xref: /linux/tools/testing/selftests/kvm/lib/x86/processor.c (revision f3826aa9962b4572d01083c84ac0f8345f121168)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 
6 #include "linux/bitmap.h"
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "pmu.h"
10 #include "processor.h"
11 #include "sev.h"
12 
13 #ifndef NUM_INTERRUPTS
14 #define NUM_INTERRUPTS 256
15 #endif
16 
17 #define KERNEL_CS	0x8
18 #define KERNEL_DS	0x10
19 #define KERNEL_TSS	0x18
20 
21 vm_vaddr_t exception_handlers;
22 bool host_cpu_is_amd;
23 bool host_cpu_is_intel;
24 bool is_forced_emulation_enabled;
25 uint64_t guest_tsc_khz;
26 
27 const char *ex_str(int vector)
28 {
29 	switch (vector) {
30 #define VEC_STR(v) case v##_VECTOR: return "#" #v
31 	case DE_VECTOR: return "no exception";
32 	case KVM_MAGIC_DE_VECTOR: return "#DE";
33 	VEC_STR(DB);
34 	VEC_STR(NMI);
35 	VEC_STR(BP);
36 	VEC_STR(OF);
37 	VEC_STR(BR);
38 	VEC_STR(UD);
39 	VEC_STR(NM);
40 	VEC_STR(DF);
41 	VEC_STR(TS);
42 	VEC_STR(NP);
43 	VEC_STR(SS);
44 	VEC_STR(GP);
45 	VEC_STR(PF);
46 	VEC_STR(MF);
47 	VEC_STR(AC);
48 	VEC_STR(MC);
49 	VEC_STR(XM);
50 	VEC_STR(VE);
51 	VEC_STR(CP);
52 	VEC_STR(HV);
53 	VEC_STR(VC);
54 	VEC_STR(SX);
55 	default: return "#??";
56 #undef VEC_STR
57 	}
58 }
59 
60 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
61 {
62 	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
63 		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
64 		indent, "",
65 		regs->rax, regs->rbx, regs->rcx, regs->rdx);
66 	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
67 		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
68 		indent, "",
69 		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
70 	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
71 		"r10: 0x%.16llx r11: 0x%.16llx\n",
72 		indent, "",
73 		regs->r8, regs->r9, regs->r10, regs->r11);
74 	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
75 		"r14: 0x%.16llx r15: 0x%.16llx\n",
76 		indent, "",
77 		regs->r12, regs->r13, regs->r14, regs->r15);
78 	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
79 		indent, "",
80 		regs->rip, regs->rflags);
81 }
82 
83 static void segment_dump(FILE *stream, struct kvm_segment *segment,
84 			 uint8_t indent)
85 {
86 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
87 		"selector: 0x%.4x type: 0x%.2x\n",
88 		indent, "", segment->base, segment->limit,
89 		segment->selector, segment->type);
90 	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
91 		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
92 		indent, "", segment->present, segment->dpl,
93 		segment->db, segment->s, segment->l);
94 	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
95 		"unusable: 0x%.2x padding: 0x%.2x\n",
96 		indent, "", segment->g, segment->avl,
97 		segment->unusable, segment->padding);
98 }
99 
100 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
101 			uint8_t indent)
102 {
103 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
104 		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
105 		indent, "", dtable->base, dtable->limit,
106 		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
107 }
108 
109 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
110 {
111 	unsigned int i;
112 
113 	fprintf(stream, "%*scs:\n", indent, "");
114 	segment_dump(stream, &sregs->cs, indent + 2);
115 	fprintf(stream, "%*sds:\n", indent, "");
116 	segment_dump(stream, &sregs->ds, indent + 2);
117 	fprintf(stream, "%*ses:\n", indent, "");
118 	segment_dump(stream, &sregs->es, indent + 2);
119 	fprintf(stream, "%*sfs:\n", indent, "");
120 	segment_dump(stream, &sregs->fs, indent + 2);
121 	fprintf(stream, "%*sgs:\n", indent, "");
122 	segment_dump(stream, &sregs->gs, indent + 2);
123 	fprintf(stream, "%*sss:\n", indent, "");
124 	segment_dump(stream, &sregs->ss, indent + 2);
125 	fprintf(stream, "%*str:\n", indent, "");
126 	segment_dump(stream, &sregs->tr, indent + 2);
127 	fprintf(stream, "%*sldt:\n", indent, "");
128 	segment_dump(stream, &sregs->ldt, indent + 2);
129 
130 	fprintf(stream, "%*sgdt:\n", indent, "");
131 	dtable_dump(stream, &sregs->gdt, indent + 2);
132 	fprintf(stream, "%*sidt:\n", indent, "");
133 	dtable_dump(stream, &sregs->idt, indent + 2);
134 
135 	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
136 		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
137 		indent, "",
138 		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
139 	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
140 		"apic_base: 0x%.16llx\n",
141 		indent, "",
142 		sregs->cr8, sregs->efer, sregs->apic_base);
143 
144 	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
145 	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
146 		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
147 			sregs->interrupt_bitmap[i]);
148 	}
149 }
150 
151 bool kvm_is_tdp_enabled(void)
152 {
153 	if (host_cpu_is_intel)
154 		return get_kvm_intel_param_bool("ept");
155 	else
156 		return get_kvm_amd_param_bool("npt");
157 }
158 
159 void virt_arch_pgd_alloc(struct kvm_vm *vm)
160 {
161 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
162 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
163 
164 	/* If needed, create page map l4 table. */
165 	if (!vm->pgd_created) {
166 		vm->pgd = vm_alloc_page_table(vm);
167 		vm->pgd_created = true;
168 	}
169 }
170 
171 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
172 			  uint64_t vaddr, int level)
173 {
174 	uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
175 	uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
176 	int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
177 
178 	TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
179 		    "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
180 		    level + 1, vaddr);
181 
182 	return &page_table[index];
183 }
184 
185 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
186 				       uint64_t *parent_pte,
187 				       uint64_t vaddr,
188 				       uint64_t paddr,
189 				       int current_level,
190 				       int target_level)
191 {
192 	uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
193 
194 	paddr = vm_untag_gpa(vm, paddr);
195 
196 	if (!(*pte & PTE_PRESENT_MASK)) {
197 		*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
198 		if (current_level == target_level)
199 			*pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
200 		else
201 			*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
202 	} else {
203 		/*
204 		 * Entry already present.  Assert that the caller doesn't want
205 		 * a hugepage at this level, and that there isn't a hugepage at
206 		 * this level.
207 		 */
208 		TEST_ASSERT(current_level != target_level,
209 			    "Cannot create hugepage at level: %u, vaddr: 0x%lx",
210 			    current_level, vaddr);
211 		TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
212 			    "Cannot create page table at level: %u, vaddr: 0x%lx",
213 			    current_level, vaddr);
214 	}
215 	return pte;
216 }
217 
218 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
219 {
220 	const uint64_t pg_size = PG_LEVEL_SIZE(level);
221 	uint64_t *pml4e, *pdpe, *pde;
222 	uint64_t *pte;
223 
224 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
225 		    "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
226 
227 	TEST_ASSERT((vaddr % pg_size) == 0,
228 		    "Virtual address not aligned,\n"
229 		    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
230 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
231 		    "Invalid virtual address, vaddr: 0x%lx", vaddr);
232 	TEST_ASSERT((paddr % pg_size) == 0,
233 		    "Physical address not aligned,\n"
234 		    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
235 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
236 		    "Physical address beyond maximum supported,\n"
237 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
238 		    paddr, vm->max_gfn, vm->page_size);
239 	TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr,
240 		    "Unexpected bits in paddr: %lx", paddr);
241 
242 	/*
243 	 * Allocate upper level page tables, if not already present.  Return
244 	 * early if a hugepage was created.
245 	 */
246 	pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
247 	if (*pml4e & PTE_LARGE_MASK)
248 		return;
249 
250 	pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
251 	if (*pdpe & PTE_LARGE_MASK)
252 		return;
253 
254 	pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
255 	if (*pde & PTE_LARGE_MASK)
256 		return;
257 
258 	/* Fill in page table entry. */
259 	pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
260 	TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
261 		    "PTE already present for 4k page at vaddr: 0x%lx", vaddr);
262 	*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
263 
264 	/*
265 	 * Neither SEV nor TDX supports shared page tables, so only the final
266 	 * leaf PTE needs manually set the C/S-bit.
267 	 */
268 	if (vm_is_gpa_protected(vm, paddr))
269 		*pte |= vm->arch.c_bit;
270 	else
271 		*pte |= vm->arch.s_bit;
272 }
273 
274 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
275 {
276 	__virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
277 }
278 
279 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
280 		    uint64_t nr_bytes, int level)
281 {
282 	uint64_t pg_size = PG_LEVEL_SIZE(level);
283 	uint64_t nr_pages = nr_bytes / pg_size;
284 	int i;
285 
286 	TEST_ASSERT(nr_bytes % pg_size == 0,
287 		    "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
288 		    nr_bytes, pg_size);
289 
290 	for (i = 0; i < nr_pages; i++) {
291 		__virt_pg_map(vm, vaddr, paddr, level);
292 
293 		vaddr += pg_size;
294 		paddr += pg_size;
295 	}
296 }
297 
298 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
299 {
300 	if (*pte & PTE_LARGE_MASK) {
301 		TEST_ASSERT(*level == PG_LEVEL_NONE ||
302 			    *level == current_level,
303 			    "Unexpected hugepage at level %d", current_level);
304 		*level = current_level;
305 	}
306 
307 	return *level == current_level;
308 }
309 
310 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
311 				    int *level)
312 {
313 	uint64_t *pml4e, *pdpe, *pde;
314 
315 	TEST_ASSERT(!vm->arch.is_pt_protected,
316 		    "Walking page tables of protected guests is impossible");
317 
318 	TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
319 		    "Invalid PG_LEVEL_* '%d'", *level);
320 
321 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
322 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
323 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
324 		(vaddr >> vm->page_shift)),
325 		"Invalid virtual address, vaddr: 0x%lx",
326 		vaddr);
327 	/*
328 	 * Based on the mode check above there are 48 bits in the vaddr, so
329 	 * shift 16 to sign extend the last bit (bit-47),
330 	 */
331 	TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
332 		"Canonical check failed.  The virtual address is invalid.");
333 
334 	pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
335 	if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
336 		return pml4e;
337 
338 	pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
339 	if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
340 		return pdpe;
341 
342 	pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
343 	if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
344 		return pde;
345 
346 	return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
347 }
348 
349 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
350 {
351 	int level = PG_LEVEL_4K;
352 
353 	return __vm_get_page_table_entry(vm, vaddr, &level);
354 }
355 
356 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
357 {
358 	uint64_t *pml4e, *pml4e_start;
359 	uint64_t *pdpe, *pdpe_start;
360 	uint64_t *pde, *pde_start;
361 	uint64_t *pte, *pte_start;
362 
363 	if (!vm->pgd_created)
364 		return;
365 
366 	fprintf(stream, "%*s                                          "
367 		"                no\n", indent, "");
368 	fprintf(stream, "%*s      index hvaddr         gpaddr         "
369 		"addr         w exec dirty\n",
370 		indent, "");
371 	pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
372 	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
373 		pml4e = &pml4e_start[n1];
374 		if (!(*pml4e & PTE_PRESENT_MASK))
375 			continue;
376 		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
377 			" %u\n",
378 			indent, "",
379 			pml4e - pml4e_start, pml4e,
380 			addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
381 			!!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
382 
383 		pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
384 		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
385 			pdpe = &pdpe_start[n2];
386 			if (!(*pdpe & PTE_PRESENT_MASK))
387 				continue;
388 			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
389 				"%u  %u\n",
390 				indent, "",
391 				pdpe - pdpe_start, pdpe,
392 				addr_hva2gpa(vm, pdpe),
393 				PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
394 				!!(*pdpe & PTE_NX_MASK));
395 
396 			pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
397 			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
398 				pde = &pde_start[n3];
399 				if (!(*pde & PTE_PRESENT_MASK))
400 					continue;
401 				fprintf(stream, "%*spde   0x%-3zx %p "
402 					"0x%-12lx 0x%-10llx %u  %u\n",
403 					indent, "", pde - pde_start, pde,
404 					addr_hva2gpa(vm, pde),
405 					PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
406 					!!(*pde & PTE_NX_MASK));
407 
408 				pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
409 				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
410 					pte = &pte_start[n4];
411 					if (!(*pte & PTE_PRESENT_MASK))
412 						continue;
413 					fprintf(stream, "%*spte   0x%-3zx %p "
414 						"0x%-12lx 0x%-10llx %u  %u "
415 						"    %u    0x%-10lx\n",
416 						indent, "",
417 						pte - pte_start, pte,
418 						addr_hva2gpa(vm, pte),
419 						PTE_GET_PFN(*pte),
420 						!!(*pte & PTE_WRITABLE_MASK),
421 						!!(*pte & PTE_NX_MASK),
422 						!!(*pte & PTE_DIRTY_MASK),
423 						((uint64_t) n1 << 27)
424 							| ((uint64_t) n2 << 18)
425 							| ((uint64_t) n3 << 9)
426 							| ((uint64_t) n4));
427 				}
428 			}
429 		}
430 	}
431 }
432 
433 /*
434  * Set Unusable Segment
435  *
436  * Input Args: None
437  *
438  * Output Args:
439  *   segp - Pointer to segment register
440  *
441  * Return: None
442  *
443  * Sets the segment register pointed to by @segp to an unusable state.
444  */
445 static void kvm_seg_set_unusable(struct kvm_segment *segp)
446 {
447 	memset(segp, 0, sizeof(*segp));
448 	segp->unusable = true;
449 }
450 
451 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
452 {
453 	void *gdt = addr_gva2hva(vm, vm->arch.gdt);
454 	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
455 
456 	desc->limit0 = segp->limit & 0xFFFF;
457 	desc->base0 = segp->base & 0xFFFF;
458 	desc->base1 = segp->base >> 16;
459 	desc->type = segp->type;
460 	desc->s = segp->s;
461 	desc->dpl = segp->dpl;
462 	desc->p = segp->present;
463 	desc->limit1 = segp->limit >> 16;
464 	desc->avl = segp->avl;
465 	desc->l = segp->l;
466 	desc->db = segp->db;
467 	desc->g = segp->g;
468 	desc->base2 = segp->base >> 24;
469 	if (!segp->s)
470 		desc->base3 = segp->base >> 32;
471 }
472 
473 static void kvm_seg_set_kernel_code_64bit(struct kvm_segment *segp)
474 {
475 	memset(segp, 0, sizeof(*segp));
476 	segp->selector = KERNEL_CS;
477 	segp->limit = 0xFFFFFFFFu;
478 	segp->s = 0x1; /* kTypeCodeData */
479 	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
480 					  * | kFlagCodeReadable
481 					  */
482 	segp->g = true;
483 	segp->l = true;
484 	segp->present = 1;
485 }
486 
487 static void kvm_seg_set_kernel_data_64bit(struct kvm_segment *segp)
488 {
489 	memset(segp, 0, sizeof(*segp));
490 	segp->selector = KERNEL_DS;
491 	segp->limit = 0xFFFFFFFFu;
492 	segp->s = 0x1; /* kTypeCodeData */
493 	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
494 					  * | kFlagDataWritable
495 					  */
496 	segp->g = true;
497 	segp->present = true;
498 }
499 
500 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
501 {
502 	int level = PG_LEVEL_NONE;
503 	uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
504 
505 	TEST_ASSERT(*pte & PTE_PRESENT_MASK,
506 		    "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
507 
508 	/*
509 	 * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
510 	 * address bits to be zero.
511 	 */
512 	return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level));
513 }
514 
515 static void kvm_seg_set_tss_64bit(vm_vaddr_t base, struct kvm_segment *segp)
516 {
517 	memset(segp, 0, sizeof(*segp));
518 	segp->base = base;
519 	segp->limit = 0x67;
520 	segp->selector = KERNEL_TSS;
521 	segp->type = 0xb;
522 	segp->present = 1;
523 }
524 
525 static void vcpu_init_sregs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
526 {
527 	struct kvm_sregs sregs;
528 
529 	TEST_ASSERT_EQ(vm->mode, VM_MODE_PXXV48_4K);
530 
531 	/* Set mode specific system register values. */
532 	vcpu_sregs_get(vcpu, &sregs);
533 
534 	sregs.idt.base = vm->arch.idt;
535 	sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
536 	sregs.gdt.base = vm->arch.gdt;
537 	sregs.gdt.limit = getpagesize() - 1;
538 
539 	sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
540 	sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
541 	if (kvm_cpu_has(X86_FEATURE_XSAVE))
542 		sregs.cr4 |= X86_CR4_OSXSAVE;
543 	sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
544 
545 	kvm_seg_set_unusable(&sregs.ldt);
546 	kvm_seg_set_kernel_code_64bit(&sregs.cs);
547 	kvm_seg_set_kernel_data_64bit(&sregs.ds);
548 	kvm_seg_set_kernel_data_64bit(&sregs.es);
549 	kvm_seg_set_kernel_data_64bit(&sregs.gs);
550 	kvm_seg_set_tss_64bit(vm->arch.tss, &sregs.tr);
551 
552 	sregs.cr3 = vm->pgd;
553 	vcpu_sregs_set(vcpu, &sregs);
554 }
555 
556 static void vcpu_init_xcrs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
557 {
558 	struct kvm_xcrs xcrs = {
559 		.nr_xcrs = 1,
560 		.xcrs[0].xcr = 0,
561 		.xcrs[0].value = kvm_cpu_supported_xcr0(),
562 	};
563 
564 	if (!kvm_cpu_has(X86_FEATURE_XSAVE))
565 		return;
566 
567 	vcpu_xcrs_set(vcpu, &xcrs);
568 }
569 
570 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
571 			  int dpl, unsigned short selector)
572 {
573 	struct idt_entry *base =
574 		(struct idt_entry *)addr_gva2hva(vm, vm->arch.idt);
575 	struct idt_entry *e = &base[vector];
576 
577 	memset(e, 0, sizeof(*e));
578 	e->offset0 = addr;
579 	e->selector = selector;
580 	e->ist = 0;
581 	e->type = 14;
582 	e->dpl = dpl;
583 	e->p = 1;
584 	e->offset1 = addr >> 16;
585 	e->offset2 = addr >> 32;
586 }
587 
588 static bool kvm_fixup_exception(struct ex_regs *regs)
589 {
590 	if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
591 		return false;
592 
593 	if (regs->vector == DE_VECTOR)
594 		regs->vector = KVM_MAGIC_DE_VECTOR;
595 
596 	regs->rip = regs->r11;
597 	regs->r9 = regs->vector;
598 	regs->r10 = regs->error_code;
599 	return true;
600 }
601 
602 void route_exception(struct ex_regs *regs)
603 {
604 	typedef void(*handler)(struct ex_regs *);
605 	handler *handlers = (handler *)exception_handlers;
606 
607 	if (handlers && handlers[regs->vector]) {
608 		handlers[regs->vector](regs);
609 		return;
610 	}
611 
612 	if (kvm_fixup_exception(regs))
613 		return;
614 
615 	GUEST_FAIL("Unhandled exception '0x%lx' at guest RIP '0x%lx'",
616 		   regs->vector, regs->rip);
617 }
618 
619 static void vm_init_descriptor_tables(struct kvm_vm *vm)
620 {
621 	extern void *idt_handlers;
622 	struct kvm_segment seg;
623 	int i;
624 
625 	vm->arch.gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
626 	vm->arch.idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
627 	vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
628 	vm->arch.tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
629 
630 	/* Handlers have the same address in both address spaces.*/
631 	for (i = 0; i < NUM_INTERRUPTS; i++)
632 		set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, KERNEL_CS);
633 
634 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
635 
636 	kvm_seg_set_kernel_code_64bit(&seg);
637 	kvm_seg_fill_gdt_64bit(vm, &seg);
638 
639 	kvm_seg_set_kernel_data_64bit(&seg);
640 	kvm_seg_fill_gdt_64bit(vm, &seg);
641 
642 	kvm_seg_set_tss_64bit(vm->arch.tss, &seg);
643 	kvm_seg_fill_gdt_64bit(vm, &seg);
644 }
645 
646 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
647 			       void (*handler)(struct ex_regs *))
648 {
649 	vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
650 
651 	handlers[vector] = (vm_vaddr_t)handler;
652 }
653 
654 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
655 {
656 	struct ucall uc;
657 
658 	if (get_ucall(vcpu, &uc) == UCALL_ABORT)
659 		REPORT_GUEST_ASSERT(uc);
660 }
661 
662 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
663 {
664 	int r;
665 
666 	TEST_ASSERT(kvm_has_cap(KVM_CAP_GET_TSC_KHZ),
667 		    "Require KVM_GET_TSC_KHZ to provide udelay() to guest.");
668 
669 	vm_create_irqchip(vm);
670 	vm_init_descriptor_tables(vm);
671 
672 	sync_global_to_guest(vm, host_cpu_is_intel);
673 	sync_global_to_guest(vm, host_cpu_is_amd);
674 	sync_global_to_guest(vm, is_forced_emulation_enabled);
675 	sync_global_to_guest(vm, pmu_errata_mask);
676 
677 	if (is_sev_vm(vm)) {
678 		struct kvm_sev_init init = { 0 };
679 
680 		vm_sev_ioctl(vm, KVM_SEV_INIT2, &init);
681 	}
682 
683 	r = __vm_ioctl(vm, KVM_GET_TSC_KHZ, NULL);
684 	TEST_ASSERT(r > 0, "KVM_GET_TSC_KHZ did not provide a valid TSC frequency.");
685 	guest_tsc_khz = r;
686 	sync_global_to_guest(vm, guest_tsc_khz);
687 }
688 
689 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
690 {
691 	struct kvm_regs regs;
692 
693 	vcpu_regs_get(vcpu, &regs);
694 	regs.rip = (unsigned long) guest_code;
695 	vcpu_regs_set(vcpu, &regs);
696 }
697 
698 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
699 {
700 	struct kvm_mp_state mp_state;
701 	struct kvm_regs regs;
702 	vm_vaddr_t stack_vaddr;
703 	struct kvm_vcpu *vcpu;
704 
705 	stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
706 				       DEFAULT_GUEST_STACK_VADDR_MIN,
707 				       MEM_REGION_DATA);
708 
709 	stack_vaddr += DEFAULT_STACK_PGS * getpagesize();
710 
711 	/*
712 	 * Align stack to match calling sequence requirements in section "The
713 	 * Stack Frame" of the System V ABI AMD64 Architecture Processor
714 	 * Supplement, which requires the value (%rsp + 8) to be a multiple of
715 	 * 16 when control is transferred to the function entry point.
716 	 *
717 	 * If this code is ever used to launch a vCPU with 32-bit entry point it
718 	 * may need to subtract 4 bytes instead of 8 bytes.
719 	 */
720 	TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE),
721 		    "__vm_vaddr_alloc() did not provide a page-aligned address");
722 	stack_vaddr -= 8;
723 
724 	vcpu = __vm_vcpu_add(vm, vcpu_id);
725 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
726 	vcpu_init_sregs(vm, vcpu);
727 	vcpu_init_xcrs(vm, vcpu);
728 
729 	/* Setup guest general purpose registers */
730 	vcpu_regs_get(vcpu, &regs);
731 	regs.rflags = regs.rflags | 0x2;
732 	regs.rsp = stack_vaddr;
733 	vcpu_regs_set(vcpu, &regs);
734 
735 	/* Setup the MP state */
736 	mp_state.mp_state = 0;
737 	vcpu_mp_state_set(vcpu, &mp_state);
738 
739 	/*
740 	 * Refresh CPUID after setting SREGS and XCR0, so that KVM's "runtime"
741 	 * updates to guest CPUID, e.g. for OSXSAVE and XSAVE state size, are
742 	 * reflected into selftests' vCPU CPUID cache, i.e. so that the cache
743 	 * is consistent with vCPU state.
744 	 */
745 	vcpu_get_cpuid(vcpu);
746 	return vcpu;
747 }
748 
749 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
750 {
751 	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
752 
753 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
754 
755 	return vcpu;
756 }
757 
758 void vcpu_arch_free(struct kvm_vcpu *vcpu)
759 {
760 	if (vcpu->cpuid)
761 		free(vcpu->cpuid);
762 }
763 
764 /* Do not use kvm_supported_cpuid directly except for validity checks. */
765 static void *kvm_supported_cpuid;
766 
767 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
768 {
769 	int kvm_fd;
770 
771 	if (kvm_supported_cpuid)
772 		return kvm_supported_cpuid;
773 
774 	kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
775 	kvm_fd = open_kvm_dev_path_or_exit();
776 
777 	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
778 		  (struct kvm_cpuid2 *)kvm_supported_cpuid);
779 
780 	close(kvm_fd);
781 	return kvm_supported_cpuid;
782 }
783 
784 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
785 			      uint32_t function, uint32_t index,
786 			      uint8_t reg, uint8_t lo, uint8_t hi)
787 {
788 	const struct kvm_cpuid_entry2 *entry;
789 	int i;
790 
791 	for (i = 0; i < cpuid->nent; i++) {
792 		entry = &cpuid->entries[i];
793 
794 		/*
795 		 * The output registers in kvm_cpuid_entry2 are in alphabetical
796 		 * order, but kvm_x86_cpu_feature matches that mess, so yay
797 		 * pointer shenanigans!
798 		 */
799 		if (entry->function == function && entry->index == index)
800 			return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
801 	}
802 
803 	return 0;
804 }
805 
806 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
807 		   struct kvm_x86_cpu_feature feature)
808 {
809 	return __kvm_cpu_has(cpuid, feature.function, feature.index,
810 			     feature.reg, feature.bit, feature.bit);
811 }
812 
813 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
814 			    struct kvm_x86_cpu_property property)
815 {
816 	return __kvm_cpu_has(cpuid, property.function, property.index,
817 			     property.reg, property.lo_bit, property.hi_bit);
818 }
819 
820 uint64_t kvm_get_feature_msr(uint64_t msr_index)
821 {
822 	struct {
823 		struct kvm_msrs header;
824 		struct kvm_msr_entry entry;
825 	} buffer = {};
826 	int r, kvm_fd;
827 
828 	buffer.header.nmsrs = 1;
829 	buffer.entry.index = msr_index;
830 	kvm_fd = open_kvm_dev_path_or_exit();
831 
832 	r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
833 	TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
834 
835 	close(kvm_fd);
836 	return buffer.entry.data;
837 }
838 
839 void __vm_xsave_require_permission(uint64_t xfeature, const char *name)
840 {
841 	int kvm_fd;
842 	u64 bitmask;
843 	long rc;
844 	struct kvm_device_attr attr = {
845 		.group = 0,
846 		.attr = KVM_X86_XCOMP_GUEST_SUPP,
847 		.addr = (unsigned long) &bitmask,
848 	};
849 
850 	TEST_ASSERT(!kvm_supported_cpuid,
851 		    "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
852 
853 	TEST_ASSERT(is_power_of_2(xfeature),
854 		    "Dynamic XFeatures must be enabled one at a time");
855 
856 	kvm_fd = open_kvm_dev_path_or_exit();
857 	rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
858 	close(kvm_fd);
859 
860 	if (rc == -1 && (errno == ENXIO || errno == EINVAL))
861 		__TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
862 
863 	TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
864 
865 	__TEST_REQUIRE(bitmask & xfeature,
866 		       "Required XSAVE feature '%s' not supported", name);
867 
868 	TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature)));
869 
870 	rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
871 	TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
872 	TEST_ASSERT(bitmask & xfeature,
873 		    "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx",
874 		    name, xfeature, bitmask);
875 }
876 
877 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
878 {
879 	TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
880 
881 	/* Allow overriding the default CPUID. */
882 	if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
883 		free(vcpu->cpuid);
884 		vcpu->cpuid = NULL;
885 	}
886 
887 	if (!vcpu->cpuid)
888 		vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
889 
890 	memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
891 	vcpu_set_cpuid(vcpu);
892 }
893 
894 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
895 			     struct kvm_x86_cpu_property property,
896 			     uint32_t value)
897 {
898 	struct kvm_cpuid_entry2 *entry;
899 
900 	entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index);
901 
902 	(&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit);
903 	(&entry->eax)[property.reg] |= value << property.lo_bit;
904 
905 	vcpu_set_cpuid(vcpu);
906 
907 	/* Sanity check that @value doesn't exceed the bounds in any way. */
908 	TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value);
909 }
910 
911 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
912 {
913 	struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
914 
915 	entry->eax = 0;
916 	entry->ebx = 0;
917 	entry->ecx = 0;
918 	entry->edx = 0;
919 	vcpu_set_cpuid(vcpu);
920 }
921 
922 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
923 				     struct kvm_x86_cpu_feature feature,
924 				     bool set)
925 {
926 	struct kvm_cpuid_entry2 *entry;
927 	u32 *reg;
928 
929 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
930 	reg = (&entry->eax) + feature.reg;
931 
932 	if (set)
933 		*reg |= BIT(feature.bit);
934 	else
935 		*reg &= ~BIT(feature.bit);
936 
937 	vcpu_set_cpuid(vcpu);
938 }
939 
940 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
941 {
942 	struct {
943 		struct kvm_msrs header;
944 		struct kvm_msr_entry entry;
945 	} buffer = {};
946 
947 	buffer.header.nmsrs = 1;
948 	buffer.entry.index = msr_index;
949 
950 	vcpu_msrs_get(vcpu, &buffer.header);
951 
952 	return buffer.entry.data;
953 }
954 
955 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
956 {
957 	struct {
958 		struct kvm_msrs header;
959 		struct kvm_msr_entry entry;
960 	} buffer = {};
961 
962 	memset(&buffer, 0, sizeof(buffer));
963 	buffer.header.nmsrs = 1;
964 	buffer.entry.index = msr_index;
965 	buffer.entry.data = msr_value;
966 
967 	return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
968 }
969 
970 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
971 {
972 	va_list ap;
973 	struct kvm_regs regs;
974 
975 	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
976 		    "  num: %u",
977 		    num);
978 
979 	va_start(ap, num);
980 	vcpu_regs_get(vcpu, &regs);
981 
982 	if (num >= 1)
983 		regs.rdi = va_arg(ap, uint64_t);
984 
985 	if (num >= 2)
986 		regs.rsi = va_arg(ap, uint64_t);
987 
988 	if (num >= 3)
989 		regs.rdx = va_arg(ap, uint64_t);
990 
991 	if (num >= 4)
992 		regs.rcx = va_arg(ap, uint64_t);
993 
994 	if (num >= 5)
995 		regs.r8 = va_arg(ap, uint64_t);
996 
997 	if (num >= 6)
998 		regs.r9 = va_arg(ap, uint64_t);
999 
1000 	vcpu_regs_set(vcpu, &regs);
1001 	va_end(ap);
1002 }
1003 
1004 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
1005 {
1006 	struct kvm_regs regs;
1007 	struct kvm_sregs sregs;
1008 
1009 	fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
1010 
1011 	fprintf(stream, "%*sregs:\n", indent + 2, "");
1012 	vcpu_regs_get(vcpu, &regs);
1013 	regs_dump(stream, &regs, indent + 4);
1014 
1015 	fprintf(stream, "%*ssregs:\n", indent + 2, "");
1016 	vcpu_sregs_get(vcpu, &sregs);
1017 	sregs_dump(stream, &sregs, indent + 4);
1018 }
1019 
1020 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
1021 {
1022 	struct kvm_msr_list *list;
1023 	struct kvm_msr_list nmsrs;
1024 	int kvm_fd, r;
1025 
1026 	kvm_fd = open_kvm_dev_path_or_exit();
1027 
1028 	nmsrs.nmsrs = 0;
1029 	if (!feature_msrs)
1030 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1031 	else
1032 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
1033 
1034 	TEST_ASSERT(r == -1 && errno == E2BIG,
1035 		    "Expected -E2BIG, got rc: %i errno: %i (%s)",
1036 		    r, errno, strerror(errno));
1037 
1038 	list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
1039 	TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
1040 	list->nmsrs = nmsrs.nmsrs;
1041 
1042 	if (!feature_msrs)
1043 		kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1044 	else
1045 		kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
1046 	close(kvm_fd);
1047 
1048 	TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
1049 		    "Number of MSRs in list changed, was %d, now %d",
1050 		    nmsrs.nmsrs, list->nmsrs);
1051 	return list;
1052 }
1053 
1054 const struct kvm_msr_list *kvm_get_msr_index_list(void)
1055 {
1056 	static const struct kvm_msr_list *list;
1057 
1058 	if (!list)
1059 		list = __kvm_get_msr_index_list(false);
1060 	return list;
1061 }
1062 
1063 
1064 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
1065 {
1066 	static const struct kvm_msr_list *list;
1067 
1068 	if (!list)
1069 		list = __kvm_get_msr_index_list(true);
1070 	return list;
1071 }
1072 
1073 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
1074 {
1075 	const struct kvm_msr_list *list = kvm_get_msr_index_list();
1076 	int i;
1077 
1078 	for (i = 0; i < list->nmsrs; ++i) {
1079 		if (list->indices[i] == msr_index)
1080 			return true;
1081 	}
1082 
1083 	return false;
1084 }
1085 
1086 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
1087 				  struct kvm_x86_state *state)
1088 {
1089 	int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
1090 
1091 	if (size) {
1092 		state->xsave = malloc(size);
1093 		vcpu_xsave2_get(vcpu, state->xsave);
1094 	} else {
1095 		state->xsave = malloc(sizeof(struct kvm_xsave));
1096 		vcpu_xsave_get(vcpu, state->xsave);
1097 	}
1098 }
1099 
1100 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
1101 {
1102 	const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
1103 	struct kvm_x86_state *state;
1104 	int i;
1105 
1106 	static int nested_size = -1;
1107 
1108 	if (nested_size == -1) {
1109 		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1110 		TEST_ASSERT(nested_size <= sizeof(state->nested_),
1111 			    "Nested state size too big, %i > %zi",
1112 			    nested_size, sizeof(state->nested_));
1113 	}
1114 
1115 	/*
1116 	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1117 	 * guest state is consistent only after userspace re-enters the
1118 	 * kernel with KVM_RUN.  Complete IO prior to migrating state
1119 	 * to a new VM.
1120 	 */
1121 	vcpu_run_complete_io(vcpu);
1122 
1123 	state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
1124 	TEST_ASSERT(state, "-ENOMEM when allocating kvm state");
1125 
1126 	vcpu_events_get(vcpu, &state->events);
1127 	vcpu_mp_state_get(vcpu, &state->mp_state);
1128 	vcpu_regs_get(vcpu, &state->regs);
1129 	vcpu_save_xsave_state(vcpu, state);
1130 
1131 	if (kvm_has_cap(KVM_CAP_XCRS))
1132 		vcpu_xcrs_get(vcpu, &state->xcrs);
1133 
1134 	vcpu_sregs_get(vcpu, &state->sregs);
1135 
1136 	if (nested_size) {
1137 		state->nested.size = sizeof(state->nested_);
1138 
1139 		vcpu_nested_state_get(vcpu, &state->nested);
1140 		TEST_ASSERT(state->nested.size <= nested_size,
1141 			    "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1142 			    state->nested.size, nested_size);
1143 	} else {
1144 		state->nested.size = 0;
1145 	}
1146 
1147 	state->msrs.nmsrs = msr_list->nmsrs;
1148 	for (i = 0; i < msr_list->nmsrs; i++)
1149 		state->msrs.entries[i].index = msr_list->indices[i];
1150 	vcpu_msrs_get(vcpu, &state->msrs);
1151 
1152 	vcpu_debugregs_get(vcpu, &state->debugregs);
1153 
1154 	return state;
1155 }
1156 
1157 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
1158 {
1159 	vcpu_sregs_set(vcpu, &state->sregs);
1160 	vcpu_msrs_set(vcpu, &state->msrs);
1161 
1162 	if (kvm_has_cap(KVM_CAP_XCRS))
1163 		vcpu_xcrs_set(vcpu, &state->xcrs);
1164 
1165 	vcpu_xsave_set(vcpu,  state->xsave);
1166 	vcpu_events_set(vcpu, &state->events);
1167 	vcpu_mp_state_set(vcpu, &state->mp_state);
1168 	vcpu_debugregs_set(vcpu, &state->debugregs);
1169 	vcpu_regs_set(vcpu, &state->regs);
1170 
1171 	if (state->nested.size)
1172 		vcpu_nested_state_set(vcpu, &state->nested);
1173 }
1174 
1175 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1176 {
1177 	free(state->xsave);
1178 	free(state);
1179 }
1180 
1181 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1182 {
1183 	if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1184 		*pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1185 		*va_bits = 32;
1186 	} else {
1187 		*pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1188 		*va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1189 	}
1190 }
1191 
1192 void kvm_init_vm_address_properties(struct kvm_vm *vm)
1193 {
1194 	if (is_sev_vm(vm)) {
1195 		vm->arch.sev_fd = open_sev_dev_path_or_exit();
1196 		vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT));
1197 		vm->gpa_tag_mask = vm->arch.c_bit;
1198 	} else {
1199 		vm->arch.sev_fd = -1;
1200 	}
1201 }
1202 
1203 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1204 					       uint32_t function, uint32_t index)
1205 {
1206 	int i;
1207 
1208 	for (i = 0; i < cpuid->nent; i++) {
1209 		if (cpuid->entries[i].function == function &&
1210 		    cpuid->entries[i].index == index)
1211 			return &cpuid->entries[i];
1212 	}
1213 
1214 	TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1215 
1216 	return NULL;
1217 }
1218 
1219 #define X86_HYPERCALL(inputs...)					\
1220 ({									\
1221 	uint64_t r;							\
1222 									\
1223 	asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t"		\
1224 		     "jnz 1f\n\t"					\
1225 		     "vmcall\n\t"					\
1226 		     "jmp 2f\n\t"					\
1227 		     "1: vmmcall\n\t"					\
1228 		     "2:"						\
1229 		     : "=a"(r)						\
1230 		     : [use_vmmcall] "r" (host_cpu_is_amd), inputs);	\
1231 									\
1232 	r;								\
1233 })
1234 
1235 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1236 		       uint64_t a3)
1237 {
1238 	return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1239 }
1240 
1241 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1242 {
1243 	return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1));
1244 }
1245 
1246 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1247 {
1248 	GUEST_ASSERT(!__xen_hypercall(nr, a0, a1));
1249 }
1250 
1251 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1252 {
1253 	const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1254 	unsigned long ht_gfn, max_gfn, max_pfn;
1255 	uint8_t maxphyaddr, guest_maxphyaddr;
1256 
1257 	/*
1258 	 * Use "guest MAXPHYADDR" from KVM if it's available.  Guest MAXPHYADDR
1259 	 * enumerates the max _mappable_ GPA, which can be less than the raw
1260 	 * MAXPHYADDR, e.g. if MAXPHYADDR=52, KVM is using TDP, and the CPU
1261 	 * doesn't support 5-level TDP.
1262 	 */
1263 	guest_maxphyaddr = kvm_cpu_property(X86_PROPERTY_GUEST_MAX_PHY_ADDR);
1264 	guest_maxphyaddr = guest_maxphyaddr ?: vm->pa_bits;
1265 	TEST_ASSERT(guest_maxphyaddr <= vm->pa_bits,
1266 		    "Guest MAXPHYADDR should never be greater than raw MAXPHYADDR");
1267 
1268 	max_gfn = (1ULL << (guest_maxphyaddr - vm->page_shift)) - 1;
1269 
1270 	/* Avoid reserved HyperTransport region on AMD processors.  */
1271 	if (!host_cpu_is_amd)
1272 		return max_gfn;
1273 
1274 	/* On parts with <40 physical address bits, the area is fully hidden */
1275 	if (vm->pa_bits < 40)
1276 		return max_gfn;
1277 
1278 	/* Before family 17h, the HyperTransport area is just below 1T.  */
1279 	ht_gfn = (1 << 28) - num_ht_pages;
1280 	if (this_cpu_family() < 0x17)
1281 		goto done;
1282 
1283 	/*
1284 	 * Otherwise it's at the top of the physical address space, possibly
1285 	 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1286 	 * the old conservative value if MAXPHYADDR is not enumerated.
1287 	 */
1288 	if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1289 		goto done;
1290 
1291 	maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1292 	max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1293 
1294 	if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1295 		max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1296 
1297 	ht_gfn = max_pfn - num_ht_pages;
1298 done:
1299 	return min(max_gfn, ht_gfn - 1);
1300 }
1301 
1302 void kvm_selftest_arch_init(void)
1303 {
1304 	host_cpu_is_intel = this_cpu_is_intel();
1305 	host_cpu_is_amd = this_cpu_is_amd();
1306 	is_forced_emulation_enabled = kvm_is_forced_emulation_enabled();
1307 
1308 	kvm_init_pmu_errata();
1309 }
1310 
1311 bool sys_clocksource_is_based_on_tsc(void)
1312 {
1313 	char *clk_name = sys_get_cur_clocksource();
1314 	bool ret = !strcmp(clk_name, "tsc\n") ||
1315 		   !strcmp(clk_name, "hyperv_clocksource_tsc_page\n");
1316 
1317 	free(clk_name);
1318 
1319 	return ret;
1320 }
1321