xref: /linux/arch/arm64/kvm/sys_regs.c (revision adc4fb9c814b5d5cc6021022900fd5eb0b3c8165)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 #include <linux/irqchip/arm-gic-v3.h>
21 
22 #include <asm/arm_pmuv3.h>
23 #include <asm/cacheflush.h>
24 #include <asm/cputype.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/esr.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/kvm_nested.h>
32 #include <asm/perf_event.h>
33 #include <asm/sysreg.h>
34 
35 #include <trace/events/kvm.h>
36 
37 #include "sys_regs.h"
38 #include "vgic/vgic.h"
39 
40 #include "trace.h"
41 
42 /*
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47 
48 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
49 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
50 		      u64 val);
51 
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)52 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
53 			 const struct sys_reg_desc *r)
54 {
55 	kvm_inject_undefined(vcpu);
56 	return false;
57 }
58 
bad_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r,const char * msg)59 static bool bad_trap(struct kvm_vcpu *vcpu,
60 		     struct sys_reg_params *params,
61 		     const struct sys_reg_desc *r,
62 		     const char *msg)
63 {
64 	WARN_ONCE(1, "Unexpected %s\n", msg);
65 	print_sys_reg_instr(params);
66 	return undef_access(vcpu, params, r);
67 }
68 
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)69 static bool read_from_write_only(struct kvm_vcpu *vcpu,
70 				 struct sys_reg_params *params,
71 				 const struct sys_reg_desc *r)
72 {
73 	return bad_trap(vcpu, params, r,
74 			"sys_reg read to write-only register");
75 }
76 
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)77 static bool write_to_read_only(struct kvm_vcpu *vcpu,
78 			       struct sys_reg_params *params,
79 			       const struct sys_reg_desc *r)
80 {
81 	return bad_trap(vcpu, params, r,
82 			"sys_reg write to read-only register");
83 }
84 
85 #define PURE_EL2_SYSREG(el2)						\
86 	case el2: {							\
87 		*el1r = el2;						\
88 		return true;						\
89 	}
90 
91 #define MAPPED_EL2_SYSREG(el2, el1, fn)					\
92 	case el2: {							\
93 		*xlate = fn;						\
94 		*el1r = el1;						\
95 		return true;						\
96 	}
97 
get_el2_to_el1_mapping(unsigned int reg,unsigned int * el1r,u64 (** xlate)(u64))98 static bool get_el2_to_el1_mapping(unsigned int reg,
99 				   unsigned int *el1r, u64 (**xlate)(u64))
100 {
101 	switch (reg) {
102 		PURE_EL2_SYSREG(  VPIDR_EL2	);
103 		PURE_EL2_SYSREG(  VMPIDR_EL2	);
104 		PURE_EL2_SYSREG(  ACTLR_EL2	);
105 		PURE_EL2_SYSREG(  HCR_EL2	);
106 		PURE_EL2_SYSREG(  MDCR_EL2	);
107 		PURE_EL2_SYSREG(  HSTR_EL2	);
108 		PURE_EL2_SYSREG(  HACR_EL2	);
109 		PURE_EL2_SYSREG(  VTTBR_EL2	);
110 		PURE_EL2_SYSREG(  VTCR_EL2	);
111 		PURE_EL2_SYSREG(  RVBAR_EL2	);
112 		PURE_EL2_SYSREG(  TPIDR_EL2	);
113 		PURE_EL2_SYSREG(  HPFAR_EL2	);
114 		PURE_EL2_SYSREG(  HCRX_EL2	);
115 		PURE_EL2_SYSREG(  HFGRTR_EL2	);
116 		PURE_EL2_SYSREG(  HFGWTR_EL2	);
117 		PURE_EL2_SYSREG(  HFGITR_EL2	);
118 		PURE_EL2_SYSREG(  HDFGRTR_EL2	);
119 		PURE_EL2_SYSREG(  HDFGWTR_EL2	);
120 		PURE_EL2_SYSREG(  HAFGRTR_EL2	);
121 		PURE_EL2_SYSREG(  CNTVOFF_EL2	);
122 		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
123 		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
124 				  translate_sctlr_el2_to_sctlr_el1	     );
125 		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
126 				  translate_cptr_el2_to_cpacr_el1	     );
127 		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
128 				  translate_ttbr0_el2_to_ttbr0_el1	     );
129 		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
130 		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
131 				  translate_tcr_el2_to_tcr_el1		     );
132 		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
133 		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
134 		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
135 		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
136 		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
137 		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
138 		MAPPED_EL2_SYSREG(TCR2_EL2,    TCR2_EL1,    NULL	     );
139 		MAPPED_EL2_SYSREG(PIR_EL2,     PIR_EL1,     NULL	     );
140 		MAPPED_EL2_SYSREG(PIRE0_EL2,   PIRE0_EL1,   NULL	     );
141 		MAPPED_EL2_SYSREG(POR_EL2,     POR_EL1,     NULL	     );
142 		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
143 		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
144 		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
145 		MAPPED_EL2_SYSREG(ZCR_EL2,     ZCR_EL1,     NULL	     );
146 		MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL	     );
147 	default:
148 		return false;
149 	}
150 }
151 
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,int reg)152 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
153 {
154 	u64 val = 0x8badf00d8badf00d;
155 	u64 (*xlate)(u64) = NULL;
156 	unsigned int el1r;
157 
158 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
159 		goto memory_read;
160 
161 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
162 		if (!is_hyp_ctxt(vcpu))
163 			goto memory_read;
164 
165 		/*
166 		 * CNTHCTL_EL2 requires some special treatment to
167 		 * account for the bits that can be set via CNTKCTL_EL1.
168 		 */
169 		switch (reg) {
170 		case CNTHCTL_EL2:
171 			if (vcpu_el2_e2h_is_set(vcpu)) {
172 				val = read_sysreg_el1(SYS_CNTKCTL);
173 				val &= CNTKCTL_VALID_BITS;
174 				val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS;
175 				return val;
176 			}
177 			break;
178 		}
179 
180 		/*
181 		 * If this register does not have an EL1 counterpart,
182 		 * then read the stored EL2 version.
183 		 */
184 		if (reg == el1r)
185 			goto memory_read;
186 
187 		/*
188 		 * If we have a non-VHE guest and that the sysreg
189 		 * requires translation to be used at EL1, use the
190 		 * in-memory copy instead.
191 		 */
192 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
193 			goto memory_read;
194 
195 		/* Get the current version of the EL1 counterpart. */
196 		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
197 		if (reg >= __SANITISED_REG_START__)
198 			val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
199 
200 		return val;
201 	}
202 
203 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
204 	if (unlikely(is_hyp_ctxt(vcpu)))
205 		goto memory_read;
206 
207 	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
208 		return val;
209 
210 memory_read:
211 	return __vcpu_sys_reg(vcpu, reg);
212 }
213 
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)214 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
215 {
216 	u64 (*xlate)(u64) = NULL;
217 	unsigned int el1r;
218 
219 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
220 		goto memory_write;
221 
222 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
223 		if (!is_hyp_ctxt(vcpu))
224 			goto memory_write;
225 
226 		/*
227 		 * Always store a copy of the write to memory to avoid having
228 		 * to reverse-translate virtual EL2 system registers for a
229 		 * non-VHE guest hypervisor.
230 		 */
231 		__vcpu_sys_reg(vcpu, reg) = val;
232 
233 		switch (reg) {
234 		case CNTHCTL_EL2:
235 			/*
236 			 * If E2H=0, CNHTCTL_EL2 is a pure shadow register.
237 			 * Otherwise, some of the bits are backed by
238 			 * CNTKCTL_EL1, while the rest is kept in memory.
239 			 * Yes, this is fun stuff.
240 			 */
241 			if (vcpu_el2_e2h_is_set(vcpu))
242 				write_sysreg_el1(val, SYS_CNTKCTL);
243 			return;
244 		}
245 
246 		/* No EL1 counterpart? We're done here.? */
247 		if (reg == el1r)
248 			return;
249 
250 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
251 			val = xlate(val);
252 
253 		/* Redirect this to the EL1 version of the register. */
254 		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
255 		return;
256 	}
257 
258 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
259 	if (unlikely(is_hyp_ctxt(vcpu)))
260 		goto memory_write;
261 
262 	if (__vcpu_write_sys_reg_to_cpu(val, reg))
263 		return;
264 
265 memory_write:
266 	 __vcpu_sys_reg(vcpu, reg) = val;
267 }
268 
269 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
270 #define CSSELR_MAX 14
271 
272 /*
273  * Returns the minimum line size for the selected cache, expressed as
274  * Log2(bytes).
275  */
get_min_cache_line_size(bool icache)276 static u8 get_min_cache_line_size(bool icache)
277 {
278 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
279 	u8 field;
280 
281 	if (icache)
282 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
283 	else
284 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
285 
286 	/*
287 	 * Cache line size is represented as Log2(words) in CTR_EL0.
288 	 * Log2(bytes) can be derived with the following:
289 	 *
290 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
291 	 * 		   = Log2(bytes) - 2 + 2
292 	 * 		   = Log2(bytes)
293 	 */
294 	return field + 2;
295 }
296 
297 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(struct kvm_vcpu * vcpu,u32 csselr)298 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
299 {
300 	u8 line_size;
301 
302 	if (vcpu->arch.ccsidr)
303 		return vcpu->arch.ccsidr[csselr];
304 
305 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
306 
307 	/*
308 	 * Fabricate a CCSIDR value as the overriding value does not exist.
309 	 * The real CCSIDR value will not be used as it can vary by the
310 	 * physical CPU which the vcpu currently resides in.
311 	 *
312 	 * The line size is determined with get_min_cache_line_size(), which
313 	 * should be valid for all CPUs even if they have different cache
314 	 * configuration.
315 	 *
316 	 * The associativity bits are cleared, meaning the geometry of all data
317 	 * and unified caches (which are guaranteed to be PIPT and thus
318 	 * non-aliasing) are 1 set and 1 way.
319 	 * Guests should not be doing cache operations by set/way at all, and
320 	 * for this reason, we trap them and attempt to infer the intent, so
321 	 * that we can flush the entire guest's address space at the appropriate
322 	 * time. The exposed geometry minimizes the number of the traps.
323 	 * [If guests should attempt to infer aliasing properties from the
324 	 * geometry (which is not permitted by the architecture), they would
325 	 * only do so for virtually indexed caches.]
326 	 *
327 	 * We don't check if the cache level exists as it is allowed to return
328 	 * an UNKNOWN value if not.
329 	 */
330 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
331 }
332 
set_ccsidr(struct kvm_vcpu * vcpu,u32 csselr,u32 val)333 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
334 {
335 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
336 	u32 *ccsidr = vcpu->arch.ccsidr;
337 	u32 i;
338 
339 	if ((val & CCSIDR_EL1_RES0) ||
340 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
341 		return -EINVAL;
342 
343 	if (!ccsidr) {
344 		if (val == get_ccsidr(vcpu, csselr))
345 			return 0;
346 
347 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
348 		if (!ccsidr)
349 			return -ENOMEM;
350 
351 		for (i = 0; i < CSSELR_MAX; i++)
352 			ccsidr[i] = get_ccsidr(vcpu, i);
353 
354 		vcpu->arch.ccsidr = ccsidr;
355 	}
356 
357 	ccsidr[csselr] = val;
358 
359 	return 0;
360 }
361 
access_rw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)362 static bool access_rw(struct kvm_vcpu *vcpu,
363 		      struct sys_reg_params *p,
364 		      const struct sys_reg_desc *r)
365 {
366 	if (p->is_write)
367 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
368 	else
369 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
370 
371 	return true;
372 }
373 
374 /*
375  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
376  */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)377 static bool access_dcsw(struct kvm_vcpu *vcpu,
378 			struct sys_reg_params *p,
379 			const struct sys_reg_desc *r)
380 {
381 	if (!p->is_write)
382 		return read_from_write_only(vcpu, p, r);
383 
384 	/*
385 	 * Only track S/W ops if we don't have FWB. It still indicates
386 	 * that the guest is a bit broken (S/W operations should only
387 	 * be done by firmware, knowing that there is only a single
388 	 * CPU left in the system, and certainly not from non-secure
389 	 * software).
390 	 */
391 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
392 		kvm_set_way_flush(vcpu);
393 
394 	return true;
395 }
396 
access_dcgsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)397 static bool access_dcgsw(struct kvm_vcpu *vcpu,
398 			 struct sys_reg_params *p,
399 			 const struct sys_reg_desc *r)
400 {
401 	if (!kvm_has_mte(vcpu->kvm))
402 		return undef_access(vcpu, p, r);
403 
404 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
405 	return access_dcsw(vcpu, p, r);
406 }
407 
get_access_mask(const struct sys_reg_desc * r,u64 * mask,u64 * shift)408 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
409 {
410 	switch (r->aarch32_map) {
411 	case AA32_LO:
412 		*mask = GENMASK_ULL(31, 0);
413 		*shift = 0;
414 		break;
415 	case AA32_HI:
416 		*mask = GENMASK_ULL(63, 32);
417 		*shift = 32;
418 		break;
419 	default:
420 		*mask = GENMASK_ULL(63, 0);
421 		*shift = 0;
422 		break;
423 	}
424 }
425 
426 /*
427  * Generic accessor for VM registers. Only called as long as HCR_TVM
428  * is set. If the guest enables the MMU, we stop trapping the VM
429  * sys_regs and leave it in complete control of the caches.
430  */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)431 static bool access_vm_reg(struct kvm_vcpu *vcpu,
432 			  struct sys_reg_params *p,
433 			  const struct sys_reg_desc *r)
434 {
435 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
436 	u64 val, mask, shift;
437 
438 	BUG_ON(!p->is_write);
439 
440 	get_access_mask(r, &mask, &shift);
441 
442 	if (~mask) {
443 		val = vcpu_read_sys_reg(vcpu, r->reg);
444 		val &= ~mask;
445 	} else {
446 		val = 0;
447 	}
448 
449 	val |= (p->regval & (mask >> shift)) << shift;
450 	vcpu_write_sys_reg(vcpu, val, r->reg);
451 
452 	kvm_toggle_cache(vcpu, was_enabled);
453 	return true;
454 }
455 
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)456 static bool access_actlr(struct kvm_vcpu *vcpu,
457 			 struct sys_reg_params *p,
458 			 const struct sys_reg_desc *r)
459 {
460 	u64 mask, shift;
461 
462 	if (p->is_write)
463 		return ignore_write(vcpu, p);
464 
465 	get_access_mask(r, &mask, &shift);
466 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
467 
468 	return true;
469 }
470 
471 /*
472  * Trap handler for the GICv3 SGI generation system register.
473  * Forward the request to the VGIC emulation.
474  * The cp15_64 code makes sure this automatically works
475  * for both AArch64 and AArch32 accesses.
476  */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)477 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
478 			   struct sys_reg_params *p,
479 			   const struct sys_reg_desc *r)
480 {
481 	bool g1;
482 
483 	if (!kvm_has_gicv3(vcpu->kvm))
484 		return undef_access(vcpu, p, r);
485 
486 	if (!p->is_write)
487 		return read_from_write_only(vcpu, p, r);
488 
489 	/*
490 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
491 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
492 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
493 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
494 	 * group.
495 	 */
496 	if (p->Op0 == 0) {		/* AArch32 */
497 		switch (p->Op1) {
498 		default:		/* Keep GCC quiet */
499 		case 0:			/* ICC_SGI1R */
500 			g1 = true;
501 			break;
502 		case 1:			/* ICC_ASGI1R */
503 		case 2:			/* ICC_SGI0R */
504 			g1 = false;
505 			break;
506 		}
507 	} else {			/* AArch64 */
508 		switch (p->Op2) {
509 		default:		/* Keep GCC quiet */
510 		case 5:			/* ICC_SGI1R_EL1 */
511 			g1 = true;
512 			break;
513 		case 6:			/* ICC_ASGI1R_EL1 */
514 		case 7:			/* ICC_SGI0R_EL1 */
515 			g1 = false;
516 			break;
517 		}
518 	}
519 
520 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
521 
522 	return true;
523 }
524 
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)525 static bool access_gic_sre(struct kvm_vcpu *vcpu,
526 			   struct sys_reg_params *p,
527 			   const struct sys_reg_desc *r)
528 {
529 	if (!kvm_has_gicv3(vcpu->kvm))
530 		return undef_access(vcpu, p, r);
531 
532 	if (p->is_write)
533 		return ignore_write(vcpu, p);
534 
535 	if (p->Op1 == 4) {	/* ICC_SRE_EL2 */
536 		p->regval = (ICC_SRE_EL2_ENABLE | ICC_SRE_EL2_SRE |
537 			     ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB);
538 	} else {		/* ICC_SRE_EL1 */
539 		p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
540 	}
541 
542 	return true;
543 }
544 
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)545 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
546 			struct sys_reg_params *p,
547 			const struct sys_reg_desc *r)
548 {
549 	if (p->is_write)
550 		return ignore_write(vcpu, p);
551 	else
552 		return read_zero(vcpu, p);
553 }
554 
555 /*
556  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
557  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
558  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
559  * treat it separately.
560  */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)561 static bool trap_loregion(struct kvm_vcpu *vcpu,
562 			  struct sys_reg_params *p,
563 			  const struct sys_reg_desc *r)
564 {
565 	u32 sr = reg_to_encoding(r);
566 
567 	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP))
568 		return undef_access(vcpu, p, r);
569 
570 	if (p->is_write && sr == SYS_LORID_EL1)
571 		return write_to_read_only(vcpu, p, r);
572 
573 	return trap_raz_wi(vcpu, p, r);
574 }
575 
trap_oslar_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)576 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
577 			   struct sys_reg_params *p,
578 			   const struct sys_reg_desc *r)
579 {
580 	if (!p->is_write)
581 		return read_from_write_only(vcpu, p, r);
582 
583 	kvm_debug_handle_oslar(vcpu, p->regval);
584 	return true;
585 }
586 
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)587 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
588 			   struct sys_reg_params *p,
589 			   const struct sys_reg_desc *r)
590 {
591 	if (p->is_write)
592 		return write_to_read_only(vcpu, p, r);
593 
594 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
595 	return true;
596 }
597 
set_oslsr_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)598 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
599 			 u64 val)
600 {
601 	/*
602 	 * The only modifiable bit is the OSLK bit. Refuse the write if
603 	 * userspace attempts to change any other bit in the register.
604 	 */
605 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
606 		return -EINVAL;
607 
608 	__vcpu_sys_reg(vcpu, rd->reg) = val;
609 	return 0;
610 }
611 
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)612 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
613 				   struct sys_reg_params *p,
614 				   const struct sys_reg_desc *r)
615 {
616 	if (p->is_write) {
617 		return ignore_write(vcpu, p);
618 	} else {
619 		p->regval = read_sysreg(dbgauthstatus_el1);
620 		return true;
621 	}
622 }
623 
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)624 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
625 			    struct sys_reg_params *p,
626 			    const struct sys_reg_desc *r)
627 {
628 	access_rw(vcpu, p, r);
629 
630 	kvm_debug_set_guest_ownership(vcpu);
631 	return true;
632 }
633 
634 /*
635  * reg_to_dbg/dbg_to_reg
636  *
637  * A 32 bit write to a debug register leave top bits alone
638  * A 32 bit read from a debug register only returns the bottom bits
639  */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)640 static void reg_to_dbg(struct kvm_vcpu *vcpu,
641 		       struct sys_reg_params *p,
642 		       const struct sys_reg_desc *rd,
643 		       u64 *dbg_reg)
644 {
645 	u64 mask, shift, val;
646 
647 	get_access_mask(rd, &mask, &shift);
648 
649 	val = *dbg_reg;
650 	val &= ~mask;
651 	val |= (p->regval & (mask >> shift)) << shift;
652 	*dbg_reg = val;
653 }
654 
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)655 static void dbg_to_reg(struct kvm_vcpu *vcpu,
656 		       struct sys_reg_params *p,
657 		       const struct sys_reg_desc *rd,
658 		       u64 *dbg_reg)
659 {
660 	u64 mask, shift;
661 
662 	get_access_mask(rd, &mask, &shift);
663 	p->regval = (*dbg_reg & mask) >> shift;
664 }
665 
demux_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)666 static u64 *demux_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
667 {
668 	struct kvm_guest_debug_arch *dbg = &vcpu->arch.vcpu_debug_state;
669 
670 	switch (rd->Op2) {
671 	case 0b100:
672 		return &dbg->dbg_bvr[rd->CRm];
673 	case 0b101:
674 		return &dbg->dbg_bcr[rd->CRm];
675 	case 0b110:
676 		return &dbg->dbg_wvr[rd->CRm];
677 	case 0b111:
678 		return &dbg->dbg_wcr[rd->CRm];
679 	default:
680 		KVM_BUG_ON(1, vcpu->kvm);
681 		return NULL;
682 	}
683 }
684 
trap_dbg_wb_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)685 static bool trap_dbg_wb_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
686 			    const struct sys_reg_desc *rd)
687 {
688 	u64 *reg = demux_wb_reg(vcpu, rd);
689 
690 	if (!reg)
691 		return false;
692 
693 	if (p->is_write)
694 		reg_to_dbg(vcpu, p, rd, reg);
695 	else
696 		dbg_to_reg(vcpu, p, rd, reg);
697 
698 	kvm_debug_set_guest_ownership(vcpu);
699 	return true;
700 }
701 
set_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)702 static int set_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
703 			  u64 val)
704 {
705 	u64 *reg = demux_wb_reg(vcpu, rd);
706 
707 	if (!reg)
708 		return -EINVAL;
709 
710 	*reg = val;
711 	return 0;
712 }
713 
get_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)714 static int get_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715 			  u64 *val)
716 {
717 	u64 *reg = demux_wb_reg(vcpu, rd);
718 
719 	if (!reg)
720 		return -EINVAL;
721 
722 	*val = *reg;
723 	return 0;
724 }
725 
reset_dbg_wb_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)726 static u64 reset_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
727 {
728 	u64 *reg = demux_wb_reg(vcpu, rd);
729 
730 	/*
731 	 * Bail early if we couldn't find storage for the register, the
732 	 * KVM_BUG_ON() in demux_wb_reg() will prevent this VM from ever
733 	 * being run.
734 	 */
735 	if (!reg)
736 		return 0;
737 
738 	*reg = rd->val;
739 	return rd->val;
740 }
741 
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)742 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
743 {
744 	u64 amair = read_sysreg(amair_el1);
745 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
746 	return amair;
747 }
748 
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)749 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
750 {
751 	u64 actlr = read_sysreg(actlr_el1);
752 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
753 	return actlr;
754 }
755 
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)756 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
757 {
758 	u64 mpidr;
759 
760 	/*
761 	 * Map the vcpu_id into the first three affinity level fields of
762 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
763 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
764 	 * of the GICv3 to be able to address each CPU directly when
765 	 * sending IPIs.
766 	 */
767 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
768 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
769 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
770 	mpidr |= (1ULL << 31);
771 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
772 
773 	return mpidr;
774 }
775 
pmu_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)776 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
777 				   const struct sys_reg_desc *r)
778 {
779 	if (kvm_vcpu_has_pmu(vcpu))
780 		return 0;
781 
782 	return REG_HIDDEN;
783 }
784 
reset_pmu_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)785 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
786 {
787 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
788 	u8 n = vcpu->kvm->arch.pmcr_n;
789 
790 	if (n)
791 		mask |= GENMASK(n - 1, 0);
792 
793 	reset_unknown(vcpu, r);
794 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
795 
796 	return __vcpu_sys_reg(vcpu, r->reg);
797 }
798 
reset_pmevcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)799 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
800 {
801 	reset_unknown(vcpu, r);
802 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
803 
804 	return __vcpu_sys_reg(vcpu, r->reg);
805 }
806 
reset_pmevtyper(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)807 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
808 {
809 	/* This thing will UNDEF, who cares about the reset value? */
810 	if (!kvm_vcpu_has_pmu(vcpu))
811 		return 0;
812 
813 	reset_unknown(vcpu, r);
814 	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
815 
816 	return __vcpu_sys_reg(vcpu, r->reg);
817 }
818 
reset_pmselr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)819 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
820 {
821 	reset_unknown(vcpu, r);
822 	__vcpu_sys_reg(vcpu, r->reg) &= PMSELR_EL0_SEL_MASK;
823 
824 	return __vcpu_sys_reg(vcpu, r->reg);
825 }
826 
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)827 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
828 {
829 	u64 pmcr = 0;
830 
831 	if (!kvm_supports_32bit_el0())
832 		pmcr |= ARMV8_PMU_PMCR_LC;
833 
834 	/*
835 	 * The value of PMCR.N field is included when the
836 	 * vCPU register is read via kvm_vcpu_read_pmcr().
837 	 */
838 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
839 
840 	return __vcpu_sys_reg(vcpu, r->reg);
841 }
842 
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)843 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
844 {
845 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
846 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
847 
848 	if (!enabled)
849 		kvm_inject_undefined(vcpu);
850 
851 	return !enabled;
852 }
853 
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)854 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
855 {
856 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
857 }
858 
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)859 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
860 {
861 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
862 }
863 
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)864 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
865 {
866 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
867 }
868 
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)869 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
870 {
871 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
872 }
873 
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)874 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
875 			const struct sys_reg_desc *r)
876 {
877 	u64 val;
878 
879 	if (pmu_access_el0_disabled(vcpu))
880 		return false;
881 
882 	if (p->is_write) {
883 		/*
884 		 * Only update writeable bits of PMCR (continuing into
885 		 * kvm_pmu_handle_pmcr() as well)
886 		 */
887 		val = kvm_vcpu_read_pmcr(vcpu);
888 		val &= ~ARMV8_PMU_PMCR_MASK;
889 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
890 		if (!kvm_supports_32bit_el0())
891 			val |= ARMV8_PMU_PMCR_LC;
892 		kvm_pmu_handle_pmcr(vcpu, val);
893 	} else {
894 		/* PMCR.P & PMCR.C are RAZ */
895 		val = kvm_vcpu_read_pmcr(vcpu)
896 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
897 		p->regval = val;
898 	}
899 
900 	return true;
901 }
902 
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)903 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
904 			  const struct sys_reg_desc *r)
905 {
906 	if (pmu_access_event_counter_el0_disabled(vcpu))
907 		return false;
908 
909 	if (p->is_write)
910 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
911 	else
912 		/* return PMSELR.SEL field */
913 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
914 			    & PMSELR_EL0_SEL_MASK;
915 
916 	return true;
917 }
918 
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)919 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
920 			  const struct sys_reg_desc *r)
921 {
922 	u64 pmceid, mask, shift;
923 
924 	BUG_ON(p->is_write);
925 
926 	if (pmu_access_el0_disabled(vcpu))
927 		return false;
928 
929 	get_access_mask(r, &mask, &shift);
930 
931 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
932 	pmceid &= mask;
933 	pmceid >>= shift;
934 
935 	p->regval = pmceid;
936 
937 	return true;
938 }
939 
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)940 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
941 {
942 	u64 pmcr, val;
943 
944 	pmcr = kvm_vcpu_read_pmcr(vcpu);
945 	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
946 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
947 		kvm_inject_undefined(vcpu);
948 		return false;
949 	}
950 
951 	return true;
952 }
953 
get_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)954 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
955 			  u64 *val)
956 {
957 	u64 idx;
958 
959 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
960 		/* PMCCNTR_EL0 */
961 		idx = ARMV8_PMU_CYCLE_IDX;
962 	else
963 		/* PMEVCNTRn_EL0 */
964 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
965 
966 	*val = kvm_pmu_get_counter_value(vcpu, idx);
967 	return 0;
968 }
969 
set_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)970 static int set_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
971 			  u64 val)
972 {
973 	u64 idx;
974 
975 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
976 		/* PMCCNTR_EL0 */
977 		idx = ARMV8_PMU_CYCLE_IDX;
978 	else
979 		/* PMEVCNTRn_EL0 */
980 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
981 
982 	kvm_pmu_set_counter_value_user(vcpu, idx, val);
983 	return 0;
984 }
985 
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)986 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
987 			      struct sys_reg_params *p,
988 			      const struct sys_reg_desc *r)
989 {
990 	u64 idx = ~0UL;
991 
992 	if (r->CRn == 9 && r->CRm == 13) {
993 		if (r->Op2 == 2) {
994 			/* PMXEVCNTR_EL0 */
995 			if (pmu_access_event_counter_el0_disabled(vcpu))
996 				return false;
997 
998 			idx = SYS_FIELD_GET(PMSELR_EL0, SEL,
999 					    __vcpu_sys_reg(vcpu, PMSELR_EL0));
1000 		} else if (r->Op2 == 0) {
1001 			/* PMCCNTR_EL0 */
1002 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1003 				return false;
1004 
1005 			idx = ARMV8_PMU_CYCLE_IDX;
1006 		}
1007 	} else if (r->CRn == 0 && r->CRm == 9) {
1008 		/* PMCCNTR */
1009 		if (pmu_access_event_counter_el0_disabled(vcpu))
1010 			return false;
1011 
1012 		idx = ARMV8_PMU_CYCLE_IDX;
1013 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1014 		/* PMEVCNTRn_EL0 */
1015 		if (pmu_access_event_counter_el0_disabled(vcpu))
1016 			return false;
1017 
1018 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1019 	}
1020 
1021 	/* Catch any decoding mistake */
1022 	WARN_ON(idx == ~0UL);
1023 
1024 	if (!pmu_counter_idx_valid(vcpu, idx))
1025 		return false;
1026 
1027 	if (p->is_write) {
1028 		if (pmu_access_el0_disabled(vcpu))
1029 			return false;
1030 
1031 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1032 	} else {
1033 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1034 	}
1035 
1036 	return true;
1037 }
1038 
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1039 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1040 			       const struct sys_reg_desc *r)
1041 {
1042 	u64 idx, reg;
1043 
1044 	if (pmu_access_el0_disabled(vcpu))
1045 		return false;
1046 
1047 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1048 		/* PMXEVTYPER_EL0 */
1049 		idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0));
1050 		reg = PMEVTYPER0_EL0 + idx;
1051 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1052 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1053 		if (idx == ARMV8_PMU_CYCLE_IDX)
1054 			reg = PMCCFILTR_EL0;
1055 		else
1056 			/* PMEVTYPERn_EL0 */
1057 			reg = PMEVTYPER0_EL0 + idx;
1058 	} else {
1059 		BUG();
1060 	}
1061 
1062 	if (!pmu_counter_idx_valid(vcpu, idx))
1063 		return false;
1064 
1065 	if (p->is_write) {
1066 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1067 		kvm_vcpu_pmu_restore_guest(vcpu);
1068 	} else {
1069 		p->regval = __vcpu_sys_reg(vcpu, reg);
1070 	}
1071 
1072 	return true;
1073 }
1074 
set_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1075 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1076 {
1077 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1078 
1079 	__vcpu_sys_reg(vcpu, r->reg) = val & mask;
1080 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1081 
1082 	return 0;
1083 }
1084 
get_pmreg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1085 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1086 {
1087 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1088 
1089 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1090 	return 0;
1091 }
1092 
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1093 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1094 			   const struct sys_reg_desc *r)
1095 {
1096 	u64 val, mask;
1097 
1098 	if (pmu_access_el0_disabled(vcpu))
1099 		return false;
1100 
1101 	mask = kvm_pmu_accessible_counter_mask(vcpu);
1102 	if (p->is_write) {
1103 		val = p->regval & mask;
1104 		if (r->Op2 & 0x1)
1105 			/* accessing PMCNTENSET_EL0 */
1106 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1107 		else
1108 			/* accessing PMCNTENCLR_EL0 */
1109 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1110 
1111 		kvm_pmu_reprogram_counter_mask(vcpu, val);
1112 	} else {
1113 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1114 	}
1115 
1116 	return true;
1117 }
1118 
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1119 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1120 			   const struct sys_reg_desc *r)
1121 {
1122 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1123 
1124 	if (check_pmu_access_disabled(vcpu, 0))
1125 		return false;
1126 
1127 	if (p->is_write) {
1128 		u64 val = p->regval & mask;
1129 
1130 		if (r->Op2 & 0x1)
1131 			/* accessing PMINTENSET_EL1 */
1132 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1133 		else
1134 			/* accessing PMINTENCLR_EL1 */
1135 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1136 	} else {
1137 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1138 	}
1139 
1140 	return true;
1141 }
1142 
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1143 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1144 			 const struct sys_reg_desc *r)
1145 {
1146 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1147 
1148 	if (pmu_access_el0_disabled(vcpu))
1149 		return false;
1150 
1151 	if (p->is_write) {
1152 		if (r->CRm & 0x2)
1153 			/* accessing PMOVSSET_EL0 */
1154 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1155 		else
1156 			/* accessing PMOVSCLR_EL0 */
1157 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1158 	} else {
1159 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1160 	}
1161 
1162 	return true;
1163 }
1164 
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1165 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1166 			   const struct sys_reg_desc *r)
1167 {
1168 	u64 mask;
1169 
1170 	if (!p->is_write)
1171 		return read_from_write_only(vcpu, p, r);
1172 
1173 	if (pmu_write_swinc_el0_disabled(vcpu))
1174 		return false;
1175 
1176 	mask = kvm_pmu_accessible_counter_mask(vcpu);
1177 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1178 	return true;
1179 }
1180 
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1181 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182 			     const struct sys_reg_desc *r)
1183 {
1184 	if (p->is_write) {
1185 		if (!vcpu_mode_priv(vcpu))
1186 			return undef_access(vcpu, p, r);
1187 
1188 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1189 			       p->regval & ARMV8_PMU_USERENR_MASK;
1190 	} else {
1191 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1192 			    & ARMV8_PMU_USERENR_MASK;
1193 	}
1194 
1195 	return true;
1196 }
1197 
get_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)1198 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1199 		    u64 *val)
1200 {
1201 	*val = kvm_vcpu_read_pmcr(vcpu);
1202 	return 0;
1203 }
1204 
set_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)1205 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1206 		    u64 val)
1207 {
1208 	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1209 	struct kvm *kvm = vcpu->kvm;
1210 
1211 	mutex_lock(&kvm->arch.config_lock);
1212 
1213 	/*
1214 	 * The vCPU can't have more counters than the PMU hardware
1215 	 * implements. Ignore this error to maintain compatibility
1216 	 * with the existing KVM behavior.
1217 	 */
1218 	if (!kvm_vm_has_ran_once(kvm) &&
1219 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1220 		kvm->arch.pmcr_n = new_n;
1221 
1222 	mutex_unlock(&kvm->arch.config_lock);
1223 
1224 	/*
1225 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1226 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1227 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1228 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1229 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1230 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1231 	 * if necessary).
1232 	 */
1233 	val &= ARMV8_PMU_PMCR_MASK;
1234 
1235 	/* The LC bit is RES1 when AArch32 is not supported */
1236 	if (!kvm_supports_32bit_el0())
1237 		val |= ARMV8_PMU_PMCR_LC;
1238 
1239 	__vcpu_sys_reg(vcpu, r->reg) = val;
1240 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
1241 
1242 	return 0;
1243 }
1244 
1245 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1246 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1247 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1248 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1249 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1250 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1251 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1252 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1253 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1254 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1255 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1256 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1257 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1258 	  get_dbg_wb_reg, set_dbg_wb_reg }
1259 
1260 #define PMU_SYS_REG(name)						\
1261 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1262 	.visibility = pmu_visibility
1263 
1264 /* Macro to expand the PMEVCNTRn_EL0 register */
1265 #define PMU_PMEVCNTR_EL0(n)						\
1266 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1267 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1268 	  .set_user = set_pmu_evcntr,					\
1269 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1270 
1271 /* Macro to expand the PMEVTYPERn_EL0 register */
1272 #define PMU_PMEVTYPER_EL0(n)						\
1273 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1274 	  .reset = reset_pmevtyper,					\
1275 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1276 
1277 /* Macro to expand the AMU counter and type registers*/
1278 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1279 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1280 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1281 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1282 
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1283 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1284 			const struct sys_reg_desc *rd)
1285 {
1286 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1287 }
1288 
1289 /*
1290  * If we land here on a PtrAuth access, that is because we didn't
1291  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1292  * way this happens is when the guest does not have PtrAuth support
1293  * enabled.
1294  */
1295 #define __PTRAUTH_KEY(k)						\
1296 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1297 	.visibility = ptrauth_visibility}
1298 
1299 #define PTRAUTH_KEY(k)							\
1300 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1301 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1302 
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1303 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1304 			      struct sys_reg_params *p,
1305 			      const struct sys_reg_desc *r)
1306 {
1307 	enum kvm_arch_timers tmr;
1308 	enum kvm_arch_timer_regs treg;
1309 	u64 reg = reg_to_encoding(r);
1310 
1311 	switch (reg) {
1312 	case SYS_CNTP_TVAL_EL0:
1313 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1314 			tmr = TIMER_HPTIMER;
1315 		else
1316 			tmr = TIMER_PTIMER;
1317 		treg = TIMER_REG_TVAL;
1318 		break;
1319 
1320 	case SYS_CNTV_TVAL_EL0:
1321 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1322 			tmr = TIMER_HVTIMER;
1323 		else
1324 			tmr = TIMER_VTIMER;
1325 		treg = TIMER_REG_TVAL;
1326 		break;
1327 
1328 	case SYS_AARCH32_CNTP_TVAL:
1329 	case SYS_CNTP_TVAL_EL02:
1330 		tmr = TIMER_PTIMER;
1331 		treg = TIMER_REG_TVAL;
1332 		break;
1333 
1334 	case SYS_CNTV_TVAL_EL02:
1335 		tmr = TIMER_VTIMER;
1336 		treg = TIMER_REG_TVAL;
1337 		break;
1338 
1339 	case SYS_CNTHP_TVAL_EL2:
1340 		tmr = TIMER_HPTIMER;
1341 		treg = TIMER_REG_TVAL;
1342 		break;
1343 
1344 	case SYS_CNTHV_TVAL_EL2:
1345 		tmr = TIMER_HVTIMER;
1346 		treg = TIMER_REG_TVAL;
1347 		break;
1348 
1349 	case SYS_CNTP_CTL_EL0:
1350 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1351 			tmr = TIMER_HPTIMER;
1352 		else
1353 			tmr = TIMER_PTIMER;
1354 		treg = TIMER_REG_CTL;
1355 		break;
1356 
1357 	case SYS_CNTV_CTL_EL0:
1358 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1359 			tmr = TIMER_HVTIMER;
1360 		else
1361 			tmr = TIMER_VTIMER;
1362 		treg = TIMER_REG_CTL;
1363 		break;
1364 
1365 	case SYS_AARCH32_CNTP_CTL:
1366 	case SYS_CNTP_CTL_EL02:
1367 		tmr = TIMER_PTIMER;
1368 		treg = TIMER_REG_CTL;
1369 		break;
1370 
1371 	case SYS_CNTV_CTL_EL02:
1372 		tmr = TIMER_VTIMER;
1373 		treg = TIMER_REG_CTL;
1374 		break;
1375 
1376 	case SYS_CNTHP_CTL_EL2:
1377 		tmr = TIMER_HPTIMER;
1378 		treg = TIMER_REG_CTL;
1379 		break;
1380 
1381 	case SYS_CNTHV_CTL_EL2:
1382 		tmr = TIMER_HVTIMER;
1383 		treg = TIMER_REG_CTL;
1384 		break;
1385 
1386 	case SYS_CNTP_CVAL_EL0:
1387 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1388 			tmr = TIMER_HPTIMER;
1389 		else
1390 			tmr = TIMER_PTIMER;
1391 		treg = TIMER_REG_CVAL;
1392 		break;
1393 
1394 	case SYS_CNTV_CVAL_EL0:
1395 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1396 			tmr = TIMER_HVTIMER;
1397 		else
1398 			tmr = TIMER_VTIMER;
1399 		treg = TIMER_REG_CVAL;
1400 		break;
1401 
1402 	case SYS_AARCH32_CNTP_CVAL:
1403 	case SYS_CNTP_CVAL_EL02:
1404 		tmr = TIMER_PTIMER;
1405 		treg = TIMER_REG_CVAL;
1406 		break;
1407 
1408 	case SYS_CNTV_CVAL_EL02:
1409 		tmr = TIMER_VTIMER;
1410 		treg = TIMER_REG_CVAL;
1411 		break;
1412 
1413 	case SYS_CNTHP_CVAL_EL2:
1414 		tmr = TIMER_HPTIMER;
1415 		treg = TIMER_REG_CVAL;
1416 		break;
1417 
1418 	case SYS_CNTHV_CVAL_EL2:
1419 		tmr = TIMER_HVTIMER;
1420 		treg = TIMER_REG_CVAL;
1421 		break;
1422 
1423 	case SYS_CNTPCT_EL0:
1424 	case SYS_CNTPCTSS_EL0:
1425 		if (is_hyp_ctxt(vcpu))
1426 			tmr = TIMER_HPTIMER;
1427 		else
1428 			tmr = TIMER_PTIMER;
1429 		treg = TIMER_REG_CNT;
1430 		break;
1431 
1432 	case SYS_AARCH32_CNTPCT:
1433 	case SYS_AARCH32_CNTPCTSS:
1434 		tmr = TIMER_PTIMER;
1435 		treg = TIMER_REG_CNT;
1436 		break;
1437 
1438 	case SYS_CNTVCT_EL0:
1439 	case SYS_CNTVCTSS_EL0:
1440 		if (is_hyp_ctxt(vcpu))
1441 			tmr = TIMER_HVTIMER;
1442 		else
1443 			tmr = TIMER_VTIMER;
1444 		treg = TIMER_REG_CNT;
1445 		break;
1446 
1447 	case SYS_AARCH32_CNTVCT:
1448 	case SYS_AARCH32_CNTVCTSS:
1449 		tmr = TIMER_VTIMER;
1450 		treg = TIMER_REG_CNT;
1451 		break;
1452 
1453 	default:
1454 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1455 		return undef_access(vcpu, p, r);
1456 	}
1457 
1458 	if (p->is_write)
1459 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1460 	else
1461 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1462 
1463 	return true;
1464 }
1465 
access_hv_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1466 static bool access_hv_timer(struct kvm_vcpu *vcpu,
1467 			    struct sys_reg_params *p,
1468 			    const struct sys_reg_desc *r)
1469 {
1470 	if (!vcpu_el2_e2h_is_set(vcpu))
1471 		return undef_access(vcpu, p, r);
1472 
1473 	return access_arch_timer(vcpu, p, r);
1474 }
1475 
kvm_arm64_ftr_safe_value(u32 id,const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)1476 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1477 				    s64 new, s64 cur)
1478 {
1479 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1480 
1481 	/* Some features have different safe value type in KVM than host features */
1482 	switch (id) {
1483 	case SYS_ID_AA64DFR0_EL1:
1484 		switch (kvm_ftr.shift) {
1485 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1486 			kvm_ftr.type = FTR_LOWER_SAFE;
1487 			break;
1488 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1489 			kvm_ftr.type = FTR_LOWER_SAFE;
1490 			break;
1491 		}
1492 		break;
1493 	case SYS_ID_DFR0_EL1:
1494 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1495 			kvm_ftr.type = FTR_LOWER_SAFE;
1496 		break;
1497 	}
1498 
1499 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1500 }
1501 
1502 /*
1503  * arm64_check_features() - Check if a feature register value constitutes
1504  * a subset of features indicated by the idreg's KVM sanitised limit.
1505  *
1506  * This function will check if each feature field of @val is the "safe" value
1507  * against idreg's KVM sanitised limit return from reset() callback.
1508  * If a field value in @val is the same as the one in limit, it is always
1509  * considered the safe value regardless For register fields that are not in
1510  * writable, only the value in limit is considered the safe value.
1511  *
1512  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1513  */
arm64_check_features(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1514 static int arm64_check_features(struct kvm_vcpu *vcpu,
1515 				const struct sys_reg_desc *rd,
1516 				u64 val)
1517 {
1518 	const struct arm64_ftr_reg *ftr_reg;
1519 	const struct arm64_ftr_bits *ftrp = NULL;
1520 	u32 id = reg_to_encoding(rd);
1521 	u64 writable_mask = rd->val;
1522 	u64 limit = rd->reset(vcpu, rd);
1523 	u64 mask = 0;
1524 
1525 	/*
1526 	 * Hidden and unallocated ID registers may not have a corresponding
1527 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1528 	 * only safe value is 0.
1529 	 */
1530 	if (sysreg_visible_as_raz(vcpu, rd))
1531 		return val ? -E2BIG : 0;
1532 
1533 	ftr_reg = get_arm64_ftr_reg(id);
1534 	if (!ftr_reg)
1535 		return -EINVAL;
1536 
1537 	ftrp = ftr_reg->ftr_bits;
1538 
1539 	for (; ftrp && ftrp->width; ftrp++) {
1540 		s64 f_val, f_lim, safe_val;
1541 		u64 ftr_mask;
1542 
1543 		ftr_mask = arm64_ftr_mask(ftrp);
1544 		if ((ftr_mask & writable_mask) != ftr_mask)
1545 			continue;
1546 
1547 		f_val = arm64_ftr_value(ftrp, val);
1548 		f_lim = arm64_ftr_value(ftrp, limit);
1549 		mask |= ftr_mask;
1550 
1551 		if (f_val == f_lim)
1552 			safe_val = f_val;
1553 		else
1554 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1555 
1556 		if (safe_val != f_val)
1557 			return -E2BIG;
1558 	}
1559 
1560 	/* For fields that are not writable, values in limit are the safe values. */
1561 	if ((val & ~mask) != (limit & ~mask))
1562 		return -E2BIG;
1563 
1564 	return 0;
1565 }
1566 
pmuver_to_perfmon(u8 pmuver)1567 static u8 pmuver_to_perfmon(u8 pmuver)
1568 {
1569 	switch (pmuver) {
1570 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1571 		return ID_DFR0_EL1_PerfMon_PMUv3;
1572 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1573 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1574 	default:
1575 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1576 		return pmuver;
1577 	}
1578 }
1579 
1580 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1581 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1582 
1583 /* Read a sanitised cpufeature ID register by sys_reg_desc */
__kvm_read_sanitised_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1584 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1585 				       const struct sys_reg_desc *r)
1586 {
1587 	u32 id = reg_to_encoding(r);
1588 	u64 val;
1589 
1590 	if (sysreg_visible_as_raz(vcpu, r))
1591 		return 0;
1592 
1593 	val = read_sanitised_ftr_reg(id);
1594 
1595 	switch (id) {
1596 	case SYS_ID_AA64DFR0_EL1:
1597 		val = sanitise_id_aa64dfr0_el1(vcpu, val);
1598 		break;
1599 	case SYS_ID_AA64PFR0_EL1:
1600 		val = sanitise_id_aa64pfr0_el1(vcpu, val);
1601 		break;
1602 	case SYS_ID_AA64PFR1_EL1:
1603 		if (!kvm_has_mte(vcpu->kvm))
1604 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1605 
1606 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1607 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap);
1608 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI);
1609 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac);
1610 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS);
1611 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE);
1612 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX);
1613 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_DF2);
1614 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR);
1615 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MPAM_frac);
1616 		break;
1617 	case SYS_ID_AA64PFR2_EL1:
1618 		/* We only expose FPMR */
1619 		val &= ID_AA64PFR2_EL1_FPMR;
1620 		break;
1621 	case SYS_ID_AA64ISAR1_EL1:
1622 		if (!vcpu_has_ptrauth(vcpu))
1623 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1624 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1625 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1626 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1627 		break;
1628 	case SYS_ID_AA64ISAR2_EL1:
1629 		if (!vcpu_has_ptrauth(vcpu))
1630 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1631 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1632 		if (!cpus_have_final_cap(ARM64_HAS_WFXT) ||
1633 		    has_broken_cntvoff())
1634 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1635 		break;
1636 	case SYS_ID_AA64ISAR3_EL1:
1637 		val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_FAMINMAX;
1638 		break;
1639 	case SYS_ID_AA64MMFR2_EL1:
1640 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1641 		val &= ~ID_AA64MMFR2_EL1_NV;
1642 		break;
1643 	case SYS_ID_AA64MMFR3_EL1:
1644 		val &= ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1POE |
1645 			ID_AA64MMFR3_EL1_S1PIE;
1646 		break;
1647 	case SYS_ID_MMFR4_EL1:
1648 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1649 		break;
1650 	}
1651 
1652 	if (vcpu_has_nv(vcpu))
1653 		val = limit_nv_id_reg(vcpu->kvm, id, val);
1654 
1655 	return val;
1656 }
1657 
kvm_read_sanitised_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1658 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1659 				     const struct sys_reg_desc *r)
1660 {
1661 	return __kvm_read_sanitised_id_reg(vcpu, r);
1662 }
1663 
read_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1664 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1665 {
1666 	return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1667 }
1668 
is_feature_id_reg(u32 encoding)1669 static bool is_feature_id_reg(u32 encoding)
1670 {
1671 	return (sys_reg_Op0(encoding) == 3 &&
1672 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1673 		sys_reg_CRn(encoding) == 0 &&
1674 		sys_reg_CRm(encoding) <= 7);
1675 }
1676 
1677 /*
1678  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1679  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1680  * registers KVM maintains on a per-VM basis.
1681  *
1682  * Additionally, the implementation ID registers and CTR_EL0 are handled as
1683  * per-VM registers.
1684  */
is_vm_ftr_id_reg(u32 id)1685 static inline bool is_vm_ftr_id_reg(u32 id)
1686 {
1687 	switch (id) {
1688 	case SYS_CTR_EL0:
1689 	case SYS_MIDR_EL1:
1690 	case SYS_REVIDR_EL1:
1691 	case SYS_AIDR_EL1:
1692 		return true;
1693 	default:
1694 		return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1695 			sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1696 			sys_reg_CRm(id) < 8);
1697 
1698 	}
1699 }
1700 
is_vcpu_ftr_id_reg(u32 id)1701 static inline bool is_vcpu_ftr_id_reg(u32 id)
1702 {
1703 	return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1704 }
1705 
is_aa32_id_reg(u32 id)1706 static inline bool is_aa32_id_reg(u32 id)
1707 {
1708 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1709 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1710 		sys_reg_CRm(id) <= 3);
1711 }
1712 
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1713 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1714 				  const struct sys_reg_desc *r)
1715 {
1716 	u32 id = reg_to_encoding(r);
1717 
1718 	switch (id) {
1719 	case SYS_ID_AA64ZFR0_EL1:
1720 		if (!vcpu_has_sve(vcpu))
1721 			return REG_RAZ;
1722 		break;
1723 	}
1724 
1725 	return 0;
1726 }
1727 
aa32_id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1728 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1729 				       const struct sys_reg_desc *r)
1730 {
1731 	/*
1732 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1733 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1734 	 * systems.
1735 	 */
1736 	if (!kvm_supports_32bit_el0())
1737 		return REG_RAZ | REG_USER_WI;
1738 
1739 	return id_visibility(vcpu, r);
1740 }
1741 
raz_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1742 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1743 				   const struct sys_reg_desc *r)
1744 {
1745 	return REG_RAZ;
1746 }
1747 
1748 /* cpufeature ID register access trap handlers */
1749 
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1750 static bool access_id_reg(struct kvm_vcpu *vcpu,
1751 			  struct sys_reg_params *p,
1752 			  const struct sys_reg_desc *r)
1753 {
1754 	if (p->is_write)
1755 		return write_to_read_only(vcpu, p, r);
1756 
1757 	p->regval = read_id_reg(vcpu, r);
1758 
1759 	return true;
1760 }
1761 
1762 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1763 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1764 				   const struct sys_reg_desc *rd)
1765 {
1766 	if (vcpu_has_sve(vcpu))
1767 		return 0;
1768 
1769 	return REG_HIDDEN;
1770 }
1771 
sme_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1772 static unsigned int sme_visibility(const struct kvm_vcpu *vcpu,
1773 				   const struct sys_reg_desc *rd)
1774 {
1775 	if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP))
1776 		return 0;
1777 
1778 	return REG_HIDDEN;
1779 }
1780 
fp8_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1781 static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu,
1782 				   const struct sys_reg_desc *rd)
1783 {
1784 	if (kvm_has_fpmr(vcpu->kvm))
1785 		return 0;
1786 
1787 	return REG_HIDDEN;
1788 }
1789 
sanitise_id_aa64pfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1790 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1791 {
1792 	if (!vcpu_has_sve(vcpu))
1793 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1794 
1795 	/*
1796 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1797 	 * Although this is a per-CPU feature, we make it global because
1798 	 * asymmetric systems are just a nuisance.
1799 	 *
1800 	 * Userspace can override this as long as it doesn't promise
1801 	 * the impossible.
1802 	 */
1803 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1804 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1805 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1806 	}
1807 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1808 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1809 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1810 	}
1811 
1812 	if (kvm_vgic_global_state.type == VGIC_V3) {
1813 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1814 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1815 	}
1816 
1817 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1818 
1819 	/*
1820 	 * MPAM is disabled by default as KVM also needs a set of PARTID to
1821 	 * program the MPAMVPMx_EL2 PARTID remapping registers with. But some
1822 	 * older kernels let the guest see the ID bit.
1823 	 */
1824 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1825 
1826 	return val;
1827 }
1828 
sanitise_id_aa64dfr0_el1(const struct kvm_vcpu * vcpu,u64 val)1829 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1830 {
1831 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1832 
1833 	/*
1834 	 * Only initialize the PMU version if the vCPU was configured with one.
1835 	 */
1836 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1837 	if (kvm_vcpu_has_pmu(vcpu))
1838 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1839 				      kvm_arm_pmu_get_pmuver_limit());
1840 
1841 	/* Hide SPE from guests */
1842 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1843 
1844 	/* Hide BRBE from guests */
1845 	val &= ~ID_AA64DFR0_EL1_BRBE_MASK;
1846 
1847 	return val;
1848 }
1849 
set_id_aa64dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1850 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1851 			       const struct sys_reg_desc *rd,
1852 			       u64 val)
1853 {
1854 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1855 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1856 
1857 	/*
1858 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1859 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1860 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1861 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1862 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1863 	 *
1864 	 * At minimum, we're on the hook to allow values that were given to
1865 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1866 	 * with a more sensible NI. The value of an ID register changing under
1867 	 * the nose of the guest is unfortunate, but is certainly no more
1868 	 * surprising than an ill-guided PMU driver poking at impdef system
1869 	 * registers that end in an UNDEF...
1870 	 */
1871 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1872 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1873 
1874 	/*
1875 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1876 	 * nonzero minimum safe value.
1877 	 */
1878 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1879 		return -EINVAL;
1880 
1881 	return set_id_reg(vcpu, rd, val);
1882 }
1883 
read_sanitised_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1884 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1885 				      const struct sys_reg_desc *rd)
1886 {
1887 	u8 perfmon;
1888 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1889 
1890 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1891 	if (kvm_vcpu_has_pmu(vcpu)) {
1892 		perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1893 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1894 	}
1895 
1896 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1897 
1898 	return val;
1899 }
1900 
set_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1901 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1902 			   const struct sys_reg_desc *rd,
1903 			   u64 val)
1904 {
1905 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1906 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1907 
1908 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1909 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1910 		perfmon = 0;
1911 	}
1912 
1913 	/*
1914 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1915 	 * it doesn't promise more than what the HW gives us on the
1916 	 * AArch64 side (as everything is emulated with that), and
1917 	 * that this is a PMUv3.
1918 	 */
1919 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1920 		return -EINVAL;
1921 
1922 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1923 		return -EINVAL;
1924 
1925 	return set_id_reg(vcpu, rd, val);
1926 }
1927 
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1928 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1929 			       const struct sys_reg_desc *rd, u64 user_val)
1930 {
1931 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1932 	u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK;
1933 
1934 	/*
1935 	 * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits
1936 	 * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to
1937 	 * guests, but didn't add trap handling. KVM doesn't support MPAM and
1938 	 * always returns an UNDEF for these registers. The guest must see 0
1939 	 * for this field.
1940 	 *
1941 	 * But KVM must also accept values from user-space that were provided
1942 	 * by KVM. On CPUs that support MPAM, permit user-space to write
1943 	 * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field.
1944 	 */
1945 	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1946 		user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1947 
1948 	return set_id_reg(vcpu, rd, user_val);
1949 }
1950 
set_id_aa64pfr1_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1951 static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu,
1952 			       const struct sys_reg_desc *rd, u64 user_val)
1953 {
1954 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1955 	u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK;
1956 
1957 	/* See set_id_aa64pfr0_el1 for comment about MPAM */
1958 	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1959 		user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
1960 
1961 	return set_id_reg(vcpu, rd, user_val);
1962 }
1963 
set_id_aa64mmfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1964 static int set_id_aa64mmfr0_el1(struct kvm_vcpu *vcpu,
1965 				const struct sys_reg_desc *rd, u64 user_val)
1966 {
1967 	u64 sanitized_val = kvm_read_sanitised_id_reg(vcpu, rd);
1968 	u64 tgran2_mask = ID_AA64MMFR0_EL1_TGRAN4_2_MASK |
1969 			  ID_AA64MMFR0_EL1_TGRAN16_2_MASK |
1970 			  ID_AA64MMFR0_EL1_TGRAN64_2_MASK;
1971 
1972 	if (vcpu_has_nv(vcpu) &&
1973 	    ((sanitized_val & tgran2_mask) != (user_val & tgran2_mask)))
1974 		return -EINVAL;
1975 
1976 	return set_id_reg(vcpu, rd, user_val);
1977 }
1978 
set_id_aa64mmfr2_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1979 static int set_id_aa64mmfr2_el1(struct kvm_vcpu *vcpu,
1980 				const struct sys_reg_desc *rd, u64 user_val)
1981 {
1982 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1983 	u64 nv_mask = ID_AA64MMFR2_EL1_NV_MASK;
1984 
1985 	/*
1986 	 * We made the mistake to expose the now deprecated NV field,
1987 	 * so allow userspace to write it, but silently ignore it.
1988 	 */
1989 	if ((hw_val & nv_mask) == (user_val & nv_mask))
1990 		user_val &= ~nv_mask;
1991 
1992 	return set_id_reg(vcpu, rd, user_val);
1993 }
1994 
set_ctr_el0(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1995 static int set_ctr_el0(struct kvm_vcpu *vcpu,
1996 		       const struct sys_reg_desc *rd, u64 user_val)
1997 {
1998 	u8 user_L1Ip = SYS_FIELD_GET(CTR_EL0, L1Ip, user_val);
1999 
2000 	/*
2001 	 * Both AIVIVT (0b01) and VPIPT (0b00) are documented as reserved.
2002 	 * Hence only allow to set VIPT(0b10) or PIPT(0b11) for L1Ip based
2003 	 * on what hardware reports.
2004 	 *
2005 	 * Using a VIPT software model on PIPT will lead to over invalidation,
2006 	 * but still correct. Hence, we can allow downgrading PIPT to VIPT,
2007 	 * but not the other way around. This is handled via arm64_ftr_safe_value()
2008 	 * as CTR_EL0 ftr_bits has L1Ip field with type FTR_EXACT and safe value
2009 	 * set as VIPT.
2010 	 */
2011 	switch (user_L1Ip) {
2012 	case CTR_EL0_L1Ip_RESERVED_VPIPT:
2013 	case CTR_EL0_L1Ip_RESERVED_AIVIVT:
2014 		return -EINVAL;
2015 	case CTR_EL0_L1Ip_VIPT:
2016 	case CTR_EL0_L1Ip_PIPT:
2017 		return set_id_reg(vcpu, rd, user_val);
2018 	default:
2019 		return -ENOENT;
2020 	}
2021 }
2022 
2023 /*
2024  * cpufeature ID register user accessors
2025  *
2026  * For now, these registers are immutable for userspace, so no values
2027  * are stored, and for set_id_reg() we don't allow the effective value
2028  * to be changed.
2029  */
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2030 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2031 		      u64 *val)
2032 {
2033 	/*
2034 	 * Avoid locking if the VM has already started, as the ID registers are
2035 	 * guaranteed to be invariant at that point.
2036 	 */
2037 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
2038 		*val = read_id_reg(vcpu, rd);
2039 		return 0;
2040 	}
2041 
2042 	mutex_lock(&vcpu->kvm->arch.config_lock);
2043 	*val = read_id_reg(vcpu, rd);
2044 	mutex_unlock(&vcpu->kvm->arch.config_lock);
2045 
2046 	return 0;
2047 }
2048 
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2049 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2050 		      u64 val)
2051 {
2052 	u32 id = reg_to_encoding(rd);
2053 	int ret;
2054 
2055 	mutex_lock(&vcpu->kvm->arch.config_lock);
2056 
2057 	/*
2058 	 * Once the VM has started the ID registers are immutable. Reject any
2059 	 * write that does not match the final register value.
2060 	 */
2061 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
2062 		if (val != read_id_reg(vcpu, rd))
2063 			ret = -EBUSY;
2064 		else
2065 			ret = 0;
2066 
2067 		mutex_unlock(&vcpu->kvm->arch.config_lock);
2068 		return ret;
2069 	}
2070 
2071 	ret = arm64_check_features(vcpu, rd, val);
2072 	if (!ret)
2073 		kvm_set_vm_id_reg(vcpu->kvm, id, val);
2074 
2075 	mutex_unlock(&vcpu->kvm->arch.config_lock);
2076 
2077 	/*
2078 	 * arm64_check_features() returns -E2BIG to indicate the register's
2079 	 * feature set is a superset of the maximally-allowed register value.
2080 	 * While it would be nice to precisely describe this to userspace, the
2081 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
2082 	 * writes return -EINVAL.
2083 	 */
2084 	if (ret == -E2BIG)
2085 		ret = -EINVAL;
2086 	return ret;
2087 }
2088 
kvm_set_vm_id_reg(struct kvm * kvm,u32 reg,u64 val)2089 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
2090 {
2091 	u64 *p = __vm_id_reg(&kvm->arch, reg);
2092 
2093 	lockdep_assert_held(&kvm->arch.config_lock);
2094 
2095 	if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
2096 		return;
2097 
2098 	*p = val;
2099 }
2100 
get_raz_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)2101 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2102 		       u64 *val)
2103 {
2104 	*val = 0;
2105 	return 0;
2106 }
2107 
set_wi_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2108 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2109 		      u64 val)
2110 {
2111 	return 0;
2112 }
2113 
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2114 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2115 		       const struct sys_reg_desc *r)
2116 {
2117 	if (p->is_write)
2118 		return write_to_read_only(vcpu, p, r);
2119 
2120 	p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
2121 	return true;
2122 }
2123 
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2124 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2125 			 const struct sys_reg_desc *r)
2126 {
2127 	if (p->is_write)
2128 		return write_to_read_only(vcpu, p, r);
2129 
2130 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
2131 	return true;
2132 }
2133 
2134 /*
2135  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
2136  * by the physical CPU which the vcpu currently resides in.
2137  */
reset_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2138 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2139 {
2140 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2141 	u64 clidr;
2142 	u8 loc;
2143 
2144 	if ((ctr_el0 & CTR_EL0_IDC)) {
2145 		/*
2146 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
2147 		 * will not be set and a unified cache, which will be marked as
2148 		 * LoC, will be added.
2149 		 *
2150 		 * If not DIC, let the unified cache L2 so that an instruction
2151 		 * cache can be added as L1 later.
2152 		 */
2153 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
2154 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
2155 	} else {
2156 		/*
2157 		 * Data cache clean to the PoU is required so let L1 have a data
2158 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
2159 		 * it can be marked as LoC too.
2160 		 */
2161 		loc = 1;
2162 		clidr = 1 << CLIDR_LOUU_SHIFT;
2163 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
2164 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
2165 	}
2166 
2167 	/*
2168 	 * Instruction cache invalidation to the PoU is required so let L1 have
2169 	 * an instruction cache. If L1 already has a data cache, it will be
2170 	 * CACHE_TYPE_SEPARATE.
2171 	 */
2172 	if (!(ctr_el0 & CTR_EL0_DIC))
2173 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
2174 
2175 	clidr |= loc << CLIDR_LOC_SHIFT;
2176 
2177 	/*
2178 	 * Add tag cache unified to data cache. Allocation tags and data are
2179 	 * unified in a cache line so that it looks valid even if there is only
2180 	 * one cache line.
2181 	 */
2182 	if (kvm_has_mte(vcpu->kvm))
2183 		clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc);
2184 
2185 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
2186 
2187 	return __vcpu_sys_reg(vcpu, r->reg);
2188 }
2189 
set_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)2190 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2191 		      u64 val)
2192 {
2193 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2194 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
2195 
2196 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
2197 		return -EINVAL;
2198 
2199 	__vcpu_sys_reg(vcpu, rd->reg) = val;
2200 
2201 	return 0;
2202 }
2203 
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2204 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2205 			  const struct sys_reg_desc *r)
2206 {
2207 	int reg = r->reg;
2208 
2209 	if (p->is_write)
2210 		vcpu_write_sys_reg(vcpu, p->regval, reg);
2211 	else
2212 		p->regval = vcpu_read_sys_reg(vcpu, reg);
2213 	return true;
2214 }
2215 
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2216 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2217 			  const struct sys_reg_desc *r)
2218 {
2219 	u32 csselr;
2220 
2221 	if (p->is_write)
2222 		return write_to_read_only(vcpu, p, r);
2223 
2224 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2225 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2226 	if (csselr < CSSELR_MAX)
2227 		p->regval = get_ccsidr(vcpu, csselr);
2228 
2229 	return true;
2230 }
2231 
mte_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2232 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2233 				   const struct sys_reg_desc *rd)
2234 {
2235 	if (kvm_has_mte(vcpu->kvm))
2236 		return 0;
2237 
2238 	return REG_HIDDEN;
2239 }
2240 
2241 #define MTE_REG(name) {				\
2242 	SYS_DESC(SYS_##name),			\
2243 	.access = undef_access,			\
2244 	.reset = reset_unknown,			\
2245 	.reg = name,				\
2246 	.visibility = mte_visibility,		\
2247 }
2248 
el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2249 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2250 				   const struct sys_reg_desc *rd)
2251 {
2252 	if (vcpu_has_nv(vcpu))
2253 		return 0;
2254 
2255 	return REG_HIDDEN;
2256 }
2257 
bad_vncr_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2258 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2259 			  struct sys_reg_params *p,
2260 			  const struct sys_reg_desc *r)
2261 {
2262 	/*
2263 	 * We really shouldn't be here, and this is likely the result
2264 	 * of a misconfigured trap, as this register should target the
2265 	 * VNCR page, and nothing else.
2266 	 */
2267 	return bad_trap(vcpu, p, r,
2268 			"trap of VNCR-backed register");
2269 }
2270 
bad_redir_trap(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2271 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2272 			   struct sys_reg_params *p,
2273 			   const struct sys_reg_desc *r)
2274 {
2275 	/*
2276 	 * We really shouldn't be here, and this is likely the result
2277 	 * of a misconfigured trap, as this register should target the
2278 	 * corresponding EL1, and nothing else.
2279 	 */
2280 	return bad_trap(vcpu, p, r,
2281 			"trap of EL2 register redirected to EL1");
2282 }
2283 
2284 #define EL2_REG(name, acc, rst, v) {		\
2285 	SYS_DESC(SYS_##name),			\
2286 	.access = acc,				\
2287 	.reset = rst,				\
2288 	.reg = name,				\
2289 	.visibility = el2_visibility,		\
2290 	.val = v,				\
2291 }
2292 
2293 #define EL2_REG_FILTERED(name, acc, rst, v, filter) {	\
2294 	SYS_DESC(SYS_##name),			\
2295 	.access = acc,				\
2296 	.reset = rst,				\
2297 	.reg = name,				\
2298 	.visibility = filter,			\
2299 	.val = v,				\
2300 }
2301 
2302 #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2303 #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2304 
2305 /*
2306  * Since reset() callback and field val are not used for idregs, they will be
2307  * used for specific purposes for idregs.
2308  * The reset() would return KVM sanitised register value. The value would be the
2309  * same as the host kernel sanitised value if there is no KVM sanitisation.
2310  * The val would be used as a mask indicating writable fields for the idreg.
2311  * Only bits with 1 are writable from userspace. This mask might not be
2312  * necessary in the future whenever all ID registers are enabled as writable
2313  * from userspace.
2314  */
2315 
2316 #define ID_DESC_DEFAULT_CALLBACKS		\
2317 	.access	= access_id_reg,		\
2318 	.get_user = get_id_reg,			\
2319 	.set_user = set_id_reg,			\
2320 	.visibility = id_visibility,		\
2321 	.reset = kvm_read_sanitised_id_reg
2322 
2323 #define ID_DESC(name)				\
2324 	SYS_DESC(SYS_##name),			\
2325 	ID_DESC_DEFAULT_CALLBACKS
2326 
2327 /* sys_reg_desc initialiser for known cpufeature ID registers */
2328 #define ID_SANITISED(name) {			\
2329 	ID_DESC(name),				\
2330 	.val = 0,				\
2331 }
2332 
2333 /* sys_reg_desc initialiser for known cpufeature ID registers */
2334 #define AA32_ID_SANITISED(name) {		\
2335 	ID_DESC(name),				\
2336 	.visibility = aa32_id_visibility,	\
2337 	.val = 0,				\
2338 }
2339 
2340 /* sys_reg_desc initialiser for writable ID registers */
2341 #define ID_WRITABLE(name, mask) {		\
2342 	ID_DESC(name),				\
2343 	.val = mask,				\
2344 }
2345 
2346 /* sys_reg_desc initialiser for cpufeature ID registers that need filtering */
2347 #define ID_FILTERED(sysreg, name, mask) {	\
2348 	ID_DESC(sysreg),				\
2349 	.set_user = set_##name,				\
2350 	.val = (mask),					\
2351 }
2352 
2353 /*
2354  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2355  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2356  * (1 <= crm < 8, 0 <= Op2 < 8).
2357  */
2358 #define ID_UNALLOCATED(crm, op2) {			\
2359 	.name = "S3_0_0_" #crm "_" #op2,		\
2360 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2361 	ID_DESC_DEFAULT_CALLBACKS,			\
2362 	.visibility = raz_visibility,			\
2363 	.val = 0,					\
2364 }
2365 
2366 /*
2367  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2368  * For now, these are exposed just like unallocated ID regs: they appear
2369  * RAZ for the guest.
2370  */
2371 #define ID_HIDDEN(name) {			\
2372 	ID_DESC(name),				\
2373 	.visibility = raz_visibility,		\
2374 	.val = 0,				\
2375 }
2376 
access_sp_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2377 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2378 			  struct sys_reg_params *p,
2379 			  const struct sys_reg_desc *r)
2380 {
2381 	if (p->is_write)
2382 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2383 	else
2384 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2385 
2386 	return true;
2387 }
2388 
access_elr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2389 static bool access_elr(struct kvm_vcpu *vcpu,
2390 		       struct sys_reg_params *p,
2391 		       const struct sys_reg_desc *r)
2392 {
2393 	if (p->is_write)
2394 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2395 	else
2396 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2397 
2398 	return true;
2399 }
2400 
access_spsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2401 static bool access_spsr(struct kvm_vcpu *vcpu,
2402 			struct sys_reg_params *p,
2403 			const struct sys_reg_desc *r)
2404 {
2405 	if (p->is_write)
2406 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2407 	else
2408 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2409 
2410 	return true;
2411 }
2412 
access_cntkctl_el12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2413 static bool access_cntkctl_el12(struct kvm_vcpu *vcpu,
2414 				struct sys_reg_params *p,
2415 				const struct sys_reg_desc *r)
2416 {
2417 	if (p->is_write)
2418 		__vcpu_sys_reg(vcpu, CNTKCTL_EL1) = p->regval;
2419 	else
2420 		p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1);
2421 
2422 	return true;
2423 }
2424 
reset_hcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2425 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2426 {
2427 	u64 val = r->val;
2428 
2429 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2430 		val |= HCR_E2H;
2431 
2432 	return __vcpu_sys_reg(vcpu, r->reg) = val;
2433 }
2434 
__el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,unsigned int (* fn)(const struct kvm_vcpu *,const struct sys_reg_desc *))2435 static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu,
2436 				     const struct sys_reg_desc *rd,
2437 				     unsigned int (*fn)(const struct kvm_vcpu *,
2438 							const struct sys_reg_desc *))
2439 {
2440 	return el2_visibility(vcpu, rd) ?: fn(vcpu, rd);
2441 }
2442 
sve_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2443 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2444 				       const struct sys_reg_desc *rd)
2445 {
2446 	return __el2_visibility(vcpu, rd, sve_visibility);
2447 }
2448 
access_zcr_el2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2449 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2450 			   struct sys_reg_params *p,
2451 			   const struct sys_reg_desc *r)
2452 {
2453 	unsigned int vq;
2454 
2455 	if (guest_hyp_sve_traps_enabled(vcpu)) {
2456 		kvm_inject_nested_sve_trap(vcpu);
2457 		return true;
2458 	}
2459 
2460 	if (!p->is_write) {
2461 		p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2462 		return true;
2463 	}
2464 
2465 	vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2466 	vq = min(vq, vcpu_sve_max_vq(vcpu));
2467 	vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2468 
2469 	return true;
2470 }
2471 
access_gic_vtr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2472 static bool access_gic_vtr(struct kvm_vcpu *vcpu,
2473 			   struct sys_reg_params *p,
2474 			   const struct sys_reg_desc *r)
2475 {
2476 	if (p->is_write)
2477 		return write_to_read_only(vcpu, p, r);
2478 
2479 	p->regval = kvm_vgic_global_state.ich_vtr_el2;
2480 	p->regval &= ~(ICH_VTR_EL2_DVIM 	|
2481 		       ICH_VTR_EL2_A3V		|
2482 		       ICH_VTR_EL2_IDbits);
2483 	p->regval |= ICH_VTR_EL2_nV4;
2484 
2485 	return true;
2486 }
2487 
access_gic_misr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2488 static bool access_gic_misr(struct kvm_vcpu *vcpu,
2489 			    struct sys_reg_params *p,
2490 			    const struct sys_reg_desc *r)
2491 {
2492 	if (p->is_write)
2493 		return write_to_read_only(vcpu, p, r);
2494 
2495 	p->regval = vgic_v3_get_misr(vcpu);
2496 
2497 	return true;
2498 }
2499 
access_gic_eisr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2500 static bool access_gic_eisr(struct kvm_vcpu *vcpu,
2501 			    struct sys_reg_params *p,
2502 			    const struct sys_reg_desc *r)
2503 {
2504 	if (p->is_write)
2505 		return write_to_read_only(vcpu, p, r);
2506 
2507 	p->regval = vgic_v3_get_eisr(vcpu);
2508 
2509 	return true;
2510 }
2511 
access_gic_elrsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2512 static bool access_gic_elrsr(struct kvm_vcpu *vcpu,
2513 			     struct sys_reg_params *p,
2514 			     const struct sys_reg_desc *r)
2515 {
2516 	if (p->is_write)
2517 		return write_to_read_only(vcpu, p, r);
2518 
2519 	p->regval = vgic_v3_get_elrsr(vcpu);
2520 
2521 	return true;
2522 }
2523 
s1poe_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2524 static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu,
2525 				     const struct sys_reg_desc *rd)
2526 {
2527 	if (kvm_has_s1poe(vcpu->kvm))
2528 		return 0;
2529 
2530 	return REG_HIDDEN;
2531 }
2532 
s1poe_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2533 static unsigned int s1poe_el2_visibility(const struct kvm_vcpu *vcpu,
2534 					 const struct sys_reg_desc *rd)
2535 {
2536 	return __el2_visibility(vcpu, rd, s1poe_visibility);
2537 }
2538 
tcr2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2539 static unsigned int tcr2_visibility(const struct kvm_vcpu *vcpu,
2540 				    const struct sys_reg_desc *rd)
2541 {
2542 	if (kvm_has_tcr2(vcpu->kvm))
2543 		return 0;
2544 
2545 	return REG_HIDDEN;
2546 }
2547 
tcr2_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2548 static unsigned int tcr2_el2_visibility(const struct kvm_vcpu *vcpu,
2549 				    const struct sys_reg_desc *rd)
2550 {
2551 	return __el2_visibility(vcpu, rd, tcr2_visibility);
2552 }
2553 
s1pie_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2554 static unsigned int s1pie_visibility(const struct kvm_vcpu *vcpu,
2555 				     const struct sys_reg_desc *rd)
2556 {
2557 	if (kvm_has_s1pie(vcpu->kvm))
2558 		return 0;
2559 
2560 	return REG_HIDDEN;
2561 }
2562 
s1pie_el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)2563 static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu,
2564 					 const struct sys_reg_desc *rd)
2565 {
2566 	return __el2_visibility(vcpu, rd, s1pie_visibility);
2567 }
2568 
access_mdcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2569 static bool access_mdcr(struct kvm_vcpu *vcpu,
2570 			struct sys_reg_params *p,
2571 			const struct sys_reg_desc *r)
2572 {
2573 	u64 old = __vcpu_sys_reg(vcpu, MDCR_EL2);
2574 
2575 	if (!access_rw(vcpu, p, r))
2576 		return false;
2577 
2578 	/*
2579 	 * Request a reload of the PMU to enable/disable the counters affected
2580 	 * by HPME.
2581 	 */
2582 	if ((old ^ __vcpu_sys_reg(vcpu, MDCR_EL2)) & MDCR_EL2_HPME)
2583 		kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
2584 
2585 	return true;
2586 }
2587 
2588 /*
2589  * For historical (ahem ABI) reasons, KVM treated MIDR_EL1, REVIDR_EL1, and
2590  * AIDR_EL1 as "invariant" registers, meaning userspace cannot change them.
2591  * The values made visible to userspace were the register values of the boot
2592  * CPU.
2593  *
2594  * At the same time, reads from these registers at EL1 previously were not
2595  * trapped, allowing the guest to read the actual hardware value. On big-little
2596  * machines, this means the VM can see different values depending on where a
2597  * given vCPU got scheduled.
2598  *
2599  * These registers are now trapped as collateral damage from SME, and what
2600  * follows attempts to give a user / guest view consistent with the existing
2601  * ABI.
2602  */
access_imp_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2603 static bool access_imp_id_reg(struct kvm_vcpu *vcpu,
2604 			      struct sys_reg_params *p,
2605 			      const struct sys_reg_desc *r)
2606 {
2607 	if (p->is_write)
2608 		return write_to_read_only(vcpu, p, r);
2609 
2610 	/*
2611 	 * Return the VM-scoped implementation ID register values if userspace
2612 	 * has made them writable.
2613 	 */
2614 	if (test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &vcpu->kvm->arch.flags))
2615 		return access_id_reg(vcpu, p, r);
2616 
2617 	/*
2618 	 * Otherwise, fall back to the old behavior of returning the value of
2619 	 * the current CPU.
2620 	 */
2621 	switch (reg_to_encoding(r)) {
2622 	case SYS_REVIDR_EL1:
2623 		p->regval = read_sysreg(revidr_el1);
2624 		break;
2625 	case SYS_AIDR_EL1:
2626 		p->regval = read_sysreg(aidr_el1);
2627 		break;
2628 	default:
2629 		WARN_ON_ONCE(1);
2630 	}
2631 
2632 	return true;
2633 }
2634 
2635 static u64 __ro_after_init boot_cpu_midr_val;
2636 static u64 __ro_after_init boot_cpu_revidr_val;
2637 static u64 __ro_after_init boot_cpu_aidr_val;
2638 
init_imp_id_regs(void)2639 static void init_imp_id_regs(void)
2640 {
2641 	boot_cpu_midr_val = read_sysreg(midr_el1);
2642 	boot_cpu_revidr_val = read_sysreg(revidr_el1);
2643 	boot_cpu_aidr_val = read_sysreg(aidr_el1);
2644 }
2645 
reset_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)2646 static u64 reset_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2647 {
2648 	switch (reg_to_encoding(r)) {
2649 	case SYS_MIDR_EL1:
2650 		return boot_cpu_midr_val;
2651 	case SYS_REVIDR_EL1:
2652 		return boot_cpu_revidr_val;
2653 	case SYS_AIDR_EL1:
2654 		return boot_cpu_aidr_val;
2655 	default:
2656 		KVM_BUG_ON(1, vcpu->kvm);
2657 		return 0;
2658 	}
2659 }
2660 
set_imp_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 val)2661 static int set_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
2662 			  u64 val)
2663 {
2664 	struct kvm *kvm = vcpu->kvm;
2665 	u64 expected;
2666 
2667 	guard(mutex)(&kvm->arch.config_lock);
2668 
2669 	expected = read_id_reg(vcpu, r);
2670 	if (expected == val)
2671 		return 0;
2672 
2673 	if (!test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags))
2674 		return -EINVAL;
2675 
2676 	/*
2677 	 * Once the VM has started the ID registers are immutable. Reject the
2678 	 * write if userspace tries to change it.
2679 	 */
2680 	if (kvm_vm_has_ran_once(kvm))
2681 		return -EBUSY;
2682 
2683 	/*
2684 	 * Any value is allowed for the implementation ID registers so long as
2685 	 * it is within the writable mask.
2686 	 */
2687 	if ((val & r->val) != val)
2688 		return -EINVAL;
2689 
2690 	kvm_set_vm_id_reg(kvm, reg_to_encoding(r), val);
2691 	return 0;
2692 }
2693 
2694 #define IMPLEMENTATION_ID(reg, mask) {			\
2695 	SYS_DESC(SYS_##reg),				\
2696 	.access = access_imp_id_reg,			\
2697 	.get_user = get_id_reg,				\
2698 	.set_user = set_imp_id_reg,			\
2699 	.reset = reset_imp_id_reg,			\
2700 	.val = mask,					\
2701 }
2702 
2703 /*
2704  * Architected system registers.
2705  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2706  *
2707  * Debug handling: We do trap most, if not all debug related system
2708  * registers. The implementation is good enough to ensure that a guest
2709  * can use these with minimal performance degradation. The drawback is
2710  * that we don't implement any of the external debug architecture.
2711  * This should be revisited if we ever encounter a more demanding
2712  * guest...
2713  */
2714 static const struct sys_reg_desc sys_reg_descs[] = {
2715 	DBG_BCR_BVR_WCR_WVR_EL1(0),
2716 	DBG_BCR_BVR_WCR_WVR_EL1(1),
2717 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2718 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2719 	DBG_BCR_BVR_WCR_WVR_EL1(2),
2720 	DBG_BCR_BVR_WCR_WVR_EL1(3),
2721 	DBG_BCR_BVR_WCR_WVR_EL1(4),
2722 	DBG_BCR_BVR_WCR_WVR_EL1(5),
2723 	DBG_BCR_BVR_WCR_WVR_EL1(6),
2724 	DBG_BCR_BVR_WCR_WVR_EL1(7),
2725 	DBG_BCR_BVR_WCR_WVR_EL1(8),
2726 	DBG_BCR_BVR_WCR_WVR_EL1(9),
2727 	DBG_BCR_BVR_WCR_WVR_EL1(10),
2728 	DBG_BCR_BVR_WCR_WVR_EL1(11),
2729 	DBG_BCR_BVR_WCR_WVR_EL1(12),
2730 	DBG_BCR_BVR_WCR_WVR_EL1(13),
2731 	DBG_BCR_BVR_WCR_WVR_EL1(14),
2732 	DBG_BCR_BVR_WCR_WVR_EL1(15),
2733 
2734 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2735 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2736 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2737 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2738 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2739 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2740 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2741 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2742 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2743 
2744 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2745 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2746 	// DBGDTR[TR]X_EL0 share the same encoding
2747 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2748 
2749 	{ SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 },
2750 
2751 	IMPLEMENTATION_ID(MIDR_EL1, GENMASK_ULL(31, 0)),
2752 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2753 	IMPLEMENTATION_ID(REVIDR_EL1, GENMASK_ULL(63, 0)),
2754 
2755 	/*
2756 	 * ID regs: all ID_SANITISED() entries here must have corresponding
2757 	 * entries in arm64_ftr_regs[].
2758 	 */
2759 
2760 	/* AArch64 mappings of the AArch32 ID registers */
2761 	/* CRm=1 */
2762 	AA32_ID_SANITISED(ID_PFR0_EL1),
2763 	AA32_ID_SANITISED(ID_PFR1_EL1),
2764 	{ SYS_DESC(SYS_ID_DFR0_EL1),
2765 	  .access = access_id_reg,
2766 	  .get_user = get_id_reg,
2767 	  .set_user = set_id_dfr0_el1,
2768 	  .visibility = aa32_id_visibility,
2769 	  .reset = read_sanitised_id_dfr0_el1,
2770 	  .val = ID_DFR0_EL1_PerfMon_MASK |
2771 		 ID_DFR0_EL1_CopDbg_MASK, },
2772 	ID_HIDDEN(ID_AFR0_EL1),
2773 	AA32_ID_SANITISED(ID_MMFR0_EL1),
2774 	AA32_ID_SANITISED(ID_MMFR1_EL1),
2775 	AA32_ID_SANITISED(ID_MMFR2_EL1),
2776 	AA32_ID_SANITISED(ID_MMFR3_EL1),
2777 
2778 	/* CRm=2 */
2779 	AA32_ID_SANITISED(ID_ISAR0_EL1),
2780 	AA32_ID_SANITISED(ID_ISAR1_EL1),
2781 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2782 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2783 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2784 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2785 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2786 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2787 
2788 	/* CRm=3 */
2789 	AA32_ID_SANITISED(MVFR0_EL1),
2790 	AA32_ID_SANITISED(MVFR1_EL1),
2791 	AA32_ID_SANITISED(MVFR2_EL1),
2792 	ID_UNALLOCATED(3,3),
2793 	AA32_ID_SANITISED(ID_PFR2_EL1),
2794 	ID_HIDDEN(ID_DFR1_EL1),
2795 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2796 	ID_UNALLOCATED(3,7),
2797 
2798 	/* AArch64 ID registers */
2799 	/* CRm=4 */
2800 	ID_FILTERED(ID_AA64PFR0_EL1, id_aa64pfr0_el1,
2801 		    ~(ID_AA64PFR0_EL1_AMU |
2802 		      ID_AA64PFR0_EL1_MPAM |
2803 		      ID_AA64PFR0_EL1_SVE |
2804 		      ID_AA64PFR0_EL1_RAS |
2805 		      ID_AA64PFR0_EL1_AdvSIMD |
2806 		      ID_AA64PFR0_EL1_FP)),
2807 	ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1,
2808 				     ~(ID_AA64PFR1_EL1_PFAR |
2809 				       ID_AA64PFR1_EL1_DF2 |
2810 				       ID_AA64PFR1_EL1_MTEX |
2811 				       ID_AA64PFR1_EL1_THE |
2812 				       ID_AA64PFR1_EL1_GCS |
2813 				       ID_AA64PFR1_EL1_MTE_frac |
2814 				       ID_AA64PFR1_EL1_NMI |
2815 				       ID_AA64PFR1_EL1_RNDR_trap |
2816 				       ID_AA64PFR1_EL1_SME |
2817 				       ID_AA64PFR1_EL1_RES0 |
2818 				       ID_AA64PFR1_EL1_MPAM_frac |
2819 				       ID_AA64PFR1_EL1_RAS_frac |
2820 				       ID_AA64PFR1_EL1_MTE)),
2821 	ID_WRITABLE(ID_AA64PFR2_EL1, ID_AA64PFR2_EL1_FPMR),
2822 	ID_UNALLOCATED(4,3),
2823 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2824 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2825 	ID_UNALLOCATED(4,6),
2826 	ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0),
2827 
2828 	/* CRm=5 */
2829 	/*
2830 	 * Prior to FEAT_Debugv8.9, the architecture defines context-aware
2831 	 * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs).
2832 	 * KVM does not trap + emulate the breakpoint registers, and as such
2833 	 * cannot support a layout that misaligns with the underlying hardware.
2834 	 * While it may be possible to describe a subset that aligns with
2835 	 * hardware, just prevent changes to BRPs and CTX_CMPs altogether for
2836 	 * simplicity.
2837 	 *
2838 	 * See DDI0487K.a, section D2.8.3 Breakpoint types and linking
2839 	 * of breakpoints for more details.
2840 	 */
2841 	ID_FILTERED(ID_AA64DFR0_EL1, id_aa64dfr0_el1,
2842 		    ID_AA64DFR0_EL1_DoubleLock_MASK |
2843 		    ID_AA64DFR0_EL1_WRPs_MASK |
2844 		    ID_AA64DFR0_EL1_PMUVer_MASK |
2845 		    ID_AA64DFR0_EL1_DebugVer_MASK),
2846 	ID_SANITISED(ID_AA64DFR1_EL1),
2847 	ID_UNALLOCATED(5,2),
2848 	ID_UNALLOCATED(5,3),
2849 	ID_HIDDEN(ID_AA64AFR0_EL1),
2850 	ID_HIDDEN(ID_AA64AFR1_EL1),
2851 	ID_UNALLOCATED(5,6),
2852 	ID_UNALLOCATED(5,7),
2853 
2854 	/* CRm=6 */
2855 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2856 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2857 					ID_AA64ISAR1_EL1_GPA |
2858 					ID_AA64ISAR1_EL1_API |
2859 					ID_AA64ISAR1_EL1_APA)),
2860 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2861 					ID_AA64ISAR2_EL1_APA3 |
2862 					ID_AA64ISAR2_EL1_GPA3)),
2863 	ID_WRITABLE(ID_AA64ISAR3_EL1, (ID_AA64ISAR3_EL1_FPRCVT |
2864 				       ID_AA64ISAR3_EL1_FAMINMAX)),
2865 	ID_UNALLOCATED(6,4),
2866 	ID_UNALLOCATED(6,5),
2867 	ID_UNALLOCATED(6,6),
2868 	ID_UNALLOCATED(6,7),
2869 
2870 	/* CRm=7 */
2871 	ID_FILTERED(ID_AA64MMFR0_EL1, id_aa64mmfr0_el1,
2872 				      ~(ID_AA64MMFR0_EL1_RES0 |
2873 					ID_AA64MMFR0_EL1_ASIDBITS)),
2874 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2875 					ID_AA64MMFR1_EL1_HCX |
2876 					ID_AA64MMFR1_EL1_TWED |
2877 					ID_AA64MMFR1_EL1_XNX |
2878 					ID_AA64MMFR1_EL1_VH |
2879 					ID_AA64MMFR1_EL1_VMIDBits)),
2880 	ID_FILTERED(ID_AA64MMFR2_EL1,
2881 		    id_aa64mmfr2_el1, ~(ID_AA64MMFR2_EL1_RES0 |
2882 					ID_AA64MMFR2_EL1_EVT |
2883 					ID_AA64MMFR2_EL1_FWB |
2884 					ID_AA64MMFR2_EL1_IDS |
2885 					ID_AA64MMFR2_EL1_NV |
2886 					ID_AA64MMFR2_EL1_CCIDX)),
2887 	ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX	|
2888 				       ID_AA64MMFR3_EL1_S1PIE   |
2889 				       ID_AA64MMFR3_EL1_S1POE)),
2890 	ID_WRITABLE(ID_AA64MMFR4_EL1, ID_AA64MMFR4_EL1_NV_frac),
2891 	ID_UNALLOCATED(7,5),
2892 	ID_UNALLOCATED(7,6),
2893 	ID_UNALLOCATED(7,7),
2894 
2895 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2896 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2897 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2898 
2899 	MTE_REG(RGSR_EL1),
2900 	MTE_REG(GCR_EL1),
2901 
2902 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2903 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2904 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2905 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2906 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2907 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2908 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2909 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0,
2910 	  .visibility = tcr2_visibility },
2911 
2912 	PTRAUTH_KEY(APIA),
2913 	PTRAUTH_KEY(APIB),
2914 	PTRAUTH_KEY(APDA),
2915 	PTRAUTH_KEY(APDB),
2916 	PTRAUTH_KEY(APGA),
2917 
2918 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2919 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2920 
2921 	{ SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
2922 
2923 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2924 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2925 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2926 
2927 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2928 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2929 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2930 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2931 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2932 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2933 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2934 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2935 
2936 	MTE_REG(TFSR_EL1),
2937 	MTE_REG(TFSRE0_EL1),
2938 
2939 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2940 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2941 
2942 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2943 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2944 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2945 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2946 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2947 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2948 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2949 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2950 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2951 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2952 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2953 	/* PMBIDR_EL1 is not trapped */
2954 
2955 	{ PMU_SYS_REG(PMINTENSET_EL1),
2956 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2957 	  .get_user = get_pmreg, .set_user = set_pmreg },
2958 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2959 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2960 	  .get_user = get_pmreg, .set_user = set_pmreg },
2961 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2962 
2963 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2964 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1,
2965 	  .visibility = s1pie_visibility },
2966 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1,
2967 	  .visibility = s1pie_visibility },
2968 	{ SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1,
2969 	  .visibility = s1poe_visibility },
2970 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2971 
2972 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2973 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2974 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2975 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2976 	{ SYS_DESC(SYS_MPAMIDR_EL1), undef_access },
2977 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2978 
2979 	{ SYS_DESC(SYS_MPAM1_EL1), undef_access },
2980 	{ SYS_DESC(SYS_MPAM0_EL1), undef_access },
2981 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2982 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2983 
2984 	{ SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
2985 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
2986 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
2987 	{ SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
2988 	{ SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
2989 	{ SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
2990 	{ SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
2991 	{ SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
2992 	{ SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
2993 	{ SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
2994 	{ SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
2995 	{ SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
2996 	{ SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
2997 	{ SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
2998 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2999 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
3000 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
3001 	{ SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
3002 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
3003 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
3004 	{ SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
3005 	{ SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
3006 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
3007 	{ SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
3008 	{ SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
3009 
3010 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
3011 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
3012 
3013 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
3014 
3015 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
3016 
3017 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
3018 
3019 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
3020 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
3021 	  .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
3022 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
3023 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
3024 	IMPLEMENTATION_ID(AIDR_EL1, GENMASK_ULL(63, 0)),
3025 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
3026 	ID_FILTERED(CTR_EL0, ctr_el0,
3027 		    CTR_EL0_DIC_MASK |
3028 		    CTR_EL0_IDC_MASK |
3029 		    CTR_EL0_DminLine_MASK |
3030 		    CTR_EL0_L1Ip_MASK |
3031 		    CTR_EL0_IminLine_MASK),
3032 	{ SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility  },
3033 	{ SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility },
3034 
3035 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
3036 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
3037 	{ PMU_SYS_REG(PMCNTENSET_EL0),
3038 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3039 	  .get_user = get_pmreg, .set_user = set_pmreg },
3040 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
3041 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
3042 	  .get_user = get_pmreg, .set_user = set_pmreg },
3043 	{ PMU_SYS_REG(PMOVSCLR_EL0),
3044 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
3045 	  .get_user = get_pmreg, .set_user = set_pmreg },
3046 	/*
3047 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
3048 	 * previously (and pointlessly) advertised in the past...
3049 	 */
3050 	{ PMU_SYS_REG(PMSWINC_EL0),
3051 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
3052 	  .access = access_pmswinc, .reset = NULL },
3053 	{ PMU_SYS_REG(PMSELR_EL0),
3054 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
3055 	{ PMU_SYS_REG(PMCEID0_EL0),
3056 	  .access = access_pmceid, .reset = NULL },
3057 	{ PMU_SYS_REG(PMCEID1_EL0),
3058 	  .access = access_pmceid, .reset = NULL },
3059 	{ PMU_SYS_REG(PMCCNTR_EL0),
3060 	  .access = access_pmu_evcntr, .reset = reset_unknown,
3061 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr,
3062 	  .set_user = set_pmu_evcntr },
3063 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
3064 	  .access = access_pmu_evtyper, .reset = NULL },
3065 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
3066 	  .access = access_pmu_evcntr, .reset = NULL },
3067 	/*
3068 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
3069 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
3070 	 */
3071 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
3072 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
3073 	{ PMU_SYS_REG(PMOVSSET_EL0),
3074 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
3075 	  .get_user = get_pmreg, .set_user = set_pmreg },
3076 
3077 	{ SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0,
3078 	  .visibility = s1poe_visibility },
3079 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
3080 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
3081 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
3082 
3083 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
3084 
3085 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
3086 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
3087 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
3088 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
3089 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
3090 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
3091 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
3092 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
3093 	AMU_AMEVCNTR0_EL0(0),
3094 	AMU_AMEVCNTR0_EL0(1),
3095 	AMU_AMEVCNTR0_EL0(2),
3096 	AMU_AMEVCNTR0_EL0(3),
3097 	AMU_AMEVCNTR0_EL0(4),
3098 	AMU_AMEVCNTR0_EL0(5),
3099 	AMU_AMEVCNTR0_EL0(6),
3100 	AMU_AMEVCNTR0_EL0(7),
3101 	AMU_AMEVCNTR0_EL0(8),
3102 	AMU_AMEVCNTR0_EL0(9),
3103 	AMU_AMEVCNTR0_EL0(10),
3104 	AMU_AMEVCNTR0_EL0(11),
3105 	AMU_AMEVCNTR0_EL0(12),
3106 	AMU_AMEVCNTR0_EL0(13),
3107 	AMU_AMEVCNTR0_EL0(14),
3108 	AMU_AMEVCNTR0_EL0(15),
3109 	AMU_AMEVTYPER0_EL0(0),
3110 	AMU_AMEVTYPER0_EL0(1),
3111 	AMU_AMEVTYPER0_EL0(2),
3112 	AMU_AMEVTYPER0_EL0(3),
3113 	AMU_AMEVTYPER0_EL0(4),
3114 	AMU_AMEVTYPER0_EL0(5),
3115 	AMU_AMEVTYPER0_EL0(6),
3116 	AMU_AMEVTYPER0_EL0(7),
3117 	AMU_AMEVTYPER0_EL0(8),
3118 	AMU_AMEVTYPER0_EL0(9),
3119 	AMU_AMEVTYPER0_EL0(10),
3120 	AMU_AMEVTYPER0_EL0(11),
3121 	AMU_AMEVTYPER0_EL0(12),
3122 	AMU_AMEVTYPER0_EL0(13),
3123 	AMU_AMEVTYPER0_EL0(14),
3124 	AMU_AMEVTYPER0_EL0(15),
3125 	AMU_AMEVCNTR1_EL0(0),
3126 	AMU_AMEVCNTR1_EL0(1),
3127 	AMU_AMEVCNTR1_EL0(2),
3128 	AMU_AMEVCNTR1_EL0(3),
3129 	AMU_AMEVCNTR1_EL0(4),
3130 	AMU_AMEVCNTR1_EL0(5),
3131 	AMU_AMEVCNTR1_EL0(6),
3132 	AMU_AMEVCNTR1_EL0(7),
3133 	AMU_AMEVCNTR1_EL0(8),
3134 	AMU_AMEVCNTR1_EL0(9),
3135 	AMU_AMEVCNTR1_EL0(10),
3136 	AMU_AMEVCNTR1_EL0(11),
3137 	AMU_AMEVCNTR1_EL0(12),
3138 	AMU_AMEVCNTR1_EL0(13),
3139 	AMU_AMEVCNTR1_EL0(14),
3140 	AMU_AMEVCNTR1_EL0(15),
3141 	AMU_AMEVTYPER1_EL0(0),
3142 	AMU_AMEVTYPER1_EL0(1),
3143 	AMU_AMEVTYPER1_EL0(2),
3144 	AMU_AMEVTYPER1_EL0(3),
3145 	AMU_AMEVTYPER1_EL0(4),
3146 	AMU_AMEVTYPER1_EL0(5),
3147 	AMU_AMEVTYPER1_EL0(6),
3148 	AMU_AMEVTYPER1_EL0(7),
3149 	AMU_AMEVTYPER1_EL0(8),
3150 	AMU_AMEVTYPER1_EL0(9),
3151 	AMU_AMEVTYPER1_EL0(10),
3152 	AMU_AMEVTYPER1_EL0(11),
3153 	AMU_AMEVTYPER1_EL0(12),
3154 	AMU_AMEVTYPER1_EL0(13),
3155 	AMU_AMEVTYPER1_EL0(14),
3156 	AMU_AMEVTYPER1_EL0(15),
3157 
3158 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
3159 	{ SYS_DESC(SYS_CNTVCT_EL0), access_arch_timer },
3160 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
3161 	{ SYS_DESC(SYS_CNTVCTSS_EL0), access_arch_timer },
3162 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
3163 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
3164 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
3165 
3166 	{ SYS_DESC(SYS_CNTV_TVAL_EL0), access_arch_timer },
3167 	{ SYS_DESC(SYS_CNTV_CTL_EL0), access_arch_timer },
3168 	{ SYS_DESC(SYS_CNTV_CVAL_EL0), access_arch_timer },
3169 
3170 	/* PMEVCNTRn_EL0 */
3171 	PMU_PMEVCNTR_EL0(0),
3172 	PMU_PMEVCNTR_EL0(1),
3173 	PMU_PMEVCNTR_EL0(2),
3174 	PMU_PMEVCNTR_EL0(3),
3175 	PMU_PMEVCNTR_EL0(4),
3176 	PMU_PMEVCNTR_EL0(5),
3177 	PMU_PMEVCNTR_EL0(6),
3178 	PMU_PMEVCNTR_EL0(7),
3179 	PMU_PMEVCNTR_EL0(8),
3180 	PMU_PMEVCNTR_EL0(9),
3181 	PMU_PMEVCNTR_EL0(10),
3182 	PMU_PMEVCNTR_EL0(11),
3183 	PMU_PMEVCNTR_EL0(12),
3184 	PMU_PMEVCNTR_EL0(13),
3185 	PMU_PMEVCNTR_EL0(14),
3186 	PMU_PMEVCNTR_EL0(15),
3187 	PMU_PMEVCNTR_EL0(16),
3188 	PMU_PMEVCNTR_EL0(17),
3189 	PMU_PMEVCNTR_EL0(18),
3190 	PMU_PMEVCNTR_EL0(19),
3191 	PMU_PMEVCNTR_EL0(20),
3192 	PMU_PMEVCNTR_EL0(21),
3193 	PMU_PMEVCNTR_EL0(22),
3194 	PMU_PMEVCNTR_EL0(23),
3195 	PMU_PMEVCNTR_EL0(24),
3196 	PMU_PMEVCNTR_EL0(25),
3197 	PMU_PMEVCNTR_EL0(26),
3198 	PMU_PMEVCNTR_EL0(27),
3199 	PMU_PMEVCNTR_EL0(28),
3200 	PMU_PMEVCNTR_EL0(29),
3201 	PMU_PMEVCNTR_EL0(30),
3202 	/* PMEVTYPERn_EL0 */
3203 	PMU_PMEVTYPER_EL0(0),
3204 	PMU_PMEVTYPER_EL0(1),
3205 	PMU_PMEVTYPER_EL0(2),
3206 	PMU_PMEVTYPER_EL0(3),
3207 	PMU_PMEVTYPER_EL0(4),
3208 	PMU_PMEVTYPER_EL0(5),
3209 	PMU_PMEVTYPER_EL0(6),
3210 	PMU_PMEVTYPER_EL0(7),
3211 	PMU_PMEVTYPER_EL0(8),
3212 	PMU_PMEVTYPER_EL0(9),
3213 	PMU_PMEVTYPER_EL0(10),
3214 	PMU_PMEVTYPER_EL0(11),
3215 	PMU_PMEVTYPER_EL0(12),
3216 	PMU_PMEVTYPER_EL0(13),
3217 	PMU_PMEVTYPER_EL0(14),
3218 	PMU_PMEVTYPER_EL0(15),
3219 	PMU_PMEVTYPER_EL0(16),
3220 	PMU_PMEVTYPER_EL0(17),
3221 	PMU_PMEVTYPER_EL0(18),
3222 	PMU_PMEVTYPER_EL0(19),
3223 	PMU_PMEVTYPER_EL0(20),
3224 	PMU_PMEVTYPER_EL0(21),
3225 	PMU_PMEVTYPER_EL0(22),
3226 	PMU_PMEVTYPER_EL0(23),
3227 	PMU_PMEVTYPER_EL0(24),
3228 	PMU_PMEVTYPER_EL0(25),
3229 	PMU_PMEVTYPER_EL0(26),
3230 	PMU_PMEVTYPER_EL0(27),
3231 	PMU_PMEVTYPER_EL0(28),
3232 	PMU_PMEVTYPER_EL0(29),
3233 	PMU_PMEVTYPER_EL0(30),
3234 	/*
3235 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
3236 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
3237 	 */
3238 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
3239 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
3240 
3241 	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
3242 	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
3243 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
3244 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
3245 	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
3246 	EL2_REG(MDCR_EL2, access_mdcr, reset_val, 0),
3247 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
3248 	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
3249 	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
3250 	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
3251 	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
3252 	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
3253 
3254 	EL2_REG_FILTERED(ZCR_EL2, access_zcr_el2, reset_val, 0,
3255 			 sve_el2_visibility),
3256 
3257 	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
3258 
3259 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
3260 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
3261 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
3262 	EL2_REG_FILTERED(TCR2_EL2, access_rw, reset_val, TCR2_EL2_RES1,
3263 			 tcr2_el2_visibility),
3264 	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
3265 	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
3266 
3267 	{ SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 },
3268 	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
3269 	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
3270 	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
3271 	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
3272 	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
3273 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
3274 
3275 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
3276 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi },
3277 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi },
3278 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi },
3279 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi },
3280 
3281 	{ SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 },
3282 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
3283 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
3284 	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
3285 	{ SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 },
3286 
3287 	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
3288 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
3289 
3290 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
3291 	EL2_REG_FILTERED(PIRE0_EL2, access_rw, reset_val, 0,
3292 			 s1pie_el2_visibility),
3293 	EL2_REG_FILTERED(PIR_EL2, access_rw, reset_val, 0,
3294 			 s1pie_el2_visibility),
3295 	EL2_REG_FILTERED(POR_EL2, access_rw, reset_val, 0,
3296 			 s1poe_el2_visibility),
3297 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
3298 	{ SYS_DESC(SYS_MPAMHCR_EL2), undef_access },
3299 	{ SYS_DESC(SYS_MPAMVPMV_EL2), undef_access },
3300 	{ SYS_DESC(SYS_MPAM2_EL2), undef_access },
3301 	{ SYS_DESC(SYS_MPAMVPM0_EL2), undef_access },
3302 	{ SYS_DESC(SYS_MPAMVPM1_EL2), undef_access },
3303 	{ SYS_DESC(SYS_MPAMVPM2_EL2), undef_access },
3304 	{ SYS_DESC(SYS_MPAMVPM3_EL2), undef_access },
3305 	{ SYS_DESC(SYS_MPAMVPM4_EL2), undef_access },
3306 	{ SYS_DESC(SYS_MPAMVPM5_EL2), undef_access },
3307 	{ SYS_DESC(SYS_MPAMVPM6_EL2), undef_access },
3308 	{ SYS_DESC(SYS_MPAMVPM7_EL2), undef_access },
3309 
3310 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
3311 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
3312 	{ SYS_DESC(SYS_RMR_EL2), undef_access },
3313 
3314 	EL2_REG_VNCR(ICH_AP0R0_EL2, reset_val, 0),
3315 	EL2_REG_VNCR(ICH_AP0R1_EL2, reset_val, 0),
3316 	EL2_REG_VNCR(ICH_AP0R2_EL2, reset_val, 0),
3317 	EL2_REG_VNCR(ICH_AP0R3_EL2, reset_val, 0),
3318 	EL2_REG_VNCR(ICH_AP1R0_EL2, reset_val, 0),
3319 	EL2_REG_VNCR(ICH_AP1R1_EL2, reset_val, 0),
3320 	EL2_REG_VNCR(ICH_AP1R2_EL2, reset_val, 0),
3321 	EL2_REG_VNCR(ICH_AP1R3_EL2, reset_val, 0),
3322 
3323 	{ SYS_DESC(SYS_ICC_SRE_EL2), access_gic_sre },
3324 
3325 	EL2_REG_VNCR(ICH_HCR_EL2, reset_val, 0),
3326 	{ SYS_DESC(SYS_ICH_VTR_EL2), access_gic_vtr },
3327 	{ SYS_DESC(SYS_ICH_MISR_EL2), access_gic_misr },
3328 	{ SYS_DESC(SYS_ICH_EISR_EL2), access_gic_eisr },
3329 	{ SYS_DESC(SYS_ICH_ELRSR_EL2), access_gic_elrsr },
3330 	EL2_REG_VNCR(ICH_VMCR_EL2, reset_val, 0),
3331 
3332 	EL2_REG_VNCR(ICH_LR0_EL2, reset_val, 0),
3333 	EL2_REG_VNCR(ICH_LR1_EL2, reset_val, 0),
3334 	EL2_REG_VNCR(ICH_LR2_EL2, reset_val, 0),
3335 	EL2_REG_VNCR(ICH_LR3_EL2, reset_val, 0),
3336 	EL2_REG_VNCR(ICH_LR4_EL2, reset_val, 0),
3337 	EL2_REG_VNCR(ICH_LR5_EL2, reset_val, 0),
3338 	EL2_REG_VNCR(ICH_LR6_EL2, reset_val, 0),
3339 	EL2_REG_VNCR(ICH_LR7_EL2, reset_val, 0),
3340 	EL2_REG_VNCR(ICH_LR8_EL2, reset_val, 0),
3341 	EL2_REG_VNCR(ICH_LR9_EL2, reset_val, 0),
3342 	EL2_REG_VNCR(ICH_LR10_EL2, reset_val, 0),
3343 	EL2_REG_VNCR(ICH_LR11_EL2, reset_val, 0),
3344 	EL2_REG_VNCR(ICH_LR12_EL2, reset_val, 0),
3345 	EL2_REG_VNCR(ICH_LR13_EL2, reset_val, 0),
3346 	EL2_REG_VNCR(ICH_LR14_EL2, reset_val, 0),
3347 	EL2_REG_VNCR(ICH_LR15_EL2, reset_val, 0),
3348 
3349 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
3350 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
3351 
3352 	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
3353 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
3354 	{ SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer },
3355 	EL2_REG(CNTHP_CTL_EL2, access_arch_timer, reset_val, 0),
3356 	EL2_REG(CNTHP_CVAL_EL2, access_arch_timer, reset_val, 0),
3357 
3358 	{ SYS_DESC(SYS_CNTHV_TVAL_EL2), access_hv_timer },
3359 	EL2_REG(CNTHV_CTL_EL2, access_hv_timer, reset_val, 0),
3360 	EL2_REG(CNTHV_CVAL_EL2, access_hv_timer, reset_val, 0),
3361 
3362 	{ SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 },
3363 
3364 	{ SYS_DESC(SYS_CNTP_TVAL_EL02), access_arch_timer },
3365 	{ SYS_DESC(SYS_CNTP_CTL_EL02), access_arch_timer },
3366 	{ SYS_DESC(SYS_CNTP_CVAL_EL02), access_arch_timer },
3367 
3368 	{ SYS_DESC(SYS_CNTV_TVAL_EL02), access_arch_timer },
3369 	{ SYS_DESC(SYS_CNTV_CTL_EL02), access_arch_timer },
3370 	{ SYS_DESC(SYS_CNTV_CVAL_EL02), access_arch_timer },
3371 
3372 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
3373 };
3374 
handle_at_s1e01(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3375 static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3376 			    const struct sys_reg_desc *r)
3377 {
3378 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3379 
3380 	__kvm_at_s1e01(vcpu, op, p->regval);
3381 
3382 	return true;
3383 }
3384 
handle_at_s1e2(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3385 static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3386 			   const struct sys_reg_desc *r)
3387 {
3388 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3389 
3390 	/* There is no FGT associated with AT S1E2A :-( */
3391 	if (op == OP_AT_S1E2A &&
3392 	    !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) {
3393 		kvm_inject_undefined(vcpu);
3394 		return false;
3395 	}
3396 
3397 	__kvm_at_s1e2(vcpu, op, p->regval);
3398 
3399 	return true;
3400 }
3401 
handle_at_s12(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3402 static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3403 			  const struct sys_reg_desc *r)
3404 {
3405 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3406 
3407 	__kvm_at_s12(vcpu, op, p->regval);
3408 
3409 	return true;
3410 }
3411 
kvm_supported_tlbi_s12_op(struct kvm_vcpu * vpcu,u32 instr)3412 static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
3413 {
3414 	struct kvm *kvm = vpcu->kvm;
3415 	u8 CRm = sys_reg_CRm(instr);
3416 
3417 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3418 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3419 		return false;
3420 
3421 	if (CRm == TLBI_CRm_nROS &&
3422 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3423 		return false;
3424 
3425 	return true;
3426 }
3427 
handle_alle1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3428 static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3429 			   const struct sys_reg_desc *r)
3430 {
3431 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3432 
3433 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3434 		return undef_access(vcpu, p, r);
3435 
3436 	write_lock(&vcpu->kvm->mmu_lock);
3437 
3438 	/*
3439 	 * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
3440 	 * corresponding VMIDs.
3441 	 */
3442 	kvm_nested_s2_unmap(vcpu->kvm, true);
3443 
3444 	write_unlock(&vcpu->kvm->mmu_lock);
3445 
3446 	return true;
3447 }
3448 
kvm_supported_tlbi_ipas2_op(struct kvm_vcpu * vpcu,u32 instr)3449 static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
3450 {
3451 	struct kvm *kvm = vpcu->kvm;
3452 	u8 CRm = sys_reg_CRm(instr);
3453 	u8 Op2 = sys_reg_Op2(instr);
3454 
3455 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3456 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3457 		return false;
3458 
3459 	if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
3460 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3461 		return false;
3462 
3463 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
3464 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3465 		return false;
3466 
3467 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
3468 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3469 		return false;
3470 
3471 	return true;
3472 }
3473 
3474 /* Only defined here as this is an internal "abstraction" */
3475 union tlbi_info {
3476 	struct {
3477 		u64	start;
3478 		u64	size;
3479 	} range;
3480 
3481 	struct {
3482 		u64	addr;
3483 	} ipa;
3484 
3485 	struct {
3486 		u64	addr;
3487 		u32	encoding;
3488 	} va;
3489 };
3490 
s2_mmu_unmap_range(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3491 static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
3492 			       const union tlbi_info *info)
3493 {
3494 	/*
3495 	 * The unmap operation is allowed to drop the MMU lock and block, which
3496 	 * means that @mmu could be used for a different context than the one
3497 	 * currently being invalidated.
3498 	 *
3499 	 * This behavior is still safe, as:
3500 	 *
3501 	 *  1) The vCPU(s) that recycled the MMU are responsible for invalidating
3502 	 *     the entire MMU before reusing it, which still honors the intent
3503 	 *     of a TLBI.
3504 	 *
3505 	 *  2) Until the guest TLBI instruction is 'retired' (i.e. increment PC
3506 	 *     and ERET to the guest), other vCPUs are allowed to use stale
3507 	 *     translations.
3508 	 *
3509 	 *  3) Accidentally unmapping an unrelated MMU context is nonfatal, and
3510 	 *     at worst may cause more aborts for shadow stage-2 fills.
3511 	 *
3512 	 * Dropping the MMU lock also implies that shadow stage-2 fills could
3513 	 * happen behind the back of the TLBI. This is still safe, though, as
3514 	 * the L1 needs to put its stage-2 in a consistent state before doing
3515 	 * the TLBI.
3516 	 */
3517 	kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true);
3518 }
3519 
handle_vmalls12e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3520 static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3521 				const struct sys_reg_desc *r)
3522 {
3523 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3524 	u64 limit, vttbr;
3525 
3526 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3527 		return undef_access(vcpu, p, r);
3528 
3529 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3530 	limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
3531 
3532 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3533 				   &(union tlbi_info) {
3534 					   .range = {
3535 						   .start = 0,
3536 						   .size = limit,
3537 					   },
3538 				   },
3539 				   s2_mmu_unmap_range);
3540 
3541 	return true;
3542 }
3543 
handle_ripas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3544 static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3545 			      const struct sys_reg_desc *r)
3546 {
3547 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3548 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3549 	u64 base, range, tg, num, scale;
3550 	int shift;
3551 
3552 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3553 		return undef_access(vcpu, p, r);
3554 
3555 	/*
3556 	 * Because the shadow S2 structure doesn't necessarily reflect that
3557 	 * of the guest's S2 (different base granule size, for example), we
3558 	 * decide to ignore TTL and only use the described range.
3559 	 */
3560 	tg	= FIELD_GET(GENMASK(47, 46), p->regval);
3561 	scale	= FIELD_GET(GENMASK(45, 44), p->regval);
3562 	num	= FIELD_GET(GENMASK(43, 39), p->regval);
3563 	base	= p->regval & GENMASK(36, 0);
3564 
3565 	switch(tg) {
3566 	case 1:
3567 		shift = 12;
3568 		break;
3569 	case 2:
3570 		shift = 14;
3571 		break;
3572 	case 3:
3573 	default:		/* IMPDEF: handle tg==0 as 64k */
3574 		shift = 16;
3575 		break;
3576 	}
3577 
3578 	base <<= shift;
3579 	range = __TLBI_RANGE_PAGES(num, scale) << shift;
3580 
3581 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3582 				   &(union tlbi_info) {
3583 					   .range = {
3584 						   .start = base,
3585 						   .size = range,
3586 					   },
3587 				   },
3588 				   s2_mmu_unmap_range);
3589 
3590 	return true;
3591 }
3592 
s2_mmu_unmap_ipa(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3593 static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
3594 			     const union tlbi_info *info)
3595 {
3596 	unsigned long max_size;
3597 	u64 base_addr;
3598 
3599 	/*
3600 	 * We drop a number of things from the supplied value:
3601 	 *
3602 	 * - NS bit: we're non-secure only.
3603 	 *
3604 	 * - IPA[51:48]: We don't support 52bit IPA just yet...
3605 	 *
3606 	 * And of course, adjust the IPA to be on an actual address.
3607 	 */
3608 	base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
3609 	max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
3610 	base_addr &= ~(max_size - 1);
3611 
3612 	/*
3613 	 * See comment in s2_mmu_unmap_range() for why this is allowed to
3614 	 * reschedule.
3615 	 */
3616 	kvm_stage2_unmap_range(mmu, base_addr, max_size, true);
3617 }
3618 
handle_ipas2e1is(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3619 static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3620 			     const struct sys_reg_desc *r)
3621 {
3622 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3623 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3624 
3625 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3626 		return undef_access(vcpu, p, r);
3627 
3628 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3629 				   &(union tlbi_info) {
3630 					   .ipa = {
3631 						   .addr = p->regval,
3632 					   },
3633 				   },
3634 				   s2_mmu_unmap_ipa);
3635 
3636 	return true;
3637 }
3638 
s2_mmu_tlbi_s1e1(struct kvm_s2_mmu * mmu,const union tlbi_info * info)3639 static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
3640 			     const union tlbi_info *info)
3641 {
3642 	WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
3643 }
3644 
handle_tlbi_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3645 static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3646 			    const struct sys_reg_desc *r)
3647 {
3648 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3649 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3650 
3651 	/*
3652 	 * If we're here, this is because we've trapped on a EL1 TLBI
3653 	 * instruction that affects the EL1 translation regime while
3654 	 * we're running in a context that doesn't allow us to let the
3655 	 * HW do its thing (aka vEL2):
3656 	 *
3657 	 * - HCR_EL2.E2H == 0 : a non-VHE guest
3658 	 * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
3659 	 *
3660 	 * We don't expect these helpers to ever be called when running
3661 	 * in a vEL1 context.
3662 	 */
3663 
3664 	WARN_ON(!vcpu_is_el2(vcpu));
3665 
3666 	if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding))
3667 		return undef_access(vcpu, p, r);
3668 
3669 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3670 				   &(union tlbi_info) {
3671 					   .va = {
3672 						   .addr = p->regval,
3673 						   .encoding = sys_encoding,
3674 					   },
3675 				   },
3676 				   s2_mmu_tlbi_s1e1);
3677 
3678 	return true;
3679 }
3680 
3681 #define SYS_INSN(insn, access_fn)					\
3682 	{								\
3683 		SYS_DESC(OP_##insn),					\
3684 		.access = (access_fn),					\
3685 	}
3686 
3687 static struct sys_reg_desc sys_insn_descs[] = {
3688 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
3689 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
3690 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
3691 
3692 	SYS_INSN(AT_S1E1R, handle_at_s1e01),
3693 	SYS_INSN(AT_S1E1W, handle_at_s1e01),
3694 	SYS_INSN(AT_S1E0R, handle_at_s1e01),
3695 	SYS_INSN(AT_S1E0W, handle_at_s1e01),
3696 	SYS_INSN(AT_S1E1RP, handle_at_s1e01),
3697 	SYS_INSN(AT_S1E1WP, handle_at_s1e01),
3698 
3699 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
3700 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
3701 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
3702 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
3703 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
3704 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
3705 
3706 	SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
3707 	SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
3708 	SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
3709 	SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
3710 	SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
3711 	SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
3712 
3713 	SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
3714 	SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
3715 	SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
3716 	SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
3717 
3718 	SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
3719 	SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
3720 	SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
3721 	SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
3722 	SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
3723 	SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
3724 
3725 	SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
3726 	SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
3727 	SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
3728 	SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
3729 
3730 	SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
3731 	SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
3732 	SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
3733 	SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
3734 
3735 	SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
3736 	SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
3737 	SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
3738 	SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
3739 	SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
3740 	SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
3741 
3742 	SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
3743 	SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
3744 	SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
3745 	SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
3746 	SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
3747 	SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
3748 
3749 	SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
3750 	SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
3751 	SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
3752 	SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
3753 
3754 	SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
3755 	SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
3756 	SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
3757 	SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
3758 	SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
3759 	SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
3760 
3761 	SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
3762 	SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
3763 	SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
3764 	SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
3765 
3766 	SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
3767 	SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
3768 	SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
3769 	SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
3770 
3771 	SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
3772 	SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
3773 	SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
3774 	SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
3775 	SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
3776 	SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
3777 
3778 	SYS_INSN(AT_S1E2R, handle_at_s1e2),
3779 	SYS_INSN(AT_S1E2W, handle_at_s1e2),
3780 	SYS_INSN(AT_S12E1R, handle_at_s12),
3781 	SYS_INSN(AT_S12E1W, handle_at_s12),
3782 	SYS_INSN(AT_S12E0R, handle_at_s12),
3783 	SYS_INSN(AT_S12E0W, handle_at_s12),
3784 	SYS_INSN(AT_S1E2A, handle_at_s1e2),
3785 
3786 	SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
3787 	SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
3788 	SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
3789 	SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
3790 
3791 	SYS_INSN(TLBI_ALLE2OS, undef_access),
3792 	SYS_INSN(TLBI_VAE2OS, undef_access),
3793 	SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
3794 	SYS_INSN(TLBI_VALE2OS, undef_access),
3795 	SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
3796 
3797 	SYS_INSN(TLBI_RVAE2IS, undef_access),
3798 	SYS_INSN(TLBI_RVALE2IS, undef_access),
3799 
3800 	SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
3801 	SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
3802 	SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
3803 	SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
3804 	SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
3805 	SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
3806 	SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
3807 	SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
3808 	SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
3809 	SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
3810 	SYS_INSN(TLBI_RVAE2OS, undef_access),
3811 	SYS_INSN(TLBI_RVALE2OS, undef_access),
3812 	SYS_INSN(TLBI_RVAE2, undef_access),
3813 	SYS_INSN(TLBI_RVALE2, undef_access),
3814 	SYS_INSN(TLBI_ALLE1, handle_alle1is),
3815 	SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
3816 
3817 	SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
3818 	SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
3819 	SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
3820 	SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
3821 
3822 	SYS_INSN(TLBI_ALLE2OSNXS, undef_access),
3823 	SYS_INSN(TLBI_VAE2OSNXS, undef_access),
3824 	SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
3825 	SYS_INSN(TLBI_VALE2OSNXS, undef_access),
3826 	SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
3827 
3828 	SYS_INSN(TLBI_RVAE2ISNXS, undef_access),
3829 	SYS_INSN(TLBI_RVALE2ISNXS, undef_access),
3830 	SYS_INSN(TLBI_ALLE2ISNXS, undef_access),
3831 	SYS_INSN(TLBI_VAE2ISNXS, undef_access),
3832 
3833 	SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
3834 	SYS_INSN(TLBI_VALE2ISNXS, undef_access),
3835 	SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
3836 	SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
3837 	SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
3838 	SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
3839 	SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
3840 	SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
3841 	SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
3842 	SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
3843 	SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
3844 	SYS_INSN(TLBI_RVAE2OSNXS, undef_access),
3845 	SYS_INSN(TLBI_RVALE2OSNXS, undef_access),
3846 	SYS_INSN(TLBI_RVAE2NXS, undef_access),
3847 	SYS_INSN(TLBI_RVALE2NXS, undef_access),
3848 	SYS_INSN(TLBI_ALLE2NXS, undef_access),
3849 	SYS_INSN(TLBI_VAE2NXS, undef_access),
3850 	SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
3851 	SYS_INSN(TLBI_VALE2NXS, undef_access),
3852 	SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
3853 };
3854 
trap_dbgdidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)3855 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
3856 			struct sys_reg_params *p,
3857 			const struct sys_reg_desc *r)
3858 {
3859 	if (p->is_write) {
3860 		return ignore_write(vcpu, p);
3861 	} else {
3862 		u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
3863 		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
3864 
3865 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
3866 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
3867 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
3868 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
3869 			     (1 << 15) | (el3 << 14) | (el3 << 12));
3870 		return true;
3871 	}
3872 }
3873 
3874 /*
3875  * AArch32 debug register mappings
3876  *
3877  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
3878  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
3879  *
3880  * None of the other registers share their location, so treat them as
3881  * if they were 64bit.
3882  */
3883 #define DBG_BCR_BVR_WCR_WVR(n)							\
3884 	/* DBGBVRn */								\
3885 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4),			\
3886 	  trap_dbg_wb_reg, NULL, n },						\
3887 	/* DBGBCRn */								\
3888 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_dbg_wb_reg, NULL, n },	\
3889 	/* DBGWVRn */								\
3890 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_dbg_wb_reg, NULL, n },	\
3891 	/* DBGWCRn */								\
3892 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_dbg_wb_reg, NULL, n }
3893 
3894 #define DBGBXVR(n)								\
3895 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1),			\
3896 	  trap_dbg_wb_reg, NULL, n }
3897 
3898 /*
3899  * Trapped cp14 registers. We generally ignore most of the external
3900  * debug, on the principle that they don't really make sense to a
3901  * guest. Revisit this one day, would this principle change.
3902  */
3903 static const struct sys_reg_desc cp14_regs[] = {
3904 	/* DBGDIDR */
3905 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
3906 	/* DBGDTRRXext */
3907 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
3908 
3909 	DBG_BCR_BVR_WCR_WVR(0),
3910 	/* DBGDSCRint */
3911 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
3912 	DBG_BCR_BVR_WCR_WVR(1),
3913 	/* DBGDCCINT */
3914 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
3915 	/* DBGDSCRext */
3916 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
3917 	DBG_BCR_BVR_WCR_WVR(2),
3918 	/* DBGDTR[RT]Xint */
3919 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
3920 	/* DBGDTR[RT]Xext */
3921 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
3922 	DBG_BCR_BVR_WCR_WVR(3),
3923 	DBG_BCR_BVR_WCR_WVR(4),
3924 	DBG_BCR_BVR_WCR_WVR(5),
3925 	/* DBGWFAR */
3926 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
3927 	/* DBGOSECCR */
3928 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
3929 	DBG_BCR_BVR_WCR_WVR(6),
3930 	/* DBGVCR */
3931 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
3932 	DBG_BCR_BVR_WCR_WVR(7),
3933 	DBG_BCR_BVR_WCR_WVR(8),
3934 	DBG_BCR_BVR_WCR_WVR(9),
3935 	DBG_BCR_BVR_WCR_WVR(10),
3936 	DBG_BCR_BVR_WCR_WVR(11),
3937 	DBG_BCR_BVR_WCR_WVR(12),
3938 	DBG_BCR_BVR_WCR_WVR(13),
3939 	DBG_BCR_BVR_WCR_WVR(14),
3940 	DBG_BCR_BVR_WCR_WVR(15),
3941 
3942 	/* DBGDRAR (32bit) */
3943 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
3944 
3945 	DBGBXVR(0),
3946 	/* DBGOSLAR */
3947 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
3948 	DBGBXVR(1),
3949 	/* DBGOSLSR */
3950 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
3951 	DBGBXVR(2),
3952 	DBGBXVR(3),
3953 	/* DBGOSDLR */
3954 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
3955 	DBGBXVR(4),
3956 	/* DBGPRCR */
3957 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
3958 	DBGBXVR(5),
3959 	DBGBXVR(6),
3960 	DBGBXVR(7),
3961 	DBGBXVR(8),
3962 	DBGBXVR(9),
3963 	DBGBXVR(10),
3964 	DBGBXVR(11),
3965 	DBGBXVR(12),
3966 	DBGBXVR(13),
3967 	DBGBXVR(14),
3968 	DBGBXVR(15),
3969 
3970 	/* DBGDSAR (32bit) */
3971 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
3972 
3973 	/* DBGDEVID2 */
3974 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
3975 	/* DBGDEVID1 */
3976 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
3977 	/* DBGDEVID */
3978 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
3979 	/* DBGCLAIMSET */
3980 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
3981 	/* DBGCLAIMCLR */
3982 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
3983 	/* DBGAUTHSTATUS */
3984 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
3985 };
3986 
3987 /* Trapped cp14 64bit registers */
3988 static const struct sys_reg_desc cp14_64_regs[] = {
3989 	/* DBGDRAR (64bit) */
3990 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
3991 
3992 	/* DBGDSAR (64bit) */
3993 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
3994 };
3995 
3996 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
3997 	AA32(_map),							\
3998 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
3999 	.visibility = pmu_visibility
4000 
4001 /* Macro to expand the PMEVCNTRn register */
4002 #define PMU_PMEVCNTR(n)							\
4003 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
4004 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
4005 	  .access = access_pmu_evcntr }
4006 
4007 /* Macro to expand the PMEVTYPERn register */
4008 #define PMU_PMEVTYPER(n)						\
4009 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
4010 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
4011 	  .access = access_pmu_evtyper }
4012 /*
4013  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
4014  * depending on the way they are accessed (as a 32bit or a 64bit
4015  * register).
4016  */
4017 static const struct sys_reg_desc cp15_regs[] = {
4018 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
4019 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
4020 	/* ACTLR */
4021 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
4022 	/* ACTLR2 */
4023 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
4024 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4025 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
4026 	/* TTBCR */
4027 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
4028 	/* TTBCR2 */
4029 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
4030 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
4031 	{ CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
4032 	/* DFSR */
4033 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
4034 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
4035 	/* ADFSR */
4036 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
4037 	/* AIFSR */
4038 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
4039 	/* DFAR */
4040 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
4041 	/* IFAR */
4042 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
4043 
4044 	/*
4045 	 * DC{C,I,CI}SW operations:
4046 	 */
4047 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
4048 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
4049 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4050 
4051 	/* PMU */
4052 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
4053 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
4054 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
4055 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
4056 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
4057 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
4058 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
4059 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
4060 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
4061 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
4062 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
4063 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
4064 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
4065 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
4066 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
4067 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
4068 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
4069 	/* PMMIR */
4070 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
4071 
4072 	/* PRRR/MAIR0 */
4073 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
4074 	/* NMRR/MAIR1 */
4075 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
4076 	/* AMAIR0 */
4077 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
4078 	/* AMAIR1 */
4079 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
4080 
4081 	{ CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
4082 	{ CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
4083 	{ CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
4084 	{ CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
4085 	{ CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
4086 	{ CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
4087 	{ CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
4088 	{ CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
4089 	{ CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
4090 	{ CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
4091 	{ CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
4092 	{ CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
4093 	{ CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
4094 	{ CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
4095 	{ CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
4096 	{ CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
4097 	{ CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
4098 	{ CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
4099 	{ CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
4100 	{ CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
4101 	{ CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
4102 	{ CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
4103 
4104 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
4105 
4106 	/* Arch Tmers */
4107 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
4108 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
4109 
4110 	/* PMEVCNTRn */
4111 	PMU_PMEVCNTR(0),
4112 	PMU_PMEVCNTR(1),
4113 	PMU_PMEVCNTR(2),
4114 	PMU_PMEVCNTR(3),
4115 	PMU_PMEVCNTR(4),
4116 	PMU_PMEVCNTR(5),
4117 	PMU_PMEVCNTR(6),
4118 	PMU_PMEVCNTR(7),
4119 	PMU_PMEVCNTR(8),
4120 	PMU_PMEVCNTR(9),
4121 	PMU_PMEVCNTR(10),
4122 	PMU_PMEVCNTR(11),
4123 	PMU_PMEVCNTR(12),
4124 	PMU_PMEVCNTR(13),
4125 	PMU_PMEVCNTR(14),
4126 	PMU_PMEVCNTR(15),
4127 	PMU_PMEVCNTR(16),
4128 	PMU_PMEVCNTR(17),
4129 	PMU_PMEVCNTR(18),
4130 	PMU_PMEVCNTR(19),
4131 	PMU_PMEVCNTR(20),
4132 	PMU_PMEVCNTR(21),
4133 	PMU_PMEVCNTR(22),
4134 	PMU_PMEVCNTR(23),
4135 	PMU_PMEVCNTR(24),
4136 	PMU_PMEVCNTR(25),
4137 	PMU_PMEVCNTR(26),
4138 	PMU_PMEVCNTR(27),
4139 	PMU_PMEVCNTR(28),
4140 	PMU_PMEVCNTR(29),
4141 	PMU_PMEVCNTR(30),
4142 	/* PMEVTYPERn */
4143 	PMU_PMEVTYPER(0),
4144 	PMU_PMEVTYPER(1),
4145 	PMU_PMEVTYPER(2),
4146 	PMU_PMEVTYPER(3),
4147 	PMU_PMEVTYPER(4),
4148 	PMU_PMEVTYPER(5),
4149 	PMU_PMEVTYPER(6),
4150 	PMU_PMEVTYPER(7),
4151 	PMU_PMEVTYPER(8),
4152 	PMU_PMEVTYPER(9),
4153 	PMU_PMEVTYPER(10),
4154 	PMU_PMEVTYPER(11),
4155 	PMU_PMEVTYPER(12),
4156 	PMU_PMEVTYPER(13),
4157 	PMU_PMEVTYPER(14),
4158 	PMU_PMEVTYPER(15),
4159 	PMU_PMEVTYPER(16),
4160 	PMU_PMEVTYPER(17),
4161 	PMU_PMEVTYPER(18),
4162 	PMU_PMEVTYPER(19),
4163 	PMU_PMEVTYPER(20),
4164 	PMU_PMEVTYPER(21),
4165 	PMU_PMEVTYPER(22),
4166 	PMU_PMEVTYPER(23),
4167 	PMU_PMEVTYPER(24),
4168 	PMU_PMEVTYPER(25),
4169 	PMU_PMEVTYPER(26),
4170 	PMU_PMEVTYPER(27),
4171 	PMU_PMEVTYPER(28),
4172 	PMU_PMEVTYPER(29),
4173 	PMU_PMEVTYPER(30),
4174 	/* PMCCFILTR */
4175 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
4176 
4177 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
4178 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
4179 
4180 	/* CCSIDR2 */
4181 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
4182 
4183 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
4184 };
4185 
4186 static const struct sys_reg_desc cp15_64_regs[] = {
4187 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4188 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
4189 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
4190 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
4191 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
4192 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
4193 	{ SYS_DESC(SYS_AARCH32_CNTVCT),	      access_arch_timer },
4194 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
4195 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
4196 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
4197 	{ SYS_DESC(SYS_AARCH32_CNTVCTSS),     access_arch_timer },
4198 };
4199 
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool is_32)4200 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
4201 			       bool is_32)
4202 {
4203 	unsigned int i;
4204 
4205 	for (i = 0; i < n; i++) {
4206 		if (!is_32 && table[i].reg && !table[i].reset) {
4207 			kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
4208 				&table[i], i, table[i].name);
4209 			return false;
4210 		}
4211 
4212 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
4213 			kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
4214 				&table[i], i, table[i - 1].name, table[i].name);
4215 			return false;
4216 		}
4217 	}
4218 
4219 	return true;
4220 }
4221 
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)4222 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
4223 {
4224 	kvm_inject_undefined(vcpu);
4225 	return 1;
4226 }
4227 
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)4228 static void perform_access(struct kvm_vcpu *vcpu,
4229 			   struct sys_reg_params *params,
4230 			   const struct sys_reg_desc *r)
4231 {
4232 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
4233 
4234 	/* Check for regs disabled by runtime config */
4235 	if (sysreg_hidden(vcpu, r)) {
4236 		kvm_inject_undefined(vcpu);
4237 		return;
4238 	}
4239 
4240 	/*
4241 	 * Not having an accessor means that we have configured a trap
4242 	 * that we don't know how to handle. This certainly qualifies
4243 	 * as a gross bug that should be fixed right away.
4244 	 */
4245 	BUG_ON(!r->access);
4246 
4247 	/* Skip instruction if instructed so */
4248 	if (likely(r->access(vcpu, params, r)))
4249 		kvm_incr_pc(vcpu);
4250 }
4251 
4252 /*
4253  * emulate_cp --  tries to match a sys_reg access in a handling table, and
4254  *                call the corresponding trap handler.
4255  *
4256  * @params: pointer to the descriptor of the access
4257  * @table: array of trap descriptors
4258  * @num: size of the trap descriptor array
4259  *
4260  * Return true if the access has been handled, false if not.
4261  */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)4262 static bool emulate_cp(struct kvm_vcpu *vcpu,
4263 		       struct sys_reg_params *params,
4264 		       const struct sys_reg_desc *table,
4265 		       size_t num)
4266 {
4267 	const struct sys_reg_desc *r;
4268 
4269 	if (!table)
4270 		return false;	/* Not handled */
4271 
4272 	r = find_reg(params, table, num);
4273 
4274 	if (r) {
4275 		perform_access(vcpu, params, r);
4276 		return true;
4277 	}
4278 
4279 	/* Not handled */
4280 	return false;
4281 }
4282 
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4283 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
4284 				struct sys_reg_params *params)
4285 {
4286 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
4287 	int cp = -1;
4288 
4289 	switch (esr_ec) {
4290 	case ESR_ELx_EC_CP15_32:
4291 	case ESR_ELx_EC_CP15_64:
4292 		cp = 15;
4293 		break;
4294 	case ESR_ELx_EC_CP14_MR:
4295 	case ESR_ELx_EC_CP14_64:
4296 		cp = 14;
4297 		break;
4298 	default:
4299 		WARN_ON(1);
4300 	}
4301 
4302 	print_sys_reg_msg(params,
4303 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
4304 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4305 	kvm_inject_undefined(vcpu);
4306 }
4307 
4308 /**
4309  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
4310  * @vcpu: The VCPU pointer
4311  * @global: &struct sys_reg_desc
4312  * @nr_global: size of the @global array
4313  */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)4314 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
4315 			    const struct sys_reg_desc *global,
4316 			    size_t nr_global)
4317 {
4318 	struct sys_reg_params params;
4319 	u64 esr = kvm_vcpu_get_esr(vcpu);
4320 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4321 	int Rt2 = (esr >> 10) & 0x1f;
4322 
4323 	params.CRm = (esr >> 1) & 0xf;
4324 	params.is_write = ((esr & 1) == 0);
4325 
4326 	params.Op0 = 0;
4327 	params.Op1 = (esr >> 16) & 0xf;
4328 	params.Op2 = 0;
4329 	params.CRn = 0;
4330 
4331 	/*
4332 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
4333 	 * backends between AArch32 and AArch64, we get away with it.
4334 	 */
4335 	if (params.is_write) {
4336 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
4337 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
4338 	}
4339 
4340 	/*
4341 	 * If the table contains a handler, handle the
4342 	 * potential register operation in the case of a read and return
4343 	 * with success.
4344 	 */
4345 	if (emulate_cp(vcpu, &params, global, nr_global)) {
4346 		/* Split up the value between registers for the read side */
4347 		if (!params.is_write) {
4348 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
4349 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
4350 		}
4351 
4352 		return 1;
4353 	}
4354 
4355 	unhandled_cp_access(vcpu, &params);
4356 	return 1;
4357 }
4358 
4359 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
4360 
4361 /*
4362  * The CP10 ID registers are architecturally mapped to AArch64 feature
4363  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
4364  * from AArch32.
4365  */
kvm_esr_cp10_id_to_sys64(u64 esr,struct sys_reg_params * params)4366 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
4367 {
4368 	u8 reg_id = (esr >> 10) & 0xf;
4369 	bool valid;
4370 
4371 	params->is_write = ((esr & 1) == 0);
4372 	params->Op0 = 3;
4373 	params->Op1 = 0;
4374 	params->CRn = 0;
4375 	params->CRm = 3;
4376 
4377 	/* CP10 ID registers are read-only */
4378 	valid = !params->is_write;
4379 
4380 	switch (reg_id) {
4381 	/* MVFR0 */
4382 	case 0b0111:
4383 		params->Op2 = 0;
4384 		break;
4385 	/* MVFR1 */
4386 	case 0b0110:
4387 		params->Op2 = 1;
4388 		break;
4389 	/* MVFR2 */
4390 	case 0b0101:
4391 		params->Op2 = 2;
4392 		break;
4393 	default:
4394 		valid = false;
4395 	}
4396 
4397 	if (valid)
4398 		return true;
4399 
4400 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
4401 		      params->is_write ? "write" : "read", reg_id);
4402 	return false;
4403 }
4404 
4405 /**
4406  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
4407  *			  VFP Register' from AArch32.
4408  * @vcpu: The vCPU pointer
4409  *
4410  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
4411  * Work out the correct AArch64 system register encoding and reroute to the
4412  * AArch64 system register emulation.
4413  */
kvm_handle_cp10_id(struct kvm_vcpu * vcpu)4414 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
4415 {
4416 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4417 	u64 esr = kvm_vcpu_get_esr(vcpu);
4418 	struct sys_reg_params params;
4419 
4420 	/* UNDEF on any unhandled register access */
4421 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
4422 		kvm_inject_undefined(vcpu);
4423 		return 1;
4424 	}
4425 
4426 	if (emulate_sys_reg(vcpu, &params))
4427 		vcpu_set_reg(vcpu, Rt, params.regval);
4428 
4429 	return 1;
4430 }
4431 
4432 /**
4433  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
4434  *			       CRn=0, which corresponds to the AArch32 feature
4435  *			       registers.
4436  * @vcpu: the vCPU pointer
4437  * @params: the system register access parameters.
4438  *
4439  * Our cp15 system register tables do not enumerate the AArch32 feature
4440  * registers. Conveniently, our AArch64 table does, and the AArch32 system
4441  * register encoding can be trivially remapped into the AArch64 for the feature
4442  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
4443  *
4444  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
4445  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
4446  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
4447  * treat undefined registers in this range as RAZ.
4448  */
kvm_emulate_cp15_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4449 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
4450 				   struct sys_reg_params *params)
4451 {
4452 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4453 
4454 	/* Treat impossible writes to RO registers as UNDEFINED */
4455 	if (params->is_write) {
4456 		unhandled_cp_access(vcpu, params);
4457 		return 1;
4458 	}
4459 
4460 	params->Op0 = 3;
4461 
4462 	/*
4463 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
4464 	 * Avoid conflicting with future expansion of AArch64 feature registers
4465 	 * and simply treat them as RAZ here.
4466 	 */
4467 	if (params->CRm > 3)
4468 		params->regval = 0;
4469 	else if (!emulate_sys_reg(vcpu, params))
4470 		return 1;
4471 
4472 	vcpu_set_reg(vcpu, Rt, params->regval);
4473 	return 1;
4474 }
4475 
4476 /**
4477  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
4478  * @vcpu: The VCPU pointer
4479  * @params: &struct sys_reg_params
4480  * @global: &struct sys_reg_desc
4481  * @nr_global: size of the @global array
4482  */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * global,size_t nr_global)4483 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
4484 			    struct sys_reg_params *params,
4485 			    const struct sys_reg_desc *global,
4486 			    size_t nr_global)
4487 {
4488 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
4489 
4490 	params->regval = vcpu_get_reg(vcpu, Rt);
4491 
4492 	if (emulate_cp(vcpu, params, global, nr_global)) {
4493 		if (!params->is_write)
4494 			vcpu_set_reg(vcpu, Rt, params->regval);
4495 		return 1;
4496 	}
4497 
4498 	unhandled_cp_access(vcpu, params);
4499 	return 1;
4500 }
4501 
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)4502 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
4503 {
4504 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
4505 }
4506 
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)4507 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
4508 {
4509 	struct sys_reg_params params;
4510 
4511 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4512 
4513 	/*
4514 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
4515 	 * system register table. Registers in the ID range where CRm=0 are
4516 	 * excluded from this scheme as they do not trivially map into AArch64
4517 	 * system register encodings, except for AIDR/REVIDR.
4518 	 */
4519 	if (params.Op1 == 0 && params.CRn == 0 &&
4520 	    (params.CRm || params.Op2 == 6 /* REVIDR */))
4521 		return kvm_emulate_cp15_id_reg(vcpu, &params);
4522 	if (params.Op1 == 1 && params.CRn == 0 &&
4523 	    params.CRm == 0 && params.Op2 == 7 /* AIDR */)
4524 		return kvm_emulate_cp15_id_reg(vcpu, &params);
4525 
4526 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
4527 }
4528 
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)4529 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
4530 {
4531 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
4532 }
4533 
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)4534 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
4535 {
4536 	struct sys_reg_params params;
4537 
4538 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4539 
4540 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
4541 }
4542 
4543 /**
4544  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
4545  * @vcpu: The VCPU pointer
4546  * @params: Decoded system register parameters
4547  *
4548  * Return: true if the system register access was successful, false otherwise.
4549  */
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)4550 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
4551 			    struct sys_reg_params *params)
4552 {
4553 	const struct sys_reg_desc *r;
4554 
4555 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4556 	if (likely(r)) {
4557 		perform_access(vcpu, params, r);
4558 		return true;
4559 	}
4560 
4561 	print_sys_reg_msg(params,
4562 			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
4563 			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4564 	kvm_inject_undefined(vcpu);
4565 
4566 	return false;
4567 }
4568 
idregs_debug_find(struct kvm * kvm,u8 pos)4569 static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
4570 {
4571 	unsigned long i, idreg_idx = 0;
4572 
4573 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4574 		const struct sys_reg_desc *r = &sys_reg_descs[i];
4575 
4576 		if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
4577 			continue;
4578 
4579 		if (idreg_idx == pos)
4580 			return r;
4581 
4582 		idreg_idx++;
4583 	}
4584 
4585 	return NULL;
4586 }
4587 
idregs_debug_start(struct seq_file * s,loff_t * pos)4588 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
4589 {
4590 	struct kvm *kvm = s->private;
4591 	u8 *iter;
4592 
4593 	mutex_lock(&kvm->arch.config_lock);
4594 
4595 	iter = &kvm->arch.idreg_debugfs_iter;
4596 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
4597 	    *iter == (u8)~0) {
4598 		*iter = *pos;
4599 		if (!idregs_debug_find(kvm, *iter))
4600 			iter = NULL;
4601 	} else {
4602 		iter = ERR_PTR(-EBUSY);
4603 	}
4604 
4605 	mutex_unlock(&kvm->arch.config_lock);
4606 
4607 	return iter;
4608 }
4609 
idregs_debug_next(struct seq_file * s,void * v,loff_t * pos)4610 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
4611 {
4612 	struct kvm *kvm = s->private;
4613 
4614 	(*pos)++;
4615 
4616 	if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
4617 		kvm->arch.idreg_debugfs_iter++;
4618 
4619 		return &kvm->arch.idreg_debugfs_iter;
4620 	}
4621 
4622 	return NULL;
4623 }
4624 
idregs_debug_stop(struct seq_file * s,void * v)4625 static void idregs_debug_stop(struct seq_file *s, void *v)
4626 {
4627 	struct kvm *kvm = s->private;
4628 
4629 	if (IS_ERR(v))
4630 		return;
4631 
4632 	mutex_lock(&kvm->arch.config_lock);
4633 
4634 	kvm->arch.idreg_debugfs_iter = ~0;
4635 
4636 	mutex_unlock(&kvm->arch.config_lock);
4637 }
4638 
idregs_debug_show(struct seq_file * s,void * v)4639 static int idregs_debug_show(struct seq_file *s, void *v)
4640 {
4641 	const struct sys_reg_desc *desc;
4642 	struct kvm *kvm = s->private;
4643 
4644 	desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
4645 
4646 	if (!desc->name)
4647 		return 0;
4648 
4649 	seq_printf(s, "%20s:\t%016llx\n",
4650 		   desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
4651 
4652 	return 0;
4653 }
4654 
4655 static const struct seq_operations idregs_debug_sops = {
4656 	.start	= idregs_debug_start,
4657 	.next	= idregs_debug_next,
4658 	.stop	= idregs_debug_stop,
4659 	.show	= idregs_debug_show,
4660 };
4661 
4662 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
4663 
kvm_sys_regs_create_debugfs(struct kvm * kvm)4664 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
4665 {
4666 	kvm->arch.idreg_debugfs_iter = ~0;
4667 
4668 	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
4669 			    &idregs_debug_fops);
4670 }
4671 
reset_vm_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)4672 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
4673 {
4674 	u32 id = reg_to_encoding(reg);
4675 	struct kvm *kvm = vcpu->kvm;
4676 
4677 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
4678 		return;
4679 
4680 	kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
4681 }
4682 
reset_vcpu_ftr_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * reg)4683 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
4684 				  const struct sys_reg_desc *reg)
4685 {
4686 	if (kvm_vcpu_initialized(vcpu))
4687 		return;
4688 
4689 	reg->reset(vcpu, reg);
4690 }
4691 
4692 /**
4693  * kvm_reset_sys_regs - sets system registers to reset value
4694  * @vcpu: The VCPU pointer
4695  *
4696  * This function finds the right table above and sets the registers on the
4697  * virtual CPU struct to their architecturally defined reset values.
4698  */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)4699 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
4700 {
4701 	struct kvm *kvm = vcpu->kvm;
4702 	unsigned long i;
4703 
4704 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4705 		const struct sys_reg_desc *r = &sys_reg_descs[i];
4706 
4707 		if (!r->reset)
4708 			continue;
4709 
4710 		if (is_vm_ftr_id_reg(reg_to_encoding(r)))
4711 			reset_vm_ftr_id_reg(vcpu, r);
4712 		else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
4713 			reset_vcpu_ftr_id_reg(vcpu, r);
4714 		else
4715 			r->reset(vcpu, r);
4716 
4717 		if (r->reg >= __SANITISED_REG_START__ && r->reg < NR_SYS_REGS)
4718 			(void)__vcpu_sys_reg(vcpu, r->reg);
4719 	}
4720 
4721 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
4722 
4723 	if (kvm_vcpu_has_pmu(vcpu))
4724 		kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
4725 }
4726 
4727 /**
4728  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
4729  *			 trap on a guest execution
4730  * @vcpu: The VCPU pointer
4731  */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)4732 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
4733 {
4734 	const struct sys_reg_desc *desc = NULL;
4735 	struct sys_reg_params params;
4736 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
4737 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4738 	int sr_idx;
4739 
4740 	trace_kvm_handle_sys_reg(esr);
4741 
4742 	if (triage_sysreg_trap(vcpu, &sr_idx))
4743 		return 1;
4744 
4745 	params = esr_sys64_to_params(esr);
4746 	params.regval = vcpu_get_reg(vcpu, Rt);
4747 
4748 	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
4749 	if (params.Op0 == 2 || params.Op0 == 3)
4750 		desc = &sys_reg_descs[sr_idx];
4751 	else
4752 		desc = &sys_insn_descs[sr_idx];
4753 
4754 	perform_access(vcpu, &params, desc);
4755 
4756 	/* Read from system register? */
4757 	if (!params.is_write &&
4758 	    (params.Op0 == 2 || params.Op0 == 3))
4759 		vcpu_set_reg(vcpu, Rt, params.regval);
4760 
4761 	return 1;
4762 }
4763 
4764 /******************************************************************************
4765  * Userspace API
4766  *****************************************************************************/
4767 
index_to_params(u64 id,struct sys_reg_params * params)4768 static bool index_to_params(u64 id, struct sys_reg_params *params)
4769 {
4770 	switch (id & KVM_REG_SIZE_MASK) {
4771 	case KVM_REG_SIZE_U64:
4772 		/* Any unused index bits means it's not valid. */
4773 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
4774 			      | KVM_REG_ARM_COPROC_MASK
4775 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
4776 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
4777 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
4778 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
4779 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
4780 			return false;
4781 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
4782 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
4783 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
4784 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
4785 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
4786 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
4787 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
4788 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
4789 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
4790 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
4791 		return true;
4792 	default:
4793 		return false;
4794 	}
4795 }
4796 
get_reg_by_id(u64 id,const struct sys_reg_desc table[],unsigned int num)4797 const struct sys_reg_desc *get_reg_by_id(u64 id,
4798 					 const struct sys_reg_desc table[],
4799 					 unsigned int num)
4800 {
4801 	struct sys_reg_params params;
4802 
4803 	if (!index_to_params(id, &params))
4804 		return NULL;
4805 
4806 	return find_reg(&params, table, num);
4807 }
4808 
4809 /* Decode an index value, and find the sys_reg_desc entry. */
4810 static const struct sys_reg_desc *
id_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id,const struct sys_reg_desc table[],unsigned int num)4811 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
4812 		   const struct sys_reg_desc table[], unsigned int num)
4813 
4814 {
4815 	const struct sys_reg_desc *r;
4816 
4817 	/* We only do sys_reg for now. */
4818 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
4819 		return NULL;
4820 
4821 	r = get_reg_by_id(id, table, num);
4822 
4823 	/* Not saved in the sys_reg array and not otherwise accessible? */
4824 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
4825 		r = NULL;
4826 
4827 	return r;
4828 }
4829 
demux_c15_get(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)4830 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4831 {
4832 	u32 val;
4833 	u32 __user *uval = uaddr;
4834 
4835 	/* Fail if we have unknown bits set. */
4836 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4837 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4838 		return -ENOENT;
4839 
4840 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4841 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4842 		if (KVM_REG_SIZE(id) != 4)
4843 			return -ENOENT;
4844 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4845 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4846 		if (val >= CSSELR_MAX)
4847 			return -ENOENT;
4848 
4849 		return put_user(get_ccsidr(vcpu, val), uval);
4850 	default:
4851 		return -ENOENT;
4852 	}
4853 }
4854 
demux_c15_set(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)4855 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4856 {
4857 	u32 val, newval;
4858 	u32 __user *uval = uaddr;
4859 
4860 	/* Fail if we have unknown bits set. */
4861 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4862 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4863 		return -ENOENT;
4864 
4865 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4866 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4867 		if (KVM_REG_SIZE(id) != 4)
4868 			return -ENOENT;
4869 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4870 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4871 		if (val >= CSSELR_MAX)
4872 			return -ENOENT;
4873 
4874 		if (get_user(newval, uval))
4875 			return -EFAULT;
4876 
4877 		return set_ccsidr(vcpu, val, newval);
4878 	default:
4879 		return -ENOENT;
4880 	}
4881 }
4882 
kvm_sys_reg_get_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)4883 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4884 			 const struct sys_reg_desc table[], unsigned int num)
4885 {
4886 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4887 	const struct sys_reg_desc *r;
4888 	u64 val;
4889 	int ret;
4890 
4891 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4892 	if (!r || sysreg_hidden(vcpu, r))
4893 		return -ENOENT;
4894 
4895 	if (r->get_user) {
4896 		ret = (r->get_user)(vcpu, r, &val);
4897 	} else {
4898 		val = __vcpu_sys_reg(vcpu, r->reg);
4899 		ret = 0;
4900 	}
4901 
4902 	if (!ret)
4903 		ret = put_user(val, uaddr);
4904 
4905 	return ret;
4906 }
4907 
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)4908 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4909 {
4910 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4911 
4912 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4913 		return demux_c15_get(vcpu, reg->id, uaddr);
4914 
4915 	return kvm_sys_reg_get_user(vcpu, reg,
4916 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4917 }
4918 
kvm_sys_reg_set_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)4919 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4920 			 const struct sys_reg_desc table[], unsigned int num)
4921 {
4922 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4923 	const struct sys_reg_desc *r;
4924 	u64 val;
4925 	int ret;
4926 
4927 	if (get_user(val, uaddr))
4928 		return -EFAULT;
4929 
4930 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4931 	if (!r || sysreg_hidden(vcpu, r))
4932 		return -ENOENT;
4933 
4934 	if (sysreg_user_write_ignore(vcpu, r))
4935 		return 0;
4936 
4937 	if (r->set_user) {
4938 		ret = (r->set_user)(vcpu, r, val);
4939 	} else {
4940 		__vcpu_sys_reg(vcpu, r->reg) = val;
4941 		ret = 0;
4942 	}
4943 
4944 	return ret;
4945 }
4946 
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)4947 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4948 {
4949 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4950 
4951 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4952 		return demux_c15_set(vcpu, reg->id, uaddr);
4953 
4954 	return kvm_sys_reg_set_user(vcpu, reg,
4955 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4956 }
4957 
num_demux_regs(void)4958 static unsigned int num_demux_regs(void)
4959 {
4960 	return CSSELR_MAX;
4961 }
4962 
write_demux_regids(u64 __user * uindices)4963 static int write_demux_regids(u64 __user *uindices)
4964 {
4965 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
4966 	unsigned int i;
4967 
4968 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
4969 	for (i = 0; i < CSSELR_MAX; i++) {
4970 		if (put_user(val | i, uindices))
4971 			return -EFAULT;
4972 		uindices++;
4973 	}
4974 	return 0;
4975 }
4976 
sys_reg_to_index(const struct sys_reg_desc * reg)4977 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
4978 {
4979 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
4980 		KVM_REG_ARM64_SYSREG |
4981 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
4982 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
4983 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
4984 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
4985 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
4986 }
4987 
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)4988 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
4989 {
4990 	if (!*uind)
4991 		return true;
4992 
4993 	if (put_user(sys_reg_to_index(reg), *uind))
4994 		return false;
4995 
4996 	(*uind)++;
4997 	return true;
4998 }
4999 
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)5000 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
5001 			    const struct sys_reg_desc *rd,
5002 			    u64 __user **uind,
5003 			    unsigned int *total)
5004 {
5005 	/*
5006 	 * Ignore registers we trap but don't save,
5007 	 * and for which no custom user accessor is provided.
5008 	 */
5009 	if (!(rd->reg || rd->get_user))
5010 		return 0;
5011 
5012 	if (sysreg_hidden(vcpu, rd))
5013 		return 0;
5014 
5015 	if (!copy_reg_to_user(rd, uind))
5016 		return -EFAULT;
5017 
5018 	(*total)++;
5019 	return 0;
5020 }
5021 
5022 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)5023 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
5024 {
5025 	const struct sys_reg_desc *i2, *end2;
5026 	unsigned int total = 0;
5027 	int err;
5028 
5029 	i2 = sys_reg_descs;
5030 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
5031 
5032 	while (i2 != end2) {
5033 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
5034 		if (err)
5035 			return err;
5036 	}
5037 	return total;
5038 }
5039 
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)5040 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
5041 {
5042 	return num_demux_regs()
5043 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
5044 }
5045 
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)5046 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
5047 {
5048 	int err;
5049 
5050 	err = walk_sys_regs(vcpu, uindices);
5051 	if (err < 0)
5052 		return err;
5053 	uindices += err;
5054 
5055 	return write_demux_regids(uindices);
5056 }
5057 
5058 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
5059 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
5060 		sys_reg_Op1(r),					\
5061 		sys_reg_CRn(r),					\
5062 		sys_reg_CRm(r),					\
5063 		sys_reg_Op2(r))
5064 
kvm_vm_ioctl_get_reg_writable_masks(struct kvm * kvm,struct reg_mask_range * range)5065 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
5066 {
5067 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
5068 	u64 __user *masks = (u64 __user *)range->addr;
5069 
5070 	/* Only feature id range is supported, reserved[13] must be zero. */
5071 	if (range->range ||
5072 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
5073 		return -EINVAL;
5074 
5075 	/* Wipe the whole thing first */
5076 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
5077 		return -EFAULT;
5078 
5079 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5080 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
5081 		u32 encoding = reg_to_encoding(reg);
5082 		u64 val;
5083 
5084 		if (!is_feature_id_reg(encoding) || !reg->set_user)
5085 			continue;
5086 
5087 		if (!reg->val ||
5088 		    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
5089 			continue;
5090 		}
5091 		val = reg->val;
5092 
5093 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
5094 			return -EFAULT;
5095 	}
5096 
5097 	return 0;
5098 }
5099 
vcpu_set_hcr(struct kvm_vcpu * vcpu)5100 static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
5101 {
5102 	struct kvm *kvm = vcpu->kvm;
5103 
5104 	if (has_vhe() || has_hvhe())
5105 		vcpu->arch.hcr_el2 |= HCR_E2H;
5106 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
5107 		/* route synchronous external abort exceptions to EL2 */
5108 		vcpu->arch.hcr_el2 |= HCR_TEA;
5109 		/* trap error record accesses */
5110 		vcpu->arch.hcr_el2 |= HCR_TERR;
5111 	}
5112 
5113 	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
5114 		vcpu->arch.hcr_el2 |= HCR_FWB;
5115 
5116 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
5117 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
5118 	    kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
5119 		vcpu->arch.hcr_el2 |= HCR_TID4;
5120 	else
5121 		vcpu->arch.hcr_el2 |= HCR_TID2;
5122 
5123 	if (vcpu_el1_is_32bit(vcpu))
5124 		vcpu->arch.hcr_el2 &= ~HCR_RW;
5125 
5126 	if (kvm_has_mte(vcpu->kvm))
5127 		vcpu->arch.hcr_el2 |= HCR_ATA;
5128 
5129 	/*
5130 	 * In the absence of FGT, we cannot independently trap TLBI
5131 	 * Range instructions. This isn't great, but trapping all
5132 	 * TLBIs would be far worse. Live with it...
5133 	 */
5134 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5135 		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
5136 }
5137 
kvm_calculate_traps(struct kvm_vcpu * vcpu)5138 void kvm_calculate_traps(struct kvm_vcpu *vcpu)
5139 {
5140 	struct kvm *kvm = vcpu->kvm;
5141 
5142 	mutex_lock(&kvm->arch.config_lock);
5143 	vcpu_set_hcr(vcpu);
5144 	vcpu_set_ich_hcr(vcpu);
5145 	vcpu_set_hcrx(vcpu);
5146 
5147 	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
5148 		goto out;
5149 
5150 	kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1		|
5151 				       HFGxTR_EL2_nMAIR2_EL1		|
5152 				       HFGxTR_EL2_nS2POR_EL1		|
5153 				       HFGxTR_EL2_nACCDATA_EL1		|
5154 				       HFGxTR_EL2_nSMPRI_EL1_MASK	|
5155 				       HFGxTR_EL2_nTPIDR2_EL0_MASK);
5156 
5157 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5158 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
5159 						HFGITR_EL2_TLBIRVALE1OS	|
5160 						HFGITR_EL2_TLBIRVAAE1OS	|
5161 						HFGITR_EL2_TLBIRVAE1OS	|
5162 						HFGITR_EL2_TLBIVAALE1OS	|
5163 						HFGITR_EL2_TLBIVALE1OS	|
5164 						HFGITR_EL2_TLBIVAAE1OS	|
5165 						HFGITR_EL2_TLBIASIDE1OS	|
5166 						HFGITR_EL2_TLBIVAE1OS	|
5167 						HFGITR_EL2_TLBIVMALLE1OS);
5168 
5169 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
5170 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1	|
5171 						HFGITR_EL2_TLBIRVALE1	|
5172 						HFGITR_EL2_TLBIRVAAE1	|
5173 						HFGITR_EL2_TLBIRVAE1	|
5174 						HFGITR_EL2_TLBIRVAALE1IS|
5175 						HFGITR_EL2_TLBIRVALE1IS	|
5176 						HFGITR_EL2_TLBIRVAAE1IS	|
5177 						HFGITR_EL2_TLBIRVAE1IS	|
5178 						HFGITR_EL2_TLBIRVAALE1OS|
5179 						HFGITR_EL2_TLBIRVALE1OS	|
5180 						HFGITR_EL2_TLBIRVAAE1OS	|
5181 						HFGITR_EL2_TLBIRVAE1OS);
5182 
5183 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
5184 		kvm->arch.fgu[HFGITR_GROUP] |= HFGITR_EL2_ATS1E1A;
5185 
5186 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
5187 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_ATS1E1RP |
5188 						HFGITR_EL2_ATS1E1WP);
5189 
5190 	if (!kvm_has_s1pie(kvm))
5191 		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
5192 						HFGxTR_EL2_nPIR_EL1);
5193 
5194 	if (!kvm_has_s1poe(kvm))
5195 		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPOR_EL1 |
5196 						HFGxTR_EL2_nPOR_EL0);
5197 
5198 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
5199 		kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
5200 						  HAFGRTR_EL2_RES1);
5201 
5202 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP)) {
5203 		kvm->arch.fgu[HDFGRTR_GROUP] |= (HDFGRTR_EL2_nBRBDATA  |
5204 						 HDFGRTR_EL2_nBRBCTL   |
5205 						 HDFGRTR_EL2_nBRBIDR);
5206 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_nBRBINJ |
5207 						HFGITR_EL2_nBRBIALL);
5208 	}
5209 
5210 	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
5211 out:
5212 	mutex_unlock(&kvm->arch.config_lock);
5213 }
5214 
5215 /*
5216  * Perform last adjustments to the ID registers that are implied by the
5217  * configuration outside of the ID regs themselves, as well as any
5218  * initialisation that directly depend on these ID registers (such as
5219  * RES0/RES1 behaviours). This is not the place to configure traps though.
5220  *
5221  * Because this can be called once per CPU, changes must be idempotent.
5222  */
kvm_finalize_sys_regs(struct kvm_vcpu * vcpu)5223 int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu)
5224 {
5225 	struct kvm *kvm = vcpu->kvm;
5226 
5227 	guard(mutex)(&kvm->arch.config_lock);
5228 
5229 	if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) &&
5230 	      irqchip_in_kernel(kvm) &&
5231 	      kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) {
5232 		kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK;
5233 		kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK;
5234 	}
5235 
5236 	if (vcpu_has_nv(vcpu)) {
5237 		int ret = kvm_init_nv_sysregs(vcpu);
5238 		if (ret)
5239 			return ret;
5240 	}
5241 
5242 	return 0;
5243 }
5244 
kvm_sys_reg_table_init(void)5245 int __init kvm_sys_reg_table_init(void)
5246 {
5247 	bool valid = true;
5248 	unsigned int i;
5249 	int ret = 0;
5250 
5251 	/* Make sure tables are unique and in order. */
5252 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
5253 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
5254 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
5255 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
5256 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
5257 	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
5258 
5259 	if (!valid)
5260 		return -EINVAL;
5261 
5262 	init_imp_id_regs();
5263 
5264 	ret = populate_nv_trap_config();
5265 
5266 	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
5267 		ret = populate_sysreg_config(sys_reg_descs + i, i);
5268 
5269 	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
5270 		ret = populate_sysreg_config(sys_insn_descs + i, i);
5271 
5272 	return ret;
5273 }
5274