1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2023 Christoph Hellwig. 5 */ 6 #include <linux/iomap.h> 7 #include <linux/buffer_head.h> 8 #include <linux/writeback.h> 9 #include <linux/swap.h> 10 #include <linux/migrate.h> 11 #include <linux/fserror.h> 12 #include "internal.h" 13 #include "trace.h" 14 15 #include "../internal.h" 16 17 /* 18 * Structure allocated for each folio to track per-block uptodate, dirty state 19 * and I/O completions. 20 */ 21 struct iomap_folio_state { 22 spinlock_t state_lock; 23 unsigned int read_bytes_pending; 24 atomic_t write_bytes_pending; 25 26 /* 27 * Each block has two bits in this bitmap: 28 * Bits [0..blocks_per_folio) has the uptodate status. 29 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 30 */ 31 unsigned long state[]; 32 }; 33 34 static inline bool ifs_is_fully_uptodate(struct folio *folio, 35 struct iomap_folio_state *ifs) 36 { 37 struct inode *inode = folio->mapping->host; 38 39 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 40 } 41 42 /* 43 * Find the next uptodate block in the folio. end_blk is inclusive. 44 * If no uptodate block is found, this will return end_blk + 1. 45 */ 46 static unsigned ifs_next_uptodate_block(struct folio *folio, 47 unsigned start_blk, unsigned end_blk) 48 { 49 struct iomap_folio_state *ifs = folio->private; 50 51 return find_next_bit(ifs->state, end_blk + 1, start_blk); 52 } 53 54 /* 55 * Find the next non-uptodate block in the folio. end_blk is inclusive. 56 * If no non-uptodate block is found, this will return end_blk + 1. 57 */ 58 static unsigned ifs_next_nonuptodate_block(struct folio *folio, 59 unsigned start_blk, unsigned end_blk) 60 { 61 struct iomap_folio_state *ifs = folio->private; 62 63 return find_next_zero_bit(ifs->state, end_blk + 1, start_blk); 64 } 65 66 static bool ifs_set_range_uptodate(struct folio *folio, 67 struct iomap_folio_state *ifs, size_t off, size_t len) 68 { 69 struct inode *inode = folio->mapping->host; 70 unsigned int first_blk = off >> inode->i_blkbits; 71 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 72 unsigned int nr_blks = last_blk - first_blk + 1; 73 74 bitmap_set(ifs->state, first_blk, nr_blks); 75 return ifs_is_fully_uptodate(folio, ifs); 76 } 77 78 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 79 size_t len) 80 { 81 struct iomap_folio_state *ifs = folio->private; 82 unsigned long flags; 83 bool uptodate = true; 84 85 if (folio_test_uptodate(folio)) 86 return; 87 88 if (ifs) { 89 spin_lock_irqsave(&ifs->state_lock, flags); 90 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 91 spin_unlock_irqrestore(&ifs->state_lock, flags); 92 } 93 94 if (uptodate) 95 folio_mark_uptodate(folio); 96 } 97 98 /* 99 * Find the next dirty block in the folio. end_blk is inclusive. 100 * If no dirty block is found, this will return end_blk + 1. 101 */ 102 static unsigned ifs_next_dirty_block(struct folio *folio, 103 unsigned start_blk, unsigned end_blk) 104 { 105 struct iomap_folio_state *ifs = folio->private; 106 struct inode *inode = folio->mapping->host; 107 unsigned int blks = i_blocks_per_folio(inode, folio); 108 109 return find_next_bit(ifs->state, blks + end_blk + 1, 110 blks + start_blk) - blks; 111 } 112 113 /* 114 * Find the next clean block in the folio. end_blk is inclusive. 115 * If no clean block is found, this will return end_blk + 1. 116 */ 117 static unsigned ifs_next_clean_block(struct folio *folio, 118 unsigned start_blk, unsigned end_blk) 119 { 120 struct iomap_folio_state *ifs = folio->private; 121 struct inode *inode = folio->mapping->host; 122 unsigned int blks = i_blocks_per_folio(inode, folio); 123 124 return find_next_zero_bit(ifs->state, blks + end_blk + 1, 125 blks + start_blk) - blks; 126 } 127 128 static unsigned ifs_find_dirty_range(struct folio *folio, 129 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end) 130 { 131 struct inode *inode = folio->mapping->host; 132 unsigned start_blk = 133 offset_in_folio(folio, *range_start) >> inode->i_blkbits; 134 unsigned end_blk = min_not_zero( 135 offset_in_folio(folio, range_end) >> inode->i_blkbits, 136 i_blocks_per_folio(inode, folio)) - 1; 137 unsigned nblks; 138 139 start_blk = ifs_next_dirty_block(folio, start_blk, end_blk); 140 if (start_blk > end_blk) 141 return 0; 142 if (start_blk == end_blk) 143 nblks = 1; 144 else 145 nblks = ifs_next_clean_block(folio, start_blk + 1, end_blk) - 146 start_blk; 147 148 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits); 149 return nblks << inode->i_blkbits; 150 } 151 152 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start, 153 u64 range_end) 154 { 155 struct iomap_folio_state *ifs = folio->private; 156 157 if (*range_start >= range_end) 158 return 0; 159 160 if (ifs) 161 return ifs_find_dirty_range(folio, ifs, range_start, range_end); 162 return range_end - *range_start; 163 } 164 165 static void ifs_clear_range_dirty(struct folio *folio, 166 struct iomap_folio_state *ifs, size_t off, size_t len) 167 { 168 struct inode *inode = folio->mapping->host; 169 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 170 unsigned int first_blk = (off >> inode->i_blkbits); 171 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 172 unsigned int nr_blks = last_blk - first_blk + 1; 173 unsigned long flags; 174 175 spin_lock_irqsave(&ifs->state_lock, flags); 176 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 177 spin_unlock_irqrestore(&ifs->state_lock, flags); 178 } 179 180 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 181 { 182 struct iomap_folio_state *ifs = folio->private; 183 184 if (ifs) 185 ifs_clear_range_dirty(folio, ifs, off, len); 186 } 187 188 static void ifs_set_range_dirty(struct folio *folio, 189 struct iomap_folio_state *ifs, size_t off, size_t len) 190 { 191 struct inode *inode = folio->mapping->host; 192 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 193 unsigned int first_blk = (off >> inode->i_blkbits); 194 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 195 unsigned int nr_blks = last_blk - first_blk + 1; 196 unsigned long flags; 197 198 spin_lock_irqsave(&ifs->state_lock, flags); 199 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 200 spin_unlock_irqrestore(&ifs->state_lock, flags); 201 } 202 203 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 204 { 205 struct iomap_folio_state *ifs = folio->private; 206 207 if (ifs) 208 ifs_set_range_dirty(folio, ifs, off, len); 209 } 210 211 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 212 struct folio *folio, unsigned int flags) 213 { 214 struct iomap_folio_state *ifs = folio->private; 215 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 216 gfp_t gfp; 217 218 if (ifs || nr_blocks <= 1) 219 return ifs; 220 221 if (flags & IOMAP_NOWAIT) 222 gfp = GFP_NOWAIT; 223 else 224 gfp = GFP_NOFS | __GFP_NOFAIL; 225 226 /* 227 * ifs->state tracks two sets of state flags when the 228 * filesystem block size is smaller than the folio size. 229 * The first state tracks per-block uptodate and the 230 * second tracks per-block dirty state. 231 */ 232 ifs = kzalloc(struct_size(ifs, state, 233 BITS_TO_LONGS(2 * nr_blocks)), gfp); 234 if (!ifs) 235 return ifs; 236 237 spin_lock_init(&ifs->state_lock); 238 if (folio_test_uptodate(folio)) 239 bitmap_set(ifs->state, 0, nr_blocks); 240 if (folio_test_dirty(folio)) 241 bitmap_set(ifs->state, nr_blocks, nr_blocks); 242 folio_attach_private(folio, ifs); 243 244 return ifs; 245 } 246 247 static void ifs_free(struct folio *folio) 248 { 249 struct iomap_folio_state *ifs = folio_detach_private(folio); 250 251 if (!ifs) 252 return; 253 WARN_ON_ONCE(ifs->read_bytes_pending != 0); 254 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 255 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 256 folio_test_uptodate(folio)); 257 kfree(ifs); 258 } 259 260 /* 261 * Calculate how many bytes to truncate based off the number of blocks to 262 * truncate and the end position to start truncating from. 263 */ 264 static size_t iomap_bytes_to_truncate(loff_t end_pos, unsigned block_bits, 265 unsigned blocks_truncated) 266 { 267 unsigned block_size = 1 << block_bits; 268 unsigned block_offset = end_pos & (block_size - 1); 269 270 if (!block_offset) 271 return blocks_truncated << block_bits; 272 273 return ((blocks_truncated - 1) << block_bits) + block_offset; 274 } 275 276 /* 277 * Calculate the range inside the folio that we actually need to read. 278 */ 279 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 280 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 281 { 282 struct iomap_folio_state *ifs = folio->private; 283 loff_t orig_pos = *pos; 284 loff_t isize = i_size_read(inode); 285 unsigned block_bits = inode->i_blkbits; 286 unsigned block_size = (1 << block_bits); 287 size_t poff = offset_in_folio(folio, *pos); 288 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 289 size_t orig_plen = plen; 290 unsigned first = poff >> block_bits; 291 unsigned last = (poff + plen - 1) >> block_bits; 292 293 /* 294 * If the block size is smaller than the page size, we need to check the 295 * per-block uptodate status and adjust the offset and length if needed 296 * to avoid reading in already uptodate ranges. 297 */ 298 if (ifs) { 299 unsigned int next, blocks_skipped; 300 301 next = ifs_next_nonuptodate_block(folio, first, last); 302 blocks_skipped = next - first; 303 304 if (blocks_skipped) { 305 unsigned long block_offset = *pos & (block_size - 1); 306 unsigned bytes_skipped = 307 (blocks_skipped << block_bits) - block_offset; 308 309 *pos += bytes_skipped; 310 poff += bytes_skipped; 311 plen -= bytes_skipped; 312 } 313 first = next; 314 315 /* truncate len if we find any trailing uptodate block(s) */ 316 if (++next <= last) { 317 next = ifs_next_uptodate_block(folio, next, last); 318 if (next <= last) { 319 plen -= iomap_bytes_to_truncate(*pos + plen, 320 block_bits, last - next + 1); 321 last = next - 1; 322 } 323 } 324 } 325 326 /* 327 * If the extent spans the block that contains the i_size, we need to 328 * handle both halves separately so that we properly zero data in the 329 * page cache for blocks that are entirely outside of i_size. 330 */ 331 if (orig_pos <= isize && orig_pos + orig_plen > isize) { 332 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 333 334 if (first <= end && last > end) 335 plen -= iomap_bytes_to_truncate(*pos + plen, block_bits, 336 last - end); 337 } 338 339 *offp = poff; 340 *lenp = plen; 341 } 342 343 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 344 loff_t pos) 345 { 346 const struct iomap *srcmap = iomap_iter_srcmap(iter); 347 348 return srcmap->type != IOMAP_MAPPED || 349 (srcmap->flags & IOMAP_F_NEW) || 350 pos >= i_size_read(iter->inode); 351 } 352 353 /** 354 * iomap_read_inline_data - copy inline data into the page cache 355 * @iter: iteration structure 356 * @folio: folio to copy to 357 * 358 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 359 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 360 * Returns zero for success to complete the read, or the usual negative errno. 361 */ 362 static int iomap_read_inline_data(const struct iomap_iter *iter, 363 struct folio *folio) 364 { 365 const struct iomap *iomap = iomap_iter_srcmap(iter); 366 size_t size = i_size_read(iter->inode) - iomap->offset; 367 size_t offset = offset_in_folio(folio, iomap->offset); 368 369 if (WARN_ON_ONCE(!iomap->inline_data)) 370 return -EIO; 371 372 if (folio_test_uptodate(folio)) 373 return 0; 374 375 if (WARN_ON_ONCE(size > iomap->length)) { 376 fserror_report_io(iter->inode, FSERR_BUFFERED_READ, 377 iomap->offset, size, -EIO, GFP_NOFS); 378 return -EIO; 379 } 380 if (offset > 0) 381 ifs_alloc(iter->inode, folio, iter->flags); 382 383 folio_fill_tail(folio, offset, iomap->inline_data, size); 384 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset); 385 return 0; 386 } 387 388 void iomap_finish_folio_read(struct folio *folio, size_t off, size_t len, 389 int error) 390 { 391 struct iomap_folio_state *ifs = folio->private; 392 bool uptodate = !error; 393 bool finished = true; 394 395 if (ifs) { 396 unsigned long flags; 397 398 spin_lock_irqsave(&ifs->state_lock, flags); 399 if (!error) 400 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 401 ifs->read_bytes_pending -= len; 402 finished = !ifs->read_bytes_pending; 403 spin_unlock_irqrestore(&ifs->state_lock, flags); 404 } 405 406 if (error) 407 fserror_report_io(folio->mapping->host, FSERR_BUFFERED_READ, 408 folio_pos(folio) + off, len, error, 409 GFP_ATOMIC); 410 411 if (finished) 412 folio_end_read(folio, uptodate); 413 } 414 EXPORT_SYMBOL_GPL(iomap_finish_folio_read); 415 416 static void iomap_read_init(struct folio *folio) 417 { 418 struct iomap_folio_state *ifs = folio->private; 419 420 if (ifs) { 421 /* 422 * ifs->read_bytes_pending is used to track how many bytes are 423 * read in asynchronously by the IO helper. We need to track 424 * this so that we can know when the IO helper has finished 425 * reading in all the necessary ranges of the folio and can end 426 * the read. 427 * 428 * Increase ->read_bytes_pending by the folio size to start. 429 * We'll subtract any uptodate / zeroed ranges that did not 430 * require IO in iomap_read_end() after we're done processing 431 * the folio. 432 * 433 * We do this because otherwise, we would have to increment 434 * ifs->read_bytes_pending every time a range in the folio needs 435 * to be read in, which can get expensive since the spinlock 436 * needs to be held whenever modifying ifs->read_bytes_pending. 437 */ 438 spin_lock_irq(&ifs->state_lock); 439 WARN_ON_ONCE(ifs->read_bytes_pending != 0); 440 ifs->read_bytes_pending = folio_size(folio); 441 spin_unlock_irq(&ifs->state_lock); 442 } 443 } 444 445 /* 446 * This ends IO if no bytes were submitted to an IO helper. 447 * 448 * Otherwise, this calibrates ifs->read_bytes_pending to represent only the 449 * submitted bytes (see comment in iomap_read_init()). If all bytes submitted 450 * have already been completed by the IO helper, then this will end the read. 451 * Else the IO helper will end the read after all submitted ranges have been 452 * read. 453 */ 454 static void iomap_read_end(struct folio *folio, size_t bytes_submitted) 455 { 456 struct iomap_folio_state *ifs = folio->private; 457 458 if (ifs) { 459 bool end_read, uptodate; 460 461 spin_lock_irq(&ifs->state_lock); 462 if (!ifs->read_bytes_pending) { 463 WARN_ON_ONCE(bytes_submitted); 464 spin_unlock_irq(&ifs->state_lock); 465 folio_unlock(folio); 466 return; 467 } 468 469 /* 470 * Subtract any bytes that were initially accounted to 471 * read_bytes_pending but skipped for IO. 472 */ 473 ifs->read_bytes_pending -= folio_size(folio) - bytes_submitted; 474 475 /* 476 * If !ifs->read_bytes_pending, this means all pending reads by 477 * the IO helper have already completed, which means we need to 478 * end the folio read here. If ifs->read_bytes_pending != 0, 479 * the IO helper will end the folio read. 480 */ 481 end_read = !ifs->read_bytes_pending; 482 if (end_read) 483 uptodate = ifs_is_fully_uptodate(folio, ifs); 484 spin_unlock_irq(&ifs->state_lock); 485 if (end_read) 486 folio_end_read(folio, uptodate); 487 } else { 488 /* 489 * If a folio without an ifs is submitted to the IO helper, the 490 * read must be on the entire folio and the IO helper takes 491 * ownership of the folio. This means we should only enter 492 * iomap_read_end() for the !ifs case if no bytes were submitted 493 * to the IO helper, in which case we are responsible for 494 * unlocking the folio here. 495 */ 496 WARN_ON_ONCE(bytes_submitted); 497 folio_unlock(folio); 498 } 499 } 500 501 static int iomap_read_folio_iter(struct iomap_iter *iter, 502 struct iomap_read_folio_ctx *ctx, size_t *bytes_submitted) 503 { 504 const struct iomap *iomap = &iter->iomap; 505 loff_t pos = iter->pos; 506 loff_t length = iomap_length(iter); 507 struct folio *folio = ctx->cur_folio; 508 size_t folio_len = folio_size(folio); 509 size_t poff, plen; 510 loff_t pos_diff; 511 int ret; 512 513 if (iomap->type == IOMAP_INLINE) { 514 ret = iomap_read_inline_data(iter, folio); 515 if (ret) 516 return ret; 517 return iomap_iter_advance(iter, length); 518 } 519 520 ifs_alloc(iter->inode, folio, iter->flags); 521 522 length = min_t(loff_t, length, folio_len - offset_in_folio(folio, pos)); 523 while (length) { 524 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, 525 &plen); 526 527 pos_diff = pos - iter->pos; 528 if (WARN_ON_ONCE(pos_diff + plen > length)) 529 return -EIO; 530 531 ret = iomap_iter_advance(iter, pos_diff); 532 if (ret) 533 return ret; 534 535 if (plen == 0) 536 return 0; 537 538 /* zero post-eof blocks as the page may be mapped */ 539 if (iomap_block_needs_zeroing(iter, pos)) { 540 folio_zero_range(folio, poff, plen); 541 iomap_set_range_uptodate(folio, poff, plen); 542 } else { 543 if (!*bytes_submitted) 544 iomap_read_init(folio); 545 ret = ctx->ops->read_folio_range(iter, ctx, plen); 546 if (ret < 0) 547 fserror_report_io(iter->inode, 548 FSERR_BUFFERED_READ, pos, 549 plen, ret, GFP_NOFS); 550 if (ret) 551 return ret; 552 553 *bytes_submitted += plen; 554 /* 555 * If the entire folio has been read in by the IO 556 * helper, then the helper owns the folio and will end 557 * the read on it. 558 */ 559 if (*bytes_submitted == folio_len) 560 ctx->cur_folio = NULL; 561 } 562 563 ret = iomap_iter_advance(iter, plen); 564 if (ret) 565 return ret; 566 length -= pos_diff + plen; 567 pos = iter->pos; 568 } 569 return 0; 570 } 571 572 void iomap_read_folio(const struct iomap_ops *ops, 573 struct iomap_read_folio_ctx *ctx, void *private) 574 { 575 struct folio *folio = ctx->cur_folio; 576 struct iomap_iter iter = { 577 .inode = folio->mapping->host, 578 .pos = folio_pos(folio), 579 .len = folio_size(folio), 580 .private = private, 581 }; 582 size_t bytes_submitted = 0; 583 int ret; 584 585 trace_iomap_readpage(iter.inode, 1); 586 587 while ((ret = iomap_iter(&iter, ops)) > 0) 588 iter.status = iomap_read_folio_iter(&iter, ctx, 589 &bytes_submitted); 590 591 if (ctx->ops->submit_read) 592 ctx->ops->submit_read(ctx); 593 594 if (ctx->cur_folio) 595 iomap_read_end(ctx->cur_folio, bytes_submitted); 596 } 597 EXPORT_SYMBOL_GPL(iomap_read_folio); 598 599 static int iomap_readahead_iter(struct iomap_iter *iter, 600 struct iomap_read_folio_ctx *ctx, size_t *cur_bytes_submitted) 601 { 602 int ret; 603 604 while (iomap_length(iter)) { 605 if (ctx->cur_folio && 606 offset_in_folio(ctx->cur_folio, iter->pos) == 0) { 607 iomap_read_end(ctx->cur_folio, *cur_bytes_submitted); 608 ctx->cur_folio = NULL; 609 } 610 if (!ctx->cur_folio) { 611 ctx->cur_folio = readahead_folio(ctx->rac); 612 if (WARN_ON_ONCE(!ctx->cur_folio)) 613 return -EINVAL; 614 *cur_bytes_submitted = 0; 615 } 616 ret = iomap_read_folio_iter(iter, ctx, cur_bytes_submitted); 617 if (ret) 618 return ret; 619 } 620 621 return 0; 622 } 623 624 /** 625 * iomap_readahead - Attempt to read pages from a file. 626 * @ops: The operations vector for the filesystem. 627 * @ctx: The ctx used for issuing readahead. 628 * 629 * This function is for filesystems to call to implement their readahead 630 * address_space operation. 631 * 632 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 633 * blocks from disc), and may wait for it. The caller may be trying to 634 * access a different page, and so sleeping excessively should be avoided. 635 * It may allocate memory, but should avoid costly allocations. This 636 * function is called with memalloc_nofs set, so allocations will not cause 637 * the filesystem to be reentered. 638 */ 639 void iomap_readahead(const struct iomap_ops *ops, 640 struct iomap_read_folio_ctx *ctx, void *private) 641 { 642 struct readahead_control *rac = ctx->rac; 643 struct iomap_iter iter = { 644 .inode = rac->mapping->host, 645 .pos = readahead_pos(rac), 646 .len = readahead_length(rac), 647 .private = private, 648 }; 649 size_t cur_bytes_submitted; 650 651 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 652 653 while (iomap_iter(&iter, ops) > 0) 654 iter.status = iomap_readahead_iter(&iter, ctx, 655 &cur_bytes_submitted); 656 657 if (ctx->ops->submit_read) 658 ctx->ops->submit_read(ctx); 659 660 if (ctx->cur_folio) 661 iomap_read_end(ctx->cur_folio, cur_bytes_submitted); 662 } 663 EXPORT_SYMBOL_GPL(iomap_readahead); 664 665 /* 666 * iomap_is_partially_uptodate checks whether blocks within a folio are 667 * uptodate or not. 668 * 669 * Returns true if all blocks which correspond to the specified part 670 * of the folio are uptodate. 671 */ 672 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 673 { 674 struct iomap_folio_state *ifs = folio->private; 675 struct inode *inode = folio->mapping->host; 676 unsigned first, last; 677 678 if (!ifs) 679 return false; 680 681 /* Caller's range may extend past the end of this folio */ 682 count = min(folio_size(folio) - from, count); 683 684 /* First and last blocks in range within folio */ 685 first = from >> inode->i_blkbits; 686 last = (from + count - 1) >> inode->i_blkbits; 687 688 return ifs_next_nonuptodate_block(folio, first, last) > last; 689 } 690 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 691 692 /** 693 * iomap_get_folio - get a folio reference for writing 694 * @iter: iteration structure 695 * @pos: start offset of write 696 * @len: Suggested size of folio to create. 697 * 698 * Returns a locked reference to the folio at @pos, or an error pointer if the 699 * folio could not be obtained. 700 */ 701 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 702 { 703 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 704 705 if (iter->flags & IOMAP_NOWAIT) 706 fgp |= FGP_NOWAIT; 707 if (iter->flags & IOMAP_DONTCACHE) 708 fgp |= FGP_DONTCACHE; 709 fgp |= fgf_set_order(len); 710 711 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 712 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 713 } 714 EXPORT_SYMBOL_GPL(iomap_get_folio); 715 716 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 717 { 718 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 719 folio_size(folio)); 720 721 /* 722 * If the folio is dirty, we refuse to release our metadata because 723 * it may be partially dirty. Once we track per-block dirty state, 724 * we can release the metadata if every block is dirty. 725 */ 726 if (folio_test_dirty(folio)) 727 return false; 728 ifs_free(folio); 729 return true; 730 } 731 EXPORT_SYMBOL_GPL(iomap_release_folio); 732 733 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 734 { 735 trace_iomap_invalidate_folio(folio->mapping->host, 736 folio_pos(folio) + offset, len); 737 738 /* 739 * If we're invalidating the entire folio, clear the dirty state 740 * from it and release it to avoid unnecessary buildup of the LRU. 741 */ 742 if (offset == 0 && len == folio_size(folio)) { 743 WARN_ON_ONCE(folio_test_writeback(folio)); 744 folio_cancel_dirty(folio); 745 ifs_free(folio); 746 } 747 } 748 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 749 750 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 751 { 752 struct inode *inode = mapping->host; 753 size_t len = folio_size(folio); 754 755 ifs_alloc(inode, folio, 0); 756 iomap_set_range_dirty(folio, 0, len); 757 return filemap_dirty_folio(mapping, folio); 758 } 759 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 760 761 static void 762 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 763 { 764 loff_t i_size = i_size_read(inode); 765 766 /* 767 * Only truncate newly allocated pages beyoned EOF, even if the 768 * write started inside the existing inode size. 769 */ 770 if (pos + len > i_size) 771 truncate_pagecache_range(inode, max(pos, i_size), 772 pos + len - 1); 773 } 774 775 static int __iomap_write_begin(const struct iomap_iter *iter, 776 const struct iomap_write_ops *write_ops, size_t len, 777 struct folio *folio) 778 { 779 struct iomap_folio_state *ifs; 780 loff_t pos = iter->pos; 781 loff_t block_size = i_blocksize(iter->inode); 782 loff_t block_start = round_down(pos, block_size); 783 loff_t block_end = round_up(pos + len, block_size); 784 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 785 size_t from = offset_in_folio(folio, pos), to = from + len; 786 size_t poff, plen; 787 788 /* 789 * If the write or zeroing completely overlaps the current folio, then 790 * entire folio will be dirtied so there is no need for 791 * per-block state tracking structures to be attached to this folio. 792 * For the unshare case, we must read in the ondisk contents because we 793 * are not changing pagecache contents. 794 */ 795 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 796 pos + len >= folio_next_pos(folio)) 797 return 0; 798 799 ifs = ifs_alloc(iter->inode, folio, iter->flags); 800 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 801 return -EAGAIN; 802 803 if (folio_test_uptodate(folio)) 804 return 0; 805 806 do { 807 iomap_adjust_read_range(iter->inode, folio, &block_start, 808 block_end - block_start, &poff, &plen); 809 if (plen == 0) 810 break; 811 812 /* 813 * If the read range will be entirely overwritten by the write, 814 * we can skip having to zero/read it in. 815 */ 816 if (!(iter->flags & IOMAP_UNSHARE) && from <= poff && 817 to >= poff + plen) 818 continue; 819 820 if (iomap_block_needs_zeroing(iter, block_start)) { 821 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 822 return -EIO; 823 folio_zero_segments(folio, poff, from, to, poff + plen); 824 } else { 825 int status; 826 827 if (iter->flags & IOMAP_NOWAIT) 828 return -EAGAIN; 829 830 if (write_ops && write_ops->read_folio_range) 831 status = write_ops->read_folio_range(iter, 832 folio, block_start, plen); 833 else 834 status = iomap_bio_read_folio_range_sync(iter, 835 folio, block_start, plen); 836 if (status < 0) 837 fserror_report_io(iter->inode, 838 FSERR_BUFFERED_READ, pos, 839 len, status, GFP_NOFS); 840 if (status) 841 return status; 842 } 843 iomap_set_range_uptodate(folio, poff, plen); 844 } while ((block_start += plen) < block_end); 845 846 return 0; 847 } 848 849 static struct folio *__iomap_get_folio(struct iomap_iter *iter, 850 const struct iomap_write_ops *write_ops, size_t len) 851 { 852 loff_t pos = iter->pos; 853 854 if (!mapping_large_folio_support(iter->inode->i_mapping)) 855 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 856 857 if (iter->iomap.flags & IOMAP_F_FOLIO_BATCH) { 858 struct folio *folio = folio_batch_next(iter->fbatch); 859 860 if (!folio) 861 return NULL; 862 863 /* 864 * The folio mapping generally shouldn't have changed based on 865 * fs locks, but be consistent with filemap lookup and retry 866 * the iter if it does. 867 */ 868 folio_lock(folio); 869 if (unlikely(folio->mapping != iter->inode->i_mapping)) { 870 iter->iomap.flags |= IOMAP_F_STALE; 871 folio_unlock(folio); 872 return NULL; 873 } 874 875 folio_get(folio); 876 folio_wait_stable(folio); 877 return folio; 878 } 879 880 if (write_ops && write_ops->get_folio) 881 return write_ops->get_folio(iter, pos, len); 882 return iomap_get_folio(iter, pos, len); 883 } 884 885 static void __iomap_put_folio(struct iomap_iter *iter, 886 const struct iomap_write_ops *write_ops, size_t ret, 887 struct folio *folio) 888 { 889 loff_t pos = iter->pos; 890 891 if (write_ops && write_ops->put_folio) { 892 write_ops->put_folio(iter->inode, pos, ret, folio); 893 } else { 894 folio_unlock(folio); 895 folio_put(folio); 896 } 897 } 898 899 /* trim pos and bytes to within a given folio */ 900 static loff_t iomap_trim_folio_range(struct iomap_iter *iter, 901 struct folio *folio, size_t *offset, u64 *bytes) 902 { 903 loff_t pos = iter->pos; 904 size_t fsize = folio_size(folio); 905 906 WARN_ON_ONCE(pos < folio_pos(folio)); 907 WARN_ON_ONCE(pos >= folio_pos(folio) + fsize); 908 909 *offset = offset_in_folio(folio, pos); 910 *bytes = min(*bytes, fsize - *offset); 911 912 return pos; 913 } 914 915 static int iomap_write_begin_inline(const struct iomap_iter *iter, 916 struct folio *folio) 917 { 918 /* needs more work for the tailpacking case; disable for now */ 919 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 920 return -EIO; 921 return iomap_read_inline_data(iter, folio); 922 } 923 924 /* 925 * Grab and prepare a folio for write based on iter state. Returns the folio, 926 * offset, and length. Callers can optionally pass a max length *plen, 927 * otherwise init to zero. 928 */ 929 static int iomap_write_begin(struct iomap_iter *iter, 930 const struct iomap_write_ops *write_ops, struct folio **foliop, 931 size_t *poffset, u64 *plen) 932 { 933 const struct iomap *srcmap = iomap_iter_srcmap(iter); 934 loff_t pos; 935 u64 len = min_t(u64, SIZE_MAX, iomap_length(iter)); 936 struct folio *folio; 937 int status = 0; 938 939 len = min_not_zero(len, *plen); 940 *foliop = NULL; 941 *plen = 0; 942 943 if (fatal_signal_pending(current)) 944 return -EINTR; 945 946 folio = __iomap_get_folio(iter, write_ops, len); 947 if (IS_ERR(folio)) 948 return PTR_ERR(folio); 949 950 /* 951 * No folio means we're done with a batch. We still have range to 952 * process so return and let the caller iterate and refill the batch. 953 */ 954 if (!folio) { 955 WARN_ON_ONCE(!(iter->iomap.flags & IOMAP_F_FOLIO_BATCH)); 956 return 0; 957 } 958 959 /* 960 * Now we have a locked folio, before we do anything with it we need to 961 * check that the iomap we have cached is not stale. The inode extent 962 * mapping can change due to concurrent IO in flight (e.g. 963 * IOMAP_UNWRITTEN state can change and memory reclaim could have 964 * reclaimed a previously partially written page at this index after IO 965 * completion before this write reaches this file offset) and hence we 966 * could do the wrong thing here (zero a page range incorrectly or fail 967 * to zero) and corrupt data. 968 */ 969 if (write_ops && write_ops->iomap_valid) { 970 bool iomap_valid = write_ops->iomap_valid(iter->inode, 971 &iter->iomap); 972 if (!iomap_valid) { 973 iter->iomap.flags |= IOMAP_F_STALE; 974 status = 0; 975 goto out_unlock; 976 } 977 } 978 979 /* 980 * The folios in a batch may not be contiguous. If we've skipped 981 * forward, advance the iter to the pos of the current folio. If the 982 * folio starts beyond the end of the mapping, it may have been trimmed 983 * since the lookup for whatever reason. Return a NULL folio to 984 * terminate the op. 985 */ 986 if (folio_pos(folio) > iter->pos) { 987 len = min_t(u64, folio_pos(folio) - iter->pos, 988 iomap_length(iter)); 989 status = iomap_iter_advance(iter, len); 990 len = iomap_length(iter); 991 if (status || !len) 992 goto out_unlock; 993 } 994 995 pos = iomap_trim_folio_range(iter, folio, poffset, &len); 996 997 if (srcmap->type == IOMAP_INLINE) 998 status = iomap_write_begin_inline(iter, folio); 999 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 1000 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 1001 else 1002 status = __iomap_write_begin(iter, write_ops, len, folio); 1003 1004 if (unlikely(status)) 1005 goto out_unlock; 1006 1007 *foliop = folio; 1008 *plen = len; 1009 return 0; 1010 1011 out_unlock: 1012 __iomap_put_folio(iter, write_ops, 0, folio); 1013 return status; 1014 } 1015 1016 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 1017 size_t copied, struct folio *folio) 1018 { 1019 flush_dcache_folio(folio); 1020 1021 /* 1022 * The blocks that were entirely written will now be uptodate, so we 1023 * don't have to worry about a read_folio reading them and overwriting a 1024 * partial write. However, if we've encountered a short write and only 1025 * partially written into a block, it will not be marked uptodate, so a 1026 * read_folio might come in and destroy our partial write. 1027 * 1028 * Do the simplest thing and just treat any short write to a 1029 * non-uptodate page as a zero-length write, and force the caller to 1030 * redo the whole thing. 1031 */ 1032 if (unlikely(copied < len && !folio_test_uptodate(folio))) 1033 return false; 1034 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 1035 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 1036 filemap_dirty_folio(inode->i_mapping, folio); 1037 return true; 1038 } 1039 1040 static bool iomap_write_end_inline(const struct iomap_iter *iter, 1041 struct folio *folio, loff_t pos, size_t copied) 1042 { 1043 const struct iomap *iomap = &iter->iomap; 1044 void *addr; 1045 1046 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1047 BUG_ON(!iomap_inline_data_valid(iomap)); 1048 1049 if (WARN_ON_ONCE(!iomap->inline_data)) 1050 return false; 1051 1052 flush_dcache_folio(folio); 1053 addr = kmap_local_folio(folio, pos); 1054 memcpy(iomap_inline_data(iomap, pos), addr, copied); 1055 kunmap_local(addr); 1056 1057 mark_inode_dirty(iter->inode); 1058 return true; 1059 } 1060 1061 /* 1062 * Returns true if all copied bytes have been written to the pagecache, 1063 * otherwise return false. 1064 */ 1065 static bool iomap_write_end(struct iomap_iter *iter, size_t len, size_t copied, 1066 struct folio *folio) 1067 { 1068 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1069 loff_t pos = iter->pos; 1070 1071 if (srcmap->type == IOMAP_INLINE) 1072 return iomap_write_end_inline(iter, folio, pos, copied); 1073 1074 if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 1075 size_t bh_written; 1076 1077 bh_written = block_write_end(pos, len, copied, folio); 1078 WARN_ON_ONCE(bh_written != copied && bh_written != 0); 1079 return bh_written == copied; 1080 } 1081 1082 return __iomap_write_end(iter->inode, pos, len, copied, folio); 1083 } 1084 1085 static int iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i, 1086 const struct iomap_write_ops *write_ops) 1087 { 1088 ssize_t total_written = 0; 1089 int status = 0; 1090 struct address_space *mapping = iter->inode->i_mapping; 1091 size_t chunk = mapping_max_folio_size(mapping); 1092 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 1093 1094 do { 1095 struct folio *folio; 1096 loff_t old_size; 1097 size_t offset; /* Offset into folio */ 1098 u64 bytes; /* Bytes to write to folio */ 1099 size_t copied; /* Bytes copied from user */ 1100 u64 written; /* Bytes have been written */ 1101 loff_t pos; 1102 1103 bytes = iov_iter_count(i); 1104 retry: 1105 offset = iter->pos & (chunk - 1); 1106 bytes = min(chunk - offset, bytes); 1107 status = balance_dirty_pages_ratelimited_flags(mapping, 1108 bdp_flags); 1109 if (unlikely(status)) 1110 break; 1111 1112 if (bytes > iomap_length(iter)) 1113 bytes = iomap_length(iter); 1114 1115 /* 1116 * Bring in the user page that we'll copy from _first_. 1117 * Otherwise there's a nasty deadlock on copying from the 1118 * same page as we're writing to, without it being marked 1119 * up-to-date. 1120 * 1121 * For async buffered writes the assumption is that the user 1122 * page has already been faulted in. This can be optimized by 1123 * faulting the user page. 1124 */ 1125 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 1126 status = -EFAULT; 1127 break; 1128 } 1129 1130 status = iomap_write_begin(iter, write_ops, &folio, &offset, 1131 &bytes); 1132 if (unlikely(status)) { 1133 iomap_write_failed(iter->inode, iter->pos, bytes); 1134 break; 1135 } 1136 if (iter->iomap.flags & IOMAP_F_STALE) 1137 break; 1138 1139 pos = iter->pos; 1140 1141 if (mapping_writably_mapped(mapping)) 1142 flush_dcache_folio(folio); 1143 1144 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 1145 written = iomap_write_end(iter, bytes, copied, folio) ? 1146 copied : 0; 1147 1148 /* 1149 * Update the in-memory inode size after copying the data into 1150 * the page cache. It's up to the file system to write the 1151 * updated size to disk, preferably after I/O completion so that 1152 * no stale data is exposed. Only once that's done can we 1153 * unlock and release the folio. 1154 */ 1155 old_size = iter->inode->i_size; 1156 if (pos + written > old_size) { 1157 i_size_write(iter->inode, pos + written); 1158 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 1159 } 1160 __iomap_put_folio(iter, write_ops, written, folio); 1161 1162 if (old_size < pos) 1163 pagecache_isize_extended(iter->inode, old_size, pos); 1164 1165 cond_resched(); 1166 if (unlikely(written == 0)) { 1167 /* 1168 * A short copy made iomap_write_end() reject the 1169 * thing entirely. Might be memory poisoning 1170 * halfway through, might be a race with munmap, 1171 * might be severe memory pressure. 1172 */ 1173 iomap_write_failed(iter->inode, pos, bytes); 1174 iov_iter_revert(i, copied); 1175 1176 if (chunk > PAGE_SIZE) 1177 chunk /= 2; 1178 if (copied) { 1179 bytes = copied; 1180 goto retry; 1181 } 1182 } else { 1183 total_written += written; 1184 iomap_iter_advance(iter, written); 1185 } 1186 } while (iov_iter_count(i) && iomap_length(iter)); 1187 1188 return total_written ? 0 : status; 1189 } 1190 1191 ssize_t 1192 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 1193 const struct iomap_ops *ops, 1194 const struct iomap_write_ops *write_ops, void *private) 1195 { 1196 struct iomap_iter iter = { 1197 .inode = iocb->ki_filp->f_mapping->host, 1198 .pos = iocb->ki_pos, 1199 .len = iov_iter_count(i), 1200 .flags = IOMAP_WRITE, 1201 .private = private, 1202 }; 1203 ssize_t ret; 1204 1205 if (iocb->ki_flags & IOCB_NOWAIT) 1206 iter.flags |= IOMAP_NOWAIT; 1207 if (iocb->ki_flags & IOCB_DONTCACHE) 1208 iter.flags |= IOMAP_DONTCACHE; 1209 1210 while ((ret = iomap_iter(&iter, ops)) > 0) 1211 iter.status = iomap_write_iter(&iter, i, write_ops); 1212 1213 if (unlikely(iter.pos == iocb->ki_pos)) 1214 return ret; 1215 ret = iter.pos - iocb->ki_pos; 1216 iocb->ki_pos = iter.pos; 1217 return ret; 1218 } 1219 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 1220 1221 static void iomap_write_delalloc_ifs_punch(struct inode *inode, 1222 struct folio *folio, loff_t start_byte, loff_t end_byte, 1223 struct iomap *iomap, iomap_punch_t punch) 1224 { 1225 unsigned int first_blk, last_blk; 1226 loff_t last_byte; 1227 u8 blkbits = inode->i_blkbits; 1228 struct iomap_folio_state *ifs; 1229 1230 /* 1231 * When we have per-block dirty tracking, there can be 1232 * blocks within a folio which are marked uptodate 1233 * but not dirty. In that case it is necessary to punch 1234 * out such blocks to avoid leaking any delalloc blocks. 1235 */ 1236 ifs = folio->private; 1237 if (!ifs) 1238 return; 1239 1240 last_byte = min_t(loff_t, end_byte - 1, folio_next_pos(folio) - 1); 1241 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1242 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1243 while ((first_blk = ifs_next_clean_block(folio, first_blk, last_blk)) 1244 <= last_blk) { 1245 punch(inode, folio_pos(folio) + (first_blk << blkbits), 1246 1 << blkbits, iomap); 1247 first_blk++; 1248 } 1249 } 1250 1251 static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1252 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1253 struct iomap *iomap, iomap_punch_t punch) 1254 { 1255 if (!folio_test_dirty(folio)) 1256 return; 1257 1258 /* if dirty, punch up to offset */ 1259 if (start_byte > *punch_start_byte) { 1260 punch(inode, *punch_start_byte, start_byte - *punch_start_byte, 1261 iomap); 1262 } 1263 1264 /* Punch non-dirty blocks within folio */ 1265 iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte, 1266 iomap, punch); 1267 1268 /* 1269 * Make sure the next punch start is correctly bound to 1270 * the end of this data range, not the end of the folio. 1271 */ 1272 *punch_start_byte = min_t(loff_t, end_byte, folio_next_pos(folio)); 1273 } 1274 1275 /* 1276 * Scan the data range passed to us for dirty page cache folios. If we find a 1277 * dirty folio, punch out the preceding range and update the offset from which 1278 * the next punch will start from. 1279 * 1280 * We can punch out storage reservations under clean pages because they either 1281 * contain data that has been written back - in which case the delalloc punch 1282 * over that range is a no-op - or they have been read faults in which case they 1283 * contain zeroes and we can remove the delalloc backing range and any new 1284 * writes to those pages will do the normal hole filling operation... 1285 * 1286 * This makes the logic simple: we only need to keep the delalloc extents only 1287 * over the dirty ranges of the page cache. 1288 * 1289 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1290 * simplify range iterations. 1291 */ 1292 static void iomap_write_delalloc_scan(struct inode *inode, 1293 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1294 struct iomap *iomap, iomap_punch_t punch) 1295 { 1296 while (start_byte < end_byte) { 1297 struct folio *folio; 1298 1299 /* grab locked page */ 1300 folio = filemap_lock_folio(inode->i_mapping, 1301 start_byte >> PAGE_SHIFT); 1302 if (IS_ERR(folio)) { 1303 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1304 PAGE_SIZE; 1305 continue; 1306 } 1307 1308 iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1309 start_byte, end_byte, iomap, punch); 1310 1311 /* move offset to start of next folio in range */ 1312 start_byte = folio_next_pos(folio); 1313 folio_unlock(folio); 1314 folio_put(folio); 1315 } 1316 } 1317 1318 /* 1319 * When a short write occurs, the filesystem might need to use ->iomap_end 1320 * to remove space reservations created in ->iomap_begin. 1321 * 1322 * For filesystems that use delayed allocation, there can be dirty pages over 1323 * the delalloc extent outside the range of a short write but still within the 1324 * delalloc extent allocated for this iomap if the write raced with page 1325 * faults. 1326 * 1327 * Punch out all the delalloc blocks in the range given except for those that 1328 * have dirty data still pending in the page cache - those are going to be 1329 * written and so must still retain the delalloc backing for writeback. 1330 * 1331 * The punch() callback *must* only punch delalloc extents in the range passed 1332 * to it. It must skip over all other types of extents in the range and leave 1333 * them completely unchanged. It must do this punch atomically with respect to 1334 * other extent modifications. 1335 * 1336 * The punch() callback may be called with a folio locked to prevent writeback 1337 * extent allocation racing at the edge of the range we are currently punching. 1338 * The locked folio may or may not cover the range being punched, so it is not 1339 * safe for the punch() callback to lock folios itself. 1340 * 1341 * Lock order is: 1342 * 1343 * inode->i_rwsem (shared or exclusive) 1344 * inode->i_mapping->invalidate_lock (exclusive) 1345 * folio_lock() 1346 * ->punch 1347 * internal filesystem allocation lock 1348 * 1349 * As we are scanning the page cache for data, we don't need to reimplement the 1350 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1351 * start and end of data ranges correctly even for sub-folio block sizes. This 1352 * byte range based iteration is especially convenient because it means we 1353 * don't have to care about variable size folios, nor where the start or end of 1354 * the data range lies within a folio, if they lie within the same folio or even 1355 * if there are multiple discontiguous data ranges within the folio. 1356 * 1357 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1358 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1359 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1360 * date. A write page fault can then mark it dirty. If we then fail a write() 1361 * beyond EOF into that up to date cached range, we allocate a delalloc block 1362 * beyond EOF and then have to punch it out. Because the range is up to date, 1363 * mapping_seek_hole_data() will return it, and we will skip the punch because 1364 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1365 * beyond EOF in this case as writeback will never write back and covert that 1366 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1367 * resulting in always punching out the range from the EOF to the end of the 1368 * range the iomap spans. 1369 * 1370 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1371 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1372 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1373 * returns the end of the data range (data_end). Using closed intervals would 1374 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1375 * the code to subtle off-by-one bugs.... 1376 */ 1377 void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte, 1378 loff_t end_byte, unsigned flags, struct iomap *iomap, 1379 iomap_punch_t punch) 1380 { 1381 loff_t punch_start_byte = start_byte; 1382 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1383 1384 /* 1385 * The caller must hold invalidate_lock to avoid races with page faults 1386 * re-instantiating folios and dirtying them via ->page_mkwrite whilst 1387 * we walk the cache and perform delalloc extent removal. Failing to do 1388 * this can leave dirty pages with no space reservation in the cache. 1389 */ 1390 lockdep_assert_held_write(&inode->i_mapping->invalidate_lock); 1391 1392 while (start_byte < scan_end_byte) { 1393 loff_t data_end; 1394 1395 start_byte = mapping_seek_hole_data(inode->i_mapping, 1396 start_byte, scan_end_byte, SEEK_DATA); 1397 /* 1398 * If there is no more data to scan, all that is left is to 1399 * punch out the remaining range. 1400 * 1401 * Note that mapping_seek_hole_data is only supposed to return 1402 * either an offset or -ENXIO, so WARN on any other error as 1403 * that would be an API change without updating the callers. 1404 */ 1405 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1406 break; 1407 if (WARN_ON_ONCE(start_byte < 0)) 1408 return; 1409 WARN_ON_ONCE(start_byte < punch_start_byte); 1410 WARN_ON_ONCE(start_byte > scan_end_byte); 1411 1412 /* 1413 * We find the end of this contiguous cached data range by 1414 * seeking from start_byte to the beginning of the next hole. 1415 */ 1416 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1417 scan_end_byte, SEEK_HOLE); 1418 if (WARN_ON_ONCE(data_end < 0)) 1419 return; 1420 1421 /* 1422 * If we race with post-direct I/O invalidation of the page cache, 1423 * there might be no data left at start_byte. 1424 */ 1425 if (data_end == start_byte) 1426 continue; 1427 1428 WARN_ON_ONCE(data_end < start_byte); 1429 WARN_ON_ONCE(data_end > scan_end_byte); 1430 1431 iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte, 1432 data_end, iomap, punch); 1433 1434 /* The next data search starts at the end of this one. */ 1435 start_byte = data_end; 1436 } 1437 1438 if (punch_start_byte < end_byte) 1439 punch(inode, punch_start_byte, end_byte - punch_start_byte, 1440 iomap); 1441 } 1442 EXPORT_SYMBOL_GPL(iomap_write_delalloc_release); 1443 1444 static int iomap_unshare_iter(struct iomap_iter *iter, 1445 const struct iomap_write_ops *write_ops) 1446 { 1447 struct iomap *iomap = &iter->iomap; 1448 u64 bytes = iomap_length(iter); 1449 int status; 1450 1451 if (!iomap_want_unshare_iter(iter)) 1452 return iomap_iter_advance(iter, bytes); 1453 1454 do { 1455 struct folio *folio; 1456 size_t offset; 1457 bool ret; 1458 1459 bytes = min_t(u64, SIZE_MAX, bytes); 1460 status = iomap_write_begin(iter, write_ops, &folio, &offset, 1461 &bytes); 1462 if (unlikely(status)) 1463 return status; 1464 if (iomap->flags & IOMAP_F_STALE) 1465 break; 1466 1467 ret = iomap_write_end(iter, bytes, bytes, folio); 1468 __iomap_put_folio(iter, write_ops, bytes, folio); 1469 if (WARN_ON_ONCE(!ret)) 1470 return -EIO; 1471 1472 cond_resched(); 1473 1474 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1475 1476 status = iomap_iter_advance(iter, bytes); 1477 if (status) 1478 break; 1479 } while ((bytes = iomap_length(iter)) > 0); 1480 1481 return status; 1482 } 1483 1484 int 1485 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1486 const struct iomap_ops *ops, 1487 const struct iomap_write_ops *write_ops) 1488 { 1489 struct iomap_iter iter = { 1490 .inode = inode, 1491 .pos = pos, 1492 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1493 }; 1494 loff_t size = i_size_read(inode); 1495 int ret; 1496 1497 if (pos < 0 || pos >= size) 1498 return 0; 1499 1500 iter.len = min(len, size - pos); 1501 while ((ret = iomap_iter(&iter, ops)) > 0) 1502 iter.status = iomap_unshare_iter(&iter, write_ops); 1503 return ret; 1504 } 1505 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1506 1507 /* 1508 * Flush the remaining range of the iter and mark the current mapping stale. 1509 * This is used when zero range sees an unwritten mapping that may have had 1510 * dirty pagecache over it. 1511 */ 1512 static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i) 1513 { 1514 struct address_space *mapping = i->inode->i_mapping; 1515 loff_t end = i->pos + i->len - 1; 1516 1517 i->iomap.flags |= IOMAP_F_STALE; 1518 return filemap_write_and_wait_range(mapping, i->pos, end); 1519 } 1520 1521 static int iomap_zero_iter(struct iomap_iter *iter, bool *did_zero, 1522 const struct iomap_write_ops *write_ops) 1523 { 1524 u64 bytes = iomap_length(iter); 1525 int status; 1526 1527 do { 1528 struct folio *folio; 1529 size_t offset; 1530 bool ret; 1531 1532 bytes = min_t(u64, SIZE_MAX, bytes); 1533 status = iomap_write_begin(iter, write_ops, &folio, &offset, 1534 &bytes); 1535 if (status) 1536 return status; 1537 if (iter->iomap.flags & IOMAP_F_STALE) 1538 break; 1539 1540 /* a NULL folio means we're done with a folio batch */ 1541 if (!folio) { 1542 status = iomap_iter_advance_full(iter); 1543 break; 1544 } 1545 1546 /* warn about zeroing folios beyond eof that won't write back */ 1547 WARN_ON_ONCE(folio_pos(folio) > iter->inode->i_size); 1548 1549 trace_iomap_zero_iter(iter->inode, folio_pos(folio) + offset, 1550 bytes); 1551 1552 folio_zero_range(folio, offset, bytes); 1553 folio_mark_accessed(folio); 1554 1555 ret = iomap_write_end(iter, bytes, bytes, folio); 1556 __iomap_put_folio(iter, write_ops, bytes, folio); 1557 if (WARN_ON_ONCE(!ret)) 1558 return -EIO; 1559 1560 status = iomap_iter_advance(iter, bytes); 1561 if (status) 1562 break; 1563 } while ((bytes = iomap_length(iter)) > 0); 1564 1565 if (did_zero) 1566 *did_zero = true; 1567 return status; 1568 } 1569 1570 /** 1571 * iomap_fill_dirty_folios - fill a folio batch with dirty folios 1572 * @iter: Iteration structure 1573 * @start: Start offset of range. Updated based on lookup progress. 1574 * @end: End offset of range 1575 * @iomap_flags: Flags to set on the associated iomap to track the batch. 1576 * 1577 * Returns the folio count directly. Also returns the associated control flag if 1578 * the the batch lookup is performed and the expected offset of a subsequent 1579 * lookup via out params. The caller is responsible to set the flag on the 1580 * associated iomap. 1581 */ 1582 unsigned int 1583 iomap_fill_dirty_folios( 1584 struct iomap_iter *iter, 1585 loff_t *start, 1586 loff_t end, 1587 unsigned int *iomap_flags) 1588 { 1589 struct address_space *mapping = iter->inode->i_mapping; 1590 pgoff_t pstart = *start >> PAGE_SHIFT; 1591 pgoff_t pend = (end - 1) >> PAGE_SHIFT; 1592 unsigned int count; 1593 1594 if (!iter->fbatch) { 1595 *start = end; 1596 return 0; 1597 } 1598 1599 count = filemap_get_folios_dirty(mapping, &pstart, pend, iter->fbatch); 1600 *start = (pstart << PAGE_SHIFT); 1601 *iomap_flags |= IOMAP_F_FOLIO_BATCH; 1602 return count; 1603 } 1604 EXPORT_SYMBOL_GPL(iomap_fill_dirty_folios); 1605 1606 int 1607 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1608 const struct iomap_ops *ops, 1609 const struct iomap_write_ops *write_ops, void *private) 1610 { 1611 struct folio_batch fbatch; 1612 struct iomap_iter iter = { 1613 .inode = inode, 1614 .pos = pos, 1615 .len = len, 1616 .flags = IOMAP_ZERO, 1617 .private = private, 1618 .fbatch = &fbatch, 1619 }; 1620 struct address_space *mapping = inode->i_mapping; 1621 int ret; 1622 bool range_dirty; 1623 1624 folio_batch_init(&fbatch); 1625 1626 /* 1627 * To avoid an unconditional flush, check pagecache state and only flush 1628 * if dirty and the fs returns a mapping that might convert on 1629 * writeback. 1630 */ 1631 range_dirty = filemap_range_needs_writeback(mapping, iter.pos, 1632 iter.pos + iter.len - 1); 1633 while ((ret = iomap_iter(&iter, ops)) > 0) { 1634 const struct iomap *srcmap = iomap_iter_srcmap(&iter); 1635 1636 if (WARN_ON_ONCE((iter.iomap.flags & IOMAP_F_FOLIO_BATCH) && 1637 srcmap->type != IOMAP_UNWRITTEN)) 1638 return -EIO; 1639 1640 if (!(iter.iomap.flags & IOMAP_F_FOLIO_BATCH) && 1641 (srcmap->type == IOMAP_HOLE || 1642 srcmap->type == IOMAP_UNWRITTEN)) { 1643 s64 status; 1644 1645 if (range_dirty) { 1646 range_dirty = false; 1647 status = iomap_zero_iter_flush_and_stale(&iter); 1648 } else { 1649 status = iomap_iter_advance_full(&iter); 1650 } 1651 iter.status = status; 1652 continue; 1653 } 1654 1655 iter.status = iomap_zero_iter(&iter, did_zero, write_ops); 1656 } 1657 return ret; 1658 } 1659 EXPORT_SYMBOL_GPL(iomap_zero_range); 1660 1661 int 1662 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1663 const struct iomap_ops *ops, 1664 const struct iomap_write_ops *write_ops, void *private) 1665 { 1666 unsigned int blocksize = i_blocksize(inode); 1667 unsigned int off = pos & (blocksize - 1); 1668 1669 /* Block boundary? Nothing to do */ 1670 if (!off) 1671 return 0; 1672 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops, 1673 write_ops, private); 1674 } 1675 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1676 1677 static int iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1678 struct folio *folio) 1679 { 1680 loff_t length = iomap_length(iter); 1681 int ret; 1682 1683 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1684 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1685 &iter->iomap); 1686 if (ret) 1687 return ret; 1688 block_commit_write(folio, 0, length); 1689 } else { 1690 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1691 folio_mark_dirty(folio); 1692 } 1693 1694 return iomap_iter_advance(iter, length); 1695 } 1696 1697 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops, 1698 void *private) 1699 { 1700 struct iomap_iter iter = { 1701 .inode = file_inode(vmf->vma->vm_file), 1702 .flags = IOMAP_WRITE | IOMAP_FAULT, 1703 .private = private, 1704 }; 1705 struct folio *folio = page_folio(vmf->page); 1706 ssize_t ret; 1707 1708 folio_lock(folio); 1709 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1710 if (ret < 0) 1711 goto out_unlock; 1712 iter.pos = folio_pos(folio); 1713 iter.len = ret; 1714 while ((ret = iomap_iter(&iter, ops)) > 0) 1715 iter.status = iomap_folio_mkwrite_iter(&iter, folio); 1716 1717 if (ret < 0) 1718 goto out_unlock; 1719 folio_wait_stable(folio); 1720 return VM_FAULT_LOCKED; 1721 out_unlock: 1722 folio_unlock(folio); 1723 return vmf_fs_error(ret); 1724 } 1725 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1726 1727 static void iomap_writeback_init(struct inode *inode, struct folio *folio) 1728 { 1729 struct iomap_folio_state *ifs = folio->private; 1730 1731 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1732 if (ifs) { 1733 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0); 1734 /* 1735 * Set this to the folio size. After processing the folio for 1736 * writeback in iomap_writeback_folio(), we'll subtract any 1737 * ranges not written back. 1738 * 1739 * We do this because otherwise, we would have to atomically 1740 * increment ifs->write_bytes_pending every time a range in the 1741 * folio needs to be written back. 1742 */ 1743 atomic_set(&ifs->write_bytes_pending, folio_size(folio)); 1744 } 1745 } 1746 1747 void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1748 size_t len) 1749 { 1750 struct iomap_folio_state *ifs = folio->private; 1751 1752 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1753 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1754 1755 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1756 folio_end_writeback(folio); 1757 } 1758 EXPORT_SYMBOL_GPL(iomap_finish_folio_write); 1759 1760 static int iomap_writeback_range(struct iomap_writepage_ctx *wpc, 1761 struct folio *folio, u64 pos, u32 rlen, u64 end_pos, 1762 size_t *bytes_submitted) 1763 { 1764 do { 1765 ssize_t ret; 1766 1767 ret = wpc->ops->writeback_range(wpc, folio, pos, rlen, end_pos); 1768 if (WARN_ON_ONCE(ret == 0 || ret > rlen)) 1769 return -EIO; 1770 if (ret < 0) 1771 return ret; 1772 rlen -= ret; 1773 pos += ret; 1774 1775 /* 1776 * Holes are not written back by ->writeback_range, so track 1777 * if we did handle anything that is not a hole here. 1778 */ 1779 if (wpc->iomap.type != IOMAP_HOLE) 1780 *bytes_submitted += ret; 1781 } while (rlen); 1782 1783 return 0; 1784 } 1785 1786 /* 1787 * Check interaction of the folio with the file end. 1788 * 1789 * If the folio is entirely beyond i_size, return false. If it straddles 1790 * i_size, adjust end_pos and zero all data beyond i_size. 1791 */ 1792 static bool iomap_writeback_handle_eof(struct folio *folio, struct inode *inode, 1793 u64 *end_pos) 1794 { 1795 u64 isize = i_size_read(inode); 1796 1797 if (*end_pos > isize) { 1798 size_t poff = offset_in_folio(folio, isize); 1799 pgoff_t end_index = isize >> PAGE_SHIFT; 1800 1801 /* 1802 * If the folio is entirely ouside of i_size, skip it. 1803 * 1804 * This can happen due to a truncate operation that is in 1805 * progress and in that case truncate will finish it off once 1806 * we've dropped the folio lock. 1807 * 1808 * Note that the pgoff_t used for end_index is an unsigned long. 1809 * If the given offset is greater than 16TB on a 32-bit system, 1810 * then if we checked if the folio is fully outside i_size with 1811 * "if (folio->index >= end_index + 1)", "end_index + 1" would 1812 * overflow and evaluate to 0. Hence this folio would be 1813 * redirtied and written out repeatedly, which would result in 1814 * an infinite loop; the user program performing this operation 1815 * would hang. Instead, we can detect this situation by 1816 * checking if the folio is totally beyond i_size or if its 1817 * offset is just equal to the EOF. 1818 */ 1819 if (folio->index > end_index || 1820 (folio->index == end_index && poff == 0)) 1821 return false; 1822 1823 /* 1824 * The folio straddles i_size. 1825 * 1826 * It must be zeroed out on each and every writepage invocation 1827 * because it may be mmapped: 1828 * 1829 * A file is mapped in multiples of the page size. For a 1830 * file that is not a multiple of the page size, the 1831 * remaining memory is zeroed when mapped, and writes to that 1832 * region are not written out to the file. 1833 * 1834 * Also adjust the end_pos to the end of file and skip writeback 1835 * for all blocks entirely beyond i_size. 1836 */ 1837 folio_zero_segment(folio, poff, folio_size(folio)); 1838 *end_pos = isize; 1839 } 1840 1841 return true; 1842 } 1843 1844 int iomap_writeback_folio(struct iomap_writepage_ctx *wpc, struct folio *folio) 1845 { 1846 struct iomap_folio_state *ifs = folio->private; 1847 struct inode *inode = wpc->inode; 1848 u64 pos = folio_pos(folio); 1849 u64 end_pos = pos + folio_size(folio); 1850 u64 end_aligned = 0; 1851 loff_t orig_pos = pos; 1852 size_t bytes_submitted = 0; 1853 int error = 0; 1854 u32 rlen; 1855 1856 WARN_ON_ONCE(!folio_test_locked(folio)); 1857 WARN_ON_ONCE(folio_test_dirty(folio)); 1858 WARN_ON_ONCE(folio_test_writeback(folio)); 1859 1860 trace_iomap_writeback_folio(inode, pos, folio_size(folio)); 1861 1862 if (!iomap_writeback_handle_eof(folio, inode, &end_pos)) 1863 return 0; 1864 WARN_ON_ONCE(end_pos <= pos); 1865 1866 if (i_blocks_per_folio(inode, folio) > 1) { 1867 if (!ifs) { 1868 ifs = ifs_alloc(inode, folio, 0); 1869 iomap_set_range_dirty(folio, 0, end_pos - pos); 1870 } 1871 1872 iomap_writeback_init(inode, folio); 1873 } 1874 1875 /* 1876 * Set the writeback bit ASAP, as the I/O completion for the single 1877 * block per folio case happen hit as soon as we're submitting the bio. 1878 */ 1879 folio_start_writeback(folio); 1880 1881 /* 1882 * Walk through the folio to find dirty areas to write back. 1883 */ 1884 end_aligned = round_up(end_pos, i_blocksize(inode)); 1885 while ((rlen = iomap_find_dirty_range(folio, &pos, end_aligned))) { 1886 error = iomap_writeback_range(wpc, folio, pos, rlen, end_pos, 1887 &bytes_submitted); 1888 if (error) 1889 break; 1890 pos += rlen; 1891 } 1892 1893 if (bytes_submitted) 1894 wpc->nr_folios++; 1895 if (error && pos > orig_pos) 1896 fserror_report_io(inode, FSERR_BUFFERED_WRITE, orig_pos, 0, 1897 error, GFP_NOFS); 1898 1899 /* 1900 * We can have dirty bits set past end of file in page_mkwrite path 1901 * while mapping the last partial folio. Hence it's better to clear 1902 * all the dirty bits in the folio here. 1903 */ 1904 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1905 1906 /* 1907 * Usually the writeback bit is cleared by the I/O completion handler. 1908 * But we may end up either not actually writing any blocks, or (when 1909 * there are multiple blocks in a folio) all I/O might have finished 1910 * already at this point. In that case we need to clear the writeback 1911 * bit ourselves right after unlocking the page. 1912 */ 1913 if (ifs) { 1914 /* 1915 * Subtract any bytes that were initially accounted to 1916 * write_bytes_pending but skipped for writeback. 1917 */ 1918 size_t bytes_not_submitted = folio_size(folio) - 1919 bytes_submitted; 1920 1921 if (bytes_not_submitted) 1922 iomap_finish_folio_write(inode, folio, 1923 bytes_not_submitted); 1924 } else if (!bytes_submitted) { 1925 folio_end_writeback(folio); 1926 } 1927 1928 mapping_set_error(inode->i_mapping, error); 1929 return error; 1930 } 1931 EXPORT_SYMBOL_GPL(iomap_writeback_folio); 1932 1933 int 1934 iomap_writepages(struct iomap_writepage_ctx *wpc) 1935 { 1936 struct address_space *mapping = wpc->inode->i_mapping; 1937 struct folio *folio = NULL; 1938 int error; 1939 1940 /* 1941 * Writeback from reclaim context should never happen except in the case 1942 * of a VM regression so warn about it and refuse to write the data. 1943 */ 1944 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) == 1945 PF_MEMALLOC)) 1946 return -EIO; 1947 1948 while ((folio = writeback_iter(mapping, wpc->wbc, folio, &error))) { 1949 error = iomap_writeback_folio(wpc, folio); 1950 folio_unlock(folio); 1951 } 1952 1953 /* 1954 * If @error is non-zero, it means that we have a situation where some 1955 * part of the submission process has failed after we've marked pages 1956 * for writeback. 1957 * 1958 * We cannot cancel the writeback directly in that case, so always call 1959 * ->writeback_submit to run the I/O completion handler to clear the 1960 * writeback bit and let the file system proess the errors. 1961 */ 1962 if (wpc->wb_ctx) 1963 return wpc->ops->writeback_submit(wpc, error); 1964 return error; 1965 } 1966 EXPORT_SYMBOL_GPL(iomap_writepages); 1967