1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Support PCI/PCIe on PowerNV platforms
4 *
5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6 */
7
8 #undef DEBUG
9
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 #include <linux/debugfs.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/pci-bridge.h>
30 #include <asm/machdep.h>
31 #include <asm/msi_bitmap.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/opal.h>
34 #include <asm/iommu.h>
35 #include <asm/tce.h>
36 #include <asm/xics.h>
37 #include <asm/firmware.h>
38 #include <asm/pnv-pci.h>
39 #include <asm/mmzone.h>
40 #include <asm/xive.h>
41
42 #include <misc/cxl-base.h>
43
44 #include "powernv.h"
45 #include "pci.h"
46 #include "../../../../drivers/pci/pci.h"
47
48 /* This array is indexed with enum pnv_phb_type */
49 static const char * const pnv_phb_names[] = { "IODA2", "NPU_OCAPI" };
50
51 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
52 static void pnv_pci_configure_bus(struct pci_bus *bus);
53
pe_level_printk(const struct pnv_ioda_pe * pe,const char * level,const char * fmt,...)54 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
55 const char *fmt, ...)
56 {
57 struct va_format vaf;
58 va_list args;
59 char pfix[32];
60
61 va_start(args, fmt);
62
63 vaf.fmt = fmt;
64 vaf.va = &args;
65
66 if (pe->flags & PNV_IODA_PE_DEV)
67 strscpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
68 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
69 sprintf(pfix, "%04x:%02x ",
70 pci_domain_nr(pe->pbus), pe->pbus->number);
71 #ifdef CONFIG_PCI_IOV
72 else if (pe->flags & PNV_IODA_PE_VF)
73 sprintf(pfix, "%04x:%02x:%2x.%d",
74 pci_domain_nr(pe->parent_dev->bus),
75 (pe->rid & 0xff00) >> 8,
76 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
77 #endif /* CONFIG_PCI_IOV*/
78
79 printk("%spci %s: [PE# %.2x] %pV",
80 level, pfix, pe->pe_number, &vaf);
81
82 va_end(args);
83 }
84
85 static bool pnv_iommu_bypass_disabled __read_mostly;
86 static bool pci_reset_phbs __read_mostly;
87
iommu_setup(char * str)88 static int __init iommu_setup(char *str)
89 {
90 if (!str)
91 return -EINVAL;
92
93 while (*str) {
94 if (!strncmp(str, "nobypass", 8)) {
95 pnv_iommu_bypass_disabled = true;
96 pr_info("PowerNV: IOMMU bypass window disabled.\n");
97 break;
98 }
99 str += strcspn(str, ",");
100 if (*str == ',')
101 str++;
102 }
103
104 return 0;
105 }
106 early_param("iommu", iommu_setup);
107
pci_reset_phbs_setup(char * str)108 static int __init pci_reset_phbs_setup(char *str)
109 {
110 pci_reset_phbs = true;
111 return 0;
112 }
113
114 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
115
pnv_ioda_init_pe(struct pnv_phb * phb,int pe_no)116 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
117 {
118 s64 rc;
119
120 phb->ioda.pe_array[pe_no].phb = phb;
121 phb->ioda.pe_array[pe_no].pe_number = pe_no;
122 phb->ioda.pe_array[pe_no].dma_setup_done = false;
123
124 /*
125 * Clear the PE frozen state as it might be put into frozen state
126 * in the last PCI remove path. It's not harmful to do so when the
127 * PE is already in unfrozen state.
128 */
129 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
130 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
131 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
132 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
133 __func__, rc, phb->hose->global_number, pe_no);
134
135 return &phb->ioda.pe_array[pe_no];
136 }
137
pnv_ioda_reserve_pe(struct pnv_phb * phb,int pe_no)138 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
139 {
140 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
141 pr_warn("%s: Invalid PE %x on PHB#%x\n",
142 __func__, pe_no, phb->hose->global_number);
143 return;
144 }
145
146 mutex_lock(&phb->ioda.pe_alloc_mutex);
147 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
148 pr_debug("%s: PE %x was reserved on PHB#%x\n",
149 __func__, pe_no, phb->hose->global_number);
150 mutex_unlock(&phb->ioda.pe_alloc_mutex);
151
152 pnv_ioda_init_pe(phb, pe_no);
153 }
154
pnv_ioda_alloc_pe(struct pnv_phb * phb,int count)155 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
156 {
157 struct pnv_ioda_pe *ret = NULL;
158 int run = 0, pe, i;
159
160 mutex_lock(&phb->ioda.pe_alloc_mutex);
161
162 /* scan backwards for a run of @count cleared bits */
163 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
164 if (test_bit(pe, phb->ioda.pe_alloc)) {
165 run = 0;
166 continue;
167 }
168
169 run++;
170 if (run == count)
171 break;
172 }
173 if (run != count)
174 goto out;
175
176 for (i = pe; i < pe + count; i++) {
177 set_bit(i, phb->ioda.pe_alloc);
178 pnv_ioda_init_pe(phb, i);
179 }
180 ret = &phb->ioda.pe_array[pe];
181
182 out:
183 mutex_unlock(&phb->ioda.pe_alloc_mutex);
184 return ret;
185 }
186
pnv_ioda_free_pe(struct pnv_ioda_pe * pe)187 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188 {
189 struct pnv_phb *phb = pe->phb;
190 unsigned int pe_num = pe->pe_number;
191
192 WARN_ON(pe->pdev);
193 memset(pe, 0, sizeof(struct pnv_ioda_pe));
194
195 mutex_lock(&phb->ioda.pe_alloc_mutex);
196 clear_bit(pe_num, phb->ioda.pe_alloc);
197 mutex_unlock(&phb->ioda.pe_alloc_mutex);
198 }
199
200 /* The default M64 BAR is shared by all PEs */
pnv_ioda2_init_m64(struct pnv_phb * phb)201 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
202 {
203 const char *desc;
204 struct resource *r;
205 s64 rc;
206
207 /* Configure the default M64 BAR */
208 rc = opal_pci_set_phb_mem_window(phb->opal_id,
209 OPAL_M64_WINDOW_TYPE,
210 phb->ioda.m64_bar_idx,
211 phb->ioda.m64_base,
212 0, /* unused */
213 phb->ioda.m64_size);
214 if (rc != OPAL_SUCCESS) {
215 desc = "configuring";
216 goto fail;
217 }
218
219 /* Enable the default M64 BAR */
220 rc = opal_pci_phb_mmio_enable(phb->opal_id,
221 OPAL_M64_WINDOW_TYPE,
222 phb->ioda.m64_bar_idx,
223 OPAL_ENABLE_M64_SPLIT);
224 if (rc != OPAL_SUCCESS) {
225 desc = "enabling";
226 goto fail;
227 }
228
229 /*
230 * Exclude the segments for reserved and root bus PE, which
231 * are first or last two PEs.
232 */
233 r = &phb->hose->mem_resources[1];
234 if (phb->ioda.reserved_pe_idx == 0)
235 r->start += (2 * phb->ioda.m64_segsize);
236 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
237 r->end -= (2 * phb->ioda.m64_segsize);
238 else
239 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
240 phb->ioda.reserved_pe_idx);
241
242 return 0;
243
244 fail:
245 pr_warn(" Failure %lld %s M64 BAR#%d\n",
246 rc, desc, phb->ioda.m64_bar_idx);
247 opal_pci_phb_mmio_enable(phb->opal_id,
248 OPAL_M64_WINDOW_TYPE,
249 phb->ioda.m64_bar_idx,
250 OPAL_DISABLE_M64);
251 return -EIO;
252 }
253
pnv_ioda_reserve_dev_m64_pe(struct pci_dev * pdev,unsigned long * pe_bitmap)254 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
255 unsigned long *pe_bitmap)
256 {
257 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
258 struct resource *r;
259 resource_size_t base, sgsz, start, end;
260 int segno, i;
261
262 base = phb->ioda.m64_base;
263 sgsz = phb->ioda.m64_segsize;
264 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
265 r = &pdev->resource[i];
266 if (!r->parent || !pnv_pci_is_m64(phb, r))
267 continue;
268
269 start = ALIGN_DOWN(r->start - base, sgsz);
270 end = ALIGN(r->end - base, sgsz);
271 for (segno = start / sgsz; segno < end / sgsz; segno++) {
272 if (pe_bitmap)
273 set_bit(segno, pe_bitmap);
274 else
275 pnv_ioda_reserve_pe(phb, segno);
276 }
277 }
278 }
279
pnv_ioda_reserve_m64_pe(struct pci_bus * bus,unsigned long * pe_bitmap,bool all)280 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
281 unsigned long *pe_bitmap,
282 bool all)
283 {
284 struct pci_dev *pdev;
285
286 list_for_each_entry(pdev, &bus->devices, bus_list) {
287 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
288
289 if (all && pdev->subordinate)
290 pnv_ioda_reserve_m64_pe(pdev->subordinate,
291 pe_bitmap, all);
292 }
293 }
294
pnv_ioda_pick_m64_pe(struct pci_bus * bus,bool all)295 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
296 {
297 struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
298 struct pnv_ioda_pe *master_pe, *pe;
299 unsigned long size, *pe_alloc;
300 int i;
301
302 /* Root bus shouldn't use M64 */
303 if (pci_is_root_bus(bus))
304 return NULL;
305
306 /* Allocate bitmap */
307 size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
308 pe_alloc = kzalloc(size, GFP_KERNEL);
309 if (!pe_alloc) {
310 pr_warn("%s: Out of memory !\n",
311 __func__);
312 return NULL;
313 }
314
315 /* Figure out reserved PE numbers by the PE */
316 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
317
318 /*
319 * the current bus might not own M64 window and that's all
320 * contributed by its child buses. For the case, we needn't
321 * pick M64 dependent PE#.
322 */
323 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
324 kfree(pe_alloc);
325 return NULL;
326 }
327
328 /*
329 * Figure out the master PE and put all slave PEs to master
330 * PE's list to form compound PE.
331 */
332 master_pe = NULL;
333 i = -1;
334 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
335 phb->ioda.total_pe_num) {
336 pe = &phb->ioda.pe_array[i];
337
338 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
339 if (!master_pe) {
340 pe->flags |= PNV_IODA_PE_MASTER;
341 INIT_LIST_HEAD(&pe->slaves);
342 master_pe = pe;
343 } else {
344 pe->flags |= PNV_IODA_PE_SLAVE;
345 pe->master = master_pe;
346 list_add_tail(&pe->list, &master_pe->slaves);
347 }
348 }
349
350 kfree(pe_alloc);
351 return master_pe;
352 }
353
pnv_ioda_parse_m64_window(struct pnv_phb * phb)354 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
355 {
356 struct pci_controller *hose = phb->hose;
357 struct device_node *dn = hose->dn;
358 struct resource *res;
359 u32 m64_range[2], i;
360 const __be32 *r;
361 u64 pci_addr;
362
363 if (phb->type != PNV_PHB_IODA2) {
364 pr_info(" Not support M64 window\n");
365 return;
366 }
367
368 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
369 pr_info(" Firmware too old to support M64 window\n");
370 return;
371 }
372
373 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
374 if (!r) {
375 pr_info(" No <ibm,opal-m64-window> on %pOF\n",
376 dn);
377 return;
378 }
379
380 /*
381 * Find the available M64 BAR range and pickup the last one for
382 * covering the whole 64-bits space. We support only one range.
383 */
384 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
385 m64_range, 2)) {
386 /* In absence of the property, assume 0..15 */
387 m64_range[0] = 0;
388 m64_range[1] = 16;
389 }
390 /* We only support 64 bits in our allocator */
391 if (m64_range[1] > 63) {
392 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
393 __func__, m64_range[1], phb->hose->global_number);
394 m64_range[1] = 63;
395 }
396 /* Empty range, no m64 */
397 if (m64_range[1] <= m64_range[0]) {
398 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
399 __func__, phb->hose->global_number);
400 return;
401 }
402
403 /* Configure M64 informations */
404 res = &hose->mem_resources[1];
405 res->name = dn->full_name;
406 res->start = of_translate_address(dn, r + 2);
407 res->end = res->start + of_read_number(r + 4, 2) - 1;
408 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
409 pci_addr = of_read_number(r, 2);
410 hose->mem_offset[1] = res->start - pci_addr;
411
412 phb->ioda.m64_size = resource_size(res);
413 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
414 phb->ioda.m64_base = pci_addr;
415
416 /* This lines up nicely with the display from processing OF ranges */
417 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
418 res->start, res->end, pci_addr, m64_range[0],
419 m64_range[0] + m64_range[1] - 1);
420
421 /* Mark all M64 used up by default */
422 phb->ioda.m64_bar_alloc = (unsigned long)-1;
423
424 /* Use last M64 BAR to cover M64 window */
425 m64_range[1]--;
426 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
427
428 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
429
430 /* Mark remaining ones free */
431 for (i = m64_range[0]; i < m64_range[1]; i++)
432 clear_bit(i, &phb->ioda.m64_bar_alloc);
433
434 /*
435 * Setup init functions for M64 based on IODA version, IODA3 uses
436 * the IODA2 code.
437 */
438 phb->init_m64 = pnv_ioda2_init_m64;
439 }
440
pnv_ioda_freeze_pe(struct pnv_phb * phb,int pe_no)441 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
442 {
443 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
444 struct pnv_ioda_pe *slave;
445 s64 rc;
446
447 /* Fetch master PE */
448 if (pe->flags & PNV_IODA_PE_SLAVE) {
449 pe = pe->master;
450 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
451 return;
452
453 pe_no = pe->pe_number;
454 }
455
456 /* Freeze master PE */
457 rc = opal_pci_eeh_freeze_set(phb->opal_id,
458 pe_no,
459 OPAL_EEH_ACTION_SET_FREEZE_ALL);
460 if (rc != OPAL_SUCCESS) {
461 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
462 __func__, rc, phb->hose->global_number, pe_no);
463 return;
464 }
465
466 /* Freeze slave PEs */
467 if (!(pe->flags & PNV_IODA_PE_MASTER))
468 return;
469
470 list_for_each_entry(slave, &pe->slaves, list) {
471 rc = opal_pci_eeh_freeze_set(phb->opal_id,
472 slave->pe_number,
473 OPAL_EEH_ACTION_SET_FREEZE_ALL);
474 if (rc != OPAL_SUCCESS)
475 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
476 __func__, rc, phb->hose->global_number,
477 slave->pe_number);
478 }
479 }
480
pnv_ioda_unfreeze_pe(struct pnv_phb * phb,int pe_no,int opt)481 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
482 {
483 struct pnv_ioda_pe *pe, *slave;
484 s64 rc;
485
486 /* Find master PE */
487 pe = &phb->ioda.pe_array[pe_no];
488 if (pe->flags & PNV_IODA_PE_SLAVE) {
489 pe = pe->master;
490 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
491 pe_no = pe->pe_number;
492 }
493
494 /* Clear frozen state for master PE */
495 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
496 if (rc != OPAL_SUCCESS) {
497 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
498 __func__, rc, opt, phb->hose->global_number, pe_no);
499 return -EIO;
500 }
501
502 if (!(pe->flags & PNV_IODA_PE_MASTER))
503 return 0;
504
505 /* Clear frozen state for slave PEs */
506 list_for_each_entry(slave, &pe->slaves, list) {
507 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
508 slave->pe_number,
509 opt);
510 if (rc != OPAL_SUCCESS) {
511 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
512 __func__, rc, opt, phb->hose->global_number,
513 slave->pe_number);
514 return -EIO;
515 }
516 }
517
518 return 0;
519 }
520
pnv_ioda_get_pe_state(struct pnv_phb * phb,int pe_no)521 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
522 {
523 struct pnv_ioda_pe *slave, *pe;
524 u8 fstate = 0, state;
525 __be16 pcierr = 0;
526 s64 rc;
527
528 /* Sanity check on PE number */
529 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
530 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
531
532 /*
533 * Fetch the master PE and the PE instance might be
534 * not initialized yet.
535 */
536 pe = &phb->ioda.pe_array[pe_no];
537 if (pe->flags & PNV_IODA_PE_SLAVE) {
538 pe = pe->master;
539 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
540 pe_no = pe->pe_number;
541 }
542
543 /* Check the master PE */
544 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
545 &state, &pcierr, NULL);
546 if (rc != OPAL_SUCCESS) {
547 pr_warn("%s: Failure %lld getting "
548 "PHB#%x-PE#%x state\n",
549 __func__, rc,
550 phb->hose->global_number, pe_no);
551 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
552 }
553
554 /* Check the slave PE */
555 if (!(pe->flags & PNV_IODA_PE_MASTER))
556 return state;
557
558 list_for_each_entry(slave, &pe->slaves, list) {
559 rc = opal_pci_eeh_freeze_status(phb->opal_id,
560 slave->pe_number,
561 &fstate,
562 &pcierr,
563 NULL);
564 if (rc != OPAL_SUCCESS) {
565 pr_warn("%s: Failure %lld getting "
566 "PHB#%x-PE#%x state\n",
567 __func__, rc,
568 phb->hose->global_number, slave->pe_number);
569 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
570 }
571
572 /*
573 * Override the result based on the ascending
574 * priority.
575 */
576 if (fstate > state)
577 state = fstate;
578 }
579
580 return state;
581 }
582
pnv_pci_bdfn_to_pe(struct pnv_phb * phb,u16 bdfn)583 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
584 {
585 int pe_number = phb->ioda.pe_rmap[bdfn];
586
587 if (pe_number == IODA_INVALID_PE)
588 return NULL;
589
590 return &phb->ioda.pe_array[pe_number];
591 }
592
pnv_ioda_get_pe(struct pci_dev * dev)593 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
594 {
595 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
596 struct pci_dn *pdn = pci_get_pdn(dev);
597
598 if (!pdn)
599 return NULL;
600 if (pdn->pe_number == IODA_INVALID_PE)
601 return NULL;
602 return &phb->ioda.pe_array[pdn->pe_number];
603 }
604
pnv_ioda_set_one_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * parent,struct pnv_ioda_pe * child,bool is_add)605 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
606 struct pnv_ioda_pe *parent,
607 struct pnv_ioda_pe *child,
608 bool is_add)
609 {
610 const char *desc = is_add ? "adding" : "removing";
611 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
612 OPAL_REMOVE_PE_FROM_DOMAIN;
613 struct pnv_ioda_pe *slave;
614 long rc;
615
616 /* Parent PE affects child PE */
617 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
618 child->pe_number, op);
619 if (rc != OPAL_SUCCESS) {
620 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
621 rc, desc);
622 return -ENXIO;
623 }
624
625 if (!(child->flags & PNV_IODA_PE_MASTER))
626 return 0;
627
628 /* Compound case: parent PE affects slave PEs */
629 list_for_each_entry(slave, &child->slaves, list) {
630 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
631 slave->pe_number, op);
632 if (rc != OPAL_SUCCESS) {
633 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
634 rc, desc);
635 return -ENXIO;
636 }
637 }
638
639 return 0;
640 }
641
pnv_ioda_set_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * pe,bool is_add)642 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
643 struct pnv_ioda_pe *pe,
644 bool is_add)
645 {
646 struct pnv_ioda_pe *slave;
647 struct pci_dev *pdev = NULL;
648 int ret;
649
650 /*
651 * Clear PE frozen state. If it's master PE, we need
652 * clear slave PE frozen state as well.
653 */
654 if (is_add) {
655 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
656 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
657 if (pe->flags & PNV_IODA_PE_MASTER) {
658 list_for_each_entry(slave, &pe->slaves, list)
659 opal_pci_eeh_freeze_clear(phb->opal_id,
660 slave->pe_number,
661 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
662 }
663 }
664
665 /*
666 * Associate PE in PELT. We need add the PE into the
667 * corresponding PELT-V as well. Otherwise, the error
668 * originated from the PE might contribute to other
669 * PEs.
670 */
671 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
672 if (ret)
673 return ret;
674
675 /* For compound PEs, any one affects all of them */
676 if (pe->flags & PNV_IODA_PE_MASTER) {
677 list_for_each_entry(slave, &pe->slaves, list) {
678 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
679 if (ret)
680 return ret;
681 }
682 }
683
684 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
685 pdev = pe->pbus->self;
686 else if (pe->flags & PNV_IODA_PE_DEV)
687 pdev = pe->pdev->bus->self;
688 #ifdef CONFIG_PCI_IOV
689 else if (pe->flags & PNV_IODA_PE_VF)
690 pdev = pe->parent_dev;
691 #endif /* CONFIG_PCI_IOV */
692 while (pdev) {
693 struct pci_dn *pdn = pci_get_pdn(pdev);
694 struct pnv_ioda_pe *parent;
695
696 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
697 parent = &phb->ioda.pe_array[pdn->pe_number];
698 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
699 if (ret)
700 return ret;
701 }
702
703 pdev = pdev->bus->self;
704 }
705
706 return 0;
707 }
708
pnv_ioda_unset_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * pe,struct pci_dev * parent)709 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
710 struct pnv_ioda_pe *pe,
711 struct pci_dev *parent)
712 {
713 int64_t rc;
714
715 while (parent) {
716 struct pci_dn *pdn = pci_get_pdn(parent);
717
718 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
719 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
720 pe->pe_number,
721 OPAL_REMOVE_PE_FROM_DOMAIN);
722 /* XXX What to do in case of error ? */
723 }
724 parent = parent->bus->self;
725 }
726
727 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
728 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
729
730 /* Disassociate PE in PELT */
731 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
732 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
733 if (rc)
734 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
735 }
736
pnv_ioda_deconfigure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)737 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
738 {
739 struct pci_dev *parent;
740 uint8_t bcomp, dcomp, fcomp;
741 int64_t rc;
742 long rid_end, rid;
743
744 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
745 if (pe->pbus) {
746 int count;
747
748 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
749 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
750 parent = pe->pbus->self;
751 if (pe->flags & PNV_IODA_PE_BUS_ALL)
752 count = resource_size(&pe->pbus->busn_res);
753 else
754 count = 1;
755
756 switch(count) {
757 case 1: bcomp = OpalPciBusAll; break;
758 case 2: bcomp = OpalPciBus7Bits; break;
759 case 4: bcomp = OpalPciBus6Bits; break;
760 case 8: bcomp = OpalPciBus5Bits; break;
761 case 16: bcomp = OpalPciBus4Bits; break;
762 case 32: bcomp = OpalPciBus3Bits; break;
763 default:
764 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
765 count);
766 /* Do an exact match only */
767 bcomp = OpalPciBusAll;
768 }
769 rid_end = pe->rid + (count << 8);
770 } else {
771 #ifdef CONFIG_PCI_IOV
772 if (pe->flags & PNV_IODA_PE_VF)
773 parent = pe->parent_dev;
774 else
775 #endif
776 parent = pe->pdev->bus->self;
777 bcomp = OpalPciBusAll;
778 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
779 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
780 rid_end = pe->rid + 1;
781 }
782
783 /* Clear the reverse map */
784 for (rid = pe->rid; rid < rid_end; rid++)
785 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
786
787 /*
788 * Release from all parents PELT-V. NPUs don't have a PELTV
789 * table
790 */
791 if (phb->type != PNV_PHB_NPU_OCAPI)
792 pnv_ioda_unset_peltv(phb, pe, parent);
793
794 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
795 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
796 if (rc)
797 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
798
799 pe->pbus = NULL;
800 pe->pdev = NULL;
801 #ifdef CONFIG_PCI_IOV
802 pe->parent_dev = NULL;
803 #endif
804
805 return 0;
806 }
807
pnv_ioda_configure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)808 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
809 {
810 uint8_t bcomp, dcomp, fcomp;
811 long rc, rid_end, rid;
812
813 /* Bus validation ? */
814 if (pe->pbus) {
815 int count;
816
817 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
818 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
819 if (pe->flags & PNV_IODA_PE_BUS_ALL)
820 count = resource_size(&pe->pbus->busn_res);
821 else
822 count = 1;
823
824 switch(count) {
825 case 1: bcomp = OpalPciBusAll; break;
826 case 2: bcomp = OpalPciBus7Bits; break;
827 case 4: bcomp = OpalPciBus6Bits; break;
828 case 8: bcomp = OpalPciBus5Bits; break;
829 case 16: bcomp = OpalPciBus4Bits; break;
830 case 32: bcomp = OpalPciBus3Bits; break;
831 default:
832 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
833 count);
834 /* Do an exact match only */
835 bcomp = OpalPciBusAll;
836 }
837 rid_end = pe->rid + (count << 8);
838 } else {
839 bcomp = OpalPciBusAll;
840 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
841 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
842 rid_end = pe->rid + 1;
843 }
844
845 /*
846 * Associate PE in PELT. We need add the PE into the
847 * corresponding PELT-V as well. Otherwise, the error
848 * originated from the PE might contribute to other
849 * PEs.
850 */
851 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 bcomp, dcomp, fcomp, OPAL_MAP_PE);
853 if (rc) {
854 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855 return -ENXIO;
856 }
857
858 /*
859 * Configure PELTV. NPUs don't have a PELTV table so skip
860 * configuration on them.
861 */
862 if (phb->type != PNV_PHB_NPU_OCAPI)
863 pnv_ioda_set_peltv(phb, pe, true);
864
865 /* Setup reverse map */
866 for (rid = pe->rid; rid < rid_end; rid++)
867 phb->ioda.pe_rmap[rid] = pe->pe_number;
868
869 pe->mve_number = 0;
870
871 return 0;
872 }
873
pnv_ioda_setup_dev_PE(struct pci_dev * dev)874 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
875 {
876 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
877 struct pci_dn *pdn = pci_get_pdn(dev);
878 struct pnv_ioda_pe *pe;
879
880 if (!pdn) {
881 pr_err("%s: Device tree node not associated properly\n",
882 pci_name(dev));
883 return NULL;
884 }
885 if (pdn->pe_number != IODA_INVALID_PE)
886 return NULL;
887
888 pe = pnv_ioda_alloc_pe(phb, 1);
889 if (!pe) {
890 pr_warn("%s: Not enough PE# available, disabling device\n",
891 pci_name(dev));
892 return NULL;
893 }
894
895 /* NOTE: We don't get a reference for the pointer in the PE
896 * data structure, both the device and PE structures should be
897 * destroyed at the same time.
898 *
899 * At some point we want to remove the PDN completely anyways
900 */
901 pdn->pe_number = pe->pe_number;
902 pe->flags = PNV_IODA_PE_DEV;
903 pe->pdev = dev;
904 pe->pbus = NULL;
905 pe->mve_number = -1;
906 pe->rid = dev->bus->number << 8 | pdn->devfn;
907 pe->device_count++;
908
909 pe_info(pe, "Associated device to PE\n");
910
911 if (pnv_ioda_configure_pe(phb, pe)) {
912 /* XXX What do we do here ? */
913 pnv_ioda_free_pe(pe);
914 pdn->pe_number = IODA_INVALID_PE;
915 pe->pdev = NULL;
916 return NULL;
917 }
918
919 /* Put PE to the list */
920 mutex_lock(&phb->ioda.pe_list_mutex);
921 list_add_tail(&pe->list, &phb->ioda.pe_list);
922 mutex_unlock(&phb->ioda.pe_list_mutex);
923 return pe;
924 }
925
926 /*
927 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
928 * single PCI bus. Another one that contains the primary PCI bus and its
929 * subordinate PCI devices and buses. The second type of PE is normally
930 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
931 */
pnv_ioda_setup_bus_PE(struct pci_bus * bus,bool all)932 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
933 {
934 struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
935 struct pnv_ioda_pe *pe = NULL;
936 unsigned int pe_num;
937
938 /*
939 * In partial hotplug case, the PE instance might be still alive.
940 * We should reuse it instead of allocating a new one.
941 */
942 pe_num = phb->ioda.pe_rmap[bus->number << 8];
943 if (WARN_ON(pe_num != IODA_INVALID_PE)) {
944 pe = &phb->ioda.pe_array[pe_num];
945 return NULL;
946 }
947
948 /* PE number for root bus should have been reserved */
949 if (pci_is_root_bus(bus))
950 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
951
952 /* Check if PE is determined by M64 */
953 if (!pe)
954 pe = pnv_ioda_pick_m64_pe(bus, all);
955
956 /* The PE number isn't pinned by M64 */
957 if (!pe)
958 pe = pnv_ioda_alloc_pe(phb, 1);
959
960 if (!pe) {
961 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
962 __func__, pci_domain_nr(bus), bus->number);
963 return NULL;
964 }
965
966 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
967 pe->pbus = bus;
968 pe->pdev = NULL;
969 pe->mve_number = -1;
970 pe->rid = bus->busn_res.start << 8;
971
972 if (all)
973 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
974 &bus->busn_res.start, &bus->busn_res.end,
975 pe->pe_number);
976 else
977 pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
978 &bus->busn_res.start, pe->pe_number);
979
980 if (pnv_ioda_configure_pe(phb, pe)) {
981 /* XXX What do we do here ? */
982 pnv_ioda_free_pe(pe);
983 pe->pbus = NULL;
984 return NULL;
985 }
986
987 /* Put PE to the list */
988 list_add_tail(&pe->list, &phb->ioda.pe_list);
989
990 return pe;
991 }
992
pnv_pci_ioda_dma_dev_setup(struct pci_dev * pdev)993 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
994 {
995 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
996 struct pci_dn *pdn = pci_get_pdn(pdev);
997 struct pnv_ioda_pe *pe;
998
999 /* Check if the BDFN for this device is associated with a PE yet */
1000 pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
1001 if (!pe) {
1002 /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1003 if (WARN_ON(pdev->is_virtfn))
1004 return;
1005
1006 pnv_pci_configure_bus(pdev->bus);
1007 pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
1008 pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1009
1010
1011 /*
1012 * If we can't setup the IODA PE something has gone horribly
1013 * wrong and we can't enable DMA for the device.
1014 */
1015 if (WARN_ON(!pe))
1016 return;
1017 } else {
1018 pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1019 }
1020
1021 /*
1022 * We assume that bridges *probably* don't need to do any DMA so we can
1023 * skip allocating a TCE table, etc unless we get a non-bridge device.
1024 */
1025 if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1026 switch (phb->type) {
1027 case PNV_PHB_IODA2:
1028 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1029 break;
1030 default:
1031 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1032 __func__, phb->hose->global_number, phb->type);
1033 }
1034 }
1035
1036 if (pdn)
1037 pdn->pe_number = pe->pe_number;
1038 pe->device_count++;
1039
1040 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1041 pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1042 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1043
1044 /* PEs with a DMA weight of zero won't have a group */
1045 if (pe->table_group.group)
1046 iommu_add_device(&pe->table_group, &pdev->dev);
1047 }
1048
1049 /*
1050 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1051 *
1052 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1053 * Devices can only access more than that if bit 59 of the PCI address is set
1054 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1055 * Many PCI devices are not capable of addressing that many bits, and as a
1056 * result are limited to the 4GB of virtual memory made available to 32-bit
1057 * devices in TVE#0.
1058 *
1059 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1060 * devices by configuring the virtual memory past the first 4GB inaccessible
1061 * by 64-bit DMAs. This should only be used by devices that want more than
1062 * 4GB, and only on PEs that have no 32-bit devices.
1063 *
1064 * Currently this will only work on PHB3 (POWER8).
1065 */
pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe * pe)1066 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1067 {
1068 u64 window_size, table_size, tce_count, addr;
1069 struct page *table_pages;
1070 u64 tce_order = 28; /* 256MB TCEs */
1071 __be64 *tces;
1072 s64 rc;
1073
1074 /*
1075 * Window size needs to be a power of two, but needs to account for
1076 * shifting memory by the 4GB offset required to skip 32bit space.
1077 */
1078 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1079 tce_count = window_size >> tce_order;
1080 table_size = tce_count << 3;
1081
1082 if (table_size < PAGE_SIZE)
1083 table_size = PAGE_SIZE;
1084
1085 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1086 get_order(table_size));
1087 if (!table_pages)
1088 goto err;
1089
1090 tces = page_address(table_pages);
1091 if (!tces)
1092 goto err;
1093
1094 memset(tces, 0, table_size);
1095
1096 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1097 tces[(addr + (1ULL << 32)) >> tce_order] =
1098 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1099 }
1100
1101 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1102 pe->pe_number,
1103 /* reconfigure window 0 */
1104 (pe->pe_number << 1) + 0,
1105 1,
1106 __pa(tces),
1107 table_size,
1108 1 << tce_order);
1109 if (rc == OPAL_SUCCESS) {
1110 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1111 return 0;
1112 }
1113 err:
1114 pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1115 return -EIO;
1116 }
1117
pnv_pci_ioda_iommu_bypass_supported(struct pci_dev * pdev,u64 dma_mask)1118 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1119 u64 dma_mask)
1120 {
1121 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1122 struct pci_dn *pdn = pci_get_pdn(pdev);
1123 struct pnv_ioda_pe *pe;
1124
1125 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1126 return false;
1127
1128 pe = &phb->ioda.pe_array[pdn->pe_number];
1129 if (pe->tce_bypass_enabled) {
1130 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1131 if (dma_mask >= top)
1132 return true;
1133 }
1134
1135 /*
1136 * If the device can't set the TCE bypass bit but still wants
1137 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1138 * bypass the 32-bit region and be usable for 64-bit DMAs.
1139 * The device needs to be able to address all of this space.
1140 */
1141 if (dma_mask >> 32 &&
1142 dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1143 /* pe->pdev should be set if it's a single device, pe->pbus if not */
1144 (pe->device_count == 1 || !pe->pbus) &&
1145 phb->model == PNV_PHB_MODEL_PHB3) {
1146 /* Configure the bypass mode */
1147 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1148 if (rc)
1149 return false;
1150 /* 4GB offset bypasses 32-bit space */
1151 pdev->dev.archdata.dma_offset = (1ULL << 32);
1152 return true;
1153 }
1154
1155 return false;
1156 }
1157
pnv_ioda_get_inval_reg(struct pnv_phb * phb)1158 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb)
1159 {
1160 return phb->regs + 0x210;
1161 }
1162
1163 #ifdef CONFIG_IOMMU_API
1164 /* Common for IODA1 and IODA2 */
pnv_ioda_tce_xchg_no_kill(struct iommu_table * tbl,long index,unsigned long * hpa,enum dma_data_direction * direction)1165 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1166 unsigned long *hpa, enum dma_data_direction *direction)
1167 {
1168 return pnv_tce_xchg(tbl, index, hpa, direction);
1169 }
1170 #endif
1171
1172 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
1173 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
1174 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
1175
pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe * pe)1176 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1177 {
1178 /* 01xb - invalidate TCEs that match the specified PE# */
1179 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1180 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1181
1182 mb(); /* Ensure above stores are visible */
1183 __raw_writeq_be(val, invalidate);
1184 }
1185
pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe * pe,unsigned shift,unsigned long index,unsigned long npages)1186 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe,
1187 unsigned shift, unsigned long index,
1188 unsigned long npages)
1189 {
1190 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1191 unsigned long start, end, inc;
1192
1193 /* We'll invalidate DMA address in PE scope */
1194 start = PHB3_TCE_KILL_INVAL_ONE;
1195 start |= (pe->pe_number & 0xFF);
1196 end = start;
1197
1198 /* Figure out the start, end and step */
1199 start |= (index << shift);
1200 end |= ((index + npages - 1) << shift);
1201 inc = (0x1ull << shift);
1202 mb();
1203
1204 while (start <= end) {
1205 __raw_writeq_be(start, invalidate);
1206 start += inc;
1207 }
1208 }
1209
pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe * pe)1210 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1211 {
1212 struct pnv_phb *phb = pe->phb;
1213
1214 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1215 pnv_pci_phb3_tce_invalidate_pe(pe);
1216 else
1217 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1218 pe->pe_number, 0, 0, 0);
1219 }
1220
pnv_pci_ioda2_tce_invalidate(struct iommu_table * tbl,unsigned long index,unsigned long npages)1221 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1222 unsigned long index, unsigned long npages)
1223 {
1224 struct iommu_table_group_link *tgl;
1225
1226 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1227 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1228 struct pnv_ioda_pe, table_group);
1229 struct pnv_phb *phb = pe->phb;
1230 unsigned int shift = tbl->it_page_shift;
1231
1232 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1233 pnv_pci_phb3_tce_invalidate(pe, shift,
1234 index, npages);
1235 else
1236 opal_pci_tce_kill(phb->opal_id,
1237 OPAL_PCI_TCE_KILL_PAGES,
1238 pe->pe_number, 1u << shift,
1239 index << shift, npages);
1240 }
1241 }
1242
pnv_ioda2_tce_build(struct iommu_table * tbl,long index,long npages,unsigned long uaddr,enum dma_data_direction direction,unsigned long attrs)1243 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1244 long npages, unsigned long uaddr,
1245 enum dma_data_direction direction,
1246 unsigned long attrs)
1247 {
1248 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1249 attrs);
1250
1251 if (!ret)
1252 pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1253
1254 return ret;
1255 }
1256
pnv_ioda2_tce_free(struct iommu_table * tbl,long index,long npages)1257 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1258 long npages)
1259 {
1260 pnv_tce_free(tbl, index, npages);
1261
1262 pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1263 }
1264
1265 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1266 .set = pnv_ioda2_tce_build,
1267 #ifdef CONFIG_IOMMU_API
1268 .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1269 .tce_kill = pnv_pci_ioda2_tce_invalidate,
1270 .useraddrptr = pnv_tce_useraddrptr,
1271 #endif
1272 .clear = pnv_ioda2_tce_free,
1273 .get = pnv_tce_get,
1274 .free = pnv_pci_ioda2_table_free_pages,
1275 };
1276
pnv_pci_ioda2_set_window(struct iommu_table_group * table_group,int num,struct iommu_table * tbl)1277 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1278 int num, struct iommu_table *tbl)
1279 {
1280 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1281 table_group);
1282 struct pnv_phb *phb = pe->phb;
1283 int64_t rc;
1284 const unsigned long size = tbl->it_indirect_levels ?
1285 tbl->it_level_size : tbl->it_size;
1286 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1287 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1288
1289 pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1290 num, start_addr, start_addr + win_size - 1,
1291 IOMMU_PAGE_SIZE(tbl));
1292
1293 /*
1294 * Map TCE table through TVT. The TVE index is the PE number
1295 * shifted by 1 bit for 32-bits DMA space.
1296 */
1297 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1298 pe->pe_number,
1299 (pe->pe_number << 1) + num,
1300 tbl->it_indirect_levels + 1,
1301 __pa(tbl->it_base),
1302 size << 3,
1303 IOMMU_PAGE_SIZE(tbl));
1304 if (rc) {
1305 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1306 return rc;
1307 }
1308
1309 pnv_pci_link_table_and_group(phb->hose->node, num,
1310 tbl, &pe->table_group);
1311 pnv_pci_ioda2_tce_invalidate_pe(pe);
1312
1313 return 0;
1314 }
1315
pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe * pe,bool enable)1316 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1317 {
1318 uint16_t window_id = (pe->pe_number << 1 ) + 1;
1319 int64_t rc;
1320
1321 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1322 if (enable) {
1323 phys_addr_t top = memblock_end_of_DRAM();
1324
1325 top = roundup_pow_of_two(top);
1326 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1327 pe->pe_number,
1328 window_id,
1329 pe->tce_bypass_base,
1330 top);
1331 } else {
1332 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1333 pe->pe_number,
1334 window_id,
1335 pe->tce_bypass_base,
1336 0);
1337 }
1338 if (rc)
1339 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1340 else
1341 pe->tce_bypass_enabled = enable;
1342 }
1343
pnv_pci_ioda2_create_table(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,bool alloc_userspace_copy,struct iommu_table ** ptbl)1344 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1345 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1346 bool alloc_userspace_copy, struct iommu_table **ptbl)
1347 {
1348 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1349 table_group);
1350 int nid = pe->phb->hose->node;
1351 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1352 long ret;
1353 struct iommu_table *tbl;
1354
1355 tbl = pnv_pci_table_alloc(nid);
1356 if (!tbl)
1357 return -ENOMEM;
1358
1359 tbl->it_ops = &pnv_ioda2_iommu_ops;
1360
1361 ret = pnv_pci_ioda2_table_alloc_pages(nid,
1362 bus_offset, page_shift, window_size,
1363 levels, alloc_userspace_copy, tbl);
1364 if (ret) {
1365 iommu_tce_table_put(tbl);
1366 return ret;
1367 }
1368
1369 *ptbl = tbl;
1370
1371 return 0;
1372 }
1373
pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe * pe)1374 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1375 {
1376 struct iommu_table *tbl = NULL;
1377 long rc;
1378 unsigned long res_start, res_end;
1379
1380 /*
1381 * crashkernel= specifies the kdump kernel's maximum memory at
1382 * some offset and there is no guaranteed the result is a power
1383 * of 2, which will cause errors later.
1384 */
1385 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1386
1387 /*
1388 * In memory constrained environments, e.g. kdump kernel, the
1389 * DMA window can be larger than available memory, which will
1390 * cause errors later.
1391 */
1392 const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_PAGE_ORDER);
1393
1394 /*
1395 * We create the default window as big as we can. The constraint is
1396 * the max order of allocation possible. The TCE table is likely to
1397 * end up being multilevel and with on-demand allocation in place,
1398 * the initial use is not going to be huge as the default window aims
1399 * to support crippled devices (i.e. not fully 64bit DMAble) only.
1400 */
1401 /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1402 const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1403 /* Each TCE level cannot exceed maxblock so go multilevel if needed */
1404 unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1405 unsigned long tcelevel_order = ilog2(maxblock >> 3);
1406 unsigned int levels = tces_order / tcelevel_order;
1407
1408 if (tces_order % tcelevel_order)
1409 levels += 1;
1410 /*
1411 * We try to stick to default levels (which is >1 at the moment) in
1412 * order to save memory by relying on on-demain TCE level allocation.
1413 */
1414 levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1415
1416 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1417 window_size, levels, false, &tbl);
1418 if (rc) {
1419 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1420 rc);
1421 return rc;
1422 }
1423
1424 /* We use top part of 32bit space for MMIO so exclude it from DMA */
1425 res_start = 0;
1426 res_end = 0;
1427 if (window_size > pe->phb->ioda.m32_pci_base) {
1428 res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1429 res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1430 }
1431
1432 tbl->it_index = (pe->phb->hose->global_number << 16) | pe->pe_number;
1433 if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
1434 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1435 else
1436 rc = -ENOMEM;
1437 if (rc) {
1438 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
1439 iommu_tce_table_put(tbl);
1440 tbl = NULL; /* This clears iommu_table_base below */
1441 }
1442 if (!pnv_iommu_bypass_disabled)
1443 pnv_pci_ioda2_set_bypass(pe, true);
1444
1445 /*
1446 * Set table base for the case of IOMMU DMA use. Usually this is done
1447 * from dma_dev_setup() which is not called when a device is returned
1448 * from VFIO so do it here.
1449 */
1450 if (pe->pdev)
1451 set_iommu_table_base(&pe->pdev->dev, tbl);
1452
1453 return 0;
1454 }
1455
pnv_pci_ioda2_unset_window(struct iommu_table_group * table_group,int num)1456 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1457 int num)
1458 {
1459 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1460 table_group);
1461 struct pnv_phb *phb = pe->phb;
1462 long ret;
1463
1464 pe_info(pe, "Removing DMA window #%d\n", num);
1465
1466 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1467 (pe->pe_number << 1) + num,
1468 0/* levels */, 0/* table address */,
1469 0/* table size */, 0/* page size */);
1470 if (ret)
1471 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1472 else
1473 pnv_pci_ioda2_tce_invalidate_pe(pe);
1474
1475 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1476
1477 return ret;
1478 }
1479
1480 #ifdef CONFIG_IOMMU_API
pnv_pci_ioda2_get_table_size(__u32 page_shift,__u64 window_size,__u32 levels)1481 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1482 __u64 window_size, __u32 levels)
1483 {
1484 unsigned long bytes = 0;
1485 const unsigned window_shift = ilog2(window_size);
1486 unsigned entries_shift = window_shift - page_shift;
1487 unsigned table_shift = entries_shift + 3;
1488 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1489 unsigned long direct_table_size;
1490
1491 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1492 !is_power_of_2(window_size))
1493 return 0;
1494
1495 /* Calculate a direct table size from window_size and levels */
1496 entries_shift = (entries_shift + levels - 1) / levels;
1497 table_shift = entries_shift + 3;
1498 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
1499 direct_table_size = 1UL << table_shift;
1500
1501 for ( ; levels; --levels) {
1502 bytes += ALIGN(tce_table_size, direct_table_size);
1503
1504 tce_table_size /= direct_table_size;
1505 tce_table_size <<= 3;
1506 tce_table_size = max_t(unsigned long,
1507 tce_table_size, direct_table_size);
1508 }
1509
1510 return bytes + bytes; /* one for HW table, one for userspace copy */
1511 }
1512
pnv_pci_ioda2_create_table_userspace(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,struct iommu_table ** ptbl)1513 static long pnv_pci_ioda2_create_table_userspace(
1514 struct iommu_table_group *table_group,
1515 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1516 struct iommu_table **ptbl)
1517 {
1518 long ret = pnv_pci_ioda2_create_table(table_group,
1519 num, page_shift, window_size, levels, true, ptbl);
1520
1521 if (!ret)
1522 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
1523 page_shift, window_size, levels);
1524 return ret;
1525 }
1526
pnv_ioda_setup_bus_dma(struct pnv_ioda_pe * pe,struct pci_bus * bus)1527 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1528 {
1529 struct pci_dev *dev;
1530
1531 list_for_each_entry(dev, &bus->devices, bus_list) {
1532 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1533 dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1534
1535 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1536 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1537 }
1538 }
1539
pnv_ioda2_take_ownership(struct iommu_table_group * table_group,struct device * dev __maybe_unused)1540 static long pnv_ioda2_take_ownership(struct iommu_table_group *table_group,
1541 struct device *dev __maybe_unused)
1542 {
1543 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1544 table_group);
1545 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
1546 struct iommu_table *tbl = pe->table_group.tables[0];
1547
1548 /*
1549 * iommu_ops transfers the ownership per a device and we mode
1550 * the group ownership with the first device in the group.
1551 */
1552 if (!tbl)
1553 return 0;
1554
1555 pnv_pci_ioda2_set_bypass(pe, false);
1556 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1557 if (pe->pbus)
1558 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1559 else if (pe->pdev)
1560 set_iommu_table_base(&pe->pdev->dev, NULL);
1561 iommu_tce_table_put(tbl);
1562
1563 return 0;
1564 }
1565
pnv_ioda2_release_ownership(struct iommu_table_group * table_group,struct device * dev __maybe_unused)1566 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group,
1567 struct device *dev __maybe_unused)
1568 {
1569 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1570 table_group);
1571
1572 /* See the comment about iommu_ops above */
1573 if (pe->table_group.tables[0])
1574 return;
1575 pnv_pci_ioda2_setup_default_config(pe);
1576 if (pe->pbus)
1577 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1578 }
1579
1580 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1581 .get_table_size = pnv_pci_ioda2_get_table_size,
1582 .create_table = pnv_pci_ioda2_create_table_userspace,
1583 .set_window = pnv_pci_ioda2_set_window,
1584 .unset_window = pnv_pci_ioda2_unset_window,
1585 .take_ownership = pnv_ioda2_take_ownership,
1586 .release_ownership = pnv_ioda2_release_ownership,
1587 };
1588 #endif
1589
pnv_pci_ioda2_setup_dma_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)1590 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1591 struct pnv_ioda_pe *pe)
1592 {
1593 int64_t rc;
1594
1595 /* TVE #1 is selected by PCI address bit 59 */
1596 pe->tce_bypass_base = 1ull << 59;
1597
1598 /* The PE will reserve all possible 32-bits space */
1599 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1600 phb->ioda.m32_pci_base);
1601
1602 /* Setup linux iommu table */
1603 pe->table_group.tce32_start = 0;
1604 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
1605 pe->table_group.max_dynamic_windows_supported =
1606 IOMMU_TABLE_GROUP_MAX_TABLES;
1607 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
1608 pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
1609
1610 rc = pnv_pci_ioda2_setup_default_config(pe);
1611 if (rc)
1612 return;
1613
1614 #ifdef CONFIG_IOMMU_API
1615 pe->table_group.ops = &pnv_pci_ioda2_ops;
1616 iommu_register_group(&pe->table_group, phb->hose->global_number,
1617 pe->pe_number);
1618 #endif
1619 pe->dma_setup_done = true;
1620 }
1621
1622 /*
1623 * Called from KVM in real mode to EOI passthru interrupts. The ICP
1624 * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru().
1625 *
1626 * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call
1627 * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ
1628 * numbers of the in-the-middle MSI domain are vector numbers and it's
1629 * good enough for OPAL. Use that.
1630 */
pnv_opal_pci_msi_eoi(struct irq_data * d)1631 int64_t pnv_opal_pci_msi_eoi(struct irq_data *d)
1632 {
1633 struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data);
1634 struct pnv_phb *phb = hose->private_data;
1635
1636 return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq);
1637 }
1638
1639 /*
1640 * The IRQ data is mapped in the XICS domain, with OPAL HW IRQ numbers
1641 */
pnv_ioda2_msi_eoi(struct irq_data * d)1642 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1643 {
1644 int64_t rc;
1645 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1646 struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1647 struct pnv_phb *phb = hose->private_data;
1648
1649 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1650 WARN_ON_ONCE(rc);
1651
1652 icp_native_eoi(d);
1653 }
1654
1655 /* P8/CXL only */
pnv_set_msi_irq_chip(struct pnv_phb * phb,unsigned int virq)1656 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1657 {
1658 struct irq_data *idata;
1659 struct irq_chip *ichip;
1660
1661 /* The MSI EOI OPAL call is only needed on PHB3 */
1662 if (phb->model != PNV_PHB_MODEL_PHB3)
1663 return;
1664
1665 if (!phb->ioda.irq_chip_init) {
1666 /*
1667 * First time we setup an MSI IRQ, we need to setup the
1668 * corresponding IRQ chip to route correctly.
1669 */
1670 idata = irq_get_irq_data(virq);
1671 ichip = irq_data_get_irq_chip(idata);
1672 phb->ioda.irq_chip_init = 1;
1673 phb->ioda.irq_chip = *ichip;
1674 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1675 }
1676 irq_set_chip(virq, &phb->ioda.irq_chip);
1677 irq_set_chip_data(virq, phb->hose);
1678 }
1679
1680 static struct irq_chip pnv_pci_msi_irq_chip;
1681
1682 /*
1683 * Returns true iff chip is something that we could call
1684 * pnv_opal_pci_msi_eoi for.
1685 */
is_pnv_opal_msi(struct irq_chip * chip)1686 bool is_pnv_opal_msi(struct irq_chip *chip)
1687 {
1688 return chip == &pnv_pci_msi_irq_chip;
1689 }
1690 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
1691
__pnv_pci_ioda_msi_setup(struct pnv_phb * phb,struct pci_dev * dev,unsigned int xive_num,unsigned int is_64,struct msi_msg * msg)1692 static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1693 unsigned int xive_num,
1694 unsigned int is_64, struct msi_msg *msg)
1695 {
1696 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1697 __be32 data;
1698 int rc;
1699
1700 dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__,
1701 is_64 ? "64" : "32", xive_num);
1702
1703 /* No PE assigned ? bail out ... no MSI for you ! */
1704 if (pe == NULL)
1705 return -ENXIO;
1706
1707 /* Check if we have an MVE */
1708 if (pe->mve_number < 0)
1709 return -ENXIO;
1710
1711 /* Force 32-bit MSI on some broken devices */
1712 if (dev->no_64bit_msi)
1713 is_64 = 0;
1714
1715 /* Assign XIVE to PE */
1716 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1717 if (rc) {
1718 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1719 pci_name(dev), rc, xive_num);
1720 return -EIO;
1721 }
1722
1723 if (is_64) {
1724 __be64 addr64;
1725
1726 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1727 &addr64, &data);
1728 if (rc) {
1729 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1730 pci_name(dev), rc);
1731 return -EIO;
1732 }
1733 msg->address_hi = be64_to_cpu(addr64) >> 32;
1734 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1735 } else {
1736 __be32 addr32;
1737
1738 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1739 &addr32, &data);
1740 if (rc) {
1741 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1742 pci_name(dev), rc);
1743 return -EIO;
1744 }
1745 msg->address_hi = 0;
1746 msg->address_lo = be32_to_cpu(addr32);
1747 }
1748 msg->data = be32_to_cpu(data);
1749
1750 return 0;
1751 }
1752
1753 /*
1754 * The msi_free() op is called before irq_domain_free_irqs_top() when
1755 * the handler data is still available. Use that to clear the XIVE
1756 * controller.
1757 */
pnv_msi_ops_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int irq)1758 static void pnv_msi_ops_msi_free(struct irq_domain *domain,
1759 struct msi_domain_info *info,
1760 unsigned int irq)
1761 {
1762 if (xive_enabled())
1763 xive_irq_free_data(irq);
1764 }
1765
1766 static struct msi_domain_ops pnv_pci_msi_domain_ops = {
1767 .msi_free = pnv_msi_ops_msi_free,
1768 };
1769
pnv_msi_shutdown(struct irq_data * d)1770 static void pnv_msi_shutdown(struct irq_data *d)
1771 {
1772 d = d->parent_data;
1773 if (d->chip->irq_shutdown)
1774 d->chip->irq_shutdown(d);
1775 }
1776
pnv_msi_mask(struct irq_data * d)1777 static void pnv_msi_mask(struct irq_data *d)
1778 {
1779 pci_msi_mask_irq(d);
1780 irq_chip_mask_parent(d);
1781 }
1782
pnv_msi_unmask(struct irq_data * d)1783 static void pnv_msi_unmask(struct irq_data *d)
1784 {
1785 pci_msi_unmask_irq(d);
1786 irq_chip_unmask_parent(d);
1787 }
1788
1789 static struct irq_chip pnv_pci_msi_irq_chip = {
1790 .name = "PNV-PCI-MSI",
1791 .irq_shutdown = pnv_msi_shutdown,
1792 .irq_mask = pnv_msi_mask,
1793 .irq_unmask = pnv_msi_unmask,
1794 .irq_eoi = irq_chip_eoi_parent,
1795 };
1796
1797 static struct msi_domain_info pnv_msi_domain_info = {
1798 .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
1799 MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX),
1800 .ops = &pnv_pci_msi_domain_ops,
1801 .chip = &pnv_pci_msi_irq_chip,
1802 };
1803
pnv_msi_compose_msg(struct irq_data * d,struct msi_msg * msg)1804 static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg)
1805 {
1806 struct msi_desc *entry = irq_data_get_msi_desc(d);
1807 struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
1808 struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1809 struct pnv_phb *phb = hose->private_data;
1810 int rc;
1811
1812 rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq,
1813 entry->pci.msi_attrib.is_64, msg);
1814 if (rc)
1815 dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n",
1816 entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc);
1817 }
1818
1819 /*
1820 * The IRQ data is mapped in the MSI domain in which HW IRQ numbers
1821 * correspond to vector numbers.
1822 */
pnv_msi_eoi(struct irq_data * d)1823 static void pnv_msi_eoi(struct irq_data *d)
1824 {
1825 struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1826 struct pnv_phb *phb = hose->private_data;
1827
1828 if (phb->model == PNV_PHB_MODEL_PHB3) {
1829 /*
1830 * The EOI OPAL call takes an OPAL HW IRQ number but
1831 * since it is translated into a vector number in
1832 * OPAL, use that directly.
1833 */
1834 WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq));
1835 }
1836
1837 irq_chip_eoi_parent(d);
1838 }
1839
1840 static struct irq_chip pnv_msi_irq_chip = {
1841 .name = "PNV-MSI",
1842 .irq_shutdown = pnv_msi_shutdown,
1843 .irq_mask = irq_chip_mask_parent,
1844 .irq_unmask = irq_chip_unmask_parent,
1845 .irq_eoi = pnv_msi_eoi,
1846 .irq_set_affinity = irq_chip_set_affinity_parent,
1847 .irq_compose_msi_msg = pnv_msi_compose_msg,
1848 };
1849
pnv_irq_parent_domain_alloc(struct irq_domain * domain,unsigned int virq,int hwirq)1850 static int pnv_irq_parent_domain_alloc(struct irq_domain *domain,
1851 unsigned int virq, int hwirq)
1852 {
1853 struct irq_fwspec parent_fwspec;
1854 int ret;
1855
1856 parent_fwspec.fwnode = domain->parent->fwnode;
1857 parent_fwspec.param_count = 2;
1858 parent_fwspec.param[0] = hwirq;
1859 parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1860
1861 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
1862 if (ret)
1863 return ret;
1864
1865 return 0;
1866 }
1867
pnv_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1868 static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1869 unsigned int nr_irqs, void *arg)
1870 {
1871 struct pci_controller *hose = domain->host_data;
1872 struct pnv_phb *phb = hose->private_data;
1873 msi_alloc_info_t *info = arg;
1874 struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc);
1875 int hwirq;
1876 int i, ret;
1877
1878 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs);
1879 if (hwirq < 0) {
1880 dev_warn(&pdev->dev, "failed to find a free MSI\n");
1881 return -ENOSPC;
1882 }
1883
1884 dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
1885 hose->dn, virq, hwirq, nr_irqs);
1886
1887 for (i = 0; i < nr_irqs; i++) {
1888 ret = pnv_irq_parent_domain_alloc(domain, virq + i,
1889 phb->msi_base + hwirq + i);
1890 if (ret)
1891 goto out;
1892
1893 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1894 &pnv_msi_irq_chip, hose);
1895 }
1896
1897 return 0;
1898
1899 out:
1900 irq_domain_free_irqs_parent(domain, virq, i - 1);
1901 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs);
1902 return ret;
1903 }
1904
pnv_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1905 static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1906 unsigned int nr_irqs)
1907 {
1908 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1909 struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1910 struct pnv_phb *phb = hose->private_data;
1911
1912 pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn,
1913 virq, d->hwirq, nr_irqs);
1914
1915 msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs);
1916 /* XIVE domain is cleared through ->msi_free() */
1917 }
1918
1919 static const struct irq_domain_ops pnv_irq_domain_ops = {
1920 .alloc = pnv_irq_domain_alloc,
1921 .free = pnv_irq_domain_free,
1922 };
1923
pnv_msi_allocate_domains(struct pci_controller * hose,unsigned int count)1924 static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count)
1925 {
1926 struct pnv_phb *phb = hose->private_data;
1927 struct irq_domain *parent = irq_get_default_host();
1928
1929 hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id);
1930 if (!hose->fwnode)
1931 return -ENOMEM;
1932
1933 hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
1934 hose->fwnode,
1935 &pnv_irq_domain_ops, hose);
1936 if (!hose->dev_domain) {
1937 pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
1938 hose->dn, hose->global_number);
1939 irq_domain_free_fwnode(hose->fwnode);
1940 return -ENOMEM;
1941 }
1942
1943 hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn),
1944 &pnv_msi_domain_info,
1945 hose->dev_domain);
1946 if (!hose->msi_domain) {
1947 pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
1948 hose->dn, hose->global_number);
1949 irq_domain_free_fwnode(hose->fwnode);
1950 irq_domain_remove(hose->dev_domain);
1951 return -ENOMEM;
1952 }
1953
1954 return 0;
1955 }
1956
pnv_pci_init_ioda_msis(struct pnv_phb * phb)1957 static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1958 {
1959 unsigned int count;
1960 const __be32 *prop = of_get_property(phb->hose->dn,
1961 "ibm,opal-msi-ranges", NULL);
1962 if (!prop) {
1963 /* BML Fallback */
1964 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1965 }
1966 if (!prop)
1967 return;
1968
1969 phb->msi_base = be32_to_cpup(prop);
1970 count = be32_to_cpup(prop + 1);
1971 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1972 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1973 phb->hose->global_number);
1974 return;
1975 }
1976
1977 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1978 count, phb->msi_base);
1979
1980 pnv_msi_allocate_domains(phb->hose, count);
1981 }
1982
pnv_ioda_setup_pe_res(struct pnv_ioda_pe * pe,struct resource * res)1983 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
1984 struct resource *res)
1985 {
1986 struct pnv_phb *phb = pe->phb;
1987 struct pci_bus_region region;
1988 int index;
1989 int64_t rc;
1990
1991 if (!res || !res->flags || res->start > res->end ||
1992 res->flags & IORESOURCE_UNSET)
1993 return;
1994
1995 if (res->flags & IORESOURCE_IO) {
1996 region.start = res->start - phb->ioda.io_pci_base;
1997 region.end = res->end - phb->ioda.io_pci_base;
1998 index = region.start / phb->ioda.io_segsize;
1999
2000 while (index < phb->ioda.total_pe_num &&
2001 region.start <= region.end) {
2002 phb->ioda.io_segmap[index] = pe->pe_number;
2003 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2004 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2005 if (rc != OPAL_SUCCESS) {
2006 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2007 __func__, rc, index, pe->pe_number);
2008 break;
2009 }
2010
2011 region.start += phb->ioda.io_segsize;
2012 index++;
2013 }
2014 } else if ((res->flags & IORESOURCE_MEM) &&
2015 !pnv_pci_is_m64(phb, res)) {
2016 region.start = res->start -
2017 phb->hose->mem_offset[0] -
2018 phb->ioda.m32_pci_base;
2019 region.end = res->end -
2020 phb->hose->mem_offset[0] -
2021 phb->ioda.m32_pci_base;
2022 index = region.start / phb->ioda.m32_segsize;
2023
2024 while (index < phb->ioda.total_pe_num &&
2025 region.start <= region.end) {
2026 phb->ioda.m32_segmap[index] = pe->pe_number;
2027 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2028 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2029 if (rc != OPAL_SUCCESS) {
2030 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2031 __func__, rc, index, pe->pe_number);
2032 break;
2033 }
2034
2035 region.start += phb->ioda.m32_segsize;
2036 index++;
2037 }
2038 }
2039 }
2040
2041 /*
2042 * This function is supposed to be called on basis of PE from top
2043 * to bottom style. So the I/O or MMIO segment assigned to
2044 * parent PE could be overridden by its child PEs if necessary.
2045 */
pnv_ioda_setup_pe_seg(struct pnv_ioda_pe * pe)2046 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2047 {
2048 struct pci_dev *pdev;
2049 int i;
2050
2051 /*
2052 * NOTE: We only care PCI bus based PE for now. For PCI
2053 * device based PE, for example SRIOV sensitive VF should
2054 * be figured out later.
2055 */
2056 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2057
2058 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2059 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2060 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2061
2062 /*
2063 * If the PE contains all subordinate PCI buses, the
2064 * windows of the child bridges should be mapped to
2065 * the PE as well.
2066 */
2067 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2068 continue;
2069 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2070 pnv_ioda_setup_pe_res(pe,
2071 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2072 }
2073 }
2074
2075 #ifdef CONFIG_DEBUG_FS
pnv_pci_diag_data_set(void * data,u64 val)2076 static int pnv_pci_diag_data_set(void *data, u64 val)
2077 {
2078 struct pnv_phb *phb = data;
2079 s64 ret;
2080
2081 /* Retrieve the diag data from firmware */
2082 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2083 phb->diag_data_size);
2084 if (ret != OPAL_SUCCESS)
2085 return -EIO;
2086
2087 /* Print the diag data to the kernel log */
2088 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2089 return 0;
2090 }
2091
2092 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2093 "%llu\n");
2094
pnv_pci_ioda_pe_dump(void * data,u64 val)2095 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2096 {
2097 struct pnv_phb *phb = data;
2098 int pe_num;
2099
2100 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2101 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2102
2103 if (!test_bit(pe_num, phb->ioda.pe_alloc))
2104 continue;
2105
2106 pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2107 pe->rid, pe->device_count,
2108 (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2109 (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2110 (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2111 (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2112 (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2113 (pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2114 }
2115
2116 return 0;
2117 }
2118
2119 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2120 pnv_pci_ioda_pe_dump, "%llu\n");
2121
2122 #endif /* CONFIG_DEBUG_FS */
2123
pnv_pci_ioda_create_dbgfs(void)2124 static void pnv_pci_ioda_create_dbgfs(void)
2125 {
2126 #ifdef CONFIG_DEBUG_FS
2127 struct pci_controller *hose, *tmp;
2128 struct pnv_phb *phb;
2129 char name[16];
2130
2131 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2132 phb = hose->private_data;
2133
2134 sprintf(name, "PCI%04x", hose->global_number);
2135 phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir);
2136
2137 debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2138 phb, &pnv_pci_diag_data_fops);
2139 debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2140 phb, &pnv_pci_ioda_pe_dump_fops);
2141 }
2142 #endif /* CONFIG_DEBUG_FS */
2143 }
2144
pnv_pci_enable_bridge(struct pci_bus * bus)2145 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2146 {
2147 struct pci_dev *dev = bus->self;
2148 struct pci_bus *child;
2149
2150 /* Empty bus ? bail */
2151 if (list_empty(&bus->devices))
2152 return;
2153
2154 /*
2155 * If there's a bridge associated with that bus enable it. This works
2156 * around races in the generic code if the enabling is done during
2157 * parallel probing. This can be removed once those races have been
2158 * fixed.
2159 */
2160 if (dev) {
2161 int rc = pci_enable_device(dev);
2162 if (rc)
2163 pci_err(dev, "Error enabling bridge (%d)\n", rc);
2164 pci_set_master(dev);
2165 }
2166
2167 /* Perform the same to child busses */
2168 list_for_each_entry(child, &bus->children, node)
2169 pnv_pci_enable_bridge(child);
2170 }
2171
pnv_pci_enable_bridges(void)2172 static void pnv_pci_enable_bridges(void)
2173 {
2174 struct pci_controller *hose;
2175
2176 list_for_each_entry(hose, &hose_list, list_node)
2177 pnv_pci_enable_bridge(hose->bus);
2178 }
2179
pnv_pci_ioda_fixup(void)2180 static void pnv_pci_ioda_fixup(void)
2181 {
2182 pnv_pci_ioda_create_dbgfs();
2183
2184 pnv_pci_enable_bridges();
2185
2186 #ifdef CONFIG_EEH
2187 pnv_eeh_post_init();
2188 #endif
2189 }
2190
2191 /*
2192 * Returns the alignment for I/O or memory windows for P2P
2193 * bridges. That actually depends on how PEs are segmented.
2194 * For now, we return I/O or M32 segment size for PE sensitive
2195 * P2P bridges. Otherwise, the default values (4KiB for I/O,
2196 * 1MiB for memory) will be returned.
2197 *
2198 * The current PCI bus might be put into one PE, which was
2199 * create against the parent PCI bridge. For that case, we
2200 * needn't enlarge the alignment so that we can save some
2201 * resources.
2202 */
pnv_pci_window_alignment(struct pci_bus * bus,unsigned long type)2203 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2204 unsigned long type)
2205 {
2206 struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2207 int num_pci_bridges = 0;
2208 struct pci_dev *bridge;
2209
2210 bridge = bus->self;
2211 while (bridge) {
2212 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2213 num_pci_bridges++;
2214 if (num_pci_bridges >= 2)
2215 return 1;
2216 }
2217
2218 bridge = bridge->bus->self;
2219 }
2220
2221 /*
2222 * We fall back to M32 if M64 isn't supported. We enforce the M64
2223 * alignment for any 64-bit resource, PCIe doesn't care and
2224 * bridges only do 64-bit prefetchable anyway.
2225 */
2226 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2227 return phb->ioda.m64_segsize;
2228 if (type & IORESOURCE_MEM)
2229 return phb->ioda.m32_segsize;
2230
2231 return phb->ioda.io_segsize;
2232 }
2233
2234 /*
2235 * We are updating root port or the upstream port of the
2236 * bridge behind the root port with PHB's windows in order
2237 * to accommodate the changes on required resources during
2238 * PCI (slot) hotplug, which is connected to either root
2239 * port or the downstream ports of PCIe switch behind the
2240 * root port.
2241 */
pnv_pci_fixup_bridge_resources(struct pci_bus * bus,unsigned long type)2242 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2243 unsigned long type)
2244 {
2245 struct pci_controller *hose = pci_bus_to_host(bus);
2246 struct pnv_phb *phb = hose->private_data;
2247 struct pci_dev *bridge = bus->self;
2248 struct resource *r, *w;
2249 bool msi_region = false;
2250 int i;
2251
2252 /* Check if we need apply fixup to the bridge's windows */
2253 if (!pci_is_root_bus(bridge->bus) &&
2254 !pci_is_root_bus(bridge->bus->self->bus))
2255 return;
2256
2257 /* Fixup the resources */
2258 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2259 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2260 if (!r->flags || !r->parent)
2261 continue;
2262
2263 w = NULL;
2264 if (r->flags & type & IORESOURCE_IO)
2265 w = &hose->io_resource;
2266 else if (pnv_pci_is_m64(phb, r) &&
2267 (type & IORESOURCE_PREFETCH) &&
2268 phb->ioda.m64_segsize)
2269 w = &hose->mem_resources[1];
2270 else if (r->flags & type & IORESOURCE_MEM) {
2271 w = &hose->mem_resources[0];
2272 msi_region = true;
2273 }
2274
2275 r->start = w->start;
2276 r->end = w->end;
2277
2278 /* The 64KB 32-bits MSI region shouldn't be included in
2279 * the 32-bits bridge window. Otherwise, we can see strange
2280 * issues. One of them is EEH error observed on Garrison.
2281 *
2282 * Exclude top 1MB region which is the minimal alignment of
2283 * 32-bits bridge window.
2284 */
2285 if (msi_region) {
2286 r->end += 0x10000;
2287 r->end -= 0x100000;
2288 }
2289 }
2290 }
2291
pnv_pci_configure_bus(struct pci_bus * bus)2292 static void pnv_pci_configure_bus(struct pci_bus *bus)
2293 {
2294 struct pci_dev *bridge = bus->self;
2295 struct pnv_ioda_pe *pe;
2296 bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2297
2298 dev_info(&bus->dev, "Configuring PE for bus\n");
2299
2300 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2301 if (WARN_ON(list_empty(&bus->devices)))
2302 return;
2303
2304 /* Reserve PEs according to used M64 resources */
2305 pnv_ioda_reserve_m64_pe(bus, NULL, all);
2306
2307 /*
2308 * Assign PE. We might run here because of partial hotplug.
2309 * For the case, we just pick up the existing PE and should
2310 * not allocate resources again.
2311 */
2312 pe = pnv_ioda_setup_bus_PE(bus, all);
2313 if (!pe)
2314 return;
2315
2316 pnv_ioda_setup_pe_seg(pe);
2317 }
2318
pnv_pci_default_alignment(void)2319 static resource_size_t pnv_pci_default_alignment(void)
2320 {
2321 return PAGE_SIZE;
2322 }
2323
2324 /* Prevent enabling devices for which we couldn't properly
2325 * assign a PE
2326 */
pnv_pci_enable_device_hook(struct pci_dev * dev)2327 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2328 {
2329 struct pci_dn *pdn;
2330
2331 pdn = pci_get_pdn(dev);
2332 if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2333 pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2334 return false;
2335 }
2336
2337 return true;
2338 }
2339
pnv_ocapi_enable_device_hook(struct pci_dev * dev)2340 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2341 {
2342 struct pci_dn *pdn;
2343 struct pnv_ioda_pe *pe;
2344
2345 pdn = pci_get_pdn(dev);
2346 if (!pdn)
2347 return false;
2348
2349 if (pdn->pe_number == IODA_INVALID_PE) {
2350 pe = pnv_ioda_setup_dev_PE(dev);
2351 if (!pe)
2352 return false;
2353 }
2354 return true;
2355 }
2356
pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe * pe)2357 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2358 {
2359 struct iommu_table *tbl = pe->table_group.tables[0];
2360 int64_t rc;
2361
2362 if (!pe->dma_setup_done)
2363 return;
2364
2365 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2366 if (rc)
2367 pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2368
2369 pnv_pci_ioda2_set_bypass(pe, false);
2370 if (pe->table_group.group) {
2371 iommu_group_put(pe->table_group.group);
2372 WARN_ON(pe->table_group.group);
2373 }
2374
2375 iommu_tce_table_put(tbl);
2376 }
2377
pnv_ioda_free_pe_seg(struct pnv_ioda_pe * pe,unsigned short win,unsigned int * map)2378 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2379 unsigned short win,
2380 unsigned int *map)
2381 {
2382 struct pnv_phb *phb = pe->phb;
2383 int idx;
2384 int64_t rc;
2385
2386 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2387 if (map[idx] != pe->pe_number)
2388 continue;
2389
2390 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2391 phb->ioda.reserved_pe_idx, win, 0, idx);
2392
2393 if (rc != OPAL_SUCCESS)
2394 pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2395 rc, win, idx);
2396
2397 map[idx] = IODA_INVALID_PE;
2398 }
2399 }
2400
pnv_ioda_release_pe_seg(struct pnv_ioda_pe * pe)2401 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2402 {
2403 struct pnv_phb *phb = pe->phb;
2404
2405 if (phb->type == PNV_PHB_IODA2) {
2406 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2407 phb->ioda.m32_segmap);
2408 }
2409 }
2410
pnv_ioda_release_pe(struct pnv_ioda_pe * pe)2411 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2412 {
2413 struct pnv_phb *phb = pe->phb;
2414 struct pnv_ioda_pe *slave, *tmp;
2415
2416 pe_info(pe, "Releasing PE\n");
2417
2418 mutex_lock(&phb->ioda.pe_list_mutex);
2419 list_del(&pe->list);
2420 mutex_unlock(&phb->ioda.pe_list_mutex);
2421
2422 switch (phb->type) {
2423 case PNV_PHB_IODA2:
2424 pnv_pci_ioda2_release_pe_dma(pe);
2425 break;
2426 case PNV_PHB_NPU_OCAPI:
2427 break;
2428 default:
2429 WARN_ON(1);
2430 }
2431
2432 pnv_ioda_release_pe_seg(pe);
2433 pnv_ioda_deconfigure_pe(pe->phb, pe);
2434
2435 /* Release slave PEs in the compound PE */
2436 if (pe->flags & PNV_IODA_PE_MASTER) {
2437 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2438 list_del(&slave->list);
2439 pnv_ioda_free_pe(slave);
2440 }
2441 }
2442
2443 /*
2444 * The PE for root bus can be removed because of hotplug in EEH
2445 * recovery for fenced PHB error. We need to mark the PE dead so
2446 * that it can be populated again in PCI hot add path. The PE
2447 * shouldn't be destroyed as it's the global reserved resource.
2448 */
2449 if (phb->ioda.root_pe_idx == pe->pe_number)
2450 return;
2451
2452 pnv_ioda_free_pe(pe);
2453 }
2454
pnv_pci_release_device(struct pci_dev * pdev)2455 static void pnv_pci_release_device(struct pci_dev *pdev)
2456 {
2457 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2458 struct pci_dn *pdn = pci_get_pdn(pdev);
2459 struct pnv_ioda_pe *pe;
2460
2461 /* The VF PE state is torn down when sriov_disable() is called */
2462 if (pdev->is_virtfn)
2463 return;
2464
2465 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2466 return;
2467
2468 #ifdef CONFIG_PCI_IOV
2469 /*
2470 * FIXME: Try move this to sriov_disable(). It's here since we allocate
2471 * the iov state at probe time since we need to fiddle with the IOV
2472 * resources.
2473 */
2474 if (pdev->is_physfn)
2475 kfree(pdev->dev.archdata.iov_data);
2476 #endif
2477
2478 /*
2479 * PCI hotplug can happen as part of EEH error recovery. The @pdn
2480 * isn't removed and added afterwards in this scenario. We should
2481 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2482 * device count is decreased on removing devices while failing to
2483 * be increased on adding devices. It leads to unbalanced PE's device
2484 * count and eventually make normal PCI hotplug path broken.
2485 */
2486 pe = &phb->ioda.pe_array[pdn->pe_number];
2487 pdn->pe_number = IODA_INVALID_PE;
2488
2489 WARN_ON(--pe->device_count < 0);
2490 if (pe->device_count == 0)
2491 pnv_ioda_release_pe(pe);
2492 }
2493
pnv_pci_ioda_shutdown(struct pci_controller * hose)2494 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2495 {
2496 struct pnv_phb *phb = hose->private_data;
2497
2498 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2499 OPAL_ASSERT_RESET);
2500 }
2501
pnv_pci_ioda_dma_bus_setup(struct pci_bus * bus)2502 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2503 {
2504 struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2505 struct pnv_ioda_pe *pe;
2506
2507 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2508 if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2509 continue;
2510
2511 if (!pe->pbus)
2512 continue;
2513
2514 if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2515 pe->pbus = bus;
2516 break;
2517 }
2518 }
2519 }
2520
2521 #ifdef CONFIG_IOMMU_API
pnv_pci_device_group(struct pci_controller * hose,struct pci_dev * pdev)2522 static struct iommu_group *pnv_pci_device_group(struct pci_controller *hose,
2523 struct pci_dev *pdev)
2524 {
2525 struct pnv_phb *phb = hose->private_data;
2526 struct pnv_ioda_pe *pe;
2527
2528 if (WARN_ON(!phb))
2529 return ERR_PTR(-ENODEV);
2530
2531 pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev));
2532 if (!pe)
2533 return ERR_PTR(-ENODEV);
2534
2535 if (!pe->table_group.group)
2536 return ERR_PTR(-ENODEV);
2537
2538 return iommu_group_ref_get(pe->table_group.group);
2539 }
2540 #endif
2541
2542 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2543 .dma_dev_setup = pnv_pci_ioda_dma_dev_setup,
2544 .dma_bus_setup = pnv_pci_ioda_dma_bus_setup,
2545 .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
2546 .enable_device_hook = pnv_pci_enable_device_hook,
2547 .release_device = pnv_pci_release_device,
2548 .window_alignment = pnv_pci_window_alignment,
2549 .setup_bridge = pnv_pci_fixup_bridge_resources,
2550 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
2551 .shutdown = pnv_pci_ioda_shutdown,
2552 #ifdef CONFIG_IOMMU_API
2553 .device_group = pnv_pci_device_group,
2554 #endif
2555 };
2556
2557 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2558 .enable_device_hook = pnv_ocapi_enable_device_hook,
2559 .release_device = pnv_pci_release_device,
2560 .window_alignment = pnv_pci_window_alignment,
2561 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
2562 .shutdown = pnv_pci_ioda_shutdown,
2563 };
2564
pnv_pci_init_ioda_phb(struct device_node * np,u64 hub_id,int ioda_type)2565 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2566 u64 hub_id, int ioda_type)
2567 {
2568 struct pci_controller *hose;
2569 struct pnv_phb *phb;
2570 unsigned long size, m64map_off, m32map_off, pemap_off;
2571 struct pnv_ioda_pe *root_pe;
2572 struct resource r;
2573 const __be64 *prop64;
2574 const __be32 *prop32;
2575 int len;
2576 unsigned int segno;
2577 u64 phb_id;
2578 void *aux;
2579 long rc;
2580
2581 if (!of_device_is_available(np))
2582 return;
2583
2584 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
2585
2586 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2587 if (!prop64) {
2588 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
2589 return;
2590 }
2591 phb_id = be64_to_cpup(prop64);
2592 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
2593
2594 phb = kzalloc(sizeof(*phb), GFP_KERNEL);
2595 if (!phb)
2596 panic("%s: Failed to allocate %zu bytes\n", __func__,
2597 sizeof(*phb));
2598
2599 /* Allocate PCI controller */
2600 phb->hose = hose = pcibios_alloc_controller(np);
2601 if (!phb->hose) {
2602 pr_err(" Can't allocate PCI controller for %pOF\n",
2603 np);
2604 memblock_free(phb, sizeof(struct pnv_phb));
2605 return;
2606 }
2607
2608 spin_lock_init(&phb->lock);
2609 prop32 = of_get_property(np, "bus-range", &len);
2610 if (prop32 && len == 8) {
2611 hose->first_busno = be32_to_cpu(prop32[0]);
2612 hose->last_busno = be32_to_cpu(prop32[1]);
2613 } else {
2614 pr_warn(" Broken <bus-range> on %pOF\n", np);
2615 hose->first_busno = 0;
2616 hose->last_busno = 0xff;
2617 }
2618 hose->private_data = phb;
2619 phb->hub_id = hub_id;
2620 phb->opal_id = phb_id;
2621 phb->type = ioda_type;
2622 mutex_init(&phb->ioda.pe_alloc_mutex);
2623
2624 /* Detect specific models for error handling */
2625 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2626 phb->model = PNV_PHB_MODEL_P7IOC;
2627 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2628 phb->model = PNV_PHB_MODEL_PHB3;
2629 else
2630 phb->model = PNV_PHB_MODEL_UNKNOWN;
2631
2632 /* Initialize diagnostic data buffer */
2633 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2634 if (prop32)
2635 phb->diag_data_size = be32_to_cpup(prop32);
2636 else
2637 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2638
2639 phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
2640 if (!phb->diag_data)
2641 panic("%s: Failed to allocate %u bytes\n", __func__,
2642 phb->diag_data_size);
2643
2644 /* Parse 32-bit and IO ranges (if any) */
2645 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2646
2647 /* Get registers */
2648 if (!of_address_to_resource(np, 0, &r)) {
2649 phb->regs_phys = r.start;
2650 phb->regs = ioremap(r.start, resource_size(&r));
2651 if (phb->regs == NULL)
2652 pr_err(" Failed to map registers !\n");
2653 }
2654
2655 /* Initialize more IODA stuff */
2656 phb->ioda.total_pe_num = 1;
2657 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2658 if (prop32)
2659 phb->ioda.total_pe_num = be32_to_cpup(prop32);
2660 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2661 if (prop32)
2662 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
2663
2664 /* Invalidate RID to PE# mapping */
2665 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
2666 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
2667
2668 /* Parse 64-bit MMIO range */
2669 pnv_ioda_parse_m64_window(phb);
2670
2671 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2672 /* FW Has already off top 64k of M32 space (MSI space) */
2673 phb->ioda.m32_size += 0x10000;
2674
2675 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
2676 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2677 phb->ioda.io_size = hose->pci_io_size;
2678 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
2679 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2680
2681 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2682 size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
2683 sizeof(unsigned long));
2684 m64map_off = size;
2685 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
2686 m32map_off = size;
2687 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
2688 pemap_off = size;
2689 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
2690 aux = kzalloc(size, GFP_KERNEL);
2691 if (!aux)
2692 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
2693
2694 phb->ioda.pe_alloc = aux;
2695 phb->ioda.m64_segmap = aux + m64map_off;
2696 phb->ioda.m32_segmap = aux + m32map_off;
2697 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
2698 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
2699 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
2700 }
2701 phb->ioda.pe_array = aux + pemap_off;
2702
2703 /*
2704 * Choose PE number for root bus, which shouldn't have
2705 * M64 resources consumed by its child devices. To pick
2706 * the PE number adjacent to the reserved one if possible.
2707 */
2708 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
2709 if (phb->ioda.reserved_pe_idx == 0) {
2710 phb->ioda.root_pe_idx = 1;
2711 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2712 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
2713 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
2714 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2715 } else {
2716 /* otherwise just allocate one */
2717 root_pe = pnv_ioda_alloc_pe(phb, 1);
2718 phb->ioda.root_pe_idx = root_pe->pe_number;
2719 }
2720
2721 INIT_LIST_HEAD(&phb->ioda.pe_list);
2722 mutex_init(&phb->ioda.pe_list_mutex);
2723
2724 #if 0 /* We should really do that ... */
2725 rc = opal_pci_set_phb_mem_window(opal->phb_id,
2726 window_type,
2727 window_num,
2728 starting_real_address,
2729 starting_pci_address,
2730 segment_size);
2731 #endif
2732
2733 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2734 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
2735 phb->ioda.m32_size, phb->ioda.m32_segsize);
2736 if (phb->ioda.m64_size)
2737 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
2738 phb->ioda.m64_size, phb->ioda.m64_segsize);
2739 if (phb->ioda.io_size)
2740 pr_info(" IO: 0x%x [segment=0x%x]\n",
2741 phb->ioda.io_size, phb->ioda.io_segsize);
2742
2743
2744 phb->hose->ops = &pnv_pci_ops;
2745 phb->get_pe_state = pnv_ioda_get_pe_state;
2746 phb->freeze_pe = pnv_ioda_freeze_pe;
2747 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2748
2749 /* Setup MSI support */
2750 pnv_pci_init_ioda_msis(phb);
2751
2752 /*
2753 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2754 * to let the PCI core do resource assignment. It's supposed
2755 * that the PCI core will do correct I/O and MMIO alignment
2756 * for the P2P bridge bars so that each PCI bus (excluding
2757 * the child P2P bridges) can form individual PE.
2758 */
2759 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2760
2761 switch (phb->type) {
2762 case PNV_PHB_NPU_OCAPI:
2763 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
2764 break;
2765 default:
2766 hose->controller_ops = pnv_pci_ioda_controller_ops;
2767 }
2768
2769 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
2770
2771 #ifdef CONFIG_PCI_IOV
2772 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
2773 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2774 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
2775 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
2776 #endif
2777
2778 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2779
2780 /* Reset IODA tables to a clean state */
2781 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2782 if (rc)
2783 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc);
2784
2785 /*
2786 * If we're running in kdump kernel, the previous kernel never
2787 * shutdown PCI devices correctly. We already got IODA table
2788 * cleaned out. So we have to issue PHB reset to stop all PCI
2789 * transactions from previous kernel. The ppc_pci_reset_phbs
2790 * kernel parameter will force this reset too. Additionally,
2791 * if the IODA reset above failed then use a bigger hammer.
2792 * This can happen if we get a PHB fatal error in very early
2793 * boot.
2794 */
2795 if (is_kdump_kernel() || pci_reset_phbs || rc) {
2796 pr_info(" Issue PHB reset ...\n");
2797 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2798 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2799 }
2800
2801 /* Remove M64 resource if we can't configure it successfully */
2802 if (!phb->init_m64 || phb->init_m64(phb))
2803 hose->mem_resources[1].flags = 0;
2804
2805 /* create pci_dn's for DT nodes under this PHB */
2806 pci_devs_phb_init_dynamic(hose);
2807 }
2808
pnv_pci_init_ioda2_phb(struct device_node * np)2809 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2810 {
2811 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2812 }
2813
pnv_pci_init_npu2_opencapi_phb(struct device_node * np)2814 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
2815 {
2816 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
2817 }
2818
pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev * dev)2819 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
2820 {
2821 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
2822
2823 if (!machine_is(powernv))
2824 return;
2825
2826 if (phb->type == PNV_PHB_NPU_OCAPI)
2827 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
2828 }
2829 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
2830