(&wq_pool_mutex);
5396 ret = apply_workqueue_attrs_locked(wq, attrs);
5397 mutex_unlock(&wq_pool_mutex);
5398
5399 return ret;
5400 }
5401
5402 /**
5403 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5404 * @wq: the target workqueue
5405 * @cpu: the CPU to update the pwq slot for
5406 *
5407 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5408 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged.
5409 *
5410 *
5411 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5412 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5413 *
5414 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5415 * with a cpumask spanning multiple pods, the workers which were already
5416 * executing the work items for the workqueue will lose their CPU affinity and
5417 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5418 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5419 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5420 */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5421 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5422 {
5423 struct pool_workqueue *old_pwq = NULL, *pwq;
5424 struct workqueue_attrs *target_attrs;
5425
5426 lockdep_assert_held(&wq_pool_mutex);
5427
5428 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5429 return;
5430
5431 /*
5432 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5433 * Let's use a preallocated one. The following buf is protected by
5434 * CPU hotplug exclusion.
5435 */
5436 target_attrs = unbound_wq_update_pwq_attrs_buf;
5437
5438 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5439 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5440
5441 /* nothing to do if the target cpumask matches the current pwq */
5442 wq_calc_pod_cpumask(target_attrs, cpu);
5443 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5444 return;
5445
5446 /* create a new pwq */
5447 pwq = alloc_unbound_pwq(wq, target_attrs);
5448 if (!pwq) {
5449 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5450 wq->name);
5451 goto use_dfl_pwq;
5452 }
5453
5454 /* Install the new pwq. */
5455 mutex_lock(&wq->mutex);
5456 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5457 goto out_unlock;
5458
5459 use_dfl_pwq:
5460 mutex_lock(&wq->mutex);
5461 pwq = unbound_pwq(wq, -1);
5462 raw_spin_lock_irq(&pwq->pool->lock);
5463 get_pwq(pwq);
5464 raw_spin_unlock_irq(&pwq->pool->lock);
5465 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5466 out_unlock:
5467 mutex_unlock(&wq->mutex);
5468 put_pwq_unlocked(old_pwq);
5469 }
5470
alloc_and_link_pwqs(struct workqueue_struct * wq)5471 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5472 {
5473 bool highpri = wq->flags & WQ_HIGHPRI;
5474 int cpu, ret;
5475
5476 lockdep_assert_held(&wq_pool_mutex);
5477
5478 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5479 if (!wq->cpu_pwq)
5480 goto enomem;
5481
5482 if (!(wq->flags & WQ_UNBOUND)) {
5483 struct worker_pool __percpu *pools;
5484
5485 if (wq->flags & WQ_BH)
5486 pools = bh_worker_pools;
5487 else
5488 pools = cpu_worker_pools;
5489
5490 for_each_possible_cpu(cpu) {
5491 struct pool_workqueue **pwq_p;
5492 struct worker_pool *pool;
5493
5494 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5495 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5496
5497 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5498 pool->node);
5499 if (!*pwq_p)
5500 goto enomem;
5501
5502 init_pwq(*pwq_p, wq, pool);
5503
5504 mutex_lock(&wq->mutex);
5505 link_pwq(*pwq_p);
5506 mutex_unlock(&wq->mutex);
5507 }
5508 return 0;
5509 }
5510
5511 if (wq->flags & __WQ_ORDERED) {
5512 struct pool_workqueue *dfl_pwq;
5513
5514 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5515 /* there should only be single pwq for ordering guarantee */
5516 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5517 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5518 wq->pwqs.prev != &dfl_pwq->pwqs_node),
5519 "ordering guarantee broken for workqueue %s\n", wq->name);
5520 } else {
5521 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5522 }
5523
5524 return ret;
5525
5526 enomem:
5527 if (wq->cpu_pwq) {
5528 for_each_possible_cpu(cpu) {
5529 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5530
5531 if (pwq)
5532 kmem_cache_free(pwq_cache, pwq);
5533 }
5534 free_percpu(wq->cpu_pwq);
5535 wq->cpu_pwq = NULL;
5536 }
5537 return -ENOMEM;
5538 }
5539
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5540 static int wq_clamp_max_active(int max_active, unsigned int flags,
5541 const char *name)
5542 {
5543 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5544 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5545 max_active, name, 1, WQ_MAX_ACTIVE);
5546
5547 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5548 }
5549
5550 /*
5551 * Workqueues which may be used during memory reclaim should have a rescuer
5552 * to guarantee forward progress.
5553 */
init_rescuer(struct workqueue_struct * wq)5554 static int init_rescuer(struct workqueue_struct *wq)
5555 {
5556 struct worker *rescuer;
5557 char id_buf[WORKER_ID_LEN];
5558 int ret;
5559
5560 lockdep_assert_held(&wq_pool_mutex);
5561
5562 if (!(wq->flags & WQ_MEM_RECLAIM))
5563 return 0;
5564
5565 rescuer = alloc_worker(NUMA_NO_NODE);
5566 if (!rescuer) {
5567 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5568 wq->name);
5569 return -ENOMEM;
5570 }
5571
5572 rescuer->rescue_wq = wq;
5573 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5574
5575 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5576 if (IS_ERR(rescuer->task)) {
5577 ret = PTR_ERR(rescuer->task);
5578 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5579 wq->name, ERR_PTR(ret));
5580 kfree(rescuer);
5581 return ret;
5582 }
5583
5584 wq->rescuer = rescuer;
5585 if (wq->flags & WQ_UNBOUND)
5586 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5587 else
5588 kthread_bind_mask(rescuer->task, cpu_possible_mask);
5589 wake_up_process(rescuer->task);
5590
5591 return 0;
5592 }
5593
5594 /**
5595 * wq_adjust_max_active - update a wq's max_active to the current setting
5596 * @wq: target workqueue
5597 *
5598 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5599 * activate inactive work items accordingly. If @wq is freezing, clear
5600 * @wq->max_active to zero.
5601 */
wq_adjust_max_active(struct workqueue_struct * wq)5602 static void wq_adjust_max_active(struct workqueue_struct *wq)
5603 {
5604 bool activated;
5605 int new_max, new_min;
5606
5607 lockdep_assert_held(&wq->mutex);
5608
5609 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5610 new_max = 0;
5611 new_min = 0;
5612 } else {
5613 new_max = wq->saved_max_active;
5614 new_min = wq->saved_min_active;
5615 }
5616
5617 if (wq->max_active == new_max && wq->min_active == new_min)
5618 return;
5619
5620 /*
5621 * Update @wq->max/min_active and then kick inactive work items if more
5622 * active work items are allowed. This doesn't break work item ordering
5623 * because new work items are always queued behind existing inactive
5624 * work items if there are any.
5625 */
5626 WRITE_ONCE(wq->max_active, new_max);
5627 WRITE_ONCE(wq->min_active, new_min);
5628
5629 if (wq->flags & WQ_UNBOUND)
5630 wq_update_node_max_active(wq, -1);
5631
5632 if (new_max == 0)
5633 return;
5634
5635 /*
5636 * Round-robin through pwq's activating the first inactive work item
5637 * until max_active is filled.
5638 */
5639 do {
5640 struct pool_workqueue *pwq;
5641
5642 activated = false;
5643 for_each_pwq(pwq, wq) {
5644 unsigned long irq_flags;
5645
5646 /* can be called during early boot w/ irq disabled */
5647 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5648 if (pwq_activate_first_inactive(pwq, true)) {
5649 activated = true;
5650 kick_pool(pwq->pool);
5651 }
5652 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5653 }
5654 } while (activated);
5655 }
5656
5657 __printf(1, 0)
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5658 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5659 unsigned int flags,
5660 int max_active, va_list args)
5661 {
5662 struct workqueue_struct *wq;
5663 size_t wq_size;
5664 int name_len;
5665
5666 if (flags & WQ_BH) {
5667 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5668 return NULL;
5669 if (WARN_ON_ONCE(max_active))
5670 return NULL;
5671 }
5672
5673 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5674 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5675 flags |= WQ_UNBOUND;
5676
5677 /* allocate wq and format name */
5678 if (flags & WQ_UNBOUND)
5679 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5680 else
5681 wq_size = sizeof(*wq);
5682
5683 wq = kzalloc_noprof(wq_size, GFP_KERNEL);
5684 if (!wq)
5685 return NULL;
5686
5687 if (flags & WQ_UNBOUND) {
5688 wq->unbound_attrs = alloc_workqueue_attrs_noprof();
5689 if (!wq->unbound_attrs)
5690 goto err_free_wq;
5691 }
5692
5693 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5694
5695 if (name_len >= WQ_NAME_LEN)
5696 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5697 wq->name);
5698
5699 if (flags & WQ_BH) {
5700 /*
5701 * BH workqueues always share a single execution context per CPU
5702 * and don't impose any max_active limit.
5703 */
5704 max_active = INT_MAX;
5705 } else {
5706 max_active = max_active ?: WQ_DFL_ACTIVE;
5707 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5708 }
5709
5710 /* init wq */
5711 wq->flags = flags;
5712 wq->max_active = max_active;
5713 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5714 wq->saved_max_active = wq->max_active;
5715 wq->saved_min_active = wq->min_active;
5716 mutex_init(&wq->mutex);
5717 atomic_set(&wq->nr_pwqs_to_flush, 0);
5718 INIT_LIST_HEAD(&wq->pwqs);
5719 INIT_LIST_HEAD(&wq->flusher_queue);
5720 INIT_LIST_HEAD(&wq->flusher_overflow);
5721 INIT_LIST_HEAD(&wq->maydays);
5722
5723 INIT_LIST_HEAD(&wq->list);
5724
5725 if (flags & WQ_UNBOUND) {
5726 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5727 goto err_free_wq;
5728 }
5729
5730 /*
5731 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5732 * and the global freeze state.
5733 */
5734 apply_wqattrs_lock();
5735
5736 if (alloc_and_link_pwqs(wq) < 0)
5737 goto err_unlock_free_node_nr_active;
5738
5739 mutex_lock(&wq->mutex);
5740 wq_adjust_max_active(wq);
5741 mutex_unlock(&wq->mutex);
5742
5743 list_add_tail_rcu(&wq->list, &workqueues);
5744
5745 if (wq_online && init_rescuer(wq) < 0)
5746 goto err_unlock_destroy;
5747
5748 apply_wqattrs_unlock();
5749
5750 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5751 goto err_destroy;
5752
5753 return wq;
5754
5755 err_unlock_free_node_nr_active:
5756 apply_wqattrs_unlock();
5757 /*
5758 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5759 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5760 * completes before calling kfree(wq).
5761 */
5762 if (wq->flags & WQ_UNBOUND) {
5763 kthread_flush_worker(pwq_release_worker);
5764 free_node_nr_active(wq->node_nr_active);
5765 }
5766 err_free_wq:
5767 free_workqueue_attrs(wq->unbound_attrs);
5768 kfree(wq);
5769 return NULL;
5770 err_unlock_destroy:
5771 apply_wqattrs_unlock();
5772 err_destroy:
5773 destroy_workqueue(wq);
5774 return NULL;
5775 }
5776
5777 __printf(1, 4)
alloc_workqueue_noprof(const char * fmt,unsigned int flags,int max_active,...)5778 struct workqueue_struct *alloc_workqueue_noprof(const char *fmt,
5779 unsigned int flags,
5780 int max_active, ...)
5781 {
5782 struct workqueue_struct *wq;
5783 va_list args;
5784
5785 va_start(args, max_active);
5786 wq = __alloc_workqueue(fmt, flags, max_active, args);
5787 va_end(args);
5788 if (!wq)
5789 return NULL;
5790
5791 wq_init_lockdep(wq);
5792
5793 return wq;
5794 }
5795 EXPORT_SYMBOL_GPL(alloc_workqueue_noprof);
5796
5797 #ifdef CONFIG_LOCKDEP
5798 __printf(1, 5)
5799 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5800 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5801 int max_active, struct lockdep_map *lockdep_map, ...)
5802 {
5803 struct workqueue_struct *wq;
5804 va_list args;
5805
5806 va_start(args, lockdep_map);
5807 wq = __alloc_workqueue(fmt, flags, max_active, args);
5808 va_end(args);
5809 if (!wq)
5810 return NULL;
5811
5812 wq->lockdep_map = lockdep_map;
5813
5814 return wq;
5815 }
5816 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5817 #endif
5818
pwq_busy(struct pool_workqueue * pwq)5819 static bool pwq_busy(struct pool_workqueue *pwq)
5820 {
5821 int i;
5822
5823 for (i = 0; i < WORK_NR_COLORS; i++)
5824 if (pwq->nr_in_flight[i])
5825 return true;
5826
5827 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5828 return true;
5829 if (!pwq_is_empty(pwq))
5830 return true;
5831
5832 return false;
5833 }
5834
5835 /**
5836 * destroy_workqueue - safely terminate a workqueue
5837 * @wq: target workqueue
5838 *
5839 * Safely destroy a workqueue. All work currently pending will be done first.
5840 *
5841 * This function does NOT guarantee that non-pending work that has been
5842 * submitted with queue_delayed_work() and similar functions will be done
5843 * before destroying the workqueue. The fundamental problem is that, currently,
5844 * the workqueue has no way of accessing non-pending delayed_work. delayed_work
5845 * is only linked on the timer-side. All delayed_work must, therefore, be
5846 * canceled before calling this function.
5847 *
5848 * TODO: It would be better if the problem described above wouldn't exist and
5849 * destroy_workqueue() would cleanly cancel all pending and non-pending
5850 * delayed_work.
5851 */
destroy_workqueue(struct workqueue_struct * wq)5852 void destroy_workqueue(struct workqueue_struct *wq)
5853 {
5854 struct pool_workqueue *pwq;
5855 int cpu;
5856
5857 /*
5858 * Remove it from sysfs first so that sanity check failure doesn't
5859 * lead to sysfs name conflicts.
5860 */
5861 workqueue_sysfs_unregister(wq);
5862
5863 /* mark the workqueue destruction is in progress */
5864 mutex_lock(&wq->mutex);
5865 wq->flags |= __WQ_DESTROYING;
5866 mutex_unlock(&wq->mutex);
5867
5868 /* drain it before proceeding with destruction */
5869 drain_workqueue(wq);
5870
5871 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5872 if (wq->rescuer) {
5873 struct worker *rescuer = wq->rescuer;
5874
5875 /* this prevents new queueing */
5876 raw_spin_lock_irq(&wq_mayday_lock);
5877 wq->rescuer = NULL;
5878 raw_spin_unlock_irq(&wq_mayday_lock);
5879
5880 /* rescuer will empty maydays list before exiting */
5881 kthread_stop(rescuer->task);
5882 kfree(rescuer);
5883 }
5884
5885 /*
5886 * Sanity checks - grab all the locks so that we wait for all
5887 * in-flight operations which may do put_pwq().
5888 */
5889 mutex_lock(&wq_pool_mutex);
5890 mutex_lock(&wq->mutex);
5891 for_each_pwq(pwq, wq) {
5892 raw_spin_lock_irq(&pwq->pool->lock);
5893 if (WARN_ON(pwq_busy(pwq))) {
5894 pr_warn("%s: %s has the following busy pwq\n",
5895 __func__, wq->name);
5896 show_pwq(pwq);
5897 raw_spin_unlock_irq(&pwq->pool->lock);
5898 mutex_unlock(&wq->mutex);
5899 mutex_unlock(&wq_pool_mutex);
5900 show_one_workqueue(wq);
5901 return;
5902 }
5903 raw_spin_unlock_irq(&pwq->pool->lock);
5904 }
5905 mutex_unlock(&wq->mutex);
5906
5907 /*
5908 * wq list is used to freeze wq, remove from list after
5909 * flushing is complete in case freeze races us.
5910 */
5911 list_del_rcu(&wq->list);
5912 mutex_unlock(&wq_pool_mutex);
5913
5914 /*
5915 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5916 * to put the base refs. @wq will be auto-destroyed from the last
5917 * pwq_put. RCU read lock prevents @wq from going away from under us.
5918 */
5919 rcu_read_lock();
5920
5921 for_each_possible_cpu(cpu) {
5922 put_pwq_unlocked(unbound_pwq(wq, cpu));
5923 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5924 }
5925
5926 put_pwq_unlocked(unbound_pwq(wq, -1));
5927 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5928
5929 rcu_read_unlock();
5930 }
5931 EXPORT_SYMBOL_GPL(destroy_workqueue);
5932
5933 /**
5934 * workqueue_set_max_active - adjust max_active of a workqueue
5935 * @wq: target workqueue
5936 * @max_active: new max_active value.
5937 *
5938 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5939 * comment.
5940 *
5941 * CONTEXT:
5942 * Don't call from IRQ context.
5943 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5944 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5945 {
5946 /* max_active doesn't mean anything for BH workqueues */
5947 if (WARN_ON(wq->flags & WQ_BH))
5948 return;
5949 /* disallow meddling with max_active for ordered workqueues */
5950 if (WARN_ON(wq->flags & __WQ_ORDERED))
5951 return;
5952
5953 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5954
5955 mutex_lock(&wq->mutex);
5956
5957 wq->saved_max_active = max_active;
5958 if (wq->flags & WQ_UNBOUND)
5959 wq->saved_min_active = min(wq->saved_min_active, max_active);
5960
5961 wq_adjust_max_active(wq);
5962
5963 mutex_unlock(&wq->mutex);
5964 }
5965 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5966
5967 /**
5968 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5969 * @wq: target unbound workqueue
5970 * @min_active: new min_active value
5971 *
5972 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5973 * unbound workqueue is not guaranteed to be able to process max_active
5974 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5975 * able to process min_active number of interdependent work items which is
5976 * %WQ_DFL_MIN_ACTIVE by default.
5977 *
5978 * Use this function to adjust the min_active value between 0 and the current
5979 * max_active.
5980 */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)5981 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5982 {
5983 /* min_active is only meaningful for non-ordered unbound workqueues */
5984 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5985 WQ_UNBOUND))
5986 return;
5987
5988 mutex_lock(&wq->mutex);
5989 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5990 wq_adjust_max_active(wq);
5991 mutex_unlock(&wq->mutex);
5992 }
5993
5994 /**
5995 * current_work - retrieve %current task's work struct
5996 *
5997 * Determine if %current task is a workqueue worker and what it's working on.
5998 * Useful to find out the context that the %current task is running in.
5999 *
6000 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
6001 */
current_work(void)6002 struct work_struct *current_work(void)
6003 {
6004 struct worker *worker = current_wq_worker();
6005
6006 return worker ? worker->current_work : NULL;
6007 }
6008 EXPORT_SYMBOL(current_work);
6009
6010 /**
6011 * current_is_workqueue_rescuer - is %current workqueue rescuer?
6012 *
6013 * Determine whether %current is a workqueue rescuer. Can be used from
6014 * work functions to determine whether it's being run off the rescuer task.
6015 *
6016 * Return: %true if %current is a workqueue rescuer. %false otherwise.
6017 */
current_is_workqueue_rescuer(void)6018 bool current_is_workqueue_rescuer(void)
6019 {
6020 struct worker *worker = current_wq_worker();
6021
6022 return worker && worker->rescue_wq;
6023 }
6024
6025 /**
6026 * workqueue_congested - test whether a workqueue is congested
6027 * @cpu: CPU in question
6028 * @wq: target workqueue
6029 *
6030 * Test whether @wq's cpu workqueue for @cpu is congested. There is
6031 * no synchronization around this function and the test result is
6032 * unreliable and only useful as advisory hints or for debugging.
6033 *
6034 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6035 *
6036 * With the exception of ordered workqueues, all workqueues have per-cpu
6037 * pool_workqueues, each with its own congested state. A workqueue being
6038 * congested on one CPU doesn't mean that the workqueue is contested on any
6039 * other CPUs.
6040 *
6041 * Return:
6042 * %true if congested, %false otherwise.
6043 */
workqueue_congested(int cpu,struct workqueue_struct * wq)6044 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6045 {
6046 struct pool_workqueue *pwq;
6047 bool ret;
6048
6049 rcu_read_lock();
6050 preempt_disable();
6051
6052 if (cpu == WORK_CPU_UNBOUND)
6053 cpu = smp_processor_id();
6054
6055 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6056 ret = !list_empty(&pwq->inactive_works);
6057
6058 preempt_enable();
6059 rcu_read_unlock();
6060
6061 return ret;
6062 }
6063 EXPORT_SYMBOL_GPL(workqueue_congested);
6064
6065 /**
6066 * work_busy - test whether a work is currently pending or running
6067 * @work: the work to be tested
6068 *
6069 * Test whether @work is currently pending or running. There is no
6070 * synchronization around this function and the test result is
6071 * unreliable and only useful as advisory hints or for debugging.
6072 *
6073 * Return:
6074 * OR'd bitmask of WORK_BUSY_* bits.
6075 */
work_busy(struct work_struct * work)6076 unsigned int work_busy(struct work_struct *work)
6077 {
6078 struct worker_pool *pool;
6079 unsigned long irq_flags;
6080 unsigned int ret = 0;
6081
6082 if (work_pending(work))
6083 ret |= WORK_BUSY_PENDING;
6084
6085 rcu_read_lock();
6086 pool = get_work_pool(work);
6087 if (pool) {
6088 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6089 if (find_worker_executing_work(pool, work))
6090 ret |= WORK_BUSY_RUNNING;
6091 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6092 }
6093 rcu_read_unlock();
6094
6095 return ret;
6096 }
6097 EXPORT_SYMBOL_GPL(work_busy);
6098
6099 /**
6100 * set_worker_desc - set description for the current work item
6101 * @fmt: printf-style format string
6102 * @...: arguments for the format string
6103 *
6104 * This function can be called by a running work function to describe what
6105 * the work item is about. If the worker task gets dumped, this
6106 * information will be printed out together to help debugging. The
6107 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6108 */
set_worker_desc(const char * fmt,...)6109 void set_worker_desc(const char *fmt, ...)
6110 {
6111 struct worker *worker = current_wq_worker();
6112 va_list args;
6113
6114 if (worker) {
6115 va_start(args, fmt);
6116 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6117 va_end(args);
6118 }
6119 }
6120 EXPORT_SYMBOL_GPL(set_worker_desc);
6121
6122 /**
6123 * print_worker_info - print out worker information and description
6124 * @log_lvl: the log level to use when printing
6125 * @task: target task
6126 *
6127 * If @task is a worker and currently executing a work item, print out the
6128 * name of the workqueue being serviced and worker description set with
6129 * set_worker_desc() by the currently executing work item.
6130 *
6131 * This function can be safely called on any task as long as the
6132 * task_struct itself is accessible. While safe, this function isn't
6133 * synchronized and may print out mixups or garbages of limited length.
6134 */
print_worker_info(const char * log_lvl,struct task_struct * task)6135 void print_worker_info(const char *log_lvl, struct task_struct *task)
6136 {
6137 work_func_t *fn = NULL;
6138 char name[WQ_NAME_LEN] = { };
6139 char desc[WORKER_DESC_LEN] = { };
6140 struct pool_workqueue *pwq = NULL;
6141 struct workqueue_struct *wq = NULL;
6142 struct worker *worker;
6143
6144 if (!(task->flags & PF_WQ_WORKER))
6145 return;
6146
6147 /*
6148 * This function is called without any synchronization and @task
6149 * could be in any state. Be careful with dereferences.
6150 */
6151 worker = kthread_probe_data(task);
6152
6153 /*
6154 * Carefully copy the associated workqueue's workfn, name and desc.
6155 * Keep the original last '\0' in case the original is garbage.
6156 */
6157 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6158 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6159 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6160 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6161 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6162
6163 if (fn || name[0] || desc[0]) {
6164 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6165 if (strcmp(name, desc))
6166 pr_cont(" (%s)", desc);
6167 pr_cont("\n");
6168 }
6169 }
6170
pr_cont_pool_info(struct worker_pool * pool)6171 static void pr_cont_pool_info(struct worker_pool *pool)
6172 {
6173 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6174 if (pool->node != NUMA_NO_NODE)
6175 pr_cont(" node=%d", pool->node);
6176 pr_cont(" flags=0x%x", pool->flags);
6177 if (pool->flags & POOL_BH)
6178 pr_cont(" bh%s",
6179 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6180 else
6181 pr_cont(" nice=%d", pool->attrs->nice);
6182 }
6183
pr_cont_worker_id(struct worker * worker)6184 static void pr_cont_worker_id(struct worker *worker)
6185 {
6186 struct worker_pool *pool = worker->pool;
6187
6188 if (pool->flags & WQ_BH)
6189 pr_cont("bh%s",
6190 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6191 else
6192 pr_cont("%d%s", task_pid_nr(worker->task),
6193 worker->rescue_wq ? "(RESCUER)" : "");
6194 }
6195
6196 struct pr_cont_work_struct {
6197 bool comma;
6198 work_func_t func;
6199 long ctr;
6200 };
6201
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6202 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6203 {
6204 if (!pcwsp->ctr)
6205 goto out_record;
6206 if (func == pcwsp->func) {
6207 pcwsp->ctr++;
6208 return;
6209 }
6210 if (pcwsp->ctr == 1)
6211 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6212 else
6213 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6214 pcwsp->ctr = 0;
6215 out_record:
6216 if ((long)func == -1L)
6217 return;
6218 pcwsp->comma = comma;
6219 pcwsp->func = func;
6220 pcwsp->ctr = 1;
6221 }
6222
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6223 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6224 {
6225 if (work->func == wq_barrier_func) {
6226 struct wq_barrier *barr;
6227
6228 barr = container_of(work, struct wq_barrier, work);
6229
6230 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6231 pr_cont("%s BAR(%d)", comma ? "," : "",
6232 task_pid_nr(barr->task));
6233 } else {
6234 if (!comma)
6235 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6236 pr_cont_work_flush(comma, work->func, pcwsp);
6237 }
6238 }
6239
show_pwq(struct pool_workqueue * pwq)6240 static void show_pwq(struct pool_workqueue *pwq)
6241 {
6242 struct pr_cont_work_struct pcws = { .ctr = 0, };
6243 struct worker_pool *pool = pwq->pool;
6244 struct work_struct *work;
6245 struct worker *worker;
6246 bool has_in_flight = false, has_pending = false;
6247 int bkt;
6248
6249 pr_info(" pwq %d:", pool->id);
6250 pr_cont_pool_info(pool);
6251
6252 pr_cont(" active=%d refcnt=%d%s\n",
6253 pwq->nr_active, pwq->refcnt,
6254 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6255
6256 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6257 if (worker->current_pwq == pwq) {
6258 has_in_flight = true;
6259 break;
6260 }
6261 }
6262 if (has_in_flight) {
6263 bool comma = false;
6264
6265 pr_info(" in-flight:");
6266 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6267 if (worker->current_pwq != pwq)
6268 continue;
6269
6270 pr_cont(" %s", comma ? "," : "");
6271 pr_cont_worker_id(worker);
6272 pr_cont(":%ps", worker->current_func);
6273 list_for_each_entry(work, &worker->scheduled, entry)
6274 pr_cont_work(false, work, &pcws);
6275 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6276 comma = true;
6277 }
6278 pr_cont("\n");
6279 }
6280
6281 list_for_each_entry(work, &pool->worklist, entry) {
6282 if (get_work_pwq(work) == pwq) {
6283 has_pending = true;
6284 break;
6285 }
6286 }
6287 if (has_pending) {
6288 bool comma = false;
6289
6290 pr_info(" pending:");
6291 list_for_each_entry(work, &pool->worklist, entry) {
6292 if (get_work_pwq(work) != pwq)
6293 continue;
6294
6295 pr_cont_work(comma, work, &pcws);
6296 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6297 }
6298 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6299 pr_cont("\n");
6300 }
6301
6302 if (!list_empty(&pwq->inactive_works)) {
6303 bool comma = false;
6304
6305 pr_info(" inactive:");
6306 list_for_each_entry(work, &pwq->inactive_works, entry) {
6307 pr_cont_work(comma, work, &pcws);
6308 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6309 }
6310 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6311 pr_cont("\n");
6312 }
6313 }
6314
6315 /**
6316 * show_one_workqueue - dump state of specified workqueue
6317 * @wq: workqueue whose state will be printed
6318 */
show_one_workqueue(struct workqueue_struct * wq)6319 void show_one_workqueue(struct workqueue_struct *wq)
6320 {
6321 struct pool_workqueue *pwq;
6322 bool idle = true;
6323 unsigned long irq_flags;
6324
6325 for_each_pwq(pwq, wq) {
6326 if (!pwq_is_empty(pwq)) {
6327 idle = false;
6328 break;
6329 }
6330 }
6331 if (idle) /* Nothing to print for idle workqueue */
6332 return;
6333
6334 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6335
6336 for_each_pwq(pwq, wq) {
6337 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6338 if (!pwq_is_empty(pwq)) {
6339 /*
6340 * Defer printing to avoid deadlocks in console
6341 * drivers that queue work while holding locks
6342 * also taken in their write paths.
6343 */
6344 printk_deferred_enter();
6345 show_pwq(pwq);
6346 printk_deferred_exit();
6347 }
6348 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6349 /*
6350 * We could be printing a lot from atomic context, e.g.
6351 * sysrq-t -> show_all_workqueues(). Avoid triggering
6352 * hard lockup.
6353 */
6354 touch_nmi_watchdog();
6355 }
6356
6357 }
6358
6359 /**
6360 * show_one_worker_pool - dump state of specified worker pool
6361 * @pool: worker pool whose state will be printed
6362 */
show_one_worker_pool(struct worker_pool * pool)6363 static void show_one_worker_pool(struct worker_pool *pool)
6364 {
6365 struct worker *worker;
6366 bool first = true;
6367 unsigned long irq_flags;
6368 unsigned long hung = 0;
6369
6370 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6371 if (pool->nr_workers == pool->nr_idle)
6372 goto next_pool;
6373
6374 /* How long the first pending work is waiting for a worker. */
6375 if (!list_empty(&pool->worklist))
6376 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6377
6378 /*
6379 * Defer printing to avoid deadlocks in console drivers that
6380 * queue work while holding locks also taken in their write
6381 * paths.
6382 */
6383 printk_deferred_enter();
6384 pr_info("pool %d:", pool->id);
6385 pr_cont_pool_info(pool);
6386 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6387 if (pool->manager)
6388 pr_cont(" manager: %d",
6389 task_pid_nr(pool->manager->task));
6390 list_for_each_entry(worker, &pool->idle_list, entry) {
6391 pr_cont(" %s", first ? "idle: " : "");
6392 pr_cont_worker_id(worker);
6393 first = false;
6394 }
6395 pr_cont("\n");
6396 printk_deferred_exit();
6397 next_pool:
6398 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6399 /*
6400 * We could be printing a lot from atomic context, e.g.
6401 * sysrq-t -> show_all_workqueues(). Avoid triggering
6402 * hard lockup.
6403 */
6404 touch_nmi_watchdog();
6405
6406 }
6407
6408 /**
6409 * show_all_workqueues - dump workqueue state
6410 *
6411 * Called from a sysrq handler and prints out all busy workqueues and pools.
6412 */
show_all_workqueues(void)6413 void show_all_workqueues(void)
6414 {
6415 struct workqueue_struct *wq;
6416 struct worker_pool *pool;
6417 int pi;
6418
6419 rcu_read_lock();
6420
6421 pr_info("Showing busy workqueues and worker pools:\n");
6422
6423 list_for_each_entry_rcu(wq, &workqueues, list)
6424 show_one_workqueue(wq);
6425
6426 for_each_pool(pool, pi)
6427 show_one_worker_pool(pool);
6428
6429 rcu_read_unlock();
6430 }
6431
6432 /**
6433 * show_freezable_workqueues - dump freezable workqueue state
6434 *
6435 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6436 * still busy.
6437 */
show_freezable_workqueues(void)6438 void show_freezable_workqueues(void)
6439 {
6440 struct workqueue_struct *wq;
6441
6442 rcu_read_lock();
6443
6444 pr_info("Showing freezable workqueues that are still busy:\n");
6445
6446 list_for_each_entry_rcu(wq, &workqueues, list) {
6447 if (!(wq->flags & WQ_FREEZABLE))
6448 continue;
6449 show_one_workqueue(wq);
6450 }
6451
6452 rcu_read_unlock();
6453 }
6454
6455 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6456 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6457 {
6458 /* stabilize PF_WQ_WORKER and worker pool association */
6459 mutex_lock(&wq_pool_attach_mutex);
6460
6461 if (task->flags & PF_WQ_WORKER) {
6462 struct worker *worker = kthread_data(task);
6463 struct worker_pool *pool = worker->pool;
6464 int off;
6465
6466 off = format_worker_id(buf, size, worker, pool);
6467
6468 if (pool) {
6469 raw_spin_lock_irq(&pool->lock);
6470 /*
6471 * ->desc tracks information (wq name or
6472 * set_worker_desc()) for the latest execution. If
6473 * current, prepend '+', otherwise '-'.
6474 */
6475 if (worker->desc[0] != '\0') {
6476 if (worker->current_work)
6477 scnprintf(buf + off, size - off, "+%s",
6478 worker->desc);
6479 else
6480 scnprintf(buf + off, size - off, "-%s",
6481 worker->desc);
6482 }
6483 raw_spin_unlock_irq(&pool->lock);
6484 }
6485 } else {
6486 strscpy(buf, task->comm, size);
6487 }
6488
6489 mutex_unlock(&wq_pool_attach_mutex);
6490 }
6491
6492 #ifdef CONFIG_SMP
6493
6494 /*
6495 * CPU hotplug.
6496 *
6497 * There are two challenges in supporting CPU hotplug. Firstly, there
6498 * are a lot of assumptions on strong associations among work, pwq and
6499 * pool which make migrating pending and scheduled works very
6500 * difficult to implement without impacting hot paths. Secondly,
6501 * worker pools serve mix of short, long and very long running works making
6502 * blocked draining impractical.
6503 *
6504 * This is solved by allowing the pools to be disassociated from the CPU
6505 * running as an unbound one and allowing it to be reattached later if the
6506 * cpu comes back online.
6507 */
6508
unbind_workers(int cpu)6509 static void unbind_workers(int cpu)
6510 {
6511 struct worker_pool *pool;
6512 struct worker *worker;
6513
6514 for_each_cpu_worker_pool(pool, cpu) {
6515 mutex_lock(&wq_pool_attach_mutex);
6516 raw_spin_lock_irq(&pool->lock);
6517
6518 /*
6519 * We've blocked all attach/detach operations. Make all workers
6520 * unbound and set DISASSOCIATED. Before this, all workers
6521 * must be on the cpu. After this, they may become diasporas.
6522 * And the preemption disabled section in their sched callbacks
6523 * are guaranteed to see WORKER_UNBOUND since the code here
6524 * is on the same cpu.
6525 */
6526 for_each_pool_worker(worker, pool)
6527 worker->flags |= WORKER_UNBOUND;
6528
6529 pool->flags |= POOL_DISASSOCIATED;
6530
6531 /*
6532 * The handling of nr_running in sched callbacks are disabled
6533 * now. Zap nr_running. After this, nr_running stays zero and
6534 * need_more_worker() and keep_working() are always true as
6535 * long as the worklist is not empty. This pool now behaves as
6536 * an unbound (in terms of concurrency management) pool which
6537 * are served by workers tied to the pool.
6538 */
6539 pool->nr_running = 0;
6540
6541 /*
6542 * With concurrency management just turned off, a busy
6543 * worker blocking could lead to lengthy stalls. Kick off
6544 * unbound chain execution of currently pending work items.
6545 */
6546 kick_pool(pool);
6547
6548 raw_spin_unlock_irq(&pool->lock);
6549
6550 for_each_pool_worker(worker, pool)
6551 unbind_worker(worker);
6552
6553 mutex_unlock(&wq_pool_attach_mutex);
6554 }
6555 }
6556
6557 /**
6558 * rebind_workers - rebind all workers of a pool to the associated CPU
6559 * @pool: pool of interest
6560 *
6561 * @pool->cpu is coming online. Rebind all workers to the CPU.
6562 */
rebind_workers(struct worker_pool * pool)6563 static void rebind_workers(struct worker_pool *pool)
6564 {
6565 struct worker *worker;
6566
6567 lockdep_assert_held(&wq_pool_attach_mutex);
6568
6569 /*
6570 * Restore CPU affinity of all workers. As all idle workers should
6571 * be on the run-queue of the associated CPU before any local
6572 * wake-ups for concurrency management happen, restore CPU affinity
6573 * of all workers first and then clear UNBOUND. As we're called
6574 * from CPU_ONLINE, the following shouldn't fail.
6575 */
6576 for_each_pool_worker(worker, pool) {
6577 kthread_set_per_cpu(worker->task, pool->cpu);
6578 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6579 pool_allowed_cpus(pool)) < 0);
6580 }
6581
6582 raw_spin_lock_irq(&pool->lock);
6583
6584 pool->flags &= ~POOL_DISASSOCIATED;
6585
6586 for_each_pool_worker(worker, pool) {
6587 unsigned int worker_flags = worker->flags;
6588
6589 /*
6590 * We want to clear UNBOUND but can't directly call
6591 * worker_clr_flags() or adjust nr_running. Atomically
6592 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6593 * @worker will clear REBOUND using worker_clr_flags() when
6594 * it initiates the next execution cycle thus restoring
6595 * concurrency management. Note that when or whether
6596 * @worker clears REBOUND doesn't affect correctness.
6597 *
6598 * WRITE_ONCE() is necessary because @worker->flags may be
6599 * tested without holding any lock in
6600 * wq_worker_running(). Without it, NOT_RUNNING test may
6601 * fail incorrectly leading to premature concurrency
6602 * management operations.
6603 */
6604 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6605 worker_flags |= WORKER_REBOUND;
6606 worker_flags &= ~WORKER_UNBOUND;
6607 WRITE_ONCE(worker->flags, worker_flags);
6608 }
6609
6610 raw_spin_unlock_irq(&pool->lock);
6611 }
6612
6613 /**
6614 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6615 * @pool: unbound pool of interest
6616 * @cpu: the CPU which is coming up
6617 *
6618 * An unbound pool may end up with a cpumask which doesn't have any online
6619 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6620 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6621 * online CPU before, cpus_allowed of all its workers should be restored.
6622 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6623 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6624 {
6625 static cpumask_t cpumask;
6626 struct worker *worker;
6627
6628 lockdep_assert_held(&wq_pool_attach_mutex);
6629
6630 /* is @cpu allowed for @pool? */
6631 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6632 return;
6633
6634 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6635
6636 /* as we're called from CPU_ONLINE, the following shouldn't fail */
6637 for_each_pool_worker(worker, pool)
6638 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6639 }
6640
workqueue_prepare_cpu(unsigned int cpu)6641 int workqueue_prepare_cpu(unsigned int cpu)
6642 {
6643 struct worker_pool *pool;
6644
6645 for_each_cpu_worker_pool(pool, cpu) {
6646 if (pool->nr_workers)
6647 continue;
6648 if (!create_worker(pool))
6649 return -ENOMEM;
6650 }
6651 return 0;
6652 }
6653
workqueue_online_cpu(unsigned int cpu)6654 int workqueue_online_cpu(unsigned int cpu)
6655 {
6656 struct worker_pool *pool;
6657 struct workqueue_struct *wq;
6658 int pi;
6659
6660 mutex_lock(&wq_pool_mutex);
6661
6662 cpumask_set_cpu(cpu, wq_online_cpumask);
6663
6664 for_each_pool(pool, pi) {
6665 /* BH pools aren't affected by hotplug */
6666 if (pool->flags & POOL_BH)
6667 continue;
6668
6669 mutex_lock(&wq_pool_attach_mutex);
6670 if (pool->cpu == cpu)
6671 rebind_workers(pool);
6672 else if (pool->cpu < 0)
6673 restore_unbound_workers_cpumask(pool, cpu);
6674 mutex_unlock(&wq_pool_attach_mutex);
6675 }
6676
6677 /* update pod affinity of unbound workqueues */
6678 list_for_each_entry(wq, &workqueues, list) {
6679 struct workqueue_attrs *attrs = wq->unbound_attrs;
6680
6681 if (attrs) {
6682 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6683 int tcpu;
6684
6685 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6686 unbound_wq_update_pwq(wq, tcpu);
6687
6688 mutex_lock(&wq->mutex);
6689 wq_update_node_max_active(wq, -1);
6690 mutex_unlock(&wq->mutex);
6691 }
6692 }
6693
6694 mutex_unlock(&wq_pool_mutex);
6695 return 0;
6696 }
6697
workqueue_offline_cpu(unsigned int cpu)6698 int workqueue_offline_cpu(unsigned int cpu)
6699 {
6700 struct workqueue_struct *wq;
6701
6702 /* unbinding per-cpu workers should happen on the local CPU */
6703 if (WARN_ON(cpu != smp_processor_id()))
6704 return -1;
6705
6706 unbind_workers(cpu);
6707
6708 /* update pod affinity of unbound workqueues */
6709 mutex_lock(&wq_pool_mutex);
6710
6711 cpumask_clear_cpu(cpu, wq_online_cpumask);
6712
6713 list_for_each_entry(wq, &workqueues, list) {
6714 struct workqueue_attrs *attrs = wq->unbound_attrs;
6715
6716 if (attrs) {
6717 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6718 int tcpu;
6719
6720 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6721 unbound_wq_update_pwq(wq, tcpu);
6722
6723 mutex_lock(&wq->mutex);
6724 wq_update_node_max_active(wq, cpu);
6725 mutex_unlock(&wq->mutex);
6726 }
6727 }
6728 mutex_unlock(&wq_pool_mutex);
6729
6730 return 0;
6731 }
6732
6733 struct work_for_cpu {
6734 struct work_struct work;
6735 long (*fn)(void *);
6736 void *arg;
6737 long ret;
6738 };
6739
work_for_cpu_fn(struct work_struct * work)6740 static void work_for_cpu_fn(struct work_struct *work)
6741 {
6742 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6743
6744 wfc->ret = wfc->fn(wfc->arg);
6745 }
6746
6747 /**
6748 * work_on_cpu_key - run a function in thread context on a particular cpu
6749 * @cpu: the cpu to run on
6750 * @fn: the function to run
6751 * @arg: the function arg
6752 * @key: The lock class key for lock debugging purposes
6753 *
6754 * It is up to the caller to ensure that the cpu doesn't go offline.
6755 * The caller must not hold any locks which would prevent @fn from completing.
6756 *
6757 * Return: The value @fn returns.
6758 */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6759 long work_on_cpu_key(int cpu, long (*fn)(void *),
6760 void *arg, struct lock_class_key *key)
6761 {
6762 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6763
6764 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6765 schedule_work_on(cpu, &wfc.work);
6766 flush_work(&wfc.work);
6767 destroy_work_on_stack(&wfc.work);
6768 return wfc.ret;
6769 }
6770 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6771 #endif /* CONFIG_SMP */
6772
6773 #ifdef CONFIG_FREEZER
6774
6775 /**
6776 * freeze_workqueues_begin - begin freezing workqueues
6777 *
6778 * Start freezing workqueues. After this function returns, all freezable
6779 * workqueues will queue new works to their inactive_works list instead of
6780 * pool->worklist.
6781 *
6782 * CONTEXT:
6783 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6784 */
freeze_workqueues_begin(void)6785 void freeze_workqueues_begin(void)
6786 {
6787 struct workqueue_struct *wq;
6788
6789 mutex_lock(&wq_pool_mutex);
6790
6791 WARN_ON_ONCE(workqueue_freezing);
6792 workqueue_freezing = true;
6793
6794 list_for_each_entry(wq, &workqueues, list) {
6795 mutex_lock(&wq->mutex);
6796 wq_adjust_max_active(wq);
6797 mutex_unlock(&wq->mutex);
6798 }
6799
6800 mutex_unlock(&wq_pool_mutex);
6801 }
6802
6803 /**
6804 * freeze_workqueues_busy - are freezable workqueues still busy?
6805 *
6806 * Check whether freezing is complete. This function must be called
6807 * between freeze_workqueues_begin() and thaw_workqueues().
6808 *
6809 * CONTEXT:
6810 * Grabs and releases wq_pool_mutex.
6811 *
6812 * Return:
6813 * %true if some freezable workqueues are still busy. %false if freezing
6814 * is complete.
6815 */
freeze_workqueues_busy(void)6816 bool freeze_workqueues_busy(void)
6817 {
6818 bool busy = false;
6819 struct workqueue_struct *wq;
6820 struct pool_workqueue *pwq;
6821
6822 mutex_lock(&wq_pool_mutex);
6823
6824 WARN_ON_ONCE(!workqueue_freezing);
6825
6826 list_for_each_entry(wq, &workqueues, list) {
6827 if (!(wq->flags & WQ_FREEZABLE))
6828 continue;
6829 /*
6830 * nr_active is monotonically decreasing. It's safe
6831 * to peek without lock.
6832 */
6833 rcu_read_lock();
6834 for_each_pwq(pwq, wq) {
6835 WARN_ON_ONCE(pwq->nr_active < 0);
6836 if (pwq->nr_active) {
6837 busy = true;
6838 rcu_read_unlock();
6839 goto out_unlock;
6840 }
6841 }
6842 rcu_read_unlock();
6843 }
6844 out_unlock:
6845 mutex_unlock(&wq_pool_mutex);
6846 return busy;
6847 }
6848
6849 /**
6850 * thaw_workqueues - thaw workqueues
6851 *
6852 * Thaw workqueues. Normal queueing is restored and all collected
6853 * frozen works are transferred to their respective pool worklists.
6854 *
6855 * CONTEXT:
6856 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6857 */
thaw_workqueues(void)6858 void thaw_workqueues(void)
6859 {
6860 struct workqueue_struct *wq;
6861
6862 mutex_lock(&wq_pool_mutex);
6863
6864 if (!workqueue_freezing)
6865 goto out_unlock;
6866
6867 workqueue_freezing = false;
6868
6869 /* restore max_active and repopulate worklist */
6870 list_for_each_entry(wq, &workqueues, list) {
6871 mutex_lock(&wq->mutex);
6872 wq_adjust_max_active(wq);
6873 mutex_unlock(&wq->mutex);
6874 }
6875
6876 out_unlock:
6877 mutex_unlock(&wq_pool_mutex);
6878 }
6879 #endif /* CONFIG_FREEZER */
6880
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6881 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6882 {
6883 LIST_HEAD(ctxs);
6884 int ret = 0;
6885 struct workqueue_struct *wq;
6886 struct apply_wqattrs_ctx *ctx, *n;
6887
6888 lockdep_assert_held(&wq_pool_mutex);
6889
6890 list_for_each_entry(wq, &workqueues, list) {
6891 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6892 continue;
6893
6894 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6895 if (IS_ERR(ctx)) {
6896 ret = PTR_ERR(ctx);
6897 break;
6898 }
6899
6900 list_add_tail(&ctx->list, &ctxs);
6901 }
6902
6903 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6904 if (!ret)
6905 apply_wqattrs_commit(ctx);
6906 apply_wqattrs_cleanup(ctx);
6907 }
6908
6909 if (!ret) {
6910 mutex_lock(&wq_pool_attach_mutex);
6911 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6912 mutex_unlock(&wq_pool_attach_mutex);
6913 }
6914 return ret;
6915 }
6916
6917 /**
6918 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6919 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6920 *
6921 * This function can be called from cpuset code to provide a set of isolated
6922 * CPUs that should be excluded from wq_unbound_cpumask.
6923 */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6924 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6925 {
6926 cpumask_var_t cpumask;
6927 int ret = 0;
6928
6929 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6930 return -ENOMEM;
6931
6932 mutex_lock(&wq_pool_mutex);
6933
6934 /*
6935 * If the operation fails, it will fall back to
6936 * wq_requested_unbound_cpumask which is initially set to
6937 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6938 * by any subsequent write to workqueue/cpumask sysfs file.
6939 */
6940 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6941 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6942 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6943 ret = workqueue_apply_unbound_cpumask(cpumask);
6944
6945 /* Save the current isolated cpumask & export it via sysfs */
6946 if (!ret)
6947 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6948
6949 mutex_unlock(&wq_pool_mutex);
6950 free_cpumask_var(cpumask);
6951 return ret;
6952 }
6953
parse_affn_scope(const char * val)6954 static int parse_affn_scope(const char *val)
6955 {
6956 int i;
6957
6958 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6959 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6960 return i;
6961 }
6962 return -EINVAL;
6963 }
6964
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6965 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6966 {
6967 struct workqueue_struct *wq;
6968 int affn, cpu;
6969
6970 affn = parse_affn_scope(val);
6971 if (affn < 0)
6972 return affn;
6973 if (affn == WQ_AFFN_DFL)
6974 return -EINVAL;
6975
6976 cpus_read_lock();
6977 mutex_lock(&wq_pool_mutex);
6978
6979 wq_affn_dfl = affn;
6980
6981 list_for_each_entry(wq, &workqueues, list) {
6982 for_each_online_cpu(cpu)
6983 unbound_wq_update_pwq(wq, cpu);
6984 }
6985
6986 mutex_unlock(&wq_pool_mutex);
6987 cpus_read_unlock();
6988
6989 return 0;
6990 }
6991
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)6992 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6993 {
6994 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6995 }
6996
6997 static const struct kernel_param_ops wq_affn_dfl_ops = {
6998 .set = wq_affn_dfl_set,
6999 .get = wq_affn_dfl_get,
7000 };
7001
7002 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7003
7004 #ifdef CONFIG_SYSFS
7005 /*
7006 * Workqueues with WQ_SYSFS flag set is visible to userland via
7007 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
7008 * following attributes.
7009 *
7010 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
7011 * max_active RW int : maximum number of in-flight work items
7012 *
7013 * Unbound workqueues have the following extra attributes.
7014 *
7015 * nice RW int : nice value of the workers
7016 * cpumask RW mask : bitmask of allowed CPUs for the workers
7017 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
7018 * affinity_strict RW bool : worker CPU affinity is strict
7019 */
7020 struct wq_device {
7021 struct workqueue_struct *wq;
7022 struct device dev;
7023 };
7024
dev_to_wq(struct device * dev)7025 static struct workqueue_struct *dev_to_wq(struct device *dev)
7026 {
7027 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7028
7029 return wq_dev->wq;
7030 }
7031
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7032 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7033 char *buf)
7034 {
7035 struct workqueue_struct *wq = dev_to_wq(dev);
7036
7037 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7038 }
7039 static DEVICE_ATTR_RO(per_cpu);
7040
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7041 static ssize_t max_active_show(struct device *dev,
7042 struct device_attribute *attr, char *buf)
7043 {
7044 struct workqueue_struct *wq = dev_to_wq(dev);
7045
7046 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7047 }
7048
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7049 static ssize_t max_active_store(struct device *dev,
7050 struct device_attribute *attr, const char *buf,
7051 size_t count)
7052 {
7053 struct workqueue_struct *wq = dev_to_wq(dev);
7054 int val;
7055
7056 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7057 return -EINVAL;
7058
7059 workqueue_set_max_active(wq, val);
7060 return count;
7061 }
7062 static DEVICE_ATTR_RW(max_active);
7063
7064 static struct attribute *wq_sysfs_attrs[] = {
7065 &dev_attr_per_cpu.attr,
7066 &dev_attr_max_active.attr,
7067 NULL,
7068 };
7069 ATTRIBUTE_GROUPS(wq_sysfs);
7070
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7071 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7072 char *buf)
7073 {
7074 struct workqueue_struct *wq = dev_to_wq(dev);
7075 int written;
7076
7077 mutex_lock(&wq->mutex);
7078 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7079 mutex_unlock(&wq->mutex);
7080
7081 return written;
7082 }
7083
7084 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7085 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7086 {
7087 struct workqueue_attrs *attrs;
7088
7089 lockdep_assert_held(&wq_pool_mutex);
7090
7091 attrs = alloc_workqueue_attrs();
7092 if (!attrs)
7093 return NULL;
7094
7095 copy_workqueue_attrs(attrs, wq->unbound_attrs);
7096 return attrs;
7097 }
7098
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7099 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7100 const char *buf, size_t count)
7101 {
7102 struct workqueue_struct *wq = dev_to_wq(dev);
7103 struct workqueue_attrs *attrs;
7104 int ret = -ENOMEM;
7105
7106 apply_wqattrs_lock();
7107
7108 attrs = wq_sysfs_prep_attrs(wq);
7109 if (!attrs)
7110 goto out_unlock;
7111
7112 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7113 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7114 ret = apply_workqueue_attrs_locked(wq, attrs);
7115 else
7116 ret = -EINVAL;
7117
7118 out_unlock:
7119 apply_wqattrs_unlock();
7120 free_workqueue_attrs(attrs);
7121 return ret ?: count;
7122 }
7123
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7124 static ssize_t wq_cpumask_show(struct device *dev,
7125 struct device_attribute *attr, char *buf)
7126 {
7127 struct workqueue_struct *wq = dev_to_wq(dev);
7128 int written;
7129
7130 mutex_lock(&wq->mutex);
7131 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7132 cpumask_pr_args(wq->unbound_attrs->cpumask));
7133 mutex_unlock(&wq->mutex);
7134 return written;
7135 }
7136
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7137 static ssize_t wq_cpumask_store(struct device *dev,
7138 struct device_attribute *attr,
7139 const char *buf, size_t count)
7140 {
7141 struct workqueue_struct *wq = dev_to_wq(dev);
7142 struct workqueue_attrs *attrs;
7143 int ret = -ENOMEM;
7144
7145 apply_wqattrs_lock();
7146
7147 attrs = wq_sysfs_prep_attrs(wq);
7148 if (!attrs)
7149 goto out_unlock;
7150
7151 ret = cpumask_parse(buf, attrs->cpumask);
7152 if (!ret)
7153 ret = apply_workqueue_attrs_locked(wq, attrs);
7154
7155 out_unlock:
7156 apply_wqattrs_unlock();
7157 free_workqueue_attrs(attrs);
7158 return ret ?: count;
7159 }
7160
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7161 static ssize_t wq_affn_scope_show(struct device *dev,
7162 struct device_attribute *attr, char *buf)
7163 {
7164 struct workqueue_struct *wq = dev_to_wq(dev);
7165 int written;
7166
7167 mutex_lock(&wq->mutex);
7168 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7169 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7170 wq_affn_names[WQ_AFFN_DFL],
7171 wq_affn_names[wq_affn_dfl]);
7172 else
7173 written = scnprintf(buf, PAGE_SIZE, "%s\n",
7174 wq_affn_names[wq->unbound_attrs->affn_scope]);
7175 mutex_unlock(&wq->mutex);
7176
7177 return written;
7178 }
7179
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7180 static ssize_t wq_affn_scope_store(struct device *dev,
7181 struct device_attribute *attr,
7182 const char *buf, size_t count)
7183 {
7184 struct workqueue_struct *wq = dev_to_wq(dev);
7185 struct workqueue_attrs *attrs;
7186 int affn, ret = -ENOMEM;
7187
7188 affn = parse_affn_scope(buf);
7189 if (affn < 0)
7190 return affn;
7191
7192 apply_wqattrs_lock();
7193 attrs = wq_sysfs_prep_attrs(wq);
7194 if (attrs) {
7195 attrs->affn_scope = affn;
7196 ret = apply_workqueue_attrs_locked(wq, attrs);
7197 }
7198 apply_wqattrs_unlock();
7199 free_workqueue_attrs(attrs);
7200 return ret ?: count;
7201 }
7202
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7203 static ssize_t wq_affinity_strict_show(struct device *dev,
7204 struct device_attribute *attr, char *buf)
7205 {
7206 struct workqueue_struct *wq = dev_to_wq(dev);
7207
7208 return scnprintf(buf, PAGE_SIZE, "%d\n",
7209 wq->unbound_attrs->affn_strict);
7210 }
7211
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7212 static ssize_t wq_affinity_strict_store(struct device *dev,
7213 struct device_attribute *attr,
7214 const char *buf, size_t count)
7215 {
7216 struct workqueue_struct *wq = dev_to_wq(dev);
7217 struct workqueue_attrs *attrs;
7218 int v, ret = -ENOMEM;
7219
7220 if (sscanf(buf, "%d", &v) != 1)
7221 return -EINVAL;
7222
7223 apply_wqattrs_lock();
7224 attrs = wq_sysfs_prep_attrs(wq);
7225 if (attrs) {
7226 attrs->affn_strict = (bool)v;
7227 ret = apply_workqueue_attrs_locked(wq, attrs);
7228 }
7229 apply_wqattrs_unlock();
7230 free_workqueue_attrs(attrs);
7231 return ret ?: count;
7232 }
7233
7234 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7235 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7236 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7237 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7238 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7239 __ATTR_NULL,
7240 };
7241
7242 static const struct bus_type wq_subsys = {
7243 .name = "workqueue",
7244 .dev_groups = wq_sysfs_groups,
7245 };
7246
7247 /**
7248 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7249 * @cpumask: the cpumask to set
7250 *
7251 * The low-level workqueues cpumask is a global cpumask that limits
7252 * the affinity of all unbound workqueues. This function check the @cpumask
7253 * and apply it to all unbound workqueues and updates all pwqs of them.
7254 *
7255 * Return: 0 - Success
7256 * -EINVAL - Invalid @cpumask
7257 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
7258 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7259 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7260 {
7261 int ret = -EINVAL;
7262
7263 /*
7264 * Not excluding isolated cpus on purpose.
7265 * If the user wishes to include them, we allow that.
7266 */
7267 cpumask_and(cpumask, cpumask, cpu_possible_mask);
7268 if (!cpumask_empty(cpumask)) {
7269 ret = 0;
7270 apply_wqattrs_lock();
7271 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7272 ret = workqueue_apply_unbound_cpumask(cpumask);
7273 if (!ret)
7274 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7275 apply_wqattrs_unlock();
7276 }
7277
7278 return ret;
7279 }
7280
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7281 static ssize_t __wq_cpumask_show(struct device *dev,
7282 struct device_attribute *attr, char *buf, cpumask_var_t mask)
7283 {
7284 int written;
7285
7286 mutex_lock(&wq_pool_mutex);
7287 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7288 mutex_unlock(&wq_pool_mutex);
7289
7290 return written;
7291 }
7292
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7293 static ssize_t cpumask_requested_show(struct device *dev,
7294 struct device_attribute *attr, char *buf)
7295 {
7296 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7297 }
7298 static DEVICE_ATTR_RO(cpumask_requested);
7299
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7300 static ssize_t cpumask_isolated_show(struct device *dev,
7301 struct device_attribute *attr, char *buf)
7302 {
7303 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7304 }
7305 static DEVICE_ATTR_RO(cpumask_isolated);
7306
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7307 static ssize_t cpumask_show(struct device *dev,
7308 struct device_attribute *attr, char *buf)
7309 {
7310 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7311 }
7312
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7313 static ssize_t cpumask_store(struct device *dev,
7314 struct device_attribute *attr, const char *buf, size_t count)
7315 {
7316 cpumask_var_t cpumask;
7317 int ret;
7318
7319 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7320 return -ENOMEM;
7321
7322 ret = cpumask_parse(buf, cpumask);
7323 if (!ret)
7324 ret = workqueue_set_unbound_cpumask(cpumask);
7325
7326 free_cpumask_var(cpumask);
7327 return ret ? ret : count;
7328 }
7329 static DEVICE_ATTR_RW(cpumask);
7330
7331 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7332 &dev_attr_cpumask.attr,
7333 &dev_attr_cpumask_requested.attr,
7334 &dev_attr_cpumask_isolated.attr,
7335 NULL,
7336 };
7337 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7338
wq_sysfs_init(void)7339 static int __init wq_sysfs_init(void)
7340 {
7341 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7342 }
7343 core_initcall(wq_sysfs_init);
7344
wq_device_release(struct device * dev)7345 static void wq_device_release(struct device *dev)
7346 {
7347 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7348
7349 kfree(wq_dev);
7350 }
7351
7352 /**
7353 * workqueue_sysfs_register - make a workqueue visible in sysfs
7354 * @wq: the workqueue to register
7355 *
7356 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7357 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7358 * which is the preferred method.
7359 *
7360 * Workqueue user should use this function directly iff it wants to apply
7361 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7362 * apply_workqueue_attrs() may race against userland updating the
7363 * attributes.
7364 *
7365 * Return: 0 on success, -errno on failure.
7366 */
workqueue_sysfs_register(struct workqueue_struct * wq)7367 int workqueue_sysfs_register(struct workqueue_struct *wq)
7368 {
7369 struct wq_device *wq_dev;
7370 int ret;
7371
7372 /*
7373 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7374 * ordered workqueues.
7375 */
7376 if (WARN_ON(wq->flags & __WQ_ORDERED))
7377 return -EINVAL;
7378
7379 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7380 if (!wq_dev)
7381 return -ENOMEM;
7382
7383 wq_dev->wq = wq;
7384 wq_dev->dev.bus = &wq_subsys;
7385 wq_dev->dev.release = wq_device_release;
7386 dev_set_name(&wq_dev->dev, "%s", wq->name);
7387
7388 /*
7389 * unbound_attrs are created separately. Suppress uevent until
7390 * everything is ready.
7391 */
7392 dev_set_uevent_suppress(&wq_dev->dev, true);
7393
7394 ret = device_register(&wq_dev->dev);
7395 if (ret) {
7396 put_device(&wq_dev->dev);
7397 wq->wq_dev = NULL;
7398 return ret;
7399 }
7400
7401 if (wq->flags & WQ_UNBOUND) {
7402 struct device_attribute *attr;
7403
7404 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7405 ret = device_create_file(&wq_dev->dev, attr);
7406 if (ret) {
7407 device_unregister(&wq_dev->dev);
7408 wq->wq_dev = NULL;
7409 return ret;
7410 }
7411 }
7412 }
7413
7414 dev_set_uevent_suppress(&wq_dev->dev, false);
7415 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7416 return 0;
7417 }
7418
7419 /**
7420 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7421 * @wq: the workqueue to unregister
7422 *
7423 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7424 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7425 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7426 {
7427 struct wq_device *wq_dev = wq->wq_dev;
7428
7429 if (!wq->wq_dev)
7430 return;
7431
7432 wq->wq_dev = NULL;
7433 device_unregister(&wq_dev->dev);
7434 }
7435 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7436 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7437 #endif /* CONFIG_SYSFS */
7438
7439 /*
7440 * Workqueue watchdog.
7441 *
7442 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7443 * flush dependency, a concurrency managed work item which stays RUNNING
7444 * indefinitely. Workqueue stalls can be very difficult to debug as the
7445 * usual warning mechanisms don't trigger and internal workqueue state is
7446 * largely opaque.
7447 *
7448 * Workqueue watchdog monitors all worker pools periodically and dumps
7449 * state if some pools failed to make forward progress for a while where
7450 * forward progress is defined as the first item on ->worklist changing.
7451 *
7452 * This mechanism is controlled through the kernel parameter
7453 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7454 * corresponding sysfs parameter file.
7455 */
7456 #ifdef CONFIG_WQ_WATCHDOG
7457
7458 static unsigned long wq_watchdog_thresh = 30;
7459 static struct timer_list wq_watchdog_timer;
7460
7461 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7462 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7463
7464 static unsigned int wq_panic_on_stall;
7465 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7466
7467 /*
7468 * Show workers that might prevent the processing of pending work items.
7469 * The only candidates are CPU-bound workers in the running state.
7470 * Pending work items should be handled by another idle worker
7471 * in all other situations.
7472 */
show_cpu_pool_hog(struct worker_pool * pool)7473 static void show_cpu_pool_hog(struct worker_pool *pool)
7474 {
7475 struct worker *worker;
7476 unsigned long irq_flags;
7477 int bkt;
7478
7479 raw_spin_lock_irqsave(&pool->lock, irq_flags);
7480
7481 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7482 if (task_is_running(worker->task)) {
7483 /*
7484 * Defer printing to avoid deadlocks in console
7485 * drivers that queue work while holding locks
7486 * also taken in their write paths.
7487 */
7488 printk_deferred_enter();
7489
7490 pr_info("pool %d:\n", pool->id);
7491 sched_show_task(worker->task);
7492
7493 printk_deferred_exit();
7494 }
7495 }
7496
7497 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7498 }
7499
show_cpu_pools_hogs(void)7500 static void show_cpu_pools_hogs(void)
7501 {
7502 struct worker_pool *pool;
7503 int pi;
7504
7505 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7506
7507 rcu_read_lock();
7508
7509 for_each_pool(pool, pi) {
7510 if (pool->cpu_stall)
7511 show_cpu_pool_hog(pool);
7512
7513 }
7514
7515 rcu_read_unlock();
7516 }
7517
panic_on_wq_watchdog(void)7518 static void panic_on_wq_watchdog(void)
7519 {
7520 static unsigned int wq_stall;
7521
7522 if (wq_panic_on_stall) {
7523 wq_stall++;
7524 BUG_ON(wq_stall >= wq_panic_on_stall);
7525 }
7526 }
7527
wq_watchdog_reset_touched(void)7528 static void wq_watchdog_reset_touched(void)
7529 {
7530 int cpu;
7531
7532 wq_watchdog_touched = jiffies;
7533 for_each_possible_cpu(cpu)
7534 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7535 }
7536
wq_watchdog_timer_fn(struct timer_list * unused)7537 static void wq_watchdog_timer_fn(struct timer_list *unused)
7538 {
7539 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7540 bool lockup_detected = false;
7541 bool cpu_pool_stall = false;
7542 unsigned long now = jiffies;
7543 struct worker_pool *pool;
7544 int pi;
7545
7546 if (!thresh)
7547 return;
7548
7549 rcu_read_lock();
7550
7551 for_each_pool(pool, pi) {
7552 unsigned long pool_ts, touched, ts;
7553
7554 pool->cpu_stall = false;
7555 if (list_empty(&pool->worklist))
7556 continue;
7557
7558 /*
7559 * If a virtual machine is stopped by the host it can look to
7560 * the watchdog like a stall.
7561 */
7562 kvm_check_and_clear_guest_paused();
7563
7564 /* get the latest of pool and touched timestamps */
7565 if (pool->cpu >= 0)
7566 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7567 else
7568 touched = READ_ONCE(wq_watchdog_touched);
7569 pool_ts = READ_ONCE(pool->watchdog_ts);
7570
7571 if (time_after(pool_ts, touched))
7572 ts = pool_ts;
7573 else
7574 ts = touched;
7575
7576 /* did we stall? */
7577 if (time_after(now, ts + thresh)) {
7578 lockup_detected = true;
7579 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7580 pool->cpu_stall = true;
7581 cpu_pool_stall = true;
7582 }
7583 pr_emerg("BUG: workqueue lockup - pool");
7584 pr_cont_pool_info(pool);
7585 pr_cont(" stuck for %us!\n",
7586 jiffies_to_msecs(now - pool_ts) / 1000);
7587 }
7588
7589
7590 }
7591
7592 rcu_read_unlock();
7593
7594 if (lockup_detected)
7595 show_all_workqueues();
7596
7597 if (cpu_pool_stall)
7598 show_cpu_pools_hogs();
7599
7600 if (lockup_detected)
7601 panic_on_wq_watchdog();
7602
7603 wq_watchdog_reset_touched();
7604 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7605 }
7606
wq_watchdog_touch(int cpu)7607 notrace void wq_watchdog_touch(int cpu)
7608 {
7609 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7610 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7611 unsigned long now = jiffies;
7612
7613 if (cpu >= 0)
7614 per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7615 else
7616 WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7617
7618 /* Don't unnecessarily store to global cacheline */
7619 if (time_after(now, touch_ts + thresh / 4))
7620 WRITE_ONCE(wq_watchdog_touched, jiffies);
7621 }
7622
wq_watchdog_set_thresh(unsigned long thresh)7623 static void wq_watchdog_set_thresh(unsigned long thresh)
7624 {
7625 wq_watchdog_thresh = 0;
7626 timer_delete_sync(&wq_watchdog_timer);
7627
7628 if (thresh) {
7629 wq_watchdog_thresh = thresh;
7630 wq_watchdog_reset_touched();
7631 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7632 }
7633 }
7634
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7635 static int wq_watchdog_param_set_thresh(const char *val,
7636 const struct kernel_param *kp)
7637 {
7638 unsigned long thresh;
7639 int ret;
7640
7641 ret = kstrtoul(val, 0, &thresh);
7642 if (ret)
7643 return ret;
7644
7645 if (system_wq)
7646 wq_watchdog_set_thresh(thresh);
7647 else
7648 wq_watchdog_thresh = thresh;
7649
7650 return 0;
7651 }
7652
7653 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7654 .set = wq_watchdog_param_set_thresh,
7655 .get = param_get_ulong,
7656 };
7657
7658 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7659 0644);
7660
wq_watchdog_init(void)7661 static void wq_watchdog_init(void)
7662 {
7663 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7664 wq_watchdog_set_thresh(wq_watchdog_thresh);
7665 }
7666
7667 #else /* CONFIG_WQ_WATCHDOG */
7668
wq_watchdog_init(void)7669 static inline void wq_watchdog_init(void) { }
7670
7671 #endif /* CONFIG_WQ_WATCHDOG */
7672
bh_pool_kick_normal(struct irq_work * irq_work)7673 static void bh_pool_kick_normal(struct irq_work *irq_work)
7674 {
7675 raise_softirq_irqoff(TASKLET_SOFTIRQ);
7676 }
7677
bh_pool_kick_highpri(struct irq_work * irq_work)7678 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7679 {
7680 raise_softirq_irqoff(HI_SOFTIRQ);
7681 }
7682
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7683 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7684 {
7685 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7686 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7687 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7688 return;
7689 }
7690
7691 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7692 }
7693
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7694 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7695 {
7696 BUG_ON(init_worker_pool(pool));
7697 pool->cpu = cpu;
7698 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7699 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7700 pool->attrs->nice = nice;
7701 pool->attrs->affn_strict = true;
7702 pool->node = cpu_to_node(cpu);
7703
7704 /* alloc pool ID */
7705 mutex_lock(&wq_pool_mutex);
7706 BUG_ON(worker_pool_assign_id(pool));
7707 mutex_unlock(&wq_pool_mutex);
7708 }
7709
7710 /**
7711 * workqueue_init_early - early init for workqueue subsystem
7712 *
7713 * This is the first step of three-staged workqueue subsystem initialization and
7714 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7715 * up. It sets up all the data structures and system workqueues and allows early
7716 * boot code to create workqueues and queue/cancel work items. Actual work item
7717 * execution starts only after kthreads can be created and scheduled right
7718 * before early initcalls.
7719 */
workqueue_init_early(void)7720 void __init workqueue_init_early(void)
7721 {
7722 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7723 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7724 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7725 bh_pool_kick_highpri };
7726 int i, cpu;
7727
7728 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7729
7730 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7731 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7732 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7733 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7734
7735 cpumask_copy(wq_online_cpumask, cpu_online_mask);
7736 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7737 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7738 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7739 if (!cpumask_empty(&wq_cmdline_cpumask))
7740 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7741
7742 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7743 cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask,
7744 housekeeping_cpumask(HK_TYPE_DOMAIN));
7745 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7746
7747 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7748 BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7749
7750 /*
7751 * If nohz_full is enabled, set power efficient workqueue as unbound.
7752 * This allows workqueue items to be moved to HK CPUs.
7753 */
7754 if (housekeeping_enabled(HK_TYPE_TICK))
7755 wq_power_efficient = true;
7756
7757 /* initialize WQ_AFFN_SYSTEM pods */
7758 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7759 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7760 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7761 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7762
7763 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7764
7765 pt->nr_pods = 1;
7766 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7767 pt->pod_node[0] = NUMA_NO_NODE;
7768 pt->cpu_pod[0] = 0;
7769
7770 /* initialize BH and CPU pools */
7771 for_each_possible_cpu(cpu) {
7772 struct worker_pool *pool;
7773
7774 i = 0;
7775 for_each_bh_worker_pool(pool, cpu) {
7776 init_cpu_worker_pool(pool, cpu, std_nice[i]);
7777 pool->flags |= POOL_BH;
7778 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7779 i++;
7780 }
7781
7782 i = 0;
7783 for_each_cpu_worker_pool(pool, cpu)
7784 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7785 }
7786
7787 /* create default unbound and ordered wq attrs */
7788 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7789 struct workqueue_attrs *attrs;
7790
7791 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7792 attrs->nice = std_nice[i];
7793 unbound_std_wq_attrs[i] = attrs;
7794
7795 /*
7796 * An ordered wq should have only one pwq as ordering is
7797 * guaranteed by max_active which is enforced by pwqs.
7798 */
7799 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7800 attrs->nice = std_nice[i];
7801 attrs->ordered = true;
7802 ordered_wq_attrs[i] = attrs;
7803 }
7804
7805 system_wq = alloc_workqueue("events", 0, 0);
7806 system_percpu_wq = alloc_workqueue("events", 0, 0);
7807 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7808 system_long_wq = alloc_workqueue("events_long", 0, 0);
7809 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7810 system_dfl_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7811 system_freezable_wq = alloc_workqueue("events_freezable",
7812 WQ_FREEZABLE, 0);
7813 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7814 WQ_POWER_EFFICIENT, 0);
7815 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7816 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7817 0);
7818 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7819 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7820 WQ_BH | WQ_HIGHPRI, 0);
7821 BUG_ON(!system_wq || !system_percpu_wq|| !system_highpri_wq || !system_long_wq ||
7822 !system_unbound_wq || !system_freezable_wq || !system_dfl_wq ||
7823 !system_power_efficient_wq ||
7824 !system_freezable_power_efficient_wq ||
7825 !system_bh_wq || !system_bh_highpri_wq);
7826 }
7827
wq_cpu_intensive_thresh_init(void)7828 static void __init wq_cpu_intensive_thresh_init(void)
7829 {
7830 unsigned long thresh;
7831 unsigned long bogo;
7832
7833 pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release");
7834 BUG_ON(IS_ERR(pwq_release_worker));
7835
7836 /* if the user set it to a specific value, keep it */
7837 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7838 return;
7839
7840 /*
7841 * The default of 10ms is derived from the fact that most modern (as of
7842 * 2023) processors can do a lot in 10ms and that it's just below what
7843 * most consider human-perceivable. However, the kernel also runs on a
7844 * lot slower CPUs including microcontrollers where the threshold is way
7845 * too low.
7846 *
7847 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7848 * This is by no means accurate but it doesn't have to be. The mechanism
7849 * is still useful even when the threshold is fully scaled up. Also, as
7850 * the reports would usually be applicable to everyone, some machines
7851 * operating on longer thresholds won't significantly diminish their
7852 * usefulness.
7853 */
7854 thresh = 10 * USEC_PER_MSEC;
7855
7856 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7857 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7858 if (bogo < 4000)
7859 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7860
7861 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7862 loops_per_jiffy, bogo, thresh);
7863
7864 wq_cpu_intensive_thresh_us = thresh;
7865 }
7866
7867 /**
7868 * workqueue_init - bring workqueue subsystem fully online
7869 *
7870 * This is the second step of three-staged workqueue subsystem initialization
7871 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7872 * been created and work items queued on them, but there are no kworkers
7873 * executing the work items yet. Populate the worker pools with the initial
7874 * workers and enable future kworker creations.
7875 */
workqueue_init(void)7876 void __init workqueue_init(void)
7877 {
7878 struct workqueue_struct *wq;
7879 struct worker_pool *pool;
7880 int cpu, bkt;
7881
7882 wq_cpu_intensive_thresh_init();
7883
7884 mutex_lock(&wq_pool_mutex);
7885
7886 /*
7887 * Per-cpu pools created earlier could be missing node hint. Fix them
7888 * up. Also, create a rescuer for workqueues that requested it.
7889 */
7890 for_each_possible_cpu(cpu) {
7891 for_each_bh_worker_pool(pool, cpu)
7892 pool->node = cpu_to_node(cpu);
7893 for_each_cpu_worker_pool(pool, cpu)
7894 pool->node = cpu_to_node(cpu);
7895 }
7896
7897 list_for_each_entry(wq, &workqueues, list) {
7898 WARN(init_rescuer(wq),
7899 "workqueue: failed to create early rescuer for %s",
7900 wq->name);
7901 }
7902
7903 mutex_unlock(&wq_pool_mutex);
7904
7905 /*
7906 * Create the initial workers. A BH pool has one pseudo worker that
7907 * represents the shared BH execution context and thus doesn't get
7908 * affected by hotplug events. Create the BH pseudo workers for all
7909 * possible CPUs here.
7910 */
7911 for_each_possible_cpu(cpu)
7912 for_each_bh_worker_pool(pool, cpu)
7913 BUG_ON(!create_worker(pool));
7914
7915 for_each_online_cpu(cpu) {
7916 for_each_cpu_worker_pool(pool, cpu) {
7917 pool->flags &= ~POOL_DISASSOCIATED;
7918 BUG_ON(!create_worker(pool));
7919 }
7920 }
7921
7922 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7923 BUG_ON(!create_worker(pool));
7924
7925 wq_online = true;
7926 wq_watchdog_init();
7927 }
7928
7929 /*
7930 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7931 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7932 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7933 */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7934 static void __init init_pod_type(struct wq_pod_type *pt,
7935 bool (*cpus_share_pod)(int, int))
7936 {
7937 int cur, pre, cpu, pod;
7938
7939 pt->nr_pods = 0;
7940
7941 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7942 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7943 BUG_ON(!pt->cpu_pod);
7944
7945 for_each_possible_cpu(cur) {
7946 for_each_possible_cpu(pre) {
7947 if (pre >= cur) {
7948 pt->cpu_pod[cur] = pt->nr_pods++;
7949 break;
7950 }
7951 if (cpus_share_pod(cur, pre)) {
7952 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7953 break;
7954 }
7955 }
7956 }
7957
7958 /* init the rest to match @pt->cpu_pod[] */
7959 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7960 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7961 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7962
7963 for (pod = 0; pod < pt->nr_pods; pod++)
7964 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7965
7966 for_each_possible_cpu(cpu) {
7967 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7968 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7969 }
7970 }
7971
cpus_dont_share(int cpu0,int cpu1)7972 static bool __init cpus_dont_share(int cpu0, int cpu1)
7973 {
7974 return false;
7975 }
7976
cpus_share_smt(int cpu0,int cpu1)7977 static bool __init cpus_share_smt(int cpu0, int cpu1)
7978 {
7979 #ifdef CONFIG_SCHED_SMT
7980 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7981 #else
7982 return false;
7983 #endif
7984 }
7985
cpus_share_numa(int cpu0,int cpu1)7986 static bool __init cpus_share_numa(int cpu0, int cpu1)
7987 {
7988 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7989 }
7990
7991 /**
7992 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7993 *
7994 * This is the third step of three-staged workqueue subsystem initialization and
7995 * invoked after SMP and topology information are fully initialized. It
7996 * initializes the unbound CPU pods accordingly.
7997 */
workqueue_init_topology(void)7998 void __init workqueue_init_topology(void)
7999 {
8000 struct workqueue_struct *wq;
8001 int cpu;
8002
8003 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8004 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8005 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8006 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8007
8008 wq_topo_initialized = true;
8009
8010 mutex_lock(&wq_pool_mutex);
8011
8012 /*
8013 * Workqueues allocated earlier would have all CPUs sharing the default
8014 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8015 * and CPU combinations to apply per-pod sharing.
8016 */
8017 list_for_each_entry(wq, &workqueues, list) {
8018 for_each_online_cpu(cpu)
8019 unbound_wq_update_pwq(wq, cpu);
8020 if (wq->flags & WQ_UNBOUND) {
8021 mutex_lock(&wq->mutex);
8022 wq_update_node_max_active(wq, -1);
8023 mutex_unlock(&wq->mutex);
8024 }
8025 }
8026
8027 mutex_unlock(&wq_pool_mutex);
8028 }
8029
__warn_flushing_systemwide_wq(void)8030 void __warn_flushing_systemwide_wq(void)
8031 {
8032 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8033 dump_stack();
8034 }
8035 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8036
workqueue_unbound_cpus_setup(char * str)8037 static int __init workqueue_unbound_cpus_setup(char *str)
8038 {
8039 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8040 cpumask_clear(&wq_cmdline_cpumask);
8041 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8042 }
8043
8044 return 1;
8045 }
8046 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8047