xref: /linux/arch/powerpc/kernel/smp.c (revision 33c1c6d8a28a2761ac74b0380b2563cf546c2a3a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SMP support for ppc.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6  * deal of code from the sparc and intel versions.
7  *
8  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9  *
10  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12  */
13 
14 #undef DEBUG
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 #include <linux/kexec.h>
39 
40 #include <asm/ptrace.h>
41 #include <linux/atomic.h>
42 #include <asm/irq.h>
43 #include <asm/hw_irq.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/dbell.h>
46 #include <asm/page.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cputhreads.h>
52 #include <asm/cputable.h>
53 #include <asm/mpic.h>
54 #include <asm/vdso_datapage.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/paca.h>
57 #endif
58 #include <asm/vdso.h>
59 #include <asm/debug.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/ftrace.h>
62 #include <asm/kup.h>
63 #include <asm/fadump.h>
64 #include <asm/systemcfg.h>
65 
66 #include <trace/events/ipi.h>
67 
68 #ifdef DEBUG
69 #include <asm/udbg.h>
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
74 
75 #ifdef CONFIG_HOTPLUG_CPU
76 /* State of each CPU during hotplug phases */
77 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
78 #endif
79 
80 struct task_struct *secondary_current;
81 bool has_big_cores __ro_after_init;
82 bool coregroup_enabled __ro_after_init;
83 bool thread_group_shares_l2 __ro_after_init;
84 bool thread_group_shares_l3 __ro_after_init;
85 
86 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
87 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
88 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
89 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
90 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
91 
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
95 EXPORT_SYMBOL_GPL(has_big_cores);
96 
97 #define MAX_THREAD_LIST_SIZE	8
98 #define THREAD_GROUP_SHARE_L1   1
99 #define THREAD_GROUP_SHARE_L2_L3 2
100 struct thread_groups {
101 	unsigned int property;
102 	unsigned int nr_groups;
103 	unsigned int threads_per_group;
104 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
105 };
106 
107 /* Maximum number of properties that groups of threads within a core can share */
108 #define MAX_THREAD_GROUP_PROPERTIES 2
109 
110 struct thread_groups_list {
111 	unsigned int nr_properties;
112 	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
113 };
114 
115 static struct thread_groups_list tgl[NR_CPUS] __initdata;
116 /*
117  * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
118  * the set its siblings that share the L1-cache.
119  */
120 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
121 
122 /*
123  * On some big-cores system, thread_group_l2_cache_map for each CPU
124  * corresponds to the set its siblings within the core that share the
125  * L2-cache.
126  */
127 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
128 
129 /*
130  * On P10, thread_group_l3_cache_map for each CPU is equal to the
131  * thread_group_l2_cache_map
132  */
133 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
134 
135 /* SMP operations for this machine */
136 struct smp_ops_t *smp_ops;
137 
138 /* Can't be static due to PowerMac hackery */
139 volatile unsigned int cpu_callin_map[NR_CPUS];
140 
141 int smt_enabled_at_boot = 1;
142 
143 /*
144  * Returns 1 if the specified cpu should be brought up during boot.
145  * Used to inhibit booting threads if they've been disabled or
146  * limited on the command line
147  */
148 int smp_generic_cpu_bootable(unsigned int nr)
149 {
150 	/* Special case - we inhibit secondary thread startup
151 	 * during boot if the user requests it.
152 	 */
153 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
154 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
155 			return 0;
156 		if (smt_enabled_at_boot
157 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
158 			return 0;
159 	}
160 
161 	return 1;
162 }
163 
164 
165 #ifdef CONFIG_PPC64
166 int smp_generic_kick_cpu(int nr)
167 {
168 	if (nr < 0 || nr >= nr_cpu_ids)
169 		return -EINVAL;
170 
171 	/*
172 	 * The processor is currently spinning, waiting for the
173 	 * cpu_start field to become non-zero After we set cpu_start,
174 	 * the processor will continue on to secondary_start
175 	 */
176 	if (!paca_ptrs[nr]->cpu_start) {
177 		paca_ptrs[nr]->cpu_start = 1;
178 		smp_mb();
179 		return 0;
180 	}
181 
182 #ifdef CONFIG_HOTPLUG_CPU
183 	/*
184 	 * Ok it's not there, so it might be soft-unplugged, let's
185 	 * try to bring it back
186 	 */
187 	generic_set_cpu_up(nr);
188 	smp_wmb();
189 	smp_send_reschedule(nr);
190 #endif /* CONFIG_HOTPLUG_CPU */
191 
192 	return 0;
193 }
194 #endif /* CONFIG_PPC64 */
195 
196 static irqreturn_t call_function_action(int irq, void *data)
197 {
198 	generic_smp_call_function_interrupt();
199 	return IRQ_HANDLED;
200 }
201 
202 static irqreturn_t reschedule_action(int irq, void *data)
203 {
204 	scheduler_ipi();
205 	return IRQ_HANDLED;
206 }
207 
208 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
209 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
210 {
211 	timer_broadcast_interrupt();
212 	return IRQ_HANDLED;
213 }
214 #endif
215 
216 #ifdef CONFIG_NMI_IPI
217 static irqreturn_t nmi_ipi_action(int irq, void *data)
218 {
219 	smp_handle_nmi_ipi(get_irq_regs());
220 	return IRQ_HANDLED;
221 }
222 #endif
223 
224 static irq_handler_t smp_ipi_action[] = {
225 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
226 	[PPC_MSG_RESCHEDULE] = reschedule_action,
227 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
228 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
229 #endif
230 #ifdef CONFIG_NMI_IPI
231 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
232 #endif
233 };
234 
235 /*
236  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
237  * than going through the call function infrastructure, and strongly
238  * serialized, so it is more appropriate for debugging.
239  */
240 const char *smp_ipi_name[] = {
241 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
242 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
243 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
244 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
245 #endif
246 #ifdef CONFIG_NMI_IPI
247 	[PPC_MSG_NMI_IPI] = "nmi ipi",
248 #endif
249 };
250 
251 /* optional function to request ipi, for controllers with >= 4 ipis */
252 int smp_request_message_ipi(int virq, int msg)
253 {
254 	int err;
255 
256 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
257 		return -EINVAL;
258 #ifndef CONFIG_NMI_IPI
259 	if (msg == PPC_MSG_NMI_IPI)
260 		return 1;
261 #endif
262 
263 	err = request_irq(virq, smp_ipi_action[msg],
264 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
265 			  smp_ipi_name[msg], NULL);
266 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
267 		virq, smp_ipi_name[msg], err);
268 
269 	return err;
270 }
271 
272 #ifdef CONFIG_PPC_SMP_MUXED_IPI
273 struct cpu_messages {
274 	long messages;			/* current messages */
275 };
276 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
277 
278 void smp_muxed_ipi_set_message(int cpu, int msg)
279 {
280 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
281 	char *message = (char *)&info->messages;
282 
283 	/*
284 	 * Order previous accesses before accesses in the IPI handler.
285 	 */
286 	smp_mb();
287 	WRITE_ONCE(message[msg], 1);
288 }
289 
290 void smp_muxed_ipi_message_pass(int cpu, int msg)
291 {
292 	smp_muxed_ipi_set_message(cpu, msg);
293 
294 	/*
295 	 * cause_ipi functions are required to include a full barrier
296 	 * before doing whatever causes the IPI.
297 	 */
298 	smp_ops->cause_ipi(cpu);
299 }
300 
301 #ifdef __BIG_ENDIAN__
302 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
303 #else
304 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
305 #endif
306 
307 irqreturn_t smp_ipi_demux(void)
308 {
309 	mb();	/* order any irq clear */
310 
311 	return smp_ipi_demux_relaxed();
312 }
313 
314 /* sync-free variant. Callers should ensure synchronization */
315 irqreturn_t smp_ipi_demux_relaxed(void)
316 {
317 	struct cpu_messages *info;
318 	unsigned long all;
319 
320 	info = this_cpu_ptr(&ipi_message);
321 	do {
322 		all = xchg(&info->messages, 0);
323 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
324 		/*
325 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
326 		 * before PPC_MSG_CALL_FUNCTION messages because when
327 		 * a VM is destroyed, we call kick_all_cpus_sync()
328 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
329 		 * messages have completed before we free any VCPUs.
330 		 */
331 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
332 			kvmppc_xics_ipi_action();
333 #endif
334 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
335 			generic_smp_call_function_interrupt();
336 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
337 			scheduler_ipi();
338 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
339 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
340 			timer_broadcast_interrupt();
341 #endif
342 #ifdef CONFIG_NMI_IPI
343 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
344 			nmi_ipi_action(0, NULL);
345 #endif
346 	} while (READ_ONCE(info->messages));
347 
348 	return IRQ_HANDLED;
349 }
350 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
351 
352 static inline void do_message_pass(int cpu, int msg)
353 {
354 	if (smp_ops->message_pass)
355 		smp_ops->message_pass(cpu, msg);
356 #ifdef CONFIG_PPC_SMP_MUXED_IPI
357 	else
358 		smp_muxed_ipi_message_pass(cpu, msg);
359 #endif
360 }
361 
362 void arch_smp_send_reschedule(int cpu)
363 {
364 	if (likely(smp_ops))
365 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
366 }
367 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
368 
369 void arch_send_call_function_single_ipi(int cpu)
370 {
371 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
372 }
373 
374 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
375 {
376 	unsigned int cpu;
377 
378 	for_each_cpu(cpu, mask)
379 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
380 }
381 
382 #ifdef CONFIG_NMI_IPI
383 
384 /*
385  * "NMI IPI" system.
386  *
387  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
388  * a running system. They can be used for crash, debug, halt/reboot, etc.
389  *
390  * The IPI call waits with interrupts disabled until all targets enter the
391  * NMI handler, then returns. Subsequent IPIs can be issued before targets
392  * have returned from their handlers, so there is no guarantee about
393  * concurrency or re-entrancy.
394  *
395  * A new NMI can be issued before all targets exit the handler.
396  *
397  * The IPI call may time out without all targets entering the NMI handler.
398  * In that case, there is some logic to recover (and ignore subsequent
399  * NMI interrupts that may eventually be raised), but the platform interrupt
400  * handler may not be able to distinguish this from other exception causes,
401  * which may cause a crash.
402  */
403 
404 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
405 static struct cpumask nmi_ipi_pending_mask;
406 static bool nmi_ipi_busy = false;
407 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
408 
409 noinstr static void nmi_ipi_lock_start(unsigned long *flags)
410 {
411 	raw_local_irq_save(*flags);
412 	hard_irq_disable();
413 	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
414 		raw_local_irq_restore(*flags);
415 		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
416 		raw_local_irq_save(*flags);
417 		hard_irq_disable();
418 	}
419 }
420 
421 noinstr static void nmi_ipi_lock(void)
422 {
423 	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
424 		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
425 }
426 
427 noinstr static void nmi_ipi_unlock(void)
428 {
429 	smp_mb();
430 	WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1);
431 	raw_atomic_set(&__nmi_ipi_lock, 0);
432 }
433 
434 noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
435 {
436 	nmi_ipi_unlock();
437 	raw_local_irq_restore(*flags);
438 }
439 
440 /*
441  * Platform NMI handler calls this to ack
442  */
443 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
444 {
445 	void (*fn)(struct pt_regs *) = NULL;
446 	unsigned long flags;
447 	int me = raw_smp_processor_id();
448 	int ret = 0;
449 
450 	/*
451 	 * Unexpected NMIs are possible here because the interrupt may not
452 	 * be able to distinguish NMI IPIs from other types of NMIs, or
453 	 * because the caller may have timed out.
454 	 */
455 	nmi_ipi_lock_start(&flags);
456 	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
457 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
458 		fn = READ_ONCE(nmi_ipi_function);
459 		WARN_ON_ONCE(!fn);
460 		ret = 1;
461 	}
462 	nmi_ipi_unlock_end(&flags);
463 
464 	if (fn)
465 		fn(regs);
466 
467 	return ret;
468 }
469 
470 static void do_smp_send_nmi_ipi(int cpu, bool safe)
471 {
472 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
473 		return;
474 
475 	if (cpu >= 0) {
476 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
477 	} else {
478 		int c;
479 
480 		for_each_online_cpu(c) {
481 			if (c == raw_smp_processor_id())
482 				continue;
483 			do_message_pass(c, PPC_MSG_NMI_IPI);
484 		}
485 	}
486 }
487 
488 /*
489  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
490  * - fn is the target callback function.
491  * - delay_us > 0 is the delay before giving up waiting for targets to
492  *   begin executing the handler, == 0 specifies indefinite delay.
493  */
494 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
495 				u64 delay_us, bool safe)
496 {
497 	unsigned long flags;
498 	int me = raw_smp_processor_id();
499 	int ret = 1;
500 
501 	BUG_ON(cpu == me);
502 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
503 
504 	if (unlikely(!smp_ops))
505 		return 0;
506 
507 	nmi_ipi_lock_start(&flags);
508 	while (nmi_ipi_busy) {
509 		nmi_ipi_unlock_end(&flags);
510 		spin_until_cond(!nmi_ipi_busy);
511 		nmi_ipi_lock_start(&flags);
512 	}
513 	nmi_ipi_busy = true;
514 	nmi_ipi_function = fn;
515 
516 	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
517 
518 	if (cpu < 0) {
519 		/* ALL_OTHERS */
520 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
521 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
522 	} else {
523 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
524 	}
525 
526 	nmi_ipi_unlock();
527 
528 	/* Interrupts remain hard disabled */
529 
530 	do_smp_send_nmi_ipi(cpu, safe);
531 
532 	nmi_ipi_lock();
533 	/* nmi_ipi_busy is set here, so unlock/lock is okay */
534 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
535 		nmi_ipi_unlock();
536 		udelay(1);
537 		nmi_ipi_lock();
538 		if (delay_us) {
539 			delay_us--;
540 			if (!delay_us)
541 				break;
542 		}
543 	}
544 
545 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
546 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
547 		ret = 0;
548 		cpumask_clear(&nmi_ipi_pending_mask);
549 	}
550 
551 	nmi_ipi_function = NULL;
552 	nmi_ipi_busy = false;
553 
554 	nmi_ipi_unlock_end(&flags);
555 
556 	return ret;
557 }
558 
559 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
560 {
561 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
562 }
563 
564 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
565 {
566 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
567 }
568 #endif /* CONFIG_NMI_IPI */
569 
570 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
571 void tick_broadcast(const struct cpumask *mask)
572 {
573 	unsigned int cpu;
574 
575 	for_each_cpu(cpu, mask)
576 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
577 }
578 #endif
579 
580 #ifdef CONFIG_DEBUGGER
581 static void debugger_ipi_callback(struct pt_regs *regs)
582 {
583 	debugger_ipi(regs);
584 }
585 
586 void smp_send_debugger_break(void)
587 {
588 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
589 }
590 #endif
591 
592 #ifdef CONFIG_CRASH_DUMP
593 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
594 {
595 	int cpu;
596 
597 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
598 	if (kdump_in_progress() && crash_wake_offline) {
599 		for_each_present_cpu(cpu) {
600 			if (cpu_online(cpu))
601 				continue;
602 			/*
603 			 * crash_ipi_callback will wait for
604 			 * all cpus, including offline CPUs.
605 			 * We don't care about nmi_ipi_function.
606 			 * Offline cpus will jump straight into
607 			 * crash_ipi_callback, we can skip the
608 			 * entire NMI dance and waiting for
609 			 * cpus to clear pending mask, etc.
610 			 */
611 			do_smp_send_nmi_ipi(cpu, false);
612 		}
613 	}
614 }
615 #endif
616 
617 void crash_smp_send_stop(void)
618 {
619 	static bool stopped = false;
620 
621 	/*
622 	 * In case of fadump, register data for all CPUs is captured by f/w
623 	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
624 	 * this rtas call to avoid tricky post processing of those CPUs'
625 	 * backtraces.
626 	 */
627 	if (should_fadump_crash())
628 		return;
629 
630 	if (stopped)
631 		return;
632 
633 	stopped = true;
634 
635 #ifdef CONFIG_CRASH_DUMP
636 	if (kexec_crash_image) {
637 		crash_kexec_prepare();
638 		return;
639 	}
640 #endif
641 
642 	smp_send_stop();
643 }
644 
645 #ifdef CONFIG_NMI_IPI
646 static void nmi_stop_this_cpu(struct pt_regs *regs)
647 {
648 	/*
649 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
650 	 */
651 	set_cpu_online(smp_processor_id(), false);
652 
653 	spin_begin();
654 	while (1)
655 		spin_cpu_relax();
656 }
657 
658 void smp_send_stop(void)
659 {
660 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
661 }
662 
663 #else /* CONFIG_NMI_IPI */
664 
665 static void stop_this_cpu(void *dummy)
666 {
667 	hard_irq_disable();
668 
669 	/*
670 	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
671 	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
672 	 * to know other CPUs are offline before it breaks locks to flush
673 	 * printk buffers, in case we panic()ed while holding the lock.
674 	 */
675 	set_cpu_online(smp_processor_id(), false);
676 
677 	spin_begin();
678 	while (1)
679 		spin_cpu_relax();
680 }
681 
682 void smp_send_stop(void)
683 {
684 	static bool stopped = false;
685 
686 	/*
687 	 * Prevent waiting on csd lock from a previous smp_send_stop.
688 	 * This is racy, but in general callers try to do the right
689 	 * thing and only fire off one smp_send_stop (e.g., see
690 	 * kernel/panic.c)
691 	 */
692 	if (stopped)
693 		return;
694 
695 	stopped = true;
696 
697 	smp_call_function(stop_this_cpu, NULL, 0);
698 }
699 #endif /* CONFIG_NMI_IPI */
700 
701 static struct task_struct *current_set[NR_CPUS];
702 
703 static void smp_store_cpu_info(int id)
704 {
705 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
706 #ifdef CONFIG_PPC_E500
707 	per_cpu(next_tlbcam_idx, id)
708 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
709 #endif
710 }
711 
712 /*
713  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
714  * rather than just passing around the cpumask we pass around a function that
715  * returns the that cpumask for the given CPU.
716  */
717 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
718 {
719 	cpumask_set_cpu(i, get_cpumask(j));
720 	cpumask_set_cpu(j, get_cpumask(i));
721 }
722 
723 #ifdef CONFIG_HOTPLUG_CPU
724 static void set_cpus_unrelated(int i, int j,
725 		struct cpumask *(*get_cpumask)(int))
726 {
727 	cpumask_clear_cpu(i, get_cpumask(j));
728 	cpumask_clear_cpu(j, get_cpumask(i));
729 }
730 #endif
731 
732 /*
733  * Extends set_cpus_related. Instead of setting one CPU at a time in
734  * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
735  */
736 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
737 				struct cpumask *(*dstmask)(int))
738 {
739 	struct cpumask *mask;
740 	int k;
741 
742 	mask = srcmask(j);
743 	for_each_cpu(k, srcmask(i))
744 		cpumask_or(dstmask(k), dstmask(k), mask);
745 
746 	if (i == j)
747 		return;
748 
749 	mask = srcmask(i);
750 	for_each_cpu(k, srcmask(j))
751 		cpumask_or(dstmask(k), dstmask(k), mask);
752 }
753 
754 /*
755  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
756  *                      property for the CPU device node @dn and stores
757  *                      the parsed output in the thread_groups_list
758  *                      structure @tglp.
759  *
760  * @dn: The device node of the CPU device.
761  * @tglp: Pointer to a thread group list structure into which the parsed
762  *      output of "ibm,thread-groups" is stored.
763  *
764  * ibm,thread-groups[0..N-1] array defines which group of threads in
765  * the CPU-device node can be grouped together based on the property.
766  *
767  * This array can represent thread groupings for multiple properties.
768  *
769  * ibm,thread-groups[i + 0] tells us the property based on which the
770  * threads are being grouped together. If this value is 1, it implies
771  * that the threads in the same group share L1, translation cache. If
772  * the value is 2, it implies that the threads in the same group share
773  * the same L2 cache.
774  *
775  * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
776  * property ibm,thread-groups[i]
777  *
778  * ibm,thread-groups[i+2] tells us the number of threads in each such
779  * group.
780  * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
781  *
782  * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
783  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
784  * the grouping.
785  *
786  * Example:
787  * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
788  * This can be decomposed up into two consecutive arrays:
789  * a) [1,2,4,8,10,12,14,9,11,13,15]
790  * b) [2,2,4,8,10,12,14,9,11,13,15]
791  *
792  * where in,
793  *
794  * a) provides information of Property "1" being shared by "2" groups,
795  *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
796  *  the first group is {8,10,12,14} and the
797  *  "ibm,ppc-interrupt-server#s" of the second group is
798  *  {9,11,13,15}. Property "1" is indicative of the thread in the
799  *  group sharing L1 cache, translation cache and Instruction Data
800  *  flow.
801  *
802  * b) provides information of Property "2" being shared by "2" groups,
803  *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
804  *  the first group is {8,10,12,14} and the
805  *  "ibm,ppc-interrupt-server#s" of the second group is
806  *  {9,11,13,15}. Property "2" indicates that the threads in each
807  *  group share the L2-cache.
808  *
809  * Returns 0 on success, -EINVAL if the property does not exist,
810  * -ENODATA if property does not have a value, and -EOVERFLOW if the
811  * property data isn't large enough.
812  */
813 static int parse_thread_groups(struct device_node *dn,
814 			       struct thread_groups_list *tglp)
815 {
816 	unsigned int property_idx = 0;
817 	u32 *thread_group_array;
818 	size_t total_threads;
819 	int ret = 0, count;
820 	u32 *thread_list;
821 	int i = 0;
822 
823 	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
824 	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
825 	if (!thread_group_array)
826 		return -ENOMEM;
827 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
828 					 thread_group_array, count);
829 	if (ret)
830 		goto out_free;
831 
832 	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
833 		int j;
834 		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
835 
836 		tg->property = thread_group_array[i];
837 		tg->nr_groups = thread_group_array[i + 1];
838 		tg->threads_per_group = thread_group_array[i + 2];
839 		total_threads = tg->nr_groups * tg->threads_per_group;
840 
841 		thread_list = &thread_group_array[i + 3];
842 
843 		for (j = 0; j < total_threads; j++)
844 			tg->thread_list[j] = thread_list[j];
845 		i = i + 3 + total_threads;
846 	}
847 
848 	tglp->nr_properties = property_idx;
849 
850 out_free:
851 	kfree(thread_group_array);
852 	return ret;
853 }
854 
855 /*
856  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
857  *                              that @cpu belongs to.
858  *
859  * @cpu : The logical CPU whose thread group is being searched.
860  * @tg : The thread-group structure of the CPU node which @cpu belongs
861  *       to.
862  *
863  * Returns the index to tg->thread_list that points to the start
864  * of the thread_group that @cpu belongs to.
865  *
866  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
867  * tg->thread_list.
868  */
869 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
870 {
871 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
872 	int i, j;
873 
874 	for (i = 0; i < tg->nr_groups; i++) {
875 		int group_start = i * tg->threads_per_group;
876 
877 		for (j = 0; j < tg->threads_per_group; j++) {
878 			int idx = group_start + j;
879 
880 			if (tg->thread_list[idx] == hw_cpu_id)
881 				return group_start;
882 		}
883 	}
884 
885 	return -1;
886 }
887 
888 static struct thread_groups *__init get_thread_groups(int cpu,
889 						      int group_property,
890 						      int *err)
891 {
892 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
893 	struct thread_groups_list *cpu_tgl = &tgl[cpu];
894 	struct thread_groups *tg = NULL;
895 	int i;
896 	*err = 0;
897 
898 	if (!dn) {
899 		*err = -ENODATA;
900 		return NULL;
901 	}
902 
903 	if (!cpu_tgl->nr_properties) {
904 		*err = parse_thread_groups(dn, cpu_tgl);
905 		if (*err)
906 			goto out;
907 	}
908 
909 	for (i = 0; i < cpu_tgl->nr_properties; i++) {
910 		if (cpu_tgl->property_tgs[i].property == group_property) {
911 			tg = &cpu_tgl->property_tgs[i];
912 			break;
913 		}
914 	}
915 
916 	if (!tg)
917 		*err = -EINVAL;
918 out:
919 	of_node_put(dn);
920 	return tg;
921 }
922 
923 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
924 					       int cpu, int cpu_group_start)
925 {
926 	int first_thread = cpu_first_thread_sibling(cpu);
927 	int i;
928 
929 	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
930 
931 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
932 		int i_group_start = get_cpu_thread_group_start(i, tg);
933 
934 		if (unlikely(i_group_start == -1)) {
935 			WARN_ON_ONCE(1);
936 			return -ENODATA;
937 		}
938 
939 		if (i_group_start == cpu_group_start)
940 			cpumask_set_cpu(i, *mask);
941 	}
942 
943 	return 0;
944 }
945 
946 static int __init init_thread_group_cache_map(int cpu, int cache_property)
947 
948 {
949 	int cpu_group_start = -1, err = 0;
950 	struct thread_groups *tg = NULL;
951 	cpumask_var_t *mask = NULL;
952 
953 	if (cache_property != THREAD_GROUP_SHARE_L1 &&
954 	    cache_property != THREAD_GROUP_SHARE_L2_L3)
955 		return -EINVAL;
956 
957 	tg = get_thread_groups(cpu, cache_property, &err);
958 
959 	if (!tg)
960 		return err;
961 
962 	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
963 
964 	if (unlikely(cpu_group_start == -1)) {
965 		WARN_ON_ONCE(1);
966 		return -ENODATA;
967 	}
968 
969 	if (cache_property == THREAD_GROUP_SHARE_L1) {
970 		mask = &per_cpu(thread_group_l1_cache_map, cpu);
971 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
972 	}
973 	else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
974 		mask = &per_cpu(thread_group_l2_cache_map, cpu);
975 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
976 		mask = &per_cpu(thread_group_l3_cache_map, cpu);
977 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
978 	}
979 
980 
981 	return 0;
982 }
983 
984 static bool shared_caches __ro_after_init;
985 
986 #ifdef CONFIG_SCHED_SMT
987 /* cpumask of CPUs with asymmetric SMT dependency */
988 static int powerpc_smt_flags(void)
989 {
990 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_LLC;
991 
992 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
993 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
994 		flags |= SD_ASYM_PACKING;
995 	}
996 	return flags;
997 }
998 #endif
999 
1000 /*
1001  * On shared processor LPARs scheduled on a big core (which has two or more
1002  * independent thread groups per core), prefer lower numbered CPUs, so
1003  * that workload consolidates to lesser number of cores.
1004  */
1005 static __ro_after_init DEFINE_STATIC_KEY_FALSE(splpar_asym_pack);
1006 
1007 /*
1008  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1009  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1010  * since the migrated task remains cache hot. We want to take advantage of this
1011  * at the scheduler level so an extra topology level is required.
1012  */
1013 static int powerpc_shared_cache_flags(void)
1014 {
1015 	if (static_branch_unlikely(&splpar_asym_pack))
1016 		return SD_SHARE_LLC | SD_ASYM_PACKING;
1017 
1018 	return SD_SHARE_LLC;
1019 }
1020 
1021 static int powerpc_shared_proc_flags(void)
1022 {
1023 	if (static_branch_unlikely(&splpar_asym_pack))
1024 		return SD_ASYM_PACKING;
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * We can't just pass cpu_l2_cache_mask() directly because
1031  * returns a non-const pointer and the compiler barfs on that.
1032  */
1033 static const struct cpumask *tl_cache_mask(struct sched_domain_topology_level *tl, int cpu)
1034 {
1035 	return per_cpu(cpu_l2_cache_map, cpu);
1036 }
1037 
1038 #ifdef CONFIG_SCHED_SMT
1039 static const struct cpumask *tl_smallcore_smt_mask(struct sched_domain_topology_level *tl, int cpu)
1040 {
1041 	return cpu_smallcore_mask(cpu);
1042 }
1043 #endif
1044 
1045 struct cpumask *cpu_coregroup_mask(int cpu)
1046 {
1047 	return per_cpu(cpu_coregroup_map, cpu);
1048 }
1049 
1050 static bool has_coregroup_support(void)
1051 {
1052 	/* Coregroup identification not available on shared systems */
1053 	if (is_shared_processor())
1054 		return 0;
1055 
1056 	return coregroup_enabled;
1057 }
1058 
1059 static int __init init_big_cores(void)
1060 {
1061 	int cpu;
1062 
1063 	for_each_possible_cpu(cpu) {
1064 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1065 
1066 		if (err)
1067 			return err;
1068 
1069 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1070 					GFP_KERNEL,
1071 					cpu_to_node(cpu));
1072 	}
1073 
1074 	has_big_cores = true;
1075 
1076 	for_each_possible_cpu(cpu) {
1077 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1078 
1079 		if (err)
1080 			return err;
1081 	}
1082 
1083 	thread_group_shares_l2 = true;
1084 	thread_group_shares_l3 = true;
1085 	pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1086 
1087 	return 0;
1088 }
1089 
1090 /*
1091  * die_mask and die_id are only available on systems which support
1092  * multiple coregroups within a same package. On all other systems, die_mask
1093  * would be same as package mask and die_id would be set to -1.
1094  */
1095 const struct cpumask *cpu_die_mask(int cpu)
1096 {
1097 	if (has_coregroup_support())
1098 		return per_cpu(cpu_coregroup_map, cpu);
1099 	else
1100 		return cpu_node_mask(cpu);
1101 }
1102 EXPORT_SYMBOL_GPL(cpu_die_mask);
1103 
1104 int cpu_die_id(int cpu)
1105 {
1106 	if (has_coregroup_support())
1107 		return cpu_to_coregroup_id(cpu);
1108 	else
1109 		return -1;
1110 }
1111 EXPORT_SYMBOL_GPL(cpu_die_id);
1112 
1113 void __init smp_prepare_cpus(unsigned int max_cpus)
1114 {
1115 	unsigned int cpu, num_threads;
1116 
1117 	DBG("smp_prepare_cpus\n");
1118 
1119 	/*
1120 	 * setup_cpu may need to be called on the boot cpu. We haven't
1121 	 * spun any cpus up but lets be paranoid.
1122 	 */
1123 	BUG_ON(boot_cpuid != smp_processor_id());
1124 
1125 	/* Fixup boot cpu */
1126 	smp_store_cpu_info(boot_cpuid);
1127 	cpu_callin_map[boot_cpuid] = 1;
1128 
1129 	for_each_possible_cpu(cpu) {
1130 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1131 					GFP_KERNEL, cpu_to_node(cpu));
1132 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1133 					GFP_KERNEL, cpu_to_node(cpu));
1134 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1135 					GFP_KERNEL, cpu_to_node(cpu));
1136 		if (has_coregroup_support())
1137 			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1138 						GFP_KERNEL, cpu_to_node(cpu));
1139 
1140 #ifdef CONFIG_NUMA
1141 		/*
1142 		 * numa_node_id() works after this.
1143 		 */
1144 		if (cpu_present(cpu)) {
1145 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1146 			set_cpu_numa_mem(cpu,
1147 				local_memory_node(numa_cpu_lookup_table[cpu]));
1148 		}
1149 #endif
1150 	}
1151 
1152 	/* Init the cpumasks so the boot CPU is related to itself */
1153 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1154 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1155 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1156 
1157 	if (has_coregroup_support())
1158 		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1159 
1160 	init_big_cores();
1161 	if (has_big_cores) {
1162 		cpumask_set_cpu(boot_cpuid,
1163 				cpu_smallcore_mask(boot_cpuid));
1164 	}
1165 
1166 	if (cpu_to_chip_id(boot_cpuid) != -1) {
1167 		int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1168 
1169 		/*
1170 		 * All threads of a core will all belong to the same core,
1171 		 * chip_id_lookup_table will have one entry per core.
1172 		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1173 		 * other CPUs, will also not have chip-id.
1174 		 */
1175 		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1176 		if (chip_id_lookup_table)
1177 			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1178 	}
1179 
1180 	if (smp_ops && smp_ops->probe)
1181 		smp_ops->probe();
1182 
1183 	// Initalise the generic SMT topology support
1184 	num_threads = 1;
1185 	if (smt_enabled_at_boot)
1186 		num_threads = smt_enabled_at_boot;
1187 	cpu_smt_set_num_threads(num_threads, threads_per_core);
1188 }
1189 
1190 void __init smp_prepare_boot_cpu(void)
1191 {
1192 	BUG_ON(smp_processor_id() != boot_cpuid);
1193 #ifdef CONFIG_PPC64
1194 	paca_ptrs[boot_cpuid]->__current = current;
1195 #endif
1196 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1197 	current_set[boot_cpuid] = current;
1198 }
1199 
1200 #ifdef CONFIG_HOTPLUG_CPU
1201 
1202 int generic_cpu_disable(void)
1203 {
1204 	unsigned int cpu = smp_processor_id();
1205 
1206 	if (cpu == boot_cpuid)
1207 		return -EBUSY;
1208 
1209 	set_cpu_online(cpu, false);
1210 #ifdef CONFIG_PPC64_PROC_SYSTEMCFG
1211 	systemcfg->processorCount--;
1212 #endif
1213 	/* Update affinity of all IRQs previously aimed at this CPU */
1214 	irq_migrate_all_off_this_cpu();
1215 
1216 	/*
1217 	 * Depending on the details of the interrupt controller, it's possible
1218 	 * that one of the interrupts we just migrated away from this CPU is
1219 	 * actually already pending on this CPU. If we leave it in that state
1220 	 * the interrupt will never be EOI'ed, and will never fire again. So
1221 	 * temporarily enable interrupts here, to allow any pending interrupt to
1222 	 * be received (and EOI'ed), before we take this CPU offline.
1223 	 */
1224 	local_irq_enable();
1225 	mdelay(1);
1226 	local_irq_disable();
1227 
1228 	return 0;
1229 }
1230 
1231 void generic_cpu_die(unsigned int cpu)
1232 {
1233 	int i;
1234 
1235 	for (i = 0; i < 100; i++) {
1236 		smp_rmb();
1237 		if (is_cpu_dead(cpu))
1238 			return;
1239 		msleep(100);
1240 	}
1241 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1242 }
1243 
1244 void generic_set_cpu_dead(unsigned int cpu)
1245 {
1246 	per_cpu(cpu_state, cpu) = CPU_DEAD;
1247 }
1248 
1249 /*
1250  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1251  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1252  * which makes the delay in generic_cpu_die() not happen.
1253  */
1254 void generic_set_cpu_up(unsigned int cpu)
1255 {
1256 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1257 }
1258 
1259 int generic_check_cpu_restart(unsigned int cpu)
1260 {
1261 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1262 }
1263 
1264 int is_cpu_dead(unsigned int cpu)
1265 {
1266 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1267 }
1268 
1269 static bool secondaries_inhibited(void)
1270 {
1271 	return kvm_hv_mode_active();
1272 }
1273 
1274 #else /* HOTPLUG_CPU */
1275 
1276 #define secondaries_inhibited()		0
1277 
1278 #endif
1279 
1280 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1281 {
1282 #ifdef CONFIG_PPC64
1283 	paca_ptrs[cpu]->__current = idle;
1284 	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1285 				 THREAD_SIZE - STACK_FRAME_MIN_SIZE;
1286 #endif
1287 	task_thread_info(idle)->cpu = cpu;
1288 	secondary_current = current_set[cpu] = idle;
1289 }
1290 
1291 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1292 {
1293 	const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
1294 	const bool booting = system_state < SYSTEM_RUNNING;
1295 	const unsigned long hp_spin_ms = 1;
1296 	unsigned long deadline;
1297 	int rc;
1298 	const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
1299 
1300 	/*
1301 	 * Don't allow secondary threads to come online if inhibited
1302 	 */
1303 	if (threads_per_core > 1 && secondaries_inhibited() &&
1304 	    cpu_thread_in_subcore(cpu))
1305 		return -EBUSY;
1306 
1307 	if (smp_ops == NULL ||
1308 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1309 		return -EINVAL;
1310 
1311 	cpu_idle_thread_init(cpu, tidle);
1312 
1313 	/*
1314 	 * The platform might need to allocate resources prior to bringing
1315 	 * up the CPU
1316 	 */
1317 	if (smp_ops->prepare_cpu) {
1318 		rc = smp_ops->prepare_cpu(cpu);
1319 		if (rc)
1320 			return rc;
1321 	}
1322 
1323 	/* Make sure callin-map entry is 0 (can be leftover a CPU
1324 	 * hotplug
1325 	 */
1326 	cpu_callin_map[cpu] = 0;
1327 
1328 	/* The information for processor bringup must
1329 	 * be written out to main store before we release
1330 	 * the processor.
1331 	 */
1332 	smp_mb();
1333 
1334 	/* wake up cpus */
1335 	DBG("smp: kicking cpu %d\n", cpu);
1336 	rc = smp_ops->kick_cpu(cpu);
1337 	if (rc) {
1338 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1339 		return rc;
1340 	}
1341 
1342 	/*
1343 	 * At boot time, simply spin on the callin word until the
1344 	 * deadline passes.
1345 	 *
1346 	 * At run time, spin for an optimistic amount of time to avoid
1347 	 * sleeping in the common case.
1348 	 */
1349 	deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
1350 	spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
1351 
1352 	if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
1353 		const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
1354 		const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
1355 
1356 		deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
1357 		while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
1358 			fsleep(sleep_interval_us);
1359 	}
1360 
1361 	if (!cpu_callin_map[cpu]) {
1362 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1363 		return -ENOENT;
1364 	}
1365 
1366 	DBG("Processor %u found.\n", cpu);
1367 
1368 	if (smp_ops->give_timebase)
1369 		smp_ops->give_timebase();
1370 
1371 	/* Wait until cpu puts itself in the online & active maps */
1372 	spin_until_cond(cpu_online(cpu));
1373 
1374 	return 0;
1375 }
1376 
1377 /* Return the value of the reg property corresponding to the given
1378  * logical cpu.
1379  */
1380 int cpu_to_core_id(int cpu)
1381 {
1382 	struct device_node *np;
1383 	int id = -1;
1384 
1385 	np = of_get_cpu_node(cpu, NULL);
1386 	if (!np)
1387 		goto out;
1388 
1389 	id = of_get_cpu_hwid(np, 0);
1390 out:
1391 	of_node_put(np);
1392 	return id;
1393 }
1394 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1395 
1396 /* Helper routines for cpu to core mapping */
1397 int cpu_core_index_of_thread(int cpu)
1398 {
1399 	return cpu >> threads_shift;
1400 }
1401 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1402 
1403 int cpu_first_thread_of_core(int core)
1404 {
1405 	return core << threads_shift;
1406 }
1407 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1408 
1409 /* Must be called when no change can occur to cpu_present_mask,
1410  * i.e. during cpu online or offline.
1411  */
1412 static struct device_node *cpu_to_l2cache(int cpu)
1413 {
1414 	struct device_node *np;
1415 	struct device_node *cache;
1416 
1417 	if (!cpu_present(cpu))
1418 		return NULL;
1419 
1420 	np = of_get_cpu_node(cpu, NULL);
1421 	if (np == NULL)
1422 		return NULL;
1423 
1424 	cache = of_find_next_cache_node(np);
1425 
1426 	of_node_put(np);
1427 
1428 	return cache;
1429 }
1430 
1431 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1432 {
1433 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1434 	struct device_node *l2_cache, *np;
1435 	int i;
1436 
1437 	if (has_big_cores)
1438 		submask_fn = cpu_smallcore_mask;
1439 
1440 	/*
1441 	 * If the threads in a thread-group share L2 cache, then the
1442 	 * L2-mask can be obtained from thread_group_l2_cache_map.
1443 	 */
1444 	if (thread_group_shares_l2) {
1445 		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1446 
1447 		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1448 			if (cpu_online(i))
1449 				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1450 		}
1451 
1452 		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1453 		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1454 		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1455 			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1456 				     cpu);
1457 		}
1458 
1459 		return true;
1460 	}
1461 
1462 	l2_cache = cpu_to_l2cache(cpu);
1463 	if (!l2_cache || !*mask) {
1464 		/* Assume only core siblings share cache with this CPU */
1465 		for_each_cpu(i, cpu_sibling_mask(cpu))
1466 			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1467 
1468 		return false;
1469 	}
1470 
1471 	cpumask_and(*mask, cpu_online_mask, cpu_node_mask(cpu));
1472 
1473 	/* Update l2-cache mask with all the CPUs that are part of submask */
1474 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1475 
1476 	/* Skip all CPUs already part of current CPU l2-cache mask */
1477 	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1478 
1479 	for_each_cpu(i, *mask) {
1480 		/*
1481 		 * when updating the marks the current CPU has not been marked
1482 		 * online, but we need to update the cache masks
1483 		 */
1484 		np = cpu_to_l2cache(i);
1485 
1486 		/* Skip all CPUs already part of current CPU l2-cache */
1487 		if (np == l2_cache) {
1488 			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1489 			cpumask_andnot(*mask, *mask, submask_fn(i));
1490 		} else {
1491 			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1492 		}
1493 
1494 		of_node_put(np);
1495 	}
1496 	of_node_put(l2_cache);
1497 
1498 	return true;
1499 }
1500 
1501 #ifdef CONFIG_HOTPLUG_CPU
1502 static void remove_cpu_from_masks(int cpu)
1503 {
1504 	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1505 	int i;
1506 
1507 	unmap_cpu_from_node(cpu);
1508 
1509 	if (shared_caches)
1510 		mask_fn = cpu_l2_cache_mask;
1511 
1512 	for_each_cpu(i, mask_fn(cpu)) {
1513 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1514 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1515 		if (has_big_cores)
1516 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1517 	}
1518 
1519 	for_each_cpu(i, cpu_core_mask(cpu))
1520 		set_cpus_unrelated(cpu, i, cpu_core_mask);
1521 
1522 	if (has_coregroup_support()) {
1523 		for_each_cpu(i, cpu_coregroup_mask(cpu))
1524 			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1525 	}
1526 }
1527 #endif
1528 
1529 static inline void add_cpu_to_smallcore_masks(int cpu)
1530 {
1531 	int i;
1532 
1533 	if (!has_big_cores)
1534 		return;
1535 
1536 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1537 
1538 	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1539 		if (cpu_online(i))
1540 			set_cpus_related(i, cpu, cpu_smallcore_mask);
1541 	}
1542 }
1543 
1544 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1545 {
1546 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1547 	int coregroup_id = cpu_to_coregroup_id(cpu);
1548 	int i;
1549 
1550 	if (shared_caches)
1551 		submask_fn = cpu_l2_cache_mask;
1552 
1553 	if (!*mask) {
1554 		/* Assume only siblings are part of this CPU's coregroup */
1555 		for_each_cpu(i, submask_fn(cpu))
1556 			set_cpus_related(cpu, i, cpu_coregroup_mask);
1557 
1558 		return;
1559 	}
1560 
1561 	cpumask_and(*mask, cpu_online_mask, cpu_node_mask(cpu));
1562 
1563 	/* Update coregroup mask with all the CPUs that are part of submask */
1564 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1565 
1566 	/* Skip all CPUs already part of coregroup mask */
1567 	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1568 
1569 	for_each_cpu(i, *mask) {
1570 		/* Skip all CPUs not part of this coregroup */
1571 		if (coregroup_id == cpu_to_coregroup_id(i)) {
1572 			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1573 			cpumask_andnot(*mask, *mask, submask_fn(i));
1574 		} else {
1575 			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1576 		}
1577 	}
1578 }
1579 
1580 static void add_cpu_to_masks(int cpu)
1581 {
1582 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1583 	int first_thread = cpu_first_thread_sibling(cpu);
1584 	cpumask_var_t mask;
1585 	int chip_id = -1;
1586 	bool ret;
1587 	int i;
1588 
1589 	/*
1590 	 * This CPU will not be in the online mask yet so we need to manually
1591 	 * add it to its own thread sibling mask.
1592 	 */
1593 	map_cpu_to_node(cpu, cpu_to_node(cpu));
1594 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1595 	cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1596 
1597 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1598 		if (cpu_online(i))
1599 			set_cpus_related(i, cpu, cpu_sibling_mask);
1600 
1601 	add_cpu_to_smallcore_masks(cpu);
1602 
1603 	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1604 	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1605 	update_mask_by_l2(cpu, &mask);
1606 
1607 	if (has_coregroup_support())
1608 		update_coregroup_mask(cpu, &mask);
1609 
1610 	if (chip_id_lookup_table && ret)
1611 		chip_id = cpu_to_chip_id(cpu);
1612 
1613 	if (shared_caches)
1614 		submask_fn = cpu_l2_cache_mask;
1615 
1616 	/* Update core_mask with all the CPUs that are part of submask */
1617 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1618 
1619 	/* Skip all CPUs already part of current CPU core mask */
1620 	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1621 
1622 	/* If chip_id is -1; limit the cpu_core_mask to within PKG */
1623 	if (chip_id == -1)
1624 		cpumask_and(mask, mask, cpu_node_mask(cpu));
1625 
1626 	for_each_cpu(i, mask) {
1627 		if (chip_id == cpu_to_chip_id(i)) {
1628 			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1629 			cpumask_andnot(mask, mask, submask_fn(i));
1630 		} else {
1631 			cpumask_andnot(mask, mask, cpu_core_mask(i));
1632 		}
1633 	}
1634 
1635 	free_cpumask_var(mask);
1636 }
1637 
1638 /* Activate a secondary processor. */
1639 __no_stack_protector
1640 void start_secondary(void *unused)
1641 {
1642 	unsigned int cpu = raw_smp_processor_id();
1643 
1644 	/* PPC64 calls setup_kup() in early_setup_secondary() */
1645 	if (IS_ENABLED(CONFIG_PPC32))
1646 		setup_kup();
1647 
1648 	mmgrab_lazy_tlb(&init_mm);
1649 	current->active_mm = &init_mm;
1650 	VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
1651 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
1652 	inc_mm_active_cpus(&init_mm);
1653 
1654 	smp_store_cpu_info(cpu);
1655 	set_dec(tb_ticks_per_jiffy);
1656 	rcutree_report_cpu_starting(cpu);
1657 	cpu_callin_map[cpu] = 1;
1658 
1659 	if (smp_ops->setup_cpu)
1660 		smp_ops->setup_cpu(cpu);
1661 	if (smp_ops->take_timebase)
1662 		smp_ops->take_timebase();
1663 
1664 	secondary_cpu_time_init();
1665 
1666 #ifdef CONFIG_PPC64_PROC_SYSTEMCFG
1667 	if (system_state == SYSTEM_RUNNING)
1668 		systemcfg->processorCount++;
1669 #endif
1670 
1671 #ifdef CONFIG_PPC64
1672 	vdso_getcpu_init();
1673 #endif
1674 	set_numa_node(numa_cpu_lookup_table[cpu]);
1675 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1676 
1677 	/* Update topology CPU masks */
1678 	add_cpu_to_masks(cpu);
1679 
1680 	/*
1681 	 * Check for any shared caches. Note that this must be done on a
1682 	 * per-core basis because one core in the pair might be disabled.
1683 	 */
1684 	if (!shared_caches) {
1685 		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1686 		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1687 
1688 		if (has_big_cores)
1689 			sibling_mask = cpu_smallcore_mask;
1690 
1691 		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1692 			shared_caches = true;
1693 	}
1694 
1695 	smp_wmb();
1696 	notify_cpu_starting(cpu);
1697 	set_cpu_online(cpu, true);
1698 
1699 	boot_init_stack_canary();
1700 
1701 	local_irq_enable();
1702 
1703 	/* We can enable ftrace for secondary cpus now */
1704 	this_cpu_enable_ftrace();
1705 
1706 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1707 
1708 	BUG();
1709 }
1710 
1711 static struct sched_domain_topology_level powerpc_topology[6];
1712 
1713 static void __init build_sched_topology(void)
1714 {
1715 	int i = 0;
1716 
1717 	if (is_shared_processor() && has_big_cores)
1718 		static_branch_enable(&splpar_asym_pack);
1719 
1720 #ifdef CONFIG_SCHED_SMT
1721 	if (has_big_cores) {
1722 		pr_info("Big cores detected but using small core scheduling\n");
1723 		powerpc_topology[i++] =
1724 			SDTL_INIT(tl_smallcore_smt_mask, powerpc_smt_flags, SMT);
1725 	} else {
1726 		powerpc_topology[i++] = SDTL_INIT(tl_smt_mask, powerpc_smt_flags, SMT);
1727 	}
1728 #endif
1729 	if (shared_caches) {
1730 		powerpc_topology[i++] =
1731 			SDTL_INIT(tl_cache_mask, powerpc_shared_cache_flags, CACHE);
1732 	}
1733 
1734 	if (has_coregroup_support()) {
1735 		powerpc_topology[i++] =
1736 			SDTL_INIT(tl_mc_mask, powerpc_shared_proc_flags, MC);
1737 	}
1738 
1739 	powerpc_topology[i++] = SDTL_INIT(tl_pkg_mask, powerpc_shared_proc_flags, PKG);
1740 
1741 	/* There must be one trailing NULL entry left.  */
1742 	BUG_ON(i >= ARRAY_SIZE(powerpc_topology) - 1);
1743 
1744 	set_sched_topology(powerpc_topology);
1745 }
1746 
1747 void __init smp_cpus_done(unsigned int max_cpus)
1748 {
1749 	/*
1750 	 * We are running pinned to the boot CPU, see rest_init().
1751 	 */
1752 	if (smp_ops && smp_ops->setup_cpu)
1753 		smp_ops->setup_cpu(boot_cpuid);
1754 
1755 	if (smp_ops && smp_ops->bringup_done)
1756 		smp_ops->bringup_done();
1757 
1758 	dump_numa_cpu_topology();
1759 	build_sched_topology();
1760 }
1761 
1762 /*
1763  * For asym packing, by default lower numbered CPU has higher priority.
1764  * On shared processors, pack to lower numbered core. However avoid moving
1765  * between thread_groups within the same core.
1766  */
1767 int arch_asym_cpu_priority(int cpu)
1768 {
1769 	if (static_branch_unlikely(&splpar_asym_pack))
1770 		return -cpu / threads_per_core;
1771 
1772 	return -cpu;
1773 }
1774 
1775 #ifdef CONFIG_HOTPLUG_CPU
1776 int __cpu_disable(void)
1777 {
1778 	int cpu = smp_processor_id();
1779 	int err;
1780 
1781 	if (!smp_ops->cpu_disable)
1782 		return -ENOSYS;
1783 
1784 	this_cpu_disable_ftrace();
1785 
1786 	err = smp_ops->cpu_disable();
1787 	if (err)
1788 		return err;
1789 
1790 	/* Update sibling maps */
1791 	remove_cpu_from_masks(cpu);
1792 
1793 	return 0;
1794 }
1795 
1796 void __cpu_die(unsigned int cpu)
1797 {
1798 	/*
1799 	 * This could perhaps be a generic call in idlea_task_dead(), but
1800 	 * that requires testing from all archs, so first put it here to
1801 	 */
1802 	VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm)));
1803 	dec_mm_active_cpus(&init_mm);
1804 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
1805 
1806 	if (smp_ops->cpu_die)
1807 		smp_ops->cpu_die(cpu);
1808 }
1809 
1810 void __noreturn arch_cpu_idle_dead(void)
1811 {
1812 	/*
1813 	 * Disable on the down path. This will be re-enabled by
1814 	 * start_secondary() via start_secondary_resume() below
1815 	 */
1816 	this_cpu_disable_ftrace();
1817 
1818 	if (smp_ops->cpu_offline_self)
1819 		smp_ops->cpu_offline_self();
1820 
1821 	/* If we return, we re-enter start_secondary */
1822 	start_secondary_resume();
1823 }
1824 
1825 #endif
1826