xref: /linux/kernel/workqueue.c (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130 
131 /*
132  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134  * msecs_to_jiffies() can't be an initializer.
135  */
136 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS	10
138 
139 /*
140  * Structure fields follow one of the following exclusion rules.
141  *
142  * I: Modifiable by initialization/destruction paths and read-only for
143  *    everyone else.
144  *
145  * P: Preemption protected.  Disabling preemption is enough and should
146  *    only be modified and accessed from the local cpu.
147  *
148  * L: pool->lock protected.  Access with pool->lock held.
149  *
150  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151  *     reads.
152  *
153  * K: Only modified by worker while holding pool->lock. Can be safely read by
154  *    self, while holding pool->lock or from IRQ context if %current is the
155  *    kworker.
156  *
157  * S: Only modified by worker self.
158  *
159  * A: wq_pool_attach_mutex protected.
160  *
161  * PL: wq_pool_mutex protected.
162  *
163  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
164  *
165  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
166  *
167  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
168  *      RCU for reads.
169  *
170  * WQ: wq->mutex protected.
171  *
172  * WR: wq->mutex protected for writes.  RCU protected for reads.
173  *
174  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175  *     with READ_ONCE() without locking.
176  *
177  * MD: wq_mayday_lock protected.
178  *
179  * WD: Used internally by the watchdog.
180  */
181 
182 /* struct worker is defined in workqueue_internal.h */
183 
184 struct worker_pool {
185 	raw_spinlock_t		lock;		/* the pool lock */
186 	int			cpu;		/* I: the associated cpu */
187 	int			node;		/* I: the associated node ID */
188 	int			id;		/* I: pool ID */
189 	unsigned int		flags;		/* L: flags */
190 
191 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
192 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
193 
194 	/*
195 	 * The counter is incremented in a process context on the associated CPU
196 	 * w/ preemption disabled, and decremented or reset in the same context
197 	 * but w/ pool->lock held. The readers grab pool->lock and are
198 	 * guaranteed to see if the counter reached zero.
199 	 */
200 	int			nr_running;
201 
202 	struct list_head	worklist;	/* L: list of pending works */
203 
204 	int			nr_workers;	/* L: total number of workers */
205 	int			nr_idle;	/* L: currently idle workers */
206 
207 	struct list_head	idle_list;	/* L: list of idle workers */
208 	struct timer_list	idle_timer;	/* L: worker idle timeout */
209 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
210 
211 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
212 
213 	/* a workers is either on busy_hash or idle_list, or the manager */
214 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 						/* L: hash of busy workers */
216 
217 	struct worker		*manager;	/* L: purely informational */
218 	struct list_head	workers;	/* A: attached workers */
219 
220 	struct ida		worker_ida;	/* worker IDs for task name */
221 
222 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224 	int			refcnt;		/* PL: refcnt for unbound pools */
225 
226 	/*
227 	 * Destruction of pool is RCU protected to allow dereferences
228 	 * from get_work_pool().
229 	 */
230 	struct rcu_head		rcu;
231 };
232 
233 /*
234  * Per-pool_workqueue statistics. These can be monitored using
235  * tools/workqueue/wq_monitor.py.
236  */
237 enum pool_workqueue_stats {
238 	PWQ_STAT_STARTED,	/* work items started execution */
239 	PWQ_STAT_COMPLETED,	/* work items completed execution */
240 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
241 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
242 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
243 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
244 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
245 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
246 
247 	PWQ_NR_STATS,
248 };
249 
250 /*
251  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
252  * of work_struct->data are used for flags and the remaining high bits
253  * point to the pwq; thus, pwqs need to be aligned at two's power of the
254  * number of flag bits.
255  */
256 struct pool_workqueue {
257 	struct worker_pool	*pool;		/* I: the associated pool */
258 	struct workqueue_struct *wq;		/* I: the owning workqueue */
259 	int			work_color;	/* L: current color */
260 	int			flush_color;	/* L: flushing color */
261 	int			refcnt;		/* L: reference count */
262 	int			nr_in_flight[WORK_NR_COLORS];
263 						/* L: nr of in_flight works */
264 	bool			plugged;	/* L: execution suspended */
265 
266 	/*
267 	 * nr_active management and WORK_STRUCT_INACTIVE:
268 	 *
269 	 * When pwq->nr_active >= max_active, new work item is queued to
270 	 * pwq->inactive_works instead of pool->worklist and marked with
271 	 * WORK_STRUCT_INACTIVE.
272 	 *
273 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 	 * nr_active and all work items in pwq->inactive_works are marked with
275 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 	 * in pwq->inactive_works. Some of them are ready to run in
277 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 	 * wq_barrier which is used for flush_work() and should not participate
279 	 * in nr_active. For non-barrier work item, it is marked with
280 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 	 */
282 	int			nr_active;	/* L: nr of active works */
283 	struct list_head	inactive_works;	/* L: inactive works */
284 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
285 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
286 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
287 
288 	u64			stats[PWQ_NR_STATS];
289 
290 	/*
291 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 	 * RCU protected so that the first pwq can be determined without
294 	 * grabbing wq->mutex.
295 	 */
296 	struct kthread_work	release_work;
297 	struct rcu_head		rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299 
300 /*
301  * Structure used to wait for workqueue flush.
302  */
303 struct wq_flusher {
304 	struct list_head	list;		/* WQ: list of flushers */
305 	int			flush_color;	/* WQ: flush color waiting for */
306 	struct completion	done;		/* flush completion */
307 };
308 
309 struct wq_device;
310 
311 /*
312  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314  * As sharing a single nr_active across multiple sockets can be very expensive,
315  * the counting and enforcement is per NUMA node.
316  *
317  * The following struct is used to enforce per-node max_active. When a pwq wants
318  * to start executing a work item, it should increment ->nr using
319  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322  * round-robin order.
323  */
324 struct wq_node_nr_active {
325 	int			max;		/* per-node max_active */
326 	atomic_t		nr;		/* per-node nr_active */
327 	raw_spinlock_t		lock;		/* nests inside pool locks */
328 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
329 };
330 
331 /*
332  * The externally visible workqueue.  It relays the issued work items to
333  * the appropriate worker_pool through its pool_workqueues.
334  */
335 struct workqueue_struct {
336 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
337 	struct list_head	list;		/* PR: list of all workqueues */
338 
339 	struct mutex		mutex;		/* protects this wq */
340 	int			work_color;	/* WQ: current work color */
341 	int			flush_color;	/* WQ: current flush color */
342 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
343 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
344 	struct list_head	flusher_queue;	/* WQ: flush waiters */
345 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
346 
347 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
348 	struct worker		*rescuer;	/* MD: rescue worker */
349 
350 	int			nr_drainers;	/* WQ: drain in progress */
351 
352 	/* See alloc_workqueue() function comment for info on min/max_active */
353 	int			max_active;	/* WO: max active works */
354 	int			min_active;	/* WO: min active works */
355 	int			saved_max_active; /* WQ: saved max_active */
356 	int			saved_min_active; /* WQ: saved min_active */
357 
358 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
359 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
360 
361 #ifdef CONFIG_SYSFS
362 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 	char			*lock_name;
366 	struct lock_class_key	key;
367 	struct lockdep_map	__lockdep_map;
368 	struct lockdep_map	*lockdep_map;
369 #endif
370 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
371 
372 	/*
373 	 * Destruction of workqueue_struct is RCU protected to allow walking
374 	 * the workqueues list without grabbing wq_pool_mutex.
375 	 * This is used to dump all workqueues from sysrq.
376 	 */
377 	struct rcu_head		rcu;
378 
379 	/* hot fields used during command issue, aligned to cacheline */
380 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
381 	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
382 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383 };
384 
385 /*
386  * Each pod type describes how CPUs should be grouped for unbound workqueues.
387  * See the comment above workqueue_attrs->affn_scope.
388  */
389 struct wq_pod_type {
390 	int			nr_pods;	/* number of pods */
391 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
392 	int			*pod_node;	/* pod -> node */
393 	int			*cpu_pod;	/* cpu -> pod */
394 };
395 
396 struct work_offq_data {
397 	u32			pool_id;
398 	u32			disable;
399 	u32			flags;
400 };
401 
402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403 	[WQ_AFFN_DFL]		= "default",
404 	[WQ_AFFN_CPU]		= "cpu",
405 	[WQ_AFFN_SMT]		= "smt",
406 	[WQ_AFFN_CACHE]		= "cache",
407 	[WQ_AFFN_NUMA]		= "numa",
408 	[WQ_AFFN_SYSTEM]	= "system",
409 };
410 
411 /*
412  * Per-cpu work items which run for longer than the following threshold are
413  * automatically considered CPU intensive and excluded from concurrency
414  * management to prevent them from noticeably delaying other per-cpu work items.
415  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416  * The actual value is initialized in wq_cpu_intensive_thresh_init().
417  */
418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh = 4;
422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423 #endif
424 
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428 
429 static bool wq_online;			/* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly = false;
431 
432 static struct kmem_cache *pwq_cache;
433 
434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436 
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
439 
440 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445 
446 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
447 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
448 
449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
450 static cpumask_var_t wq_online_cpumask;
451 
452 /* PL&A: allowable cpus for unbound wqs and work items */
453 static cpumask_var_t wq_unbound_cpumask;
454 
455 /* PL: user requested unbound cpumask via sysfs */
456 static cpumask_var_t wq_requested_unbound_cpumask;
457 
458 /* PL: isolated cpumask to be excluded from unbound cpumask */
459 static cpumask_var_t wq_isolated_cpumask;
460 
461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
462 static struct cpumask wq_cmdline_cpumask __initdata;
463 
464 /* CPU where unbound work was last round robin scheduled from this CPU */
465 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
466 
467 /*
468  * Local execution of unbound work items is no longer guaranteed.  The
469  * following always forces round-robin CPU selection on unbound work items
470  * to uncover usages which depend on it.
471  */
472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
473 static bool wq_debug_force_rr_cpu = true;
474 #else
475 static bool wq_debug_force_rr_cpu = false;
476 #endif
477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
478 
479 /* to raise softirq for the BH worker pools on other CPUs */
480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
481 
482 /* the BH worker pools */
483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
484 
485 /* the per-cpu worker pools */
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
487 
488 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
489 
490 /* PL: hash of all unbound pools keyed by pool->attrs */
491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492 
493 /* I: attributes used when instantiating standard unbound pools on demand */
494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495 
496 /* I: attributes used when instantiating ordered pools on demand */
497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498 
499 /*
500  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501  * process context while holding a pool lock. Bounce to a dedicated kthread
502  * worker to avoid A-A deadlocks.
503  */
504 static struct kthread_worker *pwq_release_worker __ro_after_init;
505 
506 struct workqueue_struct *system_wq __ro_after_init;
507 EXPORT_SYMBOL(system_wq);
508 struct workqueue_struct *system_percpu_wq __ro_after_init;
509 EXPORT_SYMBOL(system_percpu_wq);
510 struct workqueue_struct *system_highpri_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_highpri_wq);
512 struct workqueue_struct *system_long_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_long_wq);
514 struct workqueue_struct *system_unbound_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_unbound_wq);
516 struct workqueue_struct *system_dfl_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_dfl_wq);
518 struct workqueue_struct *system_freezable_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_freezable_wq);
520 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
521 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
522 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
523 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
524 struct workqueue_struct *system_bh_wq;
525 EXPORT_SYMBOL_GPL(system_bh_wq);
526 struct workqueue_struct *system_bh_highpri_wq;
527 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
528 
529 static int worker_thread(void *__worker);
530 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
531 static void show_pwq(struct pool_workqueue *pwq);
532 static void show_one_worker_pool(struct worker_pool *pool);
533 
534 #define CREATE_TRACE_POINTS
535 #include <trace/events/workqueue.h>
536 
537 #define assert_rcu_or_pool_mutex()					\
538 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
539 			 !lockdep_is_held(&wq_pool_mutex),		\
540 			 "RCU or wq_pool_mutex should be held")
541 
542 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
543 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
544 			 !lockdep_is_held(&wq->mutex) &&		\
545 			 !lockdep_is_held(&wq_pool_mutex),		\
546 			 "RCU, wq->mutex or wq_pool_mutex should be held")
547 
548 #define for_each_bh_worker_pool(pool, cpu)				\
549 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
550 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
551 	     (pool)++)
552 
553 #define for_each_cpu_worker_pool(pool, cpu)				\
554 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
555 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
556 	     (pool)++)
557 
558 /**
559  * for_each_pool - iterate through all worker_pools in the system
560  * @pool: iteration cursor
561  * @pi: integer used for iteration
562  *
563  * This must be called either with wq_pool_mutex held or RCU read
564  * locked.  If the pool needs to be used beyond the locking in effect, the
565  * caller is responsible for guaranteeing that the pool stays online.
566  *
567  * The if/else clause exists only for the lockdep assertion and can be
568  * ignored.
569  */
570 #define for_each_pool(pool, pi)						\
571 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
572 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
573 		else
574 
575 /**
576  * for_each_pool_worker - iterate through all workers of a worker_pool
577  * @worker: iteration cursor
578  * @pool: worker_pool to iterate workers of
579  *
580  * This must be called with wq_pool_attach_mutex.
581  *
582  * The if/else clause exists only for the lockdep assertion and can be
583  * ignored.
584  */
585 #define for_each_pool_worker(worker, pool)				\
586 	list_for_each_entry((worker), &(pool)->workers, node)		\
587 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
588 		else
589 
590 /**
591  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
592  * @pwq: iteration cursor
593  * @wq: the target workqueue
594  *
595  * This must be called either with wq->mutex held or RCU read locked.
596  * If the pwq needs to be used beyond the locking in effect, the caller is
597  * responsible for guaranteeing that the pwq stays online.
598  *
599  * The if/else clause exists only for the lockdep assertion and can be
600  * ignored.
601  */
602 #define for_each_pwq(pwq, wq)						\
603 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
604 				 lockdep_is_held(&(wq->mutex)))
605 
606 #ifdef CONFIG_DEBUG_OBJECTS_WORK
607 
608 static const struct debug_obj_descr work_debug_descr;
609 
work_debug_hint(void * addr)610 static void *work_debug_hint(void *addr)
611 {
612 	return ((struct work_struct *) addr)->func;
613 }
614 
work_is_static_object(void * addr)615 static bool work_is_static_object(void *addr)
616 {
617 	struct work_struct *work = addr;
618 
619 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
620 }
621 
622 /*
623  * fixup_init is called when:
624  * - an active object is initialized
625  */
work_fixup_init(void * addr,enum debug_obj_state state)626 static bool work_fixup_init(void *addr, enum debug_obj_state state)
627 {
628 	struct work_struct *work = addr;
629 
630 	switch (state) {
631 	case ODEBUG_STATE_ACTIVE:
632 		cancel_work_sync(work);
633 		debug_object_init(work, &work_debug_descr);
634 		return true;
635 	default:
636 		return false;
637 	}
638 }
639 
640 /*
641  * fixup_free is called when:
642  * - an active object is freed
643  */
work_fixup_free(void * addr,enum debug_obj_state state)644 static bool work_fixup_free(void *addr, enum debug_obj_state state)
645 {
646 	struct work_struct *work = addr;
647 
648 	switch (state) {
649 	case ODEBUG_STATE_ACTIVE:
650 		cancel_work_sync(work);
651 		debug_object_free(work, &work_debug_descr);
652 		return true;
653 	default:
654 		return false;
655 	}
656 }
657 
658 static const struct debug_obj_descr work_debug_descr = {
659 	.name		= "work_struct",
660 	.debug_hint	= work_debug_hint,
661 	.is_static_object = work_is_static_object,
662 	.fixup_init	= work_fixup_init,
663 	.fixup_free	= work_fixup_free,
664 };
665 
debug_work_activate(struct work_struct * work)666 static inline void debug_work_activate(struct work_struct *work)
667 {
668 	debug_object_activate(work, &work_debug_descr);
669 }
670 
debug_work_deactivate(struct work_struct * work)671 static inline void debug_work_deactivate(struct work_struct *work)
672 {
673 	debug_object_deactivate(work, &work_debug_descr);
674 }
675 
__init_work(struct work_struct * work,int onstack)676 void __init_work(struct work_struct *work, int onstack)
677 {
678 	if (onstack)
679 		debug_object_init_on_stack(work, &work_debug_descr);
680 	else
681 		debug_object_init(work, &work_debug_descr);
682 }
683 EXPORT_SYMBOL_GPL(__init_work);
684 
destroy_work_on_stack(struct work_struct * work)685 void destroy_work_on_stack(struct work_struct *work)
686 {
687 	debug_object_free(work, &work_debug_descr);
688 }
689 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
690 
destroy_delayed_work_on_stack(struct delayed_work * work)691 void destroy_delayed_work_on_stack(struct delayed_work *work)
692 {
693 	timer_destroy_on_stack(&work->timer);
694 	debug_object_free(&work->work, &work_debug_descr);
695 }
696 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
697 
698 #else
debug_work_activate(struct work_struct * work)699 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)700 static inline void debug_work_deactivate(struct work_struct *work) { }
701 #endif
702 
703 /**
704  * worker_pool_assign_id - allocate ID and assign it to @pool
705  * @pool: the pool pointer of interest
706  *
707  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
708  * successfully, -errno on failure.
709  */
worker_pool_assign_id(struct worker_pool * pool)710 static int worker_pool_assign_id(struct worker_pool *pool)
711 {
712 	int ret;
713 
714 	lockdep_assert_held(&wq_pool_mutex);
715 
716 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
717 			GFP_KERNEL);
718 	if (ret >= 0) {
719 		pool->id = ret;
720 		return 0;
721 	}
722 	return ret;
723 }
724 
725 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)726 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
727 {
728        if (cpu >= 0)
729                return per_cpu_ptr(wq->cpu_pwq, cpu);
730        else
731                return &wq->dfl_pwq;
732 }
733 
734 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)735 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
736 {
737 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
738 				     lockdep_is_held(&wq_pool_mutex) ||
739 				     lockdep_is_held(&wq->mutex));
740 }
741 
742 /**
743  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
744  * @wq: workqueue of interest
745  *
746  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
747  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
748  * default pwq is always mapped to the pool with the current effective cpumask.
749  */
unbound_effective_cpumask(struct workqueue_struct * wq)750 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
751 {
752 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
753 }
754 
work_color_to_flags(int color)755 static unsigned int work_color_to_flags(int color)
756 {
757 	return color << WORK_STRUCT_COLOR_SHIFT;
758 }
759 
get_work_color(unsigned long work_data)760 static int get_work_color(unsigned long work_data)
761 {
762 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
763 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
764 }
765 
work_next_color(int color)766 static int work_next_color(int color)
767 {
768 	return (color + 1) % WORK_NR_COLORS;
769 }
770 
pool_offq_flags(struct worker_pool * pool)771 static unsigned long pool_offq_flags(struct worker_pool *pool)
772 {
773 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
774 }
775 
776 /*
777  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
778  * contain the pointer to the queued pwq.  Once execution starts, the flag
779  * is cleared and the high bits contain OFFQ flags and pool ID.
780  *
781  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
782  * can be used to set the pwq, pool or clear work->data. These functions should
783  * only be called while the work is owned - ie. while the PENDING bit is set.
784  *
785  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
786  * corresponding to a work.  Pool is available once the work has been
787  * queued anywhere after initialization until it is sync canceled.  pwq is
788  * available only while the work item is queued.
789  */
set_work_data(struct work_struct * work,unsigned long data)790 static inline void set_work_data(struct work_struct *work, unsigned long data)
791 {
792 	WARN_ON_ONCE(!work_pending(work));
793 	atomic_long_set(&work->data, data | work_static(work));
794 }
795 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)796 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
797 			 unsigned long flags)
798 {
799 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
800 		      WORK_STRUCT_PWQ | flags);
801 }
802 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)803 static void set_work_pool_and_keep_pending(struct work_struct *work,
804 					   int pool_id, unsigned long flags)
805 {
806 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
807 		      WORK_STRUCT_PENDING | flags);
808 }
809 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)810 static void set_work_pool_and_clear_pending(struct work_struct *work,
811 					    int pool_id, unsigned long flags)
812 {
813 	/*
814 	 * The following wmb is paired with the implied mb in
815 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
816 	 * here are visible to and precede any updates by the next PENDING
817 	 * owner.
818 	 */
819 	smp_wmb();
820 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
821 		      flags);
822 	/*
823 	 * The following mb guarantees that previous clear of a PENDING bit
824 	 * will not be reordered with any speculative LOADS or STORES from
825 	 * work->current_func, which is executed afterwards.  This possible
826 	 * reordering can lead to a missed execution on attempt to queue
827 	 * the same @work.  E.g. consider this case:
828 	 *
829 	 *   CPU#0                         CPU#1
830 	 *   ----------------------------  --------------------------------
831 	 *
832 	 * 1  STORE event_indicated
833 	 * 2  queue_work_on() {
834 	 * 3    test_and_set_bit(PENDING)
835 	 * 4 }                             set_..._and_clear_pending() {
836 	 * 5                                 set_work_data() # clear bit
837 	 * 6                                 smp_mb()
838 	 * 7                               work->current_func() {
839 	 * 8				      LOAD event_indicated
840 	 *				   }
841 	 *
842 	 * Without an explicit full barrier speculative LOAD on line 8 can
843 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
844 	 * CPU#0 observes the PENDING bit is still set and new execution of
845 	 * a @work is not queued in a hope, that CPU#1 will eventually
846 	 * finish the queued @work.  Meanwhile CPU#1 does not see
847 	 * event_indicated is set, because speculative LOAD was executed
848 	 * before actual STORE.
849 	 */
850 	smp_mb();
851 }
852 
work_struct_pwq(unsigned long data)853 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
854 {
855 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
856 }
857 
get_work_pwq(struct work_struct * work)858 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
859 {
860 	unsigned long data = atomic_long_read(&work->data);
861 
862 	if (data & WORK_STRUCT_PWQ)
863 		return work_struct_pwq(data);
864 	else
865 		return NULL;
866 }
867 
868 /**
869  * get_work_pool - return the worker_pool a given work was associated with
870  * @work: the work item of interest
871  *
872  * Pools are created and destroyed under wq_pool_mutex, and allows read
873  * access under RCU read lock.  As such, this function should be
874  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
875  *
876  * All fields of the returned pool are accessible as long as the above
877  * mentioned locking is in effect.  If the returned pool needs to be used
878  * beyond the critical section, the caller is responsible for ensuring the
879  * returned pool is and stays online.
880  *
881  * Return: The worker_pool @work was last associated with.  %NULL if none.
882  */
get_work_pool(struct work_struct * work)883 static struct worker_pool *get_work_pool(struct work_struct *work)
884 {
885 	unsigned long data = atomic_long_read(&work->data);
886 	int pool_id;
887 
888 	assert_rcu_or_pool_mutex();
889 
890 	if (data & WORK_STRUCT_PWQ)
891 		return work_struct_pwq(data)->pool;
892 
893 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
894 	if (pool_id == WORK_OFFQ_POOL_NONE)
895 		return NULL;
896 
897 	return idr_find(&worker_pool_idr, pool_id);
898 }
899 
shift_and_mask(unsigned long v,u32 shift,u32 bits)900 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
901 {
902 	return (v >> shift) & ((1U << bits) - 1);
903 }
904 
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)905 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
906 {
907 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
908 
909 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
910 					WORK_OFFQ_POOL_BITS);
911 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
912 					WORK_OFFQ_DISABLE_BITS);
913 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
914 }
915 
work_offqd_pack_flags(struct work_offq_data * offqd)916 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
917 {
918 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
919 		((unsigned long)offqd->flags);
920 }
921 
922 /*
923  * Policy functions.  These define the policies on how the global worker
924  * pools are managed.  Unless noted otherwise, these functions assume that
925  * they're being called with pool->lock held.
926  */
927 
928 /*
929  * Need to wake up a worker?  Called from anything but currently
930  * running workers.
931  *
932  * Note that, because unbound workers never contribute to nr_running, this
933  * function will always return %true for unbound pools as long as the
934  * worklist isn't empty.
935  */
need_more_worker(struct worker_pool * pool)936 static bool need_more_worker(struct worker_pool *pool)
937 {
938 	return !list_empty(&pool->worklist) && !pool->nr_running;
939 }
940 
941 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)942 static bool may_start_working(struct worker_pool *pool)
943 {
944 	return pool->nr_idle;
945 }
946 
947 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)948 static bool keep_working(struct worker_pool *pool)
949 {
950 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
951 }
952 
953 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)954 static bool need_to_create_worker(struct worker_pool *pool)
955 {
956 	return need_more_worker(pool) && !may_start_working(pool);
957 }
958 
959 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)960 static bool too_many_workers(struct worker_pool *pool)
961 {
962 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
963 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
964 	int nr_busy = pool->nr_workers - nr_idle;
965 
966 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
967 }
968 
969 /**
970  * worker_set_flags - set worker flags and adjust nr_running accordingly
971  * @worker: self
972  * @flags: flags to set
973  *
974  * Set @flags in @worker->flags and adjust nr_running accordingly.
975  */
worker_set_flags(struct worker * worker,unsigned int flags)976 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
977 {
978 	struct worker_pool *pool = worker->pool;
979 
980 	lockdep_assert_held(&pool->lock);
981 
982 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
983 	if ((flags & WORKER_NOT_RUNNING) &&
984 	    !(worker->flags & WORKER_NOT_RUNNING)) {
985 		pool->nr_running--;
986 	}
987 
988 	worker->flags |= flags;
989 }
990 
991 /**
992  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
993  * @worker: self
994  * @flags: flags to clear
995  *
996  * Clear @flags in @worker->flags and adjust nr_running accordingly.
997  */
worker_clr_flags(struct worker * worker,unsigned int flags)998 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
999 {
1000 	struct worker_pool *pool = worker->pool;
1001 	unsigned int oflags = worker->flags;
1002 
1003 	lockdep_assert_held(&pool->lock);
1004 
1005 	worker->flags &= ~flags;
1006 
1007 	/*
1008 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1009 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1010 	 * of multiple flags, not a single flag.
1011 	 */
1012 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1013 		if (!(worker->flags & WORKER_NOT_RUNNING))
1014 			pool->nr_running++;
1015 }
1016 
1017 /* Return the first idle worker.  Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1018 static struct worker *first_idle_worker(struct worker_pool *pool)
1019 {
1020 	if (unlikely(list_empty(&pool->idle_list)))
1021 		return NULL;
1022 
1023 	return list_first_entry(&pool->idle_list, struct worker, entry);
1024 }
1025 
1026 /**
1027  * worker_enter_idle - enter idle state
1028  * @worker: worker which is entering idle state
1029  *
1030  * @worker is entering idle state.  Update stats and idle timer if
1031  * necessary.
1032  *
1033  * LOCKING:
1034  * raw_spin_lock_irq(pool->lock).
1035  */
worker_enter_idle(struct worker * worker)1036 static void worker_enter_idle(struct worker *worker)
1037 {
1038 	struct worker_pool *pool = worker->pool;
1039 
1040 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1041 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1042 			 (worker->hentry.next || worker->hentry.pprev)))
1043 		return;
1044 
1045 	/* can't use worker_set_flags(), also called from create_worker() */
1046 	worker->flags |= WORKER_IDLE;
1047 	pool->nr_idle++;
1048 	worker->last_active = jiffies;
1049 
1050 	/* idle_list is LIFO */
1051 	list_add(&worker->entry, &pool->idle_list);
1052 
1053 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1054 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1055 
1056 	/* Sanity check nr_running. */
1057 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1058 }
1059 
1060 /**
1061  * worker_leave_idle - leave idle state
1062  * @worker: worker which is leaving idle state
1063  *
1064  * @worker is leaving idle state.  Update stats.
1065  *
1066  * LOCKING:
1067  * raw_spin_lock_irq(pool->lock).
1068  */
worker_leave_idle(struct worker * worker)1069 static void worker_leave_idle(struct worker *worker)
1070 {
1071 	struct worker_pool *pool = worker->pool;
1072 
1073 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1074 		return;
1075 	worker_clr_flags(worker, WORKER_IDLE);
1076 	pool->nr_idle--;
1077 	list_del_init(&worker->entry);
1078 }
1079 
1080 /**
1081  * find_worker_executing_work - find worker which is executing a work
1082  * @pool: pool of interest
1083  * @work: work to find worker for
1084  *
1085  * Find a worker which is executing @work on @pool by searching
1086  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1087  * to match, its current execution should match the address of @work and
1088  * its work function.  This is to avoid unwanted dependency between
1089  * unrelated work executions through a work item being recycled while still
1090  * being executed.
1091  *
1092  * This is a bit tricky.  A work item may be freed once its execution
1093  * starts and nothing prevents the freed area from being recycled for
1094  * another work item.  If the same work item address ends up being reused
1095  * before the original execution finishes, workqueue will identify the
1096  * recycled work item as currently executing and make it wait until the
1097  * current execution finishes, introducing an unwanted dependency.
1098  *
1099  * This function checks the work item address and work function to avoid
1100  * false positives.  Note that this isn't complete as one may construct a
1101  * work function which can introduce dependency onto itself through a
1102  * recycled work item.  Well, if somebody wants to shoot oneself in the
1103  * foot that badly, there's only so much we can do, and if such deadlock
1104  * actually occurs, it should be easy to locate the culprit work function.
1105  *
1106  * CONTEXT:
1107  * raw_spin_lock_irq(pool->lock).
1108  *
1109  * Return:
1110  * Pointer to worker which is executing @work if found, %NULL
1111  * otherwise.
1112  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1113 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1114 						 struct work_struct *work)
1115 {
1116 	struct worker *worker;
1117 
1118 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1119 			       (unsigned long)work)
1120 		if (worker->current_work == work &&
1121 		    worker->current_func == work->func)
1122 			return worker;
1123 
1124 	return NULL;
1125 }
1126 
1127 /**
1128  * move_linked_works - move linked works to a list
1129  * @work: start of series of works to be scheduled
1130  * @head: target list to append @work to
1131  * @nextp: out parameter for nested worklist walking
1132  *
1133  * Schedule linked works starting from @work to @head. Work series to be
1134  * scheduled starts at @work and includes any consecutive work with
1135  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1136  * @nextp.
1137  *
1138  * CONTEXT:
1139  * raw_spin_lock_irq(pool->lock).
1140  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1141 static void move_linked_works(struct work_struct *work, struct list_head *head,
1142 			      struct work_struct **nextp)
1143 {
1144 	struct work_struct *n;
1145 
1146 	/*
1147 	 * Linked worklist will always end before the end of the list,
1148 	 * use NULL for list head.
1149 	 */
1150 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1151 		list_move_tail(&work->entry, head);
1152 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1153 			break;
1154 	}
1155 
1156 	/*
1157 	 * If we're already inside safe list traversal and have moved
1158 	 * multiple works to the scheduled queue, the next position
1159 	 * needs to be updated.
1160 	 */
1161 	if (nextp)
1162 		*nextp = n;
1163 }
1164 
1165 /**
1166  * assign_work - assign a work item and its linked work items to a worker
1167  * @work: work to assign
1168  * @worker: worker to assign to
1169  * @nextp: out parameter for nested worklist walking
1170  *
1171  * Assign @work and its linked work items to @worker. If @work is already being
1172  * executed by another worker in the same pool, it'll be punted there.
1173  *
1174  * If @nextp is not NULL, it's updated to point to the next work of the last
1175  * scheduled work. This allows assign_work() to be nested inside
1176  * list_for_each_entry_safe().
1177  *
1178  * Returns %true if @work was successfully assigned to @worker. %false if @work
1179  * was punted to another worker already executing it.
1180  */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1181 static bool assign_work(struct work_struct *work, struct worker *worker,
1182 			struct work_struct **nextp)
1183 {
1184 	struct worker_pool *pool = worker->pool;
1185 	struct worker *collision;
1186 
1187 	lockdep_assert_held(&pool->lock);
1188 
1189 	/*
1190 	 * A single work shouldn't be executed concurrently by multiple workers.
1191 	 * __queue_work() ensures that @work doesn't jump to a different pool
1192 	 * while still running in the previous pool. Here, we should ensure that
1193 	 * @work is not executed concurrently by multiple workers from the same
1194 	 * pool. Check whether anyone is already processing the work. If so,
1195 	 * defer the work to the currently executing one.
1196 	 */
1197 	collision = find_worker_executing_work(pool, work);
1198 	if (unlikely(collision)) {
1199 		move_linked_works(work, &collision->scheduled, nextp);
1200 		return false;
1201 	}
1202 
1203 	move_linked_works(work, &worker->scheduled, nextp);
1204 	return true;
1205 }
1206 
bh_pool_irq_work(struct worker_pool * pool)1207 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1208 {
1209 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1210 
1211 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1212 }
1213 
kick_bh_pool(struct worker_pool * pool)1214 static void kick_bh_pool(struct worker_pool *pool)
1215 {
1216 #ifdef CONFIG_SMP
1217 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1218 	if (unlikely(pool->cpu != smp_processor_id() &&
1219 		     !(pool->flags & POOL_BH_DRAINING))) {
1220 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1221 		return;
1222 	}
1223 #endif
1224 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1225 		raise_softirq_irqoff(HI_SOFTIRQ);
1226 	else
1227 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1228 }
1229 
1230 /**
1231  * kick_pool - wake up an idle worker if necessary
1232  * @pool: pool to kick
1233  *
1234  * @pool may have pending work items. Wake up worker if necessary. Returns
1235  * whether a worker was woken up.
1236  */
kick_pool(struct worker_pool * pool)1237 static bool kick_pool(struct worker_pool *pool)
1238 {
1239 	struct worker *worker = first_idle_worker(pool);
1240 	struct task_struct *p;
1241 
1242 	lockdep_assert_held(&pool->lock);
1243 
1244 	if (!need_more_worker(pool) || !worker)
1245 		return false;
1246 
1247 	if (pool->flags & POOL_BH) {
1248 		kick_bh_pool(pool);
1249 		return true;
1250 	}
1251 
1252 	p = worker->task;
1253 
1254 #ifdef CONFIG_SMP
1255 	/*
1256 	 * Idle @worker is about to execute @work and waking up provides an
1257 	 * opportunity to migrate @worker at a lower cost by setting the task's
1258 	 * wake_cpu field. Let's see if we want to move @worker to improve
1259 	 * execution locality.
1260 	 *
1261 	 * We're waking the worker that went idle the latest and there's some
1262 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1263 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1264 	 * optimization and the race window is narrow, let's leave as-is for
1265 	 * now. If this becomes pronounced, we can skip over workers which are
1266 	 * still on cpu when picking an idle worker.
1267 	 *
1268 	 * If @pool has non-strict affinity, @worker might have ended up outside
1269 	 * its affinity scope. Repatriate.
1270 	 */
1271 	if (!pool->attrs->affn_strict &&
1272 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1273 		struct work_struct *work = list_first_entry(&pool->worklist,
1274 						struct work_struct, entry);
1275 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1276 							  cpu_online_mask);
1277 		if (wake_cpu < nr_cpu_ids) {
1278 			p->wake_cpu = wake_cpu;
1279 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1280 		}
1281 	}
1282 #endif
1283 	wake_up_process(p);
1284 	return true;
1285 }
1286 
1287 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1288 
1289 /*
1290  * Concurrency-managed per-cpu work items that hog CPU for longer than
1291  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1292  * which prevents them from stalling other concurrency-managed work items. If a
1293  * work function keeps triggering this mechanism, it's likely that the work item
1294  * should be using an unbound workqueue instead.
1295  *
1296  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1297  * and report them so that they can be examined and converted to use unbound
1298  * workqueues as appropriate. To avoid flooding the console, each violating work
1299  * function is tracked and reported with exponential backoff.
1300  */
1301 #define WCI_MAX_ENTS 128
1302 
1303 struct wci_ent {
1304 	work_func_t		func;
1305 	atomic64_t		cnt;
1306 	struct hlist_node	hash_node;
1307 };
1308 
1309 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1310 static int wci_nr_ents;
1311 static DEFINE_RAW_SPINLOCK(wci_lock);
1312 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1313 
wci_find_ent(work_func_t func)1314 static struct wci_ent *wci_find_ent(work_func_t func)
1315 {
1316 	struct wci_ent *ent;
1317 
1318 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1319 				   (unsigned long)func) {
1320 		if (ent->func == func)
1321 			return ent;
1322 	}
1323 	return NULL;
1324 }
1325 
wq_cpu_intensive_report(work_func_t func)1326 static void wq_cpu_intensive_report(work_func_t func)
1327 {
1328 	struct wci_ent *ent;
1329 
1330 restart:
1331 	ent = wci_find_ent(func);
1332 	if (ent) {
1333 		u64 cnt;
1334 
1335 		/*
1336 		 * Start reporting from the warning_thresh and back off
1337 		 * exponentially.
1338 		 */
1339 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1340 		if (wq_cpu_intensive_warning_thresh &&
1341 		    cnt >= wq_cpu_intensive_warning_thresh &&
1342 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1343 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1344 					ent->func, wq_cpu_intensive_thresh_us,
1345 					atomic64_read(&ent->cnt));
1346 		return;
1347 	}
1348 
1349 	/*
1350 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1351 	 * is exhausted, something went really wrong and we probably made enough
1352 	 * noise already.
1353 	 */
1354 	if (wci_nr_ents >= WCI_MAX_ENTS)
1355 		return;
1356 
1357 	raw_spin_lock(&wci_lock);
1358 
1359 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1360 		raw_spin_unlock(&wci_lock);
1361 		return;
1362 	}
1363 
1364 	if (wci_find_ent(func)) {
1365 		raw_spin_unlock(&wci_lock);
1366 		goto restart;
1367 	}
1368 
1369 	ent = &wci_ents[wci_nr_ents++];
1370 	ent->func = func;
1371 	atomic64_set(&ent->cnt, 0);
1372 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1373 
1374 	raw_spin_unlock(&wci_lock);
1375 
1376 	goto restart;
1377 }
1378 
1379 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1380 static void wq_cpu_intensive_report(work_func_t func) {}
1381 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1382 
1383 /**
1384  * wq_worker_running - a worker is running again
1385  * @task: task waking up
1386  *
1387  * This function is called when a worker returns from schedule()
1388  */
wq_worker_running(struct task_struct * task)1389 void wq_worker_running(struct task_struct *task)
1390 {
1391 	struct worker *worker = kthread_data(task);
1392 
1393 	if (!READ_ONCE(worker->sleeping))
1394 		return;
1395 
1396 	/*
1397 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1398 	 * and the nr_running increment below, we may ruin the nr_running reset
1399 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1400 	 * pool. Protect against such race.
1401 	 */
1402 	preempt_disable();
1403 	if (!(worker->flags & WORKER_NOT_RUNNING))
1404 		worker->pool->nr_running++;
1405 	preempt_enable();
1406 
1407 	/*
1408 	 * CPU intensive auto-detection cares about how long a work item hogged
1409 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1410 	 */
1411 	worker->current_at = worker->task->se.sum_exec_runtime;
1412 
1413 	WRITE_ONCE(worker->sleeping, 0);
1414 }
1415 
1416 /**
1417  * wq_worker_sleeping - a worker is going to sleep
1418  * @task: task going to sleep
1419  *
1420  * This function is called from schedule() when a busy worker is
1421  * going to sleep.
1422  */
wq_worker_sleeping(struct task_struct * task)1423 void wq_worker_sleeping(struct task_struct *task)
1424 {
1425 	struct worker *worker = kthread_data(task);
1426 	struct worker_pool *pool;
1427 
1428 	/*
1429 	 * Rescuers, which may not have all the fields set up like normal
1430 	 * workers, also reach here, let's not access anything before
1431 	 * checking NOT_RUNNING.
1432 	 */
1433 	if (worker->flags & WORKER_NOT_RUNNING)
1434 		return;
1435 
1436 	pool = worker->pool;
1437 
1438 	/* Return if preempted before wq_worker_running() was reached */
1439 	if (READ_ONCE(worker->sleeping))
1440 		return;
1441 
1442 	WRITE_ONCE(worker->sleeping, 1);
1443 	raw_spin_lock_irq(&pool->lock);
1444 
1445 	/*
1446 	 * Recheck in case unbind_workers() preempted us. We don't
1447 	 * want to decrement nr_running after the worker is unbound
1448 	 * and nr_running has been reset.
1449 	 */
1450 	if (worker->flags & WORKER_NOT_RUNNING) {
1451 		raw_spin_unlock_irq(&pool->lock);
1452 		return;
1453 	}
1454 
1455 	pool->nr_running--;
1456 	if (kick_pool(pool))
1457 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1458 
1459 	raw_spin_unlock_irq(&pool->lock);
1460 }
1461 
1462 /**
1463  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1464  * @task: task currently running
1465  *
1466  * Called from sched_tick(). We're in the IRQ context and the current
1467  * worker's fields which follow the 'K' locking rule can be accessed safely.
1468  */
wq_worker_tick(struct task_struct * task)1469 void wq_worker_tick(struct task_struct *task)
1470 {
1471 	struct worker *worker = kthread_data(task);
1472 	struct pool_workqueue *pwq = worker->current_pwq;
1473 	struct worker_pool *pool = worker->pool;
1474 
1475 	if (!pwq)
1476 		return;
1477 
1478 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1479 
1480 	if (!wq_cpu_intensive_thresh_us)
1481 		return;
1482 
1483 	/*
1484 	 * If the current worker is concurrency managed and hogged the CPU for
1485 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1486 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1487 	 *
1488 	 * Set @worker->sleeping means that @worker is in the process of
1489 	 * switching out voluntarily and won't be contributing to
1490 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1491 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1492 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1493 	 * We probably want to make this prettier in the future.
1494 	 */
1495 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1496 	    worker->task->se.sum_exec_runtime - worker->current_at <
1497 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1498 		return;
1499 
1500 	raw_spin_lock(&pool->lock);
1501 
1502 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1503 	wq_cpu_intensive_report(worker->current_func);
1504 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1505 
1506 	if (kick_pool(pool))
1507 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1508 
1509 	raw_spin_unlock(&pool->lock);
1510 }
1511 
1512 /**
1513  * wq_worker_last_func - retrieve worker's last work function
1514  * @task: Task to retrieve last work function of.
1515  *
1516  * Determine the last function a worker executed. This is called from
1517  * the scheduler to get a worker's last known identity.
1518  *
1519  * CONTEXT:
1520  * raw_spin_lock_irq(rq->lock)
1521  *
1522  * This function is called during schedule() when a kworker is going
1523  * to sleep. It's used by psi to identify aggregation workers during
1524  * dequeuing, to allow periodic aggregation to shut-off when that
1525  * worker is the last task in the system or cgroup to go to sleep.
1526  *
1527  * As this function doesn't involve any workqueue-related locking, it
1528  * only returns stable values when called from inside the scheduler's
1529  * queuing and dequeuing paths, when @task, which must be a kworker,
1530  * is guaranteed to not be processing any works.
1531  *
1532  * Return:
1533  * The last work function %current executed as a worker, NULL if it
1534  * hasn't executed any work yet.
1535  */
wq_worker_last_func(struct task_struct * task)1536 work_func_t wq_worker_last_func(struct task_struct *task)
1537 {
1538 	struct worker *worker = kthread_data(task);
1539 
1540 	return worker->last_func;
1541 }
1542 
1543 /**
1544  * wq_node_nr_active - Determine wq_node_nr_active to use
1545  * @wq: workqueue of interest
1546  * @node: NUMA node, can be %NUMA_NO_NODE
1547  *
1548  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1549  *
1550  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1551  *
1552  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1553  *
1554  * - Otherwise, node_nr_active[@node].
1555  */
wq_node_nr_active(struct workqueue_struct * wq,int node)1556 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1557 						   int node)
1558 {
1559 	if (!(wq->flags & WQ_UNBOUND))
1560 		return NULL;
1561 
1562 	if (node == NUMA_NO_NODE)
1563 		node = nr_node_ids;
1564 
1565 	return wq->node_nr_active[node];
1566 }
1567 
1568 /**
1569  * wq_update_node_max_active - Update per-node max_actives to use
1570  * @wq: workqueue to update
1571  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1572  *
1573  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1574  * distributed among nodes according to the proportions of numbers of online
1575  * cpus. The result is always between @wq->min_active and max_active.
1576  */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1577 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1578 {
1579 	struct cpumask *effective = unbound_effective_cpumask(wq);
1580 	int min_active = READ_ONCE(wq->min_active);
1581 	int max_active = READ_ONCE(wq->max_active);
1582 	int total_cpus, node;
1583 
1584 	lockdep_assert_held(&wq->mutex);
1585 
1586 	if (!wq_topo_initialized)
1587 		return;
1588 
1589 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1590 		off_cpu = -1;
1591 
1592 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1593 	if (off_cpu >= 0)
1594 		total_cpus--;
1595 
1596 	/* If all CPUs of the wq get offline, use the default values */
1597 	if (unlikely(!total_cpus)) {
1598 		for_each_node(node)
1599 			wq_node_nr_active(wq, node)->max = min_active;
1600 
1601 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1602 		return;
1603 	}
1604 
1605 	for_each_node(node) {
1606 		int node_cpus;
1607 
1608 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1609 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1610 			node_cpus--;
1611 
1612 		wq_node_nr_active(wq, node)->max =
1613 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1614 			      min_active, max_active);
1615 	}
1616 
1617 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1618 }
1619 
1620 /**
1621  * get_pwq - get an extra reference on the specified pool_workqueue
1622  * @pwq: pool_workqueue to get
1623  *
1624  * Obtain an extra reference on @pwq.  The caller should guarantee that
1625  * @pwq has positive refcnt and be holding the matching pool->lock.
1626  */
get_pwq(struct pool_workqueue * pwq)1627 static void get_pwq(struct pool_workqueue *pwq)
1628 {
1629 	lockdep_assert_held(&pwq->pool->lock);
1630 	WARN_ON_ONCE(pwq->refcnt <= 0);
1631 	pwq->refcnt++;
1632 }
1633 
1634 /**
1635  * put_pwq - put a pool_workqueue reference
1636  * @pwq: pool_workqueue to put
1637  *
1638  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1639  * destruction.  The caller should be holding the matching pool->lock.
1640  */
put_pwq(struct pool_workqueue * pwq)1641 static void put_pwq(struct pool_workqueue *pwq)
1642 {
1643 	lockdep_assert_held(&pwq->pool->lock);
1644 	if (likely(--pwq->refcnt))
1645 		return;
1646 	/*
1647 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1648 	 * kthread_worker to avoid A-A deadlocks.
1649 	 */
1650 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1651 }
1652 
1653 /**
1654  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1655  * @pwq: pool_workqueue to put (can be %NULL)
1656  *
1657  * put_pwq() with locking.  This function also allows %NULL @pwq.
1658  */
put_pwq_unlocked(struct pool_workqueue * pwq)1659 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1660 {
1661 	if (pwq) {
1662 		/*
1663 		 * As both pwqs and pools are RCU protected, the
1664 		 * following lock operations are safe.
1665 		 */
1666 		raw_spin_lock_irq(&pwq->pool->lock);
1667 		put_pwq(pwq);
1668 		raw_spin_unlock_irq(&pwq->pool->lock);
1669 	}
1670 }
1671 
pwq_is_empty(struct pool_workqueue * pwq)1672 static bool pwq_is_empty(struct pool_workqueue *pwq)
1673 {
1674 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1675 }
1676 
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1677 static void __pwq_activate_work(struct pool_workqueue *pwq,
1678 				struct work_struct *work)
1679 {
1680 	unsigned long *wdb = work_data_bits(work);
1681 
1682 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1683 	trace_workqueue_activate_work(work);
1684 	if (list_empty(&pwq->pool->worklist))
1685 		pwq->pool->watchdog_ts = jiffies;
1686 	move_linked_works(work, &pwq->pool->worklist, NULL);
1687 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1688 }
1689 
tryinc_node_nr_active(struct wq_node_nr_active * nna)1690 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1691 {
1692 	int max = READ_ONCE(nna->max);
1693 	int old = atomic_read(&nna->nr);
1694 
1695 	do {
1696 		if (old >= max)
1697 			return false;
1698 	} while (!atomic_try_cmpxchg_relaxed(&nna->nr, &old, old + 1));
1699 
1700 	return true;
1701 }
1702 
1703 /**
1704  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1705  * @pwq: pool_workqueue of interest
1706  * @fill: max_active may have increased, try to increase concurrency level
1707  *
1708  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1709  * successfully obtained. %false otherwise.
1710  */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1711 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1712 {
1713 	struct workqueue_struct *wq = pwq->wq;
1714 	struct worker_pool *pool = pwq->pool;
1715 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1716 	bool obtained = false;
1717 
1718 	lockdep_assert_held(&pool->lock);
1719 
1720 	if (!nna) {
1721 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1722 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1723 		goto out;
1724 	}
1725 
1726 	if (unlikely(pwq->plugged))
1727 		return false;
1728 
1729 	/*
1730 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1731 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1732 	 * concurrency level. Don't jump the line.
1733 	 *
1734 	 * We need to ignore the pending test after max_active has increased as
1735 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1736 	 * increase it. This is indicated by @fill.
1737 	 */
1738 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1739 		goto out;
1740 
1741 	obtained = tryinc_node_nr_active(nna);
1742 	if (obtained)
1743 		goto out;
1744 
1745 	/*
1746 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1747 	 * and try again. The smp_mb() is paired with the implied memory barrier
1748 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1749 	 * we see the decremented $nna->nr or they see non-empty
1750 	 * $nna->pending_pwqs.
1751 	 */
1752 	raw_spin_lock(&nna->lock);
1753 
1754 	if (list_empty(&pwq->pending_node))
1755 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1756 	else if (likely(!fill))
1757 		goto out_unlock;
1758 
1759 	smp_mb();
1760 
1761 	obtained = tryinc_node_nr_active(nna);
1762 
1763 	/*
1764 	 * If @fill, @pwq might have already been pending. Being spuriously
1765 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1766 	 */
1767 	if (obtained && likely(!fill))
1768 		list_del_init(&pwq->pending_node);
1769 
1770 out_unlock:
1771 	raw_spin_unlock(&nna->lock);
1772 out:
1773 	if (obtained)
1774 		pwq->nr_active++;
1775 	return obtained;
1776 }
1777 
1778 /**
1779  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1780  * @pwq: pool_workqueue of interest
1781  * @fill: max_active may have increased, try to increase concurrency level
1782  *
1783  * Activate the first inactive work item of @pwq if available and allowed by
1784  * max_active limit.
1785  *
1786  * Returns %true if an inactive work item has been activated. %false if no
1787  * inactive work item is found or max_active limit is reached.
1788  */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1789 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1790 {
1791 	struct work_struct *work =
1792 		list_first_entry_or_null(&pwq->inactive_works,
1793 					 struct work_struct, entry);
1794 
1795 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1796 		__pwq_activate_work(pwq, work);
1797 		return true;
1798 	} else {
1799 		return false;
1800 	}
1801 }
1802 
1803 /**
1804  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1805  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1806  *
1807  * This function should only be called for ordered workqueues where only the
1808  * oldest pwq is unplugged, the others are plugged to suspend execution to
1809  * ensure proper work item ordering::
1810  *
1811  *    dfl_pwq --------------+     [P] - plugged
1812  *                          |
1813  *                          v
1814  *    pwqs -> A -> B [P] -> C [P] (newest)
1815  *            |    |        |
1816  *            1    3        5
1817  *            |    |        |
1818  *            2    4        6
1819  *
1820  * When the oldest pwq is drained and removed, this function should be called
1821  * to unplug the next oldest one to start its work item execution. Note that
1822  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1823  * the list is the oldest.
1824  */
unplug_oldest_pwq(struct workqueue_struct * wq)1825 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1826 {
1827 	struct pool_workqueue *pwq;
1828 
1829 	lockdep_assert_held(&wq->mutex);
1830 
1831 	/* Caller should make sure that pwqs isn't empty before calling */
1832 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1833 				       pwqs_node);
1834 	raw_spin_lock_irq(&pwq->pool->lock);
1835 	if (pwq->plugged) {
1836 		pwq->plugged = false;
1837 		if (pwq_activate_first_inactive(pwq, true))
1838 			kick_pool(pwq->pool);
1839 	}
1840 	raw_spin_unlock_irq(&pwq->pool->lock);
1841 }
1842 
1843 /**
1844  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1845  * @nna: wq_node_nr_active to activate a pending pwq for
1846  * @caller_pool: worker_pool the caller is locking
1847  *
1848  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1849  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1850  */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1851 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1852 				      struct worker_pool *caller_pool)
1853 {
1854 	struct worker_pool *locked_pool = caller_pool;
1855 	struct pool_workqueue *pwq;
1856 	struct work_struct *work;
1857 
1858 	lockdep_assert_held(&caller_pool->lock);
1859 
1860 	raw_spin_lock(&nna->lock);
1861 retry:
1862 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1863 				       struct pool_workqueue, pending_node);
1864 	if (!pwq)
1865 		goto out_unlock;
1866 
1867 	/*
1868 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1869 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1870 	 * / lock dance. For that, we also need to release @nna->lock as it's
1871 	 * nested inside pool locks.
1872 	 */
1873 	if (pwq->pool != locked_pool) {
1874 		raw_spin_unlock(&locked_pool->lock);
1875 		locked_pool = pwq->pool;
1876 		if (!raw_spin_trylock(&locked_pool->lock)) {
1877 			raw_spin_unlock(&nna->lock);
1878 			raw_spin_lock(&locked_pool->lock);
1879 			raw_spin_lock(&nna->lock);
1880 			goto retry;
1881 		}
1882 	}
1883 
1884 	/*
1885 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1886 	 * Drop it from pending_pwqs and see if there's another one.
1887 	 */
1888 	work = list_first_entry_or_null(&pwq->inactive_works,
1889 					struct work_struct, entry);
1890 	if (!work) {
1891 		list_del_init(&pwq->pending_node);
1892 		goto retry;
1893 	}
1894 
1895 	/*
1896 	 * Acquire an nr_active count and activate the inactive work item. If
1897 	 * $pwq still has inactive work items, rotate it to the end of the
1898 	 * pending_pwqs so that we round-robin through them. This means that
1899 	 * inactive work items are not activated in queueing order which is fine
1900 	 * given that there has never been any ordering across different pwqs.
1901 	 */
1902 	if (likely(tryinc_node_nr_active(nna))) {
1903 		pwq->nr_active++;
1904 		__pwq_activate_work(pwq, work);
1905 
1906 		if (list_empty(&pwq->inactive_works))
1907 			list_del_init(&pwq->pending_node);
1908 		else
1909 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1910 
1911 		/* if activating a foreign pool, make sure it's running */
1912 		if (pwq->pool != caller_pool)
1913 			kick_pool(pwq->pool);
1914 	}
1915 
1916 out_unlock:
1917 	raw_spin_unlock(&nna->lock);
1918 	if (locked_pool != caller_pool) {
1919 		raw_spin_unlock(&locked_pool->lock);
1920 		raw_spin_lock(&caller_pool->lock);
1921 	}
1922 }
1923 
1924 /**
1925  * pwq_dec_nr_active - Retire an active count
1926  * @pwq: pool_workqueue of interest
1927  *
1928  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1929  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1930  */
pwq_dec_nr_active(struct pool_workqueue * pwq)1931 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1932 {
1933 	struct worker_pool *pool = pwq->pool;
1934 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1935 
1936 	lockdep_assert_held(&pool->lock);
1937 
1938 	/*
1939 	 * @pwq->nr_active should be decremented for both percpu and unbound
1940 	 * workqueues.
1941 	 */
1942 	pwq->nr_active--;
1943 
1944 	/*
1945 	 * For a percpu workqueue, it's simple. Just need to kick the first
1946 	 * inactive work item on @pwq itself.
1947 	 */
1948 	if (!nna) {
1949 		pwq_activate_first_inactive(pwq, false);
1950 		return;
1951 	}
1952 
1953 	/*
1954 	 * If @pwq is for an unbound workqueue, it's more complicated because
1955 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1956 	 * pwq needs to wait for an nr_active count, it puts itself on
1957 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1958 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1959 	 * guarantee that either we see non-empty pending_pwqs or they see
1960 	 * decremented $nna->nr.
1961 	 *
1962 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1963 	 * max_active gets updated. However, it is guaranteed to be equal to or
1964 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1965 	 * This maintains the forward progress guarantee.
1966 	 */
1967 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1968 		return;
1969 
1970 	if (!list_empty(&nna->pending_pwqs))
1971 		node_activate_pending_pwq(nna, pool);
1972 }
1973 
1974 /**
1975  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1976  * @pwq: pwq of interest
1977  * @work_data: work_data of work which left the queue
1978  *
1979  * A work either has completed or is removed from pending queue,
1980  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1981  *
1982  * NOTE:
1983  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1984  * and thus should be called after all other state updates for the in-flight
1985  * work item is complete.
1986  *
1987  * CONTEXT:
1988  * raw_spin_lock_irq(pool->lock).
1989  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1990 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1991 {
1992 	int color = get_work_color(work_data);
1993 
1994 	if (!(work_data & WORK_STRUCT_INACTIVE))
1995 		pwq_dec_nr_active(pwq);
1996 
1997 	pwq->nr_in_flight[color]--;
1998 
1999 	/* is flush in progress and are we at the flushing tip? */
2000 	if (likely(pwq->flush_color != color))
2001 		goto out_put;
2002 
2003 	/* are there still in-flight works? */
2004 	if (pwq->nr_in_flight[color])
2005 		goto out_put;
2006 
2007 	/* this pwq is done, clear flush_color */
2008 	pwq->flush_color = -1;
2009 
2010 	/*
2011 	 * If this was the last pwq, wake up the first flusher.  It
2012 	 * will handle the rest.
2013 	 */
2014 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2015 		complete(&pwq->wq->first_flusher->done);
2016 out_put:
2017 	put_pwq(pwq);
2018 }
2019 
2020 /**
2021  * try_to_grab_pending - steal work item from worklist and disable irq
2022  * @work: work item to steal
2023  * @cflags: %WORK_CANCEL_ flags
2024  * @irq_flags: place to store irq state
2025  *
2026  * Try to grab PENDING bit of @work.  This function can handle @work in any
2027  * stable state - idle, on timer or on worklist.
2028  *
2029  * Return:
2030  *
2031  *  ========	================================================================
2032  *  1		if @work was pending and we successfully stole PENDING
2033  *  0		if @work was idle and we claimed PENDING
2034  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2035  *  ========	================================================================
2036  *
2037  * Note:
2038  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2039  * interrupted while holding PENDING and @work off queue, irq must be
2040  * disabled on entry.  This, combined with delayed_work->timer being
2041  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2042  *
2043  * On successful return, >= 0, irq is disabled and the caller is
2044  * responsible for releasing it using local_irq_restore(*@irq_flags).
2045  *
2046  * This function is safe to call from any context including IRQ handler.
2047  */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2048 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2049 			       unsigned long *irq_flags)
2050 {
2051 	struct worker_pool *pool;
2052 	struct pool_workqueue *pwq;
2053 
2054 	local_irq_save(*irq_flags);
2055 
2056 	/* try to steal the timer if it exists */
2057 	if (cflags & WORK_CANCEL_DELAYED) {
2058 		struct delayed_work *dwork = to_delayed_work(work);
2059 
2060 		/*
2061 		 * dwork->timer is irqsafe.  If timer_delete() fails, it's
2062 		 * guaranteed that the timer is not queued anywhere and not
2063 		 * running on the local CPU.
2064 		 */
2065 		if (likely(timer_delete(&dwork->timer)))
2066 			return 1;
2067 	}
2068 
2069 	/* try to claim PENDING the normal way */
2070 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2071 		return 0;
2072 
2073 	rcu_read_lock();
2074 	/*
2075 	 * The queueing is in progress, or it is already queued. Try to
2076 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2077 	 */
2078 	pool = get_work_pool(work);
2079 	if (!pool)
2080 		goto fail;
2081 
2082 	raw_spin_lock(&pool->lock);
2083 	/*
2084 	 * work->data is guaranteed to point to pwq only while the work
2085 	 * item is queued on pwq->wq, and both updating work->data to point
2086 	 * to pwq on queueing and to pool on dequeueing are done under
2087 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2088 	 * points to pwq which is associated with a locked pool, the work
2089 	 * item is currently queued on that pool.
2090 	 */
2091 	pwq = get_work_pwq(work);
2092 	if (pwq && pwq->pool == pool) {
2093 		unsigned long work_data = *work_data_bits(work);
2094 
2095 		debug_work_deactivate(work);
2096 
2097 		/*
2098 		 * A cancelable inactive work item must be in the
2099 		 * pwq->inactive_works since a queued barrier can't be
2100 		 * canceled (see the comments in insert_wq_barrier()).
2101 		 *
2102 		 * An inactive work item cannot be deleted directly because
2103 		 * it might have linked barrier work items which, if left
2104 		 * on the inactive_works list, will confuse pwq->nr_active
2105 		 * management later on and cause stall.  Move the linked
2106 		 * barrier work items to the worklist when deleting the grabbed
2107 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2108 		 * it doesn't participate in nr_active management in later
2109 		 * pwq_dec_nr_in_flight().
2110 		 */
2111 		if (work_data & WORK_STRUCT_INACTIVE)
2112 			move_linked_works(work, &pwq->pool->worklist, NULL);
2113 
2114 		list_del_init(&work->entry);
2115 
2116 		/*
2117 		 * work->data points to pwq iff queued. Let's point to pool. As
2118 		 * this destroys work->data needed by the next step, stash it.
2119 		 */
2120 		set_work_pool_and_keep_pending(work, pool->id,
2121 					       pool_offq_flags(pool));
2122 
2123 		/* must be the last step, see the function comment */
2124 		pwq_dec_nr_in_flight(pwq, work_data);
2125 
2126 		raw_spin_unlock(&pool->lock);
2127 		rcu_read_unlock();
2128 		return 1;
2129 	}
2130 	raw_spin_unlock(&pool->lock);
2131 fail:
2132 	rcu_read_unlock();
2133 	local_irq_restore(*irq_flags);
2134 	return -EAGAIN;
2135 }
2136 
2137 /**
2138  * work_grab_pending - steal work item from worklist and disable irq
2139  * @work: work item to steal
2140  * @cflags: %WORK_CANCEL_ flags
2141  * @irq_flags: place to store IRQ state
2142  *
2143  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2144  * or on worklist.
2145  *
2146  * Can be called from any context. IRQ is disabled on return with IRQ state
2147  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2148  * local_irq_restore().
2149  *
2150  * Returns %true if @work was pending. %false if idle.
2151  */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2152 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2153 			      unsigned long *irq_flags)
2154 {
2155 	int ret;
2156 
2157 	while (true) {
2158 		ret = try_to_grab_pending(work, cflags, irq_flags);
2159 		if (ret >= 0)
2160 			return ret;
2161 		cpu_relax();
2162 	}
2163 }
2164 
2165 /**
2166  * insert_work - insert a work into a pool
2167  * @pwq: pwq @work belongs to
2168  * @work: work to insert
2169  * @head: insertion point
2170  * @extra_flags: extra WORK_STRUCT_* flags to set
2171  *
2172  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2173  * work_struct flags.
2174  *
2175  * CONTEXT:
2176  * raw_spin_lock_irq(pool->lock).
2177  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2178 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2179 			struct list_head *head, unsigned int extra_flags)
2180 {
2181 	debug_work_activate(work);
2182 
2183 	/* record the work call stack in order to print it in KASAN reports */
2184 	kasan_record_aux_stack(work);
2185 
2186 	/* we own @work, set data and link */
2187 	set_work_pwq(work, pwq, extra_flags);
2188 	list_add_tail(&work->entry, head);
2189 	get_pwq(pwq);
2190 }
2191 
2192 /*
2193  * Test whether @work is being queued from another work executing on the
2194  * same workqueue.
2195  */
is_chained_work(struct workqueue_struct * wq)2196 static bool is_chained_work(struct workqueue_struct *wq)
2197 {
2198 	struct worker *worker;
2199 
2200 	worker = current_wq_worker();
2201 	/*
2202 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2203 	 * I'm @worker, it's safe to dereference it without locking.
2204 	 */
2205 	return worker && worker->current_pwq->wq == wq;
2206 }
2207 
2208 /*
2209  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2210  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2211  * avoid perturbing sensitive tasks.
2212  */
wq_select_unbound_cpu(int cpu)2213 static int wq_select_unbound_cpu(int cpu)
2214 {
2215 	int new_cpu;
2216 
2217 	if (likely(!wq_debug_force_rr_cpu)) {
2218 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2219 			return cpu;
2220 	} else {
2221 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2222 	}
2223 
2224 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2225 	new_cpu = cpumask_next_and_wrap(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2226 	if (unlikely(new_cpu >= nr_cpu_ids))
2227 		return cpu;
2228 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2229 
2230 	return new_cpu;
2231 }
2232 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2233 static void __queue_work(int cpu, struct workqueue_struct *wq,
2234 			 struct work_struct *work)
2235 {
2236 	struct pool_workqueue *pwq;
2237 	struct worker_pool *last_pool, *pool;
2238 	unsigned int work_flags;
2239 	unsigned int req_cpu = cpu;
2240 
2241 	/*
2242 	 * While a work item is PENDING && off queue, a task trying to
2243 	 * steal the PENDING will busy-loop waiting for it to either get
2244 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2245 	 * happen with IRQ disabled.
2246 	 */
2247 	lockdep_assert_irqs_disabled();
2248 
2249 	/*
2250 	 * For a draining wq, only works from the same workqueue are
2251 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2252 	 * queues a new work item to a wq after destroy_workqueue(wq).
2253 	 */
2254 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2255 		     WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n",
2256 			       work->func, wq->name))) {
2257 		return;
2258 	}
2259 	rcu_read_lock();
2260 retry:
2261 	/* pwq which will be used unless @work is executing elsewhere */
2262 	if (req_cpu == WORK_CPU_UNBOUND) {
2263 		if (wq->flags & WQ_UNBOUND)
2264 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2265 		else
2266 			cpu = raw_smp_processor_id();
2267 	}
2268 
2269 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2270 	pool = pwq->pool;
2271 
2272 	/*
2273 	 * If @work was previously on a different pool, it might still be
2274 	 * running there, in which case the work needs to be queued on that
2275 	 * pool to guarantee non-reentrancy.
2276 	 *
2277 	 * For ordered workqueue, work items must be queued on the newest pwq
2278 	 * for accurate order management.  Guaranteed order also guarantees
2279 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2280 	 */
2281 	last_pool = get_work_pool(work);
2282 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2283 		struct worker *worker;
2284 
2285 		raw_spin_lock(&last_pool->lock);
2286 
2287 		worker = find_worker_executing_work(last_pool, work);
2288 
2289 		if (worker && worker->current_pwq->wq == wq) {
2290 			pwq = worker->current_pwq;
2291 			pool = pwq->pool;
2292 			WARN_ON_ONCE(pool != last_pool);
2293 		} else {
2294 			/* meh... not running there, queue here */
2295 			raw_spin_unlock(&last_pool->lock);
2296 			raw_spin_lock(&pool->lock);
2297 		}
2298 	} else {
2299 		raw_spin_lock(&pool->lock);
2300 	}
2301 
2302 	/*
2303 	 * pwq is determined and locked. For unbound pools, we could have raced
2304 	 * with pwq release and it could already be dead. If its refcnt is zero,
2305 	 * repeat pwq selection. Note that unbound pwqs never die without
2306 	 * another pwq replacing it in cpu_pwq or while work items are executing
2307 	 * on it, so the retrying is guaranteed to make forward-progress.
2308 	 */
2309 	if (unlikely(!pwq->refcnt)) {
2310 		if (wq->flags & WQ_UNBOUND) {
2311 			raw_spin_unlock(&pool->lock);
2312 			cpu_relax();
2313 			goto retry;
2314 		}
2315 		/* oops */
2316 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2317 			  wq->name, cpu);
2318 	}
2319 
2320 	/* pwq determined, queue */
2321 	trace_workqueue_queue_work(req_cpu, pwq, work);
2322 
2323 	if (WARN_ON(!list_empty(&work->entry)))
2324 		goto out;
2325 
2326 	pwq->nr_in_flight[pwq->work_color]++;
2327 	work_flags = work_color_to_flags(pwq->work_color);
2328 
2329 	/*
2330 	 * Limit the number of concurrently active work items to max_active.
2331 	 * @work must also queue behind existing inactive work items to maintain
2332 	 * ordering when max_active changes. See wq_adjust_max_active().
2333 	 */
2334 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2335 		if (list_empty(&pool->worklist))
2336 			pool->watchdog_ts = jiffies;
2337 
2338 		trace_workqueue_activate_work(work);
2339 		insert_work(pwq, work, &pool->worklist, work_flags);
2340 		kick_pool(pool);
2341 	} else {
2342 		work_flags |= WORK_STRUCT_INACTIVE;
2343 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2344 	}
2345 
2346 out:
2347 	raw_spin_unlock(&pool->lock);
2348 	rcu_read_unlock();
2349 }
2350 
clear_pending_if_disabled(struct work_struct * work)2351 static bool clear_pending_if_disabled(struct work_struct *work)
2352 {
2353 	unsigned long data = *work_data_bits(work);
2354 	struct work_offq_data offqd;
2355 
2356 	if (likely((data & WORK_STRUCT_PWQ) ||
2357 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2358 		return false;
2359 
2360 	work_offqd_unpack(&offqd, data);
2361 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2362 					work_offqd_pack_flags(&offqd));
2363 	return true;
2364 }
2365 
2366 /**
2367  * queue_work_on - queue work on specific cpu
2368  * @cpu: CPU number to execute work on
2369  * @wq: workqueue to use
2370  * @work: work to queue
2371  *
2372  * We queue the work to a specific CPU, the caller must ensure it
2373  * can't go away.  Callers that fail to ensure that the specified
2374  * CPU cannot go away will execute on a randomly chosen CPU.
2375  * But note well that callers specifying a CPU that never has been
2376  * online will get a splat.
2377  *
2378  * Return: %false if @work was already on a queue, %true otherwise.
2379  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2380 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2381 		   struct work_struct *work)
2382 {
2383 	bool ret = false;
2384 	unsigned long irq_flags;
2385 
2386 	local_irq_save(irq_flags);
2387 
2388 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2389 	    !clear_pending_if_disabled(work)) {
2390 		__queue_work(cpu, wq, work);
2391 		ret = true;
2392 	}
2393 
2394 	local_irq_restore(irq_flags);
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL(queue_work_on);
2398 
2399 /**
2400  * select_numa_node_cpu - Select a CPU based on NUMA node
2401  * @node: NUMA node ID that we want to select a CPU from
2402  *
2403  * This function will attempt to find a "random" cpu available on a given
2404  * node. If there are no CPUs available on the given node it will return
2405  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2406  * available CPU if we need to schedule this work.
2407  */
select_numa_node_cpu(int node)2408 static int select_numa_node_cpu(int node)
2409 {
2410 	int cpu;
2411 
2412 	/* Delay binding to CPU if node is not valid or online */
2413 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2414 		return WORK_CPU_UNBOUND;
2415 
2416 	/* Use local node/cpu if we are already there */
2417 	cpu = raw_smp_processor_id();
2418 	if (node == cpu_to_node(cpu))
2419 		return cpu;
2420 
2421 	/* Use "random" otherwise know as "first" online CPU of node */
2422 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2423 
2424 	/* If CPU is valid return that, otherwise just defer */
2425 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2426 }
2427 
2428 /**
2429  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2430  * @node: NUMA node that we are targeting the work for
2431  * @wq: workqueue to use
2432  * @work: work to queue
2433  *
2434  * We queue the work to a "random" CPU within a given NUMA node. The basic
2435  * idea here is to provide a way to somehow associate work with a given
2436  * NUMA node.
2437  *
2438  * This function will only make a best effort attempt at getting this onto
2439  * the right NUMA node. If no node is requested or the requested node is
2440  * offline then we just fall back to standard queue_work behavior.
2441  *
2442  * Currently the "random" CPU ends up being the first available CPU in the
2443  * intersection of cpu_online_mask and the cpumask of the node, unless we
2444  * are running on the node. In that case we just use the current CPU.
2445  *
2446  * Return: %false if @work was already on a queue, %true otherwise.
2447  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2448 bool queue_work_node(int node, struct workqueue_struct *wq,
2449 		     struct work_struct *work)
2450 {
2451 	unsigned long irq_flags;
2452 	bool ret = false;
2453 
2454 	/*
2455 	 * This current implementation is specific to unbound workqueues.
2456 	 * Specifically we only return the first available CPU for a given
2457 	 * node instead of cycling through individual CPUs within the node.
2458 	 *
2459 	 * If this is used with a per-cpu workqueue then the logic in
2460 	 * workqueue_select_cpu_near would need to be updated to allow for
2461 	 * some round robin type logic.
2462 	 */
2463 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2464 
2465 	local_irq_save(irq_flags);
2466 
2467 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2468 	    !clear_pending_if_disabled(work)) {
2469 		int cpu = select_numa_node_cpu(node);
2470 
2471 		__queue_work(cpu, wq, work);
2472 		ret = true;
2473 	}
2474 
2475 	local_irq_restore(irq_flags);
2476 	return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(queue_work_node);
2479 
delayed_work_timer_fn(struct timer_list * t)2480 void delayed_work_timer_fn(struct timer_list *t)
2481 {
2482 	struct delayed_work *dwork = timer_container_of(dwork, t, timer);
2483 
2484 	/* should have been called from irqsafe timer with irq already off */
2485 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2486 }
2487 EXPORT_SYMBOL(delayed_work_timer_fn);
2488 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2489 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2490 				struct delayed_work *dwork, unsigned long delay)
2491 {
2492 	struct timer_list *timer = &dwork->timer;
2493 	struct work_struct *work = &dwork->work;
2494 
2495 	WARN_ON_ONCE(!wq);
2496 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2497 	WARN_ON_ONCE(timer_pending(timer));
2498 	WARN_ON_ONCE(!list_empty(&work->entry));
2499 
2500 	/*
2501 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2502 	 * both optimization and correctness.  The earliest @timer can
2503 	 * expire is on the closest next tick and delayed_work users depend
2504 	 * on that there's no such delay when @delay is 0.
2505 	 */
2506 	if (!delay) {
2507 		__queue_work(cpu, wq, &dwork->work);
2508 		return;
2509 	}
2510 
2511 	WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu));
2512 	dwork->wq = wq;
2513 	dwork->cpu = cpu;
2514 	timer->expires = jiffies + delay;
2515 
2516 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2517 		/* If the current cpu is a housekeeping cpu, use it. */
2518 		cpu = smp_processor_id();
2519 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2520 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2521 		add_timer_on(timer, cpu);
2522 	} else {
2523 		if (likely(cpu == WORK_CPU_UNBOUND))
2524 			add_timer_global(timer);
2525 		else
2526 			add_timer_on(timer, cpu);
2527 	}
2528 }
2529 
2530 /**
2531  * queue_delayed_work_on - queue work on specific CPU after delay
2532  * @cpu: CPU number to execute work on
2533  * @wq: workqueue to use
2534  * @dwork: work to queue
2535  * @delay: number of jiffies to wait before queueing
2536  *
2537  * We queue the delayed_work to a specific CPU, for non-zero delays the
2538  * caller must ensure it is online and can't go away. Callers that fail
2539  * to ensure this, may get @dwork->timer queued to an offlined CPU and
2540  * this will prevent queueing of @dwork->work unless the offlined CPU
2541  * becomes online again.
2542  *
2543  * Return: %false if @work was already on a queue, %true otherwise.  If
2544  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2545  * execution.
2546  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2548 			   struct delayed_work *dwork, unsigned long delay)
2549 {
2550 	struct work_struct *work = &dwork->work;
2551 	bool ret = false;
2552 	unsigned long irq_flags;
2553 
2554 	/* read the comment in __queue_work() */
2555 	local_irq_save(irq_flags);
2556 
2557 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2558 	    !clear_pending_if_disabled(work)) {
2559 		__queue_delayed_work(cpu, wq, dwork, delay);
2560 		ret = true;
2561 	}
2562 
2563 	local_irq_restore(irq_flags);
2564 	return ret;
2565 }
2566 EXPORT_SYMBOL(queue_delayed_work_on);
2567 
2568 /**
2569  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2570  * @cpu: CPU number to execute work on
2571  * @wq: workqueue to use
2572  * @dwork: work to queue
2573  * @delay: number of jiffies to wait before queueing
2574  *
2575  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2576  * modify @dwork's timer so that it expires after @delay.  If @delay is
2577  * zero, @work is guaranteed to be scheduled immediately regardless of its
2578  * current state.
2579  *
2580  * Return: %false if @dwork was idle and queued, %true if @dwork was
2581  * pending and its timer was modified.
2582  *
2583  * This function is safe to call from any context including IRQ handler.
2584  * See try_to_grab_pending() for details.
2585  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2587 			 struct delayed_work *dwork, unsigned long delay)
2588 {
2589 	unsigned long irq_flags;
2590 	bool ret;
2591 
2592 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2593 
2594 	if (!clear_pending_if_disabled(&dwork->work))
2595 		__queue_delayed_work(cpu, wq, dwork, delay);
2596 
2597 	local_irq_restore(irq_flags);
2598 	return ret;
2599 }
2600 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2601 
rcu_work_rcufn(struct rcu_head * rcu)2602 static void rcu_work_rcufn(struct rcu_head *rcu)
2603 {
2604 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2605 
2606 	/* read the comment in __queue_work() */
2607 	local_irq_disable();
2608 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2609 	local_irq_enable();
2610 }
2611 
2612 /**
2613  * queue_rcu_work - queue work after a RCU grace period
2614  * @wq: workqueue to use
2615  * @rwork: work to queue
2616  *
2617  * Return: %false if @rwork was already pending, %true otherwise.  Note
2618  * that a full RCU grace period is guaranteed only after a %true return.
2619  * While @rwork is guaranteed to be executed after a %false return, the
2620  * execution may happen before a full RCU grace period has passed.
2621  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2622 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2623 {
2624 	struct work_struct *work = &rwork->work;
2625 
2626 	/*
2627 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2628 	 * inside @rwork and disabled the inner work.
2629 	 */
2630 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2631 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2632 		rwork->wq = wq;
2633 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2634 		return true;
2635 	}
2636 
2637 	return false;
2638 }
2639 EXPORT_SYMBOL(queue_rcu_work);
2640 
alloc_worker(int node)2641 static struct worker *alloc_worker(int node)
2642 {
2643 	struct worker *worker;
2644 
2645 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2646 	if (worker) {
2647 		INIT_LIST_HEAD(&worker->entry);
2648 		INIT_LIST_HEAD(&worker->scheduled);
2649 		INIT_LIST_HEAD(&worker->node);
2650 		/* on creation a worker is in !idle && prep state */
2651 		worker->flags = WORKER_PREP;
2652 	}
2653 	return worker;
2654 }
2655 
pool_allowed_cpus(struct worker_pool * pool)2656 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2657 {
2658 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2659 		return pool->attrs->__pod_cpumask;
2660 	else
2661 		return pool->attrs->cpumask;
2662 }
2663 
2664 /**
2665  * worker_attach_to_pool() - attach a worker to a pool
2666  * @worker: worker to be attached
2667  * @pool: the target pool
2668  *
2669  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2670  * cpu-binding of @worker are kept coordinated with the pool across
2671  * cpu-[un]hotplugs.
2672  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2673 static void worker_attach_to_pool(struct worker *worker,
2674 				  struct worker_pool *pool)
2675 {
2676 	mutex_lock(&wq_pool_attach_mutex);
2677 
2678 	/*
2679 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2680 	 * across this function. See the comments above the flag definition for
2681 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2682 	 */
2683 	if (pool->flags & POOL_DISASSOCIATED) {
2684 		worker->flags |= WORKER_UNBOUND;
2685 	} else {
2686 		WARN_ON_ONCE(pool->flags & POOL_BH);
2687 		kthread_set_per_cpu(worker->task, pool->cpu);
2688 	}
2689 
2690 	if (worker->rescue_wq)
2691 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2692 
2693 	list_add_tail(&worker->node, &pool->workers);
2694 	worker->pool = pool;
2695 
2696 	mutex_unlock(&wq_pool_attach_mutex);
2697 }
2698 
unbind_worker(struct worker * worker)2699 static void unbind_worker(struct worker *worker)
2700 {
2701 	lockdep_assert_held(&wq_pool_attach_mutex);
2702 
2703 	kthread_set_per_cpu(worker->task, -1);
2704 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2705 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2706 	else
2707 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2708 }
2709 
2710 
detach_worker(struct worker * worker)2711 static void detach_worker(struct worker *worker)
2712 {
2713 	lockdep_assert_held(&wq_pool_attach_mutex);
2714 
2715 	unbind_worker(worker);
2716 	list_del(&worker->node);
2717 }
2718 
2719 /**
2720  * worker_detach_from_pool() - detach a worker from its pool
2721  * @worker: worker which is attached to its pool
2722  *
2723  * Undo the attaching which had been done in worker_attach_to_pool().  The
2724  * caller worker shouldn't access to the pool after detached except it has
2725  * other reference to the pool.
2726  */
worker_detach_from_pool(struct worker * worker)2727 static void worker_detach_from_pool(struct worker *worker)
2728 {
2729 	struct worker_pool *pool = worker->pool;
2730 
2731 	/* there is one permanent BH worker per CPU which should never detach */
2732 	WARN_ON_ONCE(pool->flags & POOL_BH);
2733 
2734 	mutex_lock(&wq_pool_attach_mutex);
2735 	detach_worker(worker);
2736 	worker->pool = NULL;
2737 	mutex_unlock(&wq_pool_attach_mutex);
2738 
2739 	/* clear leftover flags without pool->lock after it is detached */
2740 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2741 }
2742 
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2743 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2744 			    struct worker_pool *pool)
2745 {
2746 	if (worker->rescue_wq)
2747 		return scnprintf(buf, size, "kworker/R-%s",
2748 				 worker->rescue_wq->name);
2749 
2750 	if (pool) {
2751 		if (pool->cpu >= 0)
2752 			return scnprintf(buf, size, "kworker/%d:%d%s",
2753 					 pool->cpu, worker->id,
2754 					 pool->attrs->nice < 0  ? "H" : "");
2755 		else
2756 			return scnprintf(buf, size, "kworker/u%d:%d",
2757 					 pool->id, worker->id);
2758 	} else {
2759 		return scnprintf(buf, size, "kworker/dying");
2760 	}
2761 }
2762 
2763 /**
2764  * create_worker - create a new workqueue worker
2765  * @pool: pool the new worker will belong to
2766  *
2767  * Create and start a new worker which is attached to @pool.
2768  *
2769  * CONTEXT:
2770  * Might sleep.  Does GFP_KERNEL allocations.
2771  *
2772  * Return:
2773  * Pointer to the newly created worker.
2774  */
create_worker(struct worker_pool * pool)2775 static struct worker *create_worker(struct worker_pool *pool)
2776 {
2777 	struct worker *worker;
2778 	int id;
2779 
2780 	/* ID is needed to determine kthread name */
2781 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2782 	if (id < 0) {
2783 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2784 			    ERR_PTR(id));
2785 		return NULL;
2786 	}
2787 
2788 	worker = alloc_worker(pool->node);
2789 	if (!worker) {
2790 		pr_err_once("workqueue: Failed to allocate a worker\n");
2791 		goto fail;
2792 	}
2793 
2794 	worker->id = id;
2795 
2796 	if (!(pool->flags & POOL_BH)) {
2797 		char id_buf[WORKER_ID_LEN];
2798 
2799 		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2800 		worker->task = kthread_create_on_node(worker_thread, worker,
2801 						      pool->node, "%s", id_buf);
2802 		if (IS_ERR(worker->task)) {
2803 			if (PTR_ERR(worker->task) == -EINTR) {
2804 				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2805 				       id_buf);
2806 			} else {
2807 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2808 					    worker->task);
2809 			}
2810 			goto fail;
2811 		}
2812 
2813 		set_user_nice(worker->task, pool->attrs->nice);
2814 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2815 	}
2816 
2817 	/* successful, attach the worker to the pool */
2818 	worker_attach_to_pool(worker, pool);
2819 
2820 	/* start the newly created worker */
2821 	raw_spin_lock_irq(&pool->lock);
2822 
2823 	worker->pool->nr_workers++;
2824 	worker_enter_idle(worker);
2825 
2826 	/*
2827 	 * @worker is waiting on a completion in kthread() and will trigger hung
2828 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2829 	 * wake it up explicitly.
2830 	 */
2831 	if (worker->task)
2832 		wake_up_process(worker->task);
2833 
2834 	raw_spin_unlock_irq(&pool->lock);
2835 
2836 	return worker;
2837 
2838 fail:
2839 	ida_free(&pool->worker_ida, id);
2840 	kfree(worker);
2841 	return NULL;
2842 }
2843 
detach_dying_workers(struct list_head * cull_list)2844 static void detach_dying_workers(struct list_head *cull_list)
2845 {
2846 	struct worker *worker;
2847 
2848 	list_for_each_entry(worker, cull_list, entry)
2849 		detach_worker(worker);
2850 }
2851 
reap_dying_workers(struct list_head * cull_list)2852 static void reap_dying_workers(struct list_head *cull_list)
2853 {
2854 	struct worker *worker, *tmp;
2855 
2856 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2857 		list_del_init(&worker->entry);
2858 		kthread_stop_put(worker->task);
2859 		kfree(worker);
2860 	}
2861 }
2862 
2863 /**
2864  * set_worker_dying - Tag a worker for destruction
2865  * @worker: worker to be destroyed
2866  * @list: transfer worker away from its pool->idle_list and into list
2867  *
2868  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2869  * should be idle.
2870  *
2871  * CONTEXT:
2872  * raw_spin_lock_irq(pool->lock).
2873  */
set_worker_dying(struct worker * worker,struct list_head * list)2874 static void set_worker_dying(struct worker *worker, struct list_head *list)
2875 {
2876 	struct worker_pool *pool = worker->pool;
2877 
2878 	lockdep_assert_held(&pool->lock);
2879 	lockdep_assert_held(&wq_pool_attach_mutex);
2880 
2881 	/* sanity check frenzy */
2882 	if (WARN_ON(worker->current_work) ||
2883 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2884 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2885 		return;
2886 
2887 	pool->nr_workers--;
2888 	pool->nr_idle--;
2889 
2890 	worker->flags |= WORKER_DIE;
2891 
2892 	list_move(&worker->entry, list);
2893 
2894 	/* get an extra task struct reference for later kthread_stop_put() */
2895 	get_task_struct(worker->task);
2896 }
2897 
2898 /**
2899  * idle_worker_timeout - check if some idle workers can now be deleted.
2900  * @t: The pool's idle_timer that just expired
2901  *
2902  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2903  * worker_leave_idle(), as a worker flicking between idle and active while its
2904  * pool is at the too_many_workers() tipping point would cause too much timer
2905  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2906  * it expire and re-evaluate things from there.
2907  */
idle_worker_timeout(struct timer_list * t)2908 static void idle_worker_timeout(struct timer_list *t)
2909 {
2910 	struct worker_pool *pool = timer_container_of(pool, t, idle_timer);
2911 	bool do_cull = false;
2912 
2913 	if (work_pending(&pool->idle_cull_work))
2914 		return;
2915 
2916 	raw_spin_lock_irq(&pool->lock);
2917 
2918 	if (too_many_workers(pool)) {
2919 		struct worker *worker;
2920 		unsigned long expires;
2921 
2922 		/* idle_list is kept in LIFO order, check the last one */
2923 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2924 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2925 		do_cull = !time_before(jiffies, expires);
2926 
2927 		if (!do_cull)
2928 			mod_timer(&pool->idle_timer, expires);
2929 	}
2930 	raw_spin_unlock_irq(&pool->lock);
2931 
2932 	if (do_cull)
2933 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2934 }
2935 
2936 /**
2937  * idle_cull_fn - cull workers that have been idle for too long.
2938  * @work: the pool's work for handling these idle workers
2939  *
2940  * This goes through a pool's idle workers and gets rid of those that have been
2941  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2942  *
2943  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2944  * culled, so this also resets worker affinity. This requires a sleepable
2945  * context, hence the split between timer callback and work item.
2946  */
idle_cull_fn(struct work_struct * work)2947 static void idle_cull_fn(struct work_struct *work)
2948 {
2949 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2950 	LIST_HEAD(cull_list);
2951 
2952 	/*
2953 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2954 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2955 	 * This is required as a previously-preempted worker could run after
2956 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2957 	 */
2958 	mutex_lock(&wq_pool_attach_mutex);
2959 	raw_spin_lock_irq(&pool->lock);
2960 
2961 	while (too_many_workers(pool)) {
2962 		struct worker *worker;
2963 		unsigned long expires;
2964 
2965 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2966 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2967 
2968 		if (time_before(jiffies, expires)) {
2969 			mod_timer(&pool->idle_timer, expires);
2970 			break;
2971 		}
2972 
2973 		set_worker_dying(worker, &cull_list);
2974 	}
2975 
2976 	raw_spin_unlock_irq(&pool->lock);
2977 	detach_dying_workers(&cull_list);
2978 	mutex_unlock(&wq_pool_attach_mutex);
2979 
2980 	reap_dying_workers(&cull_list);
2981 }
2982 
send_mayday(struct work_struct * work)2983 static void send_mayday(struct work_struct *work)
2984 {
2985 	struct pool_workqueue *pwq = get_work_pwq(work);
2986 	struct workqueue_struct *wq = pwq->wq;
2987 
2988 	lockdep_assert_held(&wq_mayday_lock);
2989 
2990 	if (!wq->rescuer)
2991 		return;
2992 
2993 	/* mayday mayday mayday */
2994 	if (list_empty(&pwq->mayday_node)) {
2995 		/*
2996 		 * If @pwq is for an unbound wq, its base ref may be put at
2997 		 * any time due to an attribute change.  Pin @pwq until the
2998 		 * rescuer is done with it.
2999 		 */
3000 		get_pwq(pwq);
3001 		list_add_tail(&pwq->mayday_node, &wq->maydays);
3002 		wake_up_process(wq->rescuer->task);
3003 		pwq->stats[PWQ_STAT_MAYDAY]++;
3004 	}
3005 }
3006 
pool_mayday_timeout(struct timer_list * t)3007 static void pool_mayday_timeout(struct timer_list *t)
3008 {
3009 	struct worker_pool *pool = timer_container_of(pool, t, mayday_timer);
3010 	struct work_struct *work;
3011 
3012 	raw_spin_lock_irq(&pool->lock);
3013 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3014 
3015 	if (need_to_create_worker(pool)) {
3016 		/*
3017 		 * We've been trying to create a new worker but
3018 		 * haven't been successful.  We might be hitting an
3019 		 * allocation deadlock.  Send distress signals to
3020 		 * rescuers.
3021 		 */
3022 		list_for_each_entry(work, &pool->worklist, entry)
3023 			send_mayday(work);
3024 	}
3025 
3026 	raw_spin_unlock(&wq_mayday_lock);
3027 	raw_spin_unlock_irq(&pool->lock);
3028 
3029 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3030 }
3031 
3032 /**
3033  * maybe_create_worker - create a new worker if necessary
3034  * @pool: pool to create a new worker for
3035  *
3036  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3037  * have at least one idle worker on return from this function.  If
3038  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3039  * sent to all rescuers with works scheduled on @pool to resolve
3040  * possible allocation deadlock.
3041  *
3042  * On return, need_to_create_worker() is guaranteed to be %false and
3043  * may_start_working() %true.
3044  *
3045  * LOCKING:
3046  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3047  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3048  * manager.
3049  */
maybe_create_worker(struct worker_pool * pool)3050 static void maybe_create_worker(struct worker_pool *pool)
3051 __releases(&pool->lock)
3052 __acquires(&pool->lock)
3053 {
3054 restart:
3055 	raw_spin_unlock_irq(&pool->lock);
3056 
3057 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3058 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3059 
3060 	while (true) {
3061 		if (create_worker(pool) || !need_to_create_worker(pool))
3062 			break;
3063 
3064 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3065 
3066 		if (!need_to_create_worker(pool))
3067 			break;
3068 	}
3069 
3070 	timer_delete_sync(&pool->mayday_timer);
3071 	raw_spin_lock_irq(&pool->lock);
3072 	/*
3073 	 * This is necessary even after a new worker was just successfully
3074 	 * created as @pool->lock was dropped and the new worker might have
3075 	 * already become busy.
3076 	 */
3077 	if (need_to_create_worker(pool))
3078 		goto restart;
3079 }
3080 
3081 /**
3082  * manage_workers - manage worker pool
3083  * @worker: self
3084  *
3085  * Assume the manager role and manage the worker pool @worker belongs
3086  * to.  At any given time, there can be only zero or one manager per
3087  * pool.  The exclusion is handled automatically by this function.
3088  *
3089  * The caller can safely start processing works on false return.  On
3090  * true return, it's guaranteed that need_to_create_worker() is false
3091  * and may_start_working() is true.
3092  *
3093  * CONTEXT:
3094  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3095  * multiple times.  Does GFP_KERNEL allocations.
3096  *
3097  * Return:
3098  * %false if the pool doesn't need management and the caller can safely
3099  * start processing works, %true if management function was performed and
3100  * the conditions that the caller verified before calling the function may
3101  * no longer be true.
3102  */
manage_workers(struct worker * worker)3103 static bool manage_workers(struct worker *worker)
3104 {
3105 	struct worker_pool *pool = worker->pool;
3106 
3107 	if (pool->flags & POOL_MANAGER_ACTIVE)
3108 		return false;
3109 
3110 	pool->flags |= POOL_MANAGER_ACTIVE;
3111 	pool->manager = worker;
3112 
3113 	maybe_create_worker(pool);
3114 
3115 	pool->manager = NULL;
3116 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3117 	rcuwait_wake_up(&manager_wait);
3118 	return true;
3119 }
3120 
3121 /**
3122  * process_one_work - process single work
3123  * @worker: self
3124  * @work: work to process
3125  *
3126  * Process @work.  This function contains all the logics necessary to
3127  * process a single work including synchronization against and
3128  * interaction with other workers on the same cpu, queueing and
3129  * flushing.  As long as context requirement is met, any worker can
3130  * call this function to process a work.
3131  *
3132  * CONTEXT:
3133  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3134  */
process_one_work(struct worker * worker,struct work_struct * work)3135 static void process_one_work(struct worker *worker, struct work_struct *work)
3136 __releases(&pool->lock)
3137 __acquires(&pool->lock)
3138 {
3139 	struct pool_workqueue *pwq = get_work_pwq(work);
3140 	struct worker_pool *pool = worker->pool;
3141 	unsigned long work_data;
3142 	int lockdep_start_depth, rcu_start_depth;
3143 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3144 #ifdef CONFIG_LOCKDEP
3145 	/*
3146 	 * It is permissible to free the struct work_struct from
3147 	 * inside the function that is called from it, this we need to
3148 	 * take into account for lockdep too.  To avoid bogus "held
3149 	 * lock freed" warnings as well as problems when looking into
3150 	 * work->lockdep_map, make a copy and use that here.
3151 	 */
3152 	struct lockdep_map lockdep_map;
3153 
3154 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3155 #endif
3156 	/* ensure we're on the correct CPU */
3157 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3158 		     raw_smp_processor_id() != pool->cpu);
3159 
3160 	/* claim and dequeue */
3161 	debug_work_deactivate(work);
3162 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3163 	worker->current_work = work;
3164 	worker->current_func = work->func;
3165 	worker->current_pwq = pwq;
3166 	if (worker->task)
3167 		worker->current_at = worker->task->se.sum_exec_runtime;
3168 	work_data = *work_data_bits(work);
3169 	worker->current_color = get_work_color(work_data);
3170 
3171 	/*
3172 	 * Record wq name for cmdline and debug reporting, may get
3173 	 * overridden through set_worker_desc().
3174 	 */
3175 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3176 
3177 	list_del_init(&work->entry);
3178 
3179 	/*
3180 	 * CPU intensive works don't participate in concurrency management.
3181 	 * They're the scheduler's responsibility.  This takes @worker out
3182 	 * of concurrency management and the next code block will chain
3183 	 * execution of the pending work items.
3184 	 */
3185 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3186 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3187 
3188 	/*
3189 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3190 	 * since nr_running would always be >= 1 at this point. This is used to
3191 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3192 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3193 	 */
3194 	kick_pool(pool);
3195 
3196 	/*
3197 	 * Record the last pool and clear PENDING which should be the last
3198 	 * update to @work.  Also, do this inside @pool->lock so that
3199 	 * PENDING and queued state changes happen together while IRQ is
3200 	 * disabled.
3201 	 */
3202 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3203 
3204 	pwq->stats[PWQ_STAT_STARTED]++;
3205 	raw_spin_unlock_irq(&pool->lock);
3206 
3207 	rcu_start_depth = rcu_preempt_depth();
3208 	lockdep_start_depth = lockdep_depth(current);
3209 	/* see drain_dead_softirq_workfn() */
3210 	if (!bh_draining)
3211 		lock_map_acquire(pwq->wq->lockdep_map);
3212 	lock_map_acquire(&lockdep_map);
3213 	/*
3214 	 * Strictly speaking we should mark the invariant state without holding
3215 	 * any locks, that is, before these two lock_map_acquire()'s.
3216 	 *
3217 	 * However, that would result in:
3218 	 *
3219 	 *   A(W1)
3220 	 *   WFC(C)
3221 	 *		A(W1)
3222 	 *		C(C)
3223 	 *
3224 	 * Which would create W1->C->W1 dependencies, even though there is no
3225 	 * actual deadlock possible. There are two solutions, using a
3226 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3227 	 * hit the lockdep limitation on recursive locks, or simply discard
3228 	 * these locks.
3229 	 *
3230 	 * AFAICT there is no possible deadlock scenario between the
3231 	 * flush_work() and complete() primitives (except for single-threaded
3232 	 * workqueues), so hiding them isn't a problem.
3233 	 */
3234 	lockdep_invariant_state(true);
3235 	trace_workqueue_execute_start(work);
3236 	worker->current_func(work);
3237 	/*
3238 	 * While we must be careful to not use "work" after this, the trace
3239 	 * point will only record its address.
3240 	 */
3241 	trace_workqueue_execute_end(work, worker->current_func);
3242 
3243 	lock_map_release(&lockdep_map);
3244 	if (!bh_draining)
3245 		lock_map_release(pwq->wq->lockdep_map);
3246 
3247 	if (unlikely((worker->task && in_atomic()) ||
3248 		     lockdep_depth(current) != lockdep_start_depth ||
3249 		     rcu_preempt_depth() != rcu_start_depth)) {
3250 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3251 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3252 		       current->comm, task_pid_nr(current), preempt_count(),
3253 		       lockdep_start_depth, lockdep_depth(current),
3254 		       rcu_start_depth, rcu_preempt_depth(),
3255 		       worker->current_func);
3256 		debug_show_held_locks(current);
3257 		dump_stack();
3258 	}
3259 
3260 	/*
3261 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3262 	 * kernels, where a requeueing work item waiting for something to
3263 	 * happen could deadlock with stop_machine as such work item could
3264 	 * indefinitely requeue itself while all other CPUs are trapped in
3265 	 * stop_machine. At the same time, report a quiescent RCU state so
3266 	 * the same condition doesn't freeze RCU.
3267 	 */
3268 	if (worker->task)
3269 		cond_resched();
3270 
3271 	raw_spin_lock_irq(&pool->lock);
3272 
3273 	pwq->stats[PWQ_STAT_COMPLETED]++;
3274 
3275 	/*
3276 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3277 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3278 	 * wq_cpu_intensive_thresh_us. Clear it.
3279 	 */
3280 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3281 
3282 	/* tag the worker for identification in schedule() */
3283 	worker->last_func = worker->current_func;
3284 
3285 	/* we're done with it, release */
3286 	hash_del(&worker->hentry);
3287 	worker->current_work = NULL;
3288 	worker->current_func = NULL;
3289 	worker->current_pwq = NULL;
3290 	worker->current_color = INT_MAX;
3291 
3292 	/* must be the last step, see the function comment */
3293 	pwq_dec_nr_in_flight(pwq, work_data);
3294 }
3295 
3296 /**
3297  * process_scheduled_works - process scheduled works
3298  * @worker: self
3299  *
3300  * Process all scheduled works.  Please note that the scheduled list
3301  * may change while processing a work, so this function repeatedly
3302  * fetches a work from the top and executes it.
3303  *
3304  * CONTEXT:
3305  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3306  * multiple times.
3307  */
process_scheduled_works(struct worker * worker)3308 static void process_scheduled_works(struct worker *worker)
3309 {
3310 	struct work_struct *work;
3311 	bool first = true;
3312 
3313 	while ((work = list_first_entry_or_null(&worker->scheduled,
3314 						struct work_struct, entry))) {
3315 		if (first) {
3316 			worker->pool->watchdog_ts = jiffies;
3317 			first = false;
3318 		}
3319 		process_one_work(worker, work);
3320 	}
3321 }
3322 
set_pf_worker(bool val)3323 static void set_pf_worker(bool val)
3324 {
3325 	mutex_lock(&wq_pool_attach_mutex);
3326 	if (val)
3327 		current->flags |= PF_WQ_WORKER;
3328 	else
3329 		current->flags &= ~PF_WQ_WORKER;
3330 	mutex_unlock(&wq_pool_attach_mutex);
3331 }
3332 
3333 /**
3334  * worker_thread - the worker thread function
3335  * @__worker: self
3336  *
3337  * The worker thread function.  All workers belong to a worker_pool -
3338  * either a per-cpu one or dynamic unbound one.  These workers process all
3339  * work items regardless of their specific target workqueue.  The only
3340  * exception is work items which belong to workqueues with a rescuer which
3341  * will be explained in rescuer_thread().
3342  *
3343  * Return: 0
3344  */
worker_thread(void * __worker)3345 static int worker_thread(void *__worker)
3346 {
3347 	struct worker *worker = __worker;
3348 	struct worker_pool *pool = worker->pool;
3349 
3350 	/* tell the scheduler that this is a workqueue worker */
3351 	set_pf_worker(true);
3352 woke_up:
3353 	raw_spin_lock_irq(&pool->lock);
3354 
3355 	/* am I supposed to die? */
3356 	if (unlikely(worker->flags & WORKER_DIE)) {
3357 		raw_spin_unlock_irq(&pool->lock);
3358 		set_pf_worker(false);
3359 		/*
3360 		 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3361 		 * shouldn't be accessed, reset it to NULL in case otherwise.
3362 		 */
3363 		worker->pool = NULL;
3364 		ida_free(&pool->worker_ida, worker->id);
3365 		return 0;
3366 	}
3367 
3368 	worker_leave_idle(worker);
3369 recheck:
3370 	/* no more worker necessary? */
3371 	if (!need_more_worker(pool))
3372 		goto sleep;
3373 
3374 	/* do we need to manage? */
3375 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3376 		goto recheck;
3377 
3378 	/*
3379 	 * ->scheduled list can only be filled while a worker is
3380 	 * preparing to process a work or actually processing it.
3381 	 * Make sure nobody diddled with it while I was sleeping.
3382 	 */
3383 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3384 
3385 	/*
3386 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3387 	 * worker or that someone else has already assumed the manager
3388 	 * role.  This is where @worker starts participating in concurrency
3389 	 * management if applicable and concurrency management is restored
3390 	 * after being rebound.  See rebind_workers() for details.
3391 	 */
3392 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3393 
3394 	do {
3395 		struct work_struct *work =
3396 			list_first_entry(&pool->worklist,
3397 					 struct work_struct, entry);
3398 
3399 		if (assign_work(work, worker, NULL))
3400 			process_scheduled_works(worker);
3401 	} while (keep_working(pool));
3402 
3403 	worker_set_flags(worker, WORKER_PREP);
3404 sleep:
3405 	/*
3406 	 * pool->lock is held and there's no work to process and no need to
3407 	 * manage, sleep.  Workers are woken up only while holding
3408 	 * pool->lock or from local cpu, so setting the current state
3409 	 * before releasing pool->lock is enough to prevent losing any
3410 	 * event.
3411 	 */
3412 	worker_enter_idle(worker);
3413 	__set_current_state(TASK_IDLE);
3414 	raw_spin_unlock_irq(&pool->lock);
3415 	schedule();
3416 	goto woke_up;
3417 }
3418 
3419 /**
3420  * rescuer_thread - the rescuer thread function
3421  * @__rescuer: self
3422  *
3423  * Workqueue rescuer thread function.  There's one rescuer for each
3424  * workqueue which has WQ_MEM_RECLAIM set.
3425  *
3426  * Regular work processing on a pool may block trying to create a new
3427  * worker which uses GFP_KERNEL allocation which has slight chance of
3428  * developing into deadlock if some works currently on the same queue
3429  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3430  * the problem rescuer solves.
3431  *
3432  * When such condition is possible, the pool summons rescuers of all
3433  * workqueues which have works queued on the pool and let them process
3434  * those works so that forward progress can be guaranteed.
3435  *
3436  * This should happen rarely.
3437  *
3438  * Return: 0
3439  */
rescuer_thread(void * __rescuer)3440 static int rescuer_thread(void *__rescuer)
3441 {
3442 	struct worker *rescuer = __rescuer;
3443 	struct workqueue_struct *wq = rescuer->rescue_wq;
3444 	bool should_stop;
3445 
3446 	set_user_nice(current, RESCUER_NICE_LEVEL);
3447 
3448 	/*
3449 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3450 	 * doesn't participate in concurrency management.
3451 	 */
3452 	set_pf_worker(true);
3453 repeat:
3454 	set_current_state(TASK_IDLE);
3455 
3456 	/*
3457 	 * By the time the rescuer is requested to stop, the workqueue
3458 	 * shouldn't have any work pending, but @wq->maydays may still have
3459 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3460 	 * all the work items before the rescuer got to them.  Go through
3461 	 * @wq->maydays processing before acting on should_stop so that the
3462 	 * list is always empty on exit.
3463 	 */
3464 	should_stop = kthread_should_stop();
3465 
3466 	/* see whether any pwq is asking for help */
3467 	raw_spin_lock_irq(&wq_mayday_lock);
3468 
3469 	while (!list_empty(&wq->maydays)) {
3470 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3471 					struct pool_workqueue, mayday_node);
3472 		struct worker_pool *pool = pwq->pool;
3473 		struct work_struct *work, *n;
3474 
3475 		__set_current_state(TASK_RUNNING);
3476 		list_del_init(&pwq->mayday_node);
3477 
3478 		raw_spin_unlock_irq(&wq_mayday_lock);
3479 
3480 		worker_attach_to_pool(rescuer, pool);
3481 
3482 		raw_spin_lock_irq(&pool->lock);
3483 
3484 		/*
3485 		 * Slurp in all works issued via this workqueue and
3486 		 * process'em.
3487 		 */
3488 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3489 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3490 			if (get_work_pwq(work) == pwq &&
3491 			    assign_work(work, rescuer, &n))
3492 				pwq->stats[PWQ_STAT_RESCUED]++;
3493 		}
3494 
3495 		if (!list_empty(&rescuer->scheduled)) {
3496 			process_scheduled_works(rescuer);
3497 
3498 			/*
3499 			 * The above execution of rescued work items could
3500 			 * have created more to rescue through
3501 			 * pwq_activate_first_inactive() or chained
3502 			 * queueing.  Let's put @pwq back on mayday list so
3503 			 * that such back-to-back work items, which may be
3504 			 * being used to relieve memory pressure, don't
3505 			 * incur MAYDAY_INTERVAL delay inbetween.
3506 			 */
3507 			if (pwq->nr_active && need_to_create_worker(pool)) {
3508 				raw_spin_lock(&wq_mayday_lock);
3509 				/*
3510 				 * Queue iff we aren't racing destruction
3511 				 * and somebody else hasn't queued it already.
3512 				 */
3513 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3514 					get_pwq(pwq);
3515 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3516 				}
3517 				raw_spin_unlock(&wq_mayday_lock);
3518 			}
3519 		}
3520 
3521 		/*
3522 		 * Leave this pool. Notify regular workers; otherwise, we end up
3523 		 * with 0 concurrency and stalling the execution.
3524 		 */
3525 		kick_pool(pool);
3526 
3527 		raw_spin_unlock_irq(&pool->lock);
3528 
3529 		worker_detach_from_pool(rescuer);
3530 
3531 		/*
3532 		 * Put the reference grabbed by send_mayday().  @pool might
3533 		 * go away any time after it.
3534 		 */
3535 		put_pwq_unlocked(pwq);
3536 
3537 		raw_spin_lock_irq(&wq_mayday_lock);
3538 	}
3539 
3540 	raw_spin_unlock_irq(&wq_mayday_lock);
3541 
3542 	if (should_stop) {
3543 		__set_current_state(TASK_RUNNING);
3544 		set_pf_worker(false);
3545 		return 0;
3546 	}
3547 
3548 	/* rescuers should never participate in concurrency management */
3549 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3550 	schedule();
3551 	goto repeat;
3552 }
3553 
bh_worker(struct worker * worker)3554 static void bh_worker(struct worker *worker)
3555 {
3556 	struct worker_pool *pool = worker->pool;
3557 	int nr_restarts = BH_WORKER_RESTARTS;
3558 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3559 
3560 	raw_spin_lock_irq(&pool->lock);
3561 	worker_leave_idle(worker);
3562 
3563 	/*
3564 	 * This function follows the structure of worker_thread(). See there for
3565 	 * explanations on each step.
3566 	 */
3567 	if (!need_more_worker(pool))
3568 		goto done;
3569 
3570 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3571 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3572 
3573 	do {
3574 		struct work_struct *work =
3575 			list_first_entry(&pool->worklist,
3576 					 struct work_struct, entry);
3577 
3578 		if (assign_work(work, worker, NULL))
3579 			process_scheduled_works(worker);
3580 	} while (keep_working(pool) &&
3581 		 --nr_restarts && time_before(jiffies, end));
3582 
3583 	worker_set_flags(worker, WORKER_PREP);
3584 done:
3585 	worker_enter_idle(worker);
3586 	kick_pool(pool);
3587 	raw_spin_unlock_irq(&pool->lock);
3588 }
3589 
3590 /*
3591  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3592  *
3593  * This is currently called from tasklet[_hi]action() and thus is also called
3594  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3595  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3596  * can be dropped.
3597  *
3598  * After full conversion, we'll add worker->softirq_action, directly use the
3599  * softirq action and obtain the worker pointer from the softirq_action pointer.
3600  */
workqueue_softirq_action(bool highpri)3601 void workqueue_softirq_action(bool highpri)
3602 {
3603 	struct worker_pool *pool =
3604 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3605 	if (need_more_worker(pool))
3606 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3607 }
3608 
3609 struct wq_drain_dead_softirq_work {
3610 	struct work_struct	work;
3611 	struct worker_pool	*pool;
3612 	struct completion	done;
3613 };
3614 
drain_dead_softirq_workfn(struct work_struct * work)3615 static void drain_dead_softirq_workfn(struct work_struct *work)
3616 {
3617 	struct wq_drain_dead_softirq_work *dead_work =
3618 		container_of(work, struct wq_drain_dead_softirq_work, work);
3619 	struct worker_pool *pool = dead_work->pool;
3620 	bool repeat;
3621 
3622 	/*
3623 	 * @pool's CPU is dead and we want to execute its still pending work
3624 	 * items from this BH work item which is running on a different CPU. As
3625 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3626 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3627 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3628 	 */
3629 	raw_spin_lock_irq(&pool->lock);
3630 	pool->flags |= POOL_BH_DRAINING;
3631 	raw_spin_unlock_irq(&pool->lock);
3632 
3633 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3634 
3635 	raw_spin_lock_irq(&pool->lock);
3636 	pool->flags &= ~POOL_BH_DRAINING;
3637 	repeat = need_more_worker(pool);
3638 	raw_spin_unlock_irq(&pool->lock);
3639 
3640 	/*
3641 	 * bh_worker() might hit consecutive execution limit and bail. If there
3642 	 * still are pending work items, reschedule self and return so that we
3643 	 * don't hog this CPU's BH.
3644 	 */
3645 	if (repeat) {
3646 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3647 			queue_work(system_bh_highpri_wq, work);
3648 		else
3649 			queue_work(system_bh_wq, work);
3650 	} else {
3651 		complete(&dead_work->done);
3652 	}
3653 }
3654 
3655 /*
3656  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3657  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3658  * have to worry about draining overlapping with CPU coming back online or
3659  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3660  * on). Let's keep it simple and drain them synchronously. These are BH work
3661  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3662  */
workqueue_softirq_dead(unsigned int cpu)3663 void workqueue_softirq_dead(unsigned int cpu)
3664 {
3665 	int i;
3666 
3667 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3668 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3669 		struct wq_drain_dead_softirq_work dead_work;
3670 
3671 		if (!need_more_worker(pool))
3672 			continue;
3673 
3674 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3675 		dead_work.pool = pool;
3676 		init_completion(&dead_work.done);
3677 
3678 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3679 			queue_work(system_bh_highpri_wq, &dead_work.work);
3680 		else
3681 			queue_work(system_bh_wq, &dead_work.work);
3682 
3683 		wait_for_completion(&dead_work.done);
3684 		destroy_work_on_stack(&dead_work.work);
3685 	}
3686 }
3687 
3688 /**
3689  * check_flush_dependency - check for flush dependency sanity
3690  * @target_wq: workqueue being flushed
3691  * @target_work: work item being flushed (NULL for workqueue flushes)
3692  * @from_cancel: are we called from the work cancel path
3693  *
3694  * %current is trying to flush the whole @target_wq or @target_work on it.
3695  * If this is not the cancel path (which implies work being flushed is either
3696  * already running, or will not be at all), check if @target_wq doesn't have
3697  * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3698  * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3699  * progress guarantee leading to a deadlock.
3700  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work,bool from_cancel)3701 static void check_flush_dependency(struct workqueue_struct *target_wq,
3702 				   struct work_struct *target_work,
3703 				   bool from_cancel)
3704 {
3705 	work_func_t target_func;
3706 	struct worker *worker;
3707 
3708 	if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3709 		return;
3710 
3711 	worker = current_wq_worker();
3712 	target_func = target_work ? target_work->func : NULL;
3713 
3714 	WARN_ONCE(current->flags & PF_MEMALLOC,
3715 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3716 		  current->pid, current->comm, target_wq->name, target_func);
3717 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3718 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3719 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3720 		  worker->current_pwq->wq->name, worker->current_func,
3721 		  target_wq->name, target_func);
3722 }
3723 
3724 struct wq_barrier {
3725 	struct work_struct	work;
3726 	struct completion	done;
3727 	struct task_struct	*task;	/* purely informational */
3728 };
3729 
wq_barrier_func(struct work_struct * work)3730 static void wq_barrier_func(struct work_struct *work)
3731 {
3732 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3733 	complete(&barr->done);
3734 }
3735 
3736 /**
3737  * insert_wq_barrier - insert a barrier work
3738  * @pwq: pwq to insert barrier into
3739  * @barr: wq_barrier to insert
3740  * @target: target work to attach @barr to
3741  * @worker: worker currently executing @target, NULL if @target is not executing
3742  *
3743  * @barr is linked to @target such that @barr is completed only after
3744  * @target finishes execution.  Please note that the ordering
3745  * guarantee is observed only with respect to @target and on the local
3746  * cpu.
3747  *
3748  * Currently, a queued barrier can't be canceled.  This is because
3749  * try_to_grab_pending() can't determine whether the work to be
3750  * grabbed is at the head of the queue and thus can't clear LINKED
3751  * flag of the previous work while there must be a valid next work
3752  * after a work with LINKED flag set.
3753  *
3754  * Note that when @worker is non-NULL, @target may be modified
3755  * underneath us, so we can't reliably determine pwq from @target.
3756  *
3757  * CONTEXT:
3758  * raw_spin_lock_irq(pool->lock).
3759  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3760 static void insert_wq_barrier(struct pool_workqueue *pwq,
3761 			      struct wq_barrier *barr,
3762 			      struct work_struct *target, struct worker *worker)
3763 {
3764 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3765 	unsigned int work_flags = 0;
3766 	unsigned int work_color;
3767 	struct list_head *head;
3768 
3769 	/*
3770 	 * debugobject calls are safe here even with pool->lock locked
3771 	 * as we know for sure that this will not trigger any of the
3772 	 * checks and call back into the fixup functions where we
3773 	 * might deadlock.
3774 	 *
3775 	 * BH and threaded workqueues need separate lockdep keys to avoid
3776 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3777 	 * usage".
3778 	 */
3779 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3780 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3781 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3782 
3783 	init_completion_map(&barr->done, &target->lockdep_map);
3784 
3785 	barr->task = current;
3786 
3787 	/* The barrier work item does not participate in nr_active. */
3788 	work_flags |= WORK_STRUCT_INACTIVE;
3789 
3790 	/*
3791 	 * If @target is currently being executed, schedule the
3792 	 * barrier to the worker; otherwise, put it after @target.
3793 	 */
3794 	if (worker) {
3795 		head = worker->scheduled.next;
3796 		work_color = worker->current_color;
3797 	} else {
3798 		unsigned long *bits = work_data_bits(target);
3799 
3800 		head = target->entry.next;
3801 		/* there can already be other linked works, inherit and set */
3802 		work_flags |= *bits & WORK_STRUCT_LINKED;
3803 		work_color = get_work_color(*bits);
3804 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3805 	}
3806 
3807 	pwq->nr_in_flight[work_color]++;
3808 	work_flags |= work_color_to_flags(work_color);
3809 
3810 	insert_work(pwq, &barr->work, head, work_flags);
3811 }
3812 
3813 /**
3814  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3815  * @wq: workqueue being flushed
3816  * @flush_color: new flush color, < 0 for no-op
3817  * @work_color: new work color, < 0 for no-op
3818  *
3819  * Prepare pwqs for workqueue flushing.
3820  *
3821  * If @flush_color is non-negative, flush_color on all pwqs should be
3822  * -1.  If no pwq has in-flight commands at the specified color, all
3823  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3824  * has in flight commands, its pwq->flush_color is set to
3825  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3826  * wakeup logic is armed and %true is returned.
3827  *
3828  * The caller should have initialized @wq->first_flusher prior to
3829  * calling this function with non-negative @flush_color.  If
3830  * @flush_color is negative, no flush color update is done and %false
3831  * is returned.
3832  *
3833  * If @work_color is non-negative, all pwqs should have the same
3834  * work_color which is previous to @work_color and all will be
3835  * advanced to @work_color.
3836  *
3837  * CONTEXT:
3838  * mutex_lock(wq->mutex).
3839  *
3840  * Return:
3841  * %true if @flush_color >= 0 and there's something to flush.  %false
3842  * otherwise.
3843  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3844 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3845 				      int flush_color, int work_color)
3846 {
3847 	bool wait = false;
3848 	struct pool_workqueue *pwq;
3849 	struct worker_pool *current_pool = NULL;
3850 
3851 	if (flush_color >= 0) {
3852 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3853 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3854 	}
3855 
3856 	/*
3857 	 * For unbound workqueue, pwqs will map to only a few pools.
3858 	 * Most of the time, pwqs within the same pool will be linked
3859 	 * sequentially to wq->pwqs by cpu index. So in the majority
3860 	 * of pwq iters, the pool is the same, only doing lock/unlock
3861 	 * if the pool has changed. This can largely reduce expensive
3862 	 * lock operations.
3863 	 */
3864 	for_each_pwq(pwq, wq) {
3865 		if (current_pool != pwq->pool) {
3866 			if (likely(current_pool))
3867 				raw_spin_unlock_irq(&current_pool->lock);
3868 			current_pool = pwq->pool;
3869 			raw_spin_lock_irq(&current_pool->lock);
3870 		}
3871 
3872 		if (flush_color >= 0) {
3873 			WARN_ON_ONCE(pwq->flush_color != -1);
3874 
3875 			if (pwq->nr_in_flight[flush_color]) {
3876 				pwq->flush_color = flush_color;
3877 				atomic_inc(&wq->nr_pwqs_to_flush);
3878 				wait = true;
3879 			}
3880 		}
3881 
3882 		if (work_color >= 0) {
3883 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3884 			pwq->work_color = work_color;
3885 		}
3886 
3887 	}
3888 
3889 	if (current_pool)
3890 		raw_spin_unlock_irq(&current_pool->lock);
3891 
3892 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3893 		complete(&wq->first_flusher->done);
3894 
3895 	return wait;
3896 }
3897 
touch_wq_lockdep_map(struct workqueue_struct * wq)3898 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3899 {
3900 #ifdef CONFIG_LOCKDEP
3901 	if (unlikely(!wq->lockdep_map))
3902 		return;
3903 
3904 	if (wq->flags & WQ_BH)
3905 		local_bh_disable();
3906 
3907 	lock_map_acquire(wq->lockdep_map);
3908 	lock_map_release(wq->lockdep_map);
3909 
3910 	if (wq->flags & WQ_BH)
3911 		local_bh_enable();
3912 #endif
3913 }
3914 
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3915 static void touch_work_lockdep_map(struct work_struct *work,
3916 				   struct workqueue_struct *wq)
3917 {
3918 #ifdef CONFIG_LOCKDEP
3919 	if (wq->flags & WQ_BH)
3920 		local_bh_disable();
3921 
3922 	lock_map_acquire(&work->lockdep_map);
3923 	lock_map_release(&work->lockdep_map);
3924 
3925 	if (wq->flags & WQ_BH)
3926 		local_bh_enable();
3927 #endif
3928 }
3929 
3930 /**
3931  * __flush_workqueue - ensure that any scheduled work has run to completion.
3932  * @wq: workqueue to flush
3933  *
3934  * This function sleeps until all work items which were queued on entry
3935  * have finished execution, but it is not livelocked by new incoming ones.
3936  */
__flush_workqueue(struct workqueue_struct * wq)3937 void __flush_workqueue(struct workqueue_struct *wq)
3938 {
3939 	struct wq_flusher this_flusher = {
3940 		.list = LIST_HEAD_INIT(this_flusher.list),
3941 		.flush_color = -1,
3942 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3943 	};
3944 	int next_color;
3945 
3946 	if (WARN_ON(!wq_online))
3947 		return;
3948 
3949 	touch_wq_lockdep_map(wq);
3950 
3951 	mutex_lock(&wq->mutex);
3952 
3953 	/*
3954 	 * Start-to-wait phase
3955 	 */
3956 	next_color = work_next_color(wq->work_color);
3957 
3958 	if (next_color != wq->flush_color) {
3959 		/*
3960 		 * Color space is not full.  The current work_color
3961 		 * becomes our flush_color and work_color is advanced
3962 		 * by one.
3963 		 */
3964 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3965 		this_flusher.flush_color = wq->work_color;
3966 		wq->work_color = next_color;
3967 
3968 		if (!wq->first_flusher) {
3969 			/* no flush in progress, become the first flusher */
3970 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3971 
3972 			wq->first_flusher = &this_flusher;
3973 
3974 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3975 						       wq->work_color)) {
3976 				/* nothing to flush, done */
3977 				wq->flush_color = next_color;
3978 				wq->first_flusher = NULL;
3979 				goto out_unlock;
3980 			}
3981 		} else {
3982 			/* wait in queue */
3983 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3984 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3985 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3986 		}
3987 	} else {
3988 		/*
3989 		 * Oops, color space is full, wait on overflow queue.
3990 		 * The next flush completion will assign us
3991 		 * flush_color and transfer to flusher_queue.
3992 		 */
3993 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3994 	}
3995 
3996 	check_flush_dependency(wq, NULL, false);
3997 
3998 	mutex_unlock(&wq->mutex);
3999 
4000 	wait_for_completion(&this_flusher.done);
4001 
4002 	/*
4003 	 * Wake-up-and-cascade phase
4004 	 *
4005 	 * First flushers are responsible for cascading flushes and
4006 	 * handling overflow.  Non-first flushers can simply return.
4007 	 */
4008 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4009 		return;
4010 
4011 	mutex_lock(&wq->mutex);
4012 
4013 	/* we might have raced, check again with mutex held */
4014 	if (wq->first_flusher != &this_flusher)
4015 		goto out_unlock;
4016 
4017 	WRITE_ONCE(wq->first_flusher, NULL);
4018 
4019 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4020 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4021 
4022 	while (true) {
4023 		struct wq_flusher *next, *tmp;
4024 
4025 		/* complete all the flushers sharing the current flush color */
4026 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4027 			if (next->flush_color != wq->flush_color)
4028 				break;
4029 			list_del_init(&next->list);
4030 			complete(&next->done);
4031 		}
4032 
4033 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4034 			     wq->flush_color != work_next_color(wq->work_color));
4035 
4036 		/* this flush_color is finished, advance by one */
4037 		wq->flush_color = work_next_color(wq->flush_color);
4038 
4039 		/* one color has been freed, handle overflow queue */
4040 		if (!list_empty(&wq->flusher_overflow)) {
4041 			/*
4042 			 * Assign the same color to all overflowed
4043 			 * flushers, advance work_color and append to
4044 			 * flusher_queue.  This is the start-to-wait
4045 			 * phase for these overflowed flushers.
4046 			 */
4047 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4048 				tmp->flush_color = wq->work_color;
4049 
4050 			wq->work_color = work_next_color(wq->work_color);
4051 
4052 			list_splice_tail_init(&wq->flusher_overflow,
4053 					      &wq->flusher_queue);
4054 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4055 		}
4056 
4057 		if (list_empty(&wq->flusher_queue)) {
4058 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4059 			break;
4060 		}
4061 
4062 		/*
4063 		 * Need to flush more colors.  Make the next flusher
4064 		 * the new first flusher and arm pwqs.
4065 		 */
4066 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4067 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4068 
4069 		list_del_init(&next->list);
4070 		wq->first_flusher = next;
4071 
4072 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4073 			break;
4074 
4075 		/*
4076 		 * Meh... this color is already done, clear first
4077 		 * flusher and repeat cascading.
4078 		 */
4079 		wq->first_flusher = NULL;
4080 	}
4081 
4082 out_unlock:
4083 	mutex_unlock(&wq->mutex);
4084 }
4085 EXPORT_SYMBOL(__flush_workqueue);
4086 
4087 /**
4088  * drain_workqueue - drain a workqueue
4089  * @wq: workqueue to drain
4090  *
4091  * Wait until the workqueue becomes empty.  While draining is in progress,
4092  * only chain queueing is allowed.  IOW, only currently pending or running
4093  * work items on @wq can queue further work items on it.  @wq is flushed
4094  * repeatedly until it becomes empty.  The number of flushing is determined
4095  * by the depth of chaining and should be relatively short.  Whine if it
4096  * takes too long.
4097  */
drain_workqueue(struct workqueue_struct * wq)4098 void drain_workqueue(struct workqueue_struct *wq)
4099 {
4100 	unsigned int flush_cnt = 0;
4101 	struct pool_workqueue *pwq;
4102 
4103 	/*
4104 	 * __queue_work() needs to test whether there are drainers, is much
4105 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4106 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4107 	 */
4108 	mutex_lock(&wq->mutex);
4109 	if (!wq->nr_drainers++)
4110 		wq->flags |= __WQ_DRAINING;
4111 	mutex_unlock(&wq->mutex);
4112 reflush:
4113 	__flush_workqueue(wq);
4114 
4115 	mutex_lock(&wq->mutex);
4116 
4117 	for_each_pwq(pwq, wq) {
4118 		bool drained;
4119 
4120 		raw_spin_lock_irq(&pwq->pool->lock);
4121 		drained = pwq_is_empty(pwq);
4122 		raw_spin_unlock_irq(&pwq->pool->lock);
4123 
4124 		if (drained)
4125 			continue;
4126 
4127 		if (++flush_cnt == 10 ||
4128 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4129 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4130 				wq->name, __func__, flush_cnt);
4131 
4132 		mutex_unlock(&wq->mutex);
4133 		goto reflush;
4134 	}
4135 
4136 	if (!--wq->nr_drainers)
4137 		wq->flags &= ~__WQ_DRAINING;
4138 	mutex_unlock(&wq->mutex);
4139 }
4140 EXPORT_SYMBOL_GPL(drain_workqueue);
4141 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4142 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4143 			     bool from_cancel)
4144 {
4145 	struct worker *worker = NULL;
4146 	struct worker_pool *pool;
4147 	struct pool_workqueue *pwq;
4148 	struct workqueue_struct *wq;
4149 
4150 	rcu_read_lock();
4151 	pool = get_work_pool(work);
4152 	if (!pool) {
4153 		rcu_read_unlock();
4154 		return false;
4155 	}
4156 
4157 	raw_spin_lock_irq(&pool->lock);
4158 	/* see the comment in try_to_grab_pending() with the same code */
4159 	pwq = get_work_pwq(work);
4160 	if (pwq) {
4161 		if (unlikely(pwq->pool != pool))
4162 			goto already_gone;
4163 	} else {
4164 		worker = find_worker_executing_work(pool, work);
4165 		if (!worker)
4166 			goto already_gone;
4167 		pwq = worker->current_pwq;
4168 	}
4169 
4170 	wq = pwq->wq;
4171 	check_flush_dependency(wq, work, from_cancel);
4172 
4173 	insert_wq_barrier(pwq, barr, work, worker);
4174 	raw_spin_unlock_irq(&pool->lock);
4175 
4176 	touch_work_lockdep_map(work, wq);
4177 
4178 	/*
4179 	 * Force a lock recursion deadlock when using flush_work() inside a
4180 	 * single-threaded or rescuer equipped workqueue.
4181 	 *
4182 	 * For single threaded workqueues the deadlock happens when the work
4183 	 * is after the work issuing the flush_work(). For rescuer equipped
4184 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4185 	 * forward progress.
4186 	 */
4187 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4188 		touch_wq_lockdep_map(wq);
4189 
4190 	rcu_read_unlock();
4191 	return true;
4192 already_gone:
4193 	raw_spin_unlock_irq(&pool->lock);
4194 	rcu_read_unlock();
4195 	return false;
4196 }
4197 
__flush_work(struct work_struct * work,bool from_cancel)4198 static bool __flush_work(struct work_struct *work, bool from_cancel)
4199 {
4200 	struct wq_barrier barr;
4201 
4202 	if (WARN_ON(!wq_online))
4203 		return false;
4204 
4205 	if (WARN_ON(!work->func))
4206 		return false;
4207 
4208 	if (!start_flush_work(work, &barr, from_cancel))
4209 		return false;
4210 
4211 	/*
4212 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4213 	 * that @work must have been executing during start_flush_work() and
4214 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4215 	 * was queued on a BH workqueue, we also know that it was running in the
4216 	 * BH context and thus can be busy-waited.
4217 	 */
4218 	if (from_cancel) {
4219 		unsigned long data = *work_data_bits(work);
4220 
4221 		if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4222 		    (data & WORK_OFFQ_BH)) {
4223 			/*
4224 			 * On RT, prevent a live lock when %current preempted
4225 			 * soft interrupt processing or prevents ksoftirqd from
4226 			 * running by keeping flipping BH. If the BH work item
4227 			 * runs on a different CPU then this has no effect other
4228 			 * than doing the BH disable/enable dance for nothing.
4229 			 * This is copied from
4230 			 * kernel/softirq.c::tasklet_unlock_spin_wait().
4231 			 */
4232 			while (!try_wait_for_completion(&barr.done)) {
4233 				if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4234 					local_bh_disable();
4235 					local_bh_enable();
4236 				} else {
4237 					cpu_relax();
4238 				}
4239 			}
4240 			goto out_destroy;
4241 		}
4242 	}
4243 
4244 	wait_for_completion(&barr.done);
4245 
4246 out_destroy:
4247 	destroy_work_on_stack(&barr.work);
4248 	return true;
4249 }
4250 
4251 /**
4252  * flush_work - wait for a work to finish executing the last queueing instance
4253  * @work: the work to flush
4254  *
4255  * Wait until @work has finished execution.  @work is guaranteed to be idle
4256  * on return if it hasn't been requeued since flush started.
4257  *
4258  * Return:
4259  * %true if flush_work() waited for the work to finish execution,
4260  * %false if it was already idle.
4261  */
flush_work(struct work_struct * work)4262 bool flush_work(struct work_struct *work)
4263 {
4264 	might_sleep();
4265 	return __flush_work(work, false);
4266 }
4267 EXPORT_SYMBOL_GPL(flush_work);
4268 
4269 /**
4270  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4271  * @dwork: the delayed work to flush
4272  *
4273  * Delayed timer is cancelled and the pending work is queued for
4274  * immediate execution.  Like flush_work(), this function only
4275  * considers the last queueing instance of @dwork.
4276  *
4277  * Return:
4278  * %true if flush_work() waited for the work to finish execution,
4279  * %false if it was already idle.
4280  */
flush_delayed_work(struct delayed_work * dwork)4281 bool flush_delayed_work(struct delayed_work *dwork)
4282 {
4283 	local_irq_disable();
4284 	if (timer_delete_sync(&dwork->timer))
4285 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4286 	local_irq_enable();
4287 	return flush_work(&dwork->work);
4288 }
4289 EXPORT_SYMBOL(flush_delayed_work);
4290 
4291 /**
4292  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4293  * @rwork: the rcu work to flush
4294  *
4295  * Return:
4296  * %true if flush_rcu_work() waited for the work to finish execution,
4297  * %false if it was already idle.
4298  */
flush_rcu_work(struct rcu_work * rwork)4299 bool flush_rcu_work(struct rcu_work *rwork)
4300 {
4301 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4302 		rcu_barrier();
4303 		flush_work(&rwork->work);
4304 		return true;
4305 	} else {
4306 		return flush_work(&rwork->work);
4307 	}
4308 }
4309 EXPORT_SYMBOL(flush_rcu_work);
4310 
work_offqd_disable(struct work_offq_data * offqd)4311 static void work_offqd_disable(struct work_offq_data *offqd)
4312 {
4313 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4314 
4315 	if (likely(offqd->disable < max))
4316 		offqd->disable++;
4317 	else
4318 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4319 }
4320 
work_offqd_enable(struct work_offq_data * offqd)4321 static void work_offqd_enable(struct work_offq_data *offqd)
4322 {
4323 	if (likely(offqd->disable > 0))
4324 		offqd->disable--;
4325 	else
4326 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4327 }
4328 
__cancel_work(struct work_struct * work,u32 cflags)4329 static bool __cancel_work(struct work_struct *work, u32 cflags)
4330 {
4331 	struct work_offq_data offqd;
4332 	unsigned long irq_flags;
4333 	int ret;
4334 
4335 	ret = work_grab_pending(work, cflags, &irq_flags);
4336 
4337 	work_offqd_unpack(&offqd, *work_data_bits(work));
4338 
4339 	if (cflags & WORK_CANCEL_DISABLE)
4340 		work_offqd_disable(&offqd);
4341 
4342 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4343 					work_offqd_pack_flags(&offqd));
4344 	local_irq_restore(irq_flags);
4345 	return ret;
4346 }
4347 
__cancel_work_sync(struct work_struct * work,u32 cflags)4348 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4349 {
4350 	bool ret;
4351 
4352 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4353 
4354 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4355 		WARN_ON_ONCE(in_hardirq());
4356 	else
4357 		might_sleep();
4358 
4359 	/*
4360 	 * Skip __flush_work() during early boot when we know that @work isn't
4361 	 * executing. This allows canceling during early boot.
4362 	 */
4363 	if (wq_online)
4364 		__flush_work(work, true);
4365 
4366 	if (!(cflags & WORK_CANCEL_DISABLE))
4367 		enable_work(work);
4368 
4369 	return ret;
4370 }
4371 
4372 /*
4373  * See cancel_delayed_work()
4374  */
cancel_work(struct work_struct * work)4375 bool cancel_work(struct work_struct *work)
4376 {
4377 	return __cancel_work(work, 0);
4378 }
4379 EXPORT_SYMBOL(cancel_work);
4380 
4381 /**
4382  * cancel_work_sync - cancel a work and wait for it to finish
4383  * @work: the work to cancel
4384  *
4385  * Cancel @work and wait for its execution to finish. This function can be used
4386  * even if the work re-queues itself or migrates to another workqueue. On return
4387  * from this function, @work is guaranteed to be not pending or executing on any
4388  * CPU as long as there aren't racing enqueues.
4389  *
4390  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4391  * Use cancel_delayed_work_sync() instead.
4392  *
4393  * Must be called from a sleepable context if @work was last queued on a non-BH
4394  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4395  * if @work was last queued on a BH workqueue.
4396  *
4397  * Returns %true if @work was pending, %false otherwise.
4398  */
cancel_work_sync(struct work_struct * work)4399 bool cancel_work_sync(struct work_struct *work)
4400 {
4401 	return __cancel_work_sync(work, 0);
4402 }
4403 EXPORT_SYMBOL_GPL(cancel_work_sync);
4404 
4405 /**
4406  * cancel_delayed_work - cancel a delayed work
4407  * @dwork: delayed_work to cancel
4408  *
4409  * Kill off a pending delayed_work.
4410  *
4411  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4412  * pending.
4413  *
4414  * Note:
4415  * The work callback function may still be running on return, unless
4416  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4417  * use cancel_delayed_work_sync() to wait on it.
4418  *
4419  * This function is safe to call from any context including IRQ handler.
4420  */
cancel_delayed_work(struct delayed_work * dwork)4421 bool cancel_delayed_work(struct delayed_work *dwork)
4422 {
4423 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4424 }
4425 EXPORT_SYMBOL(cancel_delayed_work);
4426 
4427 /**
4428  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4429  * @dwork: the delayed work cancel
4430  *
4431  * This is cancel_work_sync() for delayed works.
4432  *
4433  * Return:
4434  * %true if @dwork was pending, %false otherwise.
4435  */
cancel_delayed_work_sync(struct delayed_work * dwork)4436 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4437 {
4438 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4439 }
4440 EXPORT_SYMBOL(cancel_delayed_work_sync);
4441 
4442 /**
4443  * disable_work - Disable and cancel a work item
4444  * @work: work item to disable
4445  *
4446  * Disable @work by incrementing its disable count and cancel it if currently
4447  * pending. As long as the disable count is non-zero, any attempt to queue @work
4448  * will fail and return %false. The maximum supported disable depth is 2 to the
4449  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4450  *
4451  * Can be called from any context. Returns %true if @work was pending, %false
4452  * otherwise.
4453  */
disable_work(struct work_struct * work)4454 bool disable_work(struct work_struct *work)
4455 {
4456 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4457 }
4458 EXPORT_SYMBOL_GPL(disable_work);
4459 
4460 /**
4461  * disable_work_sync - Disable, cancel and drain a work item
4462  * @work: work item to disable
4463  *
4464  * Similar to disable_work() but also wait for @work to finish if currently
4465  * executing.
4466  *
4467  * Must be called from a sleepable context if @work was last queued on a non-BH
4468  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4469  * if @work was last queued on a BH workqueue.
4470  *
4471  * Returns %true if @work was pending, %false otherwise.
4472  */
disable_work_sync(struct work_struct * work)4473 bool disable_work_sync(struct work_struct *work)
4474 {
4475 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4476 }
4477 EXPORT_SYMBOL_GPL(disable_work_sync);
4478 
4479 /**
4480  * enable_work - Enable a work item
4481  * @work: work item to enable
4482  *
4483  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4484  * only be queued if its disable count is 0.
4485  *
4486  * Can be called from any context. Returns %true if the disable count reached 0.
4487  * Otherwise, %false.
4488  */
enable_work(struct work_struct * work)4489 bool enable_work(struct work_struct *work)
4490 {
4491 	struct work_offq_data offqd;
4492 	unsigned long irq_flags;
4493 
4494 	work_grab_pending(work, 0, &irq_flags);
4495 
4496 	work_offqd_unpack(&offqd, *work_data_bits(work));
4497 	work_offqd_enable(&offqd);
4498 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4499 					work_offqd_pack_flags(&offqd));
4500 	local_irq_restore(irq_flags);
4501 
4502 	return !offqd.disable;
4503 }
4504 EXPORT_SYMBOL_GPL(enable_work);
4505 
4506 /**
4507  * disable_delayed_work - Disable and cancel a delayed work item
4508  * @dwork: delayed work item to disable
4509  *
4510  * disable_work() for delayed work items.
4511  */
disable_delayed_work(struct delayed_work * dwork)4512 bool disable_delayed_work(struct delayed_work *dwork)
4513 {
4514 	return __cancel_work(&dwork->work,
4515 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4516 }
4517 EXPORT_SYMBOL_GPL(disable_delayed_work);
4518 
4519 /**
4520  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4521  * @dwork: delayed work item to disable
4522  *
4523  * disable_work_sync() for delayed work items.
4524  */
disable_delayed_work_sync(struct delayed_work * dwork)4525 bool disable_delayed_work_sync(struct delayed_work *dwork)
4526 {
4527 	return __cancel_work_sync(&dwork->work,
4528 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4529 }
4530 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4531 
4532 /**
4533  * enable_delayed_work - Enable a delayed work item
4534  * @dwork: delayed work item to enable
4535  *
4536  * enable_work() for delayed work items.
4537  */
enable_delayed_work(struct delayed_work * dwork)4538 bool enable_delayed_work(struct delayed_work *dwork)
4539 {
4540 	return enable_work(&dwork->work);
4541 }
4542 EXPORT_SYMBOL_GPL(enable_delayed_work);
4543 
4544 /**
4545  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4546  * @func: the function to call
4547  *
4548  * schedule_on_each_cpu() executes @func on each online CPU using the
4549  * system workqueue and blocks until all CPUs have completed.
4550  * schedule_on_each_cpu() is very slow.
4551  *
4552  * Return:
4553  * 0 on success, -errno on failure.
4554  */
schedule_on_each_cpu(work_func_t func)4555 int schedule_on_each_cpu(work_func_t func)
4556 {
4557 	int cpu;
4558 	struct work_struct __percpu *works;
4559 
4560 	works = alloc_percpu(struct work_struct);
4561 	if (!works)
4562 		return -ENOMEM;
4563 
4564 	cpus_read_lock();
4565 
4566 	for_each_online_cpu(cpu) {
4567 		struct work_struct *work = per_cpu_ptr(works, cpu);
4568 
4569 		INIT_WORK(work, func);
4570 		schedule_work_on(cpu, work);
4571 	}
4572 
4573 	for_each_online_cpu(cpu)
4574 		flush_work(per_cpu_ptr(works, cpu));
4575 
4576 	cpus_read_unlock();
4577 	free_percpu(works);
4578 	return 0;
4579 }
4580 
4581 /**
4582  * execute_in_process_context - reliably execute the routine with user context
4583  * @fn:		the function to execute
4584  * @ew:		guaranteed storage for the execute work structure (must
4585  *		be available when the work executes)
4586  *
4587  * Executes the function immediately if process context is available,
4588  * otherwise schedules the function for delayed execution.
4589  *
4590  * Return:	0 - function was executed
4591  *		1 - function was scheduled for execution
4592  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4593 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4594 {
4595 	if (!in_interrupt()) {
4596 		fn(&ew->work);
4597 		return 0;
4598 	}
4599 
4600 	INIT_WORK(&ew->work, fn);
4601 	schedule_work(&ew->work);
4602 
4603 	return 1;
4604 }
4605 EXPORT_SYMBOL_GPL(execute_in_process_context);
4606 
4607 /**
4608  * free_workqueue_attrs - free a workqueue_attrs
4609  * @attrs: workqueue_attrs to free
4610  *
4611  * Undo alloc_workqueue_attrs().
4612  */
free_workqueue_attrs(struct workqueue_attrs * attrs)4613 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4614 {
4615 	if (attrs) {
4616 		free_cpumask_var(attrs->cpumask);
4617 		free_cpumask_var(attrs->__pod_cpumask);
4618 		kfree(attrs);
4619 	}
4620 }
4621 
4622 /**
4623  * alloc_workqueue_attrs - allocate a workqueue_attrs
4624  *
4625  * Allocate a new workqueue_attrs, initialize with default settings and
4626  * return it.
4627  *
4628  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4629  */
alloc_workqueue_attrs_noprof(void)4630 struct workqueue_attrs *alloc_workqueue_attrs_noprof(void)
4631 {
4632 	struct workqueue_attrs *attrs;
4633 
4634 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4635 	if (!attrs)
4636 		goto fail;
4637 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4638 		goto fail;
4639 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4640 		goto fail;
4641 
4642 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4643 	attrs->affn_scope = WQ_AFFN_DFL;
4644 	return attrs;
4645 fail:
4646 	free_workqueue_attrs(attrs);
4647 	return NULL;
4648 }
4649 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4650 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4651 				 const struct workqueue_attrs *from)
4652 {
4653 	to->nice = from->nice;
4654 	cpumask_copy(to->cpumask, from->cpumask);
4655 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4656 	to->affn_strict = from->affn_strict;
4657 
4658 	/*
4659 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4660 	 * fields as copying is used for both pool and wq attrs. Instead,
4661 	 * get_unbound_pool() explicitly clears the fields.
4662 	 */
4663 	to->affn_scope = from->affn_scope;
4664 	to->ordered = from->ordered;
4665 }
4666 
4667 /*
4668  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4669  * comments in 'struct workqueue_attrs' definition.
4670  */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4671 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4672 {
4673 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4674 	attrs->ordered = false;
4675 	if (attrs->affn_strict)
4676 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4677 }
4678 
4679 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4680 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4681 {
4682 	u32 hash = 0;
4683 
4684 	hash = jhash_1word(attrs->nice, hash);
4685 	hash = jhash_1word(attrs->affn_strict, hash);
4686 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4687 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4688 	if (!attrs->affn_strict)
4689 		hash = jhash(cpumask_bits(attrs->cpumask),
4690 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4691 	return hash;
4692 }
4693 
4694 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4695 static bool wqattrs_equal(const struct workqueue_attrs *a,
4696 			  const struct workqueue_attrs *b)
4697 {
4698 	if (a->nice != b->nice)
4699 		return false;
4700 	if (a->affn_strict != b->affn_strict)
4701 		return false;
4702 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4703 		return false;
4704 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4705 		return false;
4706 	return true;
4707 }
4708 
4709 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4710 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4711 				      const cpumask_t *unbound_cpumask)
4712 {
4713 	/*
4714 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4715 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4716 	 * @unbound_cpumask.
4717 	 */
4718 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4719 	if (unlikely(cpumask_empty(attrs->cpumask)))
4720 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4721 }
4722 
4723 /* find wq_pod_type to use for @attrs */
4724 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4725 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4726 {
4727 	enum wq_affn_scope scope;
4728 	struct wq_pod_type *pt;
4729 
4730 	/* to synchronize access to wq_affn_dfl */
4731 	lockdep_assert_held(&wq_pool_mutex);
4732 
4733 	if (attrs->affn_scope == WQ_AFFN_DFL)
4734 		scope = wq_affn_dfl;
4735 	else
4736 		scope = attrs->affn_scope;
4737 
4738 	pt = &wq_pod_types[scope];
4739 
4740 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4741 	    likely(pt->nr_pods))
4742 		return pt;
4743 
4744 	/*
4745 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4746 	 * initialized in workqueue_init_early().
4747 	 */
4748 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4749 	BUG_ON(!pt->nr_pods);
4750 	return pt;
4751 }
4752 
4753 /**
4754  * init_worker_pool - initialize a newly zalloc'd worker_pool
4755  * @pool: worker_pool to initialize
4756  *
4757  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4758  *
4759  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4760  * inside @pool proper are initialized and put_unbound_pool() can be called
4761  * on @pool safely to release it.
4762  */
init_worker_pool(struct worker_pool * pool)4763 static int init_worker_pool(struct worker_pool *pool)
4764 {
4765 	raw_spin_lock_init(&pool->lock);
4766 	pool->id = -1;
4767 	pool->cpu = -1;
4768 	pool->node = NUMA_NO_NODE;
4769 	pool->flags |= POOL_DISASSOCIATED;
4770 	pool->watchdog_ts = jiffies;
4771 	INIT_LIST_HEAD(&pool->worklist);
4772 	INIT_LIST_HEAD(&pool->idle_list);
4773 	hash_init(pool->busy_hash);
4774 
4775 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4776 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4777 
4778 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4779 
4780 	INIT_LIST_HEAD(&pool->workers);
4781 
4782 	ida_init(&pool->worker_ida);
4783 	INIT_HLIST_NODE(&pool->hash_node);
4784 	pool->refcnt = 1;
4785 
4786 	/* shouldn't fail above this point */
4787 	pool->attrs = alloc_workqueue_attrs();
4788 	if (!pool->attrs)
4789 		return -ENOMEM;
4790 
4791 	wqattrs_clear_for_pool(pool->attrs);
4792 
4793 	return 0;
4794 }
4795 
4796 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4797 static void wq_init_lockdep(struct workqueue_struct *wq)
4798 {
4799 	char *lock_name;
4800 
4801 	lockdep_register_key(&wq->key);
4802 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4803 	if (!lock_name)
4804 		lock_name = wq->name;
4805 
4806 	wq->lock_name = lock_name;
4807 	wq->lockdep_map = &wq->__lockdep_map;
4808 	lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4809 }
4810 
wq_unregister_lockdep(struct workqueue_struct * wq)4811 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4812 {
4813 	if (wq->lockdep_map != &wq->__lockdep_map)
4814 		return;
4815 
4816 	lockdep_unregister_key(&wq->key);
4817 }
4818 
wq_free_lockdep(struct workqueue_struct * wq)4819 static void wq_free_lockdep(struct workqueue_struct *wq)
4820 {
4821 	if (wq->lockdep_map != &wq->__lockdep_map)
4822 		return;
4823 
4824 	if (wq->lock_name != wq->name)
4825 		kfree(wq->lock_name);
4826 }
4827 #else
wq_init_lockdep(struct workqueue_struct * wq)4828 static void wq_init_lockdep(struct workqueue_struct *wq)
4829 {
4830 }
4831 
wq_unregister_lockdep(struct workqueue_struct * wq)4832 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4833 {
4834 }
4835 
wq_free_lockdep(struct workqueue_struct * wq)4836 static void wq_free_lockdep(struct workqueue_struct *wq)
4837 {
4838 }
4839 #endif
4840 
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4841 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4842 {
4843 	int node;
4844 
4845 	for_each_node(node) {
4846 		kfree(nna_ar[node]);
4847 		nna_ar[node] = NULL;
4848 	}
4849 
4850 	kfree(nna_ar[nr_node_ids]);
4851 	nna_ar[nr_node_ids] = NULL;
4852 }
4853 
init_node_nr_active(struct wq_node_nr_active * nna)4854 static void init_node_nr_active(struct wq_node_nr_active *nna)
4855 {
4856 	nna->max = WQ_DFL_MIN_ACTIVE;
4857 	atomic_set(&nna->nr, 0);
4858 	raw_spin_lock_init(&nna->lock);
4859 	INIT_LIST_HEAD(&nna->pending_pwqs);
4860 }
4861 
4862 /*
4863  * Each node's nr_active counter will be accessed mostly from its own node and
4864  * should be allocated in the node.
4865  */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4866 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4867 {
4868 	struct wq_node_nr_active *nna;
4869 	int node;
4870 
4871 	for_each_node(node) {
4872 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4873 		if (!nna)
4874 			goto err_free;
4875 		init_node_nr_active(nna);
4876 		nna_ar[node] = nna;
4877 	}
4878 
4879 	/* [nr_node_ids] is used as the fallback */
4880 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4881 	if (!nna)
4882 		goto err_free;
4883 	init_node_nr_active(nna);
4884 	nna_ar[nr_node_ids] = nna;
4885 
4886 	return 0;
4887 
4888 err_free:
4889 	free_node_nr_active(nna_ar);
4890 	return -ENOMEM;
4891 }
4892 
rcu_free_wq(struct rcu_head * rcu)4893 static void rcu_free_wq(struct rcu_head *rcu)
4894 {
4895 	struct workqueue_struct *wq =
4896 		container_of(rcu, struct workqueue_struct, rcu);
4897 
4898 	if (wq->flags & WQ_UNBOUND)
4899 		free_node_nr_active(wq->node_nr_active);
4900 
4901 	wq_free_lockdep(wq);
4902 	free_percpu(wq->cpu_pwq);
4903 	free_workqueue_attrs(wq->unbound_attrs);
4904 	kfree(wq);
4905 }
4906 
rcu_free_pool(struct rcu_head * rcu)4907 static void rcu_free_pool(struct rcu_head *rcu)
4908 {
4909 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4910 
4911 	ida_destroy(&pool->worker_ida);
4912 	free_workqueue_attrs(pool->attrs);
4913 	kfree(pool);
4914 }
4915 
4916 /**
4917  * put_unbound_pool - put a worker_pool
4918  * @pool: worker_pool to put
4919  *
4920  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4921  * safe manner.  get_unbound_pool() calls this function on its failure path
4922  * and this function should be able to release pools which went through,
4923  * successfully or not, init_worker_pool().
4924  *
4925  * Should be called with wq_pool_mutex held.
4926  */
put_unbound_pool(struct worker_pool * pool)4927 static void put_unbound_pool(struct worker_pool *pool)
4928 {
4929 	struct worker *worker;
4930 	LIST_HEAD(cull_list);
4931 
4932 	lockdep_assert_held(&wq_pool_mutex);
4933 
4934 	if (--pool->refcnt)
4935 		return;
4936 
4937 	/* sanity checks */
4938 	if (WARN_ON(!(pool->cpu < 0)) ||
4939 	    WARN_ON(!list_empty(&pool->worklist)))
4940 		return;
4941 
4942 	/* release id and unhash */
4943 	if (pool->id >= 0)
4944 		idr_remove(&worker_pool_idr, pool->id);
4945 	hash_del(&pool->hash_node);
4946 
4947 	/*
4948 	 * Become the manager and destroy all workers.  This prevents
4949 	 * @pool's workers from blocking on attach_mutex.  We're the last
4950 	 * manager and @pool gets freed with the flag set.
4951 	 *
4952 	 * Having a concurrent manager is quite unlikely to happen as we can
4953 	 * only get here with
4954 	 *   pwq->refcnt == pool->refcnt == 0
4955 	 * which implies no work queued to the pool, which implies no worker can
4956 	 * become the manager. However a worker could have taken the role of
4957 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4958 	 * drops pool->lock
4959 	 */
4960 	while (true) {
4961 		rcuwait_wait_event(&manager_wait,
4962 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4963 				   TASK_UNINTERRUPTIBLE);
4964 
4965 		mutex_lock(&wq_pool_attach_mutex);
4966 		raw_spin_lock_irq(&pool->lock);
4967 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4968 			pool->flags |= POOL_MANAGER_ACTIVE;
4969 			break;
4970 		}
4971 		raw_spin_unlock_irq(&pool->lock);
4972 		mutex_unlock(&wq_pool_attach_mutex);
4973 	}
4974 
4975 	while ((worker = first_idle_worker(pool)))
4976 		set_worker_dying(worker, &cull_list);
4977 	WARN_ON(pool->nr_workers || pool->nr_idle);
4978 	raw_spin_unlock_irq(&pool->lock);
4979 
4980 	detach_dying_workers(&cull_list);
4981 
4982 	mutex_unlock(&wq_pool_attach_mutex);
4983 
4984 	reap_dying_workers(&cull_list);
4985 
4986 	/* shut down the timers */
4987 	timer_delete_sync(&pool->idle_timer);
4988 	cancel_work_sync(&pool->idle_cull_work);
4989 	timer_delete_sync(&pool->mayday_timer);
4990 
4991 	/* RCU protected to allow dereferences from get_work_pool() */
4992 	call_rcu(&pool->rcu, rcu_free_pool);
4993 }
4994 
4995 /**
4996  * get_unbound_pool - get a worker_pool with the specified attributes
4997  * @attrs: the attributes of the worker_pool to get
4998  *
4999  * Obtain a worker_pool which has the same attributes as @attrs, bump the
5000  * reference count and return it.  If there already is a matching
5001  * worker_pool, it will be used; otherwise, this function attempts to
5002  * create a new one.
5003  *
5004  * Should be called with wq_pool_mutex held.
5005  *
5006  * Return: On success, a worker_pool with the same attributes as @attrs.
5007  * On failure, %NULL.
5008  */
get_unbound_pool(const struct workqueue_attrs * attrs)5009 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5010 {
5011 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5012 	u32 hash = wqattrs_hash(attrs);
5013 	struct worker_pool *pool;
5014 	int pod, node = NUMA_NO_NODE;
5015 
5016 	lockdep_assert_held(&wq_pool_mutex);
5017 
5018 	/* do we already have a matching pool? */
5019 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5020 		if (wqattrs_equal(pool->attrs, attrs)) {
5021 			pool->refcnt++;
5022 			return pool;
5023 		}
5024 	}
5025 
5026 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5027 	for (pod = 0; pod < pt->nr_pods; pod++) {
5028 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5029 			node = pt->pod_node[pod];
5030 			break;
5031 		}
5032 	}
5033 
5034 	/* nope, create a new one */
5035 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5036 	if (!pool || init_worker_pool(pool) < 0)
5037 		goto fail;
5038 
5039 	pool->node = node;
5040 	copy_workqueue_attrs(pool->attrs, attrs);
5041 	wqattrs_clear_for_pool(pool->attrs);
5042 
5043 	if (worker_pool_assign_id(pool) < 0)
5044 		goto fail;
5045 
5046 	/* create and start the initial worker */
5047 	if (wq_online && !create_worker(pool))
5048 		goto fail;
5049 
5050 	/* install */
5051 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5052 
5053 	return pool;
5054 fail:
5055 	if (pool)
5056 		put_unbound_pool(pool);
5057 	return NULL;
5058 }
5059 
5060 /*
5061  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5062  * refcnt and needs to be destroyed.
5063  */
pwq_release_workfn(struct kthread_work * work)5064 static void pwq_release_workfn(struct kthread_work *work)
5065 {
5066 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5067 						  release_work);
5068 	struct workqueue_struct *wq = pwq->wq;
5069 	struct worker_pool *pool = pwq->pool;
5070 	bool is_last = false;
5071 
5072 	/*
5073 	 * When @pwq is not linked, it doesn't hold any reference to the
5074 	 * @wq, and @wq is invalid to access.
5075 	 */
5076 	if (!list_empty(&pwq->pwqs_node)) {
5077 		mutex_lock(&wq->mutex);
5078 		list_del_rcu(&pwq->pwqs_node);
5079 		is_last = list_empty(&wq->pwqs);
5080 
5081 		/*
5082 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5083 		 */
5084 		if (!is_last && (wq->flags & __WQ_ORDERED))
5085 			unplug_oldest_pwq(wq);
5086 
5087 		mutex_unlock(&wq->mutex);
5088 	}
5089 
5090 	if (wq->flags & WQ_UNBOUND) {
5091 		mutex_lock(&wq_pool_mutex);
5092 		put_unbound_pool(pool);
5093 		mutex_unlock(&wq_pool_mutex);
5094 	}
5095 
5096 	if (!list_empty(&pwq->pending_node)) {
5097 		struct wq_node_nr_active *nna =
5098 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5099 
5100 		raw_spin_lock_irq(&nna->lock);
5101 		list_del_init(&pwq->pending_node);
5102 		raw_spin_unlock_irq(&nna->lock);
5103 	}
5104 
5105 	kfree_rcu(pwq, rcu);
5106 
5107 	/*
5108 	 * If we're the last pwq going away, @wq is already dead and no one
5109 	 * is gonna access it anymore.  Schedule RCU free.
5110 	 */
5111 	if (is_last) {
5112 		wq_unregister_lockdep(wq);
5113 		call_rcu(&wq->rcu, rcu_free_wq);
5114 	}
5115 }
5116 
5117 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5118 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5119 		     struct worker_pool *pool)
5120 {
5121 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5122 
5123 	memset(pwq, 0, sizeof(*pwq));
5124 
5125 	pwq->pool = pool;
5126 	pwq->wq = wq;
5127 	pwq->flush_color = -1;
5128 	pwq->refcnt = 1;
5129 	INIT_LIST_HEAD(&pwq->inactive_works);
5130 	INIT_LIST_HEAD(&pwq->pending_node);
5131 	INIT_LIST_HEAD(&pwq->pwqs_node);
5132 	INIT_LIST_HEAD(&pwq->mayday_node);
5133 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5134 }
5135 
5136 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5137 static void link_pwq(struct pool_workqueue *pwq)
5138 {
5139 	struct workqueue_struct *wq = pwq->wq;
5140 
5141 	lockdep_assert_held(&wq->mutex);
5142 
5143 	/* may be called multiple times, ignore if already linked */
5144 	if (!list_empty(&pwq->pwqs_node))
5145 		return;
5146 
5147 	/* set the matching work_color */
5148 	pwq->work_color = wq->work_color;
5149 
5150 	/* link in @pwq */
5151 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5152 }
5153 
5154 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5155 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5156 					const struct workqueue_attrs *attrs)
5157 {
5158 	struct worker_pool *pool;
5159 	struct pool_workqueue *pwq;
5160 
5161 	lockdep_assert_held(&wq_pool_mutex);
5162 
5163 	pool = get_unbound_pool(attrs);
5164 	if (!pool)
5165 		return NULL;
5166 
5167 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5168 	if (!pwq) {
5169 		put_unbound_pool(pool);
5170 		return NULL;
5171 	}
5172 
5173 	init_pwq(pwq, wq, pool);
5174 	return pwq;
5175 }
5176 
apply_wqattrs_lock(void)5177 static void apply_wqattrs_lock(void)
5178 {
5179 	mutex_lock(&wq_pool_mutex);
5180 }
5181 
apply_wqattrs_unlock(void)5182 static void apply_wqattrs_unlock(void)
5183 {
5184 	mutex_unlock(&wq_pool_mutex);
5185 }
5186 
5187 /**
5188  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5189  * @attrs: the wq_attrs of the default pwq of the target workqueue
5190  * @cpu: the target CPU
5191  *
5192  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5193  * The result is stored in @attrs->__pod_cpumask.
5194  *
5195  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5196  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5197  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5198  *
5199  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5200  */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5201 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5202 {
5203 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5204 	int pod = pt->cpu_pod[cpu];
5205 
5206 	/* calculate possible CPUs in @pod that @attrs wants */
5207 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5208 	/* does @pod have any online CPUs @attrs wants? */
5209 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5210 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5211 		return;
5212 	}
5213 }
5214 
5215 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5216 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5217 					int cpu, struct pool_workqueue *pwq)
5218 {
5219 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5220 	struct pool_workqueue *old_pwq;
5221 
5222 	lockdep_assert_held(&wq_pool_mutex);
5223 	lockdep_assert_held(&wq->mutex);
5224 
5225 	/* link_pwq() can handle duplicate calls */
5226 	link_pwq(pwq);
5227 
5228 	old_pwq = rcu_access_pointer(*slot);
5229 	rcu_assign_pointer(*slot, pwq);
5230 	return old_pwq;
5231 }
5232 
5233 /* context to store the prepared attrs & pwqs before applying */
5234 struct apply_wqattrs_ctx {
5235 	struct workqueue_struct	*wq;		/* target workqueue */
5236 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5237 	struct list_head	list;		/* queued for batching commit */
5238 	struct pool_workqueue	*dfl_pwq;
5239 	struct pool_workqueue	*pwq_tbl[];
5240 };
5241 
5242 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5243 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5244 {
5245 	if (ctx) {
5246 		int cpu;
5247 
5248 		for_each_possible_cpu(cpu)
5249 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5250 		put_pwq_unlocked(ctx->dfl_pwq);
5251 
5252 		free_workqueue_attrs(ctx->attrs);
5253 
5254 		kfree(ctx);
5255 	}
5256 }
5257 
5258 /* allocate the attrs and pwqs for later installation */
5259 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5260 apply_wqattrs_prepare(struct workqueue_struct *wq,
5261 		      const struct workqueue_attrs *attrs,
5262 		      const cpumask_var_t unbound_cpumask)
5263 {
5264 	struct apply_wqattrs_ctx *ctx;
5265 	struct workqueue_attrs *new_attrs;
5266 	int cpu;
5267 
5268 	lockdep_assert_held(&wq_pool_mutex);
5269 
5270 	if (WARN_ON(attrs->affn_scope < 0 ||
5271 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5272 		return ERR_PTR(-EINVAL);
5273 
5274 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5275 
5276 	new_attrs = alloc_workqueue_attrs();
5277 	if (!ctx || !new_attrs)
5278 		goto out_free;
5279 
5280 	/*
5281 	 * If something goes wrong during CPU up/down, we'll fall back to
5282 	 * the default pwq covering whole @attrs->cpumask.  Always create
5283 	 * it even if we don't use it immediately.
5284 	 */
5285 	copy_workqueue_attrs(new_attrs, attrs);
5286 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5287 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5288 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5289 	if (!ctx->dfl_pwq)
5290 		goto out_free;
5291 
5292 	for_each_possible_cpu(cpu) {
5293 		if (new_attrs->ordered) {
5294 			ctx->dfl_pwq->refcnt++;
5295 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5296 		} else {
5297 			wq_calc_pod_cpumask(new_attrs, cpu);
5298 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5299 			if (!ctx->pwq_tbl[cpu])
5300 				goto out_free;
5301 		}
5302 	}
5303 
5304 	/* save the user configured attrs and sanitize it. */
5305 	copy_workqueue_attrs(new_attrs, attrs);
5306 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5307 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5308 	ctx->attrs = new_attrs;
5309 
5310 	/*
5311 	 * For initialized ordered workqueues, there should only be one pwq
5312 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5313 	 * of newly queued work items until execution of older work items in
5314 	 * the old pwq's have completed.
5315 	 */
5316 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5317 		ctx->dfl_pwq->plugged = true;
5318 
5319 	ctx->wq = wq;
5320 	return ctx;
5321 
5322 out_free:
5323 	free_workqueue_attrs(new_attrs);
5324 	apply_wqattrs_cleanup(ctx);
5325 	return ERR_PTR(-ENOMEM);
5326 }
5327 
5328 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5329 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5330 {
5331 	int cpu;
5332 
5333 	/* all pwqs have been created successfully, let's install'em */
5334 	mutex_lock(&ctx->wq->mutex);
5335 
5336 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5337 
5338 	/* save the previous pwqs and install the new ones */
5339 	for_each_possible_cpu(cpu)
5340 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5341 							ctx->pwq_tbl[cpu]);
5342 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5343 
5344 	/* update node_nr_active->max */
5345 	wq_update_node_max_active(ctx->wq, -1);
5346 
5347 	/* rescuer needs to respect wq cpumask changes */
5348 	if (ctx->wq->rescuer)
5349 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5350 				     unbound_effective_cpumask(ctx->wq));
5351 
5352 	mutex_unlock(&ctx->wq->mutex);
5353 }
5354 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5355 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5356 					const struct workqueue_attrs *attrs)
5357 {
5358 	struct apply_wqattrs_ctx *ctx;
5359 
5360 	/* only unbound workqueues can change attributes */
5361 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5362 		return -EINVAL;
5363 
5364 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5365 	if (IS_ERR(ctx))
5366 		return PTR_ERR(ctx);
5367 
5368 	/* the ctx has been prepared successfully, let's commit it */
5369 	apply_wqattrs_commit(ctx);
5370 	apply_wqattrs_cleanup(ctx);
5371 
5372 	return 0;
5373 }
5374 
5375 /**
5376  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5377  * @wq: the target workqueue
5378  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5379  *
5380  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5381  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5382  * work items are affine to the pod it was issued on. Older pwqs are released as
5383  * in-flight work items finish. Note that a work item which repeatedly requeues
5384  * itself back-to-back will stay on its current pwq.
5385  *
5386  * Performs GFP_KERNEL allocations.
5387  *
5388  * Return: 0 on success and -errno on failure.
5389  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5390 int apply_workqueue_attrs(struct workqueue_struct *wq,
5391 			  const struct workqueue_attrs *attrs)
5392 {
5393 	int ret;
5394 
5395 	mutex_lock(&wq_pool_mutex);
5396 	ret = apply_workqueue_attrs_locked(wq, attrs);
5397 	mutex_unlock(&wq_pool_mutex);
5398 
5399 	return ret;
5400 }
5401 
5402 /**
5403  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5404  * @wq: the target workqueue
5405  * @cpu: the CPU to update the pwq slot for
5406  *
5407  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5408  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5409  *
5410  *
5411  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5412  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5413  *
5414  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5415  * with a cpumask spanning multiple pods, the workers which were already
5416  * executing the work items for the workqueue will lose their CPU affinity and
5417  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5418  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5419  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5420  */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5421 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5422 {
5423 	struct pool_workqueue *old_pwq = NULL, *pwq;
5424 	struct workqueue_attrs *target_attrs;
5425 
5426 	lockdep_assert_held(&wq_pool_mutex);
5427 
5428 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5429 		return;
5430 
5431 	/*
5432 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5433 	 * Let's use a preallocated one.  The following buf is protected by
5434 	 * CPU hotplug exclusion.
5435 	 */
5436 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5437 
5438 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5439 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5440 
5441 	/* nothing to do if the target cpumask matches the current pwq */
5442 	wq_calc_pod_cpumask(target_attrs, cpu);
5443 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5444 		return;
5445 
5446 	/* create a new pwq */
5447 	pwq = alloc_unbound_pwq(wq, target_attrs);
5448 	if (!pwq) {
5449 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5450 			wq->name);
5451 		goto use_dfl_pwq;
5452 	}
5453 
5454 	/* Install the new pwq. */
5455 	mutex_lock(&wq->mutex);
5456 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5457 	goto out_unlock;
5458 
5459 use_dfl_pwq:
5460 	mutex_lock(&wq->mutex);
5461 	pwq = unbound_pwq(wq, -1);
5462 	raw_spin_lock_irq(&pwq->pool->lock);
5463 	get_pwq(pwq);
5464 	raw_spin_unlock_irq(&pwq->pool->lock);
5465 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5466 out_unlock:
5467 	mutex_unlock(&wq->mutex);
5468 	put_pwq_unlocked(old_pwq);
5469 }
5470 
alloc_and_link_pwqs(struct workqueue_struct * wq)5471 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5472 {
5473 	bool highpri = wq->flags & WQ_HIGHPRI;
5474 	int cpu, ret;
5475 
5476 	lockdep_assert_held(&wq_pool_mutex);
5477 
5478 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5479 	if (!wq->cpu_pwq)
5480 		goto enomem;
5481 
5482 	if (!(wq->flags & WQ_UNBOUND)) {
5483 		struct worker_pool __percpu *pools;
5484 
5485 		if (wq->flags & WQ_BH)
5486 			pools = bh_worker_pools;
5487 		else
5488 			pools = cpu_worker_pools;
5489 
5490 		for_each_possible_cpu(cpu) {
5491 			struct pool_workqueue **pwq_p;
5492 			struct worker_pool *pool;
5493 
5494 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5495 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5496 
5497 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5498 						       pool->node);
5499 			if (!*pwq_p)
5500 				goto enomem;
5501 
5502 			init_pwq(*pwq_p, wq, pool);
5503 
5504 			mutex_lock(&wq->mutex);
5505 			link_pwq(*pwq_p);
5506 			mutex_unlock(&wq->mutex);
5507 		}
5508 		return 0;
5509 	}
5510 
5511 	if (wq->flags & __WQ_ORDERED) {
5512 		struct pool_workqueue *dfl_pwq;
5513 
5514 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5515 		/* there should only be single pwq for ordering guarantee */
5516 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5517 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5518 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5519 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5520 	} else {
5521 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5522 	}
5523 
5524 	return ret;
5525 
5526 enomem:
5527 	if (wq->cpu_pwq) {
5528 		for_each_possible_cpu(cpu) {
5529 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5530 
5531 			if (pwq)
5532 				kmem_cache_free(pwq_cache, pwq);
5533 		}
5534 		free_percpu(wq->cpu_pwq);
5535 		wq->cpu_pwq = NULL;
5536 	}
5537 	return -ENOMEM;
5538 }
5539 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5540 static int wq_clamp_max_active(int max_active, unsigned int flags,
5541 			       const char *name)
5542 {
5543 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5544 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5545 			max_active, name, 1, WQ_MAX_ACTIVE);
5546 
5547 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5548 }
5549 
5550 /*
5551  * Workqueues which may be used during memory reclaim should have a rescuer
5552  * to guarantee forward progress.
5553  */
init_rescuer(struct workqueue_struct * wq)5554 static int init_rescuer(struct workqueue_struct *wq)
5555 {
5556 	struct worker *rescuer;
5557 	char id_buf[WORKER_ID_LEN];
5558 	int ret;
5559 
5560 	lockdep_assert_held(&wq_pool_mutex);
5561 
5562 	if (!(wq->flags & WQ_MEM_RECLAIM))
5563 		return 0;
5564 
5565 	rescuer = alloc_worker(NUMA_NO_NODE);
5566 	if (!rescuer) {
5567 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5568 		       wq->name);
5569 		return -ENOMEM;
5570 	}
5571 
5572 	rescuer->rescue_wq = wq;
5573 	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5574 
5575 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5576 	if (IS_ERR(rescuer->task)) {
5577 		ret = PTR_ERR(rescuer->task);
5578 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5579 		       wq->name, ERR_PTR(ret));
5580 		kfree(rescuer);
5581 		return ret;
5582 	}
5583 
5584 	wq->rescuer = rescuer;
5585 	if (wq->flags & WQ_UNBOUND)
5586 		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5587 	else
5588 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5589 	wake_up_process(rescuer->task);
5590 
5591 	return 0;
5592 }
5593 
5594 /**
5595  * wq_adjust_max_active - update a wq's max_active to the current setting
5596  * @wq: target workqueue
5597  *
5598  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5599  * activate inactive work items accordingly. If @wq is freezing, clear
5600  * @wq->max_active to zero.
5601  */
wq_adjust_max_active(struct workqueue_struct * wq)5602 static void wq_adjust_max_active(struct workqueue_struct *wq)
5603 {
5604 	bool activated;
5605 	int new_max, new_min;
5606 
5607 	lockdep_assert_held(&wq->mutex);
5608 
5609 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5610 		new_max = 0;
5611 		new_min = 0;
5612 	} else {
5613 		new_max = wq->saved_max_active;
5614 		new_min = wq->saved_min_active;
5615 	}
5616 
5617 	if (wq->max_active == new_max && wq->min_active == new_min)
5618 		return;
5619 
5620 	/*
5621 	 * Update @wq->max/min_active and then kick inactive work items if more
5622 	 * active work items are allowed. This doesn't break work item ordering
5623 	 * because new work items are always queued behind existing inactive
5624 	 * work items if there are any.
5625 	 */
5626 	WRITE_ONCE(wq->max_active, new_max);
5627 	WRITE_ONCE(wq->min_active, new_min);
5628 
5629 	if (wq->flags & WQ_UNBOUND)
5630 		wq_update_node_max_active(wq, -1);
5631 
5632 	if (new_max == 0)
5633 		return;
5634 
5635 	/*
5636 	 * Round-robin through pwq's activating the first inactive work item
5637 	 * until max_active is filled.
5638 	 */
5639 	do {
5640 		struct pool_workqueue *pwq;
5641 
5642 		activated = false;
5643 		for_each_pwq(pwq, wq) {
5644 			unsigned long irq_flags;
5645 
5646 			/* can be called during early boot w/ irq disabled */
5647 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5648 			if (pwq_activate_first_inactive(pwq, true)) {
5649 				activated = true;
5650 				kick_pool(pwq->pool);
5651 			}
5652 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5653 		}
5654 	} while (activated);
5655 }
5656 
5657 __printf(1, 0)
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5658 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5659 						  unsigned int flags,
5660 						  int max_active, va_list args)
5661 {
5662 	struct workqueue_struct *wq;
5663 	size_t wq_size;
5664 	int name_len;
5665 
5666 	if (flags & WQ_BH) {
5667 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5668 			return NULL;
5669 		if (WARN_ON_ONCE(max_active))
5670 			return NULL;
5671 	}
5672 
5673 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5674 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5675 		flags |= WQ_UNBOUND;
5676 
5677 	/* allocate wq and format name */
5678 	if (flags & WQ_UNBOUND)
5679 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5680 	else
5681 		wq_size = sizeof(*wq);
5682 
5683 	wq = kzalloc_noprof(wq_size, GFP_KERNEL);
5684 	if (!wq)
5685 		return NULL;
5686 
5687 	if (flags & WQ_UNBOUND) {
5688 		wq->unbound_attrs = alloc_workqueue_attrs_noprof();
5689 		if (!wq->unbound_attrs)
5690 			goto err_free_wq;
5691 	}
5692 
5693 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5694 
5695 	if (name_len >= WQ_NAME_LEN)
5696 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5697 			     wq->name);
5698 
5699 	if (flags & WQ_BH) {
5700 		/*
5701 		 * BH workqueues always share a single execution context per CPU
5702 		 * and don't impose any max_active limit.
5703 		 */
5704 		max_active = INT_MAX;
5705 	} else {
5706 		max_active = max_active ?: WQ_DFL_ACTIVE;
5707 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5708 	}
5709 
5710 	/* init wq */
5711 	wq->flags = flags;
5712 	wq->max_active = max_active;
5713 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5714 	wq->saved_max_active = wq->max_active;
5715 	wq->saved_min_active = wq->min_active;
5716 	mutex_init(&wq->mutex);
5717 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5718 	INIT_LIST_HEAD(&wq->pwqs);
5719 	INIT_LIST_HEAD(&wq->flusher_queue);
5720 	INIT_LIST_HEAD(&wq->flusher_overflow);
5721 	INIT_LIST_HEAD(&wq->maydays);
5722 
5723 	INIT_LIST_HEAD(&wq->list);
5724 
5725 	if (flags & WQ_UNBOUND) {
5726 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5727 			goto err_free_wq;
5728 	}
5729 
5730 	/*
5731 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5732 	 * and the global freeze state.
5733 	 */
5734 	apply_wqattrs_lock();
5735 
5736 	if (alloc_and_link_pwqs(wq) < 0)
5737 		goto err_unlock_free_node_nr_active;
5738 
5739 	mutex_lock(&wq->mutex);
5740 	wq_adjust_max_active(wq);
5741 	mutex_unlock(&wq->mutex);
5742 
5743 	list_add_tail_rcu(&wq->list, &workqueues);
5744 
5745 	if (wq_online && init_rescuer(wq) < 0)
5746 		goto err_unlock_destroy;
5747 
5748 	apply_wqattrs_unlock();
5749 
5750 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5751 		goto err_destroy;
5752 
5753 	return wq;
5754 
5755 err_unlock_free_node_nr_active:
5756 	apply_wqattrs_unlock();
5757 	/*
5758 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5759 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5760 	 * completes before calling kfree(wq).
5761 	 */
5762 	if (wq->flags & WQ_UNBOUND) {
5763 		kthread_flush_worker(pwq_release_worker);
5764 		free_node_nr_active(wq->node_nr_active);
5765 	}
5766 err_free_wq:
5767 	free_workqueue_attrs(wq->unbound_attrs);
5768 	kfree(wq);
5769 	return NULL;
5770 err_unlock_destroy:
5771 	apply_wqattrs_unlock();
5772 err_destroy:
5773 	destroy_workqueue(wq);
5774 	return NULL;
5775 }
5776 
5777 __printf(1, 4)
alloc_workqueue_noprof(const char * fmt,unsigned int flags,int max_active,...)5778 struct workqueue_struct *alloc_workqueue_noprof(const char *fmt,
5779 						unsigned int flags,
5780 						int max_active, ...)
5781 {
5782 	struct workqueue_struct *wq;
5783 	va_list args;
5784 
5785 	va_start(args, max_active);
5786 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5787 	va_end(args);
5788 	if (!wq)
5789 		return NULL;
5790 
5791 	wq_init_lockdep(wq);
5792 
5793 	return wq;
5794 }
5795 EXPORT_SYMBOL_GPL(alloc_workqueue_noprof);
5796 
5797 #ifdef CONFIG_LOCKDEP
5798 __printf(1, 5)
5799 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5800 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5801 			    int max_active, struct lockdep_map *lockdep_map, ...)
5802 {
5803 	struct workqueue_struct *wq;
5804 	va_list args;
5805 
5806 	va_start(args, lockdep_map);
5807 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5808 	va_end(args);
5809 	if (!wq)
5810 		return NULL;
5811 
5812 	wq->lockdep_map = lockdep_map;
5813 
5814 	return wq;
5815 }
5816 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5817 #endif
5818 
pwq_busy(struct pool_workqueue * pwq)5819 static bool pwq_busy(struct pool_workqueue *pwq)
5820 {
5821 	int i;
5822 
5823 	for (i = 0; i < WORK_NR_COLORS; i++)
5824 		if (pwq->nr_in_flight[i])
5825 			return true;
5826 
5827 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5828 		return true;
5829 	if (!pwq_is_empty(pwq))
5830 		return true;
5831 
5832 	return false;
5833 }
5834 
5835 /**
5836  * destroy_workqueue - safely terminate a workqueue
5837  * @wq: target workqueue
5838  *
5839  * Safely destroy a workqueue. All work currently pending will be done first.
5840  *
5841  * This function does NOT guarantee that non-pending work that has been
5842  * submitted with queue_delayed_work() and similar functions will be done
5843  * before destroying the workqueue. The fundamental problem is that, currently,
5844  * the workqueue has no way of accessing non-pending delayed_work. delayed_work
5845  * is only linked on the timer-side. All delayed_work must, therefore, be
5846  * canceled before calling this function.
5847  *
5848  * TODO: It would be better if the problem described above wouldn't exist and
5849  * destroy_workqueue() would cleanly cancel all pending and non-pending
5850  * delayed_work.
5851  */
destroy_workqueue(struct workqueue_struct * wq)5852 void destroy_workqueue(struct workqueue_struct *wq)
5853 {
5854 	struct pool_workqueue *pwq;
5855 	int cpu;
5856 
5857 	/*
5858 	 * Remove it from sysfs first so that sanity check failure doesn't
5859 	 * lead to sysfs name conflicts.
5860 	 */
5861 	workqueue_sysfs_unregister(wq);
5862 
5863 	/* mark the workqueue destruction is in progress */
5864 	mutex_lock(&wq->mutex);
5865 	wq->flags |= __WQ_DESTROYING;
5866 	mutex_unlock(&wq->mutex);
5867 
5868 	/* drain it before proceeding with destruction */
5869 	drain_workqueue(wq);
5870 
5871 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5872 	if (wq->rescuer) {
5873 		struct worker *rescuer = wq->rescuer;
5874 
5875 		/* this prevents new queueing */
5876 		raw_spin_lock_irq(&wq_mayday_lock);
5877 		wq->rescuer = NULL;
5878 		raw_spin_unlock_irq(&wq_mayday_lock);
5879 
5880 		/* rescuer will empty maydays list before exiting */
5881 		kthread_stop(rescuer->task);
5882 		kfree(rescuer);
5883 	}
5884 
5885 	/*
5886 	 * Sanity checks - grab all the locks so that we wait for all
5887 	 * in-flight operations which may do put_pwq().
5888 	 */
5889 	mutex_lock(&wq_pool_mutex);
5890 	mutex_lock(&wq->mutex);
5891 	for_each_pwq(pwq, wq) {
5892 		raw_spin_lock_irq(&pwq->pool->lock);
5893 		if (WARN_ON(pwq_busy(pwq))) {
5894 			pr_warn("%s: %s has the following busy pwq\n",
5895 				__func__, wq->name);
5896 			show_pwq(pwq);
5897 			raw_spin_unlock_irq(&pwq->pool->lock);
5898 			mutex_unlock(&wq->mutex);
5899 			mutex_unlock(&wq_pool_mutex);
5900 			show_one_workqueue(wq);
5901 			return;
5902 		}
5903 		raw_spin_unlock_irq(&pwq->pool->lock);
5904 	}
5905 	mutex_unlock(&wq->mutex);
5906 
5907 	/*
5908 	 * wq list is used to freeze wq, remove from list after
5909 	 * flushing is complete in case freeze races us.
5910 	 */
5911 	list_del_rcu(&wq->list);
5912 	mutex_unlock(&wq_pool_mutex);
5913 
5914 	/*
5915 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5916 	 * to put the base refs. @wq will be auto-destroyed from the last
5917 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5918 	 */
5919 	rcu_read_lock();
5920 
5921 	for_each_possible_cpu(cpu) {
5922 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5923 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5924 	}
5925 
5926 	put_pwq_unlocked(unbound_pwq(wq, -1));
5927 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5928 
5929 	rcu_read_unlock();
5930 }
5931 EXPORT_SYMBOL_GPL(destroy_workqueue);
5932 
5933 /**
5934  * workqueue_set_max_active - adjust max_active of a workqueue
5935  * @wq: target workqueue
5936  * @max_active: new max_active value.
5937  *
5938  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5939  * comment.
5940  *
5941  * CONTEXT:
5942  * Don't call from IRQ context.
5943  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5944 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5945 {
5946 	/* max_active doesn't mean anything for BH workqueues */
5947 	if (WARN_ON(wq->flags & WQ_BH))
5948 		return;
5949 	/* disallow meddling with max_active for ordered workqueues */
5950 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5951 		return;
5952 
5953 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5954 
5955 	mutex_lock(&wq->mutex);
5956 
5957 	wq->saved_max_active = max_active;
5958 	if (wq->flags & WQ_UNBOUND)
5959 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5960 
5961 	wq_adjust_max_active(wq);
5962 
5963 	mutex_unlock(&wq->mutex);
5964 }
5965 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5966 
5967 /**
5968  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5969  * @wq: target unbound workqueue
5970  * @min_active: new min_active value
5971  *
5972  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5973  * unbound workqueue is not guaranteed to be able to process max_active
5974  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5975  * able to process min_active number of interdependent work items which is
5976  * %WQ_DFL_MIN_ACTIVE by default.
5977  *
5978  * Use this function to adjust the min_active value between 0 and the current
5979  * max_active.
5980  */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)5981 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5982 {
5983 	/* min_active is only meaningful for non-ordered unbound workqueues */
5984 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5985 		    WQ_UNBOUND))
5986 		return;
5987 
5988 	mutex_lock(&wq->mutex);
5989 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5990 	wq_adjust_max_active(wq);
5991 	mutex_unlock(&wq->mutex);
5992 }
5993 
5994 /**
5995  * current_work - retrieve %current task's work struct
5996  *
5997  * Determine if %current task is a workqueue worker and what it's working on.
5998  * Useful to find out the context that the %current task is running in.
5999  *
6000  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
6001  */
current_work(void)6002 struct work_struct *current_work(void)
6003 {
6004 	struct worker *worker = current_wq_worker();
6005 
6006 	return worker ? worker->current_work : NULL;
6007 }
6008 EXPORT_SYMBOL(current_work);
6009 
6010 /**
6011  * current_is_workqueue_rescuer - is %current workqueue rescuer?
6012  *
6013  * Determine whether %current is a workqueue rescuer.  Can be used from
6014  * work functions to determine whether it's being run off the rescuer task.
6015  *
6016  * Return: %true if %current is a workqueue rescuer. %false otherwise.
6017  */
current_is_workqueue_rescuer(void)6018 bool current_is_workqueue_rescuer(void)
6019 {
6020 	struct worker *worker = current_wq_worker();
6021 
6022 	return worker && worker->rescue_wq;
6023 }
6024 
6025 /**
6026  * workqueue_congested - test whether a workqueue is congested
6027  * @cpu: CPU in question
6028  * @wq: target workqueue
6029  *
6030  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
6031  * no synchronization around this function and the test result is
6032  * unreliable and only useful as advisory hints or for debugging.
6033  *
6034  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6035  *
6036  * With the exception of ordered workqueues, all workqueues have per-cpu
6037  * pool_workqueues, each with its own congested state. A workqueue being
6038  * congested on one CPU doesn't mean that the workqueue is contested on any
6039  * other CPUs.
6040  *
6041  * Return:
6042  * %true if congested, %false otherwise.
6043  */
workqueue_congested(int cpu,struct workqueue_struct * wq)6044 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6045 {
6046 	struct pool_workqueue *pwq;
6047 	bool ret;
6048 
6049 	rcu_read_lock();
6050 	preempt_disable();
6051 
6052 	if (cpu == WORK_CPU_UNBOUND)
6053 		cpu = smp_processor_id();
6054 
6055 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6056 	ret = !list_empty(&pwq->inactive_works);
6057 
6058 	preempt_enable();
6059 	rcu_read_unlock();
6060 
6061 	return ret;
6062 }
6063 EXPORT_SYMBOL_GPL(workqueue_congested);
6064 
6065 /**
6066  * work_busy - test whether a work is currently pending or running
6067  * @work: the work to be tested
6068  *
6069  * Test whether @work is currently pending or running.  There is no
6070  * synchronization around this function and the test result is
6071  * unreliable and only useful as advisory hints or for debugging.
6072  *
6073  * Return:
6074  * OR'd bitmask of WORK_BUSY_* bits.
6075  */
work_busy(struct work_struct * work)6076 unsigned int work_busy(struct work_struct *work)
6077 {
6078 	struct worker_pool *pool;
6079 	unsigned long irq_flags;
6080 	unsigned int ret = 0;
6081 
6082 	if (work_pending(work))
6083 		ret |= WORK_BUSY_PENDING;
6084 
6085 	rcu_read_lock();
6086 	pool = get_work_pool(work);
6087 	if (pool) {
6088 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6089 		if (find_worker_executing_work(pool, work))
6090 			ret |= WORK_BUSY_RUNNING;
6091 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6092 	}
6093 	rcu_read_unlock();
6094 
6095 	return ret;
6096 }
6097 EXPORT_SYMBOL_GPL(work_busy);
6098 
6099 /**
6100  * set_worker_desc - set description for the current work item
6101  * @fmt: printf-style format string
6102  * @...: arguments for the format string
6103  *
6104  * This function can be called by a running work function to describe what
6105  * the work item is about.  If the worker task gets dumped, this
6106  * information will be printed out together to help debugging.  The
6107  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6108  */
set_worker_desc(const char * fmt,...)6109 void set_worker_desc(const char *fmt, ...)
6110 {
6111 	struct worker *worker = current_wq_worker();
6112 	va_list args;
6113 
6114 	if (worker) {
6115 		va_start(args, fmt);
6116 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6117 		va_end(args);
6118 	}
6119 }
6120 EXPORT_SYMBOL_GPL(set_worker_desc);
6121 
6122 /**
6123  * print_worker_info - print out worker information and description
6124  * @log_lvl: the log level to use when printing
6125  * @task: target task
6126  *
6127  * If @task is a worker and currently executing a work item, print out the
6128  * name of the workqueue being serviced and worker description set with
6129  * set_worker_desc() by the currently executing work item.
6130  *
6131  * This function can be safely called on any task as long as the
6132  * task_struct itself is accessible.  While safe, this function isn't
6133  * synchronized and may print out mixups or garbages of limited length.
6134  */
print_worker_info(const char * log_lvl,struct task_struct * task)6135 void print_worker_info(const char *log_lvl, struct task_struct *task)
6136 {
6137 	work_func_t *fn = NULL;
6138 	char name[WQ_NAME_LEN] = { };
6139 	char desc[WORKER_DESC_LEN] = { };
6140 	struct pool_workqueue *pwq = NULL;
6141 	struct workqueue_struct *wq = NULL;
6142 	struct worker *worker;
6143 
6144 	if (!(task->flags & PF_WQ_WORKER))
6145 		return;
6146 
6147 	/*
6148 	 * This function is called without any synchronization and @task
6149 	 * could be in any state.  Be careful with dereferences.
6150 	 */
6151 	worker = kthread_probe_data(task);
6152 
6153 	/*
6154 	 * Carefully copy the associated workqueue's workfn, name and desc.
6155 	 * Keep the original last '\0' in case the original is garbage.
6156 	 */
6157 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6158 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6159 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6160 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6161 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6162 
6163 	if (fn || name[0] || desc[0]) {
6164 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6165 		if (strcmp(name, desc))
6166 			pr_cont(" (%s)", desc);
6167 		pr_cont("\n");
6168 	}
6169 }
6170 
pr_cont_pool_info(struct worker_pool * pool)6171 static void pr_cont_pool_info(struct worker_pool *pool)
6172 {
6173 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6174 	if (pool->node != NUMA_NO_NODE)
6175 		pr_cont(" node=%d", pool->node);
6176 	pr_cont(" flags=0x%x", pool->flags);
6177 	if (pool->flags & POOL_BH)
6178 		pr_cont(" bh%s",
6179 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6180 	else
6181 		pr_cont(" nice=%d", pool->attrs->nice);
6182 }
6183 
pr_cont_worker_id(struct worker * worker)6184 static void pr_cont_worker_id(struct worker *worker)
6185 {
6186 	struct worker_pool *pool = worker->pool;
6187 
6188 	if (pool->flags & WQ_BH)
6189 		pr_cont("bh%s",
6190 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6191 	else
6192 		pr_cont("%d%s", task_pid_nr(worker->task),
6193 			worker->rescue_wq ? "(RESCUER)" : "");
6194 }
6195 
6196 struct pr_cont_work_struct {
6197 	bool comma;
6198 	work_func_t func;
6199 	long ctr;
6200 };
6201 
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6202 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6203 {
6204 	if (!pcwsp->ctr)
6205 		goto out_record;
6206 	if (func == pcwsp->func) {
6207 		pcwsp->ctr++;
6208 		return;
6209 	}
6210 	if (pcwsp->ctr == 1)
6211 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6212 	else
6213 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6214 	pcwsp->ctr = 0;
6215 out_record:
6216 	if ((long)func == -1L)
6217 		return;
6218 	pcwsp->comma = comma;
6219 	pcwsp->func = func;
6220 	pcwsp->ctr = 1;
6221 }
6222 
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6223 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6224 {
6225 	if (work->func == wq_barrier_func) {
6226 		struct wq_barrier *barr;
6227 
6228 		barr = container_of(work, struct wq_barrier, work);
6229 
6230 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6231 		pr_cont("%s BAR(%d)", comma ? "," : "",
6232 			task_pid_nr(barr->task));
6233 	} else {
6234 		if (!comma)
6235 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6236 		pr_cont_work_flush(comma, work->func, pcwsp);
6237 	}
6238 }
6239 
show_pwq(struct pool_workqueue * pwq)6240 static void show_pwq(struct pool_workqueue *pwq)
6241 {
6242 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6243 	struct worker_pool *pool = pwq->pool;
6244 	struct work_struct *work;
6245 	struct worker *worker;
6246 	bool has_in_flight = false, has_pending = false;
6247 	int bkt;
6248 
6249 	pr_info("  pwq %d:", pool->id);
6250 	pr_cont_pool_info(pool);
6251 
6252 	pr_cont(" active=%d refcnt=%d%s\n",
6253 		pwq->nr_active, pwq->refcnt,
6254 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6255 
6256 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6257 		if (worker->current_pwq == pwq) {
6258 			has_in_flight = true;
6259 			break;
6260 		}
6261 	}
6262 	if (has_in_flight) {
6263 		bool comma = false;
6264 
6265 		pr_info("    in-flight:");
6266 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6267 			if (worker->current_pwq != pwq)
6268 				continue;
6269 
6270 			pr_cont(" %s", comma ? "," : "");
6271 			pr_cont_worker_id(worker);
6272 			pr_cont(":%ps", worker->current_func);
6273 			list_for_each_entry(work, &worker->scheduled, entry)
6274 				pr_cont_work(false, work, &pcws);
6275 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6276 			comma = true;
6277 		}
6278 		pr_cont("\n");
6279 	}
6280 
6281 	list_for_each_entry(work, &pool->worklist, entry) {
6282 		if (get_work_pwq(work) == pwq) {
6283 			has_pending = true;
6284 			break;
6285 		}
6286 	}
6287 	if (has_pending) {
6288 		bool comma = false;
6289 
6290 		pr_info("    pending:");
6291 		list_for_each_entry(work, &pool->worklist, entry) {
6292 			if (get_work_pwq(work) != pwq)
6293 				continue;
6294 
6295 			pr_cont_work(comma, work, &pcws);
6296 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6297 		}
6298 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6299 		pr_cont("\n");
6300 	}
6301 
6302 	if (!list_empty(&pwq->inactive_works)) {
6303 		bool comma = false;
6304 
6305 		pr_info("    inactive:");
6306 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6307 			pr_cont_work(comma, work, &pcws);
6308 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6309 		}
6310 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6311 		pr_cont("\n");
6312 	}
6313 }
6314 
6315 /**
6316  * show_one_workqueue - dump state of specified workqueue
6317  * @wq: workqueue whose state will be printed
6318  */
show_one_workqueue(struct workqueue_struct * wq)6319 void show_one_workqueue(struct workqueue_struct *wq)
6320 {
6321 	struct pool_workqueue *pwq;
6322 	bool idle = true;
6323 	unsigned long irq_flags;
6324 
6325 	for_each_pwq(pwq, wq) {
6326 		if (!pwq_is_empty(pwq)) {
6327 			idle = false;
6328 			break;
6329 		}
6330 	}
6331 	if (idle) /* Nothing to print for idle workqueue */
6332 		return;
6333 
6334 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6335 
6336 	for_each_pwq(pwq, wq) {
6337 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6338 		if (!pwq_is_empty(pwq)) {
6339 			/*
6340 			 * Defer printing to avoid deadlocks in console
6341 			 * drivers that queue work while holding locks
6342 			 * also taken in their write paths.
6343 			 */
6344 			printk_deferred_enter();
6345 			show_pwq(pwq);
6346 			printk_deferred_exit();
6347 		}
6348 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6349 		/*
6350 		 * We could be printing a lot from atomic context, e.g.
6351 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6352 		 * hard lockup.
6353 		 */
6354 		touch_nmi_watchdog();
6355 	}
6356 
6357 }
6358 
6359 /**
6360  * show_one_worker_pool - dump state of specified worker pool
6361  * @pool: worker pool whose state will be printed
6362  */
show_one_worker_pool(struct worker_pool * pool)6363 static void show_one_worker_pool(struct worker_pool *pool)
6364 {
6365 	struct worker *worker;
6366 	bool first = true;
6367 	unsigned long irq_flags;
6368 	unsigned long hung = 0;
6369 
6370 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6371 	if (pool->nr_workers == pool->nr_idle)
6372 		goto next_pool;
6373 
6374 	/* How long the first pending work is waiting for a worker. */
6375 	if (!list_empty(&pool->worklist))
6376 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6377 
6378 	/*
6379 	 * Defer printing to avoid deadlocks in console drivers that
6380 	 * queue work while holding locks also taken in their write
6381 	 * paths.
6382 	 */
6383 	printk_deferred_enter();
6384 	pr_info("pool %d:", pool->id);
6385 	pr_cont_pool_info(pool);
6386 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6387 	if (pool->manager)
6388 		pr_cont(" manager: %d",
6389 			task_pid_nr(pool->manager->task));
6390 	list_for_each_entry(worker, &pool->idle_list, entry) {
6391 		pr_cont(" %s", first ? "idle: " : "");
6392 		pr_cont_worker_id(worker);
6393 		first = false;
6394 	}
6395 	pr_cont("\n");
6396 	printk_deferred_exit();
6397 next_pool:
6398 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6399 	/*
6400 	 * We could be printing a lot from atomic context, e.g.
6401 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6402 	 * hard lockup.
6403 	 */
6404 	touch_nmi_watchdog();
6405 
6406 }
6407 
6408 /**
6409  * show_all_workqueues - dump workqueue state
6410  *
6411  * Called from a sysrq handler and prints out all busy workqueues and pools.
6412  */
show_all_workqueues(void)6413 void show_all_workqueues(void)
6414 {
6415 	struct workqueue_struct *wq;
6416 	struct worker_pool *pool;
6417 	int pi;
6418 
6419 	rcu_read_lock();
6420 
6421 	pr_info("Showing busy workqueues and worker pools:\n");
6422 
6423 	list_for_each_entry_rcu(wq, &workqueues, list)
6424 		show_one_workqueue(wq);
6425 
6426 	for_each_pool(pool, pi)
6427 		show_one_worker_pool(pool);
6428 
6429 	rcu_read_unlock();
6430 }
6431 
6432 /**
6433  * show_freezable_workqueues - dump freezable workqueue state
6434  *
6435  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6436  * still busy.
6437  */
show_freezable_workqueues(void)6438 void show_freezable_workqueues(void)
6439 {
6440 	struct workqueue_struct *wq;
6441 
6442 	rcu_read_lock();
6443 
6444 	pr_info("Showing freezable workqueues that are still busy:\n");
6445 
6446 	list_for_each_entry_rcu(wq, &workqueues, list) {
6447 		if (!(wq->flags & WQ_FREEZABLE))
6448 			continue;
6449 		show_one_workqueue(wq);
6450 	}
6451 
6452 	rcu_read_unlock();
6453 }
6454 
6455 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6456 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6457 {
6458 	/* stabilize PF_WQ_WORKER and worker pool association */
6459 	mutex_lock(&wq_pool_attach_mutex);
6460 
6461 	if (task->flags & PF_WQ_WORKER) {
6462 		struct worker *worker = kthread_data(task);
6463 		struct worker_pool *pool = worker->pool;
6464 		int off;
6465 
6466 		off = format_worker_id(buf, size, worker, pool);
6467 
6468 		if (pool) {
6469 			raw_spin_lock_irq(&pool->lock);
6470 			/*
6471 			 * ->desc tracks information (wq name or
6472 			 * set_worker_desc()) for the latest execution.  If
6473 			 * current, prepend '+', otherwise '-'.
6474 			 */
6475 			if (worker->desc[0] != '\0') {
6476 				if (worker->current_work)
6477 					scnprintf(buf + off, size - off, "+%s",
6478 						  worker->desc);
6479 				else
6480 					scnprintf(buf + off, size - off, "-%s",
6481 						  worker->desc);
6482 			}
6483 			raw_spin_unlock_irq(&pool->lock);
6484 		}
6485 	} else {
6486 		strscpy(buf, task->comm, size);
6487 	}
6488 
6489 	mutex_unlock(&wq_pool_attach_mutex);
6490 }
6491 
6492 #ifdef CONFIG_SMP
6493 
6494 /*
6495  * CPU hotplug.
6496  *
6497  * There are two challenges in supporting CPU hotplug.  Firstly, there
6498  * are a lot of assumptions on strong associations among work, pwq and
6499  * pool which make migrating pending and scheduled works very
6500  * difficult to implement without impacting hot paths.  Secondly,
6501  * worker pools serve mix of short, long and very long running works making
6502  * blocked draining impractical.
6503  *
6504  * This is solved by allowing the pools to be disassociated from the CPU
6505  * running as an unbound one and allowing it to be reattached later if the
6506  * cpu comes back online.
6507  */
6508 
unbind_workers(int cpu)6509 static void unbind_workers(int cpu)
6510 {
6511 	struct worker_pool *pool;
6512 	struct worker *worker;
6513 
6514 	for_each_cpu_worker_pool(pool, cpu) {
6515 		mutex_lock(&wq_pool_attach_mutex);
6516 		raw_spin_lock_irq(&pool->lock);
6517 
6518 		/*
6519 		 * We've blocked all attach/detach operations. Make all workers
6520 		 * unbound and set DISASSOCIATED.  Before this, all workers
6521 		 * must be on the cpu.  After this, they may become diasporas.
6522 		 * And the preemption disabled section in their sched callbacks
6523 		 * are guaranteed to see WORKER_UNBOUND since the code here
6524 		 * is on the same cpu.
6525 		 */
6526 		for_each_pool_worker(worker, pool)
6527 			worker->flags |= WORKER_UNBOUND;
6528 
6529 		pool->flags |= POOL_DISASSOCIATED;
6530 
6531 		/*
6532 		 * The handling of nr_running in sched callbacks are disabled
6533 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6534 		 * need_more_worker() and keep_working() are always true as
6535 		 * long as the worklist is not empty.  This pool now behaves as
6536 		 * an unbound (in terms of concurrency management) pool which
6537 		 * are served by workers tied to the pool.
6538 		 */
6539 		pool->nr_running = 0;
6540 
6541 		/*
6542 		 * With concurrency management just turned off, a busy
6543 		 * worker blocking could lead to lengthy stalls.  Kick off
6544 		 * unbound chain execution of currently pending work items.
6545 		 */
6546 		kick_pool(pool);
6547 
6548 		raw_spin_unlock_irq(&pool->lock);
6549 
6550 		for_each_pool_worker(worker, pool)
6551 			unbind_worker(worker);
6552 
6553 		mutex_unlock(&wq_pool_attach_mutex);
6554 	}
6555 }
6556 
6557 /**
6558  * rebind_workers - rebind all workers of a pool to the associated CPU
6559  * @pool: pool of interest
6560  *
6561  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6562  */
rebind_workers(struct worker_pool * pool)6563 static void rebind_workers(struct worker_pool *pool)
6564 {
6565 	struct worker *worker;
6566 
6567 	lockdep_assert_held(&wq_pool_attach_mutex);
6568 
6569 	/*
6570 	 * Restore CPU affinity of all workers.  As all idle workers should
6571 	 * be on the run-queue of the associated CPU before any local
6572 	 * wake-ups for concurrency management happen, restore CPU affinity
6573 	 * of all workers first and then clear UNBOUND.  As we're called
6574 	 * from CPU_ONLINE, the following shouldn't fail.
6575 	 */
6576 	for_each_pool_worker(worker, pool) {
6577 		kthread_set_per_cpu(worker->task, pool->cpu);
6578 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6579 						  pool_allowed_cpus(pool)) < 0);
6580 	}
6581 
6582 	raw_spin_lock_irq(&pool->lock);
6583 
6584 	pool->flags &= ~POOL_DISASSOCIATED;
6585 
6586 	for_each_pool_worker(worker, pool) {
6587 		unsigned int worker_flags = worker->flags;
6588 
6589 		/*
6590 		 * We want to clear UNBOUND but can't directly call
6591 		 * worker_clr_flags() or adjust nr_running.  Atomically
6592 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6593 		 * @worker will clear REBOUND using worker_clr_flags() when
6594 		 * it initiates the next execution cycle thus restoring
6595 		 * concurrency management.  Note that when or whether
6596 		 * @worker clears REBOUND doesn't affect correctness.
6597 		 *
6598 		 * WRITE_ONCE() is necessary because @worker->flags may be
6599 		 * tested without holding any lock in
6600 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6601 		 * fail incorrectly leading to premature concurrency
6602 		 * management operations.
6603 		 */
6604 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6605 		worker_flags |= WORKER_REBOUND;
6606 		worker_flags &= ~WORKER_UNBOUND;
6607 		WRITE_ONCE(worker->flags, worker_flags);
6608 	}
6609 
6610 	raw_spin_unlock_irq(&pool->lock);
6611 }
6612 
6613 /**
6614  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6615  * @pool: unbound pool of interest
6616  * @cpu: the CPU which is coming up
6617  *
6618  * An unbound pool may end up with a cpumask which doesn't have any online
6619  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6620  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6621  * online CPU before, cpus_allowed of all its workers should be restored.
6622  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6623 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6624 {
6625 	static cpumask_t cpumask;
6626 	struct worker *worker;
6627 
6628 	lockdep_assert_held(&wq_pool_attach_mutex);
6629 
6630 	/* is @cpu allowed for @pool? */
6631 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6632 		return;
6633 
6634 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6635 
6636 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6637 	for_each_pool_worker(worker, pool)
6638 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6639 }
6640 
workqueue_prepare_cpu(unsigned int cpu)6641 int workqueue_prepare_cpu(unsigned int cpu)
6642 {
6643 	struct worker_pool *pool;
6644 
6645 	for_each_cpu_worker_pool(pool, cpu) {
6646 		if (pool->nr_workers)
6647 			continue;
6648 		if (!create_worker(pool))
6649 			return -ENOMEM;
6650 	}
6651 	return 0;
6652 }
6653 
workqueue_online_cpu(unsigned int cpu)6654 int workqueue_online_cpu(unsigned int cpu)
6655 {
6656 	struct worker_pool *pool;
6657 	struct workqueue_struct *wq;
6658 	int pi;
6659 
6660 	mutex_lock(&wq_pool_mutex);
6661 
6662 	cpumask_set_cpu(cpu, wq_online_cpumask);
6663 
6664 	for_each_pool(pool, pi) {
6665 		/* BH pools aren't affected by hotplug */
6666 		if (pool->flags & POOL_BH)
6667 			continue;
6668 
6669 		mutex_lock(&wq_pool_attach_mutex);
6670 		if (pool->cpu == cpu)
6671 			rebind_workers(pool);
6672 		else if (pool->cpu < 0)
6673 			restore_unbound_workers_cpumask(pool, cpu);
6674 		mutex_unlock(&wq_pool_attach_mutex);
6675 	}
6676 
6677 	/* update pod affinity of unbound workqueues */
6678 	list_for_each_entry(wq, &workqueues, list) {
6679 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6680 
6681 		if (attrs) {
6682 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6683 			int tcpu;
6684 
6685 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6686 				unbound_wq_update_pwq(wq, tcpu);
6687 
6688 			mutex_lock(&wq->mutex);
6689 			wq_update_node_max_active(wq, -1);
6690 			mutex_unlock(&wq->mutex);
6691 		}
6692 	}
6693 
6694 	mutex_unlock(&wq_pool_mutex);
6695 	return 0;
6696 }
6697 
workqueue_offline_cpu(unsigned int cpu)6698 int workqueue_offline_cpu(unsigned int cpu)
6699 {
6700 	struct workqueue_struct *wq;
6701 
6702 	/* unbinding per-cpu workers should happen on the local CPU */
6703 	if (WARN_ON(cpu != smp_processor_id()))
6704 		return -1;
6705 
6706 	unbind_workers(cpu);
6707 
6708 	/* update pod affinity of unbound workqueues */
6709 	mutex_lock(&wq_pool_mutex);
6710 
6711 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6712 
6713 	list_for_each_entry(wq, &workqueues, list) {
6714 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6715 
6716 		if (attrs) {
6717 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6718 			int tcpu;
6719 
6720 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6721 				unbound_wq_update_pwq(wq, tcpu);
6722 
6723 			mutex_lock(&wq->mutex);
6724 			wq_update_node_max_active(wq, cpu);
6725 			mutex_unlock(&wq->mutex);
6726 		}
6727 	}
6728 	mutex_unlock(&wq_pool_mutex);
6729 
6730 	return 0;
6731 }
6732 
6733 struct work_for_cpu {
6734 	struct work_struct work;
6735 	long (*fn)(void *);
6736 	void *arg;
6737 	long ret;
6738 };
6739 
work_for_cpu_fn(struct work_struct * work)6740 static void work_for_cpu_fn(struct work_struct *work)
6741 {
6742 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6743 
6744 	wfc->ret = wfc->fn(wfc->arg);
6745 }
6746 
6747 /**
6748  * work_on_cpu_key - run a function in thread context on a particular cpu
6749  * @cpu: the cpu to run on
6750  * @fn: the function to run
6751  * @arg: the function arg
6752  * @key: The lock class key for lock debugging purposes
6753  *
6754  * It is up to the caller to ensure that the cpu doesn't go offline.
6755  * The caller must not hold any locks which would prevent @fn from completing.
6756  *
6757  * Return: The value @fn returns.
6758  */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6759 long work_on_cpu_key(int cpu, long (*fn)(void *),
6760 		     void *arg, struct lock_class_key *key)
6761 {
6762 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6763 
6764 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6765 	schedule_work_on(cpu, &wfc.work);
6766 	flush_work(&wfc.work);
6767 	destroy_work_on_stack(&wfc.work);
6768 	return wfc.ret;
6769 }
6770 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6771 #endif /* CONFIG_SMP */
6772 
6773 #ifdef CONFIG_FREEZER
6774 
6775 /**
6776  * freeze_workqueues_begin - begin freezing workqueues
6777  *
6778  * Start freezing workqueues.  After this function returns, all freezable
6779  * workqueues will queue new works to their inactive_works list instead of
6780  * pool->worklist.
6781  *
6782  * CONTEXT:
6783  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6784  */
freeze_workqueues_begin(void)6785 void freeze_workqueues_begin(void)
6786 {
6787 	struct workqueue_struct *wq;
6788 
6789 	mutex_lock(&wq_pool_mutex);
6790 
6791 	WARN_ON_ONCE(workqueue_freezing);
6792 	workqueue_freezing = true;
6793 
6794 	list_for_each_entry(wq, &workqueues, list) {
6795 		mutex_lock(&wq->mutex);
6796 		wq_adjust_max_active(wq);
6797 		mutex_unlock(&wq->mutex);
6798 	}
6799 
6800 	mutex_unlock(&wq_pool_mutex);
6801 }
6802 
6803 /**
6804  * freeze_workqueues_busy - are freezable workqueues still busy?
6805  *
6806  * Check whether freezing is complete.  This function must be called
6807  * between freeze_workqueues_begin() and thaw_workqueues().
6808  *
6809  * CONTEXT:
6810  * Grabs and releases wq_pool_mutex.
6811  *
6812  * Return:
6813  * %true if some freezable workqueues are still busy.  %false if freezing
6814  * is complete.
6815  */
freeze_workqueues_busy(void)6816 bool freeze_workqueues_busy(void)
6817 {
6818 	bool busy = false;
6819 	struct workqueue_struct *wq;
6820 	struct pool_workqueue *pwq;
6821 
6822 	mutex_lock(&wq_pool_mutex);
6823 
6824 	WARN_ON_ONCE(!workqueue_freezing);
6825 
6826 	list_for_each_entry(wq, &workqueues, list) {
6827 		if (!(wq->flags & WQ_FREEZABLE))
6828 			continue;
6829 		/*
6830 		 * nr_active is monotonically decreasing.  It's safe
6831 		 * to peek without lock.
6832 		 */
6833 		rcu_read_lock();
6834 		for_each_pwq(pwq, wq) {
6835 			WARN_ON_ONCE(pwq->nr_active < 0);
6836 			if (pwq->nr_active) {
6837 				busy = true;
6838 				rcu_read_unlock();
6839 				goto out_unlock;
6840 			}
6841 		}
6842 		rcu_read_unlock();
6843 	}
6844 out_unlock:
6845 	mutex_unlock(&wq_pool_mutex);
6846 	return busy;
6847 }
6848 
6849 /**
6850  * thaw_workqueues - thaw workqueues
6851  *
6852  * Thaw workqueues.  Normal queueing is restored and all collected
6853  * frozen works are transferred to their respective pool worklists.
6854  *
6855  * CONTEXT:
6856  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6857  */
thaw_workqueues(void)6858 void thaw_workqueues(void)
6859 {
6860 	struct workqueue_struct *wq;
6861 
6862 	mutex_lock(&wq_pool_mutex);
6863 
6864 	if (!workqueue_freezing)
6865 		goto out_unlock;
6866 
6867 	workqueue_freezing = false;
6868 
6869 	/* restore max_active and repopulate worklist */
6870 	list_for_each_entry(wq, &workqueues, list) {
6871 		mutex_lock(&wq->mutex);
6872 		wq_adjust_max_active(wq);
6873 		mutex_unlock(&wq->mutex);
6874 	}
6875 
6876 out_unlock:
6877 	mutex_unlock(&wq_pool_mutex);
6878 }
6879 #endif /* CONFIG_FREEZER */
6880 
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6881 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6882 {
6883 	LIST_HEAD(ctxs);
6884 	int ret = 0;
6885 	struct workqueue_struct *wq;
6886 	struct apply_wqattrs_ctx *ctx, *n;
6887 
6888 	lockdep_assert_held(&wq_pool_mutex);
6889 
6890 	list_for_each_entry(wq, &workqueues, list) {
6891 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6892 			continue;
6893 
6894 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6895 		if (IS_ERR(ctx)) {
6896 			ret = PTR_ERR(ctx);
6897 			break;
6898 		}
6899 
6900 		list_add_tail(&ctx->list, &ctxs);
6901 	}
6902 
6903 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6904 		if (!ret)
6905 			apply_wqattrs_commit(ctx);
6906 		apply_wqattrs_cleanup(ctx);
6907 	}
6908 
6909 	if (!ret) {
6910 		mutex_lock(&wq_pool_attach_mutex);
6911 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6912 		mutex_unlock(&wq_pool_attach_mutex);
6913 	}
6914 	return ret;
6915 }
6916 
6917 /**
6918  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6919  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6920  *
6921  * This function can be called from cpuset code to provide a set of isolated
6922  * CPUs that should be excluded from wq_unbound_cpumask.
6923  */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6924 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6925 {
6926 	cpumask_var_t cpumask;
6927 	int ret = 0;
6928 
6929 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6930 		return -ENOMEM;
6931 
6932 	mutex_lock(&wq_pool_mutex);
6933 
6934 	/*
6935 	 * If the operation fails, it will fall back to
6936 	 * wq_requested_unbound_cpumask which is initially set to
6937 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6938 	 * by any subsequent write to workqueue/cpumask sysfs file.
6939 	 */
6940 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6941 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6942 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6943 		ret = workqueue_apply_unbound_cpumask(cpumask);
6944 
6945 	/* Save the current isolated cpumask & export it via sysfs */
6946 	if (!ret)
6947 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6948 
6949 	mutex_unlock(&wq_pool_mutex);
6950 	free_cpumask_var(cpumask);
6951 	return ret;
6952 }
6953 
parse_affn_scope(const char * val)6954 static int parse_affn_scope(const char *val)
6955 {
6956 	int i;
6957 
6958 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6959 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6960 			return i;
6961 	}
6962 	return -EINVAL;
6963 }
6964 
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6965 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6966 {
6967 	struct workqueue_struct *wq;
6968 	int affn, cpu;
6969 
6970 	affn = parse_affn_scope(val);
6971 	if (affn < 0)
6972 		return affn;
6973 	if (affn == WQ_AFFN_DFL)
6974 		return -EINVAL;
6975 
6976 	cpus_read_lock();
6977 	mutex_lock(&wq_pool_mutex);
6978 
6979 	wq_affn_dfl = affn;
6980 
6981 	list_for_each_entry(wq, &workqueues, list) {
6982 		for_each_online_cpu(cpu)
6983 			unbound_wq_update_pwq(wq, cpu);
6984 	}
6985 
6986 	mutex_unlock(&wq_pool_mutex);
6987 	cpus_read_unlock();
6988 
6989 	return 0;
6990 }
6991 
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)6992 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6993 {
6994 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6995 }
6996 
6997 static const struct kernel_param_ops wq_affn_dfl_ops = {
6998 	.set	= wq_affn_dfl_set,
6999 	.get	= wq_affn_dfl_get,
7000 };
7001 
7002 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7003 
7004 #ifdef CONFIG_SYSFS
7005 /*
7006  * Workqueues with WQ_SYSFS flag set is visible to userland via
7007  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
7008  * following attributes.
7009  *
7010  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
7011  *  max_active		RW int	: maximum number of in-flight work items
7012  *
7013  * Unbound workqueues have the following extra attributes.
7014  *
7015  *  nice		RW int	: nice value of the workers
7016  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
7017  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
7018  *  affinity_strict	RW bool : worker CPU affinity is strict
7019  */
7020 struct wq_device {
7021 	struct workqueue_struct		*wq;
7022 	struct device			dev;
7023 };
7024 
dev_to_wq(struct device * dev)7025 static struct workqueue_struct *dev_to_wq(struct device *dev)
7026 {
7027 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7028 
7029 	return wq_dev->wq;
7030 }
7031 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7032 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7033 			    char *buf)
7034 {
7035 	struct workqueue_struct *wq = dev_to_wq(dev);
7036 
7037 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7038 }
7039 static DEVICE_ATTR_RO(per_cpu);
7040 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7041 static ssize_t max_active_show(struct device *dev,
7042 			       struct device_attribute *attr, char *buf)
7043 {
7044 	struct workqueue_struct *wq = dev_to_wq(dev);
7045 
7046 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7047 }
7048 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7049 static ssize_t max_active_store(struct device *dev,
7050 				struct device_attribute *attr, const char *buf,
7051 				size_t count)
7052 {
7053 	struct workqueue_struct *wq = dev_to_wq(dev);
7054 	int val;
7055 
7056 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7057 		return -EINVAL;
7058 
7059 	workqueue_set_max_active(wq, val);
7060 	return count;
7061 }
7062 static DEVICE_ATTR_RW(max_active);
7063 
7064 static struct attribute *wq_sysfs_attrs[] = {
7065 	&dev_attr_per_cpu.attr,
7066 	&dev_attr_max_active.attr,
7067 	NULL,
7068 };
7069 ATTRIBUTE_GROUPS(wq_sysfs);
7070 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7071 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7072 			    char *buf)
7073 {
7074 	struct workqueue_struct *wq = dev_to_wq(dev);
7075 	int written;
7076 
7077 	mutex_lock(&wq->mutex);
7078 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7079 	mutex_unlock(&wq->mutex);
7080 
7081 	return written;
7082 }
7083 
7084 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7085 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7086 {
7087 	struct workqueue_attrs *attrs;
7088 
7089 	lockdep_assert_held(&wq_pool_mutex);
7090 
7091 	attrs = alloc_workqueue_attrs();
7092 	if (!attrs)
7093 		return NULL;
7094 
7095 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7096 	return attrs;
7097 }
7098 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7099 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7100 			     const char *buf, size_t count)
7101 {
7102 	struct workqueue_struct *wq = dev_to_wq(dev);
7103 	struct workqueue_attrs *attrs;
7104 	int ret = -ENOMEM;
7105 
7106 	apply_wqattrs_lock();
7107 
7108 	attrs = wq_sysfs_prep_attrs(wq);
7109 	if (!attrs)
7110 		goto out_unlock;
7111 
7112 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7113 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7114 		ret = apply_workqueue_attrs_locked(wq, attrs);
7115 	else
7116 		ret = -EINVAL;
7117 
7118 out_unlock:
7119 	apply_wqattrs_unlock();
7120 	free_workqueue_attrs(attrs);
7121 	return ret ?: count;
7122 }
7123 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7124 static ssize_t wq_cpumask_show(struct device *dev,
7125 			       struct device_attribute *attr, char *buf)
7126 {
7127 	struct workqueue_struct *wq = dev_to_wq(dev);
7128 	int written;
7129 
7130 	mutex_lock(&wq->mutex);
7131 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7132 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7133 	mutex_unlock(&wq->mutex);
7134 	return written;
7135 }
7136 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7137 static ssize_t wq_cpumask_store(struct device *dev,
7138 				struct device_attribute *attr,
7139 				const char *buf, size_t count)
7140 {
7141 	struct workqueue_struct *wq = dev_to_wq(dev);
7142 	struct workqueue_attrs *attrs;
7143 	int ret = -ENOMEM;
7144 
7145 	apply_wqattrs_lock();
7146 
7147 	attrs = wq_sysfs_prep_attrs(wq);
7148 	if (!attrs)
7149 		goto out_unlock;
7150 
7151 	ret = cpumask_parse(buf, attrs->cpumask);
7152 	if (!ret)
7153 		ret = apply_workqueue_attrs_locked(wq, attrs);
7154 
7155 out_unlock:
7156 	apply_wqattrs_unlock();
7157 	free_workqueue_attrs(attrs);
7158 	return ret ?: count;
7159 }
7160 
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7161 static ssize_t wq_affn_scope_show(struct device *dev,
7162 				  struct device_attribute *attr, char *buf)
7163 {
7164 	struct workqueue_struct *wq = dev_to_wq(dev);
7165 	int written;
7166 
7167 	mutex_lock(&wq->mutex);
7168 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7169 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7170 				    wq_affn_names[WQ_AFFN_DFL],
7171 				    wq_affn_names[wq_affn_dfl]);
7172 	else
7173 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7174 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7175 	mutex_unlock(&wq->mutex);
7176 
7177 	return written;
7178 }
7179 
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7180 static ssize_t wq_affn_scope_store(struct device *dev,
7181 				   struct device_attribute *attr,
7182 				   const char *buf, size_t count)
7183 {
7184 	struct workqueue_struct *wq = dev_to_wq(dev);
7185 	struct workqueue_attrs *attrs;
7186 	int affn, ret = -ENOMEM;
7187 
7188 	affn = parse_affn_scope(buf);
7189 	if (affn < 0)
7190 		return affn;
7191 
7192 	apply_wqattrs_lock();
7193 	attrs = wq_sysfs_prep_attrs(wq);
7194 	if (attrs) {
7195 		attrs->affn_scope = affn;
7196 		ret = apply_workqueue_attrs_locked(wq, attrs);
7197 	}
7198 	apply_wqattrs_unlock();
7199 	free_workqueue_attrs(attrs);
7200 	return ret ?: count;
7201 }
7202 
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7203 static ssize_t wq_affinity_strict_show(struct device *dev,
7204 				       struct device_attribute *attr, char *buf)
7205 {
7206 	struct workqueue_struct *wq = dev_to_wq(dev);
7207 
7208 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7209 			 wq->unbound_attrs->affn_strict);
7210 }
7211 
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7212 static ssize_t wq_affinity_strict_store(struct device *dev,
7213 					struct device_attribute *attr,
7214 					const char *buf, size_t count)
7215 {
7216 	struct workqueue_struct *wq = dev_to_wq(dev);
7217 	struct workqueue_attrs *attrs;
7218 	int v, ret = -ENOMEM;
7219 
7220 	if (sscanf(buf, "%d", &v) != 1)
7221 		return -EINVAL;
7222 
7223 	apply_wqattrs_lock();
7224 	attrs = wq_sysfs_prep_attrs(wq);
7225 	if (attrs) {
7226 		attrs->affn_strict = (bool)v;
7227 		ret = apply_workqueue_attrs_locked(wq, attrs);
7228 	}
7229 	apply_wqattrs_unlock();
7230 	free_workqueue_attrs(attrs);
7231 	return ret ?: count;
7232 }
7233 
7234 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7235 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7236 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7237 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7238 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7239 	__ATTR_NULL,
7240 };
7241 
7242 static const struct bus_type wq_subsys = {
7243 	.name				= "workqueue",
7244 	.dev_groups			= wq_sysfs_groups,
7245 };
7246 
7247 /**
7248  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7249  *  @cpumask: the cpumask to set
7250  *
7251  *  The low-level workqueues cpumask is a global cpumask that limits
7252  *  the affinity of all unbound workqueues.  This function check the @cpumask
7253  *  and apply it to all unbound workqueues and updates all pwqs of them.
7254  *
7255  *  Return:	0	- Success
7256  *		-EINVAL	- Invalid @cpumask
7257  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7258  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7259 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7260 {
7261 	int ret = -EINVAL;
7262 
7263 	/*
7264 	 * Not excluding isolated cpus on purpose.
7265 	 * If the user wishes to include them, we allow that.
7266 	 */
7267 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7268 	if (!cpumask_empty(cpumask)) {
7269 		ret = 0;
7270 		apply_wqattrs_lock();
7271 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7272 			ret = workqueue_apply_unbound_cpumask(cpumask);
7273 		if (!ret)
7274 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7275 		apply_wqattrs_unlock();
7276 	}
7277 
7278 	return ret;
7279 }
7280 
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7281 static ssize_t __wq_cpumask_show(struct device *dev,
7282 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7283 {
7284 	int written;
7285 
7286 	mutex_lock(&wq_pool_mutex);
7287 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7288 	mutex_unlock(&wq_pool_mutex);
7289 
7290 	return written;
7291 }
7292 
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7293 static ssize_t cpumask_requested_show(struct device *dev,
7294 		struct device_attribute *attr, char *buf)
7295 {
7296 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7297 }
7298 static DEVICE_ATTR_RO(cpumask_requested);
7299 
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7300 static ssize_t cpumask_isolated_show(struct device *dev,
7301 		struct device_attribute *attr, char *buf)
7302 {
7303 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7304 }
7305 static DEVICE_ATTR_RO(cpumask_isolated);
7306 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7307 static ssize_t cpumask_show(struct device *dev,
7308 		struct device_attribute *attr, char *buf)
7309 {
7310 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7311 }
7312 
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7313 static ssize_t cpumask_store(struct device *dev,
7314 		struct device_attribute *attr, const char *buf, size_t count)
7315 {
7316 	cpumask_var_t cpumask;
7317 	int ret;
7318 
7319 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7320 		return -ENOMEM;
7321 
7322 	ret = cpumask_parse(buf, cpumask);
7323 	if (!ret)
7324 		ret = workqueue_set_unbound_cpumask(cpumask);
7325 
7326 	free_cpumask_var(cpumask);
7327 	return ret ? ret : count;
7328 }
7329 static DEVICE_ATTR_RW(cpumask);
7330 
7331 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7332 	&dev_attr_cpumask.attr,
7333 	&dev_attr_cpumask_requested.attr,
7334 	&dev_attr_cpumask_isolated.attr,
7335 	NULL,
7336 };
7337 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7338 
wq_sysfs_init(void)7339 static int __init wq_sysfs_init(void)
7340 {
7341 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7342 }
7343 core_initcall(wq_sysfs_init);
7344 
wq_device_release(struct device * dev)7345 static void wq_device_release(struct device *dev)
7346 {
7347 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7348 
7349 	kfree(wq_dev);
7350 }
7351 
7352 /**
7353  * workqueue_sysfs_register - make a workqueue visible in sysfs
7354  * @wq: the workqueue to register
7355  *
7356  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7357  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7358  * which is the preferred method.
7359  *
7360  * Workqueue user should use this function directly iff it wants to apply
7361  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7362  * apply_workqueue_attrs() may race against userland updating the
7363  * attributes.
7364  *
7365  * Return: 0 on success, -errno on failure.
7366  */
workqueue_sysfs_register(struct workqueue_struct * wq)7367 int workqueue_sysfs_register(struct workqueue_struct *wq)
7368 {
7369 	struct wq_device *wq_dev;
7370 	int ret;
7371 
7372 	/*
7373 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7374 	 * ordered workqueues.
7375 	 */
7376 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7377 		return -EINVAL;
7378 
7379 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7380 	if (!wq_dev)
7381 		return -ENOMEM;
7382 
7383 	wq_dev->wq = wq;
7384 	wq_dev->dev.bus = &wq_subsys;
7385 	wq_dev->dev.release = wq_device_release;
7386 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7387 
7388 	/*
7389 	 * unbound_attrs are created separately.  Suppress uevent until
7390 	 * everything is ready.
7391 	 */
7392 	dev_set_uevent_suppress(&wq_dev->dev, true);
7393 
7394 	ret = device_register(&wq_dev->dev);
7395 	if (ret) {
7396 		put_device(&wq_dev->dev);
7397 		wq->wq_dev = NULL;
7398 		return ret;
7399 	}
7400 
7401 	if (wq->flags & WQ_UNBOUND) {
7402 		struct device_attribute *attr;
7403 
7404 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7405 			ret = device_create_file(&wq_dev->dev, attr);
7406 			if (ret) {
7407 				device_unregister(&wq_dev->dev);
7408 				wq->wq_dev = NULL;
7409 				return ret;
7410 			}
7411 		}
7412 	}
7413 
7414 	dev_set_uevent_suppress(&wq_dev->dev, false);
7415 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7416 	return 0;
7417 }
7418 
7419 /**
7420  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7421  * @wq: the workqueue to unregister
7422  *
7423  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7424  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7425 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7426 {
7427 	struct wq_device *wq_dev = wq->wq_dev;
7428 
7429 	if (!wq->wq_dev)
7430 		return;
7431 
7432 	wq->wq_dev = NULL;
7433 	device_unregister(&wq_dev->dev);
7434 }
7435 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7436 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7437 #endif	/* CONFIG_SYSFS */
7438 
7439 /*
7440  * Workqueue watchdog.
7441  *
7442  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7443  * flush dependency, a concurrency managed work item which stays RUNNING
7444  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7445  * usual warning mechanisms don't trigger and internal workqueue state is
7446  * largely opaque.
7447  *
7448  * Workqueue watchdog monitors all worker pools periodically and dumps
7449  * state if some pools failed to make forward progress for a while where
7450  * forward progress is defined as the first item on ->worklist changing.
7451  *
7452  * This mechanism is controlled through the kernel parameter
7453  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7454  * corresponding sysfs parameter file.
7455  */
7456 #ifdef CONFIG_WQ_WATCHDOG
7457 
7458 static unsigned long wq_watchdog_thresh = 30;
7459 static struct timer_list wq_watchdog_timer;
7460 
7461 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7462 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7463 
7464 static unsigned int wq_panic_on_stall;
7465 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7466 
7467 /*
7468  * Show workers that might prevent the processing of pending work items.
7469  * The only candidates are CPU-bound workers in the running state.
7470  * Pending work items should be handled by another idle worker
7471  * in all other situations.
7472  */
show_cpu_pool_hog(struct worker_pool * pool)7473 static void show_cpu_pool_hog(struct worker_pool *pool)
7474 {
7475 	struct worker *worker;
7476 	unsigned long irq_flags;
7477 	int bkt;
7478 
7479 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7480 
7481 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7482 		if (task_is_running(worker->task)) {
7483 			/*
7484 			 * Defer printing to avoid deadlocks in console
7485 			 * drivers that queue work while holding locks
7486 			 * also taken in their write paths.
7487 			 */
7488 			printk_deferred_enter();
7489 
7490 			pr_info("pool %d:\n", pool->id);
7491 			sched_show_task(worker->task);
7492 
7493 			printk_deferred_exit();
7494 		}
7495 	}
7496 
7497 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7498 }
7499 
show_cpu_pools_hogs(void)7500 static void show_cpu_pools_hogs(void)
7501 {
7502 	struct worker_pool *pool;
7503 	int pi;
7504 
7505 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7506 
7507 	rcu_read_lock();
7508 
7509 	for_each_pool(pool, pi) {
7510 		if (pool->cpu_stall)
7511 			show_cpu_pool_hog(pool);
7512 
7513 	}
7514 
7515 	rcu_read_unlock();
7516 }
7517 
panic_on_wq_watchdog(void)7518 static void panic_on_wq_watchdog(void)
7519 {
7520 	static unsigned int wq_stall;
7521 
7522 	if (wq_panic_on_stall) {
7523 		wq_stall++;
7524 		BUG_ON(wq_stall >= wq_panic_on_stall);
7525 	}
7526 }
7527 
wq_watchdog_reset_touched(void)7528 static void wq_watchdog_reset_touched(void)
7529 {
7530 	int cpu;
7531 
7532 	wq_watchdog_touched = jiffies;
7533 	for_each_possible_cpu(cpu)
7534 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7535 }
7536 
wq_watchdog_timer_fn(struct timer_list * unused)7537 static void wq_watchdog_timer_fn(struct timer_list *unused)
7538 {
7539 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7540 	bool lockup_detected = false;
7541 	bool cpu_pool_stall = false;
7542 	unsigned long now = jiffies;
7543 	struct worker_pool *pool;
7544 	int pi;
7545 
7546 	if (!thresh)
7547 		return;
7548 
7549 	rcu_read_lock();
7550 
7551 	for_each_pool(pool, pi) {
7552 		unsigned long pool_ts, touched, ts;
7553 
7554 		pool->cpu_stall = false;
7555 		if (list_empty(&pool->worklist))
7556 			continue;
7557 
7558 		/*
7559 		 * If a virtual machine is stopped by the host it can look to
7560 		 * the watchdog like a stall.
7561 		 */
7562 		kvm_check_and_clear_guest_paused();
7563 
7564 		/* get the latest of pool and touched timestamps */
7565 		if (pool->cpu >= 0)
7566 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7567 		else
7568 			touched = READ_ONCE(wq_watchdog_touched);
7569 		pool_ts = READ_ONCE(pool->watchdog_ts);
7570 
7571 		if (time_after(pool_ts, touched))
7572 			ts = pool_ts;
7573 		else
7574 			ts = touched;
7575 
7576 		/* did we stall? */
7577 		if (time_after(now, ts + thresh)) {
7578 			lockup_detected = true;
7579 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7580 				pool->cpu_stall = true;
7581 				cpu_pool_stall = true;
7582 			}
7583 			pr_emerg("BUG: workqueue lockup - pool");
7584 			pr_cont_pool_info(pool);
7585 			pr_cont(" stuck for %us!\n",
7586 				jiffies_to_msecs(now - pool_ts) / 1000);
7587 		}
7588 
7589 
7590 	}
7591 
7592 	rcu_read_unlock();
7593 
7594 	if (lockup_detected)
7595 		show_all_workqueues();
7596 
7597 	if (cpu_pool_stall)
7598 		show_cpu_pools_hogs();
7599 
7600 	if (lockup_detected)
7601 		panic_on_wq_watchdog();
7602 
7603 	wq_watchdog_reset_touched();
7604 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7605 }
7606 
wq_watchdog_touch(int cpu)7607 notrace void wq_watchdog_touch(int cpu)
7608 {
7609 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7610 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7611 	unsigned long now = jiffies;
7612 
7613 	if (cpu >= 0)
7614 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7615 	else
7616 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7617 
7618 	/* Don't unnecessarily store to global cacheline */
7619 	if (time_after(now, touch_ts + thresh / 4))
7620 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7621 }
7622 
wq_watchdog_set_thresh(unsigned long thresh)7623 static void wq_watchdog_set_thresh(unsigned long thresh)
7624 {
7625 	wq_watchdog_thresh = 0;
7626 	timer_delete_sync(&wq_watchdog_timer);
7627 
7628 	if (thresh) {
7629 		wq_watchdog_thresh = thresh;
7630 		wq_watchdog_reset_touched();
7631 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7632 	}
7633 }
7634 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7635 static int wq_watchdog_param_set_thresh(const char *val,
7636 					const struct kernel_param *kp)
7637 {
7638 	unsigned long thresh;
7639 	int ret;
7640 
7641 	ret = kstrtoul(val, 0, &thresh);
7642 	if (ret)
7643 		return ret;
7644 
7645 	if (system_wq)
7646 		wq_watchdog_set_thresh(thresh);
7647 	else
7648 		wq_watchdog_thresh = thresh;
7649 
7650 	return 0;
7651 }
7652 
7653 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7654 	.set	= wq_watchdog_param_set_thresh,
7655 	.get	= param_get_ulong,
7656 };
7657 
7658 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7659 		0644);
7660 
wq_watchdog_init(void)7661 static void wq_watchdog_init(void)
7662 {
7663 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7664 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7665 }
7666 
7667 #else	/* CONFIG_WQ_WATCHDOG */
7668 
wq_watchdog_init(void)7669 static inline void wq_watchdog_init(void) { }
7670 
7671 #endif	/* CONFIG_WQ_WATCHDOG */
7672 
bh_pool_kick_normal(struct irq_work * irq_work)7673 static void bh_pool_kick_normal(struct irq_work *irq_work)
7674 {
7675 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7676 }
7677 
bh_pool_kick_highpri(struct irq_work * irq_work)7678 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7679 {
7680 	raise_softirq_irqoff(HI_SOFTIRQ);
7681 }
7682 
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7683 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7684 {
7685 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7686 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7687 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7688 		return;
7689 	}
7690 
7691 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7692 }
7693 
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7694 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7695 {
7696 	BUG_ON(init_worker_pool(pool));
7697 	pool->cpu = cpu;
7698 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7699 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7700 	pool->attrs->nice = nice;
7701 	pool->attrs->affn_strict = true;
7702 	pool->node = cpu_to_node(cpu);
7703 
7704 	/* alloc pool ID */
7705 	mutex_lock(&wq_pool_mutex);
7706 	BUG_ON(worker_pool_assign_id(pool));
7707 	mutex_unlock(&wq_pool_mutex);
7708 }
7709 
7710 /**
7711  * workqueue_init_early - early init for workqueue subsystem
7712  *
7713  * This is the first step of three-staged workqueue subsystem initialization and
7714  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7715  * up. It sets up all the data structures and system workqueues and allows early
7716  * boot code to create workqueues and queue/cancel work items. Actual work item
7717  * execution starts only after kthreads can be created and scheduled right
7718  * before early initcalls.
7719  */
workqueue_init_early(void)7720 void __init workqueue_init_early(void)
7721 {
7722 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7723 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7724 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7725 						       bh_pool_kick_highpri };
7726 	int i, cpu;
7727 
7728 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7729 
7730 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7731 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7732 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7733 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7734 
7735 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7736 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7737 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7738 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7739 	if (!cpumask_empty(&wq_cmdline_cpumask))
7740 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7741 
7742 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7743 	cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask,
7744 						housekeeping_cpumask(HK_TYPE_DOMAIN));
7745 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7746 
7747 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7748 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7749 
7750 	/*
7751 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7752 	 * This allows workqueue items to be moved to HK CPUs.
7753 	 */
7754 	if (housekeeping_enabled(HK_TYPE_TICK))
7755 		wq_power_efficient = true;
7756 
7757 	/* initialize WQ_AFFN_SYSTEM pods */
7758 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7759 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7760 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7761 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7762 
7763 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7764 
7765 	pt->nr_pods = 1;
7766 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7767 	pt->pod_node[0] = NUMA_NO_NODE;
7768 	pt->cpu_pod[0] = 0;
7769 
7770 	/* initialize BH and CPU pools */
7771 	for_each_possible_cpu(cpu) {
7772 		struct worker_pool *pool;
7773 
7774 		i = 0;
7775 		for_each_bh_worker_pool(pool, cpu) {
7776 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7777 			pool->flags |= POOL_BH;
7778 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7779 			i++;
7780 		}
7781 
7782 		i = 0;
7783 		for_each_cpu_worker_pool(pool, cpu)
7784 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7785 	}
7786 
7787 	/* create default unbound and ordered wq attrs */
7788 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7789 		struct workqueue_attrs *attrs;
7790 
7791 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7792 		attrs->nice = std_nice[i];
7793 		unbound_std_wq_attrs[i] = attrs;
7794 
7795 		/*
7796 		 * An ordered wq should have only one pwq as ordering is
7797 		 * guaranteed by max_active which is enforced by pwqs.
7798 		 */
7799 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7800 		attrs->nice = std_nice[i];
7801 		attrs->ordered = true;
7802 		ordered_wq_attrs[i] = attrs;
7803 	}
7804 
7805 	system_wq = alloc_workqueue("events", 0, 0);
7806 	system_percpu_wq = alloc_workqueue("events", 0, 0);
7807 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7808 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7809 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7810 	system_dfl_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, WQ_MAX_ACTIVE);
7811 	system_freezable_wq = alloc_workqueue("events_freezable",
7812 					      WQ_FREEZABLE, 0);
7813 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7814 					      WQ_POWER_EFFICIENT, 0);
7815 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7816 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7817 					      0);
7818 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7819 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7820 					       WQ_BH | WQ_HIGHPRI, 0);
7821 	BUG_ON(!system_wq || !system_percpu_wq|| !system_highpri_wq || !system_long_wq ||
7822 	       !system_unbound_wq || !system_freezable_wq || !system_dfl_wq ||
7823 	       !system_power_efficient_wq ||
7824 	       !system_freezable_power_efficient_wq ||
7825 	       !system_bh_wq || !system_bh_highpri_wq);
7826 }
7827 
wq_cpu_intensive_thresh_init(void)7828 static void __init wq_cpu_intensive_thresh_init(void)
7829 {
7830 	unsigned long thresh;
7831 	unsigned long bogo;
7832 
7833 	pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release");
7834 	BUG_ON(IS_ERR(pwq_release_worker));
7835 
7836 	/* if the user set it to a specific value, keep it */
7837 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7838 		return;
7839 
7840 	/*
7841 	 * The default of 10ms is derived from the fact that most modern (as of
7842 	 * 2023) processors can do a lot in 10ms and that it's just below what
7843 	 * most consider human-perceivable. However, the kernel also runs on a
7844 	 * lot slower CPUs including microcontrollers where the threshold is way
7845 	 * too low.
7846 	 *
7847 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7848 	 * This is by no means accurate but it doesn't have to be. The mechanism
7849 	 * is still useful even when the threshold is fully scaled up. Also, as
7850 	 * the reports would usually be applicable to everyone, some machines
7851 	 * operating on longer thresholds won't significantly diminish their
7852 	 * usefulness.
7853 	 */
7854 	thresh = 10 * USEC_PER_MSEC;
7855 
7856 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7857 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7858 	if (bogo < 4000)
7859 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7860 
7861 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7862 		 loops_per_jiffy, bogo, thresh);
7863 
7864 	wq_cpu_intensive_thresh_us = thresh;
7865 }
7866 
7867 /**
7868  * workqueue_init - bring workqueue subsystem fully online
7869  *
7870  * This is the second step of three-staged workqueue subsystem initialization
7871  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7872  * been created and work items queued on them, but there are no kworkers
7873  * executing the work items yet. Populate the worker pools with the initial
7874  * workers and enable future kworker creations.
7875  */
workqueue_init(void)7876 void __init workqueue_init(void)
7877 {
7878 	struct workqueue_struct *wq;
7879 	struct worker_pool *pool;
7880 	int cpu, bkt;
7881 
7882 	wq_cpu_intensive_thresh_init();
7883 
7884 	mutex_lock(&wq_pool_mutex);
7885 
7886 	/*
7887 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7888 	 * up. Also, create a rescuer for workqueues that requested it.
7889 	 */
7890 	for_each_possible_cpu(cpu) {
7891 		for_each_bh_worker_pool(pool, cpu)
7892 			pool->node = cpu_to_node(cpu);
7893 		for_each_cpu_worker_pool(pool, cpu)
7894 			pool->node = cpu_to_node(cpu);
7895 	}
7896 
7897 	list_for_each_entry(wq, &workqueues, list) {
7898 		WARN(init_rescuer(wq),
7899 		     "workqueue: failed to create early rescuer for %s",
7900 		     wq->name);
7901 	}
7902 
7903 	mutex_unlock(&wq_pool_mutex);
7904 
7905 	/*
7906 	 * Create the initial workers. A BH pool has one pseudo worker that
7907 	 * represents the shared BH execution context and thus doesn't get
7908 	 * affected by hotplug events. Create the BH pseudo workers for all
7909 	 * possible CPUs here.
7910 	 */
7911 	for_each_possible_cpu(cpu)
7912 		for_each_bh_worker_pool(pool, cpu)
7913 			BUG_ON(!create_worker(pool));
7914 
7915 	for_each_online_cpu(cpu) {
7916 		for_each_cpu_worker_pool(pool, cpu) {
7917 			pool->flags &= ~POOL_DISASSOCIATED;
7918 			BUG_ON(!create_worker(pool));
7919 		}
7920 	}
7921 
7922 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7923 		BUG_ON(!create_worker(pool));
7924 
7925 	wq_online = true;
7926 	wq_watchdog_init();
7927 }
7928 
7929 /*
7930  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7931  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7932  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7933  */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7934 static void __init init_pod_type(struct wq_pod_type *pt,
7935 				 bool (*cpus_share_pod)(int, int))
7936 {
7937 	int cur, pre, cpu, pod;
7938 
7939 	pt->nr_pods = 0;
7940 
7941 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7942 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7943 	BUG_ON(!pt->cpu_pod);
7944 
7945 	for_each_possible_cpu(cur) {
7946 		for_each_possible_cpu(pre) {
7947 			if (pre >= cur) {
7948 				pt->cpu_pod[cur] = pt->nr_pods++;
7949 				break;
7950 			}
7951 			if (cpus_share_pod(cur, pre)) {
7952 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7953 				break;
7954 			}
7955 		}
7956 	}
7957 
7958 	/* init the rest to match @pt->cpu_pod[] */
7959 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7960 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7961 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7962 
7963 	for (pod = 0; pod < pt->nr_pods; pod++)
7964 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7965 
7966 	for_each_possible_cpu(cpu) {
7967 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7968 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7969 	}
7970 }
7971 
cpus_dont_share(int cpu0,int cpu1)7972 static bool __init cpus_dont_share(int cpu0, int cpu1)
7973 {
7974 	return false;
7975 }
7976 
cpus_share_smt(int cpu0,int cpu1)7977 static bool __init cpus_share_smt(int cpu0, int cpu1)
7978 {
7979 #ifdef CONFIG_SCHED_SMT
7980 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7981 #else
7982 	return false;
7983 #endif
7984 }
7985 
cpus_share_numa(int cpu0,int cpu1)7986 static bool __init cpus_share_numa(int cpu0, int cpu1)
7987 {
7988 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7989 }
7990 
7991 /**
7992  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7993  *
7994  * This is the third step of three-staged workqueue subsystem initialization and
7995  * invoked after SMP and topology information are fully initialized. It
7996  * initializes the unbound CPU pods accordingly.
7997  */
workqueue_init_topology(void)7998 void __init workqueue_init_topology(void)
7999 {
8000 	struct workqueue_struct *wq;
8001 	int cpu;
8002 
8003 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8004 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8005 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8006 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8007 
8008 	wq_topo_initialized = true;
8009 
8010 	mutex_lock(&wq_pool_mutex);
8011 
8012 	/*
8013 	 * Workqueues allocated earlier would have all CPUs sharing the default
8014 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8015 	 * and CPU combinations to apply per-pod sharing.
8016 	 */
8017 	list_for_each_entry(wq, &workqueues, list) {
8018 		for_each_online_cpu(cpu)
8019 			unbound_wq_update_pwq(wq, cpu);
8020 		if (wq->flags & WQ_UNBOUND) {
8021 			mutex_lock(&wq->mutex);
8022 			wq_update_node_max_active(wq, -1);
8023 			mutex_unlock(&wq->mutex);
8024 		}
8025 	}
8026 
8027 	mutex_unlock(&wq_pool_mutex);
8028 }
8029 
__warn_flushing_systemwide_wq(void)8030 void __warn_flushing_systemwide_wq(void)
8031 {
8032 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8033 	dump_stack();
8034 }
8035 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8036 
workqueue_unbound_cpus_setup(char * str)8037 static int __init workqueue_unbound_cpus_setup(char *str)
8038 {
8039 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8040 		cpumask_clear(&wq_cmdline_cpumask);
8041 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8042 	}
8043 
8044 	return 1;
8045 }
8046 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8047