xref: /linux/arch/x86/kvm/vmx/vmx.c (revision bf2c3138ae3694d4687cbe451c774c288ae2ad06)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/fred.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/msr.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52 
53 #include <trace/events/ipi.h>
54 
55 #include "capabilities.h"
56 #include "common.h"
57 #include "cpuid.h"
58 #include "hyperv.h"
59 #include "kvm_onhyperv.h"
60 #include "irq.h"
61 #include "kvm_cache_regs.h"
62 #include "lapic.h"
63 #include "mmu.h"
64 #include "nested.h"
65 #include "pmu.h"
66 #include "sgx.h"
67 #include "trace.h"
68 #include "vmcs.h"
69 #include "vmcs12.h"
70 #include "vmx.h"
71 #include "x86.h"
72 #include "x86_ops.h"
73 #include "smm.h"
74 #include "vmx_onhyperv.h"
75 #include "posted_intr.h"
76 
77 #include "mmu/spte.h"
78 
79 MODULE_AUTHOR("Qumranet");
80 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
81 MODULE_LICENSE("GPL");
82 
83 #ifdef MODULE
84 static const struct x86_cpu_id vmx_cpu_id[] = {
85 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
86 	{}
87 };
88 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
89 #endif
90 
91 bool __read_mostly enable_vpid = 1;
92 module_param_named(vpid, enable_vpid, bool, 0444);
93 
94 static bool __read_mostly enable_vnmi = 1;
95 module_param_named(vnmi, enable_vnmi, bool, 0444);
96 
97 bool __read_mostly flexpriority_enabled = 1;
98 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
99 
100 bool __read_mostly enable_ept = 1;
101 module_param_named(ept, enable_ept, bool, 0444);
102 
103 bool __read_mostly enable_unrestricted_guest = 1;
104 module_param_named(unrestricted_guest,
105 			enable_unrestricted_guest, bool, 0444);
106 
107 bool __read_mostly enable_ept_ad_bits = 1;
108 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
109 
110 static bool __read_mostly emulate_invalid_guest_state = true;
111 module_param(emulate_invalid_guest_state, bool, 0444);
112 
113 static bool __read_mostly fasteoi = 1;
114 module_param(fasteoi, bool, 0444);
115 
116 module_param(enable_apicv, bool, 0444);
117 module_param(enable_ipiv, bool, 0444);
118 
119 module_param(enable_device_posted_irqs, bool, 0444);
120 
121 /*
122  * If nested=1, nested virtualization is supported, i.e., guests may use
123  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
124  * use VMX instructions.
125  */
126 static bool __read_mostly nested = 1;
127 module_param(nested, bool, 0444);
128 
129 bool __read_mostly enable_pml = 1;
130 module_param_named(pml, enable_pml, bool, 0444);
131 
132 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
133 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
134 
135 static bool __read_mostly dump_invalid_vmcs = 0;
136 module_param(dump_invalid_vmcs, bool, 0644);
137 
138 #define MSR_BITMAP_MODE_X2APIC		1
139 #define MSR_BITMAP_MODE_X2APIC_APICV	2
140 
141 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
142 
143 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
144 static int __read_mostly cpu_preemption_timer_multi;
145 static bool __read_mostly enable_preemption_timer = 1;
146 #ifdef CONFIG_X86_64
147 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
148 #endif
149 
150 extern bool __read_mostly allow_smaller_maxphyaddr;
151 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
152 
153 module_param(enable_mediated_pmu, bool, 0444);
154 
155 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
156 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
157 #define KVM_VM_CR0_ALWAYS_ON				\
158 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
159 
160 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
161 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
162 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
163 
164 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
165 
166 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
167 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
168 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
169 	RTIT_STATUS_BYTECNT))
170 
171 /*
172  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
173  * ple_gap:    upper bound on the amount of time between two successive
174  *             executions of PAUSE in a loop. Also indicate if ple enabled.
175  *             According to test, this time is usually smaller than 128 cycles.
176  * ple_window: upper bound on the amount of time a guest is allowed to execute
177  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
178  *             less than 2^12 cycles
179  * Time is measured based on a counter that runs at the same rate as the TSC,
180  * refer SDM volume 3b section 21.6.13 & 22.1.3.
181  */
182 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
183 module_param(ple_gap, uint, 0444);
184 
185 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
186 module_param(ple_window, uint, 0444);
187 
188 /* Default doubles per-vcpu window every exit. */
189 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
190 module_param(ple_window_grow, uint, 0444);
191 
192 /* Default resets per-vcpu window every exit to ple_window. */
193 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
194 module_param(ple_window_shrink, uint, 0444);
195 
196 /* Default is to compute the maximum so we can never overflow. */
197 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
198 module_param(ple_window_max, uint, 0444);
199 
200 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
201 int __read_mostly pt_mode = PT_MODE_SYSTEM;
202 #ifdef CONFIG_BROKEN
203 module_param(pt_mode, int, S_IRUGO);
204 #endif
205 
206 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
207 
208 #ifdef CONFIG_CPU_MITIGATIONS
209 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
210 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
211 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
212 
213 /* Storage for pre module init parameter parsing */
214 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
215 
216 static const struct {
217 	const char *option;
218 	bool for_parse;
219 } vmentry_l1d_param[] = {
220 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
221 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
222 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
223 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
224 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
225 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
226 };
227 
228 #define L1D_CACHE_ORDER 4
229 static void *vmx_l1d_flush_pages;
230 
231 static int __vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
232 {
233 	struct page *page;
234 	unsigned int i;
235 
236 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
237 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
238 		return 0;
239 	}
240 
241 	if (!enable_ept) {
242 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
243 		return 0;
244 	}
245 
246 	if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
247 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
248 		return 0;
249 	}
250 
251 	/* If set to auto use the default l1tf mitigation method */
252 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
253 		switch (l1tf_mitigation) {
254 		case L1TF_MITIGATION_OFF:
255 			l1tf = VMENTER_L1D_FLUSH_NEVER;
256 			break;
257 		case L1TF_MITIGATION_AUTO:
258 		case L1TF_MITIGATION_FLUSH_NOWARN:
259 		case L1TF_MITIGATION_FLUSH:
260 		case L1TF_MITIGATION_FLUSH_NOSMT:
261 			l1tf = VMENTER_L1D_FLUSH_COND;
262 			break;
263 		case L1TF_MITIGATION_FULL:
264 		case L1TF_MITIGATION_FULL_FORCE:
265 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
266 			break;
267 		}
268 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
269 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
270 	}
271 
272 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
273 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
274 		/*
275 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
276 		 * lifetime and so should not be charged to a memcg.
277 		 */
278 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
279 		if (!page)
280 			return -ENOMEM;
281 		vmx_l1d_flush_pages = page_address(page);
282 
283 		/*
284 		 * Initialize each page with a different pattern in
285 		 * order to protect against KSM in the nested
286 		 * virtualization case.
287 		 */
288 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
289 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
290 			       PAGE_SIZE);
291 		}
292 	}
293 
294 	l1tf_vmx_mitigation = l1tf;
295 
296 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
297 		static_branch_enable(&vmx_l1d_should_flush);
298 	else
299 		static_branch_disable(&vmx_l1d_should_flush);
300 
301 	if (l1tf == VMENTER_L1D_FLUSH_COND)
302 		static_branch_enable(&vmx_l1d_flush_cond);
303 	else
304 		static_branch_disable(&vmx_l1d_flush_cond);
305 	return 0;
306 }
307 
308 static int vmx_setup_l1d_flush(void)
309 {
310 	/*
311 	 * Hand the parameter mitigation value in which was stored in the pre
312 	 * module init parser. If no parameter was given, it will contain
313 	 * 'auto' which will be turned into the default 'cond' mitigation mode.
314 	 */
315 	return __vmx_setup_l1d_flush(vmentry_l1d_flush_param);
316 }
317 
318 static void vmx_cleanup_l1d_flush(void)
319 {
320 	if (vmx_l1d_flush_pages) {
321 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
322 		vmx_l1d_flush_pages = NULL;
323 	}
324 	/* Restore state so sysfs ignores VMX */
325 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
326 }
327 
328 static int vmentry_l1d_flush_parse(const char *s)
329 {
330 	unsigned int i;
331 
332 	if (s) {
333 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
334 			if (vmentry_l1d_param[i].for_parse &&
335 			    sysfs_streq(s, vmentry_l1d_param[i].option))
336 				return i;
337 		}
338 	}
339 	return -EINVAL;
340 }
341 
342 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
343 {
344 	int l1tf, ret;
345 
346 	l1tf = vmentry_l1d_flush_parse(s);
347 	if (l1tf < 0)
348 		return l1tf;
349 
350 	if (!boot_cpu_has(X86_BUG_L1TF))
351 		return 0;
352 
353 	/*
354 	 * Has vmx_init() run already? If not then this is the pre init
355 	 * parameter parsing. In that case just store the value and let
356 	 * vmx_init() do the proper setup after enable_ept has been
357 	 * established.
358 	 */
359 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
360 		vmentry_l1d_flush_param = l1tf;
361 		return 0;
362 	}
363 
364 	mutex_lock(&vmx_l1d_flush_mutex);
365 	ret = __vmx_setup_l1d_flush(l1tf);
366 	mutex_unlock(&vmx_l1d_flush_mutex);
367 	return ret;
368 }
369 
370 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
371 {
372 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
373 		return sysfs_emit(s, "???\n");
374 
375 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
376 }
377 
378 /*
379  * Software based L1D cache flush which is used when microcode providing
380  * the cache control MSR is not loaded.
381  *
382  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
383  * flush it is required to read in 64 KiB because the replacement algorithm
384  * is not exactly LRU. This could be sized at runtime via topology
385  * information but as all relevant affected CPUs have 32KiB L1D cache size
386  * there is no point in doing so.
387  */
388 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
389 {
390 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
391 
392 	if (!static_branch_unlikely(&vmx_l1d_should_flush))
393 		return;
394 
395 	/*
396 	 * This code is only executed when the flush mode is 'cond' or
397 	 * 'always'
398 	 */
399 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
400 		/*
401 		 * Clear the per-cpu flush bit, it gets set again if the vCPU
402 		 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
403 		 * exits to userspace, or if KVM reaches one of the unsafe
404 		 * VMEXIT handlers, e.g. if KVM calls into the emulator,
405 		 * or from the interrupt handlers.
406 		 */
407 		if (!kvm_get_cpu_l1tf_flush_l1d())
408 			return;
409 		kvm_clear_cpu_l1tf_flush_l1d();
410 	}
411 
412 	vcpu->stat.l1d_flush++;
413 
414 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
415 		native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
416 		return;
417 	}
418 
419 	asm volatile(
420 		/* First ensure the pages are in the TLB */
421 		"xorl	%%eax, %%eax\n"
422 		".Lpopulate_tlb:\n\t"
423 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
424 		"addl	$4096, %%eax\n\t"
425 		"cmpl	%%eax, %[size]\n\t"
426 		"jne	.Lpopulate_tlb\n\t"
427 		"xorl	%%eax, %%eax\n\t"
428 		"cpuid\n\t"
429 		/* Now fill the cache */
430 		"xorl	%%eax, %%eax\n"
431 		".Lfill_cache:\n"
432 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
433 		"addl	$64, %%eax\n\t"
434 		"cmpl	%%eax, %[size]\n\t"
435 		"jne	.Lfill_cache\n\t"
436 		"lfence\n"
437 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
438 		    [size] "r" (size)
439 		: "eax", "ebx", "ecx", "edx");
440 }
441 
442 #else /* CONFIG_CPU_MITIGATIONS*/
443 static int vmx_setup_l1d_flush(void)
444 {
445 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NEVER;
446 	return 0;
447 }
448 static void vmx_cleanup_l1d_flush(void)
449 {
450 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
451 }
452 static __always_inline void vmx_l1d_flush(struct kvm_vcpu *vcpu)
453 {
454 
455 }
456 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
457 {
458 	pr_warn_once("Kernel compiled without mitigations, ignoring vmentry_l1d_flush\n");
459 	return 0;
460 }
461 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
462 {
463 	return sysfs_emit(s, "never\n");
464 }
465 #endif
466 
467 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
468 	.set = vmentry_l1d_flush_set,
469 	.get = vmentry_l1d_flush_get,
470 };
471 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
472 
473 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
474 {
475 	u64 msr;
476 
477 	if (!vmx->disable_fb_clear)
478 		return;
479 
480 	msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
481 	msr |= FB_CLEAR_DIS;
482 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
483 	/* Cache the MSR value to avoid reading it later */
484 	vmx->msr_ia32_mcu_opt_ctrl = msr;
485 }
486 
487 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
488 {
489 	if (!vmx->disable_fb_clear)
490 		return;
491 
492 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
493 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
494 }
495 
496 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
497 {
498 	/*
499 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
500 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
501 	 * the mitigation. Disabling the clearing behavior provides a
502 	 * performance boost for guests that aren't aware that manually clearing
503 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
504 	 * and VM-Exit.
505 	 */
506 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
507 				(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
508 				!boot_cpu_has_bug(X86_BUG_MDS) &&
509 				!boot_cpu_has_bug(X86_BUG_TAA);
510 
511 	/*
512 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
513 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
514 	 * execute VERW.
515 	 */
516 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
517 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
518 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
519 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
520 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
521 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
522 		vmx->disable_fb_clear = false;
523 }
524 
525 static u32 vmx_segment_access_rights(struct kvm_segment *var);
526 
527 void vmx_vmexit(void);
528 
529 #define vmx_insn_failed(fmt...)		\
530 do {					\
531 	WARN_ONCE(1, fmt);		\
532 	pr_warn_ratelimited(fmt);	\
533 } while (0)
534 
535 noinline void vmread_error(unsigned long field)
536 {
537 	vmx_insn_failed("vmread failed: field=%lx\n", field);
538 }
539 
540 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
541 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
542 {
543 	if (fault) {
544 		kvm_spurious_fault();
545 	} else {
546 		instrumentation_begin();
547 		vmread_error(field);
548 		instrumentation_end();
549 	}
550 }
551 #endif
552 
553 noinline void vmwrite_error(unsigned long field, unsigned long value)
554 {
555 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
556 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
557 }
558 
559 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
560 {
561 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
562 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
563 }
564 
565 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
566 {
567 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
568 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
569 }
570 
571 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
572 {
573 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
574 			ext, vpid, gva);
575 }
576 
577 noinline void invept_error(unsigned long ext, u64 eptp)
578 {
579 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
580 }
581 
582 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
583 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
584 /*
585  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
586  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
587  */
588 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
589 
590 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
591 static DEFINE_SPINLOCK(vmx_vpid_lock);
592 
593 struct vmcs_config vmcs_config __ro_after_init;
594 struct vmx_capability vmx_capability __ro_after_init;
595 
596 #define VMX_SEGMENT_FIELD(seg)					\
597 	[VCPU_SREG_##seg] = {                                   \
598 		.selector = GUEST_##seg##_SELECTOR,		\
599 		.base = GUEST_##seg##_BASE,		   	\
600 		.limit = GUEST_##seg##_LIMIT,		   	\
601 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
602 	}
603 
604 static const struct kvm_vmx_segment_field {
605 	unsigned selector;
606 	unsigned base;
607 	unsigned limit;
608 	unsigned ar_bytes;
609 } kvm_vmx_segment_fields[] = {
610 	VMX_SEGMENT_FIELD(CS),
611 	VMX_SEGMENT_FIELD(DS),
612 	VMX_SEGMENT_FIELD(ES),
613 	VMX_SEGMENT_FIELD(FS),
614 	VMX_SEGMENT_FIELD(GS),
615 	VMX_SEGMENT_FIELD(SS),
616 	VMX_SEGMENT_FIELD(TR),
617 	VMX_SEGMENT_FIELD(LDTR),
618 };
619 
620 
621 static unsigned long host_idt_base;
622 
623 #if IS_ENABLED(CONFIG_HYPERV)
624 static bool __read_mostly enlightened_vmcs = true;
625 module_param(enlightened_vmcs, bool, 0444);
626 
627 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
628 {
629 	struct hv_enlightened_vmcs *evmcs;
630 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
631 
632 	if (partition_assist_page == INVALID_PAGE)
633 		return -ENOMEM;
634 
635 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
636 
637 	evmcs->partition_assist_page = partition_assist_page;
638 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
639 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
640 
641 	return 0;
642 }
643 
644 static __init void hv_init_evmcs(void)
645 {
646 	int cpu;
647 
648 	if (!enlightened_vmcs)
649 		return;
650 
651 	/*
652 	 * Enlightened VMCS usage should be recommended and the host needs
653 	 * to support eVMCS v1 or above.
654 	 */
655 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
656 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
657 	     KVM_EVMCS_VERSION) {
658 
659 		/* Check that we have assist pages on all online CPUs */
660 		for_each_online_cpu(cpu) {
661 			if (!hv_get_vp_assist_page(cpu)) {
662 				enlightened_vmcs = false;
663 				break;
664 			}
665 		}
666 
667 		if (enlightened_vmcs) {
668 			pr_info("Using Hyper-V Enlightened VMCS\n");
669 			static_branch_enable(&__kvm_is_using_evmcs);
670 		}
671 
672 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
673 			vt_x86_ops.enable_l2_tlb_flush
674 				= hv_enable_l2_tlb_flush;
675 	} else {
676 		enlightened_vmcs = false;
677 	}
678 }
679 
680 static void hv_reset_evmcs(void)
681 {
682 	struct hv_vp_assist_page *vp_ap;
683 
684 	if (!kvm_is_using_evmcs())
685 		return;
686 
687 	/*
688 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
689 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
690 	 * doesn't have a VP assist page allocated.
691 	 */
692 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
693 	if (WARN_ON_ONCE(!vp_ap))
694 		return;
695 
696 	/*
697 	 * Reset everything to support using non-enlightened VMCS access later
698 	 * (e.g. when we reload the module with enlightened_vmcs=0)
699 	 */
700 	vp_ap->nested_control.features.directhypercall = 0;
701 	vp_ap->current_nested_vmcs = 0;
702 	vp_ap->enlighten_vmentry = 0;
703 }
704 
705 #else /* IS_ENABLED(CONFIG_HYPERV) */
706 static void hv_init_evmcs(void) {}
707 static void hv_reset_evmcs(void) {}
708 #endif /* IS_ENABLED(CONFIG_HYPERV) */
709 
710 /*
711  * Comment's format: document - errata name - stepping - processor name.
712  * Refer from
713  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
714  */
715 static u32 vmx_preemption_cpu_tfms[] = {
716 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
717 0x000206E6,
718 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
719 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
720 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
721 0x00020652,
722 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
723 0x00020655,
724 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
725 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
726 /*
727  * 320767.pdf - AAP86  - B1 -
728  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
729  */
730 0x000106E5,
731 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
732 0x000106A0,
733 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
734 0x000106A1,
735 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
736 0x000106A4,
737  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
738  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
739  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
740 0x000106A5,
741  /* Xeon E3-1220 V2 */
742 0x000306A8,
743 };
744 
745 static inline bool cpu_has_broken_vmx_preemption_timer(void)
746 {
747 	u32 eax = cpuid_eax(0x00000001), i;
748 
749 	/* Clear the reserved bits */
750 	eax &= ~(0x3U << 14 | 0xfU << 28);
751 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
752 		if (eax == vmx_preemption_cpu_tfms[i])
753 			return true;
754 
755 	return false;
756 }
757 
758 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
759 {
760 	return flexpriority_enabled && lapic_in_kernel(vcpu);
761 }
762 
763 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
764 {
765 	int i;
766 
767 	i = kvm_find_user_return_msr(msr);
768 	if (i >= 0)
769 		return &vmx->guest_uret_msrs[i];
770 	return NULL;
771 }
772 
773 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
774 				  struct vmx_uret_msr *msr, u64 data)
775 {
776 	unsigned int slot = msr - vmx->guest_uret_msrs;
777 	int ret = 0;
778 
779 	if (msr->load_into_hardware) {
780 		preempt_disable();
781 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
782 		preempt_enable();
783 	}
784 	if (!ret)
785 		msr->data = data;
786 	return ret;
787 }
788 
789 /*
790  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
791  *
792  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
793  * atomically track post-VMXON state, e.g. this may be called in NMI context.
794  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
795  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
796  * magically in RM, VM86, compat mode, or at CPL>0.
797  */
798 static int kvm_cpu_vmxoff(void)
799 {
800 	asm goto("1: vmxoff\n\t"
801 			  _ASM_EXTABLE(1b, %l[fault])
802 			  ::: "cc", "memory" : fault);
803 
804 	cr4_clear_bits(X86_CR4_VMXE);
805 	return 0;
806 
807 fault:
808 	cr4_clear_bits(X86_CR4_VMXE);
809 	return -EIO;
810 }
811 
812 void vmx_emergency_disable_virtualization_cpu(void)
813 {
814 	int cpu = raw_smp_processor_id();
815 	struct loaded_vmcs *v;
816 
817 	kvm_rebooting = true;
818 
819 	/*
820 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
821 	 * set in task context.  If this races with VMX is disabled by an NMI,
822 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
823 	 * kvm_rebooting set.
824 	 */
825 	if (!(__read_cr4() & X86_CR4_VMXE))
826 		return;
827 
828 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
829 			    loaded_vmcss_on_cpu_link) {
830 		vmcs_clear(v->vmcs);
831 		if (v->shadow_vmcs)
832 			vmcs_clear(v->shadow_vmcs);
833 	}
834 
835 	kvm_cpu_vmxoff();
836 }
837 
838 static void __loaded_vmcs_clear(void *arg)
839 {
840 	struct loaded_vmcs *loaded_vmcs = arg;
841 	int cpu = raw_smp_processor_id();
842 
843 	if (loaded_vmcs->cpu != cpu)
844 		return; /* vcpu migration can race with cpu offline */
845 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
846 		per_cpu(current_vmcs, cpu) = NULL;
847 
848 	vmcs_clear(loaded_vmcs->vmcs);
849 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
850 		vmcs_clear(loaded_vmcs->shadow_vmcs);
851 
852 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
853 
854 	/*
855 	 * Ensure all writes to loaded_vmcs, including deleting it from its
856 	 * current percpu list, complete before setting loaded_vmcs->cpu to
857 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
858 	 * and add loaded_vmcs to its percpu list before it's deleted from this
859 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
860 	 */
861 	smp_wmb();
862 
863 	loaded_vmcs->cpu = -1;
864 	loaded_vmcs->launched = 0;
865 }
866 
867 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
868 {
869 	int cpu = loaded_vmcs->cpu;
870 
871 	if (cpu != -1)
872 		smp_call_function_single(cpu,
873 			 __loaded_vmcs_clear, loaded_vmcs, 1);
874 }
875 
876 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
877 				       unsigned field)
878 {
879 	bool ret;
880 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
881 
882 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
883 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
884 		vmx->segment_cache.bitmask = 0;
885 	}
886 	ret = vmx->segment_cache.bitmask & mask;
887 	vmx->segment_cache.bitmask |= mask;
888 	return ret;
889 }
890 
891 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
892 {
893 	u16 *p = &vmx->segment_cache.seg[seg].selector;
894 
895 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
896 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
897 	return *p;
898 }
899 
900 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
901 {
902 	ulong *p = &vmx->segment_cache.seg[seg].base;
903 
904 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
905 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
906 	return *p;
907 }
908 
909 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
910 {
911 	u32 *p = &vmx->segment_cache.seg[seg].limit;
912 
913 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
914 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
915 	return *p;
916 }
917 
918 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
919 {
920 	u32 *p = &vmx->segment_cache.seg[seg].ar;
921 
922 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
923 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
924 	return *p;
925 }
926 
927 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
928 {
929 	u32 eb;
930 
931 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
932 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
933 	/*
934 	 * #VE isn't used for VMX.  To test against unexpected changes
935 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
936 	 */
937 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
938 		eb |= 1u << VE_VECTOR;
939 	/*
940 	 * Guest access to VMware backdoor ports could legitimately
941 	 * trigger #GP because of TSS I/O permission bitmap.
942 	 * We intercept those #GP and allow access to them anyway
943 	 * as VMware does.
944 	 */
945 	if (enable_vmware_backdoor)
946 		eb |= (1u << GP_VECTOR);
947 	if ((vcpu->guest_debug &
948 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
949 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
950 		eb |= 1u << BP_VECTOR;
951 	if (to_vmx(vcpu)->rmode.vm86_active)
952 		eb = ~0;
953 	if (!vmx_need_pf_intercept(vcpu))
954 		eb &= ~(1u << PF_VECTOR);
955 
956 	/* When we are running a nested L2 guest and L1 specified for it a
957 	 * certain exception bitmap, we must trap the same exceptions and pass
958 	 * them to L1. When running L2, we will only handle the exceptions
959 	 * specified above if L1 did not want them.
960 	 */
961 	if (is_guest_mode(vcpu))
962 		eb |= get_vmcs12(vcpu)->exception_bitmap;
963 	else {
964 		int mask = 0, match = 0;
965 
966 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
967 			/*
968 			 * If EPT is enabled, #PF is currently only intercepted
969 			 * if MAXPHYADDR is smaller on the guest than on the
970 			 * host.  In that case we only care about present,
971 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
972 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
973 			 */
974 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
975 			match = PFERR_PRESENT_MASK;
976 		}
977 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
978 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
979 	}
980 
981 	/*
982 	 * Disabling xfd interception indicates that dynamic xfeatures
983 	 * might be used in the guest. Always trap #NM in this case
984 	 * to save guest xfd_err timely.
985 	 */
986 	if (vcpu->arch.xfd_no_write_intercept)
987 		eb |= (1u << NM_VECTOR);
988 
989 	vmcs_write32(EXCEPTION_BITMAP, eb);
990 }
991 
992 /*
993  * Check if MSR is intercepted for currently loaded MSR bitmap.
994  */
995 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
996 {
997 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
998 		return true;
999 
1000 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
1001 }
1002 
1003 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
1004 {
1005 	unsigned int flags = 0;
1006 
1007 	if (vmx->loaded_vmcs->launched)
1008 		flags |= VMX_RUN_VMRESUME;
1009 
1010 	/*
1011 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
1012 	 * to change it directly without causing a vmexit.  In that case read
1013 	 * it after vmexit and store it in vmx->spec_ctrl.
1014 	 */
1015 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
1016 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
1017 
1018 	if (cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF_VM_MMIO) &&
1019 	    kvm_vcpu_can_access_host_mmio(&vmx->vcpu))
1020 		flags |= VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO;
1021 
1022 	return flags;
1023 }
1024 
1025 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1026 		unsigned long entry, unsigned long exit)
1027 {
1028 	vm_entry_controls_clearbit(vmx, entry);
1029 	vm_exit_controls_clearbit(vmx, exit);
1030 }
1031 
1032 static int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
1033 {
1034 	unsigned int i;
1035 
1036 	for (i = 0; i < m->nr; ++i) {
1037 		if (m->val[i].index == msr)
1038 			return i;
1039 	}
1040 	return -ENOENT;
1041 }
1042 
1043 static void vmx_remove_auto_msr(struct vmx_msrs *m, u32 msr,
1044 				unsigned long vmcs_count_field)
1045 {
1046 	int i;
1047 
1048 	i = vmx_find_loadstore_msr_slot(m, msr);
1049 	if (i < 0)
1050 		return;
1051 
1052 	--m->nr;
1053 	m->val[i] = m->val[m->nr];
1054 	vmcs_write32(vmcs_count_field, m->nr);
1055 }
1056 
1057 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1058 {
1059 	struct msr_autoload *m = &vmx->msr_autoload;
1060 
1061 	switch (msr) {
1062 	case MSR_EFER:
1063 		if (cpu_has_load_ia32_efer()) {
1064 			clear_atomic_switch_msr_special(vmx,
1065 					VM_ENTRY_LOAD_IA32_EFER,
1066 					VM_EXIT_LOAD_IA32_EFER);
1067 			return;
1068 		}
1069 		break;
1070 	case MSR_CORE_PERF_GLOBAL_CTRL:
1071 		if (cpu_has_load_perf_global_ctrl()) {
1072 			clear_atomic_switch_msr_special(vmx,
1073 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1074 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1075 			return;
1076 		}
1077 		break;
1078 	}
1079 
1080 	vmx_remove_auto_msr(&m->guest, msr, VM_ENTRY_MSR_LOAD_COUNT);
1081 	vmx_remove_auto_msr(&m->host, msr, VM_EXIT_MSR_LOAD_COUNT);
1082 }
1083 
1084 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1085 		unsigned long entry, unsigned long exit,
1086 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1087 		u64 guest_val, u64 host_val)
1088 {
1089 	vmcs_write64(guest_val_vmcs, guest_val);
1090 	if (host_val_vmcs != HOST_IA32_EFER)
1091 		vmcs_write64(host_val_vmcs, host_val);
1092 	vm_entry_controls_setbit(vmx, entry);
1093 	vm_exit_controls_setbit(vmx, exit);
1094 }
1095 
1096 static void vmx_add_auto_msr(struct vmx_msrs *m, u32 msr, u64 value,
1097 			     unsigned long vmcs_count_field, struct kvm *kvm)
1098 {
1099 	int i;
1100 
1101 	i = vmx_find_loadstore_msr_slot(m, msr);
1102 	if (i < 0) {
1103 		if (KVM_BUG_ON(m->nr == MAX_NR_LOADSTORE_MSRS, kvm))
1104 			return;
1105 
1106 		i = m->nr++;
1107 		m->val[i].index = msr;
1108 		vmcs_write32(vmcs_count_field, m->nr);
1109 	}
1110 	m->val[i].value = value;
1111 }
1112 
1113 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1114 				  u64 guest_val, u64 host_val)
1115 {
1116 	struct msr_autoload *m = &vmx->msr_autoload;
1117 	struct kvm *kvm = vmx->vcpu.kvm;
1118 
1119 	switch (msr) {
1120 	case MSR_EFER:
1121 		if (cpu_has_load_ia32_efer()) {
1122 			add_atomic_switch_msr_special(vmx,
1123 					VM_ENTRY_LOAD_IA32_EFER,
1124 					VM_EXIT_LOAD_IA32_EFER,
1125 					GUEST_IA32_EFER,
1126 					HOST_IA32_EFER,
1127 					guest_val, host_val);
1128 			return;
1129 		}
1130 		break;
1131 	case MSR_CORE_PERF_GLOBAL_CTRL:
1132 		if (cpu_has_load_perf_global_ctrl()) {
1133 			add_atomic_switch_msr_special(vmx,
1134 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1135 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1136 					GUEST_IA32_PERF_GLOBAL_CTRL,
1137 					HOST_IA32_PERF_GLOBAL_CTRL,
1138 					guest_val, host_val);
1139 			return;
1140 		}
1141 		break;
1142 	case MSR_IA32_PEBS_ENABLE:
1143 		/* PEBS needs a quiescent period after being disabled (to write
1144 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1145 		 * provide that period, so a CPU could write host's record into
1146 		 * guest's memory.
1147 		 */
1148 		wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1149 	}
1150 
1151 	vmx_add_auto_msr(&m->guest, msr, guest_val, VM_ENTRY_MSR_LOAD_COUNT, kvm);
1152 	vmx_add_auto_msr(&m->guest, msr, host_val, VM_EXIT_MSR_LOAD_COUNT, kvm);
1153 }
1154 
1155 static bool update_transition_efer(struct vcpu_vmx *vmx)
1156 {
1157 	u64 guest_efer = vmx->vcpu.arch.efer;
1158 	u64 ignore_bits = 0;
1159 	int i;
1160 
1161 	/* Shadow paging assumes NX to be available.  */
1162 	if (!enable_ept)
1163 		guest_efer |= EFER_NX;
1164 
1165 	/*
1166 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1167 	 */
1168 	ignore_bits |= EFER_SCE;
1169 #ifdef CONFIG_X86_64
1170 	ignore_bits |= EFER_LMA | EFER_LME;
1171 	/* SCE is meaningful only in long mode on Intel */
1172 	if (guest_efer & EFER_LMA)
1173 		ignore_bits &= ~(u64)EFER_SCE;
1174 #endif
1175 
1176 	/*
1177 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1178 	 * On CPUs that support "load IA32_EFER", always switch EFER
1179 	 * atomically, since it's faster than switching it manually.
1180 	 */
1181 	if (cpu_has_load_ia32_efer() ||
1182 	    (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1183 		if (!(guest_efer & EFER_LMA))
1184 			guest_efer &= ~EFER_LME;
1185 		if (guest_efer != kvm_host.efer)
1186 			add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, kvm_host.efer);
1187 		else
1188 			clear_atomic_switch_msr(vmx, MSR_EFER);
1189 		return false;
1190 	}
1191 
1192 	i = kvm_find_user_return_msr(MSR_EFER);
1193 	if (i < 0)
1194 		return false;
1195 
1196 	clear_atomic_switch_msr(vmx, MSR_EFER);
1197 
1198 	guest_efer &= ~ignore_bits;
1199 	guest_efer |= kvm_host.efer & ignore_bits;
1200 
1201 	vmx->guest_uret_msrs[i].data = guest_efer;
1202 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1203 
1204 	return true;
1205 }
1206 
1207 static void vmx_add_autostore_msr(struct vcpu_vmx *vmx, u32 msr)
1208 {
1209 	vmx_add_auto_msr(&vmx->msr_autostore, msr, 0, VM_EXIT_MSR_STORE_COUNT,
1210 			 vmx->vcpu.kvm);
1211 }
1212 
1213 static void vmx_remove_autostore_msr(struct vcpu_vmx *vmx, u32 msr)
1214 {
1215 	vmx_remove_auto_msr(&vmx->msr_autostore, msr, VM_EXIT_MSR_STORE_COUNT);
1216 }
1217 
1218 #ifdef CONFIG_X86_32
1219 /*
1220  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1221  * VMCS rather than the segment table.  KVM uses this helper to figure
1222  * out the current bases to poke them into the VMCS before entry.
1223  */
1224 static unsigned long segment_base(u16 selector)
1225 {
1226 	struct desc_struct *table;
1227 	unsigned long v;
1228 
1229 	if (!(selector & ~SEGMENT_RPL_MASK))
1230 		return 0;
1231 
1232 	table = get_current_gdt_ro();
1233 
1234 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1235 		u16 ldt_selector = kvm_read_ldt();
1236 
1237 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1238 			return 0;
1239 
1240 		table = (struct desc_struct *)segment_base(ldt_selector);
1241 	}
1242 	v = get_desc_base(&table[selector >> 3]);
1243 	return v;
1244 }
1245 #endif
1246 
1247 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1248 {
1249 	return vmx_pt_mode_is_host_guest() &&
1250 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1251 }
1252 
1253 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1254 {
1255 	/* The base must be 128-byte aligned and a legal physical address. */
1256 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1257 }
1258 
1259 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1260 {
1261 	u32 i;
1262 
1263 	wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1264 	wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1265 	wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1266 	wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1267 	for (i = 0; i < addr_range; i++) {
1268 		wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1269 		wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1270 	}
1271 }
1272 
1273 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1274 {
1275 	u32 i;
1276 
1277 	rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1278 	rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1279 	rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1280 	rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1281 	for (i = 0; i < addr_range; i++) {
1282 		rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1283 		rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1284 	}
1285 }
1286 
1287 static void pt_guest_enter(struct vcpu_vmx *vmx)
1288 {
1289 	if (vmx_pt_mode_is_system())
1290 		return;
1291 
1292 	/*
1293 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1294 	 * Save host state before VM entry.
1295 	 */
1296 	rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1297 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1298 		wrmsrq(MSR_IA32_RTIT_CTL, 0);
1299 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1300 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1301 	}
1302 }
1303 
1304 static void pt_guest_exit(struct vcpu_vmx *vmx)
1305 {
1306 	if (vmx_pt_mode_is_system())
1307 		return;
1308 
1309 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1310 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1311 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1312 	}
1313 
1314 	/*
1315 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1316 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1317 	 */
1318 	if (vmx->pt_desc.host.ctl)
1319 		wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1320 }
1321 
1322 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1323 			unsigned long fs_base, unsigned long gs_base)
1324 {
1325 	if (unlikely(fs_sel != host->fs_sel)) {
1326 		if (!(fs_sel & 7))
1327 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1328 		else
1329 			vmcs_write16(HOST_FS_SELECTOR, 0);
1330 		host->fs_sel = fs_sel;
1331 	}
1332 	if (unlikely(gs_sel != host->gs_sel)) {
1333 		if (!(gs_sel & 7))
1334 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1335 		else
1336 			vmcs_write16(HOST_GS_SELECTOR, 0);
1337 		host->gs_sel = gs_sel;
1338 	}
1339 	if (unlikely(fs_base != host->fs_base)) {
1340 		vmcs_writel(HOST_FS_BASE, fs_base);
1341 		host->fs_base = fs_base;
1342 	}
1343 	if (unlikely(gs_base != host->gs_base)) {
1344 		vmcs_writel(HOST_GS_BASE, gs_base);
1345 		host->gs_base = gs_base;
1346 	}
1347 }
1348 
1349 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1350 {
1351 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1352 	struct vcpu_vt *vt = to_vt(vcpu);
1353 	struct vmcs_host_state *host_state;
1354 #ifdef CONFIG_X86_64
1355 	int cpu = raw_smp_processor_id();
1356 #endif
1357 	unsigned long fs_base, gs_base;
1358 	u16 fs_sel, gs_sel;
1359 	int i;
1360 
1361 	/*
1362 	 * Note that guest MSRs to be saved/restored can also be changed
1363 	 * when guest state is loaded. This happens when guest transitions
1364 	 * to/from long-mode by setting MSR_EFER.LMA.
1365 	 */
1366 	if (!vmx->guest_uret_msrs_loaded) {
1367 		vmx->guest_uret_msrs_loaded = true;
1368 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1369 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1370 				continue;
1371 
1372 			kvm_set_user_return_msr(i,
1373 						vmx->guest_uret_msrs[i].data,
1374 						vmx->guest_uret_msrs[i].mask);
1375 		}
1376 	}
1377 
1378 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1379 		nested_sync_vmcs12_to_shadow(vcpu);
1380 
1381 	if (vt->guest_state_loaded)
1382 		return;
1383 
1384 	host_state = &vmx->loaded_vmcs->host_state;
1385 
1386 	/*
1387 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1388 	 * allow segment selectors with cpl > 0 or ti == 1.
1389 	 */
1390 	host_state->ldt_sel = kvm_read_ldt();
1391 
1392 #ifdef CONFIG_X86_64
1393 	savesegment(ds, host_state->ds_sel);
1394 	savesegment(es, host_state->es_sel);
1395 
1396 	gs_base = cpu_kernelmode_gs_base(cpu);
1397 	if (likely(is_64bit_mm(current->mm))) {
1398 		current_save_fsgs();
1399 		fs_sel = current->thread.fsindex;
1400 		gs_sel = current->thread.gsindex;
1401 		fs_base = current->thread.fsbase;
1402 		vt->msr_host_kernel_gs_base = current->thread.gsbase;
1403 	} else {
1404 		savesegment(fs, fs_sel);
1405 		savesegment(gs, gs_sel);
1406 		fs_base = read_msr(MSR_FS_BASE);
1407 		vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1408 	}
1409 
1410 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1411 #else
1412 	savesegment(fs, fs_sel);
1413 	savesegment(gs, gs_sel);
1414 	fs_base = segment_base(fs_sel);
1415 	gs_base = segment_base(gs_sel);
1416 #endif
1417 
1418 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1419 	vt->guest_state_loaded = true;
1420 }
1421 
1422 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1423 {
1424 	struct vmcs_host_state *host_state;
1425 
1426 	if (!vmx->vt.guest_state_loaded)
1427 		return;
1428 
1429 	host_state = &vmx->loaded_vmcs->host_state;
1430 
1431 	++vmx->vcpu.stat.host_state_reload;
1432 
1433 #ifdef CONFIG_X86_64
1434 	rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1435 #endif
1436 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1437 		kvm_load_ldt(host_state->ldt_sel);
1438 #ifdef CONFIG_X86_64
1439 		load_gs_index(host_state->gs_sel);
1440 #else
1441 		loadsegment(gs, host_state->gs_sel);
1442 #endif
1443 	}
1444 	if (host_state->fs_sel & 7)
1445 		loadsegment(fs, host_state->fs_sel);
1446 #ifdef CONFIG_X86_64
1447 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1448 		loadsegment(ds, host_state->ds_sel);
1449 		loadsegment(es, host_state->es_sel);
1450 	}
1451 #endif
1452 	invalidate_tss_limit();
1453 #ifdef CONFIG_X86_64
1454 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base);
1455 #endif
1456 	load_fixmap_gdt(raw_smp_processor_id());
1457 	vmx->vt.guest_state_loaded = false;
1458 	vmx->guest_uret_msrs_loaded = false;
1459 }
1460 
1461 #ifdef CONFIG_X86_64
1462 static u64 vmx_read_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 *cache)
1463 {
1464 	preempt_disable();
1465 	if (vmx->vt.guest_state_loaded)
1466 		*cache = read_msr(msr);
1467 	preempt_enable();
1468 	return *cache;
1469 }
1470 
1471 static void vmx_write_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 data,
1472 				     u64 *cache)
1473 {
1474 	preempt_disable();
1475 	if (vmx->vt.guest_state_loaded)
1476 		wrmsrns(msr, data);
1477 	preempt_enable();
1478 	*cache = data;
1479 }
1480 
1481 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1482 {
1483 	return vmx_read_guest_host_msr(vmx, MSR_KERNEL_GS_BASE,
1484 				       &vmx->msr_guest_kernel_gs_base);
1485 }
1486 
1487 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1488 {
1489 	vmx_write_guest_host_msr(vmx, MSR_KERNEL_GS_BASE, data,
1490 				 &vmx->msr_guest_kernel_gs_base);
1491 }
1492 #endif
1493 
1494 static void grow_ple_window(struct kvm_vcpu *vcpu)
1495 {
1496 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1497 	unsigned int old = vmx->ple_window;
1498 
1499 	vmx->ple_window = __grow_ple_window(old, ple_window,
1500 					    ple_window_grow,
1501 					    ple_window_max);
1502 
1503 	if (vmx->ple_window != old) {
1504 		vmx->ple_window_dirty = true;
1505 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1506 					    vmx->ple_window, old);
1507 	}
1508 }
1509 
1510 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1511 {
1512 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1513 	unsigned int old = vmx->ple_window;
1514 
1515 	vmx->ple_window = __shrink_ple_window(old, ple_window,
1516 					      ple_window_shrink,
1517 					      ple_window);
1518 
1519 	if (vmx->ple_window != old) {
1520 		vmx->ple_window_dirty = true;
1521 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1522 					    vmx->ple_window, old);
1523 	}
1524 }
1525 
1526 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1527 {
1528 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1529 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1530 	struct vmcs *prev;
1531 
1532 	if (!already_loaded) {
1533 		loaded_vmcs_clear(vmx->loaded_vmcs);
1534 		local_irq_disable();
1535 
1536 		/*
1537 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1538 		 * this cpu's percpu list, otherwise it may not yet be deleted
1539 		 * from its previous cpu's percpu list.  Pairs with the
1540 		 * smb_wmb() in __loaded_vmcs_clear().
1541 		 */
1542 		smp_rmb();
1543 
1544 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1545 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1546 		local_irq_enable();
1547 	}
1548 
1549 	prev = per_cpu(current_vmcs, cpu);
1550 	if (prev != vmx->loaded_vmcs->vmcs) {
1551 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1552 		vmcs_load(vmx->loaded_vmcs->vmcs);
1553 	}
1554 
1555 	if (!already_loaded) {
1556 		void *gdt = get_current_gdt_ro();
1557 
1558 		/*
1559 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1560 		 * TLB entries from its previous association with the vCPU.
1561 		 */
1562 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1563 
1564 		/*
1565 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1566 		 * processors.  See 22.2.4.
1567 		 */
1568 		vmcs_writel(HOST_TR_BASE,
1569 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1570 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1571 
1572 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1573 			/* 22.2.3 */
1574 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1575 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1576 		}
1577 
1578 		vmx->loaded_vmcs->cpu = cpu;
1579 	}
1580 }
1581 
1582 /*
1583  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1584  * vcpu mutex is already taken.
1585  */
1586 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1587 {
1588 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1589 		shrink_ple_window(vcpu);
1590 
1591 	vmx_vcpu_load_vmcs(vcpu, cpu);
1592 
1593 	vmx_vcpu_pi_load(vcpu, cpu);
1594 }
1595 
1596 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1597 {
1598 	vmx_vcpu_pi_put(vcpu);
1599 
1600 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1601 }
1602 
1603 static void vmx_switch_loaded_vmcs(struct kvm_vcpu *vcpu,
1604 				   struct loaded_vmcs *vmcs)
1605 {
1606 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1607 	int cpu;
1608 
1609 	cpu = get_cpu();
1610 	vmx->loaded_vmcs = vmcs;
1611 	vmx_vcpu_load_vmcs(vcpu, cpu);
1612 	put_cpu();
1613 }
1614 
1615 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
1616 {
1617 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1618 
1619 	if (!is_guest_mode(vcpu)) {
1620 		WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
1621 		return;
1622 	}
1623 
1624 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->nested.vmcs02);
1625 	vmx_switch_loaded_vmcs(vcpu, &vmx->vmcs01);
1626 }
1627 
1628 static void vmx_put_vmcs01(struct kvm_vcpu *vcpu)
1629 {
1630 	if (!is_guest_mode(vcpu))
1631 		return;
1632 
1633 	vmx_switch_loaded_vmcs(vcpu, &to_vmx(vcpu)->nested.vmcs02);
1634 }
1635 DEFINE_GUARD(vmx_vmcs01, struct kvm_vcpu *,
1636 	     vmx_load_vmcs01(_T), vmx_put_vmcs01(_T))
1637 
1638 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1639 {
1640 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1641 }
1642 
1643 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1644 {
1645 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1646 	unsigned long rflags, save_rflags;
1647 
1648 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1649 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1650 		rflags = vmcs_readl(GUEST_RFLAGS);
1651 		if (vmx->rmode.vm86_active) {
1652 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1653 			save_rflags = vmx->rmode.save_rflags;
1654 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1655 		}
1656 		vmx->rflags = rflags;
1657 	}
1658 	return vmx->rflags;
1659 }
1660 
1661 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1662 {
1663 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1664 	unsigned long old_rflags;
1665 
1666 	/*
1667 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1668 	 * is an unrestricted guest in order to mark L2 as needing emulation
1669 	 * if L1 runs L2 as a restricted guest.
1670 	 */
1671 	if (is_unrestricted_guest(vcpu)) {
1672 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1673 		vmx->rflags = rflags;
1674 		vmcs_writel(GUEST_RFLAGS, rflags);
1675 		return;
1676 	}
1677 
1678 	old_rflags = vmx_get_rflags(vcpu);
1679 	vmx->rflags = rflags;
1680 	if (vmx->rmode.vm86_active) {
1681 		vmx->rmode.save_rflags = rflags;
1682 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1683 	}
1684 	vmcs_writel(GUEST_RFLAGS, rflags);
1685 
1686 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1687 		vmx->vt.emulation_required = vmx_emulation_required(vcpu);
1688 }
1689 
1690 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1691 {
1692 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1693 }
1694 
1695 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1696 {
1697 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1698 	int ret = 0;
1699 
1700 	if (interruptibility & GUEST_INTR_STATE_STI)
1701 		ret |= KVM_X86_SHADOW_INT_STI;
1702 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1703 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1704 
1705 	return ret;
1706 }
1707 
1708 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1709 {
1710 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1711 	u32 interruptibility = interruptibility_old;
1712 
1713 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1714 
1715 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1716 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1717 	else if (mask & KVM_X86_SHADOW_INT_STI)
1718 		interruptibility |= GUEST_INTR_STATE_STI;
1719 
1720 	if ((interruptibility != interruptibility_old))
1721 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1722 }
1723 
1724 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1725 {
1726 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1727 	unsigned long value;
1728 
1729 	/*
1730 	 * Any MSR write that attempts to change bits marked reserved will
1731 	 * case a #GP fault.
1732 	 */
1733 	if (data & vmx->pt_desc.ctl_bitmask)
1734 		return 1;
1735 
1736 	/*
1737 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1738 	 * result in a #GP unless the same write also clears TraceEn.
1739 	 */
1740 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1741 	    (data & RTIT_CTL_TRACEEN) &&
1742 	    data != vmx->pt_desc.guest.ctl)
1743 		return 1;
1744 
1745 	/*
1746 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1747 	 * and FabricEn would cause #GP, if
1748 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1749 	 */
1750 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1751 		!(data & RTIT_CTL_FABRIC_EN) &&
1752 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1753 					PT_CAP_single_range_output))
1754 		return 1;
1755 
1756 	/*
1757 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1758 	 * utilize encodings marked reserved will cause a #GP fault.
1759 	 */
1760 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1761 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1762 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1763 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1764 		return 1;
1765 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1766 						PT_CAP_cycle_thresholds);
1767 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1768 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1769 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1770 		return 1;
1771 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1772 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1773 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1774 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1775 		return 1;
1776 
1777 	/*
1778 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1779 	 * cause a #GP fault.
1780 	 */
1781 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1782 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1783 		return 1;
1784 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1785 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1786 		return 1;
1787 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1788 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1789 		return 1;
1790 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1791 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1792 		return 1;
1793 
1794 	return 0;
1795 }
1796 
1797 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1798 				  void *insn, int insn_len)
1799 {
1800 	/*
1801 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1802 	 * not point at the failing instruction, and even if it did, the code
1803 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1804 	 * so that guest userspace can't DoS the guest simply by triggering
1805 	 * emulation (enclaves are CPL3 only).
1806 	 */
1807 	if (vmx_get_exit_reason(vcpu).enclave_mode) {
1808 		kvm_queue_exception(vcpu, UD_VECTOR);
1809 		return X86EMUL_PROPAGATE_FAULT;
1810 	}
1811 
1812 	/* Check that emulation is possible during event vectoring */
1813 	if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1814 	    !kvm_can_emulate_event_vectoring(emul_type))
1815 		return X86EMUL_UNHANDLEABLE_VECTORING;
1816 
1817 	return X86EMUL_CONTINUE;
1818 }
1819 
1820 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1821 {
1822 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
1823 	unsigned long rip, orig_rip;
1824 	u32 instr_len;
1825 
1826 	/*
1827 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1828 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1829 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1830 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1831 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1832 	 * i.e. we end up advancing IP with some random value.
1833 	 */
1834 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1835 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1836 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1837 
1838 		/*
1839 		 * Emulating an enclave's instructions isn't supported as KVM
1840 		 * cannot access the enclave's memory or its true RIP, e.g. the
1841 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1842 		 * the RIP that actually triggered the VM-Exit.  But, because
1843 		 * most instructions that cause VM-Exit will #UD in an enclave,
1844 		 * most instruction-based VM-Exits simply do not occur.
1845 		 *
1846 		 * There are a few exceptions, notably the debug instructions
1847 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1848 		 * and generate #DB/#BP as expected, which KVM might intercept.
1849 		 * But again, the CPU does the dirty work and saves an instr
1850 		 * length of zero so VMMs don't shoot themselves in the foot.
1851 		 * WARN if KVM tries to skip a non-zero length instruction on
1852 		 * a VM-Exit from an enclave.
1853 		 */
1854 		if (!instr_len)
1855 			goto rip_updated;
1856 
1857 		WARN_ONCE(exit_reason.enclave_mode,
1858 			  "skipping instruction after SGX enclave VM-Exit");
1859 
1860 		orig_rip = kvm_rip_read(vcpu);
1861 		rip = orig_rip + instr_len;
1862 #ifdef CONFIG_X86_64
1863 		/*
1864 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1865 		 * mode, but just finding out that we are in 64-bit mode is
1866 		 * quite expensive.  Only do it if there was a carry.
1867 		 */
1868 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1869 			rip = (u32)rip;
1870 #endif
1871 		kvm_rip_write(vcpu, rip);
1872 	} else {
1873 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1874 			return 0;
1875 	}
1876 
1877 rip_updated:
1878 	/* skipping an emulated instruction also counts */
1879 	vmx_set_interrupt_shadow(vcpu, 0);
1880 
1881 	return 1;
1882 }
1883 
1884 /*
1885  * Recognizes a pending MTF VM-exit and records the nested state for later
1886  * delivery.
1887  */
1888 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1889 {
1890 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1891 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1892 
1893 	if (!is_guest_mode(vcpu))
1894 		return;
1895 
1896 	/*
1897 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1898 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1899 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1900 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1901 	 * as ICEBP is higher priority than both.  As instruction emulation is
1902 	 * completed at this point (i.e. KVM is at the instruction boundary),
1903 	 * any #DB exception pending delivery must be a debug-trap of lower
1904 	 * priority than MTF.  Record the pending MTF state to be delivered in
1905 	 * vmx_check_nested_events().
1906 	 */
1907 	if (nested_cpu_has_mtf(vmcs12) &&
1908 	    (!vcpu->arch.exception.pending ||
1909 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1910 	    (!vcpu->arch.exception_vmexit.pending ||
1911 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1912 		vmx->nested.mtf_pending = true;
1913 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1914 	} else {
1915 		vmx->nested.mtf_pending = false;
1916 	}
1917 }
1918 
1919 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1920 {
1921 	vmx_update_emulated_instruction(vcpu);
1922 	return skip_emulated_instruction(vcpu);
1923 }
1924 
1925 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1926 {
1927 	/*
1928 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1929 	 * explicitly skip the instruction because if the HLT state is set,
1930 	 * then the instruction is already executing and RIP has already been
1931 	 * advanced.
1932 	 */
1933 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1934 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1935 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1936 }
1937 
1938 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1939 {
1940 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1941 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1942 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1943 
1944 	kvm_deliver_exception_payload(vcpu, ex);
1945 
1946 	if (ex->has_error_code) {
1947 		/*
1948 		 * Despite the error code being architecturally defined as 32
1949 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1950 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1951 		 * will (should) never provide a bogus error code, but AMD CPUs
1952 		 * do generate error codes with bits 31:16 set, and so KVM's
1953 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1954 		 * the upper bits to avoid VM-Fail, losing information that
1955 		 * doesn't really exist is preferable to killing the VM.
1956 		 */
1957 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1958 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1959 	}
1960 
1961 	if (vmx->rmode.vm86_active) {
1962 		int inc_eip = 0;
1963 		if (kvm_exception_is_soft(ex->vector))
1964 			inc_eip = vcpu->arch.event_exit_inst_len;
1965 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1966 		return;
1967 	}
1968 
1969 	WARN_ON_ONCE(vmx->vt.emulation_required);
1970 
1971 	if (kvm_exception_is_soft(ex->vector)) {
1972 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1973 			     vmx->vcpu.arch.event_exit_inst_len);
1974 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1975 	} else
1976 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1977 
1978 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1979 
1980 	vmx_clear_hlt(vcpu);
1981 }
1982 
1983 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1984 			       bool load_into_hardware)
1985 {
1986 	struct vmx_uret_msr *uret_msr;
1987 
1988 	uret_msr = vmx_find_uret_msr(vmx, msr);
1989 	if (!uret_msr)
1990 		return;
1991 
1992 	uret_msr->load_into_hardware = load_into_hardware;
1993 }
1994 
1995 /*
1996  * Configuring user return MSRs to automatically save, load, and restore MSRs
1997  * that need to be shoved into hardware when running the guest.  Note, omitting
1998  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1999  * loaded into hardware when running the guest.
2000  */
2001 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
2002 {
2003 #ifdef CONFIG_X86_64
2004 	bool load_syscall_msrs;
2005 
2006 	/*
2007 	 * The SYSCALL MSRs are only needed on long mode guests, and only
2008 	 * when EFER.SCE is set.
2009 	 */
2010 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
2011 			    (vmx->vcpu.arch.efer & EFER_SCE);
2012 
2013 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
2014 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
2015 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
2016 #endif
2017 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
2018 
2019 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
2020 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
2021 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
2022 
2023 	/*
2024 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
2025 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
2026 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
2027 	 * so that TSX remains always disabled.
2028 	 */
2029 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
2030 
2031 	/*
2032 	 * The set of MSRs to load may have changed, reload MSRs before the
2033 	 * next VM-Enter.
2034 	 */
2035 	vmx->guest_uret_msrs_loaded = false;
2036 }
2037 
2038 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
2039 {
2040 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2041 
2042 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
2043 		return vmcs12->tsc_offset;
2044 
2045 	return 0;
2046 }
2047 
2048 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
2049 {
2050 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2051 
2052 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
2053 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
2054 		return vmcs12->tsc_multiplier;
2055 
2056 	return kvm_caps.default_tsc_scaling_ratio;
2057 }
2058 
2059 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
2060 {
2061 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2062 }
2063 
2064 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
2065 {
2066 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2067 }
2068 
2069 /*
2070  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
2071  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
2072  * backwards compatibility even though KVM doesn't support emulating SMX.  And
2073  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
2074  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
2075  */
2076 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
2077 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
2078 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
2079 					FEAT_CTL_SGX_LC_ENABLED		 | \
2080 					FEAT_CTL_SGX_ENABLED		 | \
2081 					FEAT_CTL_LMCE_ENABLED)
2082 
2083 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
2084 						    struct msr_data *msr)
2085 {
2086 	uint64_t valid_bits;
2087 
2088 	/*
2089 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
2090 	 * exposed to the guest.
2091 	 */
2092 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
2093 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
2094 
2095 	if (!msr->host_initiated &&
2096 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
2097 		return false;
2098 
2099 	if (msr->host_initiated)
2100 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
2101 	else
2102 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
2103 
2104 	return !(msr->data & ~valid_bits);
2105 }
2106 
2107 int vmx_get_feature_msr(u32 msr, u64 *data)
2108 {
2109 	switch (msr) {
2110 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2111 		if (!nested)
2112 			return 1;
2113 		return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2114 	default:
2115 		return KVM_MSR_RET_UNSUPPORTED;
2116 	}
2117 }
2118 
2119 /*
2120  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2121  * Returns 0 on success, non-0 otherwise.
2122  * Assumes vcpu_load() was already called.
2123  */
2124 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2125 {
2126 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2127 	struct vmx_uret_msr *msr;
2128 	u32 index;
2129 
2130 	switch (msr_info->index) {
2131 #ifdef CONFIG_X86_64
2132 	case MSR_FS_BASE:
2133 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2134 		break;
2135 	case MSR_GS_BASE:
2136 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2137 		break;
2138 	case MSR_KERNEL_GS_BASE:
2139 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2140 		break;
2141 #endif
2142 	case MSR_EFER:
2143 		return kvm_get_msr_common(vcpu, msr_info);
2144 	case MSR_IA32_TSX_CTRL:
2145 		if (!msr_info->host_initiated &&
2146 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2147 			return 1;
2148 		goto find_uret_msr;
2149 	case MSR_IA32_UMWAIT_CONTROL:
2150 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2151 			return 1;
2152 
2153 		msr_info->data = vmx->msr_ia32_umwait_control;
2154 		break;
2155 	case MSR_IA32_SPEC_CTRL:
2156 		if (!msr_info->host_initiated &&
2157 		    !guest_has_spec_ctrl_msr(vcpu))
2158 			return 1;
2159 
2160 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2161 		break;
2162 	case MSR_IA32_SYSENTER_CS:
2163 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2164 		break;
2165 	case MSR_IA32_SYSENTER_EIP:
2166 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2167 		break;
2168 	case MSR_IA32_SYSENTER_ESP:
2169 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2170 		break;
2171 	case MSR_IA32_BNDCFGS:
2172 		if (!kvm_mpx_supported() ||
2173 		    (!msr_info->host_initiated &&
2174 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2175 			return 1;
2176 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2177 		break;
2178 	case MSR_IA32_MCG_EXT_CTL:
2179 		if (!msr_info->host_initiated &&
2180 		    !(vmx->msr_ia32_feature_control &
2181 		      FEAT_CTL_LMCE_ENABLED))
2182 			return 1;
2183 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2184 		break;
2185 	case MSR_IA32_FEAT_CTL:
2186 		msr_info->data = vmx->msr_ia32_feature_control;
2187 		break;
2188 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2189 		if (!msr_info->host_initiated &&
2190 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2191 			return 1;
2192 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2193 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2194 		break;
2195 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2196 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2197 			return 1;
2198 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2199 				    &msr_info->data))
2200 			return 1;
2201 #ifdef CONFIG_KVM_HYPERV
2202 		/*
2203 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2204 		 * instead of just ignoring the features, different Hyper-V
2205 		 * versions are either trying to use them and fail or do some
2206 		 * sanity checking and refuse to boot. Filter all unsupported
2207 		 * features out.
2208 		 */
2209 		if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2210 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2211 							&msr_info->data);
2212 #endif
2213 		break;
2214 	case MSR_IA32_RTIT_CTL:
2215 		if (!vmx_pt_mode_is_host_guest())
2216 			return 1;
2217 		msr_info->data = vmx->pt_desc.guest.ctl;
2218 		break;
2219 	case MSR_IA32_RTIT_STATUS:
2220 		if (!vmx_pt_mode_is_host_guest())
2221 			return 1;
2222 		msr_info->data = vmx->pt_desc.guest.status;
2223 		break;
2224 	case MSR_IA32_RTIT_CR3_MATCH:
2225 		if (!vmx_pt_mode_is_host_guest() ||
2226 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2227 						PT_CAP_cr3_filtering))
2228 			return 1;
2229 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2230 		break;
2231 	case MSR_IA32_RTIT_OUTPUT_BASE:
2232 		if (!vmx_pt_mode_is_host_guest() ||
2233 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2234 					PT_CAP_topa_output) &&
2235 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2236 					PT_CAP_single_range_output)))
2237 			return 1;
2238 		msr_info->data = vmx->pt_desc.guest.output_base;
2239 		break;
2240 	case MSR_IA32_RTIT_OUTPUT_MASK:
2241 		if (!vmx_pt_mode_is_host_guest() ||
2242 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2243 					PT_CAP_topa_output) &&
2244 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2245 					PT_CAP_single_range_output)))
2246 			return 1;
2247 		msr_info->data = vmx->pt_desc.guest.output_mask;
2248 		break;
2249 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2250 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2251 		if (!vmx_pt_mode_is_host_guest() ||
2252 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2253 			return 1;
2254 		if (index % 2)
2255 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2256 		else
2257 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2258 		break;
2259 	case MSR_IA32_S_CET:
2260 		msr_info->data = vmcs_readl(GUEST_S_CET);
2261 		break;
2262 	case MSR_KVM_INTERNAL_GUEST_SSP:
2263 		msr_info->data = vmcs_readl(GUEST_SSP);
2264 		break;
2265 	case MSR_IA32_INT_SSP_TAB:
2266 		msr_info->data = vmcs_readl(GUEST_INTR_SSP_TABLE);
2267 		break;
2268 	case MSR_IA32_DEBUGCTLMSR:
2269 		msr_info->data = vmx_guest_debugctl_read();
2270 		break;
2271 	default:
2272 	find_uret_msr:
2273 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2274 		if (msr) {
2275 			msr_info->data = msr->data;
2276 			break;
2277 		}
2278 		return kvm_get_msr_common(vcpu, msr_info);
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2285 						    u64 data)
2286 {
2287 #ifdef CONFIG_X86_64
2288 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2289 		return (u32)data;
2290 #endif
2291 	return (unsigned long)data;
2292 }
2293 
2294 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2295 {
2296 	u64 debugctl = 0;
2297 
2298 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2299 	    (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2300 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2301 
2302 	if ((kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT) &&
2303 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2304 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2305 
2306 	if (boot_cpu_has(X86_FEATURE_RTM) &&
2307 	    (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)))
2308 		debugctl |= DEBUGCTLMSR_RTM_DEBUG;
2309 
2310 	return debugctl;
2311 }
2312 
2313 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated)
2314 {
2315 	u64 invalid;
2316 
2317 	invalid = data & ~vmx_get_supported_debugctl(vcpu, host_initiated);
2318 	if (invalid & (DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR)) {
2319 		kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2320 		invalid &= ~(DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR);
2321 	}
2322 	return !invalid;
2323 }
2324 
2325 /*
2326  * Writes msr value into the appropriate "register".
2327  * Returns 0 on success, non-0 otherwise.
2328  * Assumes vcpu_load() was already called.
2329  */
2330 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2331 {
2332 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2333 	struct vmx_uret_msr *msr;
2334 	int ret = 0;
2335 	u32 msr_index = msr_info->index;
2336 	u64 data = msr_info->data;
2337 	u32 index;
2338 
2339 	switch (msr_index) {
2340 	case MSR_EFER:
2341 		ret = kvm_set_msr_common(vcpu, msr_info);
2342 		break;
2343 #ifdef CONFIG_X86_64
2344 	case MSR_FS_BASE:
2345 		vmx_segment_cache_clear(vmx);
2346 		vmcs_writel(GUEST_FS_BASE, data);
2347 		break;
2348 	case MSR_GS_BASE:
2349 		vmx_segment_cache_clear(vmx);
2350 		vmcs_writel(GUEST_GS_BASE, data);
2351 		break;
2352 	case MSR_KERNEL_GS_BASE:
2353 		vmx_write_guest_kernel_gs_base(vmx, data);
2354 		break;
2355 	case MSR_IA32_XFD:
2356 		ret = kvm_set_msr_common(vcpu, msr_info);
2357 		/*
2358 		 * Always intercepting WRMSR could incur non-negligible
2359 		 * overhead given xfd might be changed frequently in
2360 		 * guest context switch. Disable write interception
2361 		 * upon the first write with a non-zero value (indicating
2362 		 * potential usage on dynamic xfeatures). Also update
2363 		 * exception bitmap to trap #NM for proper virtualization
2364 		 * of guest xfd_err.
2365 		 */
2366 		if (!ret && data) {
2367 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2368 						      MSR_TYPE_RW);
2369 			vcpu->arch.xfd_no_write_intercept = true;
2370 			vmx_update_exception_bitmap(vcpu);
2371 		}
2372 		break;
2373 #endif
2374 	case MSR_IA32_SYSENTER_CS:
2375 		if (is_guest_mode(vcpu))
2376 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2377 		vmcs_write32(GUEST_SYSENTER_CS, data);
2378 		break;
2379 	case MSR_IA32_SYSENTER_EIP:
2380 		if (is_guest_mode(vcpu)) {
2381 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2382 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2383 		}
2384 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2385 		break;
2386 	case MSR_IA32_SYSENTER_ESP:
2387 		if (is_guest_mode(vcpu)) {
2388 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2389 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2390 		}
2391 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2392 		break;
2393 	case MSR_IA32_DEBUGCTLMSR:
2394 		if (!vmx_is_valid_debugctl(vcpu, data, msr_info->host_initiated))
2395 			return 1;
2396 
2397 		data &= vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2398 
2399 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2400 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2401 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2402 
2403 		vmx_guest_debugctl_write(vcpu, data);
2404 
2405 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2406 		    (data & DEBUGCTLMSR_LBR))
2407 			intel_pmu_create_guest_lbr_event(vcpu);
2408 		return 0;
2409 	case MSR_IA32_BNDCFGS:
2410 		if (!kvm_mpx_supported() ||
2411 		    (!msr_info->host_initiated &&
2412 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2413 			return 1;
2414 		if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2415 		    (data & MSR_IA32_BNDCFGS_RSVD))
2416 			return 1;
2417 
2418 		if (is_guest_mode(vcpu) &&
2419 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2420 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2421 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2422 
2423 		vmcs_write64(GUEST_BNDCFGS, data);
2424 		break;
2425 	case MSR_IA32_UMWAIT_CONTROL:
2426 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2427 			return 1;
2428 
2429 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2430 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2431 			return 1;
2432 
2433 		vmx->msr_ia32_umwait_control = data;
2434 		break;
2435 	case MSR_IA32_SPEC_CTRL:
2436 		if (!msr_info->host_initiated &&
2437 		    !guest_has_spec_ctrl_msr(vcpu))
2438 			return 1;
2439 
2440 		if (kvm_spec_ctrl_test_value(data))
2441 			return 1;
2442 
2443 		vmx->spec_ctrl = data;
2444 		if (!data)
2445 			break;
2446 
2447 		/*
2448 		 * For non-nested:
2449 		 * When it's written (to non-zero) for the first time, pass
2450 		 * it through.
2451 		 *
2452 		 * For nested:
2453 		 * The handling of the MSR bitmap for L2 guests is done in
2454 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2455 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2456 		 * in the merging. We update the vmcs01 here for L1 as well
2457 		 * since it will end up touching the MSR anyway now.
2458 		 */
2459 		vmx_disable_intercept_for_msr(vcpu,
2460 					      MSR_IA32_SPEC_CTRL,
2461 					      MSR_TYPE_RW);
2462 		break;
2463 	case MSR_IA32_TSX_CTRL:
2464 		if (!msr_info->host_initiated &&
2465 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2466 			return 1;
2467 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2468 			return 1;
2469 		goto find_uret_msr;
2470 	case MSR_IA32_CR_PAT:
2471 		ret = kvm_set_msr_common(vcpu, msr_info);
2472 		if (ret)
2473 			break;
2474 
2475 		if (is_guest_mode(vcpu) &&
2476 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2477 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2478 
2479 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2480 			vmcs_write64(GUEST_IA32_PAT, data);
2481 		break;
2482 	case MSR_IA32_MCG_EXT_CTL:
2483 		if ((!msr_info->host_initiated &&
2484 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2485 		       FEAT_CTL_LMCE_ENABLED)) ||
2486 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2487 			return 1;
2488 		vcpu->arch.mcg_ext_ctl = data;
2489 		break;
2490 	case MSR_IA32_FEAT_CTL:
2491 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2492 			return 1;
2493 
2494 		vmx->msr_ia32_feature_control = data;
2495 		if (msr_info->host_initiated && data == 0)
2496 			vmx_leave_nested(vcpu);
2497 
2498 		/* SGX may be enabled/disabled by guest's firmware */
2499 		vmx_write_encls_bitmap(vcpu, NULL);
2500 		break;
2501 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2502 		/*
2503 		 * On real hardware, the LE hash MSRs are writable before
2504 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2505 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2506 		 * become writable.
2507 		 *
2508 		 * KVM does not emulate SGX activation for simplicity, so
2509 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2510 		 * is unlocked.  This is technically not architectural
2511 		 * behavior, but it's close enough.
2512 		 */
2513 		if (!msr_info->host_initiated &&
2514 		    (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2515 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2516 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2517 			return 1;
2518 		vmx->msr_ia32_sgxlepubkeyhash
2519 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2520 		break;
2521 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2522 		if (!msr_info->host_initiated)
2523 			return 1; /* they are read-only */
2524 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2525 			return 1;
2526 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2527 	case MSR_IA32_RTIT_CTL:
2528 		if (!vmx_pt_mode_is_host_guest() ||
2529 			vmx_rtit_ctl_check(vcpu, data) ||
2530 			vmx->nested.vmxon)
2531 			return 1;
2532 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2533 		vmx->pt_desc.guest.ctl = data;
2534 		pt_update_intercept_for_msr(vcpu);
2535 		break;
2536 	case MSR_IA32_RTIT_STATUS:
2537 		if (!pt_can_write_msr(vmx))
2538 			return 1;
2539 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2540 			return 1;
2541 		vmx->pt_desc.guest.status = data;
2542 		break;
2543 	case MSR_IA32_RTIT_CR3_MATCH:
2544 		if (!pt_can_write_msr(vmx))
2545 			return 1;
2546 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2547 					   PT_CAP_cr3_filtering))
2548 			return 1;
2549 		vmx->pt_desc.guest.cr3_match = data;
2550 		break;
2551 	case MSR_IA32_RTIT_OUTPUT_BASE:
2552 		if (!pt_can_write_msr(vmx))
2553 			return 1;
2554 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2555 					   PT_CAP_topa_output) &&
2556 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2557 					   PT_CAP_single_range_output))
2558 			return 1;
2559 		if (!pt_output_base_valid(vcpu, data))
2560 			return 1;
2561 		vmx->pt_desc.guest.output_base = data;
2562 		break;
2563 	case MSR_IA32_RTIT_OUTPUT_MASK:
2564 		if (!pt_can_write_msr(vmx))
2565 			return 1;
2566 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2567 					   PT_CAP_topa_output) &&
2568 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2569 					   PT_CAP_single_range_output))
2570 			return 1;
2571 		vmx->pt_desc.guest.output_mask = data;
2572 		break;
2573 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2574 		if (!pt_can_write_msr(vmx))
2575 			return 1;
2576 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2577 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2578 			return 1;
2579 		if (is_noncanonical_msr_address(data, vcpu))
2580 			return 1;
2581 		if (index % 2)
2582 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2583 		else
2584 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2585 		break;
2586 	case MSR_IA32_S_CET:
2587 		vmcs_writel(GUEST_S_CET, data);
2588 		break;
2589 	case MSR_KVM_INTERNAL_GUEST_SSP:
2590 		vmcs_writel(GUEST_SSP, data);
2591 		break;
2592 	case MSR_IA32_INT_SSP_TAB:
2593 		vmcs_writel(GUEST_INTR_SSP_TABLE, data);
2594 		break;
2595 	case MSR_IA32_PERF_CAPABILITIES:
2596 		if (data & PERF_CAP_LBR_FMT) {
2597 			if ((data & PERF_CAP_LBR_FMT) !=
2598 			    (kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT))
2599 				return 1;
2600 			if (!cpuid_model_is_consistent(vcpu))
2601 				return 1;
2602 		}
2603 		if (data & PERF_CAP_PEBS_FORMAT) {
2604 			if ((data & PERF_CAP_PEBS_MASK) !=
2605 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2606 				return 1;
2607 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2608 				return 1;
2609 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2610 				return 1;
2611 			if (!cpuid_model_is_consistent(vcpu))
2612 				return 1;
2613 		}
2614 		ret = kvm_set_msr_common(vcpu, msr_info);
2615 		break;
2616 
2617 	default:
2618 	find_uret_msr:
2619 		msr = vmx_find_uret_msr(vmx, msr_index);
2620 		if (msr)
2621 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2622 		else
2623 			ret = kvm_set_msr_common(vcpu, msr_info);
2624 	}
2625 
2626 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2627 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2628 		vmx_update_fb_clear_dis(vcpu, vmx);
2629 
2630 	return ret;
2631 }
2632 
2633 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2634 {
2635 	unsigned long guest_owned_bits;
2636 
2637 	kvm_register_mark_available(vcpu, reg);
2638 
2639 	switch (reg) {
2640 	case VCPU_REGS_RSP:
2641 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2642 		break;
2643 	case VCPU_REGS_RIP:
2644 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2645 		break;
2646 	case VCPU_EXREG_PDPTR:
2647 		if (enable_ept)
2648 			ept_save_pdptrs(vcpu);
2649 		break;
2650 	case VCPU_EXREG_CR0:
2651 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2652 
2653 		vcpu->arch.cr0 &= ~guest_owned_bits;
2654 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2655 		break;
2656 	case VCPU_EXREG_CR3:
2657 		/*
2658 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2659 		 * CR3 is loaded into hardware, not the guest's CR3.
2660 		 */
2661 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2662 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2663 		break;
2664 	case VCPU_EXREG_CR4:
2665 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2666 
2667 		vcpu->arch.cr4 &= ~guest_owned_bits;
2668 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2669 		break;
2670 	default:
2671 		KVM_BUG_ON(1, vcpu->kvm);
2672 		break;
2673 	}
2674 }
2675 
2676 /*
2677  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2678  * directly instead of going through cpu_has(), to ensure KVM is trapping
2679  * ENCLS whenever it's supported in hardware.  It does not matter whether
2680  * the host OS supports or has enabled SGX.
2681  */
2682 static bool cpu_has_sgx(void)
2683 {
2684 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2685 }
2686 
2687 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2688 {
2689 	u32 vmx_msr_low, vmx_msr_high;
2690 	u32 ctl = ctl_min | ctl_opt;
2691 
2692 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2693 
2694 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2695 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2696 
2697 	/* Ensure minimum (required) set of control bits are supported. */
2698 	if (ctl_min & ~ctl)
2699 		return -EIO;
2700 
2701 	*result = ctl;
2702 	return 0;
2703 }
2704 
2705 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2706 {
2707 	u64 allowed;
2708 
2709 	rdmsrq(msr, allowed);
2710 
2711 	return  ctl_opt & allowed;
2712 }
2713 
2714 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls)	\
2715 ({										\
2716 	int i, r = 0;								\
2717 										\
2718 	BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls));	\
2719 	BUILD_BUG_ON(sizeof(pairs[0].exit_control)  != sizeof(exit_controls));	\
2720 										\
2721 	for (i = 0; i < ARRAY_SIZE(pairs); i++) {				\
2722 		typeof(entry_controls) n_ctrl = pairs[i].entry_control;		\
2723 		typeof(exit_controls) x_ctrl = pairs[i].exit_control;		\
2724 										\
2725 		if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl))	\
2726 			continue;						\
2727 										\
2728 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, "		\
2729 			     "entry = %llx (%llx), exit = %llx (%llx)\n",	\
2730 			     (u64)(entry_controls & n_ctrl), (u64)n_ctrl,	\
2731 			     (u64)(exit_controls & x_ctrl), (u64)x_ctrl);	\
2732 										\
2733 		if (error_on_inconsistent_vmcs_config)				\
2734 			r = -EIO;						\
2735 										\
2736 		entry_controls &= ~n_ctrl;					\
2737 		exit_controls &= ~x_ctrl;					\
2738 	}									\
2739 	r;									\
2740 })
2741 
2742 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2743 			     struct vmx_capability *vmx_cap)
2744 {
2745 	u32 _pin_based_exec_control = 0;
2746 	u32 _cpu_based_exec_control = 0;
2747 	u32 _cpu_based_2nd_exec_control = 0;
2748 	u64 _cpu_based_3rd_exec_control = 0;
2749 	u32 _vmexit_control = 0;
2750 	u32 _vmentry_control = 0;
2751 	u64 basic_msr;
2752 	u64 misc_msr;
2753 
2754 	/*
2755 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2756 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2757 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2758 	 */
2759 	struct {
2760 		u32 entry_control;
2761 		u32 exit_control;
2762 	} const vmcs_entry_exit_pairs[] = {
2763 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2764 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2765 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2766 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2767 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2768 		{ VM_ENTRY_LOAD_CET_STATE,		VM_EXIT_LOAD_CET_STATE },
2769 	};
2770 
2771 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2772 
2773 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2774 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2775 				MSR_IA32_VMX_PROCBASED_CTLS,
2776 				&_cpu_based_exec_control))
2777 		return -EIO;
2778 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2779 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2780 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2781 					MSR_IA32_VMX_PROCBASED_CTLS2,
2782 					&_cpu_based_2nd_exec_control))
2783 			return -EIO;
2784 	}
2785 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2786 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2787 
2788 #ifndef CONFIG_X86_64
2789 	if (!(_cpu_based_2nd_exec_control &
2790 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2791 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2792 #endif
2793 
2794 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2795 		_cpu_based_2nd_exec_control &= ~(
2796 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2797 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2798 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2799 
2800 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2801 		&vmx_cap->ept, &vmx_cap->vpid);
2802 
2803 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2804 	    vmx_cap->ept) {
2805 		pr_warn_once("EPT CAP should not exist if not support "
2806 				"1-setting enable EPT VM-execution control\n");
2807 
2808 		if (error_on_inconsistent_vmcs_config)
2809 			return -EIO;
2810 
2811 		vmx_cap->ept = 0;
2812 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2813 	}
2814 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2815 	    vmx_cap->vpid) {
2816 		pr_warn_once("VPID CAP should not exist if not support "
2817 				"1-setting enable VPID VM-execution control\n");
2818 
2819 		if (error_on_inconsistent_vmcs_config)
2820 			return -EIO;
2821 
2822 		vmx_cap->vpid = 0;
2823 	}
2824 
2825 	if (!cpu_has_sgx())
2826 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2827 
2828 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2829 		_cpu_based_3rd_exec_control =
2830 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2831 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2832 
2833 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2834 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2835 				MSR_IA32_VMX_EXIT_CTLS,
2836 				&_vmexit_control))
2837 		return -EIO;
2838 
2839 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2840 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2841 				MSR_IA32_VMX_PINBASED_CTLS,
2842 				&_pin_based_exec_control))
2843 		return -EIO;
2844 
2845 	if (cpu_has_broken_vmx_preemption_timer())
2846 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2847 	if (!(_cpu_based_2nd_exec_control &
2848 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2849 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2850 
2851 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2852 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2853 				MSR_IA32_VMX_ENTRY_CTLS,
2854 				&_vmentry_control))
2855 		return -EIO;
2856 
2857 	if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2858 				       _vmentry_control, _vmexit_control))
2859 		return -EIO;
2860 
2861 	/*
2862 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2863 	 * can't be used due to an errata where VM Exit may incorrectly clear
2864 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2865 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2866 	 */
2867 	switch (boot_cpu_data.x86_vfm) {
2868 	case INTEL_NEHALEM_EP:	/* AAK155 */
2869 	case INTEL_NEHALEM:	/* AAP115 */
2870 	case INTEL_WESTMERE:	/* AAT100 */
2871 	case INTEL_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2872 	case INTEL_NEHALEM_EX:	/* BA97 */
2873 		_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2874 		_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2875 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2876 			     "does not work properly. Using workaround\n");
2877 		break;
2878 	default:
2879 		break;
2880 	}
2881 
2882 	rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2883 
2884 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2885 	if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2886 		return -EIO;
2887 
2888 #ifdef CONFIG_X86_64
2889 	/*
2890 	 * KVM expects to be able to shove all legal physical addresses into
2891 	 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2892 	 * 0 for processors that support Intel 64 architecture".
2893 	 */
2894 	if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2895 		return -EIO;
2896 #endif
2897 
2898 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2899 	if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2900 		return -EIO;
2901 
2902 	rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2903 
2904 	vmcs_conf->basic = basic_msr;
2905 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2906 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2907 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2908 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2909 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2910 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2911 	vmcs_conf->misc	= misc_msr;
2912 
2913 #if IS_ENABLED(CONFIG_HYPERV)
2914 	if (enlightened_vmcs)
2915 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2916 #endif
2917 
2918 	return 0;
2919 }
2920 
2921 static bool __kvm_is_vmx_supported(void)
2922 {
2923 	int cpu = smp_processor_id();
2924 
2925 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2926 		pr_err("VMX not supported by CPU %d\n", cpu);
2927 		return false;
2928 	}
2929 
2930 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2931 	    !this_cpu_has(X86_FEATURE_VMX)) {
2932 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2933 		return false;
2934 	}
2935 
2936 	return true;
2937 }
2938 
2939 static bool kvm_is_vmx_supported(void)
2940 {
2941 	bool supported;
2942 
2943 	migrate_disable();
2944 	supported = __kvm_is_vmx_supported();
2945 	migrate_enable();
2946 
2947 	return supported;
2948 }
2949 
2950 int vmx_check_processor_compat(void)
2951 {
2952 	int cpu = raw_smp_processor_id();
2953 	struct vmcs_config vmcs_conf;
2954 	struct vmx_capability vmx_cap;
2955 
2956 	if (!__kvm_is_vmx_supported())
2957 		return -EIO;
2958 
2959 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2960 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2961 		return -EIO;
2962 	}
2963 	if (nested)
2964 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2965 
2966 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2967 		u32 *gold = (void *)&vmcs_config;
2968 		u32 *mine = (void *)&vmcs_conf;
2969 		int i;
2970 
2971 		BUILD_BUG_ON(sizeof(struct vmcs_config) % sizeof(u32));
2972 
2973 		pr_err("VMCS config on CPU %d doesn't match reference config:", cpu);
2974 		for (i = 0; i < sizeof(struct vmcs_config) / sizeof(u32); i++) {
2975 			if (gold[i] == mine[i])
2976 				continue;
2977 
2978 			pr_cont("\n  Offset %u REF = 0x%08x, CPU%u = 0x%08x, mismatch = 0x%08x",
2979 				i * (int)sizeof(u32), gold[i], cpu, mine[i], gold[i] ^ mine[i]);
2980 		}
2981 		pr_cont("\n");
2982 		return -EIO;
2983 	}
2984 	return 0;
2985 }
2986 
2987 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2988 {
2989 	u64 msr;
2990 
2991 	cr4_set_bits(X86_CR4_VMXE);
2992 
2993 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2994 			  _ASM_EXTABLE(1b, %l[fault])
2995 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2996 			  : : fault);
2997 	return 0;
2998 
2999 fault:
3000 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
3001 		  rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
3002 	cr4_clear_bits(X86_CR4_VMXE);
3003 
3004 	return -EFAULT;
3005 }
3006 
3007 int vmx_enable_virtualization_cpu(void)
3008 {
3009 	int cpu = raw_smp_processor_id();
3010 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3011 	int r;
3012 
3013 	if (cr4_read_shadow() & X86_CR4_VMXE)
3014 		return -EBUSY;
3015 
3016 	/*
3017 	 * This can happen if we hot-added a CPU but failed to allocate
3018 	 * VP assist page for it.
3019 	 */
3020 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
3021 		return -EFAULT;
3022 
3023 	intel_pt_handle_vmx(1);
3024 
3025 	r = kvm_cpu_vmxon(phys_addr);
3026 	if (r) {
3027 		intel_pt_handle_vmx(0);
3028 		return r;
3029 	}
3030 
3031 	return 0;
3032 }
3033 
3034 static void vmclear_local_loaded_vmcss(void)
3035 {
3036 	int cpu = raw_smp_processor_id();
3037 	struct loaded_vmcs *v, *n;
3038 
3039 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3040 				 loaded_vmcss_on_cpu_link)
3041 		__loaded_vmcs_clear(v);
3042 }
3043 
3044 void vmx_disable_virtualization_cpu(void)
3045 {
3046 	vmclear_local_loaded_vmcss();
3047 
3048 	if (kvm_cpu_vmxoff())
3049 		kvm_spurious_fault();
3050 
3051 	hv_reset_evmcs();
3052 
3053 	intel_pt_handle_vmx(0);
3054 }
3055 
3056 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
3057 {
3058 	int node = cpu_to_node(cpu);
3059 	struct page *pages;
3060 	struct vmcs *vmcs;
3061 
3062 	pages = __alloc_pages_node(node, flags, 0);
3063 	if (!pages)
3064 		return NULL;
3065 	vmcs = page_address(pages);
3066 	memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
3067 
3068 	/* KVM supports Enlightened VMCS v1 only */
3069 	if (kvm_is_using_evmcs())
3070 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
3071 	else
3072 		vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3073 
3074 	if (shadow)
3075 		vmcs->hdr.shadow_vmcs = 1;
3076 	return vmcs;
3077 }
3078 
3079 void free_vmcs(struct vmcs *vmcs)
3080 {
3081 	free_page((unsigned long)vmcs);
3082 }
3083 
3084 /*
3085  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3086  */
3087 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3088 {
3089 	if (!loaded_vmcs->vmcs)
3090 		return;
3091 	loaded_vmcs_clear(loaded_vmcs);
3092 	free_vmcs(loaded_vmcs->vmcs);
3093 	loaded_vmcs->vmcs = NULL;
3094 	if (loaded_vmcs->msr_bitmap)
3095 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
3096 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3097 }
3098 
3099 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3100 {
3101 	loaded_vmcs->vmcs = alloc_vmcs(false);
3102 	if (!loaded_vmcs->vmcs)
3103 		return -ENOMEM;
3104 
3105 	vmcs_clear(loaded_vmcs->vmcs);
3106 
3107 	loaded_vmcs->shadow_vmcs = NULL;
3108 	loaded_vmcs->hv_timer_soft_disabled = false;
3109 	loaded_vmcs->cpu = -1;
3110 	loaded_vmcs->launched = 0;
3111 
3112 	if (cpu_has_vmx_msr_bitmap()) {
3113 		loaded_vmcs->msr_bitmap = (unsigned long *)
3114 				__get_free_page(GFP_KERNEL_ACCOUNT);
3115 		if (!loaded_vmcs->msr_bitmap)
3116 			goto out_vmcs;
3117 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
3118 	}
3119 
3120 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
3121 	memset(&loaded_vmcs->controls_shadow, 0,
3122 		sizeof(struct vmcs_controls_shadow));
3123 
3124 	return 0;
3125 
3126 out_vmcs:
3127 	free_loaded_vmcs(loaded_vmcs);
3128 	return -ENOMEM;
3129 }
3130 
3131 static void free_kvm_area(void)
3132 {
3133 	int cpu;
3134 
3135 	for_each_possible_cpu(cpu) {
3136 		free_vmcs(per_cpu(vmxarea, cpu));
3137 		per_cpu(vmxarea, cpu) = NULL;
3138 	}
3139 }
3140 
3141 static __init int alloc_kvm_area(void)
3142 {
3143 	int cpu;
3144 
3145 	for_each_possible_cpu(cpu) {
3146 		struct vmcs *vmcs;
3147 
3148 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
3149 		if (!vmcs) {
3150 			free_kvm_area();
3151 			return -ENOMEM;
3152 		}
3153 
3154 		/*
3155 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
3156 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
3157 		 * revision_id reported by MSR_IA32_VMX_BASIC.
3158 		 *
3159 		 * However, even though not explicitly documented by
3160 		 * TLFS, VMXArea passed as VMXON argument should
3161 		 * still be marked with revision_id reported by
3162 		 * physical CPU.
3163 		 */
3164 		if (kvm_is_using_evmcs())
3165 			vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3166 
3167 		per_cpu(vmxarea, cpu) = vmcs;
3168 	}
3169 	return 0;
3170 }
3171 
3172 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3173 		struct kvm_segment *save)
3174 {
3175 	if (!emulate_invalid_guest_state) {
3176 		/*
3177 		 * CS and SS RPL should be equal during guest entry according
3178 		 * to VMX spec, but in reality it is not always so. Since vcpu
3179 		 * is in the middle of the transition from real mode to
3180 		 * protected mode it is safe to assume that RPL 0 is a good
3181 		 * default value.
3182 		 */
3183 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3184 			save->selector &= ~SEGMENT_RPL_MASK;
3185 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3186 		save->s = 1;
3187 	}
3188 	__vmx_set_segment(vcpu, save, seg);
3189 }
3190 
3191 static void enter_pmode(struct kvm_vcpu *vcpu)
3192 {
3193 	unsigned long flags;
3194 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3195 
3196 	/*
3197 	 * Update real mode segment cache. It may be not up-to-date if segment
3198 	 * register was written while vcpu was in a guest mode.
3199 	 */
3200 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3201 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3202 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3203 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3204 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3205 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3206 
3207 	vmx->rmode.vm86_active = 0;
3208 
3209 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3210 
3211 	flags = vmcs_readl(GUEST_RFLAGS);
3212 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3213 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3214 	vmcs_writel(GUEST_RFLAGS, flags);
3215 
3216 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3217 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3218 
3219 	vmx_update_exception_bitmap(vcpu);
3220 
3221 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3222 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3223 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3224 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3225 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3226 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3227 }
3228 
3229 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3230 {
3231 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3232 	struct kvm_segment var = *save;
3233 
3234 	var.dpl = 0x3;
3235 	if (seg == VCPU_SREG_CS)
3236 		var.type = 0x3;
3237 
3238 	if (!emulate_invalid_guest_state) {
3239 		var.selector = var.base >> 4;
3240 		var.base = var.base & 0xffff0;
3241 		var.limit = 0xffff;
3242 		var.g = 0;
3243 		var.db = 0;
3244 		var.present = 1;
3245 		var.s = 1;
3246 		var.l = 0;
3247 		var.unusable = 0;
3248 		var.type = 0x3;
3249 		var.avl = 0;
3250 		if (save->base & 0xf)
3251 			pr_warn_once("segment base is not paragraph aligned "
3252 				     "when entering protected mode (seg=%d)", seg);
3253 	}
3254 
3255 	vmcs_write16(sf->selector, var.selector);
3256 	vmcs_writel(sf->base, var.base);
3257 	vmcs_write32(sf->limit, var.limit);
3258 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3259 }
3260 
3261 static void enter_rmode(struct kvm_vcpu *vcpu)
3262 {
3263 	unsigned long flags;
3264 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3265 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3266 
3267 	/*
3268 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3269 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3270 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3271 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3272 	 * CR0.PG=0 when L2 is active.
3273 	 */
3274 	WARN_ON_ONCE(is_guest_mode(vcpu));
3275 
3276 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3277 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3278 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3279 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3280 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3281 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3282 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3283 
3284 	vmx->rmode.vm86_active = 1;
3285 
3286 	vmx_segment_cache_clear(vmx);
3287 
3288 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3289 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3290 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3291 
3292 	flags = vmcs_readl(GUEST_RFLAGS);
3293 	vmx->rmode.save_rflags = flags;
3294 
3295 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3296 
3297 	vmcs_writel(GUEST_RFLAGS, flags);
3298 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3299 	vmx_update_exception_bitmap(vcpu);
3300 
3301 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3302 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3303 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3304 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3305 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3306 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3307 }
3308 
3309 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3310 {
3311 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3312 
3313 	/* Nothing to do if hardware doesn't support EFER. */
3314 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3315 		return 0;
3316 
3317 	vcpu->arch.efer = efer;
3318 #ifdef CONFIG_X86_64
3319 	if (efer & EFER_LMA)
3320 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3321 	else
3322 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3323 #else
3324 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3325 		return 1;
3326 #endif
3327 
3328 	vmx_setup_uret_msrs(vmx);
3329 	return 0;
3330 }
3331 
3332 #ifdef CONFIG_X86_64
3333 
3334 static void enter_lmode(struct kvm_vcpu *vcpu)
3335 {
3336 	u32 guest_tr_ar;
3337 
3338 	vmx_segment_cache_clear(to_vmx(vcpu));
3339 
3340 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3341 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3342 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3343 				     __func__);
3344 		vmcs_write32(GUEST_TR_AR_BYTES,
3345 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3346 			     | VMX_AR_TYPE_BUSY_64_TSS);
3347 	}
3348 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3349 }
3350 
3351 static void exit_lmode(struct kvm_vcpu *vcpu)
3352 {
3353 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3354 }
3355 
3356 #endif
3357 
3358 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3359 {
3360 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3361 
3362 	/*
3363 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3364 	 * the CPU is not required to invalidate guest-physical mappings on
3365 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3366 	 * associated with the root EPT structure and not any particular VPID
3367 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3368 	 */
3369 	if (enable_ept) {
3370 		ept_sync_global();
3371 	} else if (enable_vpid) {
3372 		if (cpu_has_vmx_invvpid_global()) {
3373 			vpid_sync_vcpu_global();
3374 		} else {
3375 			vpid_sync_vcpu_single(vmx->vpid);
3376 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3377 		}
3378 	}
3379 }
3380 
3381 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3382 {
3383 	if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3384 		return nested_get_vpid02(vcpu);
3385 	return to_vmx(vcpu)->vpid;
3386 }
3387 
3388 static u64 construct_eptp(hpa_t root_hpa)
3389 {
3390 	u64 eptp = root_hpa | VMX_EPTP_MT_WB;
3391 	struct kvm_mmu_page *root;
3392 
3393 	if (kvm_mmu_is_dummy_root(root_hpa))
3394 		return eptp | VMX_EPTP_PWL_4;
3395 
3396 	/*
3397 	 * EPT roots should always have an associated MMU page.  Return a "bad"
3398 	 * EPTP to induce VM-Fail instead of continuing on in a unknown state.
3399 	 */
3400 	root = root_to_sp(root_hpa);
3401 	if (WARN_ON_ONCE(!root))
3402 		return INVALID_PAGE;
3403 
3404 	eptp |= (root->role.level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3405 
3406 	if (enable_ept_ad_bits && !root->role.ad_disabled)
3407 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3408 
3409 	return eptp;
3410 }
3411 
3412 static void vmx_flush_tlb_ept_root(hpa_t root_hpa)
3413 {
3414 	u64 eptp = construct_eptp(root_hpa);
3415 
3416 	if (VALID_PAGE(eptp))
3417 		ept_sync_context(eptp);
3418 	else
3419 		ept_sync_global();
3420 }
3421 
3422 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3423 {
3424 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3425 	u64 root_hpa = mmu->root.hpa;
3426 
3427 	/* No flush required if the current context is invalid. */
3428 	if (!VALID_PAGE(root_hpa))
3429 		return;
3430 
3431 	if (enable_ept)
3432 		vmx_flush_tlb_ept_root(root_hpa);
3433 	else
3434 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3435 }
3436 
3437 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3438 {
3439 	/*
3440 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3441 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3442 	 */
3443 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3444 }
3445 
3446 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3447 {
3448 	/*
3449 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3450 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3451 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3452 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3453 	 * i.e. no explicit INVVPID is necessary.
3454 	 */
3455 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3456 }
3457 
3458 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3459 {
3460 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3461 
3462 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3463 		return;
3464 
3465 	if (is_pae_paging(vcpu)) {
3466 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3467 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3468 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3469 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3470 	}
3471 }
3472 
3473 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3474 {
3475 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3476 
3477 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3478 		return;
3479 
3480 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3481 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3482 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3483 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3484 
3485 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3486 }
3487 
3488 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3489 			  CPU_BASED_CR3_STORE_EXITING)
3490 
3491 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3492 {
3493 	if (is_guest_mode(vcpu))
3494 		return nested_guest_cr0_valid(vcpu, cr0);
3495 
3496 	if (to_vmx(vcpu)->nested.vmxon)
3497 		return nested_host_cr0_valid(vcpu, cr0);
3498 
3499 	return true;
3500 }
3501 
3502 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3503 {
3504 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3505 	unsigned long hw_cr0, old_cr0_pg;
3506 	u32 tmp;
3507 
3508 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3509 
3510 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3511 	if (enable_unrestricted_guest)
3512 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3513 	else {
3514 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3515 		if (!enable_ept)
3516 			hw_cr0 |= X86_CR0_WP;
3517 
3518 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3519 			enter_pmode(vcpu);
3520 
3521 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3522 			enter_rmode(vcpu);
3523 	}
3524 
3525 	vmcs_writel(CR0_READ_SHADOW, cr0);
3526 	vmcs_writel(GUEST_CR0, hw_cr0);
3527 	vcpu->arch.cr0 = cr0;
3528 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3529 
3530 #ifdef CONFIG_X86_64
3531 	if (vcpu->arch.efer & EFER_LME) {
3532 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3533 			enter_lmode(vcpu);
3534 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3535 			exit_lmode(vcpu);
3536 	}
3537 #endif
3538 
3539 	if (enable_ept && !enable_unrestricted_guest) {
3540 		/*
3541 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3542 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3543 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3544 		 * KVM's CR3 is installed.
3545 		 */
3546 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3547 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3548 
3549 		/*
3550 		 * When running with EPT but not unrestricted guest, KVM must
3551 		 * intercept CR3 accesses when paging is _disabled_.  This is
3552 		 * necessary because restricted guests can't actually run with
3553 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3554 		 * run the guest when identity mapped page tables.
3555 		 *
3556 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3557 		 * update, it may be stale with respect to CR3 interception,
3558 		 * e.g. after nested VM-Enter.
3559 		 *
3560 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3561 		 * stores to forward them to L1, even if KVM does not need to
3562 		 * intercept them to preserve its identity mapped page tables.
3563 		 */
3564 		if (!(cr0 & X86_CR0_PG)) {
3565 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3566 		} else if (!is_guest_mode(vcpu)) {
3567 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3568 		} else {
3569 			tmp = exec_controls_get(vmx);
3570 			tmp &= ~CR3_EXITING_BITS;
3571 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3572 			exec_controls_set(vmx, tmp);
3573 		}
3574 
3575 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3576 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3577 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3578 
3579 		/*
3580 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3581 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3582 		 */
3583 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3584 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3585 	}
3586 
3587 	/* depends on vcpu->arch.cr0 to be set to a new value */
3588 	vmx->vt.emulation_required = vmx_emulation_required(vcpu);
3589 }
3590 
3591 static int vmx_get_max_ept_level(void)
3592 {
3593 	if (cpu_has_vmx_ept_5levels())
3594 		return 5;
3595 	return 4;
3596 }
3597 
3598 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3599 {
3600 	struct kvm *kvm = vcpu->kvm;
3601 	bool update_guest_cr3 = true;
3602 	unsigned long guest_cr3;
3603 
3604 	if (enable_ept) {
3605 		KVM_MMU_WARN_ON(root_to_sp(root_hpa) &&
3606 				root_level != root_to_sp(root_hpa)->role.level);
3607 		vmcs_write64(EPT_POINTER, construct_eptp(root_hpa));
3608 
3609 		hv_track_root_tdp(vcpu, root_hpa);
3610 
3611 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3612 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3613 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3614 			guest_cr3 = vcpu->arch.cr3;
3615 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3616 			update_guest_cr3 = false;
3617 		vmx_ept_load_pdptrs(vcpu);
3618 	} else {
3619 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3620 			    kvm_get_active_cr3_lam_bits(vcpu);
3621 	}
3622 
3623 	if (update_guest_cr3)
3624 		vmcs_writel(GUEST_CR3, guest_cr3);
3625 }
3626 
3627 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3628 {
3629 	/*
3630 	 * We operate under the default treatment of SMM, so VMX cannot be
3631 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3632 	 * i.e. is a reserved bit, is handled by common x86 code.
3633 	 */
3634 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3635 		return false;
3636 
3637 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3638 		return false;
3639 
3640 	return true;
3641 }
3642 
3643 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3644 {
3645 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3646 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3647 	unsigned long hw_cr4;
3648 
3649 	/*
3650 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3651 	 * is in force while we are in guest mode.  Do not let guests control
3652 	 * this bit, even if host CR4.MCE == 0.
3653 	 */
3654 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3655 	if (enable_unrestricted_guest)
3656 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3657 	else if (vmx->rmode.vm86_active)
3658 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3659 	else
3660 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3661 
3662 	if (vmx_umip_emulated()) {
3663 		if (cr4 & X86_CR4_UMIP) {
3664 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3665 			hw_cr4 &= ~X86_CR4_UMIP;
3666 		} else if (!is_guest_mode(vcpu) ||
3667 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3668 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3669 		}
3670 	}
3671 
3672 	vcpu->arch.cr4 = cr4;
3673 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3674 
3675 	if (!enable_unrestricted_guest) {
3676 		if (enable_ept) {
3677 			if (!is_paging(vcpu)) {
3678 				hw_cr4 &= ~X86_CR4_PAE;
3679 				hw_cr4 |= X86_CR4_PSE;
3680 			} else if (!(cr4 & X86_CR4_PAE)) {
3681 				hw_cr4 &= ~X86_CR4_PAE;
3682 			}
3683 		}
3684 
3685 		/*
3686 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3687 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3688 		 * to be manually disabled when guest switches to non-paging
3689 		 * mode.
3690 		 *
3691 		 * If !enable_unrestricted_guest, the CPU is always running
3692 		 * with CR0.PG=1 and CR4 needs to be modified.
3693 		 * If enable_unrestricted_guest, the CPU automatically
3694 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3695 		 */
3696 		if (!is_paging(vcpu))
3697 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3698 	}
3699 
3700 	vmcs_writel(CR4_READ_SHADOW, cr4);
3701 	vmcs_writel(GUEST_CR4, hw_cr4);
3702 
3703 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3704 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3705 }
3706 
3707 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3708 {
3709 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3710 	u32 ar;
3711 
3712 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3713 		*var = vmx->rmode.segs[seg];
3714 		if (seg == VCPU_SREG_TR
3715 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3716 			return;
3717 		var->base = vmx_read_guest_seg_base(vmx, seg);
3718 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3719 		return;
3720 	}
3721 	var->base = vmx_read_guest_seg_base(vmx, seg);
3722 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3723 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3724 	ar = vmx_read_guest_seg_ar(vmx, seg);
3725 	var->unusable = (ar >> 16) & 1;
3726 	var->type = ar & 15;
3727 	var->s = (ar >> 4) & 1;
3728 	var->dpl = (ar >> 5) & 3;
3729 	/*
3730 	 * Some userspaces do not preserve unusable property. Since usable
3731 	 * segment has to be present according to VMX spec we can use present
3732 	 * property to amend userspace bug by making unusable segment always
3733 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3734 	 * segment as unusable.
3735 	 */
3736 	var->present = !var->unusable;
3737 	var->avl = (ar >> 12) & 1;
3738 	var->l = (ar >> 13) & 1;
3739 	var->db = (ar >> 14) & 1;
3740 	var->g = (ar >> 15) & 1;
3741 }
3742 
3743 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3744 {
3745 	struct kvm_segment s;
3746 
3747 	if (to_vmx(vcpu)->rmode.vm86_active) {
3748 		vmx_get_segment(vcpu, &s, seg);
3749 		return s.base;
3750 	}
3751 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3752 }
3753 
3754 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3755 {
3756 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3757 	int ar;
3758 
3759 	if (unlikely(vmx->rmode.vm86_active))
3760 		return 0;
3761 
3762 	if (no_cache)
3763 		ar = vmcs_read32(GUEST_SS_AR_BYTES);
3764 	else
3765 		ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3766 	return VMX_AR_DPL(ar);
3767 }
3768 
3769 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3770 {
3771 	return __vmx_get_cpl(vcpu, false);
3772 }
3773 
3774 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3775 {
3776 	return __vmx_get_cpl(vcpu, true);
3777 }
3778 
3779 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3780 {
3781 	u32 ar;
3782 
3783 	ar = var->type & 15;
3784 	ar |= (var->s & 1) << 4;
3785 	ar |= (var->dpl & 3) << 5;
3786 	ar |= (var->present & 1) << 7;
3787 	ar |= (var->avl & 1) << 12;
3788 	ar |= (var->l & 1) << 13;
3789 	ar |= (var->db & 1) << 14;
3790 	ar |= (var->g & 1) << 15;
3791 	ar |= (var->unusable || !var->present) << 16;
3792 
3793 	return ar;
3794 }
3795 
3796 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3797 {
3798 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3799 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3800 
3801 	vmx_segment_cache_clear(vmx);
3802 
3803 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3804 		vmx->rmode.segs[seg] = *var;
3805 		if (seg == VCPU_SREG_TR)
3806 			vmcs_write16(sf->selector, var->selector);
3807 		else if (var->s)
3808 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3809 		return;
3810 	}
3811 
3812 	vmcs_writel(sf->base, var->base);
3813 	vmcs_write32(sf->limit, var->limit);
3814 	vmcs_write16(sf->selector, var->selector);
3815 
3816 	/*
3817 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3818 	 * qemu binaries.
3819 	 *   IA32 arch specifies that at the time of processor reset the
3820 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3821 	 * is setting it to 0 in the userland code. This causes invalid guest
3822 	 * state vmexit when "unrestricted guest" mode is turned on.
3823 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3824 	 * tree. Newer qemu binaries with that qemu fix would not need this
3825 	 * kvm hack.
3826 	 */
3827 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3828 		var->type |= 0x1; /* Accessed */
3829 
3830 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3831 }
3832 
3833 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3834 {
3835 	__vmx_set_segment(vcpu, var, seg);
3836 
3837 	to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu);
3838 }
3839 
3840 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3841 {
3842 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3843 
3844 	*db = (ar >> 14) & 1;
3845 	*l = (ar >> 13) & 1;
3846 }
3847 
3848 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3849 {
3850 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3851 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3852 }
3853 
3854 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3855 {
3856 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3857 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3858 }
3859 
3860 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3861 {
3862 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3863 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3864 }
3865 
3866 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3867 {
3868 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3869 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3870 }
3871 
3872 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3873 {
3874 	struct kvm_segment var;
3875 	u32 ar;
3876 
3877 	vmx_get_segment(vcpu, &var, seg);
3878 	var.dpl = 0x3;
3879 	if (seg == VCPU_SREG_CS)
3880 		var.type = 0x3;
3881 	ar = vmx_segment_access_rights(&var);
3882 
3883 	if (var.base != (var.selector << 4))
3884 		return false;
3885 	if (var.limit != 0xffff)
3886 		return false;
3887 	if (ar != 0xf3)
3888 		return false;
3889 
3890 	return true;
3891 }
3892 
3893 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3894 {
3895 	struct kvm_segment cs;
3896 	unsigned int cs_rpl;
3897 
3898 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3899 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3900 
3901 	if (cs.unusable)
3902 		return false;
3903 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3904 		return false;
3905 	if (!cs.s)
3906 		return false;
3907 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3908 		if (cs.dpl > cs_rpl)
3909 			return false;
3910 	} else {
3911 		if (cs.dpl != cs_rpl)
3912 			return false;
3913 	}
3914 	if (!cs.present)
3915 		return false;
3916 
3917 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3918 	return true;
3919 }
3920 
3921 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3922 {
3923 	struct kvm_segment ss;
3924 	unsigned int ss_rpl;
3925 
3926 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3927 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3928 
3929 	if (ss.unusable)
3930 		return true;
3931 	if (ss.type != 3 && ss.type != 7)
3932 		return false;
3933 	if (!ss.s)
3934 		return false;
3935 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3936 		return false;
3937 	if (!ss.present)
3938 		return false;
3939 
3940 	return true;
3941 }
3942 
3943 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3944 {
3945 	struct kvm_segment var;
3946 	unsigned int rpl;
3947 
3948 	vmx_get_segment(vcpu, &var, seg);
3949 	rpl = var.selector & SEGMENT_RPL_MASK;
3950 
3951 	if (var.unusable)
3952 		return true;
3953 	if (!var.s)
3954 		return false;
3955 	if (!var.present)
3956 		return false;
3957 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3958 		if (var.dpl < rpl) /* DPL < RPL */
3959 			return false;
3960 	}
3961 
3962 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3963 	 * rights flags
3964 	 */
3965 	return true;
3966 }
3967 
3968 static bool tr_valid(struct kvm_vcpu *vcpu)
3969 {
3970 	struct kvm_segment tr;
3971 
3972 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3973 
3974 	if (tr.unusable)
3975 		return false;
3976 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3977 		return false;
3978 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3979 		return false;
3980 	if (!tr.present)
3981 		return false;
3982 
3983 	return true;
3984 }
3985 
3986 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3987 {
3988 	struct kvm_segment ldtr;
3989 
3990 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3991 
3992 	if (ldtr.unusable)
3993 		return true;
3994 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3995 		return false;
3996 	if (ldtr.type != 2)
3997 		return false;
3998 	if (!ldtr.present)
3999 		return false;
4000 
4001 	return true;
4002 }
4003 
4004 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4005 {
4006 	struct kvm_segment cs, ss;
4007 
4008 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4009 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4010 
4011 	return ((cs.selector & SEGMENT_RPL_MASK) ==
4012 		 (ss.selector & SEGMENT_RPL_MASK));
4013 }
4014 
4015 /*
4016  * Check if guest state is valid. Returns true if valid, false if
4017  * not.
4018  * We assume that registers are always usable
4019  */
4020 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
4021 {
4022 	/* real mode guest state checks */
4023 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4024 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4025 			return false;
4026 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4027 			return false;
4028 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4029 			return false;
4030 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4031 			return false;
4032 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4033 			return false;
4034 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4035 			return false;
4036 	} else {
4037 	/* protected mode guest state checks */
4038 		if (!cs_ss_rpl_check(vcpu))
4039 			return false;
4040 		if (!code_segment_valid(vcpu))
4041 			return false;
4042 		if (!stack_segment_valid(vcpu))
4043 			return false;
4044 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4045 			return false;
4046 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4047 			return false;
4048 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4049 			return false;
4050 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4051 			return false;
4052 		if (!tr_valid(vcpu))
4053 			return false;
4054 		if (!ldtr_valid(vcpu))
4055 			return false;
4056 	}
4057 	/* TODO:
4058 	 * - Add checks on RIP
4059 	 * - Add checks on RFLAGS
4060 	 */
4061 
4062 	return true;
4063 }
4064 
4065 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
4066 {
4067 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
4068 	u16 data;
4069 	int i;
4070 
4071 	for (i = 0; i < 3; i++) {
4072 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
4073 			return -EFAULT;
4074 	}
4075 
4076 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4077 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
4078 		return -EFAULT;
4079 
4080 	data = ~0;
4081 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
4082 		return -EFAULT;
4083 
4084 	return 0;
4085 }
4086 
4087 static int init_rmode_identity_map(struct kvm *kvm)
4088 {
4089 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4090 	int i, r = 0;
4091 	void __user *uaddr;
4092 	u32 tmp;
4093 
4094 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
4095 	mutex_lock(&kvm->slots_lock);
4096 
4097 	if (likely(kvm_vmx->ept_identity_pagetable_done))
4098 		goto out;
4099 
4100 	if (!kvm_vmx->ept_identity_map_addr)
4101 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4102 
4103 	uaddr = __x86_set_memory_region(kvm,
4104 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4105 					kvm_vmx->ept_identity_map_addr,
4106 					PAGE_SIZE);
4107 	if (IS_ERR(uaddr)) {
4108 		r = PTR_ERR(uaddr);
4109 		goto out;
4110 	}
4111 
4112 	/* Set up identity-mapping pagetable for EPT in real mode */
4113 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
4114 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4115 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4116 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
4117 			r = -EFAULT;
4118 			goto out;
4119 		}
4120 	}
4121 	kvm_vmx->ept_identity_pagetable_done = true;
4122 
4123 out:
4124 	mutex_unlock(&kvm->slots_lock);
4125 	return r;
4126 }
4127 
4128 static void seg_setup(int seg)
4129 {
4130 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4131 	unsigned int ar;
4132 
4133 	vmcs_write16(sf->selector, 0);
4134 	vmcs_writel(sf->base, 0);
4135 	vmcs_write32(sf->limit, 0xffff);
4136 	ar = 0x93;
4137 	if (seg == VCPU_SREG_CS)
4138 		ar |= 0x08; /* code segment */
4139 
4140 	vmcs_write32(sf->ar_bytes, ar);
4141 }
4142 
4143 int allocate_vpid(void)
4144 {
4145 	int vpid;
4146 
4147 	if (!enable_vpid)
4148 		return 0;
4149 	spin_lock(&vmx_vpid_lock);
4150 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4151 	if (vpid < VMX_NR_VPIDS)
4152 		__set_bit(vpid, vmx_vpid_bitmap);
4153 	else
4154 		vpid = 0;
4155 	spin_unlock(&vmx_vpid_lock);
4156 	return vpid;
4157 }
4158 
4159 void free_vpid(int vpid)
4160 {
4161 	if (!enable_vpid || vpid == 0)
4162 		return;
4163 	spin_lock(&vmx_vpid_lock);
4164 	__clear_bit(vpid, vmx_vpid_bitmap);
4165 	spin_unlock(&vmx_vpid_lock);
4166 }
4167 
4168 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
4169 {
4170 	/*
4171 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
4172 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
4173 	 * bitmap has changed.
4174 	 */
4175 	if (kvm_is_using_evmcs()) {
4176 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
4177 
4178 		if (evmcs->hv_enlightenments_control.msr_bitmap)
4179 			evmcs->hv_clean_fields &=
4180 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
4181 	}
4182 
4183 	vmx->nested.force_msr_bitmap_recalc = true;
4184 }
4185 
4186 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
4187 {
4188 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4189 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4190 
4191 	if (!cpu_has_vmx_msr_bitmap())
4192 		return;
4193 
4194 	vmx_msr_bitmap_l01_changed(vmx);
4195 
4196 	if (type & MSR_TYPE_R) {
4197 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
4198 			vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4199 		else
4200 			vmx_set_msr_bitmap_read(msr_bitmap, msr);
4201 	}
4202 
4203 	if (type & MSR_TYPE_W) {
4204 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
4205 			vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4206 		else
4207 			vmx_set_msr_bitmap_write(msr_bitmap, msr);
4208 	}
4209 }
4210 
4211 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4212 {
4213 	/*
4214 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4215 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4216 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4217 	 */
4218 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4219 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4220 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4221 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4222 	u8 mode;
4223 
4224 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4225 		return;
4226 
4227 	if (cpu_has_secondary_exec_ctrls() &&
4228 	    (secondary_exec_controls_get(vmx) &
4229 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4230 		mode = MSR_BITMAP_MODE_X2APIC;
4231 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4232 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4233 	} else {
4234 		mode = 0;
4235 	}
4236 
4237 	if (mode == vmx->x2apic_msr_bitmap_mode)
4238 		return;
4239 
4240 	vmx->x2apic_msr_bitmap_mode = mode;
4241 
4242 	/*
4243 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4244 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4245 	 * Intercept all writes by default and poke holes as needed.  Pass
4246 	 * through reads for all valid registers by default in x2APIC+APICv
4247 	 * mode, only the current timer count needs on-demand emulation by KVM.
4248 	 */
4249 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4250 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4251 	else
4252 		msr_bitmap[read_idx] = ~0ull;
4253 	msr_bitmap[write_idx] = ~0ull;
4254 
4255 	/*
4256 	 * TPR reads and writes can be virtualized even if virtual interrupt
4257 	 * delivery is not in use.
4258 	 */
4259 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4260 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4261 
4262 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4263 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4264 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4265 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4266 		if (enable_ipiv)
4267 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4268 	}
4269 }
4270 
4271 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4272 {
4273 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4274 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4275 	u32 i;
4276 
4277 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4278 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4279 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4280 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4281 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4282 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4283 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4284 	}
4285 }
4286 
4287 static void vmx_recalc_pmu_msr_intercepts(struct kvm_vcpu *vcpu)
4288 {
4289 	u64 vm_exit_controls_bits = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
4290 				    VM_EXIT_SAVE_IA32_PERF_GLOBAL_CTRL;
4291 	bool has_mediated_pmu = kvm_vcpu_has_mediated_pmu(vcpu);
4292 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4293 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4294 	bool intercept = !has_mediated_pmu;
4295 	int i;
4296 
4297 	if (!enable_mediated_pmu)
4298 		return;
4299 
4300 	if (!cpu_has_save_perf_global_ctrl()) {
4301 		vm_exit_controls_bits &= ~VM_EXIT_SAVE_IA32_PERF_GLOBAL_CTRL;
4302 
4303 		if (has_mediated_pmu)
4304 			vmx_add_autostore_msr(vmx, MSR_CORE_PERF_GLOBAL_CTRL);
4305 		else
4306 			vmx_remove_autostore_msr(vmx, MSR_CORE_PERF_GLOBAL_CTRL);
4307 	}
4308 
4309 	vm_entry_controls_changebit(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
4310 				    has_mediated_pmu);
4311 
4312 	vm_exit_controls_changebit(vmx, vm_exit_controls_bits, has_mediated_pmu);
4313 
4314 	for (i = 0; i < pmu->nr_arch_gp_counters; i++) {
4315 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PERFCTR0 + i,
4316 					  MSR_TYPE_RW, intercept);
4317 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PMC0 + i, MSR_TYPE_RW,
4318 					  intercept || !fw_writes_is_enabled(vcpu));
4319 	}
4320 	for ( ; i < kvm_pmu_cap.num_counters_gp; i++) {
4321 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PERFCTR0 + i,
4322 					  MSR_TYPE_RW, true);
4323 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PMC0 + i,
4324 					  MSR_TYPE_RW, true);
4325 	}
4326 
4327 	for (i = 0; i < pmu->nr_arch_fixed_counters; i++)
4328 		vmx_set_intercept_for_msr(vcpu, MSR_CORE_PERF_FIXED_CTR0 + i,
4329 					  MSR_TYPE_RW, intercept);
4330 	for ( ; i < kvm_pmu_cap.num_counters_fixed; i++)
4331 		vmx_set_intercept_for_msr(vcpu, MSR_CORE_PERF_FIXED_CTR0 + i,
4332 					  MSR_TYPE_RW, true);
4333 
4334 	intercept = kvm_need_perf_global_ctrl_intercept(vcpu);
4335 	vmx_set_intercept_for_msr(vcpu, MSR_CORE_PERF_GLOBAL_STATUS,
4336 				  MSR_TYPE_RW, intercept);
4337 	vmx_set_intercept_for_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4338 				  MSR_TYPE_RW, intercept);
4339 	vmx_set_intercept_for_msr(vcpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
4340 				  MSR_TYPE_RW, intercept);
4341 }
4342 
4343 static void vmx_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4344 {
4345 	bool intercept;
4346 
4347 	if (!cpu_has_vmx_msr_bitmap())
4348 		return;
4349 
4350 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
4351 #ifdef CONFIG_X86_64
4352 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
4353 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
4354 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
4355 #endif
4356 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
4357 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
4358 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
4359 	if (kvm_cstate_in_guest(vcpu->kvm)) {
4360 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
4361 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
4362 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
4363 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
4364 	}
4365 	if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
4366 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
4367 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
4368 	}
4369 
4370 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4371 	if (vmx_pt_mode_is_host_guest())
4372 		pt_update_intercept_for_msr(vcpu);
4373 
4374 	if (vcpu->arch.xfd_no_write_intercept)
4375 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW);
4376 
4377 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
4378 				  !to_vmx(vcpu)->spec_ctrl);
4379 
4380 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
4381 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
4382 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
4383 
4384 	if (cpu_feature_enabled(X86_FEATURE_IBPB))
4385 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
4386 					  !guest_has_pred_cmd_msr(vcpu));
4387 
4388 	if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
4389 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
4390 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4391 
4392 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
4393 		intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
4394 
4395 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, intercept);
4396 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, intercept);
4397 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, intercept);
4398 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, intercept);
4399 	}
4400 
4401 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK) || kvm_cpu_cap_has(X86_FEATURE_IBT)) {
4402 		intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) &&
4403 			    !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
4404 
4405 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, intercept);
4406 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, intercept);
4407 	}
4408 
4409 	vmx_recalc_pmu_msr_intercepts(vcpu);
4410 
4411 	/*
4412 	 * x2APIC and LBR MSR intercepts are modified on-demand and cannot be
4413 	 * filtered by userspace.
4414 	 */
4415 }
4416 
4417 static void vmx_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
4418 {
4419 	exec_controls_changebit(to_vmx(vcpu), CPU_BASED_RDPMC_EXITING,
4420 				kvm_need_rdpmc_intercept(vcpu));
4421 }
4422 
4423 void vmx_recalc_intercepts(struct kvm_vcpu *vcpu)
4424 {
4425 	vmx_recalc_instruction_intercepts(vcpu);
4426 	vmx_recalc_msr_intercepts(vcpu);
4427 }
4428 
4429 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4430 						int vector)
4431 {
4432 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4433 
4434 	/*
4435 	 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4436 	 * and freed, and must not be accessed outside of vcpu->mutex.  The
4437 	 * vCPU's cached PI NV is valid if and only if posted interrupts
4438 	 * enabled in its vmcs12, i.e. checking the vector also checks that
4439 	 * L1 has enabled posted interrupts for L2.
4440 	 */
4441 	if (is_guest_mode(vcpu) &&
4442 	    vector == vmx->nested.posted_intr_nv) {
4443 		/*
4444 		 * If a posted intr is not recognized by hardware,
4445 		 * we will accomplish it in the next vmentry.
4446 		 */
4447 		vmx->nested.pi_pending = true;
4448 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4449 
4450 		/*
4451 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4452 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4453 		 * request if triggering a posted interrupt "fails" because
4454 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4455 		 * the smb_wmb() in kvm_make_request() only ensures everything
4456 		 * done before making the request is visible when the request
4457 		 * is visible, it doesn't ensure ordering between the store to
4458 		 * vcpu->requests and the load from vcpu->mode.
4459 		 */
4460 		smp_mb__after_atomic();
4461 
4462 		/* the PIR and ON have been set by L1. */
4463 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4464 		return 0;
4465 	}
4466 	return -1;
4467 }
4468 /*
4469  * Send interrupt to vcpu via posted interrupt way.
4470  * 1. If target vcpu is running(non-root mode), send posted interrupt
4471  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4472  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4473  * interrupt from PIR in next vmentry.
4474  */
4475 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4476 {
4477 	struct vcpu_vt *vt = to_vt(vcpu);
4478 	int r;
4479 
4480 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4481 	if (!r)
4482 		return 0;
4483 
4484 	/* Note, this is called iff the local APIC is in-kernel. */
4485 	if (!vcpu->arch.apic->apicv_active)
4486 		return -1;
4487 
4488 	__vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector);
4489 	return 0;
4490 }
4491 
4492 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4493 			   int trig_mode, int vector)
4494 {
4495 	struct kvm_vcpu *vcpu = apic->vcpu;
4496 
4497 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4498 		kvm_lapic_set_irr(vector, apic);
4499 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4500 		kvm_vcpu_kick(vcpu);
4501 	} else {
4502 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4503 					   trig_mode, vector);
4504 	}
4505 }
4506 
4507 /*
4508  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4509  * will not change in the lifetime of the guest.
4510  * Note that host-state that does change is set elsewhere. E.g., host-state
4511  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4512  */
4513 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4514 {
4515 	u32 low32, high32;
4516 	unsigned long tmpl;
4517 	unsigned long cr0, cr3, cr4;
4518 
4519 	cr0 = read_cr0();
4520 	WARN_ON(cr0 & X86_CR0_TS);
4521 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4522 
4523 	/*
4524 	 * Save the most likely value for this task's CR3 in the VMCS.
4525 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4526 	 */
4527 	cr3 = __read_cr3();
4528 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4529 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4530 
4531 	/* Save the most likely value for this task's CR4 in the VMCS. */
4532 	cr4 = cr4_read_shadow();
4533 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4534 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4535 
4536 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4537 #ifdef CONFIG_X86_64
4538 	/*
4539 	 * Load null selectors, so we can avoid reloading them in
4540 	 * vmx_prepare_switch_to_host(), in case userspace uses
4541 	 * the null selectors too (the expected case).
4542 	 */
4543 	vmcs_write16(HOST_DS_SELECTOR, 0);
4544 	vmcs_write16(HOST_ES_SELECTOR, 0);
4545 #else
4546 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4547 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4548 #endif
4549 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4550 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4551 
4552 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4553 
4554 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4555 
4556 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4557 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4558 
4559 	/*
4560 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4561 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4562 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4563 	 * have already done so!).
4564 	 */
4565 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4566 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4567 
4568 	rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4569 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4570 
4571 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4572 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4573 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4574 	}
4575 
4576 	if (cpu_has_load_ia32_efer())
4577 		vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4578 
4579 	/*
4580 	 * Supervisor shadow stack is not enabled on host side, i.e.,
4581 	 * host IA32_S_CET.SHSTK_EN bit is guaranteed to 0 now, per SDM
4582 	 * description(RDSSP instruction), SSP is not readable in CPL0,
4583 	 * so resetting the two registers to 0s at VM-Exit does no harm
4584 	 * to kernel execution. When execution flow exits to userspace,
4585 	 * SSP is reloaded from IA32_PL3_SSP. Check SDM Vol.2A/B Chapter
4586 	 * 3 and 4 for details.
4587 	 */
4588 	if (cpu_has_load_cet_ctrl()) {
4589 		vmcs_writel(HOST_S_CET, kvm_host.s_cet);
4590 		vmcs_writel(HOST_SSP, 0);
4591 		vmcs_writel(HOST_INTR_SSP_TABLE, 0);
4592 	}
4593 
4594 	/*
4595 	 * When running a guest with a mediated PMU, guest state is resident in
4596 	 * hardware after VM-Exit.  Zero PERF_GLOBAL_CTRL on exit so that host
4597 	 * activity doesn't bleed into the guest counters.  When running with
4598 	 * an emulated PMU, PERF_GLOBAL_CTRL is dynamically computed on every
4599 	 * entry/exit to merge guest and host PMU usage.
4600 	 */
4601 	if (enable_mediated_pmu)
4602 		vmcs_write64(HOST_IA32_PERF_GLOBAL_CTRL, 0);
4603 }
4604 
4605 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4606 {
4607 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4608 
4609 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4610 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4611 	if (!enable_ept) {
4612 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4613 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4614 	}
4615 	if (is_guest_mode(&vmx->vcpu))
4616 		vcpu->arch.cr4_guest_owned_bits &=
4617 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4618 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4619 }
4620 
4621 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4622 {
4623 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4624 
4625 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4626 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4627 
4628 	if (!enable_vnmi)
4629 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4630 
4631 	if (!enable_preemption_timer)
4632 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4633 
4634 	return pin_based_exec_ctrl;
4635 }
4636 
4637 static u32 vmx_get_initial_vmentry_ctrl(void)
4638 {
4639 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4640 
4641 	if (vmx_pt_mode_is_system())
4642 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4643 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4644 	/*
4645 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4646 	 */
4647 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4648 			  VM_ENTRY_LOAD_IA32_EFER |
4649 			  VM_ENTRY_IA32E_MODE);
4650 
4651 	return vmentry_ctrl;
4652 }
4653 
4654 static u32 vmx_get_initial_vmexit_ctrl(void)
4655 {
4656 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4657 
4658 	/*
4659 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4660 	 * nested virtualization and thus allowed to be set in vmcs12.
4661 	 */
4662 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4663 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4664 
4665 	if (vmx_pt_mode_is_system())
4666 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4667 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4668 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4669 	return vmexit_ctrl &
4670 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER |
4671 		  VM_EXIT_SAVE_IA32_PERF_GLOBAL_CTRL);
4672 }
4673 
4674 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4675 {
4676 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4677 
4678 	guard(vmx_vmcs01)(vcpu);
4679 
4680 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4681 
4682 	secondary_exec_controls_changebit(vmx,
4683 					  SECONDARY_EXEC_APIC_REGISTER_VIRT |
4684 					  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY,
4685 					  kvm_vcpu_apicv_active(vcpu));
4686 	if (enable_ipiv)
4687 		tertiary_exec_controls_changebit(vmx, TERTIARY_EXEC_IPI_VIRT,
4688 						 kvm_vcpu_apicv_active(vcpu));
4689 
4690 	vmx_update_msr_bitmap_x2apic(vcpu);
4691 }
4692 
4693 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4694 {
4695 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4696 
4697 	/*
4698 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4699 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4700 	 */
4701 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4702 			  CPU_BASED_USE_IO_BITMAPS |
4703 			  CPU_BASED_MONITOR_TRAP_FLAG |
4704 			  CPU_BASED_PAUSE_EXITING);
4705 
4706 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4707 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4708 			  CPU_BASED_NMI_WINDOW_EXITING);
4709 
4710 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4711 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4712 
4713 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4714 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4715 
4716 #ifdef CONFIG_X86_64
4717 	if (exec_control & CPU_BASED_TPR_SHADOW)
4718 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4719 				  CPU_BASED_CR8_STORE_EXITING);
4720 	else
4721 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4722 				CPU_BASED_CR8_LOAD_EXITING;
4723 #endif
4724 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4725 	if (enable_ept)
4726 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4727 				  CPU_BASED_CR3_STORE_EXITING |
4728 				  CPU_BASED_INVLPG_EXITING);
4729 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4730 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4731 				CPU_BASED_MONITOR_EXITING);
4732 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4733 		exec_control &= ~CPU_BASED_HLT_EXITING;
4734 	return exec_control;
4735 }
4736 
4737 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4738 {
4739 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4740 
4741 	/*
4742 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4743 	 * APICv is inhibited.
4744 	 */
4745 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4746 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4747 
4748 	return exec_control;
4749 }
4750 
4751 /*
4752  * Adjust a single secondary execution control bit to intercept/allow an
4753  * instruction in the guest.  This is usually done based on whether or not a
4754  * feature has been exposed to the guest in order to correctly emulate faults.
4755  */
4756 static inline void
4757 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4758 				  u32 control, bool enabled, bool exiting)
4759 {
4760 	/*
4761 	 * If the control is for an opt-in feature, clear the control if the
4762 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4763 	 * control is opt-out, i.e. an exiting control, clear the control if
4764 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4765 	 * disabled for the associated instruction.  Note, the caller is
4766 	 * responsible presetting exec_control to set all supported bits.
4767 	 */
4768 	if (enabled == exiting)
4769 		*exec_control &= ~control;
4770 
4771 	/*
4772 	 * Update the nested MSR settings so that a nested VMM can/can't set
4773 	 * controls for features that are/aren't exposed to the guest.
4774 	 */
4775 	if (nested &&
4776 	    kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4777 		/*
4778 		 * All features that can be added or removed to VMX MSRs must
4779 		 * be supported in the first place for nested virtualization.
4780 		 */
4781 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4782 			enabled = false;
4783 
4784 		if (enabled)
4785 			vmx->nested.msrs.secondary_ctls_high |= control;
4786 		else
4787 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4788 	}
4789 }
4790 
4791 /*
4792  * Wrapper macro for the common case of adjusting a secondary execution control
4793  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4794  * verifies that the control is actually supported by KVM and hardware.
4795  */
4796 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4797 ({												\
4798 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4799 	bool __enabled;										\
4800 												\
4801 	if (cpu_has_vmx_##name()) {								\
4802 		__enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name);			\
4803 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4804 						  __enabled, exiting);				\
4805 	}											\
4806 })
4807 
4808 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4809 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4810 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4811 
4812 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4813 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4814 
4815 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4816 {
4817 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4818 
4819 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4820 
4821 	if (vmx_pt_mode_is_system())
4822 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4823 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4824 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4825 	if (vmx->vpid == 0)
4826 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4827 	if (!enable_ept) {
4828 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4829 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4830 		enable_unrestricted_guest = 0;
4831 	}
4832 	if (!enable_unrestricted_guest)
4833 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4834 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4835 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4836 	if (!kvm_vcpu_apicv_active(vcpu))
4837 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4838 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4839 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4840 
4841 	/*
4842 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4843 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4844 	 */
4845 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4846 
4847 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4848 	 * in vmx_set_cr4.  */
4849 	exec_control &= ~SECONDARY_EXEC_DESC;
4850 
4851 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4852 	   (handle_vmptrld).
4853 	   We can NOT enable shadow_vmcs here because we don't have yet
4854 	   a current VMCS12
4855 	*/
4856 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4857 
4858 	/*
4859 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4860 	 * it needs to be set here when dirty logging is already active, e.g.
4861 	 * if this vCPU was created after dirty logging was enabled.
4862 	 */
4863 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4864 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4865 
4866 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4867 
4868 	/*
4869 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4870 	 * feature is exposed to the guest.  This creates a virtualization hole
4871 	 * if both are supported in hardware but only one is exposed to the
4872 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4873 	 * is advertised is preferable to emulating the advertised instruction
4874 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4875 	 */
4876 	if (cpu_has_vmx_rdtscp()) {
4877 		bool rdpid_or_rdtscp_enabled =
4878 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4879 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4880 
4881 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4882 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4883 						  rdpid_or_rdtscp_enabled, false);
4884 	}
4885 
4886 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4887 
4888 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4889 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4890 
4891 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4892 				    ENABLE_USR_WAIT_PAUSE, false);
4893 
4894 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4895 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4896 
4897 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4898 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4899 
4900 	return exec_control;
4901 }
4902 
4903 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4904 {
4905 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4906 }
4907 
4908 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4909 {
4910 	struct page *pages;
4911 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4912 
4913 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4914 		return 0;
4915 
4916 	if (kvm_vmx->pid_table)
4917 		return 0;
4918 
4919 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4920 			    vmx_get_pid_table_order(kvm));
4921 	if (!pages)
4922 		return -ENOMEM;
4923 
4924 	kvm_vmx->pid_table = (void *)page_address(pages);
4925 	return 0;
4926 }
4927 
4928 int vmx_vcpu_precreate(struct kvm *kvm)
4929 {
4930 	return vmx_alloc_ipiv_pid_table(kvm);
4931 }
4932 
4933 #define VMX_XSS_EXIT_BITMAP 0
4934 
4935 static void init_vmcs(struct vcpu_vmx *vmx)
4936 {
4937 	struct kvm *kvm = vmx->vcpu.kvm;
4938 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4939 
4940 	if (nested)
4941 		nested_vmx_set_vmcs_shadowing_bitmap();
4942 
4943 	if (cpu_has_vmx_msr_bitmap())
4944 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4945 
4946 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4947 
4948 	/* Control */
4949 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4950 
4951 	exec_controls_set(vmx, vmx_exec_control(vmx));
4952 
4953 	if (cpu_has_secondary_exec_ctrls()) {
4954 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4955 		if (vmx->ve_info)
4956 			vmcs_write64(VE_INFORMATION_ADDRESS,
4957 				     __pa(vmx->ve_info));
4958 	}
4959 
4960 	if (cpu_has_tertiary_exec_ctrls())
4961 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4962 
4963 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4964 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4965 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4966 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4967 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4968 
4969 		vmcs_write16(GUEST_INTR_STATUS, 0);
4970 
4971 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4972 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc)));
4973 	}
4974 
4975 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4976 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4977 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4978 	}
4979 
4980 	if (!kvm_pause_in_guest(kvm)) {
4981 		vmcs_write32(PLE_GAP, ple_gap);
4982 		vmx->ple_window = ple_window;
4983 		vmx->ple_window_dirty = true;
4984 	}
4985 
4986 	if (kvm_notify_vmexit_enabled(kvm))
4987 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4988 
4989 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4990 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4991 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4992 
4993 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4994 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4995 	vmx_set_constant_host_state(vmx);
4996 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4997 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4998 
4999 	if (cpu_has_vmx_vmfunc())
5000 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
5001 
5002 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5003 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.val));
5004 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5005 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
5006 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5007 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
5008 
5009 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5010 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5011 
5012 	vm_exit_controls_set(vmx, vmx_get_initial_vmexit_ctrl());
5013 
5014 	/* 22.2.1, 20.8.1 */
5015 	vm_entry_controls_set(vmx, vmx_get_initial_vmentry_ctrl());
5016 
5017 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
5018 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
5019 
5020 	set_cr4_guest_host_mask(vmx);
5021 
5022 	if (vmx->vpid != 0)
5023 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5024 
5025 	if (cpu_has_vmx_xsaves())
5026 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5027 
5028 	if (enable_pml) {
5029 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5030 		vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
5031 	}
5032 
5033 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
5034 
5035 	if (vmx_pt_mode_is_host_guest()) {
5036 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
5037 		/* Bit[6~0] are forced to 1, writes are ignored. */
5038 		vmx->pt_desc.guest.output_mask = 0x7F;
5039 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
5040 	}
5041 
5042 	vmcs_write32(GUEST_SYSENTER_CS, 0);
5043 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
5044 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
5045 
5046 	vmx_guest_debugctl_write(&vmx->vcpu, 0);
5047 
5048 	if (cpu_has_vmx_tpr_shadow()) {
5049 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5050 		if (cpu_need_tpr_shadow(&vmx->vcpu))
5051 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5052 				     __pa(vmx->vcpu.arch.apic->regs));
5053 		vmcs_write32(TPR_THRESHOLD, 0);
5054 	}
5055 
5056 	vmx_setup_uret_msrs(vmx);
5057 }
5058 
5059 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
5060 {
5061 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5062 
5063 	init_vmcs(vmx);
5064 
5065 	if (nested &&
5066 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
5067 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
5068 
5069 	vcpu_setup_sgx_lepubkeyhash(vcpu);
5070 
5071 	vmx->nested.posted_intr_nv = -1;
5072 	vmx->nested.vmxon_ptr = INVALID_GPA;
5073 	vmx->nested.current_vmptr = INVALID_GPA;
5074 
5075 #ifdef CONFIG_KVM_HYPERV
5076 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
5077 #endif
5078 
5079 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
5080 		vcpu->arch.microcode_version = 0x100000000ULL;
5081 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
5082 
5083 	/*
5084 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
5085 	 * or POSTED_INTR_WAKEUP_VECTOR.
5086 	 */
5087 	vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
5088 	__pi_set_sn(&vmx->vt.pi_desc);
5089 }
5090 
5091 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5092 {
5093 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5094 
5095 	if (!init_event)
5096 		__vmx_vcpu_reset(vcpu);
5097 
5098 	vmx->rmode.vm86_active = 0;
5099 	vmx->spec_ctrl = 0;
5100 
5101 	vmx->msr_ia32_umwait_control = 0;
5102 
5103 	vmx->hv_deadline_tsc = -1;
5104 	kvm_set_cr8(vcpu, 0);
5105 
5106 	seg_setup(VCPU_SREG_CS);
5107 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5108 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5109 
5110 	seg_setup(VCPU_SREG_DS);
5111 	seg_setup(VCPU_SREG_ES);
5112 	seg_setup(VCPU_SREG_FS);
5113 	seg_setup(VCPU_SREG_GS);
5114 	seg_setup(VCPU_SREG_SS);
5115 
5116 	vmcs_write16(GUEST_TR_SELECTOR, 0);
5117 	vmcs_writel(GUEST_TR_BASE, 0);
5118 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5119 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5120 
5121 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5122 	vmcs_writel(GUEST_LDTR_BASE, 0);
5123 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5124 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5125 
5126 	vmcs_writel(GUEST_GDTR_BASE, 0);
5127 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5128 
5129 	vmcs_writel(GUEST_IDTR_BASE, 0);
5130 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5131 
5132 	vmx_segment_cache_clear(vmx);
5133 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
5134 
5135 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5136 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5137 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5138 	if (kvm_mpx_supported())
5139 		vmcs_write64(GUEST_BNDCFGS, 0);
5140 
5141 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5142 
5143 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
5144 		vmcs_writel(GUEST_SSP, 0);
5145 		vmcs_writel(GUEST_INTR_SSP_TABLE, 0);
5146 	}
5147 	if (kvm_cpu_cap_has(X86_FEATURE_IBT) ||
5148 	    kvm_cpu_cap_has(X86_FEATURE_SHSTK))
5149 		vmcs_writel(GUEST_S_CET, 0);
5150 
5151 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5152 
5153 	vpid_sync_context(vmx->vpid);
5154 
5155 	vmx_update_fb_clear_dis(vcpu, vmx);
5156 }
5157 
5158 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
5159 {
5160 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5161 }
5162 
5163 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
5164 {
5165 	if (!enable_vnmi ||
5166 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5167 		vmx_enable_irq_window(vcpu);
5168 		return;
5169 	}
5170 
5171 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5172 }
5173 
5174 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
5175 {
5176 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5177 	uint32_t intr;
5178 	int irq = vcpu->arch.interrupt.nr;
5179 
5180 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
5181 
5182 	++vcpu->stat.irq_injections;
5183 	if (vmx->rmode.vm86_active) {
5184 		int inc_eip = 0;
5185 		if (vcpu->arch.interrupt.soft)
5186 			inc_eip = vcpu->arch.event_exit_inst_len;
5187 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
5188 		return;
5189 	}
5190 	intr = irq | INTR_INFO_VALID_MASK;
5191 	if (vcpu->arch.interrupt.soft) {
5192 		intr |= INTR_TYPE_SOFT_INTR;
5193 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5194 			     vmx->vcpu.arch.event_exit_inst_len);
5195 	} else
5196 		intr |= INTR_TYPE_EXT_INTR;
5197 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5198 
5199 	vmx_clear_hlt(vcpu);
5200 }
5201 
5202 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5203 {
5204 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5205 
5206 	if (!enable_vnmi) {
5207 		/*
5208 		 * Tracking the NMI-blocked state in software is built upon
5209 		 * finding the next open IRQ window. This, in turn, depends on
5210 		 * well-behaving guests: They have to keep IRQs disabled at
5211 		 * least as long as the NMI handler runs. Otherwise we may
5212 		 * cause NMI nesting, maybe breaking the guest. But as this is
5213 		 * highly unlikely, we can live with the residual risk.
5214 		 */
5215 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5216 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
5217 	}
5218 
5219 	++vcpu->stat.nmi_injections;
5220 	vmx->loaded_vmcs->nmi_known_unmasked = false;
5221 
5222 	if (vmx->rmode.vm86_active) {
5223 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
5224 		return;
5225 	}
5226 
5227 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5228 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5229 
5230 	vmx_clear_hlt(vcpu);
5231 }
5232 
5233 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5234 {
5235 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5236 	bool masked;
5237 
5238 	if (!enable_vnmi)
5239 		return vmx->loaded_vmcs->soft_vnmi_blocked;
5240 	if (vmx->loaded_vmcs->nmi_known_unmasked)
5241 		return false;
5242 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5243 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5244 	return masked;
5245 }
5246 
5247 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5248 {
5249 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5250 
5251 	if (!enable_vnmi) {
5252 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5253 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5254 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5255 		}
5256 	} else {
5257 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5258 		if (masked)
5259 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5260 				      GUEST_INTR_STATE_NMI);
5261 		else
5262 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5263 					GUEST_INTR_STATE_NMI);
5264 	}
5265 }
5266 
5267 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5268 {
5269 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5270 		return false;
5271 
5272 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5273 		return true;
5274 
5275 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5276 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5277 		 GUEST_INTR_STATE_NMI));
5278 }
5279 
5280 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5281 {
5282 	if (to_vmx(vcpu)->nested.nested_run_pending)
5283 		return -EBUSY;
5284 
5285 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5286 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5287 		return -EBUSY;
5288 
5289 	return !vmx_nmi_blocked(vcpu);
5290 }
5291 
5292 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5293 {
5294 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5295 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5296 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5297 }
5298 
5299 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5300 {
5301 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5302 		return false;
5303 
5304 	return __vmx_interrupt_blocked(vcpu);
5305 }
5306 
5307 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5308 {
5309 	if (to_vmx(vcpu)->nested.nested_run_pending)
5310 		return -EBUSY;
5311 
5312 	/*
5313 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5314 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5315 	 */
5316 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5317 		return -EBUSY;
5318 
5319 	return !vmx_interrupt_blocked(vcpu);
5320 }
5321 
5322 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5323 {
5324 	void __user *ret;
5325 
5326 	if (enable_unrestricted_guest)
5327 		return 0;
5328 
5329 	mutex_lock(&kvm->slots_lock);
5330 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5331 				      PAGE_SIZE * 3);
5332 	mutex_unlock(&kvm->slots_lock);
5333 
5334 	if (IS_ERR(ret))
5335 		return PTR_ERR(ret);
5336 
5337 	to_kvm_vmx(kvm)->tss_addr = addr;
5338 
5339 	return init_rmode_tss(kvm, ret);
5340 }
5341 
5342 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5343 {
5344 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5345 	return 0;
5346 }
5347 
5348 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5349 {
5350 	switch (vec) {
5351 	case BP_VECTOR:
5352 		/*
5353 		 * Update instruction length as we may reinject the exception
5354 		 * from user space while in guest debugging mode.
5355 		 */
5356 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5357 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5358 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5359 			return false;
5360 		fallthrough;
5361 	case DB_VECTOR:
5362 		return !(vcpu->guest_debug &
5363 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5364 	case DE_VECTOR:
5365 	case OF_VECTOR:
5366 	case BR_VECTOR:
5367 	case UD_VECTOR:
5368 	case DF_VECTOR:
5369 	case SS_VECTOR:
5370 	case GP_VECTOR:
5371 	case MF_VECTOR:
5372 		return true;
5373 	}
5374 	return false;
5375 }
5376 
5377 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5378 				  int vec, u32 err_code)
5379 {
5380 	/*
5381 	 * Instruction with address size override prefix opcode 0x67
5382 	 * Cause the #SS fault with 0 error code in VM86 mode.
5383 	 */
5384 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5385 		if (kvm_emulate_instruction(vcpu, 0)) {
5386 			if (vcpu->arch.halt_request) {
5387 				vcpu->arch.halt_request = 0;
5388 				return kvm_emulate_halt_noskip(vcpu);
5389 			}
5390 			return 1;
5391 		}
5392 		return 0;
5393 	}
5394 
5395 	/*
5396 	 * Forward all other exceptions that are valid in real mode.
5397 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5398 	 *        the required debugging infrastructure rework.
5399 	 */
5400 	kvm_queue_exception(vcpu, vec);
5401 	return 1;
5402 }
5403 
5404 static int handle_machine_check(struct kvm_vcpu *vcpu)
5405 {
5406 	/* handled by vmx_vcpu_run() */
5407 	return 1;
5408 }
5409 
5410 /*
5411  * If the host has split lock detection disabled, then #AC is
5412  * unconditionally injected into the guest, which is the pre split lock
5413  * detection behaviour.
5414  *
5415  * If the host has split lock detection enabled then #AC is
5416  * only injected into the guest when:
5417  *  - Guest CPL == 3 (user mode)
5418  *  - Guest has #AC detection enabled in CR0
5419  *  - Guest EFLAGS has AC bit set
5420  */
5421 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5422 {
5423 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5424 		return true;
5425 
5426 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5427 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5428 }
5429 
5430 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5431 {
5432 	return vcpu->arch.guest_fpu.fpstate->xfd &&
5433 	       !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5434 }
5435 
5436 static int vmx_handle_page_fault(struct kvm_vcpu *vcpu, u32 error_code)
5437 {
5438 	unsigned long cr2 = vmx_get_exit_qual(vcpu);
5439 
5440 	if (vcpu->arch.apf.host_apf_flags)
5441 		goto handle_pf;
5442 
5443 	/* When using EPT, KVM intercepts #PF only to detect illegal GPAs. */
5444 	WARN_ON_ONCE(enable_ept && !allow_smaller_maxphyaddr);
5445 
5446 	/*
5447 	 * On SGX2 hardware, EPCM violations are delivered as #PF with the SGX
5448 	 * flag set in the error code (SGX1 hardware generates #GP(0)).  EPCM
5449 	 * violations have nothing to do with shadow paging and can never be
5450 	 * resolved by KVM; always reflect them into the guest.
5451 	 */
5452 	if (error_code & PFERR_SGX_MASK) {
5453 		WARN_ON_ONCE(!IS_ENABLED(CONFIG_X86_SGX_KVM) ||
5454 			     !cpu_feature_enabled(X86_FEATURE_SGX2));
5455 
5456 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX2))
5457 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5458 		else
5459 			kvm_inject_gp(vcpu, 0);
5460 		return 1;
5461 	}
5462 
5463 	/*
5464 	 * If EPT is enabled, fixup and inject the #PF.  KVM intercepts #PFs
5465 	 * only to set PFERR_RSVD as appropriate (hardware won't set RSVD due
5466 	 * to the GPA being legal with respect to host.MAXPHYADDR).
5467 	 */
5468 	if (enable_ept) {
5469 		kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5470 		return 1;
5471 	}
5472 
5473 handle_pf:
5474 	return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5475 }
5476 
5477 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5478 {
5479 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5480 	struct kvm_run *kvm_run = vcpu->run;
5481 	u32 intr_info, ex_no, error_code;
5482 	unsigned long dr6;
5483 	u32 vect_info;
5484 
5485 	vect_info = vmx->idt_vectoring_info;
5486 	intr_info = vmx_get_intr_info(vcpu);
5487 
5488 	/*
5489 	 * Machine checks are handled by handle_exception_irqoff(), or by
5490 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5491 	 * vmx_vcpu_enter_exit().
5492 	 */
5493 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5494 		return 1;
5495 
5496 	/*
5497 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5498 	 * This ensures the nested_vmx check is not skipped so vmexit can
5499 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5500 	 * point.
5501 	 */
5502 	if (is_nm_fault(intr_info)) {
5503 		kvm_queue_exception_p(vcpu, NM_VECTOR,
5504 				      is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5505 		return 1;
5506 	}
5507 
5508 	if (is_invalid_opcode(intr_info))
5509 		return handle_ud(vcpu);
5510 
5511 	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5512 		struct vmx_ve_information *ve_info = vmx->ve_info;
5513 
5514 		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5515 			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5516 		dump_vmcs(vcpu);
5517 		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5518 		return 1;
5519 	}
5520 
5521 	error_code = 0;
5522 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5523 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5524 
5525 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5526 		WARN_ON_ONCE(!enable_vmware_backdoor);
5527 
5528 		/*
5529 		 * VMware backdoor emulation on #GP interception only handles
5530 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5531 		 * error code on #GP.
5532 		 */
5533 		if (error_code) {
5534 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5535 			return 1;
5536 		}
5537 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5538 	}
5539 
5540 	/*
5541 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5542 	 * MMIO, it is better to report an internal error.
5543 	 * See the comments in vmx_handle_exit.
5544 	 */
5545 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5546 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5547 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5548 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5549 		vcpu->run->internal.ndata = 4;
5550 		vcpu->run->internal.data[0] = vect_info;
5551 		vcpu->run->internal.data[1] = intr_info;
5552 		vcpu->run->internal.data[2] = error_code;
5553 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5554 		return 0;
5555 	}
5556 
5557 	if (is_page_fault(intr_info))
5558 		return vmx_handle_page_fault(vcpu, error_code);
5559 
5560 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5561 
5562 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5563 		return handle_rmode_exception(vcpu, ex_no, error_code);
5564 
5565 	switch (ex_no) {
5566 	case DB_VECTOR:
5567 		dr6 = vmx_get_exit_qual(vcpu);
5568 		if (!(vcpu->guest_debug &
5569 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5570 			/*
5571 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5572 			 * instruction.  ICEBP generates a trap-like #DB, but
5573 			 * despite its interception control being tied to #DB,
5574 			 * is an instruction intercept, i.e. the VM-Exit occurs
5575 			 * on the ICEBP itself.  Use the inner "skip" helper to
5576 			 * avoid single-step #DB and MTF updates, as ICEBP is
5577 			 * higher priority.  Note, skipping ICEBP still clears
5578 			 * STI and MOVSS blocking.
5579 			 *
5580 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5581 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5582 			 * blocking is active, as the CPU doesn't set the bit
5583 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5584 			 * consistency check that a single-step #DB is pending
5585 			 * in this scenario as the previous instruction cannot
5586 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5587 			 * don't modify RFLAGS), therefore the one instruction
5588 			 * delay when activating single-step breakpoints must
5589 			 * have already expired.  Note, the CPU sets/clears BS
5590 			 * as appropriate for all other VM-Exits types.
5591 			 */
5592 			if (is_icebp(intr_info))
5593 				WARN_ON(!skip_emulated_instruction(vcpu));
5594 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5595 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5596 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5597 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5598 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5599 
5600 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5601 			return 1;
5602 		}
5603 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5604 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5605 		fallthrough;
5606 	case BP_VECTOR:
5607 		/*
5608 		 * Update instruction length as we may reinject #BP from
5609 		 * user space while in guest debugging mode. Reading it for
5610 		 * #DB as well causes no harm, it is not used in that case.
5611 		 */
5612 		vmx->vcpu.arch.event_exit_inst_len =
5613 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5614 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5615 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5616 		kvm_run->debug.arch.exception = ex_no;
5617 		break;
5618 	case AC_VECTOR:
5619 		if (vmx_guest_inject_ac(vcpu)) {
5620 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5621 			return 1;
5622 		}
5623 
5624 		/*
5625 		 * Handle split lock. Depending on detection mode this will
5626 		 * either warn and disable split lock detection for this
5627 		 * task or force SIGBUS on it.
5628 		 */
5629 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5630 			return 1;
5631 		fallthrough;
5632 	default:
5633 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5634 		kvm_run->ex.exception = ex_no;
5635 		kvm_run->ex.error_code = error_code;
5636 		break;
5637 	}
5638 	return 0;
5639 }
5640 
5641 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5642 {
5643 	++vcpu->stat.irq_exits;
5644 	return 1;
5645 }
5646 
5647 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5648 {
5649 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5650 	vcpu->mmio_needed = 0;
5651 	return 0;
5652 }
5653 
5654 static int handle_io(struct kvm_vcpu *vcpu)
5655 {
5656 	unsigned long exit_qualification;
5657 	int size, in, string;
5658 	unsigned port;
5659 
5660 	exit_qualification = vmx_get_exit_qual(vcpu);
5661 	string = (exit_qualification & 16) != 0;
5662 
5663 	++vcpu->stat.io_exits;
5664 
5665 	if (string)
5666 		return kvm_emulate_instruction(vcpu, 0);
5667 
5668 	port = exit_qualification >> 16;
5669 	size = (exit_qualification & 7) + 1;
5670 	in = (exit_qualification & 8) != 0;
5671 
5672 	return kvm_fast_pio(vcpu, size, port, in);
5673 }
5674 
5675 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5676 {
5677 	/*
5678 	 * Patch in the VMCALL instruction:
5679 	 */
5680 	hypercall[0] = 0x0f;
5681 	hypercall[1] = 0x01;
5682 	hypercall[2] = 0xc1;
5683 }
5684 
5685 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5686 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5687 {
5688 	if (is_guest_mode(vcpu)) {
5689 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5690 		unsigned long orig_val = val;
5691 
5692 		/*
5693 		 * We get here when L2 changed cr0 in a way that did not change
5694 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5695 		 * but did change L0 shadowed bits. So we first calculate the
5696 		 * effective cr0 value that L1 would like to write into the
5697 		 * hardware. It consists of the L2-owned bits from the new
5698 		 * value combined with the L1-owned bits from L1's guest_cr0.
5699 		 */
5700 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5701 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5702 
5703 		if (kvm_set_cr0(vcpu, val))
5704 			return 1;
5705 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5706 		return 0;
5707 	} else {
5708 		return kvm_set_cr0(vcpu, val);
5709 	}
5710 }
5711 
5712 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5713 {
5714 	if (is_guest_mode(vcpu)) {
5715 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5716 		unsigned long orig_val = val;
5717 
5718 		/* analogously to handle_set_cr0 */
5719 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5720 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5721 		if (kvm_set_cr4(vcpu, val))
5722 			return 1;
5723 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5724 		return 0;
5725 	} else
5726 		return kvm_set_cr4(vcpu, val);
5727 }
5728 
5729 static int handle_desc(struct kvm_vcpu *vcpu)
5730 {
5731 	/*
5732 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5733 	 * and other code needs to be updated if UMIP can be guest owned.
5734 	 */
5735 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5736 
5737 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5738 	return kvm_emulate_instruction(vcpu, 0);
5739 }
5740 
5741 static int handle_cr(struct kvm_vcpu *vcpu)
5742 {
5743 	unsigned long exit_qualification, val;
5744 	int cr;
5745 	int reg;
5746 	int err;
5747 	int ret;
5748 
5749 	exit_qualification = vmx_get_exit_qual(vcpu);
5750 	cr = exit_qualification & 15;
5751 	reg = (exit_qualification >> 8) & 15;
5752 	switch ((exit_qualification >> 4) & 3) {
5753 	case 0: /* mov to cr */
5754 		val = kvm_register_read(vcpu, reg);
5755 		trace_kvm_cr_write(cr, val);
5756 		switch (cr) {
5757 		case 0:
5758 			err = handle_set_cr0(vcpu, val);
5759 			return kvm_complete_insn_gp(vcpu, err);
5760 		case 3:
5761 			WARN_ON_ONCE(enable_unrestricted_guest);
5762 
5763 			err = kvm_set_cr3(vcpu, val);
5764 			return kvm_complete_insn_gp(vcpu, err);
5765 		case 4:
5766 			err = handle_set_cr4(vcpu, val);
5767 			return kvm_complete_insn_gp(vcpu, err);
5768 		case 8: {
5769 				u8 cr8_prev = kvm_get_cr8(vcpu);
5770 				u8 cr8 = (u8)val;
5771 				err = kvm_set_cr8(vcpu, cr8);
5772 				ret = kvm_complete_insn_gp(vcpu, err);
5773 				if (lapic_in_kernel(vcpu))
5774 					return ret;
5775 				if (cr8_prev <= cr8)
5776 					return ret;
5777 				/*
5778 				 * TODO: we might be squashing a
5779 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5780 				 * KVM_EXIT_DEBUG here.
5781 				 */
5782 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5783 				return 0;
5784 			}
5785 		}
5786 		break;
5787 	case 2: /* clts */
5788 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5789 		return -EIO;
5790 	case 1: /*mov from cr*/
5791 		switch (cr) {
5792 		case 3:
5793 			WARN_ON_ONCE(enable_unrestricted_guest);
5794 
5795 			val = kvm_read_cr3(vcpu);
5796 			kvm_register_write(vcpu, reg, val);
5797 			trace_kvm_cr_read(cr, val);
5798 			return kvm_skip_emulated_instruction(vcpu);
5799 		case 8:
5800 			val = kvm_get_cr8(vcpu);
5801 			kvm_register_write(vcpu, reg, val);
5802 			trace_kvm_cr_read(cr, val);
5803 			return kvm_skip_emulated_instruction(vcpu);
5804 		}
5805 		break;
5806 	case 3: /* lmsw */
5807 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5808 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5809 		kvm_lmsw(vcpu, val);
5810 
5811 		return kvm_skip_emulated_instruction(vcpu);
5812 	default:
5813 		break;
5814 	}
5815 	vcpu->run->exit_reason = 0;
5816 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5817 	       (int)(exit_qualification >> 4) & 3, cr);
5818 	return 0;
5819 }
5820 
5821 static int handle_dr(struct kvm_vcpu *vcpu)
5822 {
5823 	unsigned long exit_qualification;
5824 	int dr, dr7, reg;
5825 	int err = 1;
5826 
5827 	exit_qualification = vmx_get_exit_qual(vcpu);
5828 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5829 
5830 	/* First, if DR does not exist, trigger UD */
5831 	if (!kvm_require_dr(vcpu, dr))
5832 		return 1;
5833 
5834 	if (vmx_get_cpl(vcpu) > 0)
5835 		goto out;
5836 
5837 	dr7 = vmcs_readl(GUEST_DR7);
5838 	if (dr7 & DR7_GD) {
5839 		/*
5840 		 * As the vm-exit takes precedence over the debug trap, we
5841 		 * need to emulate the latter, either for the host or the
5842 		 * guest debugging itself.
5843 		 */
5844 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5845 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5846 			vcpu->run->debug.arch.dr7 = dr7;
5847 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5848 			vcpu->run->debug.arch.exception = DB_VECTOR;
5849 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5850 			return 0;
5851 		} else {
5852 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5853 			return 1;
5854 		}
5855 	}
5856 
5857 	if (vcpu->guest_debug == 0) {
5858 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5859 
5860 		/*
5861 		 * No more DR vmexits; force a reload of the debug registers
5862 		 * and reenter on this instruction.  The next vmexit will
5863 		 * retrieve the full state of the debug registers.
5864 		 */
5865 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5866 		return 1;
5867 	}
5868 
5869 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5870 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5871 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5872 		err = 0;
5873 	} else {
5874 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5875 	}
5876 
5877 out:
5878 	return kvm_complete_insn_gp(vcpu, err);
5879 }
5880 
5881 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5882 {
5883 	get_debugreg(vcpu->arch.db[0], 0);
5884 	get_debugreg(vcpu->arch.db[1], 1);
5885 	get_debugreg(vcpu->arch.db[2], 2);
5886 	get_debugreg(vcpu->arch.db[3], 3);
5887 	get_debugreg(vcpu->arch.dr6, 6);
5888 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5889 
5890 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5891 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5892 
5893 	/*
5894 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5895 	 * a stale dr6 from the guest.
5896 	 */
5897 	set_debugreg(DR6_RESERVED, 6);
5898 }
5899 
5900 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5901 {
5902 	vmcs_writel(GUEST_DR7, val);
5903 }
5904 
5905 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5906 {
5907 	kvm_apic_update_ppr(vcpu);
5908 	return 1;
5909 }
5910 
5911 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5912 {
5913 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5914 
5915 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5916 
5917 	++vcpu->stat.irq_window_exits;
5918 	return 1;
5919 }
5920 
5921 static int handle_invlpg(struct kvm_vcpu *vcpu)
5922 {
5923 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5924 
5925 	kvm_mmu_invlpg(vcpu, exit_qualification);
5926 	return kvm_skip_emulated_instruction(vcpu);
5927 }
5928 
5929 static int handle_apic_access(struct kvm_vcpu *vcpu)
5930 {
5931 	if (likely(fasteoi)) {
5932 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5933 		int access_type, offset;
5934 
5935 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5936 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5937 		/*
5938 		 * Sane guest uses MOV to write EOI, with written value
5939 		 * not cared. So make a short-circuit here by avoiding
5940 		 * heavy instruction emulation.
5941 		 */
5942 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5943 		    (offset == APIC_EOI)) {
5944 			kvm_lapic_set_eoi(vcpu);
5945 			return kvm_skip_emulated_instruction(vcpu);
5946 		}
5947 	}
5948 	return kvm_emulate_instruction(vcpu, 0);
5949 }
5950 
5951 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5952 {
5953 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5954 	int vector = exit_qualification & 0xff;
5955 
5956 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5957 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5958 	return 1;
5959 }
5960 
5961 static int handle_apic_write(struct kvm_vcpu *vcpu)
5962 {
5963 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5964 
5965 	/*
5966 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5967 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5968 	 * for the access.  I.e. the correct value has already been  written to
5969 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5970 	 * retrieve the register value and emulate the access.
5971 	 */
5972 	u32 offset = exit_qualification & 0xff0;
5973 
5974 	kvm_apic_write_nodecode(vcpu, offset);
5975 	return 1;
5976 }
5977 
5978 static int handle_task_switch(struct kvm_vcpu *vcpu)
5979 {
5980 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5981 	unsigned long exit_qualification;
5982 	bool has_error_code = false;
5983 	u32 error_code = 0;
5984 	u16 tss_selector;
5985 	int reason, type, idt_v, idt_index;
5986 
5987 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5988 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5989 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5990 
5991 	exit_qualification = vmx_get_exit_qual(vcpu);
5992 
5993 	reason = (u32)exit_qualification >> 30;
5994 	if (reason == TASK_SWITCH_GATE && idt_v) {
5995 		switch (type) {
5996 		case INTR_TYPE_NMI_INTR:
5997 			vcpu->arch.nmi_injected = false;
5998 			vmx_set_nmi_mask(vcpu, true);
5999 			break;
6000 		case INTR_TYPE_EXT_INTR:
6001 		case INTR_TYPE_SOFT_INTR:
6002 			kvm_clear_interrupt_queue(vcpu);
6003 			break;
6004 		case INTR_TYPE_HARD_EXCEPTION:
6005 			if (vmx->idt_vectoring_info &
6006 			    VECTORING_INFO_DELIVER_CODE_MASK) {
6007 				has_error_code = true;
6008 				error_code =
6009 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
6010 			}
6011 			fallthrough;
6012 		case INTR_TYPE_SOFT_EXCEPTION:
6013 			kvm_clear_exception_queue(vcpu);
6014 			break;
6015 		default:
6016 			break;
6017 		}
6018 	}
6019 	tss_selector = exit_qualification;
6020 
6021 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6022 		       type != INTR_TYPE_EXT_INTR &&
6023 		       type != INTR_TYPE_NMI_INTR))
6024 		WARN_ON(!skip_emulated_instruction(vcpu));
6025 
6026 	/*
6027 	 * TODO: What about debug traps on tss switch?
6028 	 *       Are we supposed to inject them and update dr6?
6029 	 */
6030 	return kvm_task_switch(vcpu, tss_selector,
6031 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
6032 			       reason, has_error_code, error_code);
6033 }
6034 
6035 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6036 {
6037 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6038 	gpa_t gpa;
6039 
6040 	/*
6041 	 * EPT violation happened while executing iret from NMI,
6042 	 * "blocked by NMI" bit has to be set before next VM entry.
6043 	 * There are errata that may cause this bit to not be set:
6044 	 * AAK134, BY25.
6045 	 */
6046 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6047 			enable_vnmi &&
6048 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
6049 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6050 
6051 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6052 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
6053 
6054 	/*
6055 	 * Check that the GPA doesn't exceed physical memory limits, as that is
6056 	 * a guest page fault.  We have to emulate the instruction here, because
6057 	 * if the illegal address is that of a paging structure, then
6058 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
6059 	 * would also use advanced VM-exit information for EPT violations to
6060 	 * reconstruct the page fault error code.
6061 	 */
6062 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
6063 		return kvm_emulate_instruction(vcpu, 0);
6064 
6065 	return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification);
6066 }
6067 
6068 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6069 {
6070 	gpa_t gpa;
6071 
6072 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
6073 		return 1;
6074 
6075 	/*
6076 	 * A nested guest cannot optimize MMIO vmexits, because we have an
6077 	 * nGPA here instead of the required GPA.
6078 	 */
6079 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6080 	if (!is_guest_mode(vcpu) &&
6081 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6082 		trace_kvm_fast_mmio(gpa);
6083 		return kvm_skip_emulated_instruction(vcpu);
6084 	}
6085 
6086 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6087 }
6088 
6089 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6090 {
6091 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
6092 		return -EIO;
6093 
6094 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
6095 	++vcpu->stat.nmi_window_exits;
6096 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6097 
6098 	return 1;
6099 }
6100 
6101 /*
6102  * Returns true if emulation is required (due to the vCPU having invalid state
6103  * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
6104  * current vCPU state.
6105  */
6106 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
6107 {
6108 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6109 
6110 	if (!vmx->vt.emulation_required)
6111 		return false;
6112 
6113 	/*
6114 	 * It is architecturally impossible for emulation to be required when a
6115 	 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
6116 	 * guest state is invalid and unrestricted guest is disabled, i.e. KVM
6117 	 * should synthesize VM-Fail instead emulation L2 code.  This path is
6118 	 * only reachable if userspace modifies L2 guest state after KVM has
6119 	 * performed the nested VM-Enter consistency checks.
6120 	 */
6121 	if (vmx->nested.nested_run_pending)
6122 		return true;
6123 
6124 	/*
6125 	 * KVM only supports emulating exceptions if the vCPU is in Real Mode.
6126 	 * If emulation is required, KVM can't perform a successful VM-Enter to
6127 	 * inject the exception.
6128 	 */
6129 	return !vmx->rmode.vm86_active &&
6130 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
6131 }
6132 
6133 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6134 {
6135 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6136 	bool intr_window_requested;
6137 	unsigned count = 130;
6138 
6139 	intr_window_requested = exec_controls_get(vmx) &
6140 				CPU_BASED_INTR_WINDOW_EXITING;
6141 
6142 	while (vmx->vt.emulation_required && count-- != 0) {
6143 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
6144 			return handle_interrupt_window(&vmx->vcpu);
6145 
6146 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6147 			return 1;
6148 
6149 		/*
6150 		 * Ensure that any updates to kvm->buses[] observed by the
6151 		 * previous instruction (emulated or otherwise) are also
6152 		 * visible to the instruction KVM is about to emulate.
6153 		 */
6154 		smp_rmb();
6155 
6156 		if (!kvm_emulate_instruction(vcpu, 0))
6157 			return 0;
6158 
6159 		if (vmx_unhandleable_emulation_required(vcpu)) {
6160 			kvm_prepare_emulation_failure_exit(vcpu);
6161 			return 0;
6162 		}
6163 
6164 		if (vcpu->arch.halt_request) {
6165 			vcpu->arch.halt_request = 0;
6166 			return kvm_emulate_halt_noskip(vcpu);
6167 		}
6168 
6169 		/*
6170 		 * Note, return 1 and not 0, vcpu_run() will invoke
6171 		 * xfer_to_guest_mode() which will create a proper return
6172 		 * code.
6173 		 */
6174 		if (__xfer_to_guest_mode_work_pending())
6175 			return 1;
6176 	}
6177 
6178 	return 1;
6179 }
6180 
6181 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
6182 {
6183 	if (vmx_unhandleable_emulation_required(vcpu)) {
6184 		kvm_prepare_emulation_failure_exit(vcpu);
6185 		return 0;
6186 	}
6187 
6188 	return 1;
6189 }
6190 
6191 /*
6192  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6193  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6194  */
6195 static int handle_pause(struct kvm_vcpu *vcpu)
6196 {
6197 	if (!kvm_pause_in_guest(vcpu->kvm))
6198 		grow_ple_window(vcpu);
6199 
6200 	/*
6201 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6202 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6203 	 * never set PAUSE_EXITING and just set PLE if supported,
6204 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6205 	 */
6206 	kvm_vcpu_on_spin(vcpu, true);
6207 	return kvm_skip_emulated_instruction(vcpu);
6208 }
6209 
6210 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6211 {
6212 	return 1;
6213 }
6214 
6215 static int handle_invpcid(struct kvm_vcpu *vcpu)
6216 {
6217 	u32 vmx_instruction_info;
6218 	unsigned long type;
6219 	gva_t gva;
6220 	struct {
6221 		u64 pcid;
6222 		u64 gla;
6223 	} operand;
6224 	int gpr_index;
6225 
6226 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
6227 		kvm_queue_exception(vcpu, UD_VECTOR);
6228 		return 1;
6229 	}
6230 
6231 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6232 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6233 	type = kvm_register_read(vcpu, gpr_index);
6234 
6235 	/* According to the Intel instruction reference, the memory operand
6236 	 * is read even if it isn't needed (e.g., for type==all)
6237 	 */
6238 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6239 				vmx_instruction_info, false,
6240 				sizeof(operand), &gva))
6241 		return 1;
6242 
6243 	return kvm_handle_invpcid(vcpu, type, gva);
6244 }
6245 
6246 static int handle_pml_full(struct kvm_vcpu *vcpu)
6247 {
6248 	unsigned long exit_qualification;
6249 
6250 	trace_kvm_pml_full(vcpu->vcpu_id);
6251 
6252 	exit_qualification = vmx_get_exit_qual(vcpu);
6253 
6254 	/*
6255 	 * PML buffer FULL happened while executing iret from NMI,
6256 	 * "blocked by NMI" bit has to be set before next VM entry.
6257 	 */
6258 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6259 			enable_vnmi &&
6260 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
6261 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6262 				GUEST_INTR_STATE_NMI);
6263 
6264 	/*
6265 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
6266 	 * here.., and there's no userspace involvement needed for PML.
6267 	 */
6268 	return 1;
6269 }
6270 
6271 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6272 						   bool force_immediate_exit)
6273 {
6274 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6275 
6276 	/*
6277 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6278 	 * due to the timer expiring while it was "soft" disabled, just eat the
6279 	 * exit and re-enter the guest.
6280 	 */
6281 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6282 		return EXIT_FASTPATH_REENTER_GUEST;
6283 
6284 	/*
6285 	 * If the timer expired because KVM used it to force an immediate exit,
6286 	 * then mission accomplished.
6287 	 */
6288 	if (force_immediate_exit)
6289 		return EXIT_FASTPATH_EXIT_HANDLED;
6290 
6291 	/*
6292 	 * If L2 is active, go down the slow path as emulating the guest timer
6293 	 * expiration likely requires synthesizing a nested VM-Exit.
6294 	 */
6295 	if (is_guest_mode(vcpu))
6296 		return EXIT_FASTPATH_NONE;
6297 
6298 	kvm_lapic_expired_hv_timer(vcpu);
6299 	return EXIT_FASTPATH_REENTER_GUEST;
6300 }
6301 
6302 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6303 {
6304 	/*
6305 	 * This non-fastpath handler is reached if and only if the preemption
6306 	 * timer was being used to emulate a guest timer while L2 is active.
6307 	 * All other scenarios are supposed to be handled in the fastpath.
6308 	 */
6309 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6310 	kvm_lapic_expired_hv_timer(vcpu);
6311 	return 1;
6312 }
6313 
6314 /*
6315  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6316  * are overwritten by nested_vmx_hardware_setup() when nested=1.
6317  */
6318 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6319 {
6320 	kvm_queue_exception(vcpu, UD_VECTOR);
6321 	return 1;
6322 }
6323 
6324 static int handle_tdx_instruction(struct kvm_vcpu *vcpu)
6325 {
6326 	kvm_queue_exception(vcpu, UD_VECTOR);
6327 	return 1;
6328 }
6329 
6330 #ifndef CONFIG_X86_SGX_KVM
6331 static int handle_encls(struct kvm_vcpu *vcpu)
6332 {
6333 	/*
6334 	 * SGX virtualization is disabled.  There is no software enable bit for
6335 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6336 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6337 	 */
6338 	kvm_queue_exception(vcpu, UD_VECTOR);
6339 	return 1;
6340 }
6341 #endif /* CONFIG_X86_SGX_KVM */
6342 
6343 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6344 {
6345 	/*
6346 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6347 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6348 	 * vmx_handle_exit().
6349 	 */
6350 	to_vt(vcpu)->exit_reason.bus_lock_detected = true;
6351 	return 1;
6352 }
6353 
6354 static int handle_notify(struct kvm_vcpu *vcpu)
6355 {
6356 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6357 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6358 
6359 	++vcpu->stat.notify_window_exits;
6360 
6361 	/*
6362 	 * Notify VM exit happened while executing iret from NMI,
6363 	 * "blocked by NMI" bit has to be set before next VM entry.
6364 	 */
6365 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6366 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6367 			      GUEST_INTR_STATE_NMI);
6368 
6369 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6370 	    context_invalid) {
6371 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6372 		vcpu->run->notify.flags = context_invalid ?
6373 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6374 		return 0;
6375 	}
6376 
6377 	return 1;
6378 }
6379 
6380 static int vmx_get_msr_imm_reg(struct kvm_vcpu *vcpu)
6381 {
6382 	return vmx_get_instr_info_reg(vmcs_read32(VMX_INSTRUCTION_INFO));
6383 }
6384 
6385 static int handle_rdmsr_imm(struct kvm_vcpu *vcpu)
6386 {
6387 	return kvm_emulate_rdmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
6388 				     vmx_get_msr_imm_reg(vcpu));
6389 }
6390 
6391 static int handle_wrmsr_imm(struct kvm_vcpu *vcpu)
6392 {
6393 	return kvm_emulate_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
6394 				     vmx_get_msr_imm_reg(vcpu));
6395 }
6396 
6397 /*
6398  * The exit handlers return 1 if the exit was handled fully and guest execution
6399  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6400  * to be done to userspace and return 0.
6401  */
6402 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6403 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6404 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6405 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6406 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6407 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6408 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6409 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6410 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6411 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6412 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6413 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6414 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6415 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6416 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6417 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6418 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6419 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6420 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6421 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6422 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6423 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6424 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6425 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6426 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6427 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6428 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6429 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6430 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6431 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6432 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6433 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6434 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6435 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6436 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6437 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6438 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6439 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6440 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6441 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6442 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6443 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6444 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6445 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6446 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6447 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6448 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6449 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6450 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6451 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6452 	[EXIT_REASON_ENCLS]		      = handle_encls,
6453 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6454 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6455 	[EXIT_REASON_SEAMCALL]		      = handle_tdx_instruction,
6456 	[EXIT_REASON_TDCALL]		      = handle_tdx_instruction,
6457 	[EXIT_REASON_MSR_READ_IMM]            = handle_rdmsr_imm,
6458 	[EXIT_REASON_MSR_WRITE_IMM]           = handle_wrmsr_imm,
6459 };
6460 
6461 static const int kvm_vmx_max_exit_handlers =
6462 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6463 
6464 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6465 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6466 {
6467 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6468 
6469 	*reason = vmx->vt.exit_reason.full;
6470 	*info1 = vmx_get_exit_qual(vcpu);
6471 	if (!(vmx->vt.exit_reason.failed_vmentry)) {
6472 		*info2 = vmx->idt_vectoring_info;
6473 		*intr_info = vmx_get_intr_info(vcpu);
6474 		if (is_exception_with_error_code(*intr_info))
6475 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6476 		else
6477 			*error_code = 0;
6478 	} else {
6479 		*info2 = 0;
6480 		*intr_info = 0;
6481 		*error_code = 0;
6482 	}
6483 }
6484 
6485 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6486 {
6487 	*intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6488 	if (is_exception_with_error_code(*intr_info))
6489 		*error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6490 	else
6491 		*error_code = 0;
6492 }
6493 
6494 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6495 {
6496 	if (vmx->pml_pg) {
6497 		__free_page(vmx->pml_pg);
6498 		vmx->pml_pg = NULL;
6499 	}
6500 }
6501 
6502 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6503 {
6504 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6505 	u16 pml_idx, pml_tail_index;
6506 	u64 *pml_buf;
6507 	int i;
6508 
6509 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6510 
6511 	/* Do nothing if PML buffer is empty */
6512 	if (pml_idx == PML_HEAD_INDEX)
6513 		return;
6514 	/*
6515 	 * PML index always points to the next available PML buffer entity
6516 	 * unless PML log has just overflowed.
6517 	 */
6518 	pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6519 
6520 	/*
6521 	 * PML log is written backwards: the CPU first writes the entry 511
6522 	 * then the entry 510, and so on.
6523 	 *
6524 	 * Read the entries in the same order they were written, to ensure that
6525 	 * the dirty ring is filled in the same order the CPU wrote them.
6526 	 */
6527 	pml_buf = page_address(vmx->pml_pg);
6528 
6529 	for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6530 		u64 gpa;
6531 
6532 		gpa = pml_buf[i];
6533 		WARN_ON(gpa & (PAGE_SIZE - 1));
6534 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6535 	}
6536 
6537 	/* reset PML index */
6538 	vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6539 }
6540 
6541 static void nested_vmx_mark_all_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
6542 {
6543 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6544 
6545 	kvm_vcpu_map_mark_dirty(vcpu, &vmx->nested.apic_access_page_map);
6546 	kvm_vcpu_map_mark_dirty(vcpu, &vmx->nested.virtual_apic_map);
6547 	kvm_vcpu_map_mark_dirty(vcpu, &vmx->nested.pi_desc_map);
6548 }
6549 
6550 static void vmx_dump_sel(char *name, uint32_t sel)
6551 {
6552 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6553 	       name, vmcs_read16(sel),
6554 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6555 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6556 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6557 }
6558 
6559 static void vmx_dump_dtsel(char *name, uint32_t limit)
6560 {
6561 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6562 	       name, vmcs_read32(limit),
6563 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6564 }
6565 
6566 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6567 {
6568 	unsigned int i;
6569 	struct vmx_msr_entry *e;
6570 
6571 	pr_err("MSR %s:\n", name);
6572 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6573 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6574 }
6575 
6576 void dump_vmcs(struct kvm_vcpu *vcpu)
6577 {
6578 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6579 	u32 vmentry_ctl, vmexit_ctl;
6580 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6581 	u64 tertiary_exec_control;
6582 	unsigned long cr4;
6583 	int efer_slot;
6584 
6585 	if (!dump_invalid_vmcs) {
6586 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6587 		return;
6588 	}
6589 
6590 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6591 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6592 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6593 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6594 	cr4 = vmcs_readl(GUEST_CR4);
6595 
6596 	if (cpu_has_secondary_exec_ctrls())
6597 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6598 	else
6599 		secondary_exec_control = 0;
6600 
6601 	if (cpu_has_tertiary_exec_ctrls())
6602 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6603 	else
6604 		tertiary_exec_control = 0;
6605 
6606 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6607 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6608 	pr_err("*** Guest State ***\n");
6609 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6610 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6611 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6612 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6613 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6614 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6615 	if (cpu_has_vmx_ept()) {
6616 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6617 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6618 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6619 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6620 	}
6621 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6622 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6623 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6624 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6625 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6626 	       vmcs_readl(GUEST_SYSENTER_ESP),
6627 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6628 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6629 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6630 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6631 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6632 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6633 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6634 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6635 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6636 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6637 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6638 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6639 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6640 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6641 	else if (efer_slot >= 0)
6642 		pr_err("EFER= 0x%016llx (autoload)\n",
6643 		       vmx->msr_autoload.guest.val[efer_slot].value);
6644 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6645 		pr_err("EFER= 0x%016llx (effective)\n",
6646 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6647 	else
6648 		pr_err("EFER= 0x%016llx (effective)\n",
6649 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6650 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6651 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6652 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6653 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6654 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6655 	if (cpu_has_load_perf_global_ctrl() &&
6656 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6657 		pr_err("PerfGlobCtl = 0x%016llx\n",
6658 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6659 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6660 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6661 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6662 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6663 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6664 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6665 		pr_err("InterruptStatus = %04x\n",
6666 		       vmcs_read16(GUEST_INTR_STATUS));
6667 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6668 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6669 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6670 		vmx_dump_msrs("autostore", &vmx->msr_autostore);
6671 
6672 	if (vmentry_ctl & VM_ENTRY_LOAD_CET_STATE)
6673 		pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n",
6674 		       vmcs_readl(GUEST_S_CET), vmcs_readl(GUEST_SSP),
6675 		       vmcs_readl(GUEST_INTR_SSP_TABLE));
6676 	pr_err("*** Host State ***\n");
6677 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6678 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6679 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6680 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6681 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6682 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6683 	       vmcs_read16(HOST_TR_SELECTOR));
6684 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6685 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6686 	       vmcs_readl(HOST_TR_BASE));
6687 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6688 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6689 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6690 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6691 	       vmcs_readl(HOST_CR4));
6692 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6693 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6694 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6695 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6696 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6697 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6698 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6699 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6700 	if (cpu_has_load_perf_global_ctrl() &&
6701 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6702 		pr_err("PerfGlobCtl = 0x%016llx\n",
6703 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6704 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6705 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6706 	if (vmexit_ctl & VM_EXIT_LOAD_CET_STATE)
6707 		pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n",
6708 		       vmcs_readl(HOST_S_CET), vmcs_readl(HOST_SSP),
6709 		       vmcs_readl(HOST_INTR_SSP_TABLE));
6710 
6711 	pr_err("*** Control State ***\n");
6712 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6713 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6714 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6715 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6716 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6717 	       vmcs_read32(EXCEPTION_BITMAP),
6718 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6719 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6720 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6721 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6722 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6723 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6724 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6725 	       vmcs_read32(VM_EXIT_INTR_INFO),
6726 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6727 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6728 	pr_err("        reason=%08x qualification=%016lx\n",
6729 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6730 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6731 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6732 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6733 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6734 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6735 		pr_err("TSC Multiplier = 0x%016llx\n",
6736 		       vmcs_read64(TSC_MULTIPLIER));
6737 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6738 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6739 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6740 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6741 		}
6742 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6743 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6744 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6745 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6746 	}
6747 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6748 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6749 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6750 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6751 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6752 		pr_err("PLE Gap=%08x Window=%08x\n",
6753 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6754 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6755 		pr_err("Virtual processor ID = 0x%04x\n",
6756 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6757 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6758 		struct vmx_ve_information *ve_info = vmx->ve_info;
6759 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6760 
6761 		/*
6762 		 * If KVM is dumping the VMCS, then something has gone wrong
6763 		 * already.  Derefencing an address from the VMCS, which could
6764 		 * very well be corrupted, is a terrible idea.  The virtual
6765 		 * address is known so use it.
6766 		 */
6767 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6768 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6769 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6770 		       ve_info->exit_reason, ve_info->delivery,
6771 		       ve_info->exit_qualification,
6772 		       ve_info->guest_linear_address,
6773 		       ve_info->guest_physical_address, ve_info->eptp_index);
6774 	}
6775 }
6776 
6777 /*
6778  * The guest has exited.  See if we can fix it or if we need userspace
6779  * assistance.
6780  */
6781 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6782 {
6783 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6784 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
6785 	u32 vectoring_info = vmx->idt_vectoring_info;
6786 	u16 exit_handler_index;
6787 
6788 	/*
6789 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6790 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6791 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6792 	 * mode as if vcpus is in root mode, the PML buffer must has been
6793 	 * flushed already.  Note, PML is never enabled in hardware while
6794 	 * running L2.
6795 	 */
6796 	if (enable_pml && !is_guest_mode(vcpu))
6797 		vmx_flush_pml_buffer(vcpu);
6798 
6799 	/*
6800 	 * KVM should never reach this point with a pending nested VM-Enter.
6801 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6802 	 * invalid guest state should never happen as that means KVM knowingly
6803 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6804 	 */
6805 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6806 		return -EIO;
6807 
6808 	if (is_guest_mode(vcpu)) {
6809 		/*
6810 		 * PML is never enabled when running L2, bail immediately if a
6811 		 * PML full exit occurs as something is horribly wrong.
6812 		 */
6813 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6814 			goto unexpected_vmexit;
6815 
6816 		/*
6817 		 * The host physical addresses of some pages of guest memory
6818 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6819 		 * Page). The CPU may write to these pages via their host
6820 		 * physical address while L2 is running, bypassing any
6821 		 * address-translation-based dirty tracking (e.g. EPT write
6822 		 * protection).
6823 		 *
6824 		 * Mark them dirty on every exit from L2 to prevent them from
6825 		 * getting out of sync with dirty tracking.
6826 		 */
6827 		nested_vmx_mark_all_vmcs12_pages_dirty(vcpu);
6828 
6829 		/*
6830 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6831 		 * operation, nested VM-Enter rejects any attempt to enter L2
6832 		 * with invalid state.  However, those checks are skipped if
6833 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6834 		 * L2 state is invalid, it means either L1 modified SMRAM state
6835 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6836 		 * doing so is architecturally allowed in the RSM case, and is
6837 		 * the least awful solution for the userspace case without
6838 		 * risking false positives.
6839 		 */
6840 		if (vmx->vt.emulation_required) {
6841 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6842 			return 1;
6843 		}
6844 
6845 		if (nested_vmx_reflect_vmexit(vcpu))
6846 			return 1;
6847 	}
6848 
6849 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6850 	if (vmx->vt.emulation_required)
6851 		return handle_invalid_guest_state(vcpu);
6852 
6853 	if (exit_reason.failed_vmentry) {
6854 		dump_vmcs(vcpu);
6855 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6856 		vcpu->run->fail_entry.hardware_entry_failure_reason
6857 			= exit_reason.full;
6858 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6859 		return 0;
6860 	}
6861 
6862 	if (unlikely(vmx->fail)) {
6863 		dump_vmcs(vcpu);
6864 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6865 		vcpu->run->fail_entry.hardware_entry_failure_reason
6866 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6867 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6868 		return 0;
6869 	}
6870 
6871 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6872 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6873 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6874 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6875 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6876 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6877 	     exit_reason.basic != EXIT_REASON_NOTIFY &&
6878 	     exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6879 		kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6880 		return 0;
6881 	}
6882 
6883 	if (unlikely(!enable_vnmi &&
6884 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6885 		if (!vmx_interrupt_blocked(vcpu)) {
6886 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6887 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6888 			   vcpu->arch.nmi_pending) {
6889 			/*
6890 			 * This CPU don't support us in finding the end of an
6891 			 * NMI-blocked window if the guest runs with IRQs
6892 			 * disabled. So we pull the trigger after 1 s of
6893 			 * futile waiting, but inform the user about this.
6894 			 */
6895 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6896 			       "state on VCPU %d after 1 s timeout\n",
6897 			       __func__, vcpu->vcpu_id);
6898 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6899 		}
6900 	}
6901 
6902 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6903 		return 1;
6904 
6905 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6906 		goto unexpected_vmexit;
6907 #ifdef CONFIG_MITIGATION_RETPOLINE
6908 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6909 		return kvm_emulate_wrmsr(vcpu);
6910 	else if (exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6911 		return handle_wrmsr_imm(vcpu);
6912 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6913 		return handle_preemption_timer(vcpu);
6914 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6915 		return handle_interrupt_window(vcpu);
6916 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6917 		return handle_external_interrupt(vcpu);
6918 	else if (exit_reason.basic == EXIT_REASON_HLT)
6919 		return kvm_emulate_halt(vcpu);
6920 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6921 		return handle_ept_misconfig(vcpu);
6922 #endif
6923 
6924 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6925 						kvm_vmx_max_exit_handlers);
6926 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6927 		goto unexpected_vmexit;
6928 
6929 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6930 
6931 unexpected_vmexit:
6932 	dump_vmcs(vcpu);
6933 	kvm_prepare_unexpected_reason_exit(vcpu, exit_reason.full);
6934 	return 0;
6935 }
6936 
6937 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6938 {
6939 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6940 
6941 	/*
6942 	 * Exit to user space when bus lock detected to inform that there is
6943 	 * a bus lock in guest.
6944 	 */
6945 	if (vmx_get_exit_reason(vcpu).bus_lock_detected) {
6946 		if (ret > 0)
6947 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6948 
6949 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6950 		return 0;
6951 	}
6952 	return ret;
6953 }
6954 
6955 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6956 {
6957 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6958 	int tpr_threshold;
6959 
6960 	if (is_guest_mode(vcpu) &&
6961 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6962 		return;
6963 
6964 	guard(vmx_vmcs01)(vcpu);
6965 
6966 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6967 	vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6968 }
6969 
6970 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6971 {
6972 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6973 	u32 sec_exec_control;
6974 
6975 	if (!lapic_in_kernel(vcpu))
6976 		return;
6977 
6978 	if (!flexpriority_enabled &&
6979 	    !cpu_has_vmx_virtualize_x2apic_mode())
6980 		return;
6981 
6982 	guard(vmx_vmcs01)(vcpu);
6983 
6984 	sec_exec_control = secondary_exec_controls_get(vmx);
6985 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6986 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6987 
6988 	switch (kvm_get_apic_mode(vcpu)) {
6989 	case LAPIC_MODE_INVALID:
6990 		WARN_ONCE(true, "Invalid local APIC state");
6991 		break;
6992 	case LAPIC_MODE_DISABLED:
6993 		break;
6994 	case LAPIC_MODE_XAPIC:
6995 		if (flexpriority_enabled) {
6996 			sec_exec_control |=
6997 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6998 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6999 
7000 			/*
7001 			 * Flush the TLB, reloading the APIC access page will
7002 			 * only do so if its physical address has changed, but
7003 			 * the guest may have inserted a non-APIC mapping into
7004 			 * the TLB while the APIC access page was disabled.
7005 			 *
7006 			 * If L2 is active, immediately flush L1's TLB instead
7007 			 * of requesting a flush of the current TLB, because
7008 			 * the current TLB context is L2's.
7009 			 */
7010 			if (!is_guest_mode(vcpu))
7011 				kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
7012 			else if (!enable_ept)
7013 				vpid_sync_context(vmx->vpid);
7014 			else if (VALID_PAGE(vcpu->arch.root_mmu.root.hpa))
7015 				vmx_flush_tlb_ept_root(vcpu->arch.root_mmu.root.hpa);
7016 		}
7017 		break;
7018 	case LAPIC_MODE_X2APIC:
7019 		if (cpu_has_vmx_virtualize_x2apic_mode())
7020 			sec_exec_control |=
7021 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7022 		break;
7023 	}
7024 	secondary_exec_controls_set(vmx, sec_exec_control);
7025 
7026 	vmx_update_msr_bitmap_x2apic(vcpu);
7027 }
7028 
7029 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
7030 {
7031 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
7032 	struct kvm *kvm = vcpu->kvm;
7033 	struct kvm_memslots *slots = kvm_memslots(kvm);
7034 	struct kvm_memory_slot *slot;
7035 	struct page *refcounted_page;
7036 	unsigned long mmu_seq;
7037 	kvm_pfn_t pfn;
7038 	bool writable;
7039 
7040 	/* Note, the VIRTUALIZE_APIC_ACCESSES check needs to query vmcs01. */
7041 	guard(vmx_vmcs01)(vcpu);
7042 
7043 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
7044 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7045 		return;
7046 
7047 	/*
7048 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
7049 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
7050 	 * be impossible for userspace to create a memslot for the APIC when
7051 	 * APICv is enabled, but paranoia won't hurt in this case.
7052 	 */
7053 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
7054 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
7055 		return;
7056 
7057 	/*
7058 	 * Ensure that the mmu_notifier sequence count is read before KVM
7059 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
7060 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
7061 	 * in kvm_mmu_invalidate_end().
7062 	 */
7063 	mmu_seq = kvm->mmu_invalidate_seq;
7064 	smp_rmb();
7065 
7066 	/*
7067 	 * No need to retry if the memslot does not exist or is invalid.  KVM
7068 	 * controls the APIC-access page memslot, and only deletes the memslot
7069 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
7070 	 */
7071 	pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
7072 	if (is_error_noslot_pfn(pfn))
7073 		return;
7074 
7075 	read_lock(&vcpu->kvm->mmu_lock);
7076 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
7077 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
7078 	else
7079 		vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
7080 
7081 	/*
7082 	 * Do not pin the APIC access page in memory so that it can be freely
7083 	 * migrated, the MMU notifier will call us again if it is migrated or
7084 	 * swapped out.  KVM backs the memslot with anonymous memory, the pfn
7085 	 * should always point at a refcounted page (if the pfn is valid).
7086 	 */
7087 	if (!WARN_ON_ONCE(!refcounted_page))
7088 		kvm_release_page_clean(refcounted_page);
7089 
7090 	/*
7091 	 * No need for a manual TLB flush at this point, KVM has already done a
7092 	 * flush if there were SPTEs pointing at the previous page.
7093 	 */
7094 	read_unlock(&vcpu->kvm->mmu_lock);
7095 }
7096 
7097 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
7098 {
7099 	u16 status;
7100 	u8 old;
7101 
7102 	if (max_isr == -1)
7103 		max_isr = 0;
7104 
7105 	/*
7106 	 * Always update SVI in vmcs01, as SVI is only relevant for L2 if and
7107 	 * only if Virtual Interrupt Delivery is enabled in vmcs12, and if VID
7108 	 * is enabled then L2 EOIs affect L2's vAPIC, not L1's vAPIC.
7109 	 */
7110 	guard(vmx_vmcs01)(vcpu);
7111 
7112 	status = vmcs_read16(GUEST_INTR_STATUS);
7113 	old = status >> 8;
7114 	if (max_isr != old) {
7115 		status &= 0xff;
7116 		status |= max_isr << 8;
7117 		vmcs_write16(GUEST_INTR_STATUS, status);
7118 	}
7119 }
7120 
7121 static void vmx_set_rvi(int vector)
7122 {
7123 	u16 status;
7124 	u8 old;
7125 
7126 	if (vector == -1)
7127 		vector = 0;
7128 
7129 	status = vmcs_read16(GUEST_INTR_STATUS);
7130 	old = (u8)status & 0xff;
7131 	if ((u8)vector != old) {
7132 		status &= ~0xff;
7133 		status |= (u8)vector;
7134 		vmcs_write16(GUEST_INTR_STATUS, status);
7135 	}
7136 }
7137 
7138 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
7139 {
7140 	struct vcpu_vt *vt = to_vt(vcpu);
7141 	int max_irr;
7142 	bool got_posted_interrupt;
7143 
7144 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
7145 		return -EIO;
7146 
7147 	if (pi_test_on(&vt->pi_desc)) {
7148 		pi_clear_on(&vt->pi_desc);
7149 		/*
7150 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
7151 		 * But on x86 this is just a compiler barrier anyway.
7152 		 */
7153 		smp_mb__after_atomic();
7154 		got_posted_interrupt =
7155 			kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr);
7156 	} else {
7157 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7158 		got_posted_interrupt = false;
7159 	}
7160 
7161 	/*
7162 	 * Newly recognized interrupts are injected via either virtual interrupt
7163 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
7164 	 * disabled in two cases:
7165 	 *
7166 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
7167 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
7168 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
7169 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
7170 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
7171 	 *
7172 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
7173 	 * attempt to post interrupts.  The posted interrupt vector will cause
7174 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
7175 	 */
7176 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
7177 		vmx_set_rvi(max_irr);
7178 	else if (got_posted_interrupt)
7179 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7180 
7181 	return max_irr;
7182 }
7183 
7184 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7185 {
7186 	if (!kvm_vcpu_apicv_active(vcpu))
7187 		return;
7188 
7189 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7190 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7191 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7192 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7193 }
7194 
7195 void vmx_do_interrupt_irqoff(unsigned long entry);
7196 void vmx_do_nmi_irqoff(void);
7197 
7198 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
7199 {
7200 	/*
7201 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
7202 	 * MSR value is not clobbered by the host activity before the guest
7203 	 * has chance to consume it.
7204 	 *
7205 	 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
7206 	 * interception may have been caused by L1 interception.  Per the SDM,
7207 	 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
7208 	 *
7209 	 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
7210 	 * unlike CR2 and DR6, the value is not a payload that is attached to
7211 	 * the #NM exception.
7212 	 */
7213 	if (is_xfd_nm_fault(vcpu))
7214 		rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
7215 }
7216 
7217 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
7218 {
7219 	/* if exit due to PF check for async PF */
7220 	if (is_page_fault(intr_info))
7221 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7222 	/* if exit due to NM, handle before interrupts are enabled */
7223 	else if (is_nm_fault(intr_info))
7224 		handle_nm_fault_irqoff(vcpu);
7225 	/* Handle machine checks before interrupts are enabled */
7226 	else if (is_machine_check(intr_info))
7227 		kvm_machine_check();
7228 }
7229 
7230 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7231 					     u32 intr_info)
7232 {
7233 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7234 
7235 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7236 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7237 		return;
7238 
7239 	/*
7240 	 * Invoke the kernel's IRQ handler for the vector.  Use the FRED path
7241 	 * when it's available even if FRED isn't fully enabled, e.g. even if
7242 	 * FRED isn't supported in hardware, in order to avoid the indirect
7243 	 * CALL in the non-FRED path.
7244 	 */
7245 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7246 	if (IS_ENABLED(CONFIG_X86_FRED))
7247 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7248 	else
7249 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7250 	kvm_after_interrupt(vcpu);
7251 
7252 	vcpu->arch.at_instruction_boundary = true;
7253 }
7254 
7255 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7256 {
7257 	if (to_vt(vcpu)->emulation_required)
7258 		return;
7259 
7260 	switch (vmx_get_exit_reason(vcpu).basic) {
7261 	case EXIT_REASON_EXTERNAL_INTERRUPT:
7262 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7263 		break;
7264 	case EXIT_REASON_EXCEPTION_NMI:
7265 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7266 		break;
7267 	case EXIT_REASON_MCE_DURING_VMENTRY:
7268 		kvm_machine_check();
7269 		break;
7270 	default:
7271 		break;
7272 	}
7273 }
7274 
7275 /*
7276  * The kvm parameter can be NULL (module initialization, or invocation before
7277  * VM creation). Be sure to check the kvm parameter before using it.
7278  */
7279 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7280 {
7281 	switch (index) {
7282 	case MSR_IA32_SMBASE:
7283 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7284 			return false;
7285 		/*
7286 		 * We cannot do SMM unless we can run the guest in big
7287 		 * real mode.
7288 		 */
7289 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7290 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7291 		return nested;
7292 	case MSR_AMD64_VIRT_SPEC_CTRL:
7293 	case MSR_AMD64_TSC_RATIO:
7294 		/* This is AMD only.  */
7295 		return false;
7296 	default:
7297 		return true;
7298 	}
7299 }
7300 
7301 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7302 {
7303 	u32 exit_intr_info;
7304 	bool unblock_nmi;
7305 	u8 vector;
7306 	bool idtv_info_valid;
7307 
7308 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7309 
7310 	if (enable_vnmi) {
7311 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7312 			return;
7313 
7314 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7315 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7316 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7317 		/*
7318 		 * SDM 3: 27.7.1.2 (September 2008)
7319 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7320 		 * a guest IRET fault.
7321 		 * SDM 3: 23.2.2 (September 2008)
7322 		 * Bit 12 is undefined in any of the following cases:
7323 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7324 		 *   information field.
7325 		 *  If the VM exit is due to a double fault.
7326 		 */
7327 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7328 		    vector != DF_VECTOR && !idtv_info_valid)
7329 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7330 				      GUEST_INTR_STATE_NMI);
7331 		else
7332 			vmx->loaded_vmcs->nmi_known_unmasked =
7333 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7334 				  & GUEST_INTR_STATE_NMI);
7335 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7336 		vmx->loaded_vmcs->vnmi_blocked_time +=
7337 			ktime_to_ns(ktime_sub(ktime_get(),
7338 					      vmx->loaded_vmcs->entry_time));
7339 }
7340 
7341 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7342 				      u32 idt_vectoring_info,
7343 				      int instr_len_field,
7344 				      int error_code_field)
7345 {
7346 	u8 vector;
7347 	int type;
7348 	bool idtv_info_valid;
7349 
7350 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7351 
7352 	vcpu->arch.nmi_injected = false;
7353 	kvm_clear_exception_queue(vcpu);
7354 	kvm_clear_interrupt_queue(vcpu);
7355 
7356 	if (!idtv_info_valid)
7357 		return;
7358 
7359 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7360 
7361 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7362 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7363 
7364 	switch (type) {
7365 	case INTR_TYPE_NMI_INTR:
7366 		vcpu->arch.nmi_injected = true;
7367 		/*
7368 		 * SDM 3: 27.7.1.2 (September 2008)
7369 		 * Clear bit "block by NMI" before VM entry if a NMI
7370 		 * delivery faulted.
7371 		 */
7372 		vmx_set_nmi_mask(vcpu, false);
7373 		break;
7374 	case INTR_TYPE_SOFT_EXCEPTION:
7375 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7376 		fallthrough;
7377 	case INTR_TYPE_HARD_EXCEPTION: {
7378 		u32 error_code = 0;
7379 
7380 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7381 			error_code = vmcs_read32(error_code_field);
7382 
7383 		kvm_requeue_exception(vcpu, vector,
7384 				      idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7385 				      error_code);
7386 		break;
7387 	}
7388 	case INTR_TYPE_SOFT_INTR:
7389 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7390 		fallthrough;
7391 	case INTR_TYPE_EXT_INTR:
7392 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7393 		break;
7394 	default:
7395 		break;
7396 	}
7397 }
7398 
7399 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7400 {
7401 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7402 				  VM_EXIT_INSTRUCTION_LEN,
7403 				  IDT_VECTORING_ERROR_CODE);
7404 }
7405 
7406 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7407 {
7408 	__vmx_complete_interrupts(vcpu,
7409 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7410 				  VM_ENTRY_INSTRUCTION_LEN,
7411 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7412 
7413 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7414 }
7415 
7416 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7417 {
7418 	int i, nr_msrs;
7419 	struct perf_guest_switch_msr *msrs;
7420 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7421 
7422 	if (kvm_vcpu_has_mediated_pmu(&vmx->vcpu))
7423 		return;
7424 
7425 	pmu->host_cross_mapped_mask = 0;
7426 	if (pmu->pebs_enable & pmu->global_ctrl)
7427 		intel_pmu_cross_mapped_check(pmu);
7428 
7429 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7430 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7431 	if (!msrs)
7432 		return;
7433 
7434 	for (i = 0; i < nr_msrs; i++)
7435 		if (msrs[i].host == msrs[i].guest)
7436 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7437 		else
7438 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7439 					      msrs[i].host);
7440 }
7441 
7442 static void vmx_refresh_guest_perf_global_control(struct kvm_vcpu *vcpu)
7443 {
7444 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
7445 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7446 
7447 	if (msr_write_intercepted(vmx, MSR_CORE_PERF_GLOBAL_CTRL))
7448 		return;
7449 
7450 	if (!cpu_has_save_perf_global_ctrl()) {
7451 		int slot = vmx_find_loadstore_msr_slot(&vmx->msr_autostore,
7452 						       MSR_CORE_PERF_GLOBAL_CTRL);
7453 
7454 		if (WARN_ON_ONCE(slot < 0))
7455 			return;
7456 
7457 		pmu->global_ctrl = vmx->msr_autostore.val[slot].value;
7458 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, pmu->global_ctrl);
7459 		return;
7460 	}
7461 
7462 	pmu->global_ctrl = vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL);
7463 }
7464 
7465 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7466 {
7467 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7468 	u64 tscl;
7469 	u32 delta_tsc;
7470 
7471 	if (force_immediate_exit) {
7472 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7473 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7474 	} else if (vmx->hv_deadline_tsc != -1) {
7475 		tscl = rdtsc();
7476 		if (vmx->hv_deadline_tsc > tscl)
7477 			/* set_hv_timer ensures the delta fits in 32-bits */
7478 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7479 				cpu_preemption_timer_multi);
7480 		else
7481 			delta_tsc = 0;
7482 
7483 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7484 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7485 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7486 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7487 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7488 	}
7489 }
7490 
7491 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7492 {
7493 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7494 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7495 		vmcs_writel(HOST_RSP, host_rsp);
7496 	}
7497 }
7498 
7499 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7500 					unsigned int flags)
7501 {
7502 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7503 
7504 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7505 		return;
7506 
7507 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7508 		vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7509 
7510 	/*
7511 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7512 	 *
7513 	 * For legacy IBRS, the IBRS bit always needs to be written after
7514 	 * transitioning from a less privileged predictor mode, regardless of
7515 	 * whether the guest/host values differ.
7516 	 */
7517 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7518 	    vmx->spec_ctrl != hostval)
7519 		native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7520 
7521 	barrier_nospec();
7522 }
7523 
7524 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7525 					     bool force_immediate_exit)
7526 {
7527 	/*
7528 	 * If L2 is active, some VMX preemption timer exits can be handled in
7529 	 * the fastpath even, all other exits must use the slow path.
7530 	 */
7531 	if (is_guest_mode(vcpu) &&
7532 	    vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER)
7533 		return EXIT_FASTPATH_NONE;
7534 
7535 	switch (vmx_get_exit_reason(vcpu).basic) {
7536 	case EXIT_REASON_MSR_WRITE:
7537 		return handle_fastpath_wrmsr(vcpu);
7538 	case EXIT_REASON_MSR_WRITE_IMM:
7539 		return handle_fastpath_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
7540 						 vmx_get_msr_imm_reg(vcpu));
7541 	case EXIT_REASON_PREEMPTION_TIMER:
7542 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7543 	case EXIT_REASON_HLT:
7544 		return handle_fastpath_hlt(vcpu);
7545 	case EXIT_REASON_INVD:
7546 		return handle_fastpath_invd(vcpu);
7547 	default:
7548 		return EXIT_FASTPATH_NONE;
7549 	}
7550 }
7551 
7552 noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu)
7553 {
7554 	if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI ||
7555 	    !is_nmi(vmx_get_intr_info(vcpu)))
7556 		return;
7557 
7558 	kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7559 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7560 		fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7561 	else
7562 		vmx_do_nmi_irqoff();
7563 	kvm_after_interrupt(vcpu);
7564 }
7565 
7566 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7567 					unsigned int flags)
7568 {
7569 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7570 
7571 	guest_state_enter_irqoff();
7572 
7573 	vmx_l1d_flush(vcpu);
7574 
7575 	vmx_disable_fb_clear(vmx);
7576 
7577 	if (vcpu->arch.cr2 != native_read_cr2())
7578 		native_write_cr2(vcpu->arch.cr2);
7579 
7580 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7581 				   flags);
7582 
7583 	vcpu->arch.cr2 = native_read_cr2();
7584 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7585 
7586 	vmx->idt_vectoring_info = 0;
7587 
7588 	vmx_enable_fb_clear(vmx);
7589 
7590 	if (unlikely(vmx->fail)) {
7591 		vmx->vt.exit_reason.full = 0xdead;
7592 		goto out;
7593 	}
7594 
7595 	vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7596 	if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry))
7597 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7598 
7599 	vmx_handle_nmi(vcpu);
7600 
7601 out:
7602 	guest_state_exit_irqoff();
7603 }
7604 
7605 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
7606 {
7607 	bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
7608 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7609 	unsigned long cr3, cr4;
7610 
7611 	/* Record the guest's net vcpu time for enforced NMI injections. */
7612 	if (unlikely(!enable_vnmi &&
7613 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7614 		vmx->loaded_vmcs->entry_time = ktime_get();
7615 
7616 	/*
7617 	 * Don't enter VMX if guest state is invalid, let the exit handler
7618 	 * start emulation until we arrive back to a valid state.  Synthesize a
7619 	 * consistency check VM-Exit due to invalid guest state and bail.
7620 	 */
7621 	if (unlikely(vmx->vt.emulation_required)) {
7622 		vmx->fail = 0;
7623 
7624 		vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE;
7625 		vmx->vt.exit_reason.failed_vmentry = 1;
7626 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7627 		vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT;
7628 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7629 		vmx->vt.exit_intr_info = 0;
7630 		return EXIT_FASTPATH_NONE;
7631 	}
7632 
7633 	trace_kvm_entry(vcpu, force_immediate_exit);
7634 
7635 	if (vmx->ple_window_dirty) {
7636 		vmx->ple_window_dirty = false;
7637 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7638 	}
7639 
7640 	/*
7641 	 * We did this in prepare_switch_to_guest, because it needs to
7642 	 * be within srcu_read_lock.
7643 	 */
7644 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7645 
7646 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7647 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7648 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7649 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7650 	vcpu->arch.regs_dirty = 0;
7651 
7652 	if (run_flags & KVM_RUN_LOAD_GUEST_DR6)
7653 		set_debugreg(vcpu->arch.dr6, 6);
7654 
7655 	if (run_flags & KVM_RUN_LOAD_DEBUGCTL)
7656 		vmx_reload_guest_debugctl(vcpu);
7657 
7658 	/*
7659 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7660 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7661 	 * it switches back to the current->mm, which can occur in KVM context
7662 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7663 	 * toggles a static key while handling a VM-Exit.
7664 	 */
7665 	cr3 = __get_current_cr3_fast();
7666 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7667 		vmcs_writel(HOST_CR3, cr3);
7668 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7669 	}
7670 
7671 	cr4 = cr4_read_shadow();
7672 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7673 		vmcs_writel(HOST_CR4, cr4);
7674 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7675 	}
7676 
7677 	/* When single-stepping over STI and MOV SS, we must clear the
7678 	 * corresponding interruptibility bits in the guest state. Otherwise
7679 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7680 	 * exceptions being set, but that's not correct for the guest debugging
7681 	 * case. */
7682 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7683 		vmx_set_interrupt_shadow(vcpu, 0);
7684 
7685 	pt_guest_enter(vmx);
7686 
7687 	atomic_switch_perf_msrs(vmx);
7688 	if (intel_pmu_lbr_is_enabled(vcpu))
7689 		vmx_passthrough_lbr_msrs(vcpu);
7690 
7691 	if (enable_preemption_timer)
7692 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7693 	else if (force_immediate_exit)
7694 		smp_send_reschedule(vcpu->cpu);
7695 
7696 	kvm_wait_lapic_expire(vcpu);
7697 
7698 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7699 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7700 
7701 	/* All fields are clean at this point */
7702 	if (kvm_is_using_evmcs()) {
7703 		current_evmcs->hv_clean_fields |=
7704 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7705 
7706 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7707 	}
7708 
7709 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7710 	if (vcpu->arch.host_debugctl)
7711 		update_debugctlmsr(vcpu->arch.host_debugctl);
7712 
7713 #ifndef CONFIG_X86_64
7714 	/*
7715 	 * The sysexit path does not restore ds/es, so we must set them to
7716 	 * a reasonable value ourselves.
7717 	 *
7718 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7719 	 * function may be executed in interrupt context, which saves and
7720 	 * restore segments around it, nullifying its effect.
7721 	 */
7722 	loadsegment(ds, __USER_DS);
7723 	loadsegment(es, __USER_DS);
7724 #endif
7725 
7726 	pt_guest_exit(vmx);
7727 
7728 	if (is_guest_mode(vcpu)) {
7729 		/*
7730 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7731 		 * checking.
7732 		 */
7733 		if (vmx->nested.nested_run_pending &&
7734 		    !vmx_get_exit_reason(vcpu).failed_vmentry)
7735 			++vcpu->stat.nested_run;
7736 
7737 		vmx->nested.nested_run_pending = 0;
7738 	}
7739 
7740 	if (unlikely(vmx->fail))
7741 		return EXIT_FASTPATH_NONE;
7742 
7743 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7744 
7745 	if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
7746 		return EXIT_FASTPATH_NONE;
7747 
7748 	vmx->loaded_vmcs->launched = 1;
7749 
7750 	vmx_refresh_guest_perf_global_control(vcpu);
7751 
7752 	vmx_recover_nmi_blocking(vmx);
7753 	vmx_complete_interrupts(vmx);
7754 
7755 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7756 }
7757 
7758 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7759 {
7760 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7761 
7762 	if (enable_pml)
7763 		vmx_destroy_pml_buffer(vmx);
7764 	free_vpid(vmx->vpid);
7765 	nested_vmx_free_vcpu(vcpu);
7766 	free_loaded_vmcs(vmx->loaded_vmcs);
7767 	free_page((unsigned long)vmx->ve_info);
7768 }
7769 
7770 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7771 {
7772 	struct vmx_uret_msr *tsx_ctrl;
7773 	struct vcpu_vmx *vmx;
7774 	int i, err;
7775 
7776 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7777 	vmx = to_vmx(vcpu);
7778 
7779 	INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list);
7780 
7781 	err = -ENOMEM;
7782 
7783 	vmx->vpid = allocate_vpid();
7784 
7785 	/*
7786 	 * If PML is turned on, failure on enabling PML just results in failure
7787 	 * of creating the vcpu, therefore we can simplify PML logic (by
7788 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7789 	 * for the guest), etc.
7790 	 */
7791 	if (enable_pml) {
7792 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7793 		if (!vmx->pml_pg)
7794 			goto free_vpid;
7795 	}
7796 
7797 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7798 		vmx->guest_uret_msrs[i].mask = -1ull;
7799 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7800 		/*
7801 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7802 		 * Keep the host value unchanged to avoid changing CPUID bits
7803 		 * under the host kernel's feet.
7804 		 */
7805 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7806 		if (tsx_ctrl)
7807 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7808 	}
7809 
7810 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7811 	if (err < 0)
7812 		goto free_pml;
7813 
7814 	/*
7815 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7816 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7817 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7818 	 * performance benefits from enabling it for vmcs02.
7819 	 */
7820 	if (kvm_is_using_evmcs() &&
7821 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7822 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7823 
7824 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7825 	}
7826 
7827 	vmx->loaded_vmcs = &vmx->vmcs01;
7828 
7829 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7830 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7831 		if (err)
7832 			goto free_vmcs;
7833 	}
7834 
7835 	if (enable_ept && !enable_unrestricted_guest) {
7836 		err = init_rmode_identity_map(vcpu->kvm);
7837 		if (err)
7838 			goto free_vmcs;
7839 	}
7840 
7841 	err = -ENOMEM;
7842 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7843 		struct page *page;
7844 
7845 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7846 
7847 		/* ve_info must be page aligned. */
7848 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7849 		if (!page)
7850 			goto free_vmcs;
7851 
7852 		vmx->ve_info = page_to_virt(page);
7853 	}
7854 
7855 	if (vmx_can_use_ipiv(vcpu))
7856 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7857 			   __pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID);
7858 
7859 	return 0;
7860 
7861 free_vmcs:
7862 	free_loaded_vmcs(vmx->loaded_vmcs);
7863 free_pml:
7864 	vmx_destroy_pml_buffer(vmx);
7865 free_vpid:
7866 	free_vpid(vmx->vpid);
7867 	return err;
7868 }
7869 
7870 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7871 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7872 
7873 int vmx_vm_init(struct kvm *kvm)
7874 {
7875 	if (!ple_gap)
7876 		kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
7877 
7878 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7879 		switch (l1tf_mitigation) {
7880 		case L1TF_MITIGATION_OFF:
7881 		case L1TF_MITIGATION_FLUSH_NOWARN:
7882 			/* 'I explicitly don't care' is set */
7883 			break;
7884 		case L1TF_MITIGATION_AUTO:
7885 		case L1TF_MITIGATION_FLUSH:
7886 		case L1TF_MITIGATION_FLUSH_NOSMT:
7887 		case L1TF_MITIGATION_FULL:
7888 			/*
7889 			 * Warn upon starting the first VM in a potentially
7890 			 * insecure environment.
7891 			 */
7892 			if (sched_smt_active())
7893 				pr_warn_once(L1TF_MSG_SMT);
7894 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7895 				pr_warn_once(L1TF_MSG_L1D);
7896 			break;
7897 		case L1TF_MITIGATION_FULL_FORCE:
7898 			/* Flush is enforced */
7899 			break;
7900 		}
7901 	}
7902 
7903 	if (enable_pml)
7904 		kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES;
7905 	return 0;
7906 }
7907 
7908 static inline bool vmx_ignore_guest_pat(struct kvm *kvm)
7909 {
7910 	/*
7911 	 * Non-coherent DMA devices need the guest to flush CPU properly.
7912 	 * In that case it is not possible to map all guest RAM as WB, so
7913 	 * always trust guest PAT.
7914 	 */
7915 	return !kvm_arch_has_noncoherent_dma(kvm) &&
7916 	       kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT);
7917 }
7918 
7919 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7920 {
7921 	/*
7922 	 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7923 	 * with cacheable accesses will result in Machine Checks.
7924 	 */
7925 	if (is_mmio)
7926 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7927 
7928 	/* Force WB if ignoring guest PAT */
7929 	if (vmx_ignore_guest_pat(vcpu->kvm))
7930 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7931 
7932 	return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7933 }
7934 
7935 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7936 {
7937 	/*
7938 	 * These bits in the secondary execution controls field
7939 	 * are dynamic, the others are mostly based on the hypervisor
7940 	 * architecture and the guest's CPUID.  Do not touch the
7941 	 * dynamic bits.
7942 	 */
7943 	u32 mask =
7944 		SECONDARY_EXEC_SHADOW_VMCS |
7945 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7946 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7947 		SECONDARY_EXEC_DESC;
7948 
7949 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7950 
7951 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7952 }
7953 
7954 /*
7955  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7956  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7957  */
7958 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7959 {
7960 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7961 	struct kvm_cpuid_entry2 *entry;
7962 
7963 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7964 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7965 
7966 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7967 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7968 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7969 } while (0)
7970 
7971 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7972 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7973 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7974 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7975 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7976 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7977 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7978 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7979 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7980 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7981 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7982 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7983 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7984 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7985 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7986 
7987 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7988 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7989 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7990 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7991 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7992 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7993 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7994 	cr4_fixed1_update(X86_CR4_CET,	      ecx, feature_bit(SHSTK));
7995 	cr4_fixed1_update(X86_CR4_CET,	      edx, feature_bit(IBT));
7996 
7997 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7998 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7999 
8000 #undef cr4_fixed1_update
8001 }
8002 
8003 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
8004 {
8005 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8006 	struct kvm_cpuid_entry2 *best = NULL;
8007 	int i;
8008 
8009 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
8010 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
8011 		if (!best)
8012 			return;
8013 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
8014 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
8015 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
8016 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
8017 	}
8018 
8019 	/* Get the number of configurable Address Ranges for filtering */
8020 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
8021 						PT_CAP_num_address_ranges);
8022 
8023 	/* Initialize and clear the no dependency bits */
8024 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
8025 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
8026 			RTIT_CTL_BRANCH_EN);
8027 
8028 	/*
8029 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
8030 	 * will inject an #GP
8031 	 */
8032 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
8033 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
8034 
8035 	/*
8036 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
8037 	 * PSBFreq can be set
8038 	 */
8039 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
8040 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
8041 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
8042 
8043 	/*
8044 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
8045 	 */
8046 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
8047 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
8048 					      RTIT_CTL_MTC_RANGE);
8049 
8050 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
8051 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
8052 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
8053 							RTIT_CTL_PTW_EN);
8054 
8055 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
8056 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
8057 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
8058 
8059 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
8060 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
8061 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
8062 
8063 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
8064 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
8065 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
8066 
8067 	/* unmask address range configure area */
8068 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
8069 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
8070 }
8071 
8072 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
8073 {
8074 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8075 
8076 	/*
8077 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
8078 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
8079 	 * set if and only if XSAVE is supported.
8080 	 */
8081 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
8082 		guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
8083 
8084 	vmx_setup_uret_msrs(vmx);
8085 
8086 	if (cpu_has_secondary_exec_ctrls())
8087 		vmcs_set_secondary_exec_control(vmx,
8088 						vmx_secondary_exec_control(vmx));
8089 
8090 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
8091 		vmx->msr_ia32_feature_control_valid_bits |=
8092 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
8093 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
8094 	else
8095 		vmx->msr_ia32_feature_control_valid_bits &=
8096 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
8097 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
8098 
8099 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
8100 		nested_vmx_cr_fixed1_bits_update(vcpu);
8101 
8102 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
8103 			guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
8104 		update_intel_pt_cfg(vcpu);
8105 
8106 	if (boot_cpu_has(X86_FEATURE_RTM)) {
8107 		struct vmx_uret_msr *msr;
8108 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
8109 		if (msr) {
8110 			bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
8111 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
8112 		}
8113 	}
8114 
8115 	set_cr4_guest_host_mask(vmx);
8116 
8117 	vmx_write_encls_bitmap(vcpu, NULL);
8118 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
8119 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
8120 	else
8121 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
8122 
8123 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
8124 		vmx->msr_ia32_feature_control_valid_bits |=
8125 			FEAT_CTL_SGX_LC_ENABLED;
8126 	else
8127 		vmx->msr_ia32_feature_control_valid_bits &=
8128 			~FEAT_CTL_SGX_LC_ENABLED;
8129 
8130 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
8131 	vmx_update_exception_bitmap(vcpu);
8132 }
8133 
8134 static __init u64 vmx_get_perf_capabilities(void)
8135 {
8136 	u64 perf_cap = PERF_CAP_FW_WRITES;
8137 	u64 host_perf_cap = 0;
8138 
8139 	if (!enable_pmu)
8140 		return 0;
8141 
8142 	if (boot_cpu_has(X86_FEATURE_PDCM))
8143 		rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
8144 
8145 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR) &&
8146 	    !enable_mediated_pmu) {
8147 		x86_perf_get_lbr(&vmx_lbr_caps);
8148 
8149 		/*
8150 		 * KVM requires LBR callstack support, as the overhead due to
8151 		 * context switching LBRs without said support is too high.
8152 		 * See intel_pmu_create_guest_lbr_event() for more info.
8153 		 */
8154 		if (!vmx_lbr_caps.has_callstack)
8155 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
8156 		else if (vmx_lbr_caps.nr)
8157 			perf_cap |= host_perf_cap & PERF_CAP_LBR_FMT;
8158 	}
8159 
8160 	if (vmx_pebs_supported()) {
8161 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
8162 
8163 		/*
8164 		 * Disallow adaptive PEBS as it is functionally broken, can be
8165 		 * used by the guest to read *host* LBRs, and can be used to
8166 		 * bypass userspace event filters.  To correctly and safely
8167 		 * support adaptive PEBS, KVM needs to:
8168 		 *
8169 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
8170 		 *    counters.
8171 		 *
8172 		 * 2. Gain support from perf (or take direct control of counter
8173 		 *    programming) to support events without adaptive PEBS
8174 		 *    enabled for the hardware counter.
8175 		 *
8176 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
8177 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
8178 		 *
8179 		 * 4. Document which PMU events are effectively exposed to the
8180 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
8181 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
8182 		 */
8183 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
8184 	}
8185 
8186 	return perf_cap;
8187 }
8188 
8189 static __init void vmx_set_cpu_caps(void)
8190 {
8191 	kvm_initialize_cpu_caps();
8192 
8193 	/* CPUID 0x1 */
8194 	if (nested)
8195 		kvm_cpu_cap_set(X86_FEATURE_VMX);
8196 
8197 	/* CPUID 0x7 */
8198 	if (kvm_mpx_supported())
8199 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
8200 	if (!cpu_has_vmx_invpcid())
8201 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
8202 	if (vmx_pt_mode_is_host_guest())
8203 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
8204 	if (vmx_pebs_supported()) {
8205 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
8206 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
8207 	}
8208 
8209 	if (!enable_pmu)
8210 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
8211 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
8212 
8213 	if (!enable_sgx) {
8214 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
8215 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
8216 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
8217 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
8218 		kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
8219 	}
8220 
8221 	if (vmx_umip_emulated())
8222 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
8223 
8224 	/* CPUID 0xD.1 */
8225 	if (!cpu_has_vmx_xsaves())
8226 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
8227 
8228 	/* CPUID 0x80000001 and 0x7 (RDPID) */
8229 	if (!cpu_has_vmx_rdtscp()) {
8230 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
8231 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
8232 	}
8233 
8234 	if (cpu_has_vmx_waitpkg())
8235 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
8236 
8237 	/*
8238 	 * Disable CET if unrestricted_guest is unsupported as KVM doesn't
8239 	 * enforce CET HW behaviors in emulator. On platforms with
8240 	 * VMX_BASIC[bit56] == 0, inject #CP at VMX entry with error code
8241 	 * fails, so disable CET in this case too.
8242 	 */
8243 	if (!cpu_has_load_cet_ctrl() || !enable_unrestricted_guest ||
8244 	    !cpu_has_vmx_basic_no_hw_errcode_cc()) {
8245 		kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
8246 		kvm_cpu_cap_clear(X86_FEATURE_IBT);
8247 	}
8248 
8249 	kvm_setup_xss_caps();
8250 	kvm_finalize_cpu_caps();
8251 }
8252 
8253 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
8254 				  struct x86_instruction_info *info,
8255 				  unsigned long *exit_qualification)
8256 {
8257 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8258 	unsigned short port;
8259 	int size;
8260 	bool imm;
8261 
8262 	/*
8263 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8264 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8265 	 * control.
8266 	 *
8267 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8268 	 */
8269 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8270 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8271 
8272 	if (info->intercept == x86_intercept_in ||
8273 	    info->intercept == x86_intercept_ins) {
8274 		port = info->src_val;
8275 		size = info->dst_bytes;
8276 		imm  = info->src_type == OP_IMM;
8277 	} else {
8278 		port = info->dst_val;
8279 		size = info->src_bytes;
8280 		imm  = info->dst_type == OP_IMM;
8281 	}
8282 
8283 
8284 	*exit_qualification = ((unsigned long)port << 16) | (size - 1);
8285 
8286 	if (info->intercept == x86_intercept_ins ||
8287 	    info->intercept == x86_intercept_outs)
8288 		*exit_qualification |= BIT(4);
8289 
8290 	if (info->rep_prefix)
8291 		*exit_qualification |= BIT(5);
8292 
8293 	if (imm)
8294 		*exit_qualification |= BIT(6);
8295 
8296 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
8297 }
8298 
8299 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8300 			struct x86_instruction_info *info,
8301 			enum x86_intercept_stage stage,
8302 			struct x86_exception *exception)
8303 {
8304 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8305 	unsigned long exit_qualification = 0;
8306 	u32 vm_exit_reason;
8307 	u64 exit_insn_len;
8308 
8309 	switch (info->intercept) {
8310 	case x86_intercept_rdpid:
8311 		/*
8312 		 * RDPID causes #UD if not enabled through secondary execution
8313 		 * controls (ENABLE_RDTSCP).  Note, the implicit MSR access to
8314 		 * TSC_AUX is NOT subject to interception, i.e. checking only
8315 		 * the dedicated execution control is architecturally correct.
8316 		 */
8317 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8318 			exception->vector = UD_VECTOR;
8319 			exception->error_code_valid = false;
8320 			return X86EMUL_PROPAGATE_FAULT;
8321 		}
8322 		return X86EMUL_CONTINUE;
8323 
8324 	case x86_intercept_in:
8325 	case x86_intercept_ins:
8326 	case x86_intercept_out:
8327 	case x86_intercept_outs:
8328 		if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
8329 			return X86EMUL_CONTINUE;
8330 
8331 		vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
8332 		break;
8333 
8334 	case x86_intercept_lgdt:
8335 	case x86_intercept_lidt:
8336 	case x86_intercept_lldt:
8337 	case x86_intercept_ltr:
8338 	case x86_intercept_sgdt:
8339 	case x86_intercept_sidt:
8340 	case x86_intercept_sldt:
8341 	case x86_intercept_str:
8342 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8343 			return X86EMUL_CONTINUE;
8344 
8345 		if (info->intercept == x86_intercept_lldt ||
8346 		    info->intercept == x86_intercept_ltr ||
8347 		    info->intercept == x86_intercept_sldt ||
8348 		    info->intercept == x86_intercept_str)
8349 			vm_exit_reason = EXIT_REASON_LDTR_TR;
8350 		else
8351 			vm_exit_reason = EXIT_REASON_GDTR_IDTR;
8352 		/*
8353 		 * FIXME: Decode the ModR/M to generate the correct exit
8354 		 *        qualification for memory operands.
8355 		 */
8356 		break;
8357 
8358 	case x86_intercept_hlt:
8359 		if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
8360 			return X86EMUL_CONTINUE;
8361 
8362 		vm_exit_reason = EXIT_REASON_HLT;
8363 		break;
8364 
8365 	case x86_intercept_pause:
8366 		/*
8367 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8368 		 * with vanilla NOPs in the emulator.  Apply the interception
8369 		 * check only to actual PAUSE instructions.  Don't check
8370 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8371 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8372 		 * the PAUSE.
8373 		 */
8374 		if ((info->rep_prefix != REPE_PREFIX) ||
8375 		    !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8376 			return X86EMUL_CONTINUE;
8377 
8378 		vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8379 		break;
8380 
8381 	/* TODO: check more intercepts... */
8382 	default:
8383 		return X86EMUL_UNHANDLEABLE;
8384 	}
8385 
8386 	exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8387 	if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8388 		return X86EMUL_UNHANDLEABLE;
8389 
8390 	__nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8391 			    exit_insn_len);
8392 	return X86EMUL_INTERCEPTED;
8393 }
8394 
8395 #ifdef CONFIG_X86_64
8396 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8397 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8398 				  u64 divisor, u64 *result)
8399 {
8400 	u64 low = a << shift, high = a >> (64 - shift);
8401 
8402 	/* To avoid the overflow on divq */
8403 	if (high >= divisor)
8404 		return 1;
8405 
8406 	/* Low hold the result, high hold rem which is discarded */
8407 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8408 	    "rm" (divisor), "0" (low), "1" (high));
8409 	*result = low;
8410 
8411 	return 0;
8412 }
8413 
8414 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8415 		     bool *expired)
8416 {
8417 	struct vcpu_vmx *vmx;
8418 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8419 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8420 
8421 	vmx = to_vmx(vcpu);
8422 	tscl = rdtsc();
8423 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8424 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8425 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8426 						    ktimer->timer_advance_ns);
8427 
8428 	if (delta_tsc > lapic_timer_advance_cycles)
8429 		delta_tsc -= lapic_timer_advance_cycles;
8430 	else
8431 		delta_tsc = 0;
8432 
8433 	/* Convert to host delta tsc if tsc scaling is enabled */
8434 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8435 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8436 				kvm_caps.tsc_scaling_ratio_frac_bits,
8437 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8438 		return -ERANGE;
8439 
8440 	/*
8441 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8442 	 * we can't use the preemption timer.
8443 	 * It's possible that it fits on later vmentries, but checking
8444 	 * on every vmentry is costly so we just use an hrtimer.
8445 	 */
8446 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8447 		return -ERANGE;
8448 
8449 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8450 	*expired = !delta_tsc;
8451 	return 0;
8452 }
8453 
8454 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8455 {
8456 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8457 }
8458 #endif
8459 
8460 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8461 {
8462 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8463 
8464 	if (WARN_ON_ONCE(!enable_pml))
8465 		return;
8466 
8467 	guard(vmx_vmcs01)(vcpu);
8468 
8469 	/*
8470 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8471 	 * code, but in that case another update request will be made and so
8472 	 * the guest will never run with a stale PML value.
8473 	 */
8474 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8475 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8476 	else
8477 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8478 }
8479 
8480 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8481 {
8482 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8483 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8484 			FEAT_CTL_LMCE_ENABLED;
8485 	else
8486 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8487 			~FEAT_CTL_LMCE_ENABLED;
8488 }
8489 
8490 #ifdef CONFIG_KVM_SMM
8491 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8492 {
8493 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8494 	if (to_vmx(vcpu)->nested.nested_run_pending)
8495 		return -EBUSY;
8496 	return !is_smm(vcpu);
8497 }
8498 
8499 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8500 {
8501 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8502 
8503 	/*
8504 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8505 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8506 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8507 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8508 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8509 	 */
8510 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8511 	if (vmx->nested.smm.guest_mode)
8512 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8513 
8514 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8515 	vmx->nested.vmxon = false;
8516 	vmx_clear_hlt(vcpu);
8517 	return 0;
8518 }
8519 
8520 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8521 {
8522 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8523 	int ret;
8524 
8525 	if (vmx->nested.smm.vmxon) {
8526 		vmx->nested.vmxon = true;
8527 		vmx->nested.smm.vmxon = false;
8528 	}
8529 
8530 	if (vmx->nested.smm.guest_mode) {
8531 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8532 		if (ret)
8533 			return ret;
8534 
8535 		vmx->nested.nested_run_pending = 1;
8536 		vmx->nested.smm.guest_mode = false;
8537 	}
8538 	return 0;
8539 }
8540 
8541 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8542 {
8543 	/* RSM will cause a vmexit anyway.  */
8544 }
8545 #endif
8546 
8547 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8548 {
8549 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8550 }
8551 
8552 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8553 {
8554 	if (is_guest_mode(vcpu)) {
8555 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8556 
8557 		if (hrtimer_try_to_cancel(timer) == 1)
8558 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8559 	}
8560 }
8561 
8562 void vmx_hardware_unsetup(void)
8563 {
8564 	kvm_set_posted_intr_wakeup_handler(NULL);
8565 
8566 	if (nested)
8567 		nested_vmx_hardware_unsetup();
8568 
8569 	free_kvm_area();
8570 }
8571 
8572 void vmx_vm_destroy(struct kvm *kvm)
8573 {
8574 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8575 
8576 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8577 }
8578 
8579 /*
8580  * Note, the SDM states that the linear address is masked *after* the modified
8581  * canonicality check, whereas KVM masks (untags) the address and then performs
8582  * a "normal" canonicality check.  Functionally, the two methods are identical,
8583  * and when the masking occurs relative to the canonicality check isn't visible
8584  * to software, i.e. KVM's behavior doesn't violate the SDM.
8585  */
8586 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8587 {
8588 	int lam_bit;
8589 	unsigned long cr3_bits;
8590 
8591 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8592 		return gva;
8593 
8594 	if (!is_64_bit_mode(vcpu))
8595 		return gva;
8596 
8597 	/*
8598 	 * Bit 63 determines if the address should be treated as user address
8599 	 * or a supervisor address.
8600 	 */
8601 	if (!(gva & BIT_ULL(63))) {
8602 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8603 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8604 			return gva;
8605 
8606 		/* LAM_U48 is ignored if LAM_U57 is set. */
8607 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8608 	} else {
8609 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8610 			return gva;
8611 
8612 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8613 	}
8614 
8615 	/*
8616 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8617 	 * Bit 63 is retained from the raw virtual address so that untagging
8618 	 * doesn't change a user access to a supervisor access, and vice versa.
8619 	 */
8620 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8621 }
8622 
8623 static unsigned int vmx_handle_intel_pt_intr(void)
8624 {
8625 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8626 
8627 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8628 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8629 		return 0;
8630 
8631 	kvm_make_request(KVM_REQ_PMI, vcpu);
8632 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8633 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8634 	return 1;
8635 }
8636 
8637 static __init void vmx_setup_user_return_msrs(void)
8638 {
8639 
8640 	/*
8641 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8642 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8643 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8644 	 * support this emulation, MSR_STAR is included in the list for i386,
8645 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8646 	 * into hardware and is here purely for emulation purposes.
8647 	 */
8648 	const u32 vmx_uret_msrs_list[] = {
8649 	#ifdef CONFIG_X86_64
8650 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8651 	#endif
8652 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8653 		MSR_IA32_TSX_CTRL,
8654 	};
8655 	int i;
8656 
8657 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8658 
8659 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8660 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8661 }
8662 
8663 static void __init vmx_setup_me_spte_mask(void)
8664 {
8665 	u64 me_mask = 0;
8666 
8667 	/*
8668 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8669 	 * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8670 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8671 	 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8672 	 * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8673 	 */
8674 	if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8675 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8676 				    kvm_host.maxphyaddr - 1);
8677 
8678 	/*
8679 	 * Unlike SME, host kernel doesn't support setting up any
8680 	 * MKTME KeyID on Intel platforms.  No memory encryption
8681 	 * bits should be included into the SPTE.
8682 	 */
8683 	kvm_mmu_set_me_spte_mask(0, me_mask);
8684 }
8685 
8686 __init int vmx_hardware_setup(void)
8687 {
8688 	unsigned long host_bndcfgs;
8689 	struct desc_ptr dt;
8690 	int r;
8691 
8692 	store_idt(&dt);
8693 	host_idt_base = dt.address;
8694 
8695 	vmx_setup_user_return_msrs();
8696 
8697 
8698 	if (boot_cpu_has(X86_FEATURE_NX))
8699 		kvm_enable_efer_bits(EFER_NX);
8700 
8701 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8702 		rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8703 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8704 	}
8705 
8706 	if (!cpu_has_vmx_mpx())
8707 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8708 					     XFEATURE_MASK_BNDCSR);
8709 
8710 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8711 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8712 		enable_vpid = 0;
8713 
8714 	if (!cpu_has_vmx_ept() ||
8715 	    !cpu_has_vmx_ept_4levels() ||
8716 	    !cpu_has_vmx_ept_mt_wb() ||
8717 	    !cpu_has_vmx_invept_global())
8718 		enable_ept = 0;
8719 
8720 	/* NX support is required for shadow paging. */
8721 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8722 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8723 		return -EOPNOTSUPP;
8724 	}
8725 
8726 	/*
8727 	 * Shadow paging doesn't have a (further) performance penalty
8728 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8729 	 * by default
8730 	 */
8731 	if (!enable_ept)
8732 		allow_smaller_maxphyaddr = true;
8733 
8734 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8735 		enable_ept_ad_bits = 0;
8736 
8737 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8738 		enable_unrestricted_guest = 0;
8739 
8740 	if (!cpu_has_vmx_flexpriority())
8741 		flexpriority_enabled = 0;
8742 
8743 	if (!cpu_has_virtual_nmis())
8744 		enable_vnmi = 0;
8745 
8746 #ifdef CONFIG_X86_SGX_KVM
8747 	if (!cpu_has_vmx_encls_vmexit())
8748 		enable_sgx = false;
8749 #endif
8750 
8751 	/*
8752 	 * set_apic_access_page_addr() is used to reload apic access
8753 	 * page upon invalidation.  No need to do anything if not
8754 	 * using the APIC_ACCESS_ADDR VMCS field.
8755 	 */
8756 	if (!flexpriority_enabled)
8757 		vt_x86_ops.set_apic_access_page_addr = NULL;
8758 
8759 	if (!cpu_has_vmx_tpr_shadow())
8760 		vt_x86_ops.update_cr8_intercept = NULL;
8761 
8762 #if IS_ENABLED(CONFIG_HYPERV)
8763 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8764 	    && enable_ept) {
8765 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8766 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8767 	}
8768 #endif
8769 
8770 	if (!cpu_has_vmx_ple()) {
8771 		ple_gap = 0;
8772 		ple_window = 0;
8773 		ple_window_grow = 0;
8774 		ple_window_max = 0;
8775 		ple_window_shrink = 0;
8776 	}
8777 
8778 	if (!cpu_has_vmx_apicv())
8779 		enable_apicv = 0;
8780 	if (!enable_apicv)
8781 		vt_x86_ops.sync_pir_to_irr = NULL;
8782 
8783 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8784 		enable_ipiv = false;
8785 
8786 	if (cpu_has_vmx_tsc_scaling())
8787 		kvm_caps.has_tsc_control = true;
8788 
8789 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8790 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8791 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8792 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8793 
8794 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8795 
8796 	if (enable_ept)
8797 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8798 				      cpu_has_vmx_ept_execute_only());
8799 	else
8800 		vt_x86_ops.get_mt_mask = NULL;
8801 
8802 	/*
8803 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8804 	 * bits to shadow_zero_check.
8805 	 */
8806 	vmx_setup_me_spte_mask();
8807 
8808 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8809 			  ept_caps_to_lpage_level(vmx_capability.ept));
8810 
8811 	/*
8812 	 * Only enable PML when hardware supports PML feature, and both EPT
8813 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8814 	 */
8815 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8816 		enable_pml = 0;
8817 
8818 	if (!cpu_has_vmx_preemption_timer())
8819 		enable_preemption_timer = false;
8820 
8821 	if (enable_preemption_timer) {
8822 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8823 
8824 		cpu_preemption_timer_multi =
8825 			vmx_misc_preemption_timer_rate(vmcs_config.misc);
8826 
8827 		if (tsc_khz)
8828 			use_timer_freq = (u64)tsc_khz * 1000;
8829 		use_timer_freq >>= cpu_preemption_timer_multi;
8830 
8831 		/*
8832 		 * KVM "disables" the preemption timer by setting it to its max
8833 		 * value.  Don't use the timer if it might cause spurious exits
8834 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8835 		 */
8836 		if (use_timer_freq > 0xffffffffu / 10)
8837 			enable_preemption_timer = false;
8838 	}
8839 
8840 	if (!enable_preemption_timer) {
8841 		vt_x86_ops.set_hv_timer = NULL;
8842 		vt_x86_ops.cancel_hv_timer = NULL;
8843 	}
8844 
8845 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8846 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8847 
8848 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8849 		return -EINVAL;
8850 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8851 		pt_mode = PT_MODE_SYSTEM;
8852 	if (pt_mode == PT_MODE_HOST_GUEST)
8853 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8854 	else
8855 		vt_init_ops.handle_intel_pt_intr = NULL;
8856 
8857 	setup_default_sgx_lepubkeyhash();
8858 
8859 	vmx_set_cpu_caps();
8860 
8861 	/*
8862 	 * Configure nested capabilities after core CPU capabilities so that
8863 	 * nested support can be conditional on base support, e.g. so that KVM
8864 	 * can hide/show features based on kvm_cpu_cap_has().
8865 	 */
8866 	if (nested) {
8867 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8868 		if (r)
8869 			return r;
8870 	}
8871 
8872 	r = alloc_kvm_area();
8873 	if (r)
8874 		goto err_kvm_area;
8875 
8876 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8877 
8878 	/*
8879 	 * On Intel CPUs that lack self-snoop feature, letting the guest control
8880 	 * memory types may result in unexpected behavior. So always ignore guest
8881 	 * PAT on those CPUs and map VM as writeback, not allowing userspace to
8882 	 * disable the quirk.
8883 	 *
8884 	 * On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is
8885 	 * supported, UC is slow enough to cause issues with some older guests (e.g.
8886 	 * an old version of bochs driver uses ioremap() instead of ioremap_wc() to
8887 	 * map the video RAM, causing wayland desktop to fail to get started
8888 	 * correctly). To avoid breaking those older guests that rely on KVM to force
8889 	 * memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the
8890 	 * safer (for performance) default behavior.
8891 	 *
8892 	 * On top of this, non-coherent DMA devices need the guest to flush CPU
8893 	 * caches properly.  This also requires honoring guest PAT, and is forced
8894 	 * independent of the quirk in vmx_ignore_guest_pat().
8895 	 */
8896 	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
8897 		kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8898 
8899 	kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8900 
8901 	return 0;
8902 
8903 err_kvm_area:
8904 	if (nested)
8905 		nested_vmx_hardware_unsetup();
8906 	return r;
8907 }
8908 
8909 void vmx_exit(void)
8910 {
8911 	allow_smaller_maxphyaddr = false;
8912 
8913 	vmx_cleanup_l1d_flush();
8914 
8915 	kvm_x86_vendor_exit();
8916 }
8917 
8918 int __init vmx_init(void)
8919 {
8920 	int r, cpu;
8921 
8922 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_vmx);
8923 
8924 	if (!kvm_is_vmx_supported())
8925 		return -EOPNOTSUPP;
8926 
8927 	/*
8928 	 * Note, VMCS and eVMCS configuration only touch VMX knobs/variables,
8929 	 * i.e. there's nothing to unwind if a later step fails.
8930 	 */
8931 	hv_init_evmcs();
8932 
8933 	/*
8934 	 * Parse the VMCS config and VMX capabilities before anything else, so
8935 	 * that the information is available to all setup flows.
8936 	 */
8937 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8938 		return -EIO;
8939 
8940 	r = kvm_x86_vendor_init(&vt_init_ops);
8941 	if (r)
8942 		return r;
8943 
8944 	/* Must be called after common x86 init so enable_ept is setup. */
8945 	r = vmx_setup_l1d_flush();
8946 	if (r)
8947 		goto err_l1d_flush;
8948 
8949 	for_each_possible_cpu(cpu) {
8950 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8951 
8952 		pi_init_cpu(cpu);
8953 	}
8954 
8955 	vmx_check_vmcs12_offsets();
8956 
8957 	return 0;
8958 
8959 err_l1d_flush:
8960 	kvm_x86_vendor_exit();
8961 	return r;
8962 }
8963