xref: /linux/drivers/irqchip/irq-gic-v3.c (revision f112eea3ccefc8a267fff592059f128b3166ca9e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kernel.h>
16 #include <linux/kstrtox.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/percpu.h>
21 #include <linux/refcount.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24 
25 #include <linux/irqchip.h>
26 #include <linux/irqchip/arm-gic-common.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/irqchip/arm-gic-v3-prio.h>
29 #include <linux/irqchip/irq-partition-percpu.h>
30 #include <linux/bitfield.h>
31 #include <linux/bits.h>
32 #include <linux/arm-smccc.h>
33 
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/smp_plat.h>
37 #include <asm/virt.h>
38 
39 #include "irq-gic-common.h"
40 
41 static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ;
42 static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI;
43 
44 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
45 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
46 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001	(1ULL << 2)
47 #define FLAGS_WORKAROUND_INSECURE		(1ULL << 3)
48 
49 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
50 
51 static struct cpumask broken_rdists __read_mostly __maybe_unused;
52 
53 struct redist_region {
54 	void __iomem		*redist_base;
55 	phys_addr_t		phys_base;
56 	bool			single_redist;
57 };
58 
59 struct gic_chip_data {
60 	struct fwnode_handle	*fwnode;
61 	phys_addr_t		dist_phys_base;
62 	void __iomem		*dist_base;
63 	struct redist_region	*redist_regions;
64 	struct rdists		rdists;
65 	struct irq_domain	*domain;
66 	u64			redist_stride;
67 	u32			nr_redist_regions;
68 	u64			flags;
69 	bool			has_rss;
70 	unsigned int		ppi_nr;
71 	struct partition_desc	**ppi_descs;
72 };
73 
74 #define T241_CHIPS_MAX		4
75 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
76 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
77 
78 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
79 
80 static struct gic_chip_data gic_data __read_mostly;
81 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
82 
83 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
84 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
85 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
86 
87 static bool nmi_support_forbidden;
88 
89 /*
90  * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
91  * are potentially stolen by the secure side. Some code, especially code dealing
92  * with hwirq IDs, is simplified by accounting for all 16.
93  */
94 #define SGI_NR		16
95 
96 /*
97  * The behaviours of RPR and PMR registers differ depending on the value of
98  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
99  * distributor and redistributors depends on whether security is enabled in the
100  * GIC.
101  *
102  * When security is enabled, non-secure priority values from the (re)distributor
103  * are presented to the GIC CPUIF as follow:
104  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
105  *
106  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
107  * EL1 are subject to a similar operation thus matching the priorities presented
108  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
109  * these values are unchanged by the GIC.
110  *
111  * see GICv3/GICv4 Architecture Specification (IHI0069D):
112  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
113  *   priorities.
114  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
115  *   interrupt.
116  */
117 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
118 
gic_get_pribits(void)119 static u32 gic_get_pribits(void)
120 {
121 	u32 pribits;
122 
123 	pribits = gic_read_ctlr();
124 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
125 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
126 	pribits++;
127 
128 	return pribits;
129 }
130 
gic_has_group0(void)131 static bool gic_has_group0(void)
132 {
133 	u32 val;
134 	u32 old_pmr;
135 
136 	old_pmr = gic_read_pmr();
137 
138 	/*
139 	 * Let's find out if Group0 is under control of EL3 or not by
140 	 * setting the highest possible, non-zero priority in PMR.
141 	 *
142 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
143 	 * order for the CPU interface to set bit 7, and keep the
144 	 * actual priority in the non-secure range. In the process, it
145 	 * looses the least significant bit and the actual priority
146 	 * becomes 0x80. Reading it back returns 0, indicating that
147 	 * we're don't have access to Group0.
148 	 */
149 	gic_write_pmr(BIT(8 - gic_get_pribits()));
150 	val = gic_read_pmr();
151 
152 	gic_write_pmr(old_pmr);
153 
154 	return val != 0;
155 }
156 
gic_dist_security_disabled(void)157 static inline bool gic_dist_security_disabled(void)
158 {
159 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
160 }
161 
162 static bool cpus_have_security_disabled __ro_after_init;
163 static bool cpus_have_group0 __ro_after_init;
164 
gic_prio_init(void)165 static void __init gic_prio_init(void)
166 {
167 	bool ds;
168 
169 	cpus_have_group0 = gic_has_group0();
170 
171 	ds = gic_dist_security_disabled();
172 	if ((gic_data.flags & FLAGS_WORKAROUND_INSECURE) && !ds) {
173 		if (cpus_have_group0) {
174 			u32 val;
175 
176 			val = readl_relaxed(gic_data.dist_base + GICD_CTLR);
177 			val |= GICD_CTLR_DS;
178 			writel_relaxed(val, gic_data.dist_base + GICD_CTLR);
179 
180 			ds = gic_dist_security_disabled();
181 			if (ds)
182 				pr_warn("Broken GIC integration, security disabled\n");
183 		} else {
184 			pr_warn("Broken GIC integration, pNMI forbidden\n");
185 			nmi_support_forbidden = true;
186 		}
187 	}
188 
189 	cpus_have_security_disabled = ds;
190 
191 	/*
192 	 * How priority values are used by the GIC depends on two things:
193 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
194 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
195 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
196 	 * way priorities are presented in ICC_PMR_EL1 and in the distributor:
197 	 *
198 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor
199 	 * -------------------------------------------------------
200 	 *      1       |      -      |  unchanged  |  unchanged
201 	 * -------------------------------------------------------
202 	 *      0       |      1      |  non-secure |  non-secure
203 	 * -------------------------------------------------------
204 	 *      0       |      0      |  unchanged  |  non-secure
205 	 *
206 	 * In the non-secure view reads and writes are modified:
207 	 *
208 	 * - A value written is right-shifted by one and the MSB is set,
209 	 *   forcing the priority into the non-secure range.
210 	 *
211 	 * - A value read is left-shifted by one.
212 	 *
213 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
214 	 * are both either modified or unchanged, we can use the same set of
215 	 * priorities.
216 	 *
217 	 * In the last case, where only the interrupt priorities are modified to
218 	 * be in the non-secure range, we program the non-secure values into
219 	 * the distributor to match the PMR values we want.
220 	 */
221 	if (cpus_have_group0 && !cpus_have_security_disabled) {
222 		dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq);
223 		dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi);
224 	}
225 
226 	pr_info("GICD_CTRL.DS=%d, SCR_EL3.FIQ=%d\n",
227 		cpus_have_security_disabled,
228 		!cpus_have_group0);
229 }
230 
231 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
232 static refcount_t *rdist_nmi_refs;
233 
234 static struct gic_kvm_info gic_v3_kvm_info __initdata;
235 static DEFINE_PER_CPU(bool, has_rss);
236 
237 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
238 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
239 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
240 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
241 
242 /* Our default, arbitrary priority value. Linux only uses one anyway. */
243 #define DEFAULT_PMR_VALUE	0xf0
244 
245 enum gic_intid_range {
246 	SGI_RANGE,
247 	PPI_RANGE,
248 	SPI_RANGE,
249 	EPPI_RANGE,
250 	ESPI_RANGE,
251 	LPI_RANGE,
252 	__INVALID_RANGE__
253 };
254 
__get_intid_range(irq_hw_number_t hwirq)255 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
256 {
257 	switch (hwirq) {
258 	case 0 ... 15:
259 		return SGI_RANGE;
260 	case 16 ... 31:
261 		return PPI_RANGE;
262 	case 32 ... 1019:
263 		return SPI_RANGE;
264 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
265 		return EPPI_RANGE;
266 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
267 		return ESPI_RANGE;
268 	case 8192 ... GENMASK(23, 0):
269 		return LPI_RANGE;
270 	default:
271 		return __INVALID_RANGE__;
272 	}
273 }
274 
get_intid_range(struct irq_data * d)275 static enum gic_intid_range get_intid_range(struct irq_data *d)
276 {
277 	return __get_intid_range(d->hwirq);
278 }
279 
gic_irq_in_rdist(struct irq_data * d)280 static inline bool gic_irq_in_rdist(struct irq_data *d)
281 {
282 	switch (get_intid_range(d)) {
283 	case SGI_RANGE:
284 	case PPI_RANGE:
285 	case EPPI_RANGE:
286 		return true;
287 	default:
288 		return false;
289 	}
290 }
291 
gic_dist_base_alias(struct irq_data * d)292 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
293 {
294 	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
295 		irq_hw_number_t hwirq = irqd_to_hwirq(d);
296 		u32 chip;
297 
298 		/*
299 		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
300 		 * registers are directed to the chip that owns the SPI. The
301 		 * the alias region can also be used for writes to the
302 		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
303 		 * for 320 {E}SPIs. Mappings for all 4 chips:
304 		 *    Chip0 = 32-351
305 		 *    Chip1 = 352-671
306 		 *    Chip2 = 672-991
307 		 *    Chip3 = 4096-4415
308 		 */
309 		switch (__get_intid_range(hwirq)) {
310 		case SPI_RANGE:
311 			chip = (hwirq - 32) / 320;
312 			break;
313 		case ESPI_RANGE:
314 			chip = 3;
315 			break;
316 		default:
317 			unreachable();
318 		}
319 		return t241_dist_base_alias[chip];
320 	}
321 
322 	return gic_data.dist_base;
323 }
324 
gic_dist_base(struct irq_data * d)325 static inline void __iomem *gic_dist_base(struct irq_data *d)
326 {
327 	switch (get_intid_range(d)) {
328 	case SGI_RANGE:
329 	case PPI_RANGE:
330 	case EPPI_RANGE:
331 		/* SGI+PPI -> SGI_base for this CPU */
332 		return gic_data_rdist_sgi_base();
333 
334 	case SPI_RANGE:
335 	case ESPI_RANGE:
336 		/* SPI -> dist_base */
337 		return gic_data.dist_base;
338 
339 	default:
340 		return NULL;
341 	}
342 }
343 
gic_do_wait_for_rwp(void __iomem * base,u32 bit)344 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
345 {
346 	u32 val;
347 	int ret;
348 
349 	ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit),
350 						1, USEC_PER_SEC);
351 	if (ret == -ETIMEDOUT)
352 		pr_err_ratelimited("RWP timeout, gone fishing\n");
353 }
354 
355 /* Wait for completion of a distributor change */
gic_dist_wait_for_rwp(void)356 static void gic_dist_wait_for_rwp(void)
357 {
358 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
359 }
360 
361 /* Wait for completion of a redistributor change */
gic_redist_wait_for_rwp(void)362 static void gic_redist_wait_for_rwp(void)
363 {
364 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
365 }
366 
gic_enable_redist(bool enable)367 static void gic_enable_redist(bool enable)
368 {
369 	void __iomem *rbase;
370 	u32 val;
371 	int ret;
372 
373 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
374 		return;
375 
376 	rbase = gic_data_rdist_rd_base();
377 
378 	val = readl_relaxed(rbase + GICR_WAKER);
379 	if (enable)
380 		/* Wake up this CPU redistributor */
381 		val &= ~GICR_WAKER_ProcessorSleep;
382 	else
383 		val |= GICR_WAKER_ProcessorSleep;
384 	writel_relaxed(val, rbase + GICR_WAKER);
385 
386 	if (!enable) {		/* Check that GICR_WAKER is writeable */
387 		val = readl_relaxed(rbase + GICR_WAKER);
388 		if (!(val & GICR_WAKER_ProcessorSleep))
389 			return;	/* No PM support in this redistributor */
390 	}
391 
392 	ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val,
393 						enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep),
394 						1, USEC_PER_SEC);
395 	if (ret == -ETIMEDOUT) {
396 		pr_err_ratelimited("redistributor failed to %s...\n",
397 				   enable ? "wakeup" : "sleep");
398 	}
399 }
400 
401 /*
402  * Routines to disable, enable, EOI and route interrupts
403  */
convert_offset_index(struct irq_data * d,u32 offset,u32 * index)404 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
405 {
406 	switch (get_intid_range(d)) {
407 	case SGI_RANGE:
408 	case PPI_RANGE:
409 	case SPI_RANGE:
410 		*index = d->hwirq;
411 		return offset;
412 	case EPPI_RANGE:
413 		/*
414 		 * Contrary to the ESPI range, the EPPI range is contiguous
415 		 * to the PPI range in the registers, so let's adjust the
416 		 * displacement accordingly. Consistency is overrated.
417 		 */
418 		*index = d->hwirq - EPPI_BASE_INTID + 32;
419 		return offset;
420 	case ESPI_RANGE:
421 		*index = d->hwirq - ESPI_BASE_INTID;
422 		switch (offset) {
423 		case GICD_ISENABLER:
424 			return GICD_ISENABLERnE;
425 		case GICD_ICENABLER:
426 			return GICD_ICENABLERnE;
427 		case GICD_ISPENDR:
428 			return GICD_ISPENDRnE;
429 		case GICD_ICPENDR:
430 			return GICD_ICPENDRnE;
431 		case GICD_ISACTIVER:
432 			return GICD_ISACTIVERnE;
433 		case GICD_ICACTIVER:
434 			return GICD_ICACTIVERnE;
435 		case GICD_IPRIORITYR:
436 			return GICD_IPRIORITYRnE;
437 		case GICD_ICFGR:
438 			return GICD_ICFGRnE;
439 		case GICD_IROUTER:
440 			return GICD_IROUTERnE;
441 		default:
442 			break;
443 		}
444 		break;
445 	default:
446 		break;
447 	}
448 
449 	WARN_ON(1);
450 	*index = d->hwirq;
451 	return offset;
452 }
453 
gic_peek_irq(struct irq_data * d,u32 offset)454 static int gic_peek_irq(struct irq_data *d, u32 offset)
455 {
456 	void __iomem *base;
457 	u32 index, mask;
458 
459 	offset = convert_offset_index(d, offset, &index);
460 	mask = 1 << (index % 32);
461 
462 	if (gic_irq_in_rdist(d))
463 		base = gic_data_rdist_sgi_base();
464 	else
465 		base = gic_dist_base_alias(d);
466 
467 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
468 }
469 
gic_poke_irq(struct irq_data * d,u32 offset)470 static void gic_poke_irq(struct irq_data *d, u32 offset)
471 {
472 	void __iomem *base;
473 	u32 index, mask;
474 
475 	offset = convert_offset_index(d, offset, &index);
476 	mask = 1 << (index % 32);
477 
478 	if (gic_irq_in_rdist(d))
479 		base = gic_data_rdist_sgi_base();
480 	else
481 		base = gic_data.dist_base;
482 
483 	writel_relaxed(mask, base + offset + (index / 32) * 4);
484 }
485 
gic_mask_irq(struct irq_data * d)486 static void gic_mask_irq(struct irq_data *d)
487 {
488 	gic_poke_irq(d, GICD_ICENABLER);
489 	if (gic_irq_in_rdist(d))
490 		gic_redist_wait_for_rwp();
491 	else
492 		gic_dist_wait_for_rwp();
493 }
494 
gic_eoimode1_mask_irq(struct irq_data * d)495 static void gic_eoimode1_mask_irq(struct irq_data *d)
496 {
497 	gic_mask_irq(d);
498 	/*
499 	 * When masking a forwarded interrupt, make sure it is
500 	 * deactivated as well.
501 	 *
502 	 * This ensures that an interrupt that is getting
503 	 * disabled/masked will not get "stuck", because there is
504 	 * noone to deactivate it (guest is being terminated).
505 	 */
506 	if (irqd_is_forwarded_to_vcpu(d))
507 		gic_poke_irq(d, GICD_ICACTIVER);
508 }
509 
gic_unmask_irq(struct irq_data * d)510 static void gic_unmask_irq(struct irq_data *d)
511 {
512 	gic_poke_irq(d, GICD_ISENABLER);
513 }
514 
gic_supports_nmi(void)515 static inline bool gic_supports_nmi(void)
516 {
517 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
518 	       static_branch_likely(&supports_pseudo_nmis);
519 }
520 
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)521 static int gic_irq_set_irqchip_state(struct irq_data *d,
522 				     enum irqchip_irq_state which, bool val)
523 {
524 	u32 reg;
525 
526 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
527 		return -EINVAL;
528 
529 	switch (which) {
530 	case IRQCHIP_STATE_PENDING:
531 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
532 		break;
533 
534 	case IRQCHIP_STATE_ACTIVE:
535 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
536 		break;
537 
538 	case IRQCHIP_STATE_MASKED:
539 		if (val) {
540 			gic_mask_irq(d);
541 			return 0;
542 		}
543 		reg = GICD_ISENABLER;
544 		break;
545 
546 	default:
547 		return -EINVAL;
548 	}
549 
550 	gic_poke_irq(d, reg);
551 
552 	/*
553 	 * Force read-back to guarantee that the active state has taken
554 	 * effect, and won't race with a guest-driven deactivation.
555 	 */
556 	if (reg == GICD_ISACTIVER)
557 		gic_peek_irq(d, reg);
558 	return 0;
559 }
560 
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)561 static int gic_irq_get_irqchip_state(struct irq_data *d,
562 				     enum irqchip_irq_state which, bool *val)
563 {
564 	if (d->hwirq >= 8192) /* PPI/SPI only */
565 		return -EINVAL;
566 
567 	switch (which) {
568 	case IRQCHIP_STATE_PENDING:
569 		*val = gic_peek_irq(d, GICD_ISPENDR);
570 		break;
571 
572 	case IRQCHIP_STATE_ACTIVE:
573 		*val = gic_peek_irq(d, GICD_ISACTIVER);
574 		break;
575 
576 	case IRQCHIP_STATE_MASKED:
577 		*val = !gic_peek_irq(d, GICD_ISENABLER);
578 		break;
579 
580 	default:
581 		return -EINVAL;
582 	}
583 
584 	return 0;
585 }
586 
gic_irq_set_prio(struct irq_data * d,u8 prio)587 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
588 {
589 	void __iomem *base = gic_dist_base(d);
590 	u32 offset, index;
591 
592 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
593 
594 	writeb_relaxed(prio, base + offset + index);
595 }
596 
__gic_get_ppi_index(irq_hw_number_t hwirq)597 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
598 {
599 	switch (__get_intid_range(hwirq)) {
600 	case PPI_RANGE:
601 		return hwirq - 16;
602 	case EPPI_RANGE:
603 		return hwirq - EPPI_BASE_INTID + 16;
604 	default:
605 		unreachable();
606 	}
607 }
608 
__gic_get_rdist_index(irq_hw_number_t hwirq)609 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
610 {
611 	switch (__get_intid_range(hwirq)) {
612 	case SGI_RANGE:
613 	case PPI_RANGE:
614 		return hwirq;
615 	case EPPI_RANGE:
616 		return hwirq - EPPI_BASE_INTID + 32;
617 	default:
618 		unreachable();
619 	}
620 }
621 
gic_get_rdist_index(struct irq_data * d)622 static u32 gic_get_rdist_index(struct irq_data *d)
623 {
624 	return __gic_get_rdist_index(d->hwirq);
625 }
626 
gic_irq_nmi_setup(struct irq_data * d)627 static int gic_irq_nmi_setup(struct irq_data *d)
628 {
629 	struct irq_desc *desc = irq_to_desc(d->irq);
630 
631 	if (!gic_supports_nmi())
632 		return -EINVAL;
633 
634 	if (gic_peek_irq(d, GICD_ISENABLER)) {
635 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
636 		return -EINVAL;
637 	}
638 
639 	/*
640 	 * A secondary irq_chip should be in charge of LPI request,
641 	 * it should not be possible to get there
642 	 */
643 	if (WARN_ON(irqd_to_hwirq(d) >= 8192))
644 		return -EINVAL;
645 
646 	/* desc lock should already be held */
647 	if (gic_irq_in_rdist(d)) {
648 		u32 idx = gic_get_rdist_index(d);
649 
650 		/*
651 		 * Setting up a percpu interrupt as NMI, only switch handler
652 		 * for first NMI
653 		 */
654 		if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
655 			refcount_set(&rdist_nmi_refs[idx], 1);
656 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
657 		}
658 	} else {
659 		desc->handle_irq = handle_fasteoi_nmi;
660 	}
661 
662 	gic_irq_set_prio(d, dist_prio_nmi);
663 
664 	return 0;
665 }
666 
gic_irq_nmi_teardown(struct irq_data * d)667 static void gic_irq_nmi_teardown(struct irq_data *d)
668 {
669 	struct irq_desc *desc = irq_to_desc(d->irq);
670 
671 	if (WARN_ON(!gic_supports_nmi()))
672 		return;
673 
674 	if (gic_peek_irq(d, GICD_ISENABLER)) {
675 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
676 		return;
677 	}
678 
679 	/*
680 	 * A secondary irq_chip should be in charge of LPI request,
681 	 * it should not be possible to get there
682 	 */
683 	if (WARN_ON(irqd_to_hwirq(d) >= 8192))
684 		return;
685 
686 	/* desc lock should already be held */
687 	if (gic_irq_in_rdist(d)) {
688 		u32 idx = gic_get_rdist_index(d);
689 
690 		/* Tearing down NMI, only switch handler for last NMI */
691 		if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
692 			desc->handle_irq = handle_percpu_devid_irq;
693 	} else {
694 		desc->handle_irq = handle_fasteoi_irq;
695 	}
696 
697 	gic_irq_set_prio(d, dist_prio_irq);
698 }
699 
gic_arm64_erratum_2941627_needed(struct irq_data * d)700 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
701 {
702 	enum gic_intid_range range;
703 
704 	if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
705 		return false;
706 
707 	range = get_intid_range(d);
708 
709 	/*
710 	 * The workaround is needed if the IRQ is an SPI and
711 	 * the target cpu is different from the one we are
712 	 * executing on.
713 	 */
714 	return (range == SPI_RANGE || range == ESPI_RANGE) &&
715 		!cpumask_test_cpu(raw_smp_processor_id(),
716 				  irq_data_get_effective_affinity_mask(d));
717 }
718 
gic_eoi_irq(struct irq_data * d)719 static void gic_eoi_irq(struct irq_data *d)
720 {
721 	write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1);
722 	isb();
723 
724 	if (gic_arm64_erratum_2941627_needed(d)) {
725 		/*
726 		 * Make sure the GIC stream deactivate packet
727 		 * issued by ICC_EOIR1_EL1 has completed before
728 		 * deactivating through GICD_IACTIVER.
729 		 */
730 		dsb(sy);
731 		gic_poke_irq(d, GICD_ICACTIVER);
732 	}
733 }
734 
gic_eoimode1_eoi_irq(struct irq_data * d)735 static void gic_eoimode1_eoi_irq(struct irq_data *d)
736 {
737 	/*
738 	 * No need to deactivate an LPI, or an interrupt that
739 	 * is is getting forwarded to a vcpu.
740 	 */
741 	if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
742 		return;
743 
744 	if (!gic_arm64_erratum_2941627_needed(d))
745 		gic_write_dir(irqd_to_hwirq(d));
746 	else
747 		gic_poke_irq(d, GICD_ICACTIVER);
748 }
749 
gic_set_type(struct irq_data * d,unsigned int type)750 static int gic_set_type(struct irq_data *d, unsigned int type)
751 {
752 	irq_hw_number_t irq = irqd_to_hwirq(d);
753 	enum gic_intid_range range;
754 	void __iomem *base;
755 	u32 offset, index;
756 	int ret;
757 
758 	range = get_intid_range(d);
759 
760 	/* Interrupt configuration for SGIs can't be changed */
761 	if (range == SGI_RANGE)
762 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
763 
764 	/* SPIs have restrictions on the supported types */
765 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
766 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
767 		return -EINVAL;
768 
769 	if (gic_irq_in_rdist(d))
770 		base = gic_data_rdist_sgi_base();
771 	else
772 		base = gic_dist_base_alias(d);
773 
774 	offset = convert_offset_index(d, GICD_ICFGR, &index);
775 
776 	ret = gic_configure_irq(index, type, base + offset);
777 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
778 		/* Misconfigured PPIs are usually not fatal */
779 		pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq);
780 		ret = 0;
781 	}
782 
783 	return ret;
784 }
785 
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)786 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
787 {
788 	if (get_intid_range(d) == SGI_RANGE)
789 		return -EINVAL;
790 
791 	if (vcpu)
792 		irqd_set_forwarded_to_vcpu(d);
793 	else
794 		irqd_clr_forwarded_to_vcpu(d);
795 	return 0;
796 }
797 
gic_cpu_to_affinity(int cpu)798 static u64 gic_cpu_to_affinity(int cpu)
799 {
800 	u64 mpidr = cpu_logical_map(cpu);
801 	u64 aff;
802 
803 	/* ASR8601 needs to have its affinities shifted down... */
804 	if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
805 		mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1)	|
806 			 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
807 
808 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
809 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
810 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
811 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
812 
813 	return aff;
814 }
815 
gic_deactivate_unhandled(u32 irqnr)816 static void gic_deactivate_unhandled(u32 irqnr)
817 {
818 	if (static_branch_likely(&supports_deactivate_key)) {
819 		if (irqnr < 8192)
820 			gic_write_dir(irqnr);
821 	} else {
822 		write_gicreg(irqnr, ICC_EOIR1_EL1);
823 		isb();
824 	}
825 }
826 
827 /*
828  * Follow a read of the IAR with any HW maintenance that needs to happen prior
829  * to invoking the relevant IRQ handler. We must do two things:
830  *
831  * (1) Ensure instruction ordering between a read of IAR and subsequent
832  *     instructions in the IRQ handler using an ISB.
833  *
834  *     It is possible for the IAR to report an IRQ which was signalled *after*
835  *     the CPU took an IRQ exception as multiple interrupts can race to be
836  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
837  *     later interrupts could be prioritized by the GIC.
838  *
839  *     For devices which are tightly coupled to the CPU, such as PMUs, a
840  *     context synchronization event is necessary to ensure that system
841  *     register state is not stale, as these may have been indirectly written
842  *     *after* exception entry.
843  *
844  * (2) Execute an interrupt priority drop when EOI mode 1 is in use.
845  */
gic_complete_ack(u32 irqnr)846 static inline void gic_complete_ack(u32 irqnr)
847 {
848 	if (static_branch_likely(&supports_deactivate_key))
849 		write_gicreg(irqnr, ICC_EOIR1_EL1);
850 
851 	isb();
852 }
853 
gic_rpr_is_nmi_prio(void)854 static bool gic_rpr_is_nmi_prio(void)
855 {
856 	if (!gic_supports_nmi())
857 		return false;
858 
859 	return unlikely(gic_read_rpr() == GICV3_PRIO_NMI);
860 }
861 
gic_irqnr_is_special(u32 irqnr)862 static bool gic_irqnr_is_special(u32 irqnr)
863 {
864 	return irqnr >= 1020 && irqnr <= 1023;
865 }
866 
__gic_handle_irq(u32 irqnr,struct pt_regs * regs)867 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
868 {
869 	if (gic_irqnr_is_special(irqnr))
870 		return;
871 
872 	gic_complete_ack(irqnr);
873 
874 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
875 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
876 		gic_deactivate_unhandled(irqnr);
877 	}
878 }
879 
__gic_handle_nmi(u32 irqnr,struct pt_regs * regs)880 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
881 {
882 	if (gic_irqnr_is_special(irqnr))
883 		return;
884 
885 	gic_complete_ack(irqnr);
886 
887 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
888 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
889 		gic_deactivate_unhandled(irqnr);
890 	}
891 }
892 
893 /*
894  * An exception has been taken from a context with IRQs enabled, and this could
895  * be an IRQ or an NMI.
896  *
897  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
898  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
899  * after handling any NMI but before handling any IRQ.
900  *
901  * The entry code has performed IRQ entry, and if an NMI is detected we must
902  * perform NMI entry/exit around invoking the handler.
903  */
__gic_handle_irq_from_irqson(struct pt_regs * regs)904 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
905 {
906 	bool is_nmi;
907 	u32 irqnr;
908 
909 	irqnr = gic_read_iar();
910 
911 	is_nmi = gic_rpr_is_nmi_prio();
912 
913 	if (is_nmi) {
914 		nmi_enter();
915 		__gic_handle_nmi(irqnr, regs);
916 		nmi_exit();
917 	}
918 
919 	if (gic_prio_masking_enabled()) {
920 		gic_pmr_mask_irqs();
921 		gic_arch_enable_irqs();
922 	}
923 
924 	if (!is_nmi)
925 		__gic_handle_irq(irqnr, regs);
926 }
927 
928 /*
929  * An exception has been taken from a context with IRQs disabled, which can only
930  * be an NMI.
931  *
932  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
933  * DAIF.IF (and ICC_PMR_EL1) unchanged.
934  *
935  * The entry code has performed NMI entry.
936  */
__gic_handle_irq_from_irqsoff(struct pt_regs * regs)937 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
938 {
939 	u64 pmr;
940 	u32 irqnr;
941 
942 	/*
943 	 * We were in a context with IRQs disabled. However, the
944 	 * entry code has set PMR to a value that allows any
945 	 * interrupt to be acknowledged, and not just NMIs. This can
946 	 * lead to surprising effects if the NMI has been retired in
947 	 * the meantime, and that there is an IRQ pending. The IRQ
948 	 * would then be taken in NMI context, something that nobody
949 	 * wants to debug twice.
950 	 *
951 	 * Until we sort this, drop PMR again to a level that will
952 	 * actually only allow NMIs before reading IAR, and then
953 	 * restore it to what it was.
954 	 */
955 	pmr = gic_read_pmr();
956 	gic_pmr_mask_irqs();
957 	isb();
958 	irqnr = gic_read_iar();
959 	gic_write_pmr(pmr);
960 
961 	__gic_handle_nmi(irqnr, regs);
962 }
963 
gic_handle_irq(struct pt_regs * regs)964 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
965 {
966 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
967 		__gic_handle_irq_from_irqsoff(regs);
968 	else
969 		__gic_handle_irq_from_irqson(regs);
970 }
971 
gic_dist_init(void)972 static void __init gic_dist_init(void)
973 {
974 	unsigned int i;
975 	u64 affinity;
976 	void __iomem *base = gic_data.dist_base;
977 	u32 val;
978 
979 	/* Disable the distributor */
980 	writel_relaxed(0, base + GICD_CTLR);
981 	gic_dist_wait_for_rwp();
982 
983 	/*
984 	 * Configure SPIs as non-secure Group-1. This will only matter
985 	 * if the GIC only has a single security state. This will not
986 	 * do the right thing if the kernel is running in secure mode,
987 	 * but that's not the intended use case anyway.
988 	 */
989 	for (i = 32; i < GIC_LINE_NR; i += 32)
990 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
991 
992 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
993 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
994 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
995 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
996 	}
997 
998 	for (i = 0; i < GIC_ESPI_NR; i += 32)
999 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
1000 
1001 	for (i = 0; i < GIC_ESPI_NR; i += 16)
1002 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
1003 
1004 	for (i = 0; i < GIC_ESPI_NR; i += 4)
1005 		writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq),
1006 			       base + GICD_IPRIORITYRnE + i);
1007 
1008 	/* Now do the common stuff */
1009 	gic_dist_config(base, GIC_LINE_NR, dist_prio_irq);
1010 
1011 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
1012 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
1013 		pr_info("Enabling SGIs without active state\n");
1014 		val |= GICD_CTLR_nASSGIreq;
1015 	}
1016 
1017 	/* Enable distributor with ARE, Group1, and wait for it to drain */
1018 	writel_relaxed(val, base + GICD_CTLR);
1019 	gic_dist_wait_for_rwp();
1020 
1021 	/*
1022 	 * Set all global interrupts to the boot CPU only. ARE must be
1023 	 * enabled.
1024 	 */
1025 	affinity = gic_cpu_to_affinity(smp_processor_id());
1026 	for (i = 32; i < GIC_LINE_NR; i++)
1027 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
1028 
1029 	for (i = 0; i < GIC_ESPI_NR; i++)
1030 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
1031 }
1032 
gic_iterate_rdists(int (* fn)(struct redist_region *,void __iomem *))1033 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
1034 {
1035 	int ret = -ENODEV;
1036 	int i;
1037 
1038 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1039 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
1040 		u64 typer;
1041 		u32 reg;
1042 
1043 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
1044 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
1045 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
1046 			pr_warn("No redistributor present @%p\n", ptr);
1047 			break;
1048 		}
1049 
1050 		do {
1051 			typer = gic_read_typer(ptr + GICR_TYPER);
1052 			ret = fn(gic_data.redist_regions + i, ptr);
1053 			if (!ret)
1054 				return 0;
1055 
1056 			if (gic_data.redist_regions[i].single_redist)
1057 				break;
1058 
1059 			if (gic_data.redist_stride) {
1060 				ptr += gic_data.redist_stride;
1061 			} else {
1062 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
1063 				if (typer & GICR_TYPER_VLPIS)
1064 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
1065 			}
1066 		} while (!(typer & GICR_TYPER_LAST));
1067 	}
1068 
1069 	return ret ? -ENODEV : 0;
1070 }
1071 
__gic_populate_rdist(struct redist_region * region,void __iomem * ptr)1072 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1073 {
1074 	unsigned long mpidr;
1075 	u64 typer;
1076 	u32 aff;
1077 
1078 	/*
1079 	 * Convert affinity to a 32bit value that can be matched to
1080 	 * GICR_TYPER bits [63:32].
1081 	 */
1082 	mpidr = gic_cpu_to_affinity(smp_processor_id());
1083 
1084 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1085 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1086 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1087 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
1088 
1089 	typer = gic_read_typer(ptr + GICR_TYPER);
1090 	if ((typer >> 32) == aff) {
1091 		u64 offset = ptr - region->redist_base;
1092 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1093 		gic_data_rdist_rd_base() = ptr;
1094 		gic_data_rdist()->phys_base = region->phys_base + offset;
1095 
1096 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1097 			smp_processor_id(), mpidr,
1098 			(int)(region - gic_data.redist_regions),
1099 			&gic_data_rdist()->phys_base);
1100 		return 0;
1101 	}
1102 
1103 	/* Try next one */
1104 	return 1;
1105 }
1106 
gic_populate_rdist(void)1107 static int gic_populate_rdist(void)
1108 {
1109 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1110 		return 0;
1111 
1112 	/* We couldn't even deal with ourselves... */
1113 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1114 	     smp_processor_id(),
1115 	     (unsigned long)cpu_logical_map(smp_processor_id()));
1116 	return -ENODEV;
1117 }
1118 
__gic_update_rdist_properties(struct redist_region * region,void __iomem * ptr)1119 static int __gic_update_rdist_properties(struct redist_region *region,
1120 					 void __iomem *ptr)
1121 {
1122 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1123 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1124 
1125 	/* Boot-time cleanup */
1126 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1127 		u64 val;
1128 
1129 		/* Deactivate any present vPE */
1130 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1131 		if (val & GICR_VPENDBASER_Valid)
1132 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1133 					      ptr + SZ_128K + GICR_VPENDBASER);
1134 
1135 		/* Mark the VPE table as invalid */
1136 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1137 		val &= ~GICR_VPROPBASER_4_1_VALID;
1138 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1139 	}
1140 
1141 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1142 
1143 	/*
1144 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1145 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1146 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1147 	 *
1148 	 * These are 3 different ways to express the same thing, depending
1149 	 * on the revision of the architecture and its relaxations over
1150 	 * time. Just group them under the 'direct_lpi' banner.
1151 	 */
1152 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1153 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1154 					   !!(ctlr & GICR_CTLR_IR) |
1155 					   gic_data.rdists.has_rvpeid);
1156 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1157 
1158 	/* Detect non-sensical configurations */
1159 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1160 		gic_data.rdists.has_direct_lpi = false;
1161 		gic_data.rdists.has_vlpis = false;
1162 		gic_data.rdists.has_rvpeid = false;
1163 	}
1164 
1165 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1166 
1167 	return 1;
1168 }
1169 
gic_update_rdist_properties(void)1170 static void gic_update_rdist_properties(void)
1171 {
1172 	gic_data.ppi_nr = UINT_MAX;
1173 	gic_iterate_rdists(__gic_update_rdist_properties);
1174 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1175 		gic_data.ppi_nr = 0;
1176 	pr_info("GICv3 features: %d PPIs%s%s\n",
1177 		gic_data.ppi_nr,
1178 		gic_data.has_rss ? ", RSS" : "",
1179 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1180 
1181 	if (gic_data.rdists.has_vlpis)
1182 		pr_info("GICv4 features: %s%s%s\n",
1183 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1184 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1185 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1186 }
1187 
gic_cpu_sys_reg_enable(void)1188 static void gic_cpu_sys_reg_enable(void)
1189 {
1190 	/*
1191 	 * Need to check that the SRE bit has actually been set. If
1192 	 * not, it means that SRE is disabled at EL2. We're going to
1193 	 * die painfully, and there is nothing we can do about it.
1194 	 *
1195 	 * Kindly inform the luser.
1196 	 */
1197 	if (!gic_enable_sre())
1198 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1199 
1200 }
1201 
gic_cpu_sys_reg_init(void)1202 static void gic_cpu_sys_reg_init(void)
1203 {
1204 	int i, cpu = smp_processor_id();
1205 	u64 mpidr = gic_cpu_to_affinity(cpu);
1206 	u64 need_rss = MPIDR_RS(mpidr);
1207 	bool group0;
1208 	u32 pribits;
1209 
1210 	pribits = gic_get_pribits();
1211 
1212 	group0 = gic_has_group0();
1213 
1214 	/* Set priority mask register */
1215 	if (!gic_prio_masking_enabled()) {
1216 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1217 	} else if (gic_supports_nmi()) {
1218 		/*
1219 		 * Check that all CPUs use the same priority space.
1220 		 *
1221 		 * If there's a mismatch with the boot CPU, the system is
1222 		 * likely to die as interrupt masking will not work properly on
1223 		 * all CPUs.
1224 		 */
1225 		WARN_ON(group0 != cpus_have_group0);
1226 		WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled);
1227 	}
1228 
1229 	/*
1230 	 * Some firmwares hand over to the kernel with the BPR changed from
1231 	 * its reset value (and with a value large enough to prevent
1232 	 * any pre-emptive interrupts from working at all). Writing a zero
1233 	 * to BPR restores is reset value.
1234 	 */
1235 	gic_write_bpr1(0);
1236 
1237 	if (static_branch_likely(&supports_deactivate_key)) {
1238 		/* EOI drops priority only (mode 1) */
1239 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1240 	} else {
1241 		/* EOI deactivates interrupt too (mode 0) */
1242 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1243 	}
1244 
1245 	/* Always whack Group0 before Group1 */
1246 	if (group0) {
1247 		switch(pribits) {
1248 		case 8:
1249 		case 7:
1250 			write_gicreg(0, ICC_AP0R3_EL1);
1251 			write_gicreg(0, ICC_AP0R2_EL1);
1252 			fallthrough;
1253 		case 6:
1254 			write_gicreg(0, ICC_AP0R1_EL1);
1255 			fallthrough;
1256 		case 5:
1257 		case 4:
1258 			write_gicreg(0, ICC_AP0R0_EL1);
1259 		}
1260 
1261 		isb();
1262 	}
1263 
1264 	switch(pribits) {
1265 	case 8:
1266 	case 7:
1267 		write_gicreg(0, ICC_AP1R3_EL1);
1268 		write_gicreg(0, ICC_AP1R2_EL1);
1269 		fallthrough;
1270 	case 6:
1271 		write_gicreg(0, ICC_AP1R1_EL1);
1272 		fallthrough;
1273 	case 5:
1274 	case 4:
1275 		write_gicreg(0, ICC_AP1R0_EL1);
1276 	}
1277 
1278 	isb();
1279 
1280 	/* ... and let's hit the road... */
1281 	gic_write_grpen1(1);
1282 
1283 	/* Keep the RSS capability status in per_cpu variable */
1284 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1285 
1286 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1287 	for_each_online_cpu(i) {
1288 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1289 
1290 		need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1291 		if (need_rss && (!have_rss))
1292 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1293 				cpu, (unsigned long)mpidr,
1294 				i, (unsigned long)gic_cpu_to_affinity(i));
1295 	}
1296 
1297 	/**
1298 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1299 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1300 	 * UNPREDICTABLE choice of :
1301 	 *   - The write is ignored.
1302 	 *   - The RS field is treated as 0.
1303 	 */
1304 	if (need_rss && (!gic_data.has_rss))
1305 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1306 }
1307 
1308 static bool gicv3_nolpi;
1309 
gicv3_nolpi_cfg(char * buf)1310 static int __init gicv3_nolpi_cfg(char *buf)
1311 {
1312 	return kstrtobool(buf, &gicv3_nolpi);
1313 }
1314 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1315 
gic_dist_supports_lpis(void)1316 static int gic_dist_supports_lpis(void)
1317 {
1318 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1319 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1320 		!gicv3_nolpi);
1321 }
1322 
gic_cpu_init(void)1323 static void gic_cpu_init(void)
1324 {
1325 	void __iomem *rbase;
1326 	int i;
1327 
1328 	/* Register ourselves with the rest of the world */
1329 	if (gic_populate_rdist())
1330 		return;
1331 
1332 	gic_enable_redist(true);
1333 
1334 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1335 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1336 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1337 	     smp_processor_id());
1338 
1339 	rbase = gic_data_rdist_sgi_base();
1340 
1341 	/* Configure SGIs/PPIs as non-secure Group-1 */
1342 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
1343 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1344 
1345 	gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, dist_prio_irq);
1346 	gic_redist_wait_for_rwp();
1347 
1348 	/* initialise system registers */
1349 	gic_cpu_sys_reg_init();
1350 }
1351 
1352 #ifdef CONFIG_SMP
1353 
1354 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1355 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1356 
1357 /*
1358  * gic_starting_cpu() is called after the last point where cpuhp is allowed
1359  * to fail. So pre check for problems earlier.
1360  */
gic_check_rdist(unsigned int cpu)1361 static int gic_check_rdist(unsigned int cpu)
1362 {
1363 	if (cpumask_test_cpu(cpu, &broken_rdists))
1364 		return -EINVAL;
1365 
1366 	return 0;
1367 }
1368 
gic_starting_cpu(unsigned int cpu)1369 static int gic_starting_cpu(unsigned int cpu)
1370 {
1371 	gic_cpu_sys_reg_enable();
1372 	gic_cpu_init();
1373 
1374 	if (gic_dist_supports_lpis())
1375 		its_cpu_init();
1376 
1377 	return 0;
1378 }
1379 
gic_compute_target_list(int * base_cpu,const struct cpumask * mask,unsigned long cluster_id)1380 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1381 				   unsigned long cluster_id)
1382 {
1383 	int next_cpu, cpu = *base_cpu;
1384 	unsigned long mpidr;
1385 	u16 tlist = 0;
1386 
1387 	mpidr = gic_cpu_to_affinity(cpu);
1388 
1389 	while (cpu < nr_cpu_ids) {
1390 		tlist |= 1 << (mpidr & 0xf);
1391 
1392 		next_cpu = cpumask_next(cpu, mask);
1393 		if (next_cpu >= nr_cpu_ids)
1394 			goto out;
1395 		cpu = next_cpu;
1396 
1397 		mpidr = gic_cpu_to_affinity(cpu);
1398 
1399 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1400 			cpu--;
1401 			goto out;
1402 		}
1403 	}
1404 out:
1405 	*base_cpu = cpu;
1406 	return tlist;
1407 }
1408 
1409 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1410 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1411 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1412 
gic_send_sgi(u64 cluster_id,u16 tlist,unsigned int irq)1413 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1414 {
1415 	u64 val;
1416 
1417 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1418 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1419 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1420 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1421 	       MPIDR_TO_SGI_RS(cluster_id)		|
1422 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1423 
1424 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1425 	gic_write_sgi1r(val);
1426 }
1427 
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)1428 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1429 {
1430 	int cpu;
1431 
1432 	if (WARN_ON(d->hwirq >= 16))
1433 		return;
1434 
1435 	/*
1436 	 * Ensure that stores to Normal memory are visible to the
1437 	 * other CPUs before issuing the IPI.
1438 	 */
1439 	dsb(ishst);
1440 
1441 	for_each_cpu(cpu, mask) {
1442 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1443 		u16 tlist;
1444 
1445 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1446 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1447 	}
1448 
1449 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1450 	isb();
1451 }
1452 
gic_smp_init(void)1453 static void __init gic_smp_init(void)
1454 {
1455 	struct irq_fwspec sgi_fwspec = {
1456 		.fwnode		= gic_data.fwnode,
1457 		.param_count	= 1,
1458 	};
1459 	int base_sgi;
1460 
1461 	cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
1462 				  "irqchip/arm/gicv3:checkrdist",
1463 				  gic_check_rdist, NULL);
1464 
1465 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1466 				  "irqchip/arm/gicv3:starting",
1467 				  gic_starting_cpu, NULL);
1468 
1469 	/* Register all 8 non-secure SGIs */
1470 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1471 	if (WARN_ON(base_sgi <= 0))
1472 		return;
1473 
1474 	set_smp_ipi_range(base_sgi, 8);
1475 }
1476 
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1477 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1478 			    bool force)
1479 {
1480 	unsigned int cpu;
1481 	u32 offset, index;
1482 	void __iomem *reg;
1483 	int enabled;
1484 	u64 val;
1485 
1486 	if (force)
1487 		cpu = cpumask_first(mask_val);
1488 	else
1489 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1490 
1491 	if (cpu >= nr_cpu_ids)
1492 		return -EINVAL;
1493 
1494 	if (gic_irq_in_rdist(d))
1495 		return -EINVAL;
1496 
1497 	/* If interrupt was enabled, disable it first */
1498 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1499 	if (enabled)
1500 		gic_mask_irq(d);
1501 
1502 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1503 	reg = gic_dist_base(d) + offset + (index * 8);
1504 	val = gic_cpu_to_affinity(cpu);
1505 
1506 	gic_write_irouter(val, reg);
1507 
1508 	/*
1509 	 * If the interrupt was enabled, enabled it again. Otherwise,
1510 	 * just wait for the distributor to have digested our changes.
1511 	 */
1512 	if (enabled)
1513 		gic_unmask_irq(d);
1514 
1515 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1516 
1517 	return IRQ_SET_MASK_OK_DONE;
1518 }
1519 #else
1520 #define gic_set_affinity	NULL
1521 #define gic_ipi_send_mask	NULL
1522 #define gic_smp_init()		do { } while(0)
1523 #endif
1524 
gic_retrigger(struct irq_data * data)1525 static int gic_retrigger(struct irq_data *data)
1526 {
1527 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1528 }
1529 
1530 #ifdef CONFIG_CPU_PM
gic_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1531 static int gic_cpu_pm_notifier(struct notifier_block *self,
1532 			       unsigned long cmd, void *v)
1533 {
1534 	if (cmd == CPU_PM_EXIT || cmd == CPU_PM_ENTER_FAILED) {
1535 		if (gic_dist_security_disabled())
1536 			gic_enable_redist(true);
1537 		gic_cpu_sys_reg_enable();
1538 		gic_cpu_sys_reg_init();
1539 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1540 		gic_write_grpen1(0);
1541 		gic_enable_redist(false);
1542 	}
1543 	return NOTIFY_OK;
1544 }
1545 
1546 static struct notifier_block gic_cpu_pm_notifier_block = {
1547 	.notifier_call = gic_cpu_pm_notifier,
1548 };
1549 
gic_cpu_pm_init(void)1550 static void gic_cpu_pm_init(void)
1551 {
1552 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1553 }
1554 
1555 #else
gic_cpu_pm_init(void)1556 static inline void gic_cpu_pm_init(void) { }
1557 #endif /* CONFIG_CPU_PM */
1558 
1559 static struct irq_chip gic_chip = {
1560 	.name			= "GICv3",
1561 	.irq_mask		= gic_mask_irq,
1562 	.irq_unmask		= gic_unmask_irq,
1563 	.irq_eoi		= gic_eoi_irq,
1564 	.irq_set_type		= gic_set_type,
1565 	.irq_set_affinity	= gic_set_affinity,
1566 	.irq_retrigger          = gic_retrigger,
1567 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1568 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1569 	.irq_nmi_setup		= gic_irq_nmi_setup,
1570 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1571 	.ipi_send_mask		= gic_ipi_send_mask,
1572 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1573 				  IRQCHIP_SKIP_SET_WAKE |
1574 				  IRQCHIP_MASK_ON_SUSPEND,
1575 };
1576 
1577 static struct irq_chip gic_eoimode1_chip = {
1578 	.name			= "GICv3",
1579 	.irq_mask		= gic_eoimode1_mask_irq,
1580 	.irq_unmask		= gic_unmask_irq,
1581 	.irq_eoi		= gic_eoimode1_eoi_irq,
1582 	.irq_set_type		= gic_set_type,
1583 	.irq_set_affinity	= gic_set_affinity,
1584 	.irq_retrigger          = gic_retrigger,
1585 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1586 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1587 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1588 	.irq_nmi_setup		= gic_irq_nmi_setup,
1589 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1590 	.ipi_send_mask		= gic_ipi_send_mask,
1591 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1592 				  IRQCHIP_SKIP_SET_WAKE |
1593 				  IRQCHIP_MASK_ON_SUSPEND,
1594 };
1595 
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1596 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1597 			      irq_hw_number_t hw)
1598 {
1599 	struct irq_chip *chip = &gic_chip;
1600 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1601 
1602 	if (static_branch_likely(&supports_deactivate_key))
1603 		chip = &gic_eoimode1_chip;
1604 
1605 	switch (__get_intid_range(hw)) {
1606 	case SGI_RANGE:
1607 	case PPI_RANGE:
1608 	case EPPI_RANGE:
1609 		irq_set_percpu_devid(irq);
1610 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1611 				    handle_percpu_devid_irq, NULL, NULL);
1612 		break;
1613 
1614 	case SPI_RANGE:
1615 	case ESPI_RANGE:
1616 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1617 				    handle_fasteoi_irq, NULL, NULL);
1618 		irq_set_probe(irq);
1619 		irqd_set_single_target(irqd);
1620 		break;
1621 
1622 	case LPI_RANGE:
1623 		if (!gic_dist_supports_lpis())
1624 			return -EPERM;
1625 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1626 				    handle_fasteoi_irq, NULL, NULL);
1627 		break;
1628 
1629 	default:
1630 		return -EPERM;
1631 	}
1632 
1633 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1634 	irqd_set_handle_enforce_irqctx(irqd);
1635 	return 0;
1636 }
1637 
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1638 static int gic_irq_domain_translate(struct irq_domain *d,
1639 				    struct irq_fwspec *fwspec,
1640 				    unsigned long *hwirq,
1641 				    unsigned int *type)
1642 {
1643 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1644 		*hwirq = fwspec->param[0];
1645 		*type = IRQ_TYPE_EDGE_RISING;
1646 		return 0;
1647 	}
1648 
1649 	if (is_of_node(fwspec->fwnode)) {
1650 		if (fwspec->param_count < 3)
1651 			return -EINVAL;
1652 
1653 		switch (fwspec->param[0]) {
1654 		case 0:			/* SPI */
1655 			*hwirq = fwspec->param[1] + 32;
1656 			break;
1657 		case 1:			/* PPI */
1658 			*hwirq = fwspec->param[1] + 16;
1659 			break;
1660 		case 2:			/* ESPI */
1661 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1662 			break;
1663 		case 3:			/* EPPI */
1664 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1665 			break;
1666 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1667 			*hwirq = fwspec->param[1];
1668 			break;
1669 		case GIC_IRQ_TYPE_PARTITION:
1670 			*hwirq = fwspec->param[1];
1671 			if (fwspec->param[1] >= 16)
1672 				*hwirq += EPPI_BASE_INTID - 16;
1673 			else
1674 				*hwirq += 16;
1675 			break;
1676 		default:
1677 			return -EINVAL;
1678 		}
1679 
1680 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1681 
1682 		/*
1683 		 * Make it clear that broken DTs are... broken.
1684 		 * Partitioned PPIs are an unfortunate exception.
1685 		 */
1686 		WARN_ON(*type == IRQ_TYPE_NONE &&
1687 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1688 		return 0;
1689 	}
1690 
1691 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1692 		if(fwspec->param_count != 2)
1693 			return -EINVAL;
1694 
1695 		if (fwspec->param[0] < 16) {
1696 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1697 			       fwspec->param[0]);
1698 			return -EINVAL;
1699 		}
1700 
1701 		*hwirq = fwspec->param[0];
1702 		*type = fwspec->param[1];
1703 
1704 		WARN_ON(*type == IRQ_TYPE_NONE);
1705 		return 0;
1706 	}
1707 
1708 	return -EINVAL;
1709 }
1710 
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1711 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1712 				unsigned int nr_irqs, void *arg)
1713 {
1714 	int i, ret;
1715 	irq_hw_number_t hwirq;
1716 	unsigned int type = IRQ_TYPE_NONE;
1717 	struct irq_fwspec *fwspec = arg;
1718 
1719 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1720 	if (ret)
1721 		return ret;
1722 
1723 	for (i = 0; i < nr_irqs; i++) {
1724 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1725 		if (ret)
1726 			return ret;
1727 	}
1728 
1729 	return 0;
1730 }
1731 
gic_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1732 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1733 				unsigned int nr_irqs)
1734 {
1735 	int i;
1736 
1737 	for (i = 0; i < nr_irqs; i++) {
1738 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1739 		irq_set_handler(virq + i, NULL);
1740 		irq_domain_reset_irq_data(d);
1741 	}
1742 }
1743 
fwspec_is_partitioned_ppi(struct irq_fwspec * fwspec,irq_hw_number_t hwirq)1744 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1745 				      irq_hw_number_t hwirq)
1746 {
1747 	enum gic_intid_range range;
1748 
1749 	if (!gic_data.ppi_descs)
1750 		return false;
1751 
1752 	if (!is_of_node(fwspec->fwnode))
1753 		return false;
1754 
1755 	if (fwspec->param_count < 4 || !fwspec->param[3])
1756 		return false;
1757 
1758 	range = __get_intid_range(hwirq);
1759 	if (range != PPI_RANGE && range != EPPI_RANGE)
1760 		return false;
1761 
1762 	return true;
1763 }
1764 
gic_irq_domain_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1765 static int gic_irq_domain_select(struct irq_domain *d,
1766 				 struct irq_fwspec *fwspec,
1767 				 enum irq_domain_bus_token bus_token)
1768 {
1769 	unsigned int type, ret, ppi_idx;
1770 	irq_hw_number_t hwirq;
1771 
1772 	/* Not for us */
1773 	if (fwspec->fwnode != d->fwnode)
1774 		return 0;
1775 
1776 	/* Handle pure domain searches */
1777 	if (!fwspec->param_count)
1778 		return d->bus_token == bus_token;
1779 
1780 	/* If this is not DT, then we have a single domain */
1781 	if (!is_of_node(fwspec->fwnode))
1782 		return 1;
1783 
1784 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1785 	if (WARN_ON_ONCE(ret))
1786 		return 0;
1787 
1788 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1789 		return d == gic_data.domain;
1790 
1791 	/*
1792 	 * If this is a PPI and we have a 4th (non-null) parameter,
1793 	 * then we need to match the partition domain.
1794 	 */
1795 	ppi_idx = __gic_get_ppi_index(hwirq);
1796 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1797 }
1798 
1799 static const struct irq_domain_ops gic_irq_domain_ops = {
1800 	.translate = gic_irq_domain_translate,
1801 	.alloc = gic_irq_domain_alloc,
1802 	.free = gic_irq_domain_free,
1803 	.select = gic_irq_domain_select,
1804 };
1805 
partition_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1806 static int partition_domain_translate(struct irq_domain *d,
1807 				      struct irq_fwspec *fwspec,
1808 				      unsigned long *hwirq,
1809 				      unsigned int *type)
1810 {
1811 	unsigned long ppi_intid;
1812 	struct device_node *np;
1813 	unsigned int ppi_idx;
1814 	int ret;
1815 
1816 	if (!gic_data.ppi_descs)
1817 		return -ENOMEM;
1818 
1819 	np = of_find_node_by_phandle(fwspec->param[3]);
1820 	if (WARN_ON(!np))
1821 		return -EINVAL;
1822 
1823 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1824 	if (WARN_ON_ONCE(ret))
1825 		return 0;
1826 
1827 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1828 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1829 				     of_node_to_fwnode(np));
1830 	if (ret < 0)
1831 		return ret;
1832 
1833 	*hwirq = ret;
1834 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1835 
1836 	return 0;
1837 }
1838 
1839 static const struct irq_domain_ops partition_domain_ops = {
1840 	.translate = partition_domain_translate,
1841 	.select = gic_irq_domain_select,
1842 };
1843 
gic_enable_quirk_msm8996(void * data)1844 static bool gic_enable_quirk_msm8996(void *data)
1845 {
1846 	struct gic_chip_data *d = data;
1847 
1848 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1849 
1850 	return true;
1851 }
1852 
gic_enable_quirk_cavium_38539(void * data)1853 static bool gic_enable_quirk_cavium_38539(void *data)
1854 {
1855 	struct gic_chip_data *d = data;
1856 
1857 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1858 
1859 	return true;
1860 }
1861 
gic_enable_quirk_hip06_07(void * data)1862 static bool gic_enable_quirk_hip06_07(void *data)
1863 {
1864 	struct gic_chip_data *d = data;
1865 
1866 	/*
1867 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1868 	 * not being an actual ARM implementation). The saving grace is
1869 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1870 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1871 	 * have ESPI. In both cases, put them right.
1872 	 */
1873 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1874 		/* Zero both ESPI and the RES0 field next to it... */
1875 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1876 		return true;
1877 	}
1878 
1879 	return false;
1880 }
1881 
1882 #define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1883 #define T241_CHIP_GICDA_OFFSET	0x1580000
1884 #define SMCCC_SOC_ID_T241	0x036b0241
1885 
gic_enable_quirk_nvidia_t241(void * data)1886 static bool gic_enable_quirk_nvidia_t241(void *data)
1887 {
1888 	s32 soc_id = arm_smccc_get_soc_id_version();
1889 	unsigned long chip_bmask = 0;
1890 	phys_addr_t phys;
1891 	u32 i;
1892 
1893 	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1894 	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1895 		return false;
1896 
1897 	/* Find the chips based on GICR regions PHYS addr */
1898 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1899 		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1900 				  (u64)gic_data.redist_regions[i].phys_base));
1901 	}
1902 
1903 	if (hweight32(chip_bmask) < 3)
1904 		return false;
1905 
1906 	/* Setup GICD alias regions */
1907 	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1908 		if (chip_bmask & BIT(i)) {
1909 			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1910 			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1911 			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1912 			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1913 		}
1914 	}
1915 	static_branch_enable(&gic_nvidia_t241_erratum);
1916 	return true;
1917 }
1918 
gic_enable_quirk_asr8601(void * data)1919 static bool gic_enable_quirk_asr8601(void *data)
1920 {
1921 	struct gic_chip_data *d = data;
1922 
1923 	d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1924 
1925 	return true;
1926 }
1927 
gic_enable_quirk_arm64_2941627(void * data)1928 static bool gic_enable_quirk_arm64_2941627(void *data)
1929 {
1930 	static_branch_enable(&gic_arm64_2941627_erratum);
1931 	return true;
1932 }
1933 
gic_enable_quirk_rk3399(void * data)1934 static bool gic_enable_quirk_rk3399(void *data)
1935 {
1936 	struct gic_chip_data *d = data;
1937 
1938 	if (of_machine_is_compatible("rockchip,rk3399")) {
1939 		d->flags |= FLAGS_WORKAROUND_INSECURE;
1940 		return true;
1941 	}
1942 
1943 	return false;
1944 }
1945 
rd_set_non_coherent(void * data)1946 static bool rd_set_non_coherent(void *data)
1947 {
1948 	struct gic_chip_data *d = data;
1949 
1950 	d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1951 	return true;
1952 }
1953 
1954 static const struct gic_quirk gic_quirks[] = {
1955 	{
1956 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1957 		.compatible = "qcom,msm8996-gic-v3",
1958 		.init	= gic_enable_quirk_msm8996,
1959 	},
1960 	{
1961 		.desc	= "GICv3: ASR erratum 8601001",
1962 		.compatible = "asr,asr8601-gic-v3",
1963 		.init	= gic_enable_quirk_asr8601,
1964 	},
1965 	{
1966 		.desc	= "GICv3: HIP06 erratum 161010803",
1967 		.iidr	= 0x0204043b,
1968 		.mask	= 0xffffffff,
1969 		.init	= gic_enable_quirk_hip06_07,
1970 	},
1971 	{
1972 		.desc	= "GICv3: HIP07 erratum 161010803",
1973 		.iidr	= 0x00000000,
1974 		.mask	= 0xffffffff,
1975 		.init	= gic_enable_quirk_hip06_07,
1976 	},
1977 	{
1978 		/*
1979 		 * Reserved register accesses generate a Synchronous
1980 		 * External Abort. This erratum applies to:
1981 		 * - ThunderX: CN88xx
1982 		 * - OCTEON TX: CN83xx, CN81xx
1983 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1984 		 */
1985 		.desc	= "GICv3: Cavium erratum 38539",
1986 		.iidr	= 0xa000034c,
1987 		.mask	= 0xe8f00fff,
1988 		.init	= gic_enable_quirk_cavium_38539,
1989 	},
1990 	{
1991 		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1992 		.iidr	= 0x0402043b,
1993 		.mask	= 0xffffffff,
1994 		.init	= gic_enable_quirk_nvidia_t241,
1995 	},
1996 	{
1997 		/*
1998 		 * GIC-700: 2941627 workaround - IP variant [0,1]
1999 		 *
2000 		 */
2001 		.desc	= "GICv3: ARM64 erratum 2941627",
2002 		.iidr	= 0x0400043b,
2003 		.mask	= 0xff0e0fff,
2004 		.init	= gic_enable_quirk_arm64_2941627,
2005 	},
2006 	{
2007 		/*
2008 		 * GIC-700: 2941627 workaround - IP variant [2]
2009 		 */
2010 		.desc	= "GICv3: ARM64 erratum 2941627",
2011 		.iidr	= 0x0402043b,
2012 		.mask	= 0xff0f0fff,
2013 		.init	= gic_enable_quirk_arm64_2941627,
2014 	},
2015 	{
2016 		.desc   = "GICv3: non-coherent attribute",
2017 		.property = "dma-noncoherent",
2018 		.init   = rd_set_non_coherent,
2019 	},
2020 	{
2021 		.desc	= "GICv3: Insecure RK3399 integration",
2022 		.iidr	= 0x0000043b,
2023 		.mask	= 0xff000fff,
2024 		.init	= gic_enable_quirk_rk3399,
2025 	},
2026 	{
2027 	}
2028 };
2029 
gic_enable_nmi_support(void)2030 static void gic_enable_nmi_support(void)
2031 {
2032 	int i;
2033 
2034 	if (!gic_prio_masking_enabled() || nmi_support_forbidden)
2035 		return;
2036 
2037 	rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
2038 				 sizeof(*rdist_nmi_refs), GFP_KERNEL);
2039 	if (!rdist_nmi_refs)
2040 		return;
2041 
2042 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
2043 		refcount_set(&rdist_nmi_refs[i], 0);
2044 
2045 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
2046 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
2047 
2048 	static_branch_enable(&supports_pseudo_nmis);
2049 
2050 	if (static_branch_likely(&supports_deactivate_key))
2051 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2052 	else
2053 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2054 }
2055 
gic_init_bases(phys_addr_t dist_phys_base,void __iomem * dist_base,struct redist_region * rdist_regs,u32 nr_redist_regions,u64 redist_stride,struct fwnode_handle * handle)2056 static int __init gic_init_bases(phys_addr_t dist_phys_base,
2057 				 void __iomem *dist_base,
2058 				 struct redist_region *rdist_regs,
2059 				 u32 nr_redist_regions,
2060 				 u64 redist_stride,
2061 				 struct fwnode_handle *handle)
2062 {
2063 	u32 typer;
2064 	int err;
2065 
2066 	if (!is_hyp_mode_available())
2067 		static_branch_disable(&supports_deactivate_key);
2068 
2069 	if (static_branch_likely(&supports_deactivate_key))
2070 		pr_info("GIC: Using split EOI/Deactivate mode\n");
2071 
2072 	gic_data.fwnode = handle;
2073 	gic_data.dist_phys_base = dist_phys_base;
2074 	gic_data.dist_base = dist_base;
2075 	gic_data.redist_regions = rdist_regs;
2076 	gic_data.nr_redist_regions = nr_redist_regions;
2077 	gic_data.redist_stride = redist_stride;
2078 
2079 	/*
2080 	 * Find out how many interrupts are supported.
2081 	 */
2082 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2083 	gic_data.rdists.gicd_typer = typer;
2084 
2085 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2086 			  gic_quirks, &gic_data);
2087 
2088 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2089 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2090 
2091 	/*
2092 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2093 	 * architecture spec (which says that reserved registers are RES0).
2094 	 */
2095 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2096 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2097 
2098 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2099 						 &gic_data);
2100 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2101 	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2102 		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2103 		gic_data.rdists.has_rvpeid = true;
2104 		gic_data.rdists.has_vlpis = true;
2105 		gic_data.rdists.has_direct_lpi = true;
2106 		gic_data.rdists.has_vpend_valid_dirty = true;
2107 	}
2108 
2109 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2110 		err = -ENOMEM;
2111 		goto out_free;
2112 	}
2113 
2114 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2115 
2116 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2117 
2118 	if (typer & GICD_TYPER_MBIS) {
2119 		err = mbi_init(handle, gic_data.domain);
2120 		if (err)
2121 			pr_err("Failed to initialize MBIs\n");
2122 	}
2123 
2124 	set_handle_irq(gic_handle_irq);
2125 
2126 	gic_update_rdist_properties();
2127 
2128 	gic_cpu_sys_reg_enable();
2129 	gic_prio_init();
2130 	gic_dist_init();
2131 	gic_cpu_init();
2132 	gic_enable_nmi_support();
2133 	gic_smp_init();
2134 	gic_cpu_pm_init();
2135 
2136 	if (gic_dist_supports_lpis()) {
2137 		its_init(handle, &gic_data.rdists, gic_data.domain, dist_prio_irq);
2138 		its_cpu_init();
2139 		its_lpi_memreserve_init();
2140 	} else {
2141 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2142 			gicv2m_init(handle, gic_data.domain);
2143 	}
2144 
2145 	return 0;
2146 
2147 out_free:
2148 	if (gic_data.domain)
2149 		irq_domain_remove(gic_data.domain);
2150 	free_percpu(gic_data.rdists.rdist);
2151 	return err;
2152 }
2153 
gic_validate_dist_version(void __iomem * dist_base)2154 static int __init gic_validate_dist_version(void __iomem *dist_base)
2155 {
2156 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2157 
2158 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2159 		return -ENODEV;
2160 
2161 	return 0;
2162 }
2163 
2164 /* Create all possible partitions at boot time */
gic_populate_ppi_partitions(struct device_node * gic_node)2165 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2166 {
2167 	struct device_node *parts_node, *child_part;
2168 	int part_idx = 0, i;
2169 	int nr_parts;
2170 	struct partition_affinity *parts;
2171 
2172 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2173 	if (!parts_node)
2174 		return;
2175 
2176 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2177 	if (!gic_data.ppi_descs)
2178 		goto out_put_node;
2179 
2180 	nr_parts = of_get_child_count(parts_node);
2181 
2182 	if (!nr_parts)
2183 		goto out_put_node;
2184 
2185 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2186 	if (WARN_ON(!parts))
2187 		goto out_put_node;
2188 
2189 	for_each_child_of_node(parts_node, child_part) {
2190 		struct partition_affinity *part;
2191 		int n;
2192 
2193 		part = &parts[part_idx];
2194 
2195 		part->partition_id = of_node_to_fwnode(child_part);
2196 
2197 		pr_info("GIC: PPI partition %pOFn[%d] { ",
2198 			child_part, part_idx);
2199 
2200 		n = of_property_count_elems_of_size(child_part, "affinity",
2201 						    sizeof(u32));
2202 		WARN_ON(n <= 0);
2203 
2204 		for (i = 0; i < n; i++) {
2205 			int err, cpu;
2206 			u32 cpu_phandle;
2207 			struct device_node *cpu_node;
2208 
2209 			err = of_property_read_u32_index(child_part, "affinity",
2210 							 i, &cpu_phandle);
2211 			if (WARN_ON(err))
2212 				continue;
2213 
2214 			cpu_node = of_find_node_by_phandle(cpu_phandle);
2215 			if (WARN_ON(!cpu_node))
2216 				continue;
2217 
2218 			cpu = of_cpu_node_to_id(cpu_node);
2219 			if (WARN_ON(cpu < 0)) {
2220 				of_node_put(cpu_node);
2221 				continue;
2222 			}
2223 
2224 			pr_cont("%pOF[%d] ", cpu_node, cpu);
2225 
2226 			cpumask_set_cpu(cpu, &part->mask);
2227 			of_node_put(cpu_node);
2228 		}
2229 
2230 		pr_cont("}\n");
2231 		part_idx++;
2232 	}
2233 
2234 	for (i = 0; i < gic_data.ppi_nr; i++) {
2235 		unsigned int irq;
2236 		struct partition_desc *desc;
2237 		struct irq_fwspec ppi_fwspec = {
2238 			.fwnode		= gic_data.fwnode,
2239 			.param_count	= 3,
2240 			.param		= {
2241 				[0]	= GIC_IRQ_TYPE_PARTITION,
2242 				[1]	= i,
2243 				[2]	= IRQ_TYPE_NONE,
2244 			},
2245 		};
2246 
2247 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2248 		if (WARN_ON(!irq))
2249 			continue;
2250 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2251 					     irq, &partition_domain_ops);
2252 		if (WARN_ON(!desc))
2253 			continue;
2254 
2255 		gic_data.ppi_descs[i] = desc;
2256 	}
2257 
2258 out_put_node:
2259 	of_node_put(parts_node);
2260 }
2261 
gic_of_setup_kvm_info(struct device_node * node,u32 nr_redist_regions)2262 static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions)
2263 {
2264 	int ret;
2265 	struct resource r;
2266 
2267 	gic_v3_kvm_info.type = GIC_V3;
2268 
2269 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2270 	if (!gic_v3_kvm_info.maint_irq)
2271 		return;
2272 
2273 	/* Also skip GICD, GICC, GICH */
2274 	ret = of_address_to_resource(node, nr_redist_regions + 3, &r);
2275 	if (!ret)
2276 		gic_v3_kvm_info.vcpu = r;
2277 
2278 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2279 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2280 	vgic_set_kvm_info(&gic_v3_kvm_info);
2281 }
2282 
gic_request_region(resource_size_t base,resource_size_t size,const char * name)2283 static void gic_request_region(resource_size_t base, resource_size_t size,
2284 			       const char *name)
2285 {
2286 	if (!request_mem_region(base, size, name))
2287 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2288 			     name, &base);
2289 }
2290 
gic_of_iomap(struct device_node * node,int idx,const char * name,struct resource * res)2291 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2292 				  const char *name, struct resource *res)
2293 {
2294 	void __iomem *base;
2295 	int ret;
2296 
2297 	ret = of_address_to_resource(node, idx, res);
2298 	if (ret)
2299 		return IOMEM_ERR_PTR(ret);
2300 
2301 	gic_request_region(res->start, resource_size(res), name);
2302 	base = of_iomap(node, idx);
2303 
2304 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2305 }
2306 
gic_of_init(struct device_node * node,struct device_node * parent)2307 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2308 {
2309 	phys_addr_t dist_phys_base;
2310 	void __iomem *dist_base;
2311 	struct redist_region *rdist_regs;
2312 	struct resource res;
2313 	u64 redist_stride;
2314 	u32 nr_redist_regions;
2315 	int err, i;
2316 
2317 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2318 	if (IS_ERR(dist_base)) {
2319 		pr_err("%pOF: unable to map gic dist registers\n", node);
2320 		return PTR_ERR(dist_base);
2321 	}
2322 
2323 	dist_phys_base = res.start;
2324 
2325 	err = gic_validate_dist_version(dist_base);
2326 	if (err) {
2327 		pr_err("%pOF: no distributor detected, giving up\n", node);
2328 		goto out_unmap_dist;
2329 	}
2330 
2331 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2332 		nr_redist_regions = 1;
2333 
2334 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2335 			     GFP_KERNEL);
2336 	if (!rdist_regs) {
2337 		err = -ENOMEM;
2338 		goto out_unmap_dist;
2339 	}
2340 
2341 	for (i = 0; i < nr_redist_regions; i++) {
2342 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2343 		if (IS_ERR(rdist_regs[i].redist_base)) {
2344 			pr_err("%pOF: couldn't map region %d\n", node, i);
2345 			err = -ENODEV;
2346 			goto out_unmap_rdist;
2347 		}
2348 		rdist_regs[i].phys_base = res.start;
2349 	}
2350 
2351 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2352 		redist_stride = 0;
2353 
2354 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2355 
2356 	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2357 			     nr_redist_regions, redist_stride, &node->fwnode);
2358 	if (err)
2359 		goto out_unmap_rdist;
2360 
2361 	gic_populate_ppi_partitions(node);
2362 
2363 	if (static_branch_likely(&supports_deactivate_key))
2364 		gic_of_setup_kvm_info(node, nr_redist_regions);
2365 	return 0;
2366 
2367 out_unmap_rdist:
2368 	for (i = 0; i < nr_redist_regions; i++)
2369 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2370 			iounmap(rdist_regs[i].redist_base);
2371 	kfree(rdist_regs);
2372 out_unmap_dist:
2373 	iounmap(dist_base);
2374 	return err;
2375 }
2376 
2377 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2378 
2379 #ifdef CONFIG_ACPI
2380 static struct
2381 {
2382 	void __iomem *dist_base;
2383 	struct redist_region *redist_regs;
2384 	u32 nr_redist_regions;
2385 	bool single_redist;
2386 	int enabled_rdists;
2387 	u32 maint_irq;
2388 	int maint_irq_mode;
2389 	phys_addr_t vcpu_base;
2390 } acpi_data __initdata;
2391 
2392 static void __init
gic_acpi_register_redist(phys_addr_t phys_base,void __iomem * redist_base)2393 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2394 {
2395 	static int count = 0;
2396 
2397 	acpi_data.redist_regs[count].phys_base = phys_base;
2398 	acpi_data.redist_regs[count].redist_base = redist_base;
2399 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2400 	count++;
2401 }
2402 
2403 static int __init
gic_acpi_parse_madt_redist(union acpi_subtable_headers * header,const unsigned long end)2404 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2405 			   const unsigned long end)
2406 {
2407 	struct acpi_madt_generic_redistributor *redist =
2408 			(struct acpi_madt_generic_redistributor *)header;
2409 	void __iomem *redist_base;
2410 
2411 	redist_base = ioremap(redist->base_address, redist->length);
2412 	if (!redist_base) {
2413 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2414 		return -ENOMEM;
2415 	}
2416 
2417 	if (acpi_get_madt_revision() >= 7 &&
2418 	    (redist->flags & ACPI_MADT_GICR_NON_COHERENT))
2419 		gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
2420 
2421 	gic_request_region(redist->base_address, redist->length, "GICR");
2422 
2423 	gic_acpi_register_redist(redist->base_address, redist_base);
2424 	return 0;
2425 }
2426 
2427 static int __init
gic_acpi_parse_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2428 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2429 			 const unsigned long end)
2430 {
2431 	struct acpi_madt_generic_interrupt *gicc =
2432 				(struct acpi_madt_generic_interrupt *)header;
2433 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2434 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2435 	void __iomem *redist_base;
2436 
2437 	/* Neither enabled or online capable means it doesn't exist, skip it */
2438 	if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
2439 		return 0;
2440 
2441 	/*
2442 	 * Capable but disabled CPUs can be brought online later. What about
2443 	 * the redistributor? ACPI doesn't want to say!
2444 	 * Virtual hotplug systems can use the MADT's "always-on" GICR entries.
2445 	 * Otherwise, prevent such CPUs from being brought online.
2446 	 */
2447 	if (!(gicc->flags & ACPI_MADT_ENABLED)) {
2448 		int cpu = get_cpu_for_acpi_id(gicc->uid);
2449 
2450 		pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n", cpu);
2451 		if (cpu >= 0)
2452 			cpumask_set_cpu(cpu, &broken_rdists);
2453 		return 0;
2454 	}
2455 
2456 	redist_base = ioremap(gicc->gicr_base_address, size);
2457 	if (!redist_base)
2458 		return -ENOMEM;
2459 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2460 
2461 	if (acpi_get_madt_revision() >= 7 &&
2462 	    (gicc->flags & ACPI_MADT_GICC_NON_COHERENT))
2463 		gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
2464 
2465 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2466 	return 0;
2467 }
2468 
gic_acpi_collect_gicr_base(void)2469 static int __init gic_acpi_collect_gicr_base(void)
2470 {
2471 	acpi_tbl_entry_handler redist_parser;
2472 	enum acpi_madt_type type;
2473 
2474 	if (acpi_data.single_redist) {
2475 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2476 		redist_parser = gic_acpi_parse_madt_gicc;
2477 	} else {
2478 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2479 		redist_parser = gic_acpi_parse_madt_redist;
2480 	}
2481 
2482 	/* Collect redistributor base addresses in GICR entries */
2483 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2484 		return 0;
2485 
2486 	pr_info("No valid GICR entries exist\n");
2487 	return -ENODEV;
2488 }
2489 
gic_acpi_match_gicr(union acpi_subtable_headers * header,const unsigned long end)2490 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2491 				  const unsigned long end)
2492 {
2493 	/* Subtable presence means that redist exists, that's it */
2494 	return 0;
2495 }
2496 
gic_acpi_match_gicc(union acpi_subtable_headers * header,const unsigned long end)2497 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2498 				      const unsigned long end)
2499 {
2500 	struct acpi_madt_generic_interrupt *gicc =
2501 				(struct acpi_madt_generic_interrupt *)header;
2502 
2503 	/*
2504 	 * If GICC is enabled and has valid gicr base address, then it means
2505 	 * GICR base is presented via GICC. The redistributor is only known to
2506 	 * be accessible if the GICC is marked as enabled. If this bit is not
2507 	 * set, we'd need to add the redistributor at runtime, which isn't
2508 	 * supported.
2509 	 */
2510 	if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address)
2511 		acpi_data.enabled_rdists++;
2512 
2513 	return 0;
2514 }
2515 
gic_acpi_count_gicr_regions(void)2516 static int __init gic_acpi_count_gicr_regions(void)
2517 {
2518 	int count;
2519 
2520 	/*
2521 	 * Count how many redistributor regions we have. It is not allowed
2522 	 * to mix redistributor description, GICR and GICC subtables have to be
2523 	 * mutually exclusive.
2524 	 */
2525 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2526 				      gic_acpi_match_gicr, 0);
2527 	if (count > 0) {
2528 		acpi_data.single_redist = false;
2529 		return count;
2530 	}
2531 
2532 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2533 				      gic_acpi_match_gicc, 0);
2534 	if (count > 0) {
2535 		acpi_data.single_redist = true;
2536 		count = acpi_data.enabled_rdists;
2537 	}
2538 
2539 	return count;
2540 }
2541 
acpi_validate_gic_table(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)2542 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2543 					   struct acpi_probe_entry *ape)
2544 {
2545 	struct acpi_madt_generic_distributor *dist;
2546 	int count;
2547 
2548 	dist = (struct acpi_madt_generic_distributor *)header;
2549 	if (dist->version != ape->driver_data)
2550 		return false;
2551 
2552 	/* We need to do that exercise anyway, the sooner the better */
2553 	count = gic_acpi_count_gicr_regions();
2554 	if (count <= 0)
2555 		return false;
2556 
2557 	acpi_data.nr_redist_regions = count;
2558 	return true;
2559 }
2560 
gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2561 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2562 						const unsigned long end)
2563 {
2564 	struct acpi_madt_generic_interrupt *gicc =
2565 		(struct acpi_madt_generic_interrupt *)header;
2566 	int maint_irq_mode;
2567 	static int first_madt = true;
2568 
2569 	if (!(gicc->flags &
2570 	      (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
2571 		return 0;
2572 
2573 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2574 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2575 
2576 	if (first_madt) {
2577 		first_madt = false;
2578 
2579 		acpi_data.maint_irq = gicc->vgic_interrupt;
2580 		acpi_data.maint_irq_mode = maint_irq_mode;
2581 		acpi_data.vcpu_base = gicc->gicv_base_address;
2582 
2583 		return 0;
2584 	}
2585 
2586 	/*
2587 	 * The maintenance interrupt and GICV should be the same for every CPU
2588 	 */
2589 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2590 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2591 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2592 		return -EINVAL;
2593 
2594 	return 0;
2595 }
2596 
gic_acpi_collect_virt_info(void)2597 static bool __init gic_acpi_collect_virt_info(void)
2598 {
2599 	int count;
2600 
2601 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2602 				      gic_acpi_parse_virt_madt_gicc, 0);
2603 
2604 	return (count > 0);
2605 }
2606 
2607 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2608 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2609 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2610 
gic_acpi_setup_kvm_info(void)2611 static void __init gic_acpi_setup_kvm_info(void)
2612 {
2613 	int irq;
2614 
2615 	if (!gic_acpi_collect_virt_info()) {
2616 		pr_warn("Unable to get hardware information used for virtualization\n");
2617 		return;
2618 	}
2619 
2620 	gic_v3_kvm_info.type = GIC_V3;
2621 
2622 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2623 				acpi_data.maint_irq_mode,
2624 				ACPI_ACTIVE_HIGH);
2625 	if (irq <= 0)
2626 		return;
2627 
2628 	gic_v3_kvm_info.maint_irq = irq;
2629 
2630 	if (acpi_data.vcpu_base) {
2631 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2632 
2633 		vcpu->flags = IORESOURCE_MEM;
2634 		vcpu->start = acpi_data.vcpu_base;
2635 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2636 	}
2637 
2638 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2639 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2640 	vgic_set_kvm_info(&gic_v3_kvm_info);
2641 }
2642 
2643 static struct fwnode_handle *gsi_domain_handle;
2644 
gic_v3_get_gsi_domain_id(u32 gsi)2645 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2646 {
2647 	return gsi_domain_handle;
2648 }
2649 
2650 static int __init
gic_acpi_init(union acpi_subtable_headers * header,const unsigned long end)2651 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2652 {
2653 	struct acpi_madt_generic_distributor *dist;
2654 	size_t size;
2655 	int i, err;
2656 
2657 	/* Get distributor base address */
2658 	dist = (struct acpi_madt_generic_distributor *)header;
2659 	acpi_data.dist_base = ioremap(dist->base_address,
2660 				      ACPI_GICV3_DIST_MEM_SIZE);
2661 	if (!acpi_data.dist_base) {
2662 		pr_err("Unable to map GICD registers\n");
2663 		return -ENOMEM;
2664 	}
2665 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2666 
2667 	err = gic_validate_dist_version(acpi_data.dist_base);
2668 	if (err) {
2669 		pr_err("No distributor detected at @%p, giving up\n",
2670 		       acpi_data.dist_base);
2671 		goto out_dist_unmap;
2672 	}
2673 
2674 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2675 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2676 	if (!acpi_data.redist_regs) {
2677 		err = -ENOMEM;
2678 		goto out_dist_unmap;
2679 	}
2680 
2681 	err = gic_acpi_collect_gicr_base();
2682 	if (err)
2683 		goto out_redist_unmap;
2684 
2685 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2686 	if (!gsi_domain_handle) {
2687 		err = -ENOMEM;
2688 		goto out_redist_unmap;
2689 	}
2690 
2691 	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2692 			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2693 			     0, gsi_domain_handle);
2694 	if (err)
2695 		goto out_fwhandle_free;
2696 
2697 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2698 
2699 	if (static_branch_likely(&supports_deactivate_key))
2700 		gic_acpi_setup_kvm_info();
2701 
2702 	return 0;
2703 
2704 out_fwhandle_free:
2705 	irq_domain_free_fwnode(gsi_domain_handle);
2706 out_redist_unmap:
2707 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2708 		if (acpi_data.redist_regs[i].redist_base)
2709 			iounmap(acpi_data.redist_regs[i].redist_base);
2710 	kfree(acpi_data.redist_regs);
2711 out_dist_unmap:
2712 	iounmap(acpi_data.dist_base);
2713 	return err;
2714 }
2715 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2716 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2717 		     gic_acpi_init);
2718 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2719 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2720 		     gic_acpi_init);
2721 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2722 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2723 		     gic_acpi_init);
2724 #endif
2725