1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 #include <linux/irqchip/arm-gic-v3.h>
21
22 #include <asm/arm_pmuv3.h>
23 #include <asm/cacheflush.h>
24 #include <asm/cputype.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/esr.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/kvm_nested.h>
32 #include <asm/perf_event.h>
33 #include <asm/sysreg.h>
34
35 #include <trace/events/kvm.h>
36
37 #include "sys_regs.h"
38 #include "vgic/vgic.h"
39
40 #include "trace.h"
41
42 /*
43 * For AArch32, we only take care of what is being trapped. Anything
44 * that has to do with init and userspace access has to go via the
45 * 64bit interface.
46 */
47
48 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
49 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
50 u64 val);
51
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)52 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
53 const struct sys_reg_desc *r)
54 {
55 kvm_inject_undefined(vcpu);
56 return false;
57 }
58
bad_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r,const char * msg)59 static bool bad_trap(struct kvm_vcpu *vcpu,
60 struct sys_reg_params *params,
61 const struct sys_reg_desc *r,
62 const char *msg)
63 {
64 WARN_ONCE(1, "Unexpected %s\n", msg);
65 print_sys_reg_instr(params);
66 return undef_access(vcpu, params, r);
67 }
68
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)69 static bool read_from_write_only(struct kvm_vcpu *vcpu,
70 struct sys_reg_params *params,
71 const struct sys_reg_desc *r)
72 {
73 return bad_trap(vcpu, params, r,
74 "sys_reg read to write-only register");
75 }
76
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)77 static bool write_to_read_only(struct kvm_vcpu *vcpu,
78 struct sys_reg_params *params,
79 const struct sys_reg_desc *r)
80 {
81 return bad_trap(vcpu, params, r,
82 "sys_reg write to read-only register");
83 }
84
85 #define PURE_EL2_SYSREG(el2) \
86 case el2: { \
87 *el1r = el2; \
88 return true; \
89 }
90
91 #define MAPPED_EL2_SYSREG(el2, el1, fn) \
92 case el2: { \
93 *xlate = fn; \
94 *el1r = el1; \
95 return true; \
96 }
97
get_el2_to_el1_mapping(unsigned int reg,unsigned int * el1r,u64 (** xlate)(u64))98 static bool get_el2_to_el1_mapping(unsigned int reg,
99 unsigned int *el1r, u64 (**xlate)(u64))
100 {
101 switch (reg) {
102 PURE_EL2_SYSREG( VPIDR_EL2 );
103 PURE_EL2_SYSREG( VMPIDR_EL2 );
104 PURE_EL2_SYSREG( ACTLR_EL2 );
105 PURE_EL2_SYSREG( HCR_EL2 );
106 PURE_EL2_SYSREG( MDCR_EL2 );
107 PURE_EL2_SYSREG( HSTR_EL2 );
108 PURE_EL2_SYSREG( HACR_EL2 );
109 PURE_EL2_SYSREG( VTTBR_EL2 );
110 PURE_EL2_SYSREG( VTCR_EL2 );
111 PURE_EL2_SYSREG( RVBAR_EL2 );
112 PURE_EL2_SYSREG( TPIDR_EL2 );
113 PURE_EL2_SYSREG( HPFAR_EL2 );
114 PURE_EL2_SYSREG( HCRX_EL2 );
115 PURE_EL2_SYSREG( HFGRTR_EL2 );
116 PURE_EL2_SYSREG( HFGWTR_EL2 );
117 PURE_EL2_SYSREG( HFGITR_EL2 );
118 PURE_EL2_SYSREG( HDFGRTR_EL2 );
119 PURE_EL2_SYSREG( HDFGWTR_EL2 );
120 PURE_EL2_SYSREG( HAFGRTR_EL2 );
121 PURE_EL2_SYSREG( CNTVOFF_EL2 );
122 PURE_EL2_SYSREG( CNTHCTL_EL2 );
123 MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1,
124 translate_sctlr_el2_to_sctlr_el1 );
125 MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1,
126 translate_cptr_el2_to_cpacr_el1 );
127 MAPPED_EL2_SYSREG(TTBR0_EL2, TTBR0_EL1,
128 translate_ttbr0_el2_to_ttbr0_el1 );
129 MAPPED_EL2_SYSREG(TTBR1_EL2, TTBR1_EL1, NULL );
130 MAPPED_EL2_SYSREG(TCR_EL2, TCR_EL1,
131 translate_tcr_el2_to_tcr_el1 );
132 MAPPED_EL2_SYSREG(VBAR_EL2, VBAR_EL1, NULL );
133 MAPPED_EL2_SYSREG(AFSR0_EL2, AFSR0_EL1, NULL );
134 MAPPED_EL2_SYSREG(AFSR1_EL2, AFSR1_EL1, NULL );
135 MAPPED_EL2_SYSREG(ESR_EL2, ESR_EL1, NULL );
136 MAPPED_EL2_SYSREG(FAR_EL2, FAR_EL1, NULL );
137 MAPPED_EL2_SYSREG(MAIR_EL2, MAIR_EL1, NULL );
138 MAPPED_EL2_SYSREG(TCR2_EL2, TCR2_EL1, NULL );
139 MAPPED_EL2_SYSREG(PIR_EL2, PIR_EL1, NULL );
140 MAPPED_EL2_SYSREG(PIRE0_EL2, PIRE0_EL1, NULL );
141 MAPPED_EL2_SYSREG(POR_EL2, POR_EL1, NULL );
142 MAPPED_EL2_SYSREG(AMAIR_EL2, AMAIR_EL1, NULL );
143 MAPPED_EL2_SYSREG(ELR_EL2, ELR_EL1, NULL );
144 MAPPED_EL2_SYSREG(SPSR_EL2, SPSR_EL1, NULL );
145 MAPPED_EL2_SYSREG(ZCR_EL2, ZCR_EL1, NULL );
146 MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL );
147 default:
148 return false;
149 }
150 }
151
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,int reg)152 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
153 {
154 u64 val = 0x8badf00d8badf00d;
155 u64 (*xlate)(u64) = NULL;
156 unsigned int el1r;
157
158 if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
159 goto memory_read;
160
161 if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
162 if (!is_hyp_ctxt(vcpu))
163 goto memory_read;
164
165 /*
166 * CNTHCTL_EL2 requires some special treatment to
167 * account for the bits that can be set via CNTKCTL_EL1.
168 */
169 switch (reg) {
170 case CNTHCTL_EL2:
171 if (vcpu_el2_e2h_is_set(vcpu)) {
172 val = read_sysreg_el1(SYS_CNTKCTL);
173 val &= CNTKCTL_VALID_BITS;
174 val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS;
175 return val;
176 }
177 break;
178 }
179
180 /*
181 * If this register does not have an EL1 counterpart,
182 * then read the stored EL2 version.
183 */
184 if (reg == el1r)
185 goto memory_read;
186
187 /*
188 * If we have a non-VHE guest and that the sysreg
189 * requires translation to be used at EL1, use the
190 * in-memory copy instead.
191 */
192 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
193 goto memory_read;
194
195 /* Get the current version of the EL1 counterpart. */
196 WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
197 if (reg >= __SANITISED_REG_START__)
198 val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
199
200 return val;
201 }
202
203 /* EL1 register can't be on the CPU if the guest is in vEL2. */
204 if (unlikely(is_hyp_ctxt(vcpu)))
205 goto memory_read;
206
207 if (__vcpu_read_sys_reg_from_cpu(reg, &val))
208 return val;
209
210 memory_read:
211 return __vcpu_sys_reg(vcpu, reg);
212 }
213
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)214 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
215 {
216 u64 (*xlate)(u64) = NULL;
217 unsigned int el1r;
218
219 if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
220 goto memory_write;
221
222 if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
223 if (!is_hyp_ctxt(vcpu))
224 goto memory_write;
225
226 /*
227 * Always store a copy of the write to memory to avoid having
228 * to reverse-translate virtual EL2 system registers for a
229 * non-VHE guest hypervisor.
230 */
231 __vcpu_sys_reg(vcpu, reg) = val;
232
233 switch (reg) {
234 case CNTHCTL_EL2:
235 /*
236 * If E2H=0, CNHTCTL_EL2 is a pure shadow register.
237 * Otherwise, some of the bits are backed by
238 * CNTKCTL_EL1, while the rest is kept in memory.
239 * Yes, this is fun stuff.
240 */
241 if (vcpu_el2_e2h_is_set(vcpu))
242 write_sysreg_el1(val, SYS_CNTKCTL);
243 return;
244 }
245
246 /* No EL1 counterpart? We're done here.? */
247 if (reg == el1r)
248 return;
249
250 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
251 val = xlate(val);
252
253 /* Redirect this to the EL1 version of the register. */
254 WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
255 return;
256 }
257
258 /* EL1 register can't be on the CPU if the guest is in vEL2. */
259 if (unlikely(is_hyp_ctxt(vcpu)))
260 goto memory_write;
261
262 if (__vcpu_write_sys_reg_to_cpu(val, reg))
263 return;
264
265 memory_write:
266 __vcpu_sys_reg(vcpu, reg) = val;
267 }
268
269 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
270 #define CSSELR_MAX 14
271
272 /*
273 * Returns the minimum line size for the selected cache, expressed as
274 * Log2(bytes).
275 */
get_min_cache_line_size(bool icache)276 static u8 get_min_cache_line_size(bool icache)
277 {
278 u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
279 u8 field;
280
281 if (icache)
282 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
283 else
284 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
285
286 /*
287 * Cache line size is represented as Log2(words) in CTR_EL0.
288 * Log2(bytes) can be derived with the following:
289 *
290 * Log2(words) + 2 = Log2(bytes / 4) + 2
291 * = Log2(bytes) - 2 + 2
292 * = Log2(bytes)
293 */
294 return field + 2;
295 }
296
297 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(struct kvm_vcpu * vcpu,u32 csselr)298 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
299 {
300 u8 line_size;
301
302 if (vcpu->arch.ccsidr)
303 return vcpu->arch.ccsidr[csselr];
304
305 line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
306
307 /*
308 * Fabricate a CCSIDR value as the overriding value does not exist.
309 * The real CCSIDR value will not be used as it can vary by the
310 * physical CPU which the vcpu currently resides in.
311 *
312 * The line size is determined with get_min_cache_line_size(), which
313 * should be valid for all CPUs even if they have different cache
314 * configuration.
315 *
316 * The associativity bits are cleared, meaning the geometry of all data
317 * and unified caches (which are guaranteed to be PIPT and thus
318 * non-aliasing) are 1 set and 1 way.
319 * Guests should not be doing cache operations by set/way at all, and
320 * for this reason, we trap them and attempt to infer the intent, so
321 * that we can flush the entire guest's address space at the appropriate
322 * time. The exposed geometry minimizes the number of the traps.
323 * [If guests should attempt to infer aliasing properties from the
324 * geometry (which is not permitted by the architecture), they would
325 * only do so for virtually indexed caches.]
326 *
327 * We don't check if the cache level exists as it is allowed to return
328 * an UNKNOWN value if not.
329 */
330 return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
331 }
332
set_ccsidr(struct kvm_vcpu * vcpu,u32 csselr,u32 val)333 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
334 {
335 u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
336 u32 *ccsidr = vcpu->arch.ccsidr;
337 u32 i;
338
339 if ((val & CCSIDR_EL1_RES0) ||
340 line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
341 return -EINVAL;
342
343 if (!ccsidr) {
344 if (val == get_ccsidr(vcpu, csselr))
345 return 0;
346
347 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
348 if (!ccsidr)
349 return -ENOMEM;
350
351 for (i = 0; i < CSSELR_MAX; i++)
352 ccsidr[i] = get_ccsidr(vcpu, i);
353
354 vcpu->arch.ccsidr = ccsidr;
355 }
356
357 ccsidr[csselr] = val;
358
359 return 0;
360 }
361
access_rw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)362 static bool access_rw(struct kvm_vcpu *vcpu,
363 struct sys_reg_params *p,
364 const struct sys_reg_desc *r)
365 {
366 if (p->is_write)
367 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
368 else
369 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
370
371 return true;
372 }
373
374 /*
375 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
376 */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)377 static bool access_dcsw(struct kvm_vcpu *vcpu,
378 struct sys_reg_params *p,
379 const struct sys_reg_desc *r)
380 {
381 if (!p->is_write)
382 return read_from_write_only(vcpu, p, r);
383
384 /*
385 * Only track S/W ops if we don't have FWB. It still indicates
386 * that the guest is a bit broken (S/W operations should only
387 * be done by firmware, knowing that there is only a single
388 * CPU left in the system, and certainly not from non-secure
389 * software).
390 */
391 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
392 kvm_set_way_flush(vcpu);
393
394 return true;
395 }
396
access_dcgsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)397 static bool access_dcgsw(struct kvm_vcpu *vcpu,
398 struct sys_reg_params *p,
399 const struct sys_reg_desc *r)
400 {
401 if (!kvm_has_mte(vcpu->kvm))
402 return undef_access(vcpu, p, r);
403
404 /* Treat MTE S/W ops as we treat the classic ones: with contempt */
405 return access_dcsw(vcpu, p, r);
406 }
407
get_access_mask(const struct sys_reg_desc * r,u64 * mask,u64 * shift)408 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
409 {
410 switch (r->aarch32_map) {
411 case AA32_LO:
412 *mask = GENMASK_ULL(31, 0);
413 *shift = 0;
414 break;
415 case AA32_HI:
416 *mask = GENMASK_ULL(63, 32);
417 *shift = 32;
418 break;
419 default:
420 *mask = GENMASK_ULL(63, 0);
421 *shift = 0;
422 break;
423 }
424 }
425
426 /*
427 * Generic accessor for VM registers. Only called as long as HCR_TVM
428 * is set. If the guest enables the MMU, we stop trapping the VM
429 * sys_regs and leave it in complete control of the caches.
430 */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)431 static bool access_vm_reg(struct kvm_vcpu *vcpu,
432 struct sys_reg_params *p,
433 const struct sys_reg_desc *r)
434 {
435 bool was_enabled = vcpu_has_cache_enabled(vcpu);
436 u64 val, mask, shift;
437
438 BUG_ON(!p->is_write);
439
440 get_access_mask(r, &mask, &shift);
441
442 if (~mask) {
443 val = vcpu_read_sys_reg(vcpu, r->reg);
444 val &= ~mask;
445 } else {
446 val = 0;
447 }
448
449 val |= (p->regval & (mask >> shift)) << shift;
450 vcpu_write_sys_reg(vcpu, val, r->reg);
451
452 kvm_toggle_cache(vcpu, was_enabled);
453 return true;
454 }
455
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)456 static bool access_actlr(struct kvm_vcpu *vcpu,
457 struct sys_reg_params *p,
458 const struct sys_reg_desc *r)
459 {
460 u64 mask, shift;
461
462 if (p->is_write)
463 return ignore_write(vcpu, p);
464
465 get_access_mask(r, &mask, &shift);
466 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
467
468 return true;
469 }
470
471 /*
472 * Trap handler for the GICv3 SGI generation system register.
473 * Forward the request to the VGIC emulation.
474 * The cp15_64 code makes sure this automatically works
475 * for both AArch64 and AArch32 accesses.
476 */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)477 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
478 struct sys_reg_params *p,
479 const struct sys_reg_desc *r)
480 {
481 bool g1;
482
483 if (!kvm_has_gicv3(vcpu->kvm))
484 return undef_access(vcpu, p, r);
485
486 if (!p->is_write)
487 return read_from_write_only(vcpu, p, r);
488
489 /*
490 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
491 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
492 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
493 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
494 * group.
495 */
496 if (p->Op0 == 0) { /* AArch32 */
497 switch (p->Op1) {
498 default: /* Keep GCC quiet */
499 case 0: /* ICC_SGI1R */
500 g1 = true;
501 break;
502 case 1: /* ICC_ASGI1R */
503 case 2: /* ICC_SGI0R */
504 g1 = false;
505 break;
506 }
507 } else { /* AArch64 */
508 switch (p->Op2) {
509 default: /* Keep GCC quiet */
510 case 5: /* ICC_SGI1R_EL1 */
511 g1 = true;
512 break;
513 case 6: /* ICC_ASGI1R_EL1 */
514 case 7: /* ICC_SGI0R_EL1 */
515 g1 = false;
516 break;
517 }
518 }
519
520 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
521
522 return true;
523 }
524
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)525 static bool access_gic_sre(struct kvm_vcpu *vcpu,
526 struct sys_reg_params *p,
527 const struct sys_reg_desc *r)
528 {
529 if (!kvm_has_gicv3(vcpu->kvm))
530 return undef_access(vcpu, p, r);
531
532 if (p->is_write)
533 return ignore_write(vcpu, p);
534
535 if (p->Op1 == 4) { /* ICC_SRE_EL2 */
536 p->regval = (ICC_SRE_EL2_ENABLE | ICC_SRE_EL2_SRE |
537 ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB);
538 } else { /* ICC_SRE_EL1 */
539 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
540 }
541
542 return true;
543 }
544
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)545 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
546 struct sys_reg_params *p,
547 const struct sys_reg_desc *r)
548 {
549 if (p->is_write)
550 return ignore_write(vcpu, p);
551 else
552 return read_zero(vcpu, p);
553 }
554
555 /*
556 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
557 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
558 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
559 * treat it separately.
560 */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)561 static bool trap_loregion(struct kvm_vcpu *vcpu,
562 struct sys_reg_params *p,
563 const struct sys_reg_desc *r)
564 {
565 u32 sr = reg_to_encoding(r);
566
567 if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP))
568 return undef_access(vcpu, p, r);
569
570 if (p->is_write && sr == SYS_LORID_EL1)
571 return write_to_read_only(vcpu, p, r);
572
573 return trap_raz_wi(vcpu, p, r);
574 }
575
trap_oslar_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)576 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
577 struct sys_reg_params *p,
578 const struct sys_reg_desc *r)
579 {
580 if (!p->is_write)
581 return read_from_write_only(vcpu, p, r);
582
583 kvm_debug_handle_oslar(vcpu, p->regval);
584 return true;
585 }
586
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)587 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
588 struct sys_reg_params *p,
589 const struct sys_reg_desc *r)
590 {
591 if (p->is_write)
592 return write_to_read_only(vcpu, p, r);
593
594 p->regval = __vcpu_sys_reg(vcpu, r->reg);
595 return true;
596 }
597
set_oslsr_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)598 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
599 u64 val)
600 {
601 /*
602 * The only modifiable bit is the OSLK bit. Refuse the write if
603 * userspace attempts to change any other bit in the register.
604 */
605 if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
606 return -EINVAL;
607
608 __vcpu_sys_reg(vcpu, rd->reg) = val;
609 return 0;
610 }
611
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)612 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
613 struct sys_reg_params *p,
614 const struct sys_reg_desc *r)
615 {
616 if (p->is_write) {
617 return ignore_write(vcpu, p);
618 } else {
619 p->regval = read_sysreg(dbgauthstatus_el1);
620 return true;
621 }
622 }
623
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)624 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
625 struct sys_reg_params *p,
626 const struct sys_reg_desc *r)
627 {
628 access_rw(vcpu, p, r);
629
630 kvm_debug_set_guest_ownership(vcpu);
631 return true;
632 }
633
634 /*
635 * reg_to_dbg/dbg_to_reg
636 *
637 * A 32 bit write to a debug register leave top bits alone
638 * A 32 bit read from a debug register only returns the bottom bits
639 */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)640 static void reg_to_dbg(struct kvm_vcpu *vcpu,
641 struct sys_reg_params *p,
642 const struct sys_reg_desc *rd,
643 u64 *dbg_reg)
644 {
645 u64 mask, shift, val;
646
647 get_access_mask(rd, &mask, &shift);
648
649 val = *dbg_reg;
650 val &= ~mask;
651 val |= (p->regval & (mask >> shift)) << shift;
652 *dbg_reg = val;
653 }
654
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)655 static void dbg_to_reg(struct kvm_vcpu *vcpu,
656 struct sys_reg_params *p,
657 const struct sys_reg_desc *rd,
658 u64 *dbg_reg)
659 {
660 u64 mask, shift;
661
662 get_access_mask(rd, &mask, &shift);
663 p->regval = (*dbg_reg & mask) >> shift;
664 }
665
demux_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)666 static u64 *demux_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
667 {
668 struct kvm_guest_debug_arch *dbg = &vcpu->arch.vcpu_debug_state;
669
670 switch (rd->Op2) {
671 case 0b100:
672 return &dbg->dbg_bvr[rd->CRm];
673 case 0b101:
674 return &dbg->dbg_bcr[rd->CRm];
675 case 0b110:
676 return &dbg->dbg_wvr[rd->CRm];
677 case 0b111:
678 return &dbg->dbg_wcr[rd->CRm];
679 default:
680 KVM_BUG_ON(1, vcpu->kvm);
681 return NULL;
682 }
683 }
684
trap_dbg_wb_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)685 static bool trap_dbg_wb_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
686 const struct sys_reg_desc *rd)
687 {
688 u64 *reg = demux_wb_reg(vcpu, rd);
689
690 if (!reg)
691 return false;
692
693 if (p->is_write)
694 reg_to_dbg(vcpu, p, rd, reg);
695 else
696 dbg_to_reg(vcpu, p, rd, reg);
697
698 kvm_debug_set_guest_ownership(vcpu);
699 return true;
700 }
701
set_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)702 static int set_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
703 u64 val)
704 {
705 u64 *reg = demux_wb_reg(vcpu, rd);
706
707 if (!reg)
708 return -EINVAL;
709
710 *reg = val;
711 return 0;
712 }
713
get_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)714 static int get_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715 u64 *val)
716 {
717 u64 *reg = demux_wb_reg(vcpu, rd);
718
719 if (!reg)
720 return -EINVAL;
721
722 *val = *reg;
723 return 0;
724 }
725
reset_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)726 static u64 reset_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
727 {
728 u64 *reg = demux_wb_reg(vcpu, rd);
729
730 /*
731 * Bail early if we couldn't find storage for the register, the
732 * KVM_BUG_ON() in demux_wb_reg() will prevent this VM from ever
733 * being run.
734 */
735 if (!reg)
736 return 0;
737
738 *reg = rd->val;
739 return rd->val;
740 }
741
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)742 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
743 {
744 u64 amair = read_sysreg(amair_el1);
745 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
746 return amair;
747 }
748
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)749 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
750 {
751 u64 actlr = read_sysreg(actlr_el1);
752 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
753 return actlr;
754 }
755
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)756 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
757 {
758 u64 mpidr;
759
760 /*
761 * Map the vcpu_id into the first three affinity level fields of
762 * the MPIDR. We limit the number of VCPUs in level 0 due to a
763 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
764 * of the GICv3 to be able to address each CPU directly when
765 * sending IPIs.
766 */
767 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
768 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
769 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
770 mpidr |= (1ULL << 31);
771 vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
772
773 return mpidr;
774 }
775
pmu_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)776 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
777 const struct sys_reg_desc *r)
778 {
779 if (kvm_vcpu_has_pmu(vcpu))
780 return 0;
781
782 return REG_HIDDEN;
783 }
784
reset_pmu_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)785 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
786 {
787 u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
788 u8 n = vcpu->kvm->arch.pmcr_n;
789
790 if (n)
791 mask |= GENMASK(n - 1, 0);
792
793 reset_unknown(vcpu, r);
794 __vcpu_sys_reg(vcpu, r->reg) &= mask;
795
796 return __vcpu_sys_reg(vcpu, r->reg);
797 }
798
reset_pmevcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)799 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
800 {
801 reset_unknown(vcpu, r);
802 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
803
804 return __vcpu_sys_reg(vcpu, r->reg);
805 }
806
reset_pmevtyper(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)807 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
808 {
809 /* This thing will UNDEF, who cares about the reset value? */
810 if (!kvm_vcpu_has_pmu(vcpu))
811 return 0;
812
813 reset_unknown(vcpu, r);
814 __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
815
816 return __vcpu_sys_reg(vcpu, r->reg);
817 }
818
reset_pmselr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)819 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
820 {
821 reset_unknown(vcpu, r);
822 __vcpu_sys_reg(vcpu, r->reg) &= PMSELR_EL0_SEL_MASK;
823
824 return __vcpu_sys_reg(vcpu, r->reg);
825 }
826
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)827 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
828 {
829 u64 pmcr = 0;
830
831 if (!kvm_supports_32bit_el0())
832 pmcr |= ARMV8_PMU_PMCR_LC;
833
834 /*
835 * The value of PMCR.N field is included when the
836 * vCPU register is read via kvm_vcpu_read_pmcr().
837 */
838 __vcpu_sys_reg(vcpu, r->reg) = pmcr;
839
840 return __vcpu_sys_reg(vcpu, r->reg);
841 }
842
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)843 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
844 {
845 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
846 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
847
848 if (!enabled)
849 kvm_inject_undefined(vcpu);
850
851 return !enabled;
852 }
853
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)854 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
855 {
856 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
857 }
858
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)859 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
860 {
861 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
862 }
863
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)864 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
865 {
866 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
867 }
868
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)869 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
870 {
871 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
872 }
873
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)874 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
875 const struct sys_reg_desc *r)
876 {
877 u64 val;
878
879 if (pmu_access_el0_disabled(vcpu))
880 return false;
881
882 if (p->is_write) {
883 /*
884 * Only update writeable bits of PMCR (continuing into
885 * kvm_pmu_handle_pmcr() as well)
886 */
887 val = kvm_vcpu_read_pmcr(vcpu);
888 val &= ~ARMV8_PMU_PMCR_MASK;
889 val |= p->regval & ARMV8_PMU_PMCR_MASK;
890 if (!kvm_supports_32bit_el0())
891 val |= ARMV8_PMU_PMCR_LC;
892 kvm_pmu_handle_pmcr(vcpu, val);
893 } else {
894 /* PMCR.P & PMCR.C are RAZ */
895 val = kvm_vcpu_read_pmcr(vcpu)
896 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
897 p->regval = val;
898 }
899
900 return true;
901 }
902
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)903 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
904 const struct sys_reg_desc *r)
905 {
906 if (pmu_access_event_counter_el0_disabled(vcpu))
907 return false;
908
909 if (p->is_write)
910 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
911 else
912 /* return PMSELR.SEL field */
913 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
914 & PMSELR_EL0_SEL_MASK;
915
916 return true;
917 }
918
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)919 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
920 const struct sys_reg_desc *r)
921 {
922 u64 pmceid, mask, shift;
923
924 BUG_ON(p->is_write);
925
926 if (pmu_access_el0_disabled(vcpu))
927 return false;
928
929 get_access_mask(r, &mask, &shift);
930
931 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
932 pmceid &= mask;
933 pmceid >>= shift;
934
935 p->regval = pmceid;
936
937 return true;
938 }
939
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)940 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
941 {
942 u64 pmcr, val;
943
944 pmcr = kvm_vcpu_read_pmcr(vcpu);
945 val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
946 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
947 kvm_inject_undefined(vcpu);
948 return false;
949 }
950
951 return true;
952 }
953
get_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)954 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
955 u64 *val)
956 {
957 u64 idx;
958
959 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
960 /* PMCCNTR_EL0 */
961 idx = ARMV8_PMU_CYCLE_IDX;
962 else
963 /* PMEVCNTRn_EL0 */
964 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
965
966 *val = kvm_pmu_get_counter_value(vcpu, idx);
967 return 0;
968 }
969
set_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)970 static int set_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
971 u64 val)
972 {
973 u64 idx;
974
975 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
976 /* PMCCNTR_EL0 */
977 idx = ARMV8_PMU_CYCLE_IDX;
978 else
979 /* PMEVCNTRn_EL0 */
980 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
981
982 kvm_pmu_set_counter_value_user(vcpu, idx, val);
983 return 0;
984 }
985
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)986 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
987 struct sys_reg_params *p,
988 const struct sys_reg_desc *r)
989 {
990 u64 idx = ~0UL;
991
992 if (r->CRn == 9 && r->CRm == 13) {
993 if (r->Op2 == 2) {
994 /* PMXEVCNTR_EL0 */
995 if (pmu_access_event_counter_el0_disabled(vcpu))
996 return false;
997
998 idx = SYS_FIELD_GET(PMSELR_EL0, SEL,
999 __vcpu_sys_reg(vcpu, PMSELR_EL0));
1000 } else if (r->Op2 == 0) {
1001 /* PMCCNTR_EL0 */
1002 if (pmu_access_cycle_counter_el0_disabled(vcpu))
1003 return false;
1004
1005 idx = ARMV8_PMU_CYCLE_IDX;
1006 }
1007 } else if (r->CRn == 0 && r->CRm == 9) {
1008 /* PMCCNTR */
1009 if (pmu_access_event_counter_el0_disabled(vcpu))
1010 return false;
1011
1012 idx = ARMV8_PMU_CYCLE_IDX;
1013 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1014 /* PMEVCNTRn_EL0 */
1015 if (pmu_access_event_counter_el0_disabled(vcpu))
1016 return false;
1017
1018 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1019 }
1020
1021 /* Catch any decoding mistake */
1022 WARN_ON(idx == ~0UL);
1023
1024 if (!pmu_counter_idx_valid(vcpu, idx))
1025 return false;
1026
1027 if (p->is_write) {
1028 if (pmu_access_el0_disabled(vcpu))
1029 return false;
1030
1031 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1032 } else {
1033 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1034 }
1035
1036 return true;
1037 }
1038
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1039 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1040 const struct sys_reg_desc *r)
1041 {
1042 u64 idx, reg;
1043
1044 if (pmu_access_el0_disabled(vcpu))
1045 return false;
1046
1047 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1048 /* PMXEVTYPER_EL0 */
1049 idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0));
1050 reg = PMEVTYPER0_EL0 + idx;
1051 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1052 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1053 if (idx == ARMV8_PMU_CYCLE_IDX)
1054 reg = PMCCFILTR_EL0;
1055 else
1056 /* PMEVTYPERn_EL0 */
1057 reg = PMEVTYPER0_EL0 + idx;
1058 } else {
1059 BUG();
1060 }
1061
1062 if (!pmu_counter_idx_valid(vcpu, idx))
1063 return false;
1064
1065 if (p->is_write) {
1066 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1067 kvm_vcpu_pmu_restore_guest(vcpu);
1068 } else {
1069 p->regval = __vcpu_sys_reg(vcpu, reg);
1070 }
1071
1072 return true;
1073 }
1074
set_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1075 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1076 {
1077 u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1078
1079 __vcpu_sys_reg(vcpu, r->reg) = val & mask;
1080 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1081
1082 return 0;
1083 }
1084
get_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1085 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1086 {
1087 u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1088
1089 *val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1090 return 0;
1091 }
1092
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1093 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1094 const struct sys_reg_desc *r)
1095 {
1096 u64 val, mask;
1097
1098 if (pmu_access_el0_disabled(vcpu))
1099 return false;
1100
1101 mask = kvm_pmu_accessible_counter_mask(vcpu);
1102 if (p->is_write) {
1103 val = p->regval & mask;
1104 if (r->Op2 & 0x1)
1105 /* accessing PMCNTENSET_EL0 */
1106 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1107 else
1108 /* accessing PMCNTENCLR_EL0 */
1109 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1110
1111 kvm_pmu_reprogram_counter_mask(vcpu, val);
1112 } else {
1113 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1114 }
1115
1116 return true;
1117 }
1118
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1119 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1120 const struct sys_reg_desc *r)
1121 {
1122 u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1123
1124 if (check_pmu_access_disabled(vcpu, 0))
1125 return false;
1126
1127 if (p->is_write) {
1128 u64 val = p->regval & mask;
1129
1130 if (r->Op2 & 0x1)
1131 /* accessing PMINTENSET_EL1 */
1132 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1133 else
1134 /* accessing PMINTENCLR_EL1 */
1135 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1136 } else {
1137 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1138 }
1139
1140 return true;
1141 }
1142
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1143 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1144 const struct sys_reg_desc *r)
1145 {
1146 u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1147
1148 if (pmu_access_el0_disabled(vcpu))
1149 return false;
1150
1151 if (p->is_write) {
1152 if (r->CRm & 0x2)
1153 /* accessing PMOVSSET_EL0 */
1154 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1155 else
1156 /* accessing PMOVSCLR_EL0 */
1157 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1158 } else {
1159 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1160 }
1161
1162 return true;
1163 }
1164
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1165 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1166 const struct sys_reg_desc *r)
1167 {
1168 u64 mask;
1169
1170 if (!p->is_write)
1171 return read_from_write_only(vcpu, p, r);
1172
1173 if (pmu_write_swinc_el0_disabled(vcpu))
1174 return false;
1175
1176 mask = kvm_pmu_accessible_counter_mask(vcpu);
1177 kvm_pmu_software_increment(vcpu, p->regval & mask);
1178 return true;
1179 }
1180
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1181 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182 const struct sys_reg_desc *r)
1183 {
1184 if (p->is_write) {
1185 if (!vcpu_mode_priv(vcpu))
1186 return undef_access(vcpu, p, r);
1187
1188 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1189 p->regval & ARMV8_PMU_USERENR_MASK;
1190 } else {
1191 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1192 & ARMV8_PMU_USERENR_MASK;
1193 }
1194
1195 return true;
1196 }
1197
get_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1198 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1199 u64 *val)
1200 {
1201 *val = kvm_vcpu_read_pmcr(vcpu);
1202 return 0;
1203 }
1204
set_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1205 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1206 u64 val)
1207 {
1208 u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1209 struct kvm *kvm = vcpu->kvm;
1210
1211 mutex_lock(&kvm->arch.config_lock);
1212
1213 /*
1214 * The vCPU can't have more counters than the PMU hardware
1215 * implements. Ignore this error to maintain compatibility
1216 * with the existing KVM behavior.
1217 */
1218 if (!kvm_vm_has_ran_once(kvm) &&
1219 new_n <= kvm_arm_pmu_get_max_counters(kvm))
1220 kvm->arch.pmcr_n = new_n;
1221
1222 mutex_unlock(&kvm->arch.config_lock);
1223
1224 /*
1225 * Ignore writes to RES0 bits, read only bits that are cleared on
1226 * vCPU reset, and writable bits that KVM doesn't support yet.
1227 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1228 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1229 * But, we leave the bit as it is here, as the vCPU's PMUver might
1230 * be changed later (NOTE: the bit will be cleared on first vCPU run
1231 * if necessary).
1232 */
1233 val &= ARMV8_PMU_PMCR_MASK;
1234
1235 /* The LC bit is RES1 when AArch32 is not supported */
1236 if (!kvm_supports_32bit_el0())
1237 val |= ARMV8_PMU_PMCR_LC;
1238
1239 __vcpu_sys_reg(vcpu, r->reg) = val;
1240 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1241
1242 return 0;
1243 }
1244
1245 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1246 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
1247 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
1248 trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \
1249 get_dbg_wb_reg, set_dbg_wb_reg }, \
1250 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
1251 trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \
1252 get_dbg_wb_reg, set_dbg_wb_reg }, \
1253 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
1254 trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \
1255 get_dbg_wb_reg, set_dbg_wb_reg }, \
1256 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
1257 trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \
1258 get_dbg_wb_reg, set_dbg_wb_reg }
1259
1260 #define PMU_SYS_REG(name) \
1261 SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \
1262 .visibility = pmu_visibility
1263
1264 /* Macro to expand the PMEVCNTRn_EL0 register */
1265 #define PMU_PMEVCNTR_EL0(n) \
1266 { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \
1267 .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \
1268 .set_user = set_pmu_evcntr, \
1269 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1270
1271 /* Macro to expand the PMEVTYPERn_EL0 register */
1272 #define PMU_PMEVTYPER_EL0(n) \
1273 { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \
1274 .reset = reset_pmevtyper, \
1275 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1276
1277 /* Macro to expand the AMU counter and type registers*/
1278 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1279 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1280 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1281 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1282
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1283 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1284 const struct sys_reg_desc *rd)
1285 {
1286 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1287 }
1288
1289 /*
1290 * If we land here on a PtrAuth access, that is because we didn't
1291 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1292 * way this happens is when the guest does not have PtrAuth support
1293 * enabled.
1294 */
1295 #define __PTRAUTH_KEY(k) \
1296 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
1297 .visibility = ptrauth_visibility}
1298
1299 #define PTRAUTH_KEY(k) \
1300 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1301 __PTRAUTH_KEY(k ## KEYHI_EL1)
1302
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1303 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1304 struct sys_reg_params *p,
1305 const struct sys_reg_desc *r)
1306 {
1307 enum kvm_arch_timers tmr;
1308 enum kvm_arch_timer_regs treg;
1309 u64 reg = reg_to_encoding(r);
1310
1311 switch (reg) {
1312 case SYS_CNTP_TVAL_EL0:
1313 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1314 tmr = TIMER_HPTIMER;
1315 else
1316 tmr = TIMER_PTIMER;
1317 treg = TIMER_REG_TVAL;
1318 break;
1319
1320 case SYS_CNTV_TVAL_EL0:
1321 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1322 tmr = TIMER_HVTIMER;
1323 else
1324 tmr = TIMER_VTIMER;
1325 treg = TIMER_REG_TVAL;
1326 break;
1327
1328 case SYS_AARCH32_CNTP_TVAL:
1329 case SYS_CNTP_TVAL_EL02:
1330 tmr = TIMER_PTIMER;
1331 treg = TIMER_REG_TVAL;
1332 break;
1333
1334 case SYS_CNTV_TVAL_EL02:
1335 tmr = TIMER_VTIMER;
1336 treg = TIMER_REG_TVAL;
1337 break;
1338
1339 case SYS_CNTHP_TVAL_EL2:
1340 tmr = TIMER_HPTIMER;
1341 treg = TIMER_REG_TVAL;
1342 break;
1343
1344 case SYS_CNTHV_TVAL_EL2:
1345 tmr = TIMER_HVTIMER;
1346 treg = TIMER_REG_TVAL;
1347 break;
1348
1349 case SYS_CNTP_CTL_EL0:
1350 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1351 tmr = TIMER_HPTIMER;
1352 else
1353 tmr = TIMER_PTIMER;
1354 treg = TIMER_REG_CTL;
1355 break;
1356
1357 case SYS_CNTV_CTL_EL0:
1358 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1359 tmr = TIMER_HVTIMER;
1360 else
1361 tmr = TIMER_VTIMER;
1362 treg = TIMER_REG_CTL;
1363 break;
1364
1365 case SYS_AARCH32_CNTP_CTL:
1366 case SYS_CNTP_CTL_EL02:
1367 tmr = TIMER_PTIMER;
1368 treg = TIMER_REG_CTL;
1369 break;
1370
1371 case SYS_CNTV_CTL_EL02:
1372 tmr = TIMER_VTIMER;
1373 treg = TIMER_REG_CTL;
1374 break;
1375
1376 case SYS_CNTHP_CTL_EL2:
1377 tmr = TIMER_HPTIMER;
1378 treg = TIMER_REG_CTL;
1379 break;
1380
1381 case SYS_CNTHV_CTL_EL2:
1382 tmr = TIMER_HVTIMER;
1383 treg = TIMER_REG_CTL;
1384 break;
1385
1386 case SYS_CNTP_CVAL_EL0:
1387 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1388 tmr = TIMER_HPTIMER;
1389 else
1390 tmr = TIMER_PTIMER;
1391 treg = TIMER_REG_CVAL;
1392 break;
1393
1394 case SYS_CNTV_CVAL_EL0:
1395 if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1396 tmr = TIMER_HVTIMER;
1397 else
1398 tmr = TIMER_VTIMER;
1399 treg = TIMER_REG_CVAL;
1400 break;
1401
1402 case SYS_AARCH32_CNTP_CVAL:
1403 case SYS_CNTP_CVAL_EL02:
1404 tmr = TIMER_PTIMER;
1405 treg = TIMER_REG_CVAL;
1406 break;
1407
1408 case SYS_CNTV_CVAL_EL02:
1409 tmr = TIMER_VTIMER;
1410 treg = TIMER_REG_CVAL;
1411 break;
1412
1413 case SYS_CNTHP_CVAL_EL2:
1414 tmr = TIMER_HPTIMER;
1415 treg = TIMER_REG_CVAL;
1416 break;
1417
1418 case SYS_CNTHV_CVAL_EL2:
1419 tmr = TIMER_HVTIMER;
1420 treg = TIMER_REG_CVAL;
1421 break;
1422
1423 case SYS_CNTPCT_EL0:
1424 case SYS_CNTPCTSS_EL0:
1425 if (is_hyp_ctxt(vcpu))
1426 tmr = TIMER_HPTIMER;
1427 else
1428 tmr = TIMER_PTIMER;
1429 treg = TIMER_REG_CNT;
1430 break;
1431
1432 case SYS_AARCH32_CNTPCT:
1433 case SYS_AARCH32_CNTPCTSS:
1434 tmr = TIMER_PTIMER;
1435 treg = TIMER_REG_CNT;
1436 break;
1437
1438 case SYS_CNTVCT_EL0:
1439 case SYS_CNTVCTSS_EL0:
1440 if (is_hyp_ctxt(vcpu))
1441 tmr = TIMER_HVTIMER;
1442 else
1443 tmr = TIMER_VTIMER;
1444 treg = TIMER_REG_CNT;
1445 break;
1446
1447 case SYS_AARCH32_CNTVCT:
1448 case SYS_AARCH32_CNTVCTSS:
1449 tmr = TIMER_VTIMER;
1450 treg = TIMER_REG_CNT;
1451 break;
1452
1453 default:
1454 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1455 return undef_access(vcpu, p, r);
1456 }
1457
1458 if (p->is_write)
1459 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1460 else
1461 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1462
1463 return true;
1464 }
1465
access_hv_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1466 static bool access_hv_timer(struct kvm_vcpu *vcpu,
1467 struct sys_reg_params *p,
1468 const struct sys_reg_desc *r)
1469 {
1470 if (!vcpu_el2_e2h_is_set(vcpu))
1471 return undef_access(vcpu, p, r);
1472
1473 return access_arch_timer(vcpu, p, r);
1474 }
1475
kvm_arm64_ftr_safe_value(u32 id,const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)1476 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1477 s64 new, s64 cur)
1478 {
1479 struct arm64_ftr_bits kvm_ftr = *ftrp;
1480
1481 /* Some features have different safe value type in KVM than host features */
1482 switch (id) {
1483 case SYS_ID_AA64DFR0_EL1:
1484 switch (kvm_ftr.shift) {
1485 case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1486 kvm_ftr.type = FTR_LOWER_SAFE;
1487 break;
1488 case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1489 kvm_ftr.type = FTR_LOWER_SAFE;
1490 break;
1491 }
1492 break;
1493 case SYS_ID_DFR0_EL1:
1494 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1495 kvm_ftr.type = FTR_LOWER_SAFE;
1496 break;
1497 }
1498
1499 return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1500 }
1501
1502 /*
1503 * arm64_check_features() - Check if a feature register value constitutes
1504 * a subset of features indicated by the idreg's KVM sanitised limit.
1505 *
1506 * This function will check if each feature field of @val is the "safe" value
1507 * against idreg's KVM sanitised limit return from reset() callback.
1508 * If a field value in @val is the same as the one in limit, it is always
1509 * considered the safe value regardless For register fields that are not in
1510 * writable, only the value in limit is considered the safe value.
1511 *
1512 * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1513 */
arm64_check_features(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1514 static int arm64_check_features(struct kvm_vcpu *vcpu,
1515 const struct sys_reg_desc *rd,
1516 u64 val)
1517 {
1518 const struct arm64_ftr_reg *ftr_reg;
1519 const struct arm64_ftr_bits *ftrp = NULL;
1520 u32 id = reg_to_encoding(rd);
1521 u64 writable_mask = rd->val;
1522 u64 limit = rd->reset(vcpu, rd);
1523 u64 mask = 0;
1524
1525 /*
1526 * Hidden and unallocated ID registers may not have a corresponding
1527 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1528 * only safe value is 0.
1529 */
1530 if (sysreg_visible_as_raz(vcpu, rd))
1531 return val ? -E2BIG : 0;
1532
1533 ftr_reg = get_arm64_ftr_reg(id);
1534 if (!ftr_reg)
1535 return -EINVAL;
1536
1537 ftrp = ftr_reg->ftr_bits;
1538
1539 for (; ftrp && ftrp->width; ftrp++) {
1540 s64 f_val, f_lim, safe_val;
1541 u64 ftr_mask;
1542
1543 ftr_mask = arm64_ftr_mask(ftrp);
1544 if ((ftr_mask & writable_mask) != ftr_mask)
1545 continue;
1546
1547 f_val = arm64_ftr_value(ftrp, val);
1548 f_lim = arm64_ftr_value(ftrp, limit);
1549 mask |= ftr_mask;
1550
1551 if (f_val == f_lim)
1552 safe_val = f_val;
1553 else
1554 safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1555
1556 if (safe_val != f_val)
1557 return -E2BIG;
1558 }
1559
1560 /* For fields that are not writable, values in limit are the safe values. */
1561 if ((val & ~mask) != (limit & ~mask))
1562 return -E2BIG;
1563
1564 return 0;
1565 }
1566
pmuver_to_perfmon(u8 pmuver)1567 static u8 pmuver_to_perfmon(u8 pmuver)
1568 {
1569 switch (pmuver) {
1570 case ID_AA64DFR0_EL1_PMUVer_IMP:
1571 return ID_DFR0_EL1_PerfMon_PMUv3;
1572 case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1573 return ID_DFR0_EL1_PerfMon_IMPDEF;
1574 default:
1575 /* Anything ARMv8.1+ and NI have the same value. For now. */
1576 return pmuver;
1577 }
1578 }
1579
1580 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1581 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1582
1583 /* Read a sanitised cpufeature ID register by sys_reg_desc */
__kvm_read_sanitised_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1584 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1585 const struct sys_reg_desc *r)
1586 {
1587 u32 id = reg_to_encoding(r);
1588 u64 val;
1589
1590 if (sysreg_visible_as_raz(vcpu, r))
1591 return 0;
1592
1593 val = read_sanitised_ftr_reg(id);
1594
1595 switch (id) {
1596 case SYS_ID_AA64DFR0_EL1:
1597 val = sanitise_id_aa64dfr0_el1(vcpu, val);
1598 break;
1599 case SYS_ID_AA64PFR0_EL1:
1600 val = sanitise_id_aa64pfr0_el1(vcpu, val);
1601 break;
1602 case SYS_ID_AA64PFR1_EL1:
1603 if (!kvm_has_mte(vcpu->kvm))
1604 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1605
1606 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1607 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap);
1608 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI);
1609 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac);
1610 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS);
1611 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE);
1612 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX);
1613 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_DF2);
1614 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR);
1615 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MPAM_frac);
1616 break;
1617 case SYS_ID_AA64PFR2_EL1:
1618 /* We only expose FPMR */
1619 val &= ID_AA64PFR2_EL1_FPMR;
1620 break;
1621 case SYS_ID_AA64ISAR1_EL1:
1622 if (!vcpu_has_ptrauth(vcpu))
1623 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1624 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1625 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1626 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1627 break;
1628 case SYS_ID_AA64ISAR2_EL1:
1629 if (!vcpu_has_ptrauth(vcpu))
1630 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1631 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1632 if (!cpus_have_final_cap(ARM64_HAS_WFXT) ||
1633 has_broken_cntvoff())
1634 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1635 break;
1636 case SYS_ID_AA64ISAR3_EL1:
1637 val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_FAMINMAX;
1638 break;
1639 case SYS_ID_AA64MMFR2_EL1:
1640 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1641 val &= ~ID_AA64MMFR2_EL1_NV;
1642 break;
1643 case SYS_ID_AA64MMFR3_EL1:
1644 val &= ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1POE |
1645 ID_AA64MMFR3_EL1_S1PIE;
1646 break;
1647 case SYS_ID_MMFR4_EL1:
1648 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1649 break;
1650 }
1651
1652 if (vcpu_has_nv(vcpu))
1653 val = limit_nv_id_reg(vcpu->kvm, id, val);
1654
1655 return val;
1656 }
1657
kvm_read_sanitised_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1658 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1659 const struct sys_reg_desc *r)
1660 {
1661 return __kvm_read_sanitised_id_reg(vcpu, r);
1662 }
1663
read_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1664 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1665 {
1666 return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1667 }
1668
is_feature_id_reg(u32 encoding)1669 static bool is_feature_id_reg(u32 encoding)
1670 {
1671 return (sys_reg_Op0(encoding) == 3 &&
1672 (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1673 sys_reg_CRn(encoding) == 0 &&
1674 sys_reg_CRm(encoding) <= 7);
1675 }
1676
1677 /*
1678 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1679 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1680 * registers KVM maintains on a per-VM basis.
1681 *
1682 * Additionally, the implementation ID registers and CTR_EL0 are handled as
1683 * per-VM registers.
1684 */
is_vm_ftr_id_reg(u32 id)1685 static inline bool is_vm_ftr_id_reg(u32 id)
1686 {
1687 switch (id) {
1688 case SYS_CTR_EL0:
1689 case SYS_MIDR_EL1:
1690 case SYS_REVIDR_EL1:
1691 case SYS_AIDR_EL1:
1692 return true;
1693 default:
1694 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1695 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1696 sys_reg_CRm(id) < 8);
1697
1698 }
1699 }
1700
is_vcpu_ftr_id_reg(u32 id)1701 static inline bool is_vcpu_ftr_id_reg(u32 id)
1702 {
1703 return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1704 }
1705
is_aa32_id_reg(u32 id)1706 static inline bool is_aa32_id_reg(u32 id)
1707 {
1708 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1709 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1710 sys_reg_CRm(id) <= 3);
1711 }
1712
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1713 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1714 const struct sys_reg_desc *r)
1715 {
1716 u32 id = reg_to_encoding(r);
1717
1718 switch (id) {
1719 case SYS_ID_AA64ZFR0_EL1:
1720 if (!vcpu_has_sve(vcpu))
1721 return REG_RAZ;
1722 break;
1723 }
1724
1725 return 0;
1726 }
1727
aa32_id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1728 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1729 const struct sys_reg_desc *r)
1730 {
1731 /*
1732 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1733 * EL. Promote to RAZ/WI in order to guarantee consistency between
1734 * systems.
1735 */
1736 if (!kvm_supports_32bit_el0())
1737 return REG_RAZ | REG_USER_WI;
1738
1739 return id_visibility(vcpu, r);
1740 }
1741
raz_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1742 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1743 const struct sys_reg_desc *r)
1744 {
1745 return REG_RAZ;
1746 }
1747
1748 /* cpufeature ID register access trap handlers */
1749
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1750 static bool access_id_reg(struct kvm_vcpu *vcpu,
1751 struct sys_reg_params *p,
1752 const struct sys_reg_desc *r)
1753 {
1754 if (p->is_write)
1755 return write_to_read_only(vcpu, p, r);
1756
1757 p->regval = read_id_reg(vcpu, r);
1758
1759 return true;
1760 }
1761
1762 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1763 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1764 const struct sys_reg_desc *rd)
1765 {
1766 if (vcpu_has_sve(vcpu))
1767 return 0;
1768
1769 return REG_HIDDEN;
1770 }
1771
sme_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1772 static unsigned int sme_visibility(const struct kvm_vcpu *vcpu,
1773 const struct sys_reg_desc *rd)
1774 {
1775 if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP))
1776 return 0;
1777
1778 return REG_HIDDEN;
1779 }
1780
fp8_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1781 static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu,
1782 const struct sys_reg_desc *rd)
1783 {
1784 if (kvm_has_fpmr(vcpu->kvm))
1785 return 0;
1786
1787 return REG_HIDDEN;
1788 }
1789
sanitise_id_aa64pfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1790 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1791 {
1792 if (!vcpu_has_sve(vcpu))
1793 val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1794
1795 /*
1796 * The default is to expose CSV2 == 1 if the HW isn't affected.
1797 * Although this is a per-CPU feature, we make it global because
1798 * asymmetric systems are just a nuisance.
1799 *
1800 * Userspace can override this as long as it doesn't promise
1801 * the impossible.
1802 */
1803 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1804 val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1805 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1806 }
1807 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1808 val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1809 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1810 }
1811
1812 if (kvm_vgic_global_state.type == VGIC_V3) {
1813 val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1814 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1815 }
1816
1817 val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1818
1819 /*
1820 * MPAM is disabled by default as KVM also needs a set of PARTID to
1821 * program the MPAMVPMx_EL2 PARTID remapping registers with. But some
1822 * older kernels let the guest see the ID bit.
1823 */
1824 val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1825
1826 return val;
1827 }
1828
sanitise_id_aa64dfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1829 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1830 {
1831 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1832
1833 /*
1834 * Only initialize the PMU version if the vCPU was configured with one.
1835 */
1836 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1837 if (kvm_vcpu_has_pmu(vcpu))
1838 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1839 kvm_arm_pmu_get_pmuver_limit());
1840
1841 /* Hide SPE from guests */
1842 val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1843
1844 /* Hide BRBE from guests */
1845 val &= ~ID_AA64DFR0_EL1_BRBE_MASK;
1846
1847 return val;
1848 }
1849
set_id_aa64dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1850 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1851 const struct sys_reg_desc *rd,
1852 u64 val)
1853 {
1854 u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1855 u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1856
1857 /*
1858 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1859 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1860 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1861 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1862 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1863 *
1864 * At minimum, we're on the hook to allow values that were given to
1865 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1866 * with a more sensible NI. The value of an ID register changing under
1867 * the nose of the guest is unfortunate, but is certainly no more
1868 * surprising than an ill-guided PMU driver poking at impdef system
1869 * registers that end in an UNDEF...
1870 */
1871 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1872 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1873
1874 /*
1875 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1876 * nonzero minimum safe value.
1877 */
1878 if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1879 return -EINVAL;
1880
1881 return set_id_reg(vcpu, rd, val);
1882 }
1883
read_sanitised_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1884 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1885 const struct sys_reg_desc *rd)
1886 {
1887 u8 perfmon;
1888 u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1889
1890 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1891 if (kvm_vcpu_has_pmu(vcpu)) {
1892 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1893 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1894 }
1895
1896 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1897
1898 return val;
1899 }
1900
set_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1901 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1902 const struct sys_reg_desc *rd,
1903 u64 val)
1904 {
1905 u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1906 u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1907
1908 if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1909 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1910 perfmon = 0;
1911 }
1912
1913 /*
1914 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1915 * it doesn't promise more than what the HW gives us on the
1916 * AArch64 side (as everything is emulated with that), and
1917 * that this is a PMUv3.
1918 */
1919 if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1920 return -EINVAL;
1921
1922 if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1923 return -EINVAL;
1924
1925 return set_id_reg(vcpu, rd, val);
1926 }
1927
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1928 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1929 const struct sys_reg_desc *rd, u64 user_val)
1930 {
1931 u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1932 u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK;
1933
1934 /*
1935 * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits
1936 * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to
1937 * guests, but didn't add trap handling. KVM doesn't support MPAM and
1938 * always returns an UNDEF for these registers. The guest must see 0
1939 * for this field.
1940 *
1941 * But KVM must also accept values from user-space that were provided
1942 * by KVM. On CPUs that support MPAM, permit user-space to write
1943 * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field.
1944 */
1945 if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1946 user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1947
1948 return set_id_reg(vcpu, rd, user_val);
1949 }
1950
set_id_aa64pfr1_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1951 static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu,
1952 const struct sys_reg_desc *rd, u64 user_val)
1953 {
1954 u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1955 u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK;
1956
1957 /* See set_id_aa64pfr0_el1 for comment about MPAM */
1958 if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1959 user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
1960
1961 return set_id_reg(vcpu, rd, user_val);
1962 }
1963
set_id_aa64mmfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1964 static int set_id_aa64mmfr0_el1(struct kvm_vcpu *vcpu,
1965 const struct sys_reg_desc *rd, u64 user_val)
1966 {
1967 u64 sanitized_val = kvm_read_sanitised_id_reg(vcpu, rd);
1968 u64 tgran2_mask = ID_AA64MMFR0_EL1_TGRAN4_2_MASK |
1969 ID_AA64MMFR0_EL1_TGRAN16_2_MASK |
1970 ID_AA64MMFR0_EL1_TGRAN64_2_MASK;
1971
1972 if (vcpu_has_nv(vcpu) &&
1973 ((sanitized_val & tgran2_mask) != (user_val & tgran2_mask)))
1974 return -EINVAL;
1975
1976 return set_id_reg(vcpu, rd, user_val);
1977 }
1978
set_id_aa64mmfr2_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1979 static int set_id_aa64mmfr2_el1(struct kvm_vcpu *vcpu,
1980 const struct sys_reg_desc *rd, u64 user_val)
1981 {
1982 u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1983 u64 nv_mask = ID_AA64MMFR2_EL1_NV_MASK;
1984
1985 /*
1986 * We made the mistake to expose the now deprecated NV field,
1987 * so allow userspace to write it, but silently ignore it.
1988 */
1989 if ((hw_val & nv_mask) == (user_val & nv_mask))
1990 user_val &= ~nv_mask;
1991
1992 return set_id_reg(vcpu, rd, user_val);
1993 }
1994
set_ctr_el0(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1995 static int set_ctr_el0(struct kvm_vcpu *vcpu,
1996 const struct sys_reg_desc *rd, u64 user_val)
1997 {
1998 u8 user_L1Ip = SYS_FIELD_GET(CTR_EL0, L1Ip, user_val);
1999
2000 /*
2001 * Both AIVIVT (0b01) and VPIPT (0b00) are documented as reserved.
2002 * Hence only allow to set VIPT(0b10) or PIPT(0b11) for L1Ip based
2003 * on what hardware reports.
2004 *
2005 * Using a VIPT software model on PIPT will lead to over invalidation,
2006 * but still correct. Hence, we can allow downgrading PIPT to VIPT,
2007 * but not the other way around. This is handled via arm64_ftr_safe_value()
2008 * as CTR_EL0 ftr_bits has L1Ip field with type FTR_EXACT and safe value
2009 * set as VIPT.
2010 */
2011 switch (user_L1Ip) {
2012 case CTR_EL0_L1Ip_RESERVED_VPIPT:
2013 case CTR_EL0_L1Ip_RESERVED_AIVIVT:
2014 return -EINVAL;
2015 case CTR_EL0_L1Ip_VIPT:
2016 case CTR_EL0_L1Ip_PIPT:
2017 return set_id_reg(vcpu, rd, user_val);
2018 default:
2019 return -ENOENT;
2020 }
2021 }
2022
2023 /*
2024 * cpufeature ID register user accessors
2025 *
2026 * For now, these registers are immutable for userspace, so no values
2027 * are stored, and for set_id_reg() we don't allow the effective value
2028 * to be changed.
2029 */
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2030 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2031 u64 *val)
2032 {
2033 /*
2034 * Avoid locking if the VM has already started, as the ID registers are
2035 * guaranteed to be invariant at that point.
2036 */
2037 if (kvm_vm_has_ran_once(vcpu->kvm)) {
2038 *val = read_id_reg(vcpu, rd);
2039 return 0;
2040 }
2041
2042 mutex_lock(&vcpu->kvm->arch.config_lock);
2043 *val = read_id_reg(vcpu, rd);
2044 mutex_unlock(&vcpu->kvm->arch.config_lock);
2045
2046 return 0;
2047 }
2048
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2049 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2050 u64 val)
2051 {
2052 u32 id = reg_to_encoding(rd);
2053 int ret;
2054
2055 mutex_lock(&vcpu->kvm->arch.config_lock);
2056
2057 /*
2058 * Once the VM has started the ID registers are immutable. Reject any
2059 * write that does not match the final register value.
2060 */
2061 if (kvm_vm_has_ran_once(vcpu->kvm)) {
2062 if (val != read_id_reg(vcpu, rd))
2063 ret = -EBUSY;
2064 else
2065 ret = 0;
2066
2067 mutex_unlock(&vcpu->kvm->arch.config_lock);
2068 return ret;
2069 }
2070
2071 ret = arm64_check_features(vcpu, rd, val);
2072 if (!ret)
2073 kvm_set_vm_id_reg(vcpu->kvm, id, val);
2074
2075 mutex_unlock(&vcpu->kvm->arch.config_lock);
2076
2077 /*
2078 * arm64_check_features() returns -E2BIG to indicate the register's
2079 * feature set is a superset of the maximally-allowed register value.
2080 * While it would be nice to precisely describe this to userspace, the
2081 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
2082 * writes return -EINVAL.
2083 */
2084 if (ret == -E2BIG)
2085 ret = -EINVAL;
2086 return ret;
2087 }
2088
kvm_set_vm_id_reg(struct kvm * kvm,u32 reg,u64 val)2089 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
2090 {
2091 u64 *p = __vm_id_reg(&kvm->arch, reg);
2092
2093 lockdep_assert_held(&kvm->arch.config_lock);
2094
2095 if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
2096 return;
2097
2098 *p = val;
2099 }
2100
get_raz_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2101 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2102 u64 *val)
2103 {
2104 *val = 0;
2105 return 0;
2106 }
2107
set_wi_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2108 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2109 u64 val)
2110 {
2111 return 0;
2112 }
2113
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2114 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2115 const struct sys_reg_desc *r)
2116 {
2117 if (p->is_write)
2118 return write_to_read_only(vcpu, p, r);
2119
2120 p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
2121 return true;
2122 }
2123
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2124 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2125 const struct sys_reg_desc *r)
2126 {
2127 if (p->is_write)
2128 return write_to_read_only(vcpu, p, r);
2129
2130 p->regval = __vcpu_sys_reg(vcpu, r->reg);
2131 return true;
2132 }
2133
2134 /*
2135 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
2136 * by the physical CPU which the vcpu currently resides in.
2137 */
reset_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2138 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2139 {
2140 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2141 u64 clidr;
2142 u8 loc;
2143
2144 if ((ctr_el0 & CTR_EL0_IDC)) {
2145 /*
2146 * Data cache clean to the PoU is not required so LoUU and LoUIS
2147 * will not be set and a unified cache, which will be marked as
2148 * LoC, will be added.
2149 *
2150 * If not DIC, let the unified cache L2 so that an instruction
2151 * cache can be added as L1 later.
2152 */
2153 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
2154 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
2155 } else {
2156 /*
2157 * Data cache clean to the PoU is required so let L1 have a data
2158 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
2159 * it can be marked as LoC too.
2160 */
2161 loc = 1;
2162 clidr = 1 << CLIDR_LOUU_SHIFT;
2163 clidr |= 1 << CLIDR_LOUIS_SHIFT;
2164 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
2165 }
2166
2167 /*
2168 * Instruction cache invalidation to the PoU is required so let L1 have
2169 * an instruction cache. If L1 already has a data cache, it will be
2170 * CACHE_TYPE_SEPARATE.
2171 */
2172 if (!(ctr_el0 & CTR_EL0_DIC))
2173 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
2174
2175 clidr |= loc << CLIDR_LOC_SHIFT;
2176
2177 /*
2178 * Add tag cache unified to data cache. Allocation tags and data are
2179 * unified in a cache line so that it looks valid even if there is only
2180 * one cache line.
2181 */
2182 if (kvm_has_mte(vcpu->kvm))
2183 clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc);
2184
2185 __vcpu_sys_reg(vcpu, r->reg) = clidr;
2186
2187 return __vcpu_sys_reg(vcpu, r->reg);
2188 }
2189
set_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2190 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2191 u64 val)
2192 {
2193 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2194 u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
2195
2196 if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
2197 return -EINVAL;
2198
2199 __vcpu_sys_reg(vcpu, rd->reg) = val;
2200
2201 return 0;
2202 }
2203
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2204 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2205 const struct sys_reg_desc *r)
2206 {
2207 int reg = r->reg;
2208
2209 if (p->is_write)
2210 vcpu_write_sys_reg(vcpu, p->regval, reg);
2211 else
2212 p->regval = vcpu_read_sys_reg(vcpu, reg);
2213 return true;
2214 }
2215
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2216 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2217 const struct sys_reg_desc *r)
2218 {
2219 u32 csselr;
2220
2221 if (p->is_write)
2222 return write_to_read_only(vcpu, p, r);
2223
2224 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2225 csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2226 if (csselr < CSSELR_MAX)
2227 p->regval = get_ccsidr(vcpu, csselr);
2228
2229 return true;
2230 }
2231
mte_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2232 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2233 const struct sys_reg_desc *rd)
2234 {
2235 if (kvm_has_mte(vcpu->kvm))
2236 return 0;
2237
2238 return REG_HIDDEN;
2239 }
2240
2241 #define MTE_REG(name) { \
2242 SYS_DESC(SYS_##name), \
2243 .access = undef_access, \
2244 .reset = reset_unknown, \
2245 .reg = name, \
2246 .visibility = mte_visibility, \
2247 }
2248
el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2249 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2250 const struct sys_reg_desc *rd)
2251 {
2252 if (vcpu_has_nv(vcpu))
2253 return 0;
2254
2255 return REG_HIDDEN;
2256 }
2257
bad_vncr_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2258 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2259 struct sys_reg_params *p,
2260 const struct sys_reg_desc *r)
2261 {
2262 /*
2263 * We really shouldn't be here, and this is likely the result
2264 * of a misconfigured trap, as this register should target the
2265 * VNCR page, and nothing else.
2266 */
2267 return bad_trap(vcpu, p, r,
2268 "trap of VNCR-backed register");
2269 }
2270
bad_redir_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2271 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2272 struct sys_reg_params *p,
2273 const struct sys_reg_desc *r)
2274 {
2275 /*
2276 * We really shouldn't be here, and this is likely the result
2277 * of a misconfigured trap, as this register should target the
2278 * corresponding EL1, and nothing else.
2279 */
2280 return bad_trap(vcpu, p, r,
2281 "trap of EL2 register redirected to EL1");
2282 }
2283
2284 #define EL2_REG(name, acc, rst, v) { \
2285 SYS_DESC(SYS_##name), \
2286 .access = acc, \
2287 .reset = rst, \
2288 .reg = name, \
2289 .visibility = el2_visibility, \
2290 .val = v, \
2291 }
2292
2293 #define EL2_REG_FILTERED(name, acc, rst, v, filter) { \
2294 SYS_DESC(SYS_##name), \
2295 .access = acc, \
2296 .reset = rst, \
2297 .reg = name, \
2298 .visibility = filter, \
2299 .val = v, \
2300 }
2301
2302 #define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v)
2303 #define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v)
2304
2305 /*
2306 * Since reset() callback and field val are not used for idregs, they will be
2307 * used for specific purposes for idregs.
2308 * The reset() would return KVM sanitised register value. The value would be the
2309 * same as the host kernel sanitised value if there is no KVM sanitisation.
2310 * The val would be used as a mask indicating writable fields for the idreg.
2311 * Only bits with 1 are writable from userspace. This mask might not be
2312 * necessary in the future whenever all ID registers are enabled as writable
2313 * from userspace.
2314 */
2315
2316 #define ID_DESC_DEFAULT_CALLBACKS \
2317 .access = access_id_reg, \
2318 .get_user = get_id_reg, \
2319 .set_user = set_id_reg, \
2320 .visibility = id_visibility, \
2321 .reset = kvm_read_sanitised_id_reg
2322
2323 #define ID_DESC(name) \
2324 SYS_DESC(SYS_##name), \
2325 ID_DESC_DEFAULT_CALLBACKS
2326
2327 /* sys_reg_desc initialiser for known cpufeature ID registers */
2328 #define ID_SANITISED(name) { \
2329 ID_DESC(name), \
2330 .val = 0, \
2331 }
2332
2333 /* sys_reg_desc initialiser for known cpufeature ID registers */
2334 #define AA32_ID_SANITISED(name) { \
2335 ID_DESC(name), \
2336 .visibility = aa32_id_visibility, \
2337 .val = 0, \
2338 }
2339
2340 /* sys_reg_desc initialiser for writable ID registers */
2341 #define ID_WRITABLE(name, mask) { \
2342 ID_DESC(name), \
2343 .val = mask, \
2344 }
2345
2346 /* sys_reg_desc initialiser for cpufeature ID registers that need filtering */
2347 #define ID_FILTERED(sysreg, name, mask) { \
2348 ID_DESC(sysreg), \
2349 .set_user = set_##name, \
2350 .val = (mask), \
2351 }
2352
2353 /*
2354 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2355 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2356 * (1 <= crm < 8, 0 <= Op2 < 8).
2357 */
2358 #define ID_UNALLOCATED(crm, op2) { \
2359 .name = "S3_0_0_" #crm "_" #op2, \
2360 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
2361 ID_DESC_DEFAULT_CALLBACKS, \
2362 .visibility = raz_visibility, \
2363 .val = 0, \
2364 }
2365
2366 /*
2367 * sys_reg_desc initialiser for known ID registers that we hide from guests.
2368 * For now, these are exposed just like unallocated ID regs: they appear
2369 * RAZ for the guest.
2370 */
2371 #define ID_HIDDEN(name) { \
2372 ID_DESC(name), \
2373 .visibility = raz_visibility, \
2374 .val = 0, \
2375 }
2376
access_sp_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2377 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2378 struct sys_reg_params *p,
2379 const struct sys_reg_desc *r)
2380 {
2381 if (p->is_write)
2382 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2383 else
2384 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2385
2386 return true;
2387 }
2388
access_elr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2389 static bool access_elr(struct kvm_vcpu *vcpu,
2390 struct sys_reg_params *p,
2391 const struct sys_reg_desc *r)
2392 {
2393 if (p->is_write)
2394 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2395 else
2396 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2397
2398 return true;
2399 }
2400
access_spsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2401 static bool access_spsr(struct kvm_vcpu *vcpu,
2402 struct sys_reg_params *p,
2403 const struct sys_reg_desc *r)
2404 {
2405 if (p->is_write)
2406 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2407 else
2408 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2409
2410 return true;
2411 }
2412
access_cntkctl_el12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2413 static bool access_cntkctl_el12(struct kvm_vcpu *vcpu,
2414 struct sys_reg_params *p,
2415 const struct sys_reg_desc *r)
2416 {
2417 if (p->is_write)
2418 __vcpu_sys_reg(vcpu, CNTKCTL_EL1) = p->regval;
2419 else
2420 p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1);
2421
2422 return true;
2423 }
2424
reset_hcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2425 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2426 {
2427 u64 val = r->val;
2428
2429 if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2430 val |= HCR_E2H;
2431
2432 return __vcpu_sys_reg(vcpu, r->reg) = val;
2433 }
2434
__el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,unsigned int (* fn)(const struct kvm_vcpu *,const struct sys_reg_desc *))2435 static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu,
2436 const struct sys_reg_desc *rd,
2437 unsigned int (*fn)(const struct kvm_vcpu *,
2438 const struct sys_reg_desc *))
2439 {
2440 return el2_visibility(vcpu, rd) ?: fn(vcpu, rd);
2441 }
2442
sve_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2443 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2444 const struct sys_reg_desc *rd)
2445 {
2446 return __el2_visibility(vcpu, rd, sve_visibility);
2447 }
2448
access_zcr_el2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2449 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2450 struct sys_reg_params *p,
2451 const struct sys_reg_desc *r)
2452 {
2453 unsigned int vq;
2454
2455 if (guest_hyp_sve_traps_enabled(vcpu)) {
2456 kvm_inject_nested_sve_trap(vcpu);
2457 return true;
2458 }
2459
2460 if (!p->is_write) {
2461 p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2462 return true;
2463 }
2464
2465 vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2466 vq = min(vq, vcpu_sve_max_vq(vcpu));
2467 vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2468
2469 return true;
2470 }
2471
access_gic_vtr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2472 static bool access_gic_vtr(struct kvm_vcpu *vcpu,
2473 struct sys_reg_params *p,
2474 const struct sys_reg_desc *r)
2475 {
2476 if (p->is_write)
2477 return write_to_read_only(vcpu, p, r);
2478
2479 p->regval = kvm_vgic_global_state.ich_vtr_el2;
2480 p->regval &= ~(ICH_VTR_EL2_DVIM |
2481 ICH_VTR_EL2_A3V |
2482 ICH_VTR_EL2_IDbits);
2483 p->regval |= ICH_VTR_EL2_nV4;
2484
2485 return true;
2486 }
2487
access_gic_misr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2488 static bool access_gic_misr(struct kvm_vcpu *vcpu,
2489 struct sys_reg_params *p,
2490 const struct sys_reg_desc *r)
2491 {
2492 if (p->is_write)
2493 return write_to_read_only(vcpu, p, r);
2494
2495 p->regval = vgic_v3_get_misr(vcpu);
2496
2497 return true;
2498 }
2499
access_gic_eisr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2500 static bool access_gic_eisr(struct kvm_vcpu *vcpu,
2501 struct sys_reg_params *p,
2502 const struct sys_reg_desc *r)
2503 {
2504 if (p->is_write)
2505 return write_to_read_only(vcpu, p, r);
2506
2507 p->regval = vgic_v3_get_eisr(vcpu);
2508
2509 return true;
2510 }
2511
access_gic_elrsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2512 static bool access_gic_elrsr(struct kvm_vcpu *vcpu,
2513 struct sys_reg_params *p,
2514 const struct sys_reg_desc *r)
2515 {
2516 if (p->is_write)
2517 return write_to_read_only(vcpu, p, r);
2518
2519 p->regval = vgic_v3_get_elrsr(vcpu);
2520
2521 return true;
2522 }
2523
s1poe_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2524 static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu,
2525 const struct sys_reg_desc *rd)
2526 {
2527 if (kvm_has_s1poe(vcpu->kvm))
2528 return 0;
2529
2530 return REG_HIDDEN;
2531 }
2532
s1poe_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2533 static unsigned int s1poe_el2_visibility(const struct kvm_vcpu *vcpu,
2534 const struct sys_reg_desc *rd)
2535 {
2536 return __el2_visibility(vcpu, rd, s1poe_visibility);
2537 }
2538
tcr2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2539 static unsigned int tcr2_visibility(const struct kvm_vcpu *vcpu,
2540 const struct sys_reg_desc *rd)
2541 {
2542 if (kvm_has_tcr2(vcpu->kvm))
2543 return 0;
2544
2545 return REG_HIDDEN;
2546 }
2547
tcr2_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2548 static unsigned int tcr2_el2_visibility(const struct kvm_vcpu *vcpu,
2549 const struct sys_reg_desc *rd)
2550 {
2551 return __el2_visibility(vcpu, rd, tcr2_visibility);
2552 }
2553
s1pie_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2554 static unsigned int s1pie_visibility(const struct kvm_vcpu *vcpu,
2555 const struct sys_reg_desc *rd)
2556 {
2557 if (kvm_has_s1pie(vcpu->kvm))
2558 return 0;
2559
2560 return REG_HIDDEN;
2561 }
2562
s1pie_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2563 static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu,
2564 const struct sys_reg_desc *rd)
2565 {
2566 return __el2_visibility(vcpu, rd, s1pie_visibility);
2567 }
2568
access_mdcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2569 static bool access_mdcr(struct kvm_vcpu *vcpu,
2570 struct sys_reg_params *p,
2571 const struct sys_reg_desc *r)
2572 {
2573 u64 old = __vcpu_sys_reg(vcpu, MDCR_EL2);
2574
2575 if (!access_rw(vcpu, p, r))
2576 return false;
2577
2578 /*
2579 * Request a reload of the PMU to enable/disable the counters affected
2580 * by HPME.
2581 */
2582 if ((old ^ __vcpu_sys_reg(vcpu, MDCR_EL2)) & MDCR_EL2_HPME)
2583 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
2584
2585 return true;
2586 }
2587
2588 /*
2589 * For historical (ahem ABI) reasons, KVM treated MIDR_EL1, REVIDR_EL1, and
2590 * AIDR_EL1 as "invariant" registers, meaning userspace cannot change them.
2591 * The values made visible to userspace were the register values of the boot
2592 * CPU.
2593 *
2594 * At the same time, reads from these registers at EL1 previously were not
2595 * trapped, allowing the guest to read the actual hardware value. On big-little
2596 * machines, this means the VM can see different values depending on where a
2597 * given vCPU got scheduled.
2598 *
2599 * These registers are now trapped as collateral damage from SME, and what
2600 * follows attempts to give a user / guest view consistent with the existing
2601 * ABI.
2602 */
access_imp_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2603 static bool access_imp_id_reg(struct kvm_vcpu *vcpu,
2604 struct sys_reg_params *p,
2605 const struct sys_reg_desc *r)
2606 {
2607 if (p->is_write)
2608 return write_to_read_only(vcpu, p, r);
2609
2610 /*
2611 * Return the VM-scoped implementation ID register values if userspace
2612 * has made them writable.
2613 */
2614 if (test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &vcpu->kvm->arch.flags))
2615 return access_id_reg(vcpu, p, r);
2616
2617 /*
2618 * Otherwise, fall back to the old behavior of returning the value of
2619 * the current CPU.
2620 */
2621 switch (reg_to_encoding(r)) {
2622 case SYS_REVIDR_EL1:
2623 p->regval = read_sysreg(revidr_el1);
2624 break;
2625 case SYS_AIDR_EL1:
2626 p->regval = read_sysreg(aidr_el1);
2627 break;
2628 default:
2629 WARN_ON_ONCE(1);
2630 }
2631
2632 return true;
2633 }
2634
2635 static u64 __ro_after_init boot_cpu_midr_val;
2636 static u64 __ro_after_init boot_cpu_revidr_val;
2637 static u64 __ro_after_init boot_cpu_aidr_val;
2638
init_imp_id_regs(void)2639 static void init_imp_id_regs(void)
2640 {
2641 boot_cpu_midr_val = read_sysreg(midr_el1);
2642 boot_cpu_revidr_val = read_sysreg(revidr_el1);
2643 boot_cpu_aidr_val = read_sysreg(aidr_el1);
2644 }
2645
reset_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2646 static u64 reset_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2647 {
2648 switch (reg_to_encoding(r)) {
2649 case SYS_MIDR_EL1:
2650 return boot_cpu_midr_val;
2651 case SYS_REVIDR_EL1:
2652 return boot_cpu_revidr_val;
2653 case SYS_AIDR_EL1:
2654 return boot_cpu_aidr_val;
2655 default:
2656 KVM_BUG_ON(1, vcpu->kvm);
2657 return 0;
2658 }
2659 }
2660
set_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)2661 static int set_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
2662 u64 val)
2663 {
2664 struct kvm *kvm = vcpu->kvm;
2665 u64 expected;
2666
2667 guard(mutex)(&kvm->arch.config_lock);
2668
2669 expected = read_id_reg(vcpu, r);
2670 if (expected == val)
2671 return 0;
2672
2673 if (!test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags))
2674 return -EINVAL;
2675
2676 /*
2677 * Once the VM has started the ID registers are immutable. Reject the
2678 * write if userspace tries to change it.
2679 */
2680 if (kvm_vm_has_ran_once(kvm))
2681 return -EBUSY;
2682
2683 /*
2684 * Any value is allowed for the implementation ID registers so long as
2685 * it is within the writable mask.
2686 */
2687 if ((val & r->val) != val)
2688 return -EINVAL;
2689
2690 kvm_set_vm_id_reg(kvm, reg_to_encoding(r), val);
2691 return 0;
2692 }
2693
2694 #define IMPLEMENTATION_ID(reg, mask) { \
2695 SYS_DESC(SYS_##reg), \
2696 .access = access_imp_id_reg, \
2697 .get_user = get_id_reg, \
2698 .set_user = set_imp_id_reg, \
2699 .reset = reset_imp_id_reg, \
2700 .val = mask, \
2701 }
2702
2703 /*
2704 * Architected system registers.
2705 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2706 *
2707 * Debug handling: We do trap most, if not all debug related system
2708 * registers. The implementation is good enough to ensure that a guest
2709 * can use these with minimal performance degradation. The drawback is
2710 * that we don't implement any of the external debug architecture.
2711 * This should be revisited if we ever encounter a more demanding
2712 * guest...
2713 */
2714 static const struct sys_reg_desc sys_reg_descs[] = {
2715 DBG_BCR_BVR_WCR_WVR_EL1(0),
2716 DBG_BCR_BVR_WCR_WVR_EL1(1),
2717 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2718 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2719 DBG_BCR_BVR_WCR_WVR_EL1(2),
2720 DBG_BCR_BVR_WCR_WVR_EL1(3),
2721 DBG_BCR_BVR_WCR_WVR_EL1(4),
2722 DBG_BCR_BVR_WCR_WVR_EL1(5),
2723 DBG_BCR_BVR_WCR_WVR_EL1(6),
2724 DBG_BCR_BVR_WCR_WVR_EL1(7),
2725 DBG_BCR_BVR_WCR_WVR_EL1(8),
2726 DBG_BCR_BVR_WCR_WVR_EL1(9),
2727 DBG_BCR_BVR_WCR_WVR_EL1(10),
2728 DBG_BCR_BVR_WCR_WVR_EL1(11),
2729 DBG_BCR_BVR_WCR_WVR_EL1(12),
2730 DBG_BCR_BVR_WCR_WVR_EL1(13),
2731 DBG_BCR_BVR_WCR_WVR_EL1(14),
2732 DBG_BCR_BVR_WCR_WVR_EL1(15),
2733
2734 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2735 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2736 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2737 OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2738 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2739 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2740 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2741 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2742 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2743
2744 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2745 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2746 // DBGDTR[TR]X_EL0 share the same encoding
2747 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2748
2749 { SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 },
2750
2751 IMPLEMENTATION_ID(MIDR_EL1, GENMASK_ULL(31, 0)),
2752 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2753 IMPLEMENTATION_ID(REVIDR_EL1, GENMASK_ULL(63, 0)),
2754
2755 /*
2756 * ID regs: all ID_SANITISED() entries here must have corresponding
2757 * entries in arm64_ftr_regs[].
2758 */
2759
2760 /* AArch64 mappings of the AArch32 ID registers */
2761 /* CRm=1 */
2762 AA32_ID_SANITISED(ID_PFR0_EL1),
2763 AA32_ID_SANITISED(ID_PFR1_EL1),
2764 { SYS_DESC(SYS_ID_DFR0_EL1),
2765 .access = access_id_reg,
2766 .get_user = get_id_reg,
2767 .set_user = set_id_dfr0_el1,
2768 .visibility = aa32_id_visibility,
2769 .reset = read_sanitised_id_dfr0_el1,
2770 .val = ID_DFR0_EL1_PerfMon_MASK |
2771 ID_DFR0_EL1_CopDbg_MASK, },
2772 ID_HIDDEN(ID_AFR0_EL1),
2773 AA32_ID_SANITISED(ID_MMFR0_EL1),
2774 AA32_ID_SANITISED(ID_MMFR1_EL1),
2775 AA32_ID_SANITISED(ID_MMFR2_EL1),
2776 AA32_ID_SANITISED(ID_MMFR3_EL1),
2777
2778 /* CRm=2 */
2779 AA32_ID_SANITISED(ID_ISAR0_EL1),
2780 AA32_ID_SANITISED(ID_ISAR1_EL1),
2781 AA32_ID_SANITISED(ID_ISAR2_EL1),
2782 AA32_ID_SANITISED(ID_ISAR3_EL1),
2783 AA32_ID_SANITISED(ID_ISAR4_EL1),
2784 AA32_ID_SANITISED(ID_ISAR5_EL1),
2785 AA32_ID_SANITISED(ID_MMFR4_EL1),
2786 AA32_ID_SANITISED(ID_ISAR6_EL1),
2787
2788 /* CRm=3 */
2789 AA32_ID_SANITISED(MVFR0_EL1),
2790 AA32_ID_SANITISED(MVFR1_EL1),
2791 AA32_ID_SANITISED(MVFR2_EL1),
2792 ID_UNALLOCATED(3,3),
2793 AA32_ID_SANITISED(ID_PFR2_EL1),
2794 ID_HIDDEN(ID_DFR1_EL1),
2795 AA32_ID_SANITISED(ID_MMFR5_EL1),
2796 ID_UNALLOCATED(3,7),
2797
2798 /* AArch64 ID registers */
2799 /* CRm=4 */
2800 ID_FILTERED(ID_AA64PFR0_EL1, id_aa64pfr0_el1,
2801 ~(ID_AA64PFR0_EL1_AMU |
2802 ID_AA64PFR0_EL1_MPAM |
2803 ID_AA64PFR0_EL1_SVE |
2804 ID_AA64PFR0_EL1_RAS |
2805 ID_AA64PFR0_EL1_AdvSIMD |
2806 ID_AA64PFR0_EL1_FP)),
2807 ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1,
2808 ~(ID_AA64PFR1_EL1_PFAR |
2809 ID_AA64PFR1_EL1_DF2 |
2810 ID_AA64PFR1_EL1_MTEX |
2811 ID_AA64PFR1_EL1_THE |
2812 ID_AA64PFR1_EL1_GCS |
2813 ID_AA64PFR1_EL1_MTE_frac |
2814 ID_AA64PFR1_EL1_NMI |
2815 ID_AA64PFR1_EL1_RNDR_trap |
2816 ID_AA64PFR1_EL1_SME |
2817 ID_AA64PFR1_EL1_RES0 |
2818 ID_AA64PFR1_EL1_MPAM_frac |
2819 ID_AA64PFR1_EL1_RAS_frac |
2820 ID_AA64PFR1_EL1_MTE)),
2821 ID_WRITABLE(ID_AA64PFR2_EL1, ID_AA64PFR2_EL1_FPMR),
2822 ID_UNALLOCATED(4,3),
2823 ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2824 ID_HIDDEN(ID_AA64SMFR0_EL1),
2825 ID_UNALLOCATED(4,6),
2826 ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0),
2827
2828 /* CRm=5 */
2829 /*
2830 * Prior to FEAT_Debugv8.9, the architecture defines context-aware
2831 * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs).
2832 * KVM does not trap + emulate the breakpoint registers, and as such
2833 * cannot support a layout that misaligns with the underlying hardware.
2834 * While it may be possible to describe a subset that aligns with
2835 * hardware, just prevent changes to BRPs and CTX_CMPs altogether for
2836 * simplicity.
2837 *
2838 * See DDI0487K.a, section D2.8.3 Breakpoint types and linking
2839 * of breakpoints for more details.
2840 */
2841 ID_FILTERED(ID_AA64DFR0_EL1, id_aa64dfr0_el1,
2842 ID_AA64DFR0_EL1_DoubleLock_MASK |
2843 ID_AA64DFR0_EL1_WRPs_MASK |
2844 ID_AA64DFR0_EL1_PMUVer_MASK |
2845 ID_AA64DFR0_EL1_DebugVer_MASK),
2846 ID_SANITISED(ID_AA64DFR1_EL1),
2847 ID_UNALLOCATED(5,2),
2848 ID_UNALLOCATED(5,3),
2849 ID_HIDDEN(ID_AA64AFR0_EL1),
2850 ID_HIDDEN(ID_AA64AFR1_EL1),
2851 ID_UNALLOCATED(5,6),
2852 ID_UNALLOCATED(5,7),
2853
2854 /* CRm=6 */
2855 ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2856 ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2857 ID_AA64ISAR1_EL1_GPA |
2858 ID_AA64ISAR1_EL1_API |
2859 ID_AA64ISAR1_EL1_APA)),
2860 ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2861 ID_AA64ISAR2_EL1_APA3 |
2862 ID_AA64ISAR2_EL1_GPA3)),
2863 ID_WRITABLE(ID_AA64ISAR3_EL1, (ID_AA64ISAR3_EL1_FPRCVT |
2864 ID_AA64ISAR3_EL1_FAMINMAX)),
2865 ID_UNALLOCATED(6,4),
2866 ID_UNALLOCATED(6,5),
2867 ID_UNALLOCATED(6,6),
2868 ID_UNALLOCATED(6,7),
2869
2870 /* CRm=7 */
2871 ID_FILTERED(ID_AA64MMFR0_EL1, id_aa64mmfr0_el1,
2872 ~(ID_AA64MMFR0_EL1_RES0 |
2873 ID_AA64MMFR0_EL1_ASIDBITS)),
2874 ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2875 ID_AA64MMFR1_EL1_HCX |
2876 ID_AA64MMFR1_EL1_TWED |
2877 ID_AA64MMFR1_EL1_XNX |
2878 ID_AA64MMFR1_EL1_VH |
2879 ID_AA64MMFR1_EL1_VMIDBits)),
2880 ID_FILTERED(ID_AA64MMFR2_EL1,
2881 id_aa64mmfr2_el1, ~(ID_AA64MMFR2_EL1_RES0 |
2882 ID_AA64MMFR2_EL1_EVT |
2883 ID_AA64MMFR2_EL1_FWB |
2884 ID_AA64MMFR2_EL1_IDS |
2885 ID_AA64MMFR2_EL1_NV |
2886 ID_AA64MMFR2_EL1_CCIDX)),
2887 ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX |
2888 ID_AA64MMFR3_EL1_S1PIE |
2889 ID_AA64MMFR3_EL1_S1POE)),
2890 ID_WRITABLE(ID_AA64MMFR4_EL1, ID_AA64MMFR4_EL1_NV_frac),
2891 ID_UNALLOCATED(7,5),
2892 ID_UNALLOCATED(7,6),
2893 ID_UNALLOCATED(7,7),
2894
2895 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2896 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2897 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2898
2899 MTE_REG(RGSR_EL1),
2900 MTE_REG(GCR_EL1),
2901
2902 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2903 { SYS_DESC(SYS_TRFCR_EL1), undef_access },
2904 { SYS_DESC(SYS_SMPRI_EL1), undef_access },
2905 { SYS_DESC(SYS_SMCR_EL1), undef_access },
2906 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2907 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2908 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2909 { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0,
2910 .visibility = tcr2_visibility },
2911
2912 PTRAUTH_KEY(APIA),
2913 PTRAUTH_KEY(APIB),
2914 PTRAUTH_KEY(APDA),
2915 PTRAUTH_KEY(APDB),
2916 PTRAUTH_KEY(APGA),
2917
2918 { SYS_DESC(SYS_SPSR_EL1), access_spsr},
2919 { SYS_DESC(SYS_ELR_EL1), access_elr},
2920
2921 { SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
2922
2923 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2924 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2925 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2926
2927 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2928 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2929 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2930 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2931 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2932 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2933 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2934 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2935
2936 MTE_REG(TFSR_EL1),
2937 MTE_REG(TFSRE0_EL1),
2938
2939 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2940 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2941
2942 { SYS_DESC(SYS_PMSCR_EL1), undef_access },
2943 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2944 { SYS_DESC(SYS_PMSICR_EL1), undef_access },
2945 { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2946 { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2947 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2948 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2949 { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2950 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2951 { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2952 { SYS_DESC(SYS_PMBSR_EL1), undef_access },
2953 /* PMBIDR_EL1 is not trapped */
2954
2955 { PMU_SYS_REG(PMINTENSET_EL1),
2956 .access = access_pminten, .reg = PMINTENSET_EL1,
2957 .get_user = get_pmreg, .set_user = set_pmreg },
2958 { PMU_SYS_REG(PMINTENCLR_EL1),
2959 .access = access_pminten, .reg = PMINTENSET_EL1,
2960 .get_user = get_pmreg, .set_user = set_pmreg },
2961 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2962
2963 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2964 { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1,
2965 .visibility = s1pie_visibility },
2966 { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1,
2967 .visibility = s1pie_visibility },
2968 { SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1,
2969 .visibility = s1poe_visibility },
2970 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2971
2972 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2973 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2974 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
2975 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
2976 { SYS_DESC(SYS_MPAMIDR_EL1), undef_access },
2977 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
2978
2979 { SYS_DESC(SYS_MPAM1_EL1), undef_access },
2980 { SYS_DESC(SYS_MPAM0_EL1), undef_access },
2981 { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2982 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2983
2984 { SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
2985 { SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
2986 { SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
2987 { SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
2988 { SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
2989 { SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
2990 { SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
2991 { SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
2992 { SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
2993 { SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
2994 { SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
2995 { SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
2996 { SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
2997 { SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
2998 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2999 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
3000 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
3001 { SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
3002 { SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
3003 { SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
3004 { SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
3005 { SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
3006 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
3007 { SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
3008 { SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
3009
3010 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
3011 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
3012
3013 { SYS_DESC(SYS_ACCDATA_EL1), undef_access },
3014
3015 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
3016
3017 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
3018
3019 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
3020 { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
3021 .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
3022 { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
3023 { SYS_DESC(SYS_SMIDR_EL1), undef_access },
3024 IMPLEMENTATION_ID(AIDR_EL1, GENMASK_ULL(63, 0)),
3025 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
3026 ID_FILTERED(CTR_EL0, ctr_el0,
3027 CTR_EL0_DIC_MASK |
3028 CTR_EL0_IDC_MASK |
3029 CTR_EL0_DminLine_MASK |
3030 CTR_EL0_L1Ip_MASK |
3031 CTR_EL0_IminLine_MASK),
3032 { SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility },
3033 { SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility },
3034
3035 { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
3036 .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
3037 { PMU_SYS_REG(PMCNTENSET_EL0),
3038 .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3039 .get_user = get_pmreg, .set_user = set_pmreg },
3040 { PMU_SYS_REG(PMCNTENCLR_EL0),
3041 .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3042 .get_user = get_pmreg, .set_user = set_pmreg },
3043 { PMU_SYS_REG(PMOVSCLR_EL0),
3044 .access = access_pmovs, .reg = PMOVSSET_EL0,
3045 .get_user = get_pmreg, .set_user = set_pmreg },
3046 /*
3047 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
3048 * previously (and pointlessly) advertised in the past...
3049 */
3050 { PMU_SYS_REG(PMSWINC_EL0),
3051 .get_user = get_raz_reg, .set_user = set_wi_reg,
3052 .access = access_pmswinc, .reset = NULL },
3053 { PMU_SYS_REG(PMSELR_EL0),
3054 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
3055 { PMU_SYS_REG(PMCEID0_EL0),
3056 .access = access_pmceid, .reset = NULL },
3057 { PMU_SYS_REG(PMCEID1_EL0),
3058 .access = access_pmceid, .reset = NULL },
3059 { PMU_SYS_REG(PMCCNTR_EL0),
3060 .access = access_pmu_evcntr, .reset = reset_unknown,
3061 .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr,
3062 .set_user = set_pmu_evcntr },
3063 { PMU_SYS_REG(PMXEVTYPER_EL0),
3064 .access = access_pmu_evtyper, .reset = NULL },
3065 { PMU_SYS_REG(PMXEVCNTR_EL0),
3066 .access = access_pmu_evcntr, .reset = NULL },
3067 /*
3068 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
3069 * in 32bit mode. Here we choose to reset it as zero for consistency.
3070 */
3071 { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
3072 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
3073 { PMU_SYS_REG(PMOVSSET_EL0),
3074 .access = access_pmovs, .reg = PMOVSSET_EL0,
3075 .get_user = get_pmreg, .set_user = set_pmreg },
3076
3077 { SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0,
3078 .visibility = s1poe_visibility },
3079 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
3080 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
3081 { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
3082
3083 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
3084
3085 { SYS_DESC(SYS_AMCR_EL0), undef_access },
3086 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
3087 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
3088 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
3089 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
3090 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
3091 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
3092 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
3093 AMU_AMEVCNTR0_EL0(0),
3094 AMU_AMEVCNTR0_EL0(1),
3095 AMU_AMEVCNTR0_EL0(2),
3096 AMU_AMEVCNTR0_EL0(3),
3097 AMU_AMEVCNTR0_EL0(4),
3098 AMU_AMEVCNTR0_EL0(5),
3099 AMU_AMEVCNTR0_EL0(6),
3100 AMU_AMEVCNTR0_EL0(7),
3101 AMU_AMEVCNTR0_EL0(8),
3102 AMU_AMEVCNTR0_EL0(9),
3103 AMU_AMEVCNTR0_EL0(10),
3104 AMU_AMEVCNTR0_EL0(11),
3105 AMU_AMEVCNTR0_EL0(12),
3106 AMU_AMEVCNTR0_EL0(13),
3107 AMU_AMEVCNTR0_EL0(14),
3108 AMU_AMEVCNTR0_EL0(15),
3109 AMU_AMEVTYPER0_EL0(0),
3110 AMU_AMEVTYPER0_EL0(1),
3111 AMU_AMEVTYPER0_EL0(2),
3112 AMU_AMEVTYPER0_EL0(3),
3113 AMU_AMEVTYPER0_EL0(4),
3114 AMU_AMEVTYPER0_EL0(5),
3115 AMU_AMEVTYPER0_EL0(6),
3116 AMU_AMEVTYPER0_EL0(7),
3117 AMU_AMEVTYPER0_EL0(8),
3118 AMU_AMEVTYPER0_EL0(9),
3119 AMU_AMEVTYPER0_EL0(10),
3120 AMU_AMEVTYPER0_EL0(11),
3121 AMU_AMEVTYPER0_EL0(12),
3122 AMU_AMEVTYPER0_EL0(13),
3123 AMU_AMEVTYPER0_EL0(14),
3124 AMU_AMEVTYPER0_EL0(15),
3125 AMU_AMEVCNTR1_EL0(0),
3126 AMU_AMEVCNTR1_EL0(1),
3127 AMU_AMEVCNTR1_EL0(2),
3128 AMU_AMEVCNTR1_EL0(3),
3129 AMU_AMEVCNTR1_EL0(4),
3130 AMU_AMEVCNTR1_EL0(5),
3131 AMU_AMEVCNTR1_EL0(6),
3132 AMU_AMEVCNTR1_EL0(7),
3133 AMU_AMEVCNTR1_EL0(8),
3134 AMU_AMEVCNTR1_EL0(9),
3135 AMU_AMEVCNTR1_EL0(10),
3136 AMU_AMEVCNTR1_EL0(11),
3137 AMU_AMEVCNTR1_EL0(12),
3138 AMU_AMEVCNTR1_EL0(13),
3139 AMU_AMEVCNTR1_EL0(14),
3140 AMU_AMEVCNTR1_EL0(15),
3141 AMU_AMEVTYPER1_EL0(0),
3142 AMU_AMEVTYPER1_EL0(1),
3143 AMU_AMEVTYPER1_EL0(2),
3144 AMU_AMEVTYPER1_EL0(3),
3145 AMU_AMEVTYPER1_EL0(4),
3146 AMU_AMEVTYPER1_EL0(5),
3147 AMU_AMEVTYPER1_EL0(6),
3148 AMU_AMEVTYPER1_EL0(7),
3149 AMU_AMEVTYPER1_EL0(8),
3150 AMU_AMEVTYPER1_EL0(9),
3151 AMU_AMEVTYPER1_EL0(10),
3152 AMU_AMEVTYPER1_EL0(11),
3153 AMU_AMEVTYPER1_EL0(12),
3154 AMU_AMEVTYPER1_EL0(13),
3155 AMU_AMEVTYPER1_EL0(14),
3156 AMU_AMEVTYPER1_EL0(15),
3157
3158 { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
3159 { SYS_DESC(SYS_CNTVCT_EL0), access_arch_timer },
3160 { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
3161 { SYS_DESC(SYS_CNTVCTSS_EL0), access_arch_timer },
3162 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
3163 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
3164 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
3165
3166 { SYS_DESC(SYS_CNTV_TVAL_EL0), access_arch_timer },
3167 { SYS_DESC(SYS_CNTV_CTL_EL0), access_arch_timer },
3168 { SYS_DESC(SYS_CNTV_CVAL_EL0), access_arch_timer },
3169
3170 /* PMEVCNTRn_EL0 */
3171 PMU_PMEVCNTR_EL0(0),
3172 PMU_PMEVCNTR_EL0(1),
3173 PMU_PMEVCNTR_EL0(2),
3174 PMU_PMEVCNTR_EL0(3),
3175 PMU_PMEVCNTR_EL0(4),
3176 PMU_PMEVCNTR_EL0(5),
3177 PMU_PMEVCNTR_EL0(6),
3178 PMU_PMEVCNTR_EL0(7),
3179 PMU_PMEVCNTR_EL0(8),
3180 PMU_PMEVCNTR_EL0(9),
3181 PMU_PMEVCNTR_EL0(10),
3182 PMU_PMEVCNTR_EL0(11),
3183 PMU_PMEVCNTR_EL0(12),
3184 PMU_PMEVCNTR_EL0(13),
3185 PMU_PMEVCNTR_EL0(14),
3186 PMU_PMEVCNTR_EL0(15),
3187 PMU_PMEVCNTR_EL0(16),
3188 PMU_PMEVCNTR_EL0(17),
3189 PMU_PMEVCNTR_EL0(18),
3190 PMU_PMEVCNTR_EL0(19),
3191 PMU_PMEVCNTR_EL0(20),
3192 PMU_PMEVCNTR_EL0(21),
3193 PMU_PMEVCNTR_EL0(22),
3194 PMU_PMEVCNTR_EL0(23),
3195 PMU_PMEVCNTR_EL0(24),
3196 PMU_PMEVCNTR_EL0(25),
3197 PMU_PMEVCNTR_EL0(26),
3198 PMU_PMEVCNTR_EL0(27),
3199 PMU_PMEVCNTR_EL0(28),
3200 PMU_PMEVCNTR_EL0(29),
3201 PMU_PMEVCNTR_EL0(30),
3202 /* PMEVTYPERn_EL0 */
3203 PMU_PMEVTYPER_EL0(0),
3204 PMU_PMEVTYPER_EL0(1),
3205 PMU_PMEVTYPER_EL0(2),
3206 PMU_PMEVTYPER_EL0(3),
3207 PMU_PMEVTYPER_EL0(4),
3208 PMU_PMEVTYPER_EL0(5),
3209 PMU_PMEVTYPER_EL0(6),
3210 PMU_PMEVTYPER_EL0(7),
3211 PMU_PMEVTYPER_EL0(8),
3212 PMU_PMEVTYPER_EL0(9),
3213 PMU_PMEVTYPER_EL0(10),
3214 PMU_PMEVTYPER_EL0(11),
3215 PMU_PMEVTYPER_EL0(12),
3216 PMU_PMEVTYPER_EL0(13),
3217 PMU_PMEVTYPER_EL0(14),
3218 PMU_PMEVTYPER_EL0(15),
3219 PMU_PMEVTYPER_EL0(16),
3220 PMU_PMEVTYPER_EL0(17),
3221 PMU_PMEVTYPER_EL0(18),
3222 PMU_PMEVTYPER_EL0(19),
3223 PMU_PMEVTYPER_EL0(20),
3224 PMU_PMEVTYPER_EL0(21),
3225 PMU_PMEVTYPER_EL0(22),
3226 PMU_PMEVTYPER_EL0(23),
3227 PMU_PMEVTYPER_EL0(24),
3228 PMU_PMEVTYPER_EL0(25),
3229 PMU_PMEVTYPER_EL0(26),
3230 PMU_PMEVTYPER_EL0(27),
3231 PMU_PMEVTYPER_EL0(28),
3232 PMU_PMEVTYPER_EL0(29),
3233 PMU_PMEVTYPER_EL0(30),
3234 /*
3235 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
3236 * in 32bit mode. Here we choose to reset it as zero for consistency.
3237 */
3238 { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
3239 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
3240
3241 EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
3242 EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
3243 EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
3244 EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
3245 EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
3246 EL2_REG(MDCR_EL2, access_mdcr, reset_val, 0),
3247 EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
3248 EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
3249 EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
3250 EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
3251 EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
3252 EL2_REG_VNCR(HACR_EL2, reset_val, 0),
3253
3254 EL2_REG_FILTERED(ZCR_EL2, access_zcr_el2, reset_val, 0,
3255 sve_el2_visibility),
3256
3257 EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
3258
3259 EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
3260 EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
3261 EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
3262 EL2_REG_FILTERED(TCR2_EL2, access_rw, reset_val, TCR2_EL2_RES1,
3263 tcr2_el2_visibility),
3264 EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
3265 EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
3266
3267 { SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 },
3268 EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
3269 EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
3270 EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
3271 EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
3272 EL2_REG_REDIR(ELR_EL2, reset_val, 0),
3273 { SYS_DESC(SYS_SP_EL1), access_sp_el1},
3274
3275 /* AArch32 SPSR_* are RES0 if trapped from a NV guest */
3276 { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi },
3277 { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi },
3278 { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi },
3279 { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi },
3280
3281 { SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 },
3282 EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
3283 EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
3284 EL2_REG_REDIR(ESR_EL2, reset_val, 0),
3285 { SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 },
3286
3287 EL2_REG_REDIR(FAR_EL2, reset_val, 0),
3288 EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
3289
3290 EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
3291 EL2_REG_FILTERED(PIRE0_EL2, access_rw, reset_val, 0,
3292 s1pie_el2_visibility),
3293 EL2_REG_FILTERED(PIR_EL2, access_rw, reset_val, 0,
3294 s1pie_el2_visibility),
3295 EL2_REG_FILTERED(POR_EL2, access_rw, reset_val, 0,
3296 s1poe_el2_visibility),
3297 EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
3298 { SYS_DESC(SYS_MPAMHCR_EL2), undef_access },
3299 { SYS_DESC(SYS_MPAMVPMV_EL2), undef_access },
3300 { SYS_DESC(SYS_MPAM2_EL2), undef_access },
3301 { SYS_DESC(SYS_MPAMVPM0_EL2), undef_access },
3302 { SYS_DESC(SYS_MPAMVPM1_EL2), undef_access },
3303 { SYS_DESC(SYS_MPAMVPM2_EL2), undef_access },
3304 { SYS_DESC(SYS_MPAMVPM3_EL2), undef_access },
3305 { SYS_DESC(SYS_MPAMVPM4_EL2), undef_access },
3306 { SYS_DESC(SYS_MPAMVPM5_EL2), undef_access },
3307 { SYS_DESC(SYS_MPAMVPM6_EL2), undef_access },
3308 { SYS_DESC(SYS_MPAMVPM7_EL2), undef_access },
3309
3310 EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
3311 EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
3312 { SYS_DESC(SYS_RMR_EL2), undef_access },
3313
3314 EL2_REG_VNCR(ICH_AP0R0_EL2, reset_val, 0),
3315 EL2_REG_VNCR(ICH_AP0R1_EL2, reset_val, 0),
3316 EL2_REG_VNCR(ICH_AP0R2_EL2, reset_val, 0),
3317 EL2_REG_VNCR(ICH_AP0R3_EL2, reset_val, 0),
3318 EL2_REG_VNCR(ICH_AP1R0_EL2, reset_val, 0),
3319 EL2_REG_VNCR(ICH_AP1R1_EL2, reset_val, 0),
3320 EL2_REG_VNCR(ICH_AP1R2_EL2, reset_val, 0),
3321 EL2_REG_VNCR(ICH_AP1R3_EL2, reset_val, 0),
3322
3323 { SYS_DESC(SYS_ICC_SRE_EL2), access_gic_sre },
3324
3325 EL2_REG_VNCR(ICH_HCR_EL2, reset_val, 0),
3326 { SYS_DESC(SYS_ICH_VTR_EL2), access_gic_vtr },
3327 { SYS_DESC(SYS_ICH_MISR_EL2), access_gic_misr },
3328 { SYS_DESC(SYS_ICH_EISR_EL2), access_gic_eisr },
3329 { SYS_DESC(SYS_ICH_ELRSR_EL2), access_gic_elrsr },
3330 EL2_REG_VNCR(ICH_VMCR_EL2, reset_val, 0),
3331
3332 EL2_REG_VNCR(ICH_LR0_EL2, reset_val, 0),
3333 EL2_REG_VNCR(ICH_LR1_EL2, reset_val, 0),
3334 EL2_REG_VNCR(ICH_LR2_EL2, reset_val, 0),
3335 EL2_REG_VNCR(ICH_LR3_EL2, reset_val, 0),
3336 EL2_REG_VNCR(ICH_LR4_EL2, reset_val, 0),
3337 EL2_REG_VNCR(ICH_LR5_EL2, reset_val, 0),
3338 EL2_REG_VNCR(ICH_LR6_EL2, reset_val, 0),
3339 EL2_REG_VNCR(ICH_LR7_EL2, reset_val, 0),
3340 EL2_REG_VNCR(ICH_LR8_EL2, reset_val, 0),
3341 EL2_REG_VNCR(ICH_LR9_EL2, reset_val, 0),
3342 EL2_REG_VNCR(ICH_LR10_EL2, reset_val, 0),
3343 EL2_REG_VNCR(ICH_LR11_EL2, reset_val, 0),
3344 EL2_REG_VNCR(ICH_LR12_EL2, reset_val, 0),
3345 EL2_REG_VNCR(ICH_LR13_EL2, reset_val, 0),
3346 EL2_REG_VNCR(ICH_LR14_EL2, reset_val, 0),
3347 EL2_REG_VNCR(ICH_LR15_EL2, reset_val, 0),
3348
3349 EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
3350 EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
3351
3352 EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
3353 EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
3354 { SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer },
3355 EL2_REG(CNTHP_CTL_EL2, access_arch_timer, reset_val, 0),
3356 EL2_REG(CNTHP_CVAL_EL2, access_arch_timer, reset_val, 0),
3357
3358 { SYS_DESC(SYS_CNTHV_TVAL_EL2), access_hv_timer },
3359 EL2_REG(CNTHV_CTL_EL2, access_hv_timer, reset_val, 0),
3360 EL2_REG(CNTHV_CVAL_EL2, access_hv_timer, reset_val, 0),
3361
3362 { SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 },
3363
3364 { SYS_DESC(SYS_CNTP_TVAL_EL02), access_arch_timer },
3365 { SYS_DESC(SYS_CNTP_CTL_EL02), access_arch_timer },
3366 { SYS_DESC(SYS_CNTP_CVAL_EL02), access_arch_timer },
3367
3368 { SYS_DESC(SYS_CNTV_TVAL_EL02), access_arch_timer },
3369 { SYS_DESC(SYS_CNTV_CTL_EL02), access_arch_timer },
3370 { SYS_DESC(SYS_CNTV_CVAL_EL02), access_arch_timer },
3371
3372 EL2_REG(SP_EL2, NULL, reset_unknown, 0),
3373 };
3374
handle_at_s1e01(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3375 static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3376 const struct sys_reg_desc *r)
3377 {
3378 u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3379
3380 __kvm_at_s1e01(vcpu, op, p->regval);
3381
3382 return true;
3383 }
3384
handle_at_s1e2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3385 static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3386 const struct sys_reg_desc *r)
3387 {
3388 u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3389
3390 /* There is no FGT associated with AT S1E2A :-( */
3391 if (op == OP_AT_S1E2A &&
3392 !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) {
3393 kvm_inject_undefined(vcpu);
3394 return false;
3395 }
3396
3397 __kvm_at_s1e2(vcpu, op, p->regval);
3398
3399 return true;
3400 }
3401
handle_at_s12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3402 static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3403 const struct sys_reg_desc *r)
3404 {
3405 u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3406
3407 __kvm_at_s12(vcpu, op, p->regval);
3408
3409 return true;
3410 }
3411
kvm_supported_tlbi_s12_op(struct kvm_vcpu * vpcu,u32 instr)3412 static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
3413 {
3414 struct kvm *kvm = vpcu->kvm;
3415 u8 CRm = sys_reg_CRm(instr);
3416
3417 if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3418 !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3419 return false;
3420
3421 if (CRm == TLBI_CRm_nROS &&
3422 !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3423 return false;
3424
3425 return true;
3426 }
3427
handle_alle1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3428 static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3429 const struct sys_reg_desc *r)
3430 {
3431 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3432
3433 if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3434 return undef_access(vcpu, p, r);
3435
3436 write_lock(&vcpu->kvm->mmu_lock);
3437
3438 /*
3439 * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
3440 * corresponding VMIDs.
3441 */
3442 kvm_nested_s2_unmap(vcpu->kvm, true);
3443
3444 write_unlock(&vcpu->kvm->mmu_lock);
3445
3446 return true;
3447 }
3448
kvm_supported_tlbi_ipas2_op(struct kvm_vcpu * vpcu,u32 instr)3449 static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
3450 {
3451 struct kvm *kvm = vpcu->kvm;
3452 u8 CRm = sys_reg_CRm(instr);
3453 u8 Op2 = sys_reg_Op2(instr);
3454
3455 if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3456 !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3457 return false;
3458
3459 if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
3460 !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3461 return false;
3462
3463 if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
3464 !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3465 return false;
3466
3467 if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
3468 !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3469 return false;
3470
3471 return true;
3472 }
3473
3474 /* Only defined here as this is an internal "abstraction" */
3475 union tlbi_info {
3476 struct {
3477 u64 start;
3478 u64 size;
3479 } range;
3480
3481 struct {
3482 u64 addr;
3483 } ipa;
3484
3485 struct {
3486 u64 addr;
3487 u32 encoding;
3488 } va;
3489 };
3490
s2_mmu_unmap_range(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3491 static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
3492 const union tlbi_info *info)
3493 {
3494 /*
3495 * The unmap operation is allowed to drop the MMU lock and block, which
3496 * means that @mmu could be used for a different context than the one
3497 * currently being invalidated.
3498 *
3499 * This behavior is still safe, as:
3500 *
3501 * 1) The vCPU(s) that recycled the MMU are responsible for invalidating
3502 * the entire MMU before reusing it, which still honors the intent
3503 * of a TLBI.
3504 *
3505 * 2) Until the guest TLBI instruction is 'retired' (i.e. increment PC
3506 * and ERET to the guest), other vCPUs are allowed to use stale
3507 * translations.
3508 *
3509 * 3) Accidentally unmapping an unrelated MMU context is nonfatal, and
3510 * at worst may cause more aborts for shadow stage-2 fills.
3511 *
3512 * Dropping the MMU lock also implies that shadow stage-2 fills could
3513 * happen behind the back of the TLBI. This is still safe, though, as
3514 * the L1 needs to put its stage-2 in a consistent state before doing
3515 * the TLBI.
3516 */
3517 kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true);
3518 }
3519
handle_vmalls12e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3520 static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3521 const struct sys_reg_desc *r)
3522 {
3523 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3524 u64 limit, vttbr;
3525
3526 if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3527 return undef_access(vcpu, p, r);
3528
3529 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3530 limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
3531
3532 kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3533 &(union tlbi_info) {
3534 .range = {
3535 .start = 0,
3536 .size = limit,
3537 },
3538 },
3539 s2_mmu_unmap_range);
3540
3541 return true;
3542 }
3543
handle_ripas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3544 static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3545 const struct sys_reg_desc *r)
3546 {
3547 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3548 u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3549 u64 base, range, tg, num, scale;
3550 int shift;
3551
3552 if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3553 return undef_access(vcpu, p, r);
3554
3555 /*
3556 * Because the shadow S2 structure doesn't necessarily reflect that
3557 * of the guest's S2 (different base granule size, for example), we
3558 * decide to ignore TTL and only use the described range.
3559 */
3560 tg = FIELD_GET(GENMASK(47, 46), p->regval);
3561 scale = FIELD_GET(GENMASK(45, 44), p->regval);
3562 num = FIELD_GET(GENMASK(43, 39), p->regval);
3563 base = p->regval & GENMASK(36, 0);
3564
3565 switch(tg) {
3566 case 1:
3567 shift = 12;
3568 break;
3569 case 2:
3570 shift = 14;
3571 break;
3572 case 3:
3573 default: /* IMPDEF: handle tg==0 as 64k */
3574 shift = 16;
3575 break;
3576 }
3577
3578 base <<= shift;
3579 range = __TLBI_RANGE_PAGES(num, scale) << shift;
3580
3581 kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3582 &(union tlbi_info) {
3583 .range = {
3584 .start = base,
3585 .size = range,
3586 },
3587 },
3588 s2_mmu_unmap_range);
3589
3590 return true;
3591 }
3592
s2_mmu_unmap_ipa(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3593 static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
3594 const union tlbi_info *info)
3595 {
3596 unsigned long max_size;
3597 u64 base_addr;
3598
3599 /*
3600 * We drop a number of things from the supplied value:
3601 *
3602 * - NS bit: we're non-secure only.
3603 *
3604 * - IPA[51:48]: We don't support 52bit IPA just yet...
3605 *
3606 * And of course, adjust the IPA to be on an actual address.
3607 */
3608 base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
3609 max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
3610 base_addr &= ~(max_size - 1);
3611
3612 /*
3613 * See comment in s2_mmu_unmap_range() for why this is allowed to
3614 * reschedule.
3615 */
3616 kvm_stage2_unmap_range(mmu, base_addr, max_size, true);
3617 }
3618
handle_ipas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3619 static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3620 const struct sys_reg_desc *r)
3621 {
3622 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3623 u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3624
3625 if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3626 return undef_access(vcpu, p, r);
3627
3628 kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3629 &(union tlbi_info) {
3630 .ipa = {
3631 .addr = p->regval,
3632 },
3633 },
3634 s2_mmu_unmap_ipa);
3635
3636 return true;
3637 }
3638
s2_mmu_tlbi_s1e1(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3639 static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
3640 const union tlbi_info *info)
3641 {
3642 WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
3643 }
3644
handle_tlbi_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3645 static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3646 const struct sys_reg_desc *r)
3647 {
3648 u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3649 u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3650
3651 /*
3652 * If we're here, this is because we've trapped on a EL1 TLBI
3653 * instruction that affects the EL1 translation regime while
3654 * we're running in a context that doesn't allow us to let the
3655 * HW do its thing (aka vEL2):
3656 *
3657 * - HCR_EL2.E2H == 0 : a non-VHE guest
3658 * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
3659 *
3660 * We don't expect these helpers to ever be called when running
3661 * in a vEL1 context.
3662 */
3663
3664 WARN_ON(!vcpu_is_el2(vcpu));
3665
3666 if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding))
3667 return undef_access(vcpu, p, r);
3668
3669 kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3670 &(union tlbi_info) {
3671 .va = {
3672 .addr = p->regval,
3673 .encoding = sys_encoding,
3674 },
3675 },
3676 s2_mmu_tlbi_s1e1);
3677
3678 return true;
3679 }
3680
3681 #define SYS_INSN(insn, access_fn) \
3682 { \
3683 SYS_DESC(OP_##insn), \
3684 .access = (access_fn), \
3685 }
3686
3687 static struct sys_reg_desc sys_insn_descs[] = {
3688 { SYS_DESC(SYS_DC_ISW), access_dcsw },
3689 { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
3690 { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
3691
3692 SYS_INSN(AT_S1E1R, handle_at_s1e01),
3693 SYS_INSN(AT_S1E1W, handle_at_s1e01),
3694 SYS_INSN(AT_S1E0R, handle_at_s1e01),
3695 SYS_INSN(AT_S1E0W, handle_at_s1e01),
3696 SYS_INSN(AT_S1E1RP, handle_at_s1e01),
3697 SYS_INSN(AT_S1E1WP, handle_at_s1e01),
3698
3699 { SYS_DESC(SYS_DC_CSW), access_dcsw },
3700 { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
3701 { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
3702 { SYS_DESC(SYS_DC_CISW), access_dcsw },
3703 { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
3704 { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
3705
3706 SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
3707 SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
3708 SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
3709 SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
3710 SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
3711 SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
3712
3713 SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
3714 SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
3715 SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
3716 SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
3717
3718 SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
3719 SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
3720 SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
3721 SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
3722 SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
3723 SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
3724
3725 SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
3726 SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
3727 SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
3728 SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
3729
3730 SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
3731 SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
3732 SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
3733 SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
3734
3735 SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
3736 SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
3737 SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
3738 SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
3739 SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
3740 SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
3741
3742 SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
3743 SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
3744 SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
3745 SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
3746 SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
3747 SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
3748
3749 SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
3750 SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
3751 SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
3752 SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
3753
3754 SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
3755 SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
3756 SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
3757 SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
3758 SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
3759 SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
3760
3761 SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
3762 SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
3763 SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
3764 SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
3765
3766 SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
3767 SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
3768 SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
3769 SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
3770
3771 SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
3772 SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
3773 SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
3774 SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
3775 SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
3776 SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
3777
3778 SYS_INSN(AT_S1E2R, handle_at_s1e2),
3779 SYS_INSN(AT_S1E2W, handle_at_s1e2),
3780 SYS_INSN(AT_S12E1R, handle_at_s12),
3781 SYS_INSN(AT_S12E1W, handle_at_s12),
3782 SYS_INSN(AT_S12E0R, handle_at_s12),
3783 SYS_INSN(AT_S12E0W, handle_at_s12),
3784 SYS_INSN(AT_S1E2A, handle_at_s1e2),
3785
3786 SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
3787 SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
3788 SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
3789 SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
3790
3791 SYS_INSN(TLBI_ALLE2OS, undef_access),
3792 SYS_INSN(TLBI_VAE2OS, undef_access),
3793 SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
3794 SYS_INSN(TLBI_VALE2OS, undef_access),
3795 SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
3796
3797 SYS_INSN(TLBI_RVAE2IS, undef_access),
3798 SYS_INSN(TLBI_RVALE2IS, undef_access),
3799
3800 SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
3801 SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
3802 SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
3803 SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
3804 SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
3805 SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
3806 SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
3807 SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
3808 SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
3809 SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
3810 SYS_INSN(TLBI_RVAE2OS, undef_access),
3811 SYS_INSN(TLBI_RVALE2OS, undef_access),
3812 SYS_INSN(TLBI_RVAE2, undef_access),
3813 SYS_INSN(TLBI_RVALE2, undef_access),
3814 SYS_INSN(TLBI_ALLE1, handle_alle1is),
3815 SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
3816
3817 SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
3818 SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
3819 SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
3820 SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
3821
3822 SYS_INSN(TLBI_ALLE2OSNXS, undef_access),
3823 SYS_INSN(TLBI_VAE2OSNXS, undef_access),
3824 SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
3825 SYS_INSN(TLBI_VALE2OSNXS, undef_access),
3826 SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
3827
3828 SYS_INSN(TLBI_RVAE2ISNXS, undef_access),
3829 SYS_INSN(TLBI_RVALE2ISNXS, undef_access),
3830 SYS_INSN(TLBI_ALLE2ISNXS, undef_access),
3831 SYS_INSN(TLBI_VAE2ISNXS, undef_access),
3832
3833 SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
3834 SYS_INSN(TLBI_VALE2ISNXS, undef_access),
3835 SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
3836 SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
3837 SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
3838 SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
3839 SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
3840 SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
3841 SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
3842 SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
3843 SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
3844 SYS_INSN(TLBI_RVAE2OSNXS, undef_access),
3845 SYS_INSN(TLBI_RVALE2OSNXS, undef_access),
3846 SYS_INSN(TLBI_RVAE2NXS, undef_access),
3847 SYS_INSN(TLBI_RVALE2NXS, undef_access),
3848 SYS_INSN(TLBI_ALLE2NXS, undef_access),
3849 SYS_INSN(TLBI_VAE2NXS, undef_access),
3850 SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
3851 SYS_INSN(TLBI_VALE2NXS, undef_access),
3852 SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
3853 };
3854
trap_dbgdidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3855 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
3856 struct sys_reg_params *p,
3857 const struct sys_reg_desc *r)
3858 {
3859 if (p->is_write) {
3860 return ignore_write(vcpu, p);
3861 } else {
3862 u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
3863 u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
3864
3865 p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
3866 (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
3867 (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
3868 (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
3869 (1 << 15) | (el3 << 14) | (el3 << 12));
3870 return true;
3871 }
3872 }
3873
3874 /*
3875 * AArch32 debug register mappings
3876 *
3877 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
3878 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
3879 *
3880 * None of the other registers share their location, so treat them as
3881 * if they were 64bit.
3882 */
3883 #define DBG_BCR_BVR_WCR_WVR(n) \
3884 /* DBGBVRn */ \
3885 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), \
3886 trap_dbg_wb_reg, NULL, n }, \
3887 /* DBGBCRn */ \
3888 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_dbg_wb_reg, NULL, n }, \
3889 /* DBGWVRn */ \
3890 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_dbg_wb_reg, NULL, n }, \
3891 /* DBGWCRn */ \
3892 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_dbg_wb_reg, NULL, n }
3893
3894 #define DBGBXVR(n) \
3895 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), \
3896 trap_dbg_wb_reg, NULL, n }
3897
3898 /*
3899 * Trapped cp14 registers. We generally ignore most of the external
3900 * debug, on the principle that they don't really make sense to a
3901 * guest. Revisit this one day, would this principle change.
3902 */
3903 static const struct sys_reg_desc cp14_regs[] = {
3904 /* DBGDIDR */
3905 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
3906 /* DBGDTRRXext */
3907 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
3908
3909 DBG_BCR_BVR_WCR_WVR(0),
3910 /* DBGDSCRint */
3911 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
3912 DBG_BCR_BVR_WCR_WVR(1),
3913 /* DBGDCCINT */
3914 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
3915 /* DBGDSCRext */
3916 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
3917 DBG_BCR_BVR_WCR_WVR(2),
3918 /* DBGDTR[RT]Xint */
3919 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
3920 /* DBGDTR[RT]Xext */
3921 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
3922 DBG_BCR_BVR_WCR_WVR(3),
3923 DBG_BCR_BVR_WCR_WVR(4),
3924 DBG_BCR_BVR_WCR_WVR(5),
3925 /* DBGWFAR */
3926 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
3927 /* DBGOSECCR */
3928 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
3929 DBG_BCR_BVR_WCR_WVR(6),
3930 /* DBGVCR */
3931 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
3932 DBG_BCR_BVR_WCR_WVR(7),
3933 DBG_BCR_BVR_WCR_WVR(8),
3934 DBG_BCR_BVR_WCR_WVR(9),
3935 DBG_BCR_BVR_WCR_WVR(10),
3936 DBG_BCR_BVR_WCR_WVR(11),
3937 DBG_BCR_BVR_WCR_WVR(12),
3938 DBG_BCR_BVR_WCR_WVR(13),
3939 DBG_BCR_BVR_WCR_WVR(14),
3940 DBG_BCR_BVR_WCR_WVR(15),
3941
3942 /* DBGDRAR (32bit) */
3943 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
3944
3945 DBGBXVR(0),
3946 /* DBGOSLAR */
3947 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
3948 DBGBXVR(1),
3949 /* DBGOSLSR */
3950 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
3951 DBGBXVR(2),
3952 DBGBXVR(3),
3953 /* DBGOSDLR */
3954 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
3955 DBGBXVR(4),
3956 /* DBGPRCR */
3957 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
3958 DBGBXVR(5),
3959 DBGBXVR(6),
3960 DBGBXVR(7),
3961 DBGBXVR(8),
3962 DBGBXVR(9),
3963 DBGBXVR(10),
3964 DBGBXVR(11),
3965 DBGBXVR(12),
3966 DBGBXVR(13),
3967 DBGBXVR(14),
3968 DBGBXVR(15),
3969
3970 /* DBGDSAR (32bit) */
3971 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
3972
3973 /* DBGDEVID2 */
3974 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
3975 /* DBGDEVID1 */
3976 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
3977 /* DBGDEVID */
3978 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
3979 /* DBGCLAIMSET */
3980 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
3981 /* DBGCLAIMCLR */
3982 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
3983 /* DBGAUTHSTATUS */
3984 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
3985 };
3986
3987 /* Trapped cp14 64bit registers */
3988 static const struct sys_reg_desc cp14_64_regs[] = {
3989 /* DBGDRAR (64bit) */
3990 { Op1( 0), CRm( 1), .access = trap_raz_wi },
3991
3992 /* DBGDSAR (64bit) */
3993 { Op1( 0), CRm( 2), .access = trap_raz_wi },
3994 };
3995
3996 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \
3997 AA32(_map), \
3998 Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \
3999 .visibility = pmu_visibility
4000
4001 /* Macro to expand the PMEVCNTRn register */
4002 #define PMU_PMEVCNTR(n) \
4003 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
4004 (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
4005 .access = access_pmu_evcntr }
4006
4007 /* Macro to expand the PMEVTYPERn register */
4008 #define PMU_PMEVTYPER(n) \
4009 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
4010 (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
4011 .access = access_pmu_evtyper }
4012 /*
4013 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
4014 * depending on the way they are accessed (as a 32bit or a 64bit
4015 * register).
4016 */
4017 static const struct sys_reg_desc cp15_regs[] = {
4018 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
4019 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
4020 /* ACTLR */
4021 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
4022 /* ACTLR2 */
4023 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
4024 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4025 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
4026 /* TTBCR */
4027 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
4028 /* TTBCR2 */
4029 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
4030 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
4031 { CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
4032 /* DFSR */
4033 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
4034 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
4035 /* ADFSR */
4036 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
4037 /* AIFSR */
4038 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
4039 /* DFAR */
4040 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
4041 /* IFAR */
4042 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
4043
4044 /*
4045 * DC{C,I,CI}SW operations:
4046 */
4047 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
4048 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
4049 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4050
4051 /* PMU */
4052 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
4053 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
4054 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
4055 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
4056 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
4057 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
4058 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid },
4059 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid },
4060 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
4061 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
4062 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
4063 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
4064 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
4065 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
4066 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
4067 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid },
4068 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid },
4069 /* PMMIR */
4070 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
4071
4072 /* PRRR/MAIR0 */
4073 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
4074 /* NMRR/MAIR1 */
4075 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
4076 /* AMAIR0 */
4077 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
4078 /* AMAIR1 */
4079 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
4080
4081 { CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
4082 { CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
4083 { CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
4084 { CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
4085 { CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
4086 { CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
4087 { CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
4088 { CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
4089 { CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
4090 { CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
4091 { CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
4092 { CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
4093 { CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
4094 { CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
4095 { CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
4096 { CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
4097 { CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
4098 { CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
4099 { CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
4100 { CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
4101 { CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
4102 { CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
4103
4104 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
4105
4106 /* Arch Tmers */
4107 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
4108 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
4109
4110 /* PMEVCNTRn */
4111 PMU_PMEVCNTR(0),
4112 PMU_PMEVCNTR(1),
4113 PMU_PMEVCNTR(2),
4114 PMU_PMEVCNTR(3),
4115 PMU_PMEVCNTR(4),
4116 PMU_PMEVCNTR(5),
4117 PMU_PMEVCNTR(6),
4118 PMU_PMEVCNTR(7),
4119 PMU_PMEVCNTR(8),
4120 PMU_PMEVCNTR(9),
4121 PMU_PMEVCNTR(10),
4122 PMU_PMEVCNTR(11),
4123 PMU_PMEVCNTR(12),
4124 PMU_PMEVCNTR(13),
4125 PMU_PMEVCNTR(14),
4126 PMU_PMEVCNTR(15),
4127 PMU_PMEVCNTR(16),
4128 PMU_PMEVCNTR(17),
4129 PMU_PMEVCNTR(18),
4130 PMU_PMEVCNTR(19),
4131 PMU_PMEVCNTR(20),
4132 PMU_PMEVCNTR(21),
4133 PMU_PMEVCNTR(22),
4134 PMU_PMEVCNTR(23),
4135 PMU_PMEVCNTR(24),
4136 PMU_PMEVCNTR(25),
4137 PMU_PMEVCNTR(26),
4138 PMU_PMEVCNTR(27),
4139 PMU_PMEVCNTR(28),
4140 PMU_PMEVCNTR(29),
4141 PMU_PMEVCNTR(30),
4142 /* PMEVTYPERn */
4143 PMU_PMEVTYPER(0),
4144 PMU_PMEVTYPER(1),
4145 PMU_PMEVTYPER(2),
4146 PMU_PMEVTYPER(3),
4147 PMU_PMEVTYPER(4),
4148 PMU_PMEVTYPER(5),
4149 PMU_PMEVTYPER(6),
4150 PMU_PMEVTYPER(7),
4151 PMU_PMEVTYPER(8),
4152 PMU_PMEVTYPER(9),
4153 PMU_PMEVTYPER(10),
4154 PMU_PMEVTYPER(11),
4155 PMU_PMEVTYPER(12),
4156 PMU_PMEVTYPER(13),
4157 PMU_PMEVTYPER(14),
4158 PMU_PMEVTYPER(15),
4159 PMU_PMEVTYPER(16),
4160 PMU_PMEVTYPER(17),
4161 PMU_PMEVTYPER(18),
4162 PMU_PMEVTYPER(19),
4163 PMU_PMEVTYPER(20),
4164 PMU_PMEVTYPER(21),
4165 PMU_PMEVTYPER(22),
4166 PMU_PMEVTYPER(23),
4167 PMU_PMEVTYPER(24),
4168 PMU_PMEVTYPER(25),
4169 PMU_PMEVTYPER(26),
4170 PMU_PMEVTYPER(27),
4171 PMU_PMEVTYPER(28),
4172 PMU_PMEVTYPER(29),
4173 PMU_PMEVTYPER(30),
4174 /* PMCCFILTR */
4175 { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
4176
4177 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
4178 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
4179
4180 /* CCSIDR2 */
4181 { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access },
4182
4183 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
4184 };
4185
4186 static const struct sys_reg_desc cp15_64_regs[] = {
4187 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4188 { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
4189 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
4190 { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer },
4191 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
4192 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
4193 { SYS_DESC(SYS_AARCH32_CNTVCT), access_arch_timer },
4194 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
4195 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
4196 { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer },
4197 { SYS_DESC(SYS_AARCH32_CNTVCTSS), access_arch_timer },
4198 };
4199
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool is_32)4200 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
4201 bool is_32)
4202 {
4203 unsigned int i;
4204
4205 for (i = 0; i < n; i++) {
4206 if (!is_32 && table[i].reg && !table[i].reset) {
4207 kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
4208 &table[i], i, table[i].name);
4209 return false;
4210 }
4211
4212 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
4213 kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
4214 &table[i], i, table[i - 1].name, table[i].name);
4215 return false;
4216 }
4217 }
4218
4219 return true;
4220 }
4221
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)4222 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
4223 {
4224 kvm_inject_undefined(vcpu);
4225 return 1;
4226 }
4227
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)4228 static void perform_access(struct kvm_vcpu *vcpu,
4229 struct sys_reg_params *params,
4230 const struct sys_reg_desc *r)
4231 {
4232 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
4233
4234 /* Check for regs disabled by runtime config */
4235 if (sysreg_hidden(vcpu, r)) {
4236 kvm_inject_undefined(vcpu);
4237 return;
4238 }
4239
4240 /*
4241 * Not having an accessor means that we have configured a trap
4242 * that we don't know how to handle. This certainly qualifies
4243 * as a gross bug that should be fixed right away.
4244 */
4245 BUG_ON(!r->access);
4246
4247 /* Skip instruction if instructed so */
4248 if (likely(r->access(vcpu, params, r)))
4249 kvm_incr_pc(vcpu);
4250 }
4251
4252 /*
4253 * emulate_cp -- tries to match a sys_reg access in a handling table, and
4254 * call the corresponding trap handler.
4255 *
4256 * @params: pointer to the descriptor of the access
4257 * @table: array of trap descriptors
4258 * @num: size of the trap descriptor array
4259 *
4260 * Return true if the access has been handled, false if not.
4261 */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)4262 static bool emulate_cp(struct kvm_vcpu *vcpu,
4263 struct sys_reg_params *params,
4264 const struct sys_reg_desc *table,
4265 size_t num)
4266 {
4267 const struct sys_reg_desc *r;
4268
4269 if (!table)
4270 return false; /* Not handled */
4271
4272 r = find_reg(params, table, num);
4273
4274 if (r) {
4275 perform_access(vcpu, params, r);
4276 return true;
4277 }
4278
4279 /* Not handled */
4280 return false;
4281 }
4282
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4283 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
4284 struct sys_reg_params *params)
4285 {
4286 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
4287 int cp = -1;
4288
4289 switch (esr_ec) {
4290 case ESR_ELx_EC_CP15_32:
4291 case ESR_ELx_EC_CP15_64:
4292 cp = 15;
4293 break;
4294 case ESR_ELx_EC_CP14_MR:
4295 case ESR_ELx_EC_CP14_64:
4296 cp = 14;
4297 break;
4298 default:
4299 WARN_ON(1);
4300 }
4301
4302 print_sys_reg_msg(params,
4303 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
4304 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4305 kvm_inject_undefined(vcpu);
4306 }
4307
4308 /**
4309 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
4310 * @vcpu: The VCPU pointer
4311 * @global: &struct sys_reg_desc
4312 * @nr_global: size of the @global array
4313 */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)4314 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
4315 const struct sys_reg_desc *global,
4316 size_t nr_global)
4317 {
4318 struct sys_reg_params params;
4319 u64 esr = kvm_vcpu_get_esr(vcpu);
4320 int Rt = kvm_vcpu_sys_get_rt(vcpu);
4321 int Rt2 = (esr >> 10) & 0x1f;
4322
4323 params.CRm = (esr >> 1) & 0xf;
4324 params.is_write = ((esr & 1) == 0);
4325
4326 params.Op0 = 0;
4327 params.Op1 = (esr >> 16) & 0xf;
4328 params.Op2 = 0;
4329 params.CRn = 0;
4330
4331 /*
4332 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
4333 * backends between AArch32 and AArch64, we get away with it.
4334 */
4335 if (params.is_write) {
4336 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
4337 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
4338 }
4339
4340 /*
4341 * If the table contains a handler, handle the
4342 * potential register operation in the case of a read and return
4343 * with success.
4344 */
4345 if (emulate_cp(vcpu, ¶ms, global, nr_global)) {
4346 /* Split up the value between registers for the read side */
4347 if (!params.is_write) {
4348 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
4349 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
4350 }
4351
4352 return 1;
4353 }
4354
4355 unhandled_cp_access(vcpu, ¶ms);
4356 return 1;
4357 }
4358
4359 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
4360
4361 /*
4362 * The CP10 ID registers are architecturally mapped to AArch64 feature
4363 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
4364 * from AArch32.
4365 */
kvm_esr_cp10_id_to_sys64(u64 esr,struct sys_reg_params * params)4366 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
4367 {
4368 u8 reg_id = (esr >> 10) & 0xf;
4369 bool valid;
4370
4371 params->is_write = ((esr & 1) == 0);
4372 params->Op0 = 3;
4373 params->Op1 = 0;
4374 params->CRn = 0;
4375 params->CRm = 3;
4376
4377 /* CP10 ID registers are read-only */
4378 valid = !params->is_write;
4379
4380 switch (reg_id) {
4381 /* MVFR0 */
4382 case 0b0111:
4383 params->Op2 = 0;
4384 break;
4385 /* MVFR1 */
4386 case 0b0110:
4387 params->Op2 = 1;
4388 break;
4389 /* MVFR2 */
4390 case 0b0101:
4391 params->Op2 = 2;
4392 break;
4393 default:
4394 valid = false;
4395 }
4396
4397 if (valid)
4398 return true;
4399
4400 kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
4401 params->is_write ? "write" : "read", reg_id);
4402 return false;
4403 }
4404
4405 /**
4406 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
4407 * VFP Register' from AArch32.
4408 * @vcpu: The vCPU pointer
4409 *
4410 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
4411 * Work out the correct AArch64 system register encoding and reroute to the
4412 * AArch64 system register emulation.
4413 */
kvm_handle_cp10_id(struct kvm_vcpu * vcpu)4414 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
4415 {
4416 int Rt = kvm_vcpu_sys_get_rt(vcpu);
4417 u64 esr = kvm_vcpu_get_esr(vcpu);
4418 struct sys_reg_params params;
4419
4420 /* UNDEF on any unhandled register access */
4421 if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) {
4422 kvm_inject_undefined(vcpu);
4423 return 1;
4424 }
4425
4426 if (emulate_sys_reg(vcpu, ¶ms))
4427 vcpu_set_reg(vcpu, Rt, params.regval);
4428
4429 return 1;
4430 }
4431
4432 /**
4433 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
4434 * CRn=0, which corresponds to the AArch32 feature
4435 * registers.
4436 * @vcpu: the vCPU pointer
4437 * @params: the system register access parameters.
4438 *
4439 * Our cp15 system register tables do not enumerate the AArch32 feature
4440 * registers. Conveniently, our AArch64 table does, and the AArch32 system
4441 * register encoding can be trivially remapped into the AArch64 for the feature
4442 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
4443 *
4444 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
4445 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
4446 * range are either UNKNOWN or RES0. Rerouting remains architectural as we
4447 * treat undefined registers in this range as RAZ.
4448 */
kvm_emulate_cp15_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4449 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
4450 struct sys_reg_params *params)
4451 {
4452 int Rt = kvm_vcpu_sys_get_rt(vcpu);
4453
4454 /* Treat impossible writes to RO registers as UNDEFINED */
4455 if (params->is_write) {
4456 unhandled_cp_access(vcpu, params);
4457 return 1;
4458 }
4459
4460 params->Op0 = 3;
4461
4462 /*
4463 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
4464 * Avoid conflicting with future expansion of AArch64 feature registers
4465 * and simply treat them as RAZ here.
4466 */
4467 if (params->CRm > 3)
4468 params->regval = 0;
4469 else if (!emulate_sys_reg(vcpu, params))
4470 return 1;
4471
4472 vcpu_set_reg(vcpu, Rt, params->regval);
4473 return 1;
4474 }
4475
4476 /**
4477 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
4478 * @vcpu: The VCPU pointer
4479 * @params: &struct sys_reg_params
4480 * @global: &struct sys_reg_desc
4481 * @nr_global: size of the @global array
4482 */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * global,size_t nr_global)4483 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
4484 struct sys_reg_params *params,
4485 const struct sys_reg_desc *global,
4486 size_t nr_global)
4487 {
4488 int Rt = kvm_vcpu_sys_get_rt(vcpu);
4489
4490 params->regval = vcpu_get_reg(vcpu, Rt);
4491
4492 if (emulate_cp(vcpu, params, global, nr_global)) {
4493 if (!params->is_write)
4494 vcpu_set_reg(vcpu, Rt, params->regval);
4495 return 1;
4496 }
4497
4498 unhandled_cp_access(vcpu, params);
4499 return 1;
4500 }
4501
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)4502 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
4503 {
4504 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
4505 }
4506
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)4507 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
4508 {
4509 struct sys_reg_params params;
4510
4511 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4512
4513 /*
4514 * Certain AArch32 ID registers are handled by rerouting to the AArch64
4515 * system register table. Registers in the ID range where CRm=0 are
4516 * excluded from this scheme as they do not trivially map into AArch64
4517 * system register encodings, except for AIDR/REVIDR.
4518 */
4519 if (params.Op1 == 0 && params.CRn == 0 &&
4520 (params.CRm || params.Op2 == 6 /* REVIDR */))
4521 return kvm_emulate_cp15_id_reg(vcpu, ¶ms);
4522 if (params.Op1 == 1 && params.CRn == 0 &&
4523 params.CRm == 0 && params.Op2 == 7 /* AIDR */)
4524 return kvm_emulate_cp15_id_reg(vcpu, ¶ms);
4525
4526 return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
4527 }
4528
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)4529 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
4530 {
4531 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
4532 }
4533
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)4534 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
4535 {
4536 struct sys_reg_params params;
4537
4538 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4539
4540 return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs));
4541 }
4542
4543 /**
4544 * emulate_sys_reg - Emulate a guest access to an AArch64 system register
4545 * @vcpu: The VCPU pointer
4546 * @params: Decoded system register parameters
4547 *
4548 * Return: true if the system register access was successful, false otherwise.
4549 */
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4550 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
4551 struct sys_reg_params *params)
4552 {
4553 const struct sys_reg_desc *r;
4554
4555 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4556 if (likely(r)) {
4557 perform_access(vcpu, params, r);
4558 return true;
4559 }
4560
4561 print_sys_reg_msg(params,
4562 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
4563 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4564 kvm_inject_undefined(vcpu);
4565
4566 return false;
4567 }
4568
idregs_debug_find(struct kvm * kvm,u8 pos)4569 static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
4570 {
4571 unsigned long i, idreg_idx = 0;
4572
4573 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4574 const struct sys_reg_desc *r = &sys_reg_descs[i];
4575
4576 if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
4577 continue;
4578
4579 if (idreg_idx == pos)
4580 return r;
4581
4582 idreg_idx++;
4583 }
4584
4585 return NULL;
4586 }
4587
idregs_debug_start(struct seq_file * s,loff_t * pos)4588 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
4589 {
4590 struct kvm *kvm = s->private;
4591 u8 *iter;
4592
4593 mutex_lock(&kvm->arch.config_lock);
4594
4595 iter = &kvm->arch.idreg_debugfs_iter;
4596 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
4597 *iter == (u8)~0) {
4598 *iter = *pos;
4599 if (!idregs_debug_find(kvm, *iter))
4600 iter = NULL;
4601 } else {
4602 iter = ERR_PTR(-EBUSY);
4603 }
4604
4605 mutex_unlock(&kvm->arch.config_lock);
4606
4607 return iter;
4608 }
4609
idregs_debug_next(struct seq_file * s,void * v,loff_t * pos)4610 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
4611 {
4612 struct kvm *kvm = s->private;
4613
4614 (*pos)++;
4615
4616 if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
4617 kvm->arch.idreg_debugfs_iter++;
4618
4619 return &kvm->arch.idreg_debugfs_iter;
4620 }
4621
4622 return NULL;
4623 }
4624
idregs_debug_stop(struct seq_file * s,void * v)4625 static void idregs_debug_stop(struct seq_file *s, void *v)
4626 {
4627 struct kvm *kvm = s->private;
4628
4629 if (IS_ERR(v))
4630 return;
4631
4632 mutex_lock(&kvm->arch.config_lock);
4633
4634 kvm->arch.idreg_debugfs_iter = ~0;
4635
4636 mutex_unlock(&kvm->arch.config_lock);
4637 }
4638
idregs_debug_show(struct seq_file * s,void * v)4639 static int idregs_debug_show(struct seq_file *s, void *v)
4640 {
4641 const struct sys_reg_desc *desc;
4642 struct kvm *kvm = s->private;
4643
4644 desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
4645
4646 if (!desc->name)
4647 return 0;
4648
4649 seq_printf(s, "%20s:\t%016llx\n",
4650 desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
4651
4652 return 0;
4653 }
4654
4655 static const struct seq_operations idregs_debug_sops = {
4656 .start = idregs_debug_start,
4657 .next = idregs_debug_next,
4658 .stop = idregs_debug_stop,
4659 .show = idregs_debug_show,
4660 };
4661
4662 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
4663
kvm_sys_regs_create_debugfs(struct kvm * kvm)4664 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
4665 {
4666 kvm->arch.idreg_debugfs_iter = ~0;
4667
4668 debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
4669 &idregs_debug_fops);
4670 }
4671
reset_vm_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)4672 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
4673 {
4674 u32 id = reg_to_encoding(reg);
4675 struct kvm *kvm = vcpu->kvm;
4676
4677 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
4678 return;
4679
4680 kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
4681 }
4682
reset_vcpu_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)4683 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
4684 const struct sys_reg_desc *reg)
4685 {
4686 if (kvm_vcpu_initialized(vcpu))
4687 return;
4688
4689 reg->reset(vcpu, reg);
4690 }
4691
4692 /**
4693 * kvm_reset_sys_regs - sets system registers to reset value
4694 * @vcpu: The VCPU pointer
4695 *
4696 * This function finds the right table above and sets the registers on the
4697 * virtual CPU struct to their architecturally defined reset values.
4698 */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)4699 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
4700 {
4701 struct kvm *kvm = vcpu->kvm;
4702 unsigned long i;
4703
4704 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4705 const struct sys_reg_desc *r = &sys_reg_descs[i];
4706
4707 if (!r->reset)
4708 continue;
4709
4710 if (is_vm_ftr_id_reg(reg_to_encoding(r)))
4711 reset_vm_ftr_id_reg(vcpu, r);
4712 else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
4713 reset_vcpu_ftr_id_reg(vcpu, r);
4714 else
4715 r->reset(vcpu, r);
4716
4717 if (r->reg >= __SANITISED_REG_START__ && r->reg < NR_SYS_REGS)
4718 (void)__vcpu_sys_reg(vcpu, r->reg);
4719 }
4720
4721 set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
4722
4723 if (kvm_vcpu_has_pmu(vcpu))
4724 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
4725 }
4726
4727 /**
4728 * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
4729 * trap on a guest execution
4730 * @vcpu: The VCPU pointer
4731 */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)4732 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
4733 {
4734 const struct sys_reg_desc *desc = NULL;
4735 struct sys_reg_params params;
4736 unsigned long esr = kvm_vcpu_get_esr(vcpu);
4737 int Rt = kvm_vcpu_sys_get_rt(vcpu);
4738 int sr_idx;
4739
4740 trace_kvm_handle_sys_reg(esr);
4741
4742 if (triage_sysreg_trap(vcpu, &sr_idx))
4743 return 1;
4744
4745 params = esr_sys64_to_params(esr);
4746 params.regval = vcpu_get_reg(vcpu, Rt);
4747
4748 /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
4749 if (params.Op0 == 2 || params.Op0 == 3)
4750 desc = &sys_reg_descs[sr_idx];
4751 else
4752 desc = &sys_insn_descs[sr_idx];
4753
4754 perform_access(vcpu, ¶ms, desc);
4755
4756 /* Read from system register? */
4757 if (!params.is_write &&
4758 (params.Op0 == 2 || params.Op0 == 3))
4759 vcpu_set_reg(vcpu, Rt, params.regval);
4760
4761 return 1;
4762 }
4763
4764 /******************************************************************************
4765 * Userspace API
4766 *****************************************************************************/
4767
index_to_params(u64 id,struct sys_reg_params * params)4768 static bool index_to_params(u64 id, struct sys_reg_params *params)
4769 {
4770 switch (id & KVM_REG_SIZE_MASK) {
4771 case KVM_REG_SIZE_U64:
4772 /* Any unused index bits means it's not valid. */
4773 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
4774 | KVM_REG_ARM_COPROC_MASK
4775 | KVM_REG_ARM64_SYSREG_OP0_MASK
4776 | KVM_REG_ARM64_SYSREG_OP1_MASK
4777 | KVM_REG_ARM64_SYSREG_CRN_MASK
4778 | KVM_REG_ARM64_SYSREG_CRM_MASK
4779 | KVM_REG_ARM64_SYSREG_OP2_MASK))
4780 return false;
4781 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
4782 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
4783 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
4784 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
4785 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
4786 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
4787 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
4788 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
4789 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
4790 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
4791 return true;
4792 default:
4793 return false;
4794 }
4795 }
4796
get_reg_by_id(u64 id,const struct sys_reg_desc table[],unsigned int num)4797 const struct sys_reg_desc *get_reg_by_id(u64 id,
4798 const struct sys_reg_desc table[],
4799 unsigned int num)
4800 {
4801 struct sys_reg_params params;
4802
4803 if (!index_to_params(id, ¶ms))
4804 return NULL;
4805
4806 return find_reg(¶ms, table, num);
4807 }
4808
4809 /* Decode an index value, and find the sys_reg_desc entry. */
4810 static const struct sys_reg_desc *
id_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id,const struct sys_reg_desc table[],unsigned int num)4811 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
4812 const struct sys_reg_desc table[], unsigned int num)
4813
4814 {
4815 const struct sys_reg_desc *r;
4816
4817 /* We only do sys_reg for now. */
4818 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
4819 return NULL;
4820
4821 r = get_reg_by_id(id, table, num);
4822
4823 /* Not saved in the sys_reg array and not otherwise accessible? */
4824 if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
4825 r = NULL;
4826
4827 return r;
4828 }
4829
demux_c15_get(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)4830 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4831 {
4832 u32 val;
4833 u32 __user *uval = uaddr;
4834
4835 /* Fail if we have unknown bits set. */
4836 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4837 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4838 return -ENOENT;
4839
4840 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4841 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4842 if (KVM_REG_SIZE(id) != 4)
4843 return -ENOENT;
4844 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4845 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4846 if (val >= CSSELR_MAX)
4847 return -ENOENT;
4848
4849 return put_user(get_ccsidr(vcpu, val), uval);
4850 default:
4851 return -ENOENT;
4852 }
4853 }
4854
demux_c15_set(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)4855 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4856 {
4857 u32 val, newval;
4858 u32 __user *uval = uaddr;
4859
4860 /* Fail if we have unknown bits set. */
4861 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4862 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4863 return -ENOENT;
4864
4865 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4866 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4867 if (KVM_REG_SIZE(id) != 4)
4868 return -ENOENT;
4869 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4870 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4871 if (val >= CSSELR_MAX)
4872 return -ENOENT;
4873
4874 if (get_user(newval, uval))
4875 return -EFAULT;
4876
4877 return set_ccsidr(vcpu, val, newval);
4878 default:
4879 return -ENOENT;
4880 }
4881 }
4882
kvm_sys_reg_get_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)4883 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4884 const struct sys_reg_desc table[], unsigned int num)
4885 {
4886 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4887 const struct sys_reg_desc *r;
4888 u64 val;
4889 int ret;
4890
4891 r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4892 if (!r || sysreg_hidden(vcpu, r))
4893 return -ENOENT;
4894
4895 if (r->get_user) {
4896 ret = (r->get_user)(vcpu, r, &val);
4897 } else {
4898 val = __vcpu_sys_reg(vcpu, r->reg);
4899 ret = 0;
4900 }
4901
4902 if (!ret)
4903 ret = put_user(val, uaddr);
4904
4905 return ret;
4906 }
4907
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)4908 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4909 {
4910 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4911
4912 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4913 return demux_c15_get(vcpu, reg->id, uaddr);
4914
4915 return kvm_sys_reg_get_user(vcpu, reg,
4916 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4917 }
4918
kvm_sys_reg_set_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)4919 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4920 const struct sys_reg_desc table[], unsigned int num)
4921 {
4922 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4923 const struct sys_reg_desc *r;
4924 u64 val;
4925 int ret;
4926
4927 if (get_user(val, uaddr))
4928 return -EFAULT;
4929
4930 r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4931 if (!r || sysreg_hidden(vcpu, r))
4932 return -ENOENT;
4933
4934 if (sysreg_user_write_ignore(vcpu, r))
4935 return 0;
4936
4937 if (r->set_user) {
4938 ret = (r->set_user)(vcpu, r, val);
4939 } else {
4940 __vcpu_sys_reg(vcpu, r->reg) = val;
4941 ret = 0;
4942 }
4943
4944 return ret;
4945 }
4946
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)4947 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4948 {
4949 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4950
4951 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4952 return demux_c15_set(vcpu, reg->id, uaddr);
4953
4954 return kvm_sys_reg_set_user(vcpu, reg,
4955 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4956 }
4957
num_demux_regs(void)4958 static unsigned int num_demux_regs(void)
4959 {
4960 return CSSELR_MAX;
4961 }
4962
write_demux_regids(u64 __user * uindices)4963 static int write_demux_regids(u64 __user *uindices)
4964 {
4965 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
4966 unsigned int i;
4967
4968 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
4969 for (i = 0; i < CSSELR_MAX; i++) {
4970 if (put_user(val | i, uindices))
4971 return -EFAULT;
4972 uindices++;
4973 }
4974 return 0;
4975 }
4976
sys_reg_to_index(const struct sys_reg_desc * reg)4977 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
4978 {
4979 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
4980 KVM_REG_ARM64_SYSREG |
4981 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
4982 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
4983 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
4984 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
4985 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
4986 }
4987
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)4988 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
4989 {
4990 if (!*uind)
4991 return true;
4992
4993 if (put_user(sys_reg_to_index(reg), *uind))
4994 return false;
4995
4996 (*uind)++;
4997 return true;
4998 }
4999
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)5000 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
5001 const struct sys_reg_desc *rd,
5002 u64 __user **uind,
5003 unsigned int *total)
5004 {
5005 /*
5006 * Ignore registers we trap but don't save,
5007 * and for which no custom user accessor is provided.
5008 */
5009 if (!(rd->reg || rd->get_user))
5010 return 0;
5011
5012 if (sysreg_hidden(vcpu, rd))
5013 return 0;
5014
5015 if (!copy_reg_to_user(rd, uind))
5016 return -EFAULT;
5017
5018 (*total)++;
5019 return 0;
5020 }
5021
5022 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)5023 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
5024 {
5025 const struct sys_reg_desc *i2, *end2;
5026 unsigned int total = 0;
5027 int err;
5028
5029 i2 = sys_reg_descs;
5030 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
5031
5032 while (i2 != end2) {
5033 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
5034 if (err)
5035 return err;
5036 }
5037 return total;
5038 }
5039
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)5040 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
5041 {
5042 return num_demux_regs()
5043 + walk_sys_regs(vcpu, (u64 __user *)NULL);
5044 }
5045
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)5046 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
5047 {
5048 int err;
5049
5050 err = walk_sys_regs(vcpu, uindices);
5051 if (err < 0)
5052 return err;
5053 uindices += err;
5054
5055 return write_demux_regids(uindices);
5056 }
5057
5058 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \
5059 KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \
5060 sys_reg_Op1(r), \
5061 sys_reg_CRn(r), \
5062 sys_reg_CRm(r), \
5063 sys_reg_Op2(r))
5064
kvm_vm_ioctl_get_reg_writable_masks(struct kvm * kvm,struct reg_mask_range * range)5065 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
5066 {
5067 const void *zero_page = page_to_virt(ZERO_PAGE(0));
5068 u64 __user *masks = (u64 __user *)range->addr;
5069
5070 /* Only feature id range is supported, reserved[13] must be zero. */
5071 if (range->range ||
5072 memcmp(range->reserved, zero_page, sizeof(range->reserved)))
5073 return -EINVAL;
5074
5075 /* Wipe the whole thing first */
5076 if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
5077 return -EFAULT;
5078
5079 for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5080 const struct sys_reg_desc *reg = &sys_reg_descs[i];
5081 u32 encoding = reg_to_encoding(reg);
5082 u64 val;
5083
5084 if (!is_feature_id_reg(encoding) || !reg->set_user)
5085 continue;
5086
5087 if (!reg->val ||
5088 (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
5089 continue;
5090 }
5091 val = reg->val;
5092
5093 if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
5094 return -EFAULT;
5095 }
5096
5097 return 0;
5098 }
5099
vcpu_set_hcr(struct kvm_vcpu * vcpu)5100 static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
5101 {
5102 struct kvm *kvm = vcpu->kvm;
5103
5104 if (has_vhe() || has_hvhe())
5105 vcpu->arch.hcr_el2 |= HCR_E2H;
5106 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
5107 /* route synchronous external abort exceptions to EL2 */
5108 vcpu->arch.hcr_el2 |= HCR_TEA;
5109 /* trap error record accesses */
5110 vcpu->arch.hcr_el2 |= HCR_TERR;
5111 }
5112
5113 if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
5114 vcpu->arch.hcr_el2 |= HCR_FWB;
5115
5116 if (cpus_have_final_cap(ARM64_HAS_EVT) &&
5117 !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
5118 kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
5119 vcpu->arch.hcr_el2 |= HCR_TID4;
5120 else
5121 vcpu->arch.hcr_el2 |= HCR_TID2;
5122
5123 if (vcpu_el1_is_32bit(vcpu))
5124 vcpu->arch.hcr_el2 &= ~HCR_RW;
5125
5126 if (kvm_has_mte(vcpu->kvm))
5127 vcpu->arch.hcr_el2 |= HCR_ATA;
5128
5129 /*
5130 * In the absence of FGT, we cannot independently trap TLBI
5131 * Range instructions. This isn't great, but trapping all
5132 * TLBIs would be far worse. Live with it...
5133 */
5134 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5135 vcpu->arch.hcr_el2 |= HCR_TTLBOS;
5136 }
5137
kvm_calculate_traps(struct kvm_vcpu * vcpu)5138 void kvm_calculate_traps(struct kvm_vcpu *vcpu)
5139 {
5140 struct kvm *kvm = vcpu->kvm;
5141
5142 mutex_lock(&kvm->arch.config_lock);
5143 vcpu_set_hcr(vcpu);
5144 vcpu_set_ich_hcr(vcpu);
5145 vcpu_set_hcrx(vcpu);
5146
5147 if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
5148 goto out;
5149
5150 kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1 |
5151 HFGxTR_EL2_nMAIR2_EL1 |
5152 HFGxTR_EL2_nS2POR_EL1 |
5153 HFGxTR_EL2_nACCDATA_EL1 |
5154 HFGxTR_EL2_nSMPRI_EL1_MASK |
5155 HFGxTR_EL2_nTPIDR2_EL0_MASK);
5156
5157 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5158 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
5159 HFGITR_EL2_TLBIRVALE1OS |
5160 HFGITR_EL2_TLBIRVAAE1OS |
5161 HFGITR_EL2_TLBIRVAE1OS |
5162 HFGITR_EL2_TLBIVAALE1OS |
5163 HFGITR_EL2_TLBIVALE1OS |
5164 HFGITR_EL2_TLBIVAAE1OS |
5165 HFGITR_EL2_TLBIASIDE1OS |
5166 HFGITR_EL2_TLBIVAE1OS |
5167 HFGITR_EL2_TLBIVMALLE1OS);
5168
5169 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
5170 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1 |
5171 HFGITR_EL2_TLBIRVALE1 |
5172 HFGITR_EL2_TLBIRVAAE1 |
5173 HFGITR_EL2_TLBIRVAE1 |
5174 HFGITR_EL2_TLBIRVAALE1IS|
5175 HFGITR_EL2_TLBIRVALE1IS |
5176 HFGITR_EL2_TLBIRVAAE1IS |
5177 HFGITR_EL2_TLBIRVAE1IS |
5178 HFGITR_EL2_TLBIRVAALE1OS|
5179 HFGITR_EL2_TLBIRVALE1OS |
5180 HFGITR_EL2_TLBIRVAAE1OS |
5181 HFGITR_EL2_TLBIRVAE1OS);
5182
5183 if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
5184 kvm->arch.fgu[HFGITR_GROUP] |= HFGITR_EL2_ATS1E1A;
5185
5186 if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
5187 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_ATS1E1RP |
5188 HFGITR_EL2_ATS1E1WP);
5189
5190 if (!kvm_has_s1pie(kvm))
5191 kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
5192 HFGxTR_EL2_nPIR_EL1);
5193
5194 if (!kvm_has_s1poe(kvm))
5195 kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPOR_EL1 |
5196 HFGxTR_EL2_nPOR_EL0);
5197
5198 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
5199 kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
5200 HAFGRTR_EL2_RES1);
5201
5202 if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP)) {
5203 kvm->arch.fgu[HDFGRTR_GROUP] |= (HDFGRTR_EL2_nBRBDATA |
5204 HDFGRTR_EL2_nBRBCTL |
5205 HDFGRTR_EL2_nBRBIDR);
5206 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_nBRBINJ |
5207 HFGITR_EL2_nBRBIALL);
5208 }
5209
5210 set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
5211 out:
5212 mutex_unlock(&kvm->arch.config_lock);
5213 }
5214
5215 /*
5216 * Perform last adjustments to the ID registers that are implied by the
5217 * configuration outside of the ID regs themselves, as well as any
5218 * initialisation that directly depend on these ID registers (such as
5219 * RES0/RES1 behaviours). This is not the place to configure traps though.
5220 *
5221 * Because this can be called once per CPU, changes must be idempotent.
5222 */
kvm_finalize_sys_regs(struct kvm_vcpu * vcpu)5223 int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu)
5224 {
5225 struct kvm *kvm = vcpu->kvm;
5226
5227 guard(mutex)(&kvm->arch.config_lock);
5228
5229 if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) &&
5230 irqchip_in_kernel(kvm) &&
5231 kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) {
5232 kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK;
5233 kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK;
5234 }
5235
5236 if (vcpu_has_nv(vcpu)) {
5237 int ret = kvm_init_nv_sysregs(vcpu);
5238 if (ret)
5239 return ret;
5240 }
5241
5242 return 0;
5243 }
5244
kvm_sys_reg_table_init(void)5245 int __init kvm_sys_reg_table_init(void)
5246 {
5247 bool valid = true;
5248 unsigned int i;
5249 int ret = 0;
5250
5251 /* Make sure tables are unique and in order. */
5252 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
5253 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
5254 valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
5255 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
5256 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
5257 valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
5258
5259 if (!valid)
5260 return -EINVAL;
5261
5262 init_imp_id_regs();
5263
5264 ret = populate_nv_trap_config();
5265
5266 for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
5267 ret = populate_sysreg_config(sys_reg_descs + i, i);
5268
5269 for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
5270 ret = populate_sysreg_config(sys_insn_descs + i, i);
5271
5272 return ret;
5273 }
5274