1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/leafops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/shmem_fs.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 #include <linux/pgalloc.h>
80 #include <linux/uaccess.h>
81
82 #include <trace/events/kmem.h>
83
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96
97 static vm_fault_t do_fault(struct vm_fault *vmf);
98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
99 static bool vmf_pte_changed(struct vm_fault *vmf);
100
101 /*
102 * Return true if the original pte was a uffd-wp pte marker (so the pte was
103 * wr-protected).
104 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
106 {
107 if (!userfaultfd_wp(vmf->vma))
108 return false;
109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
110 return false;
111
112 return pte_is_uffd_wp_marker(vmf->orig_pte);
113 }
114
115 /*
116 * Randomize the address space (stacks, mmaps, brk, etc.).
117 *
118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119 * as ancient (libc5 based) binaries can segfault. )
120 */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123 1;
124 #else
125 2;
126 #endif
127
128 static const struct ctl_table mmu_sysctl_table[] = {
129 {
130 .procname = "randomize_va_space",
131 .data = &randomize_va_space,
132 .maxlen = sizeof(int),
133 .mode = 0644,
134 .proc_handler = proc_dointvec,
135 },
136 };
137
init_mm_sysctl(void)138 static int __init init_mm_sysctl(void)
139 {
140 register_sysctl_init("kernel", mmu_sysctl_table);
141 return 0;
142 }
143
144 subsys_initcall(init_mm_sysctl);
145
146 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155 }
156 #endif
157
disable_randmaps(char * s)158 static int __init disable_randmaps(char *s)
159 {
160 randomize_va_space = 0;
161 return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167
168 unsigned long highest_memmap_pfn __read_mostly;
169
170 /*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
init_zero_pfn(void)173 static int __init init_zero_pfn(void)
174 {
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177 }
178 early_initcall(init_zero_pfn);
179
mm_trace_rss_stat(struct mm_struct * mm,int member)180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 trace_rss_stat(mm, member);
183 }
184
185 /*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
191 {
192 pgtable_t token = pmd_pgtable(*pmd);
193 pmd_clear(pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
196 }
197
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
201 {
202 pmd_t *pmd;
203 unsigned long next;
204 unsigned long start;
205
206 start = addr;
207 pmd = pmd_offset(pud, addr);
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
214
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
222 }
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
230 }
231
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235 {
236 pud_t *pud;
237 unsigned long next;
238 unsigned long start;
239
240 start = addr;
241 pud = pud_offset(p4d, addr);
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
248
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
264 }
265
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269 {
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
290 }
291 if (end - 1 > ceiling - 1)
292 return;
293
294 p4d = p4d_offset(pgd, start);
295 pgd_clear(pgd);
296 p4d_free_tlb(tlb, p4d, start);
297 }
298
299 /**
300 * free_pgd_range - Unmap and free page tables in the range
301 * @tlb: the mmu_gather containing pending TLB flush info
302 * @addr: virtual address start
303 * @end: virtual address end
304 * @floor: lowest address boundary
305 * @ceiling: highest address boundary
306 *
307 * This function tears down all user-level page tables in the
308 * specified virtual address range [@addr..@end). It is part of
309 * the memory unmap flow.
310 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)311 void free_pgd_range(struct mmu_gather *tlb,
312 unsigned long addr, unsigned long end,
313 unsigned long floor, unsigned long ceiling)
314 {
315 pgd_t *pgd;
316 unsigned long next;
317
318 /*
319 * The next few lines have given us lots of grief...
320 *
321 * Why are we testing PMD* at this top level? Because often
322 * there will be no work to do at all, and we'd prefer not to
323 * go all the way down to the bottom just to discover that.
324 *
325 * Why all these "- 1"s? Because 0 represents both the bottom
326 * of the address space and the top of it (using -1 for the
327 * top wouldn't help much: the masks would do the wrong thing).
328 * The rule is that addr 0 and floor 0 refer to the bottom of
329 * the address space, but end 0 and ceiling 0 refer to the top
330 * Comparisons need to use "end - 1" and "ceiling - 1" (though
331 * that end 0 case should be mythical).
332 *
333 * Wherever addr is brought up or ceiling brought down, we must
334 * be careful to reject "the opposite 0" before it confuses the
335 * subsequent tests. But what about where end is brought down
336 * by PMD_SIZE below? no, end can't go down to 0 there.
337 *
338 * Whereas we round start (addr) and ceiling down, by different
339 * masks at different levels, in order to test whether a table
340 * now has no other vmas using it, so can be freed, we don't
341 * bother to round floor or end up - the tests don't need that.
342 */
343
344 addr &= PMD_MASK;
345 if (addr < floor) {
346 addr += PMD_SIZE;
347 if (!addr)
348 return;
349 }
350 if (ceiling) {
351 ceiling &= PMD_MASK;
352 if (!ceiling)
353 return;
354 }
355 if (end - 1 > ceiling - 1)
356 end -= PMD_SIZE;
357 if (addr > end - 1)
358 return;
359 /*
360 * We add page table cache pages with PAGE_SIZE,
361 * (see pte_free_tlb()), flush the tlb if we need
362 */
363 tlb_change_page_size(tlb, PAGE_SIZE);
364 pgd = pgd_offset(tlb->mm, addr);
365 do {
366 next = pgd_addr_end(addr, end);
367 if (pgd_none_or_clear_bad(pgd))
368 continue;
369 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
370 } while (pgd++, addr = next, addr != end);
371 }
372
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)373 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
374 struct vm_area_struct *vma, unsigned long floor,
375 unsigned long ceiling, bool mm_wr_locked)
376 {
377 struct unlink_vma_file_batch vb;
378
379 tlb_free_vmas(tlb);
380
381 do {
382 unsigned long addr = vma->vm_start;
383 struct vm_area_struct *next;
384
385 /*
386 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
387 * be 0. This will underflow and is okay.
388 */
389 next = mas_find(mas, ceiling - 1);
390 if (unlikely(xa_is_zero(next)))
391 next = NULL;
392
393 /*
394 * Hide vma from rmap and truncate_pagecache before freeing
395 * pgtables
396 */
397 if (mm_wr_locked)
398 vma_start_write(vma);
399 unlink_anon_vmas(vma);
400
401 unlink_file_vma_batch_init(&vb);
402 unlink_file_vma_batch_add(&vb, vma);
403
404 /*
405 * Optimization: gather nearby vmas into one call down
406 */
407 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
408 vma = next;
409 next = mas_find(mas, ceiling - 1);
410 if (unlikely(xa_is_zero(next)))
411 next = NULL;
412 if (mm_wr_locked)
413 vma_start_write(vma);
414 unlink_anon_vmas(vma);
415 unlink_file_vma_batch_add(&vb, vma);
416 }
417 unlink_file_vma_batch_final(&vb);
418
419 free_pgd_range(tlb, addr, vma->vm_end,
420 floor, next ? next->vm_start : ceiling);
421 vma = next;
422 } while (vma);
423 }
424
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)425 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
426 {
427 spinlock_t *ptl = pmd_lock(mm, pmd);
428
429 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
430 mm_inc_nr_ptes(mm);
431 /*
432 * Ensure all pte setup (eg. pte page lock and page clearing) are
433 * visible before the pte is made visible to other CPUs by being
434 * put into page tables.
435 *
436 * The other side of the story is the pointer chasing in the page
437 * table walking code (when walking the page table without locking;
438 * ie. most of the time). Fortunately, these data accesses consist
439 * of a chain of data-dependent loads, meaning most CPUs (alpha
440 * being the notable exception) will already guarantee loads are
441 * seen in-order. See the alpha page table accessors for the
442 * smp_rmb() barriers in page table walking code.
443 */
444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445 pmd_populate(mm, pmd, *pte);
446 *pte = NULL;
447 }
448 spin_unlock(ptl);
449 }
450
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)451 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
452 {
453 pgtable_t new = pte_alloc_one(mm);
454 if (!new)
455 return -ENOMEM;
456
457 pmd_install(mm, pmd, &new);
458 if (new)
459 pte_free(mm, new);
460 return 0;
461 }
462
__pte_alloc_kernel(pmd_t * pmd)463 int __pte_alloc_kernel(pmd_t *pmd)
464 {
465 pte_t *new = pte_alloc_one_kernel(&init_mm);
466 if (!new)
467 return -ENOMEM;
468
469 spin_lock(&init_mm.page_table_lock);
470 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
471 smp_wmb(); /* See comment in pmd_install() */
472 pmd_populate_kernel(&init_mm, pmd, new);
473 new = NULL;
474 }
475 spin_unlock(&init_mm.page_table_lock);
476 if (new)
477 pte_free_kernel(&init_mm, new);
478 return 0;
479 }
480
init_rss_vec(int * rss)481 static inline void init_rss_vec(int *rss)
482 {
483 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
484 }
485
add_mm_rss_vec(struct mm_struct * mm,int * rss)486 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
487 {
488 int i;
489
490 for (i = 0; i < NR_MM_COUNTERS; i++)
491 if (rss[i])
492 add_mm_counter(mm, i, rss[i]);
493 }
494
is_bad_page_map_ratelimited(void)495 static bool is_bad_page_map_ratelimited(void)
496 {
497 static unsigned long resume;
498 static unsigned long nr_shown;
499 static unsigned long nr_unshown;
500
501 /*
502 * Allow a burst of 60 reports, then keep quiet for that minute;
503 * or allow a steady drip of one report per second.
504 */
505 if (nr_shown == 60) {
506 if (time_before(jiffies, resume)) {
507 nr_unshown++;
508 return true;
509 }
510 if (nr_unshown) {
511 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 nr_unshown);
513 nr_unshown = 0;
514 }
515 nr_shown = 0;
516 }
517 if (nr_shown++ == 0)
518 resume = jiffies + 60 * HZ;
519 return false;
520 }
521
__print_bad_page_map_pgtable(struct mm_struct * mm,unsigned long addr)522 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr)
523 {
524 unsigned long long pgdv, p4dv, pudv, pmdv;
525 p4d_t p4d, *p4dp;
526 pud_t pud, *pudp;
527 pmd_t pmd, *pmdp;
528 pgd_t *pgdp;
529
530 /*
531 * Although this looks like a fully lockless pgtable walk, it is not:
532 * see locking requirements for print_bad_page_map().
533 */
534 pgdp = pgd_offset(mm, addr);
535 pgdv = pgd_val(*pgdp);
536
537 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) {
538 pr_alert("pgd:%08llx\n", pgdv);
539 return;
540 }
541
542 p4dp = p4d_offset(pgdp, addr);
543 p4d = p4dp_get(p4dp);
544 p4dv = p4d_val(p4d);
545
546 if (!p4d_present(p4d) || p4d_leaf(p4d)) {
547 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv);
548 return;
549 }
550
551 pudp = pud_offset(p4dp, addr);
552 pud = pudp_get(pudp);
553 pudv = pud_val(pud);
554
555 if (!pud_present(pud) || pud_leaf(pud)) {
556 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv);
557 return;
558 }
559
560 pmdp = pmd_offset(pudp, addr);
561 pmd = pmdp_get(pmdp);
562 pmdv = pmd_val(pmd);
563
564 /*
565 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE,
566 * because the table should already be mapped by the caller and
567 * doing another map would be bad. print_bad_page_map() should
568 * already take care of printing the PTE.
569 */
570 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv,
571 p4dv, pudv, pmdv);
572 }
573
574 /*
575 * This function is called to print an error when a bad page table entry (e.g.,
576 * corrupted page table entry) is found. For example, we might have a
577 * PFN-mapped pte in a region that doesn't allow it.
578 *
579 * The calling function must still handle the error.
580 *
581 * This function must be called during a proper page table walk, as it will
582 * re-walk the page table to dump information: the caller MUST prevent page
583 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf
584 * page table lock.
585 */
print_bad_page_map(struct vm_area_struct * vma,unsigned long addr,unsigned long long entry,struct page * page,enum pgtable_level level)586 static void print_bad_page_map(struct vm_area_struct *vma,
587 unsigned long addr, unsigned long long entry, struct page *page,
588 enum pgtable_level level)
589 {
590 struct address_space *mapping;
591 pgoff_t index;
592
593 if (is_bad_page_map_ratelimited())
594 return;
595
596 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
597 index = linear_page_index(vma, addr);
598
599 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm,
600 pgtable_level_to_str(level), entry);
601 __print_bad_page_map_pgtable(vma->vm_mm, addr);
602 if (page)
603 dump_page(page, "bad page map");
604 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
605 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
606 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n",
607 vma->vm_file,
608 vma->vm_ops ? vma->vm_ops->fault : NULL,
609 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
610 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL,
611 mapping ? mapping->a_ops->read_folio : NULL);
612 dump_stack();
613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
614 }
615 #define print_bad_pte(vma, addr, pte, page) \
616 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE)
617
618 /**
619 * __vm_normal_page() - Get the "struct page" associated with a page table entry.
620 * @vma: The VMA mapping the page table entry.
621 * @addr: The address where the page table entry is mapped.
622 * @pfn: The PFN stored in the page table entry.
623 * @special: Whether the page table entry is marked "special".
624 * @level: The page table level for error reporting purposes only.
625 * @entry: The page table entry value for error reporting purposes only.
626 *
627 * "Special" mappings do not wish to be associated with a "struct page" (either
628 * it doesn't exist, or it exists but they don't want to touch it). In this
629 * case, NULL is returned here. "Normal" mappings do have a struct page and
630 * are ordinarily refcounted.
631 *
632 * Page mappings of the shared zero folios are always considered "special", as
633 * they are not ordinarily refcounted: neither the refcount nor the mapcount
634 * of these folios is adjusted when mapping them into user page tables.
635 * Selected page table walkers (such as GUP) can still identify mappings of the
636 * shared zero folios and work with the underlying "struct page".
637 *
638 * There are 2 broad cases. Firstly, an architecture may define a "special"
639 * page table entry bit, such as pte_special(), in which case this function is
640 * trivial. Secondly, an architecture may not have a spare page table
641 * entry bit, which requires a more complicated scheme, described below.
642 *
643 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on
644 * page table entries that actually map "normal" pages: however, that page
645 * cannot be looked up through the PFN stored in the page table entry, but
646 * instead will be looked up through vm_ops->find_normal_page(). So far, this
647 * only applies to PTEs.
648 *
649 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
650 * special mapping (even if there are underlying and valid "struct pages").
651 * COWed pages of a VM_PFNMAP are always normal.
652 *
653 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
654 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
655 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
656 * mapping will always honor the rule
657 *
658 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
659 *
660 * And for normal mappings this is false.
661 *
662 * This restricts such mappings to be a linear translation from virtual address
663 * to pfn. To get around this restriction, we allow arbitrary mappings so long
664 * as the vma is not a COW mapping; in that case, we know that all ptes are
665 * special (because none can have been COWed).
666 *
667 *
668 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
669 *
670 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
671 * page" backing, however the difference is that _all_ pages with a struct
672 * page (that is, those where pfn_valid is true, except the shared zero
673 * folios) are refcounted and considered normal pages by the VM.
674 *
675 * The disadvantage is that pages are refcounted (which can be slower and
676 * simply not an option for some PFNMAP users). The advantage is that we
677 * don't have to follow the strict linearity rule of PFNMAP mappings in
678 * order to support COWable mappings.
679 *
680 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
681 * NULL if this is a "special" mapping.
682 */
__vm_normal_page(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,bool special,unsigned long long entry,enum pgtable_level level)683 static inline struct page *__vm_normal_page(struct vm_area_struct *vma,
684 unsigned long addr, unsigned long pfn, bool special,
685 unsigned long long entry, enum pgtable_level level)
686 {
687 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
688 if (unlikely(special)) {
689 #ifdef CONFIG_FIND_NORMAL_PAGE
690 if (vma->vm_ops && vma->vm_ops->find_normal_page)
691 return vma->vm_ops->find_normal_page(vma, addr);
692 #endif /* CONFIG_FIND_NORMAL_PAGE */
693 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
694 return NULL;
695 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
696 return NULL;
697
698 print_bad_page_map(vma, addr, entry, NULL, level);
699 return NULL;
700 }
701 /*
702 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table
703 * mappings (incl. shared zero folios) are marked accordingly.
704 */
705 } else {
706 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) {
707 if (vma->vm_flags & VM_MIXEDMAP) {
708 /* If it has a "struct page", it's "normal". */
709 if (!pfn_valid(pfn))
710 return NULL;
711 } else {
712 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
713
714 /* Only CoW'ed anon folios are "normal". */
715 if (pfn == vma->vm_pgoff + off)
716 return NULL;
717 if (!is_cow_mapping(vma->vm_flags))
718 return NULL;
719 }
720 }
721
722 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
723 return NULL;
724 }
725
726 if (unlikely(pfn > highest_memmap_pfn)) {
727 /* Corrupted page table entry. */
728 print_bad_page_map(vma, addr, entry, NULL, level);
729 return NULL;
730 }
731 /*
732 * NOTE! We still have PageReserved() pages in the page tables.
733 * For example, VDSO mappings can cause them to exist.
734 */
735 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn));
736 return pfn_to_page(pfn);
737 }
738
739 /**
740 * vm_normal_page() - Get the "struct page" associated with a PTE
741 * @vma: The VMA mapping the @pte.
742 * @addr: The address where the @pte is mapped.
743 * @pte: The PTE.
744 *
745 * Get the "struct page" associated with a PTE. See __vm_normal_page()
746 * for details on "normal" and "special" mappings.
747 *
748 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
749 * NULL if this is a "special" mapping.
750 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)751 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
752 pte_t pte)
753 {
754 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte),
755 pte_val(pte), PGTABLE_LEVEL_PTE);
756 }
757
758 /**
759 * vm_normal_folio() - Get the "struct folio" associated with a PTE
760 * @vma: The VMA mapping the @pte.
761 * @addr: The address where the @pte is mapped.
762 * @pte: The PTE.
763 *
764 * Get the "struct folio" associated with a PTE. See __vm_normal_page()
765 * for details on "normal" and "special" mappings.
766 *
767 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
768 * NULL if this is a "special" mapping.
769 */
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)770 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
771 pte_t pte)
772 {
773 struct page *page = vm_normal_page(vma, addr, pte);
774
775 if (page)
776 return page_folio(page);
777 return NULL;
778 }
779
780 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
781 /**
782 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD
783 * @vma: The VMA mapping the @pmd.
784 * @addr: The address where the @pmd is mapped.
785 * @pmd: The PMD.
786 *
787 * Get the "struct page" associated with a PTE. See __vm_normal_page()
788 * for details on "normal" and "special" mappings.
789 *
790 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
791 * NULL if this is a "special" mapping.
792 */
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
794 pmd_t pmd)
795 {
796 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd),
797 pmd_val(pmd), PGTABLE_LEVEL_PMD);
798 }
799
800 /**
801 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD
802 * @vma: The VMA mapping the @pmd.
803 * @addr: The address where the @pmd is mapped.
804 * @pmd: The PMD.
805 *
806 * Get the "struct folio" associated with a PTE. See __vm_normal_page()
807 * for details on "normal" and "special" mappings.
808 *
809 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
810 * NULL if this is a "special" mapping.
811 */
vm_normal_folio_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)812 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
813 unsigned long addr, pmd_t pmd)
814 {
815 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
816
817 if (page)
818 return page_folio(page);
819 return NULL;
820 }
821
822 /**
823 * vm_normal_page_pud() - Get the "struct page" associated with a PUD
824 * @vma: The VMA mapping the @pud.
825 * @addr: The address where the @pud is mapped.
826 * @pud: The PUD.
827 *
828 * Get the "struct page" associated with a PUD. See __vm_normal_page()
829 * for details on "normal" and "special" mappings.
830 *
831 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
832 * NULL if this is a "special" mapping.
833 */
vm_normal_page_pud(struct vm_area_struct * vma,unsigned long addr,pud_t pud)834 struct page *vm_normal_page_pud(struct vm_area_struct *vma,
835 unsigned long addr, pud_t pud)
836 {
837 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud),
838 pud_val(pud), PGTABLE_LEVEL_PUD);
839 }
840 #endif
841
842 /**
843 * restore_exclusive_pte - Restore a device-exclusive entry
844 * @vma: VMA covering @address
845 * @folio: the mapped folio
846 * @page: the mapped folio page
847 * @address: the virtual address
848 * @ptep: pte pointer into the locked page table mapping the folio page
849 * @orig_pte: pte value at @ptep
850 *
851 * Restore a device-exclusive non-swap entry to an ordinary present pte.
852 *
853 * The folio and the page table must be locked, and MMU notifiers must have
854 * been called to invalidate any (exclusive) device mappings.
855 *
856 * Locking the folio makes sure that anybody who just converted the pte to
857 * a device-exclusive entry can map it into the device to make forward
858 * progress without others converting it back until the folio was unlocked.
859 *
860 * If the folio lock ever becomes an issue, we can stop relying on the folio
861 * lock; it might make some scenarios with heavy thrashing less likely to
862 * make forward progress, but these scenarios might not be valid use cases.
863 *
864 * Note that the folio lock does not protect against all cases of concurrent
865 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers
866 * must use MMU notifiers to sync against any concurrent changes.
867 */
restore_exclusive_pte(struct vm_area_struct * vma,struct folio * folio,struct page * page,unsigned long address,pte_t * ptep,pte_t orig_pte)868 static void restore_exclusive_pte(struct vm_area_struct *vma,
869 struct folio *folio, struct page *page, unsigned long address,
870 pte_t *ptep, pte_t orig_pte)
871 {
872 pte_t pte;
873
874 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
875
876 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
877 if (pte_swp_soft_dirty(orig_pte))
878 pte = pte_mksoft_dirty(pte);
879
880 if (pte_swp_uffd_wp(orig_pte))
881 pte = pte_mkuffd_wp(pte);
882
883 if ((vma->vm_flags & VM_WRITE) &&
884 can_change_pte_writable(vma, address, pte)) {
885 if (folio_test_dirty(folio))
886 pte = pte_mkdirty(pte);
887 pte = pte_mkwrite(pte, vma);
888 }
889 set_pte_at(vma->vm_mm, address, ptep, pte);
890
891 /*
892 * No need to invalidate - it was non-present before. However
893 * secondary CPUs may have mappings that need invalidating.
894 */
895 update_mmu_cache(vma, address, ptep);
896 }
897
898 /*
899 * Tries to restore an exclusive pte if the page lock can be acquired without
900 * sleeping.
901 */
try_restore_exclusive_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t orig_pte)902 static int try_restore_exclusive_pte(struct vm_area_struct *vma,
903 unsigned long addr, pte_t *ptep, pte_t orig_pte)
904 {
905 const softleaf_t entry = softleaf_from_pte(orig_pte);
906 struct page *page = softleaf_to_page(entry);
907 struct folio *folio = page_folio(page);
908
909 if (folio_trylock(folio)) {
910 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte);
911 folio_unlock(folio);
912 return 0;
913 }
914
915 return -EBUSY;
916 }
917
918 /*
919 * copy one vm_area from one task to the other. Assumes the page tables
920 * already present in the new task to be cleared in the whole range
921 * covered by this vma.
922 */
923
924 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)925 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
926 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
927 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
928 {
929 vm_flags_t vm_flags = dst_vma->vm_flags;
930 pte_t orig_pte = ptep_get(src_pte);
931 softleaf_t entry = softleaf_from_pte(orig_pte);
932 pte_t pte = orig_pte;
933 struct folio *folio;
934 struct page *page;
935
936 if (likely(softleaf_is_swap(entry))) {
937 if (swap_duplicate(entry) < 0)
938 return -EIO;
939
940 /* make sure dst_mm is on swapoff's mmlist. */
941 if (unlikely(list_empty(&dst_mm->mmlist))) {
942 spin_lock(&mmlist_lock);
943 if (list_empty(&dst_mm->mmlist))
944 list_add(&dst_mm->mmlist,
945 &src_mm->mmlist);
946 spin_unlock(&mmlist_lock);
947 }
948 /* Mark the swap entry as shared. */
949 if (pte_swp_exclusive(orig_pte)) {
950 pte = pte_swp_clear_exclusive(orig_pte);
951 set_pte_at(src_mm, addr, src_pte, pte);
952 }
953 rss[MM_SWAPENTS]++;
954 } else if (softleaf_is_migration(entry)) {
955 folio = softleaf_to_folio(entry);
956
957 rss[mm_counter(folio)]++;
958
959 if (!softleaf_is_migration_read(entry) &&
960 is_cow_mapping(vm_flags)) {
961 /*
962 * COW mappings require pages in both parent and child
963 * to be set to read. A previously exclusive entry is
964 * now shared.
965 */
966 entry = make_readable_migration_entry(
967 swp_offset(entry));
968 pte = softleaf_to_pte(entry);
969 if (pte_swp_soft_dirty(orig_pte))
970 pte = pte_swp_mksoft_dirty(pte);
971 if (pte_swp_uffd_wp(orig_pte))
972 pte = pte_swp_mkuffd_wp(pte);
973 set_pte_at(src_mm, addr, src_pte, pte);
974 }
975 } else if (softleaf_is_device_private(entry)) {
976 page = softleaf_to_page(entry);
977 folio = page_folio(page);
978
979 /*
980 * Update rss count even for unaddressable pages, as
981 * they should treated just like normal pages in this
982 * respect.
983 *
984 * We will likely want to have some new rss counters
985 * for unaddressable pages, at some point. But for now
986 * keep things as they are.
987 */
988 folio_get(folio);
989 rss[mm_counter(folio)]++;
990 /* Cannot fail as these pages cannot get pinned. */
991 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma);
992
993 /*
994 * We do not preserve soft-dirty information, because so
995 * far, checkpoint/restore is the only feature that
996 * requires that. And checkpoint/restore does not work
997 * when a device driver is involved (you cannot easily
998 * save and restore device driver state).
999 */
1000 if (softleaf_is_device_private_write(entry) &&
1001 is_cow_mapping(vm_flags)) {
1002 entry = make_readable_device_private_entry(
1003 swp_offset(entry));
1004 pte = swp_entry_to_pte(entry);
1005 if (pte_swp_uffd_wp(orig_pte))
1006 pte = pte_swp_mkuffd_wp(pte);
1007 set_pte_at(src_mm, addr, src_pte, pte);
1008 }
1009 } else if (softleaf_is_device_exclusive(entry)) {
1010 /*
1011 * Make device exclusive entries present by restoring the
1012 * original entry then copying as for a present pte. Device
1013 * exclusive entries currently only support private writable
1014 * (ie. COW) mappings.
1015 */
1016 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
1017 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte))
1018 return -EBUSY;
1019 return -ENOENT;
1020 } else if (softleaf_is_marker(entry)) {
1021 pte_marker marker = copy_pte_marker(entry, dst_vma);
1022
1023 if (marker)
1024 set_pte_at(dst_mm, addr, dst_pte,
1025 make_pte_marker(marker));
1026 return 0;
1027 }
1028 if (!userfaultfd_wp(dst_vma))
1029 pte = pte_swp_clear_uffd_wp(pte);
1030 set_pte_at(dst_mm, addr, dst_pte, pte);
1031 return 0;
1032 }
1033
1034 /*
1035 * Copy a present and normal page.
1036 *
1037 * NOTE! The usual case is that this isn't required;
1038 * instead, the caller can just increase the page refcount
1039 * and re-use the pte the traditional way.
1040 *
1041 * And if we need a pre-allocated page but don't yet have
1042 * one, return a negative error to let the preallocation
1043 * code know so that it can do so outside the page table
1044 * lock.
1045 */
1046 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)1047 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1048 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
1049 struct folio **prealloc, struct page *page)
1050 {
1051 struct folio *new_folio;
1052 pte_t pte;
1053
1054 new_folio = *prealloc;
1055 if (!new_folio)
1056 return -EAGAIN;
1057
1058 /*
1059 * We have a prealloc page, all good! Take it
1060 * over and copy the page & arm it.
1061 */
1062
1063 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
1064 return -EHWPOISON;
1065
1066 *prealloc = NULL;
1067 __folio_mark_uptodate(new_folio);
1068 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
1069 folio_add_lru_vma(new_folio, dst_vma);
1070 rss[MM_ANONPAGES]++;
1071
1072 /* All done, just insert the new page copy in the child */
1073 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot);
1074 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
1075 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
1076 /* Uffd-wp needs to be delivered to dest pte as well */
1077 pte = pte_mkuffd_wp(pte);
1078 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
1079 return 0;
1080 }
1081
__copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int nr)1082 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
1083 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
1084 pte_t pte, unsigned long addr, int nr)
1085 {
1086 struct mm_struct *src_mm = src_vma->vm_mm;
1087
1088 /* If it's a COW mapping, write protect it both processes. */
1089 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
1090 wrprotect_ptes(src_mm, addr, src_pte, nr);
1091 pte = pte_wrprotect(pte);
1092 }
1093
1094 /* If it's a shared mapping, mark it clean in the child. */
1095 if (src_vma->vm_flags & VM_SHARED)
1096 pte = pte_mkclean(pte);
1097 pte = pte_mkold(pte);
1098
1099 if (!userfaultfd_wp(dst_vma))
1100 pte = pte_clear_uffd_wp(pte);
1101
1102 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
1103 }
1104
1105 /*
1106 * Copy one present PTE, trying to batch-process subsequent PTEs that map
1107 * consecutive pages of the same folio by copying them as well.
1108 *
1109 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
1110 * Otherwise, returns the number of copied PTEs (at least 1).
1111 */
1112 static inline int
copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int max_nr,int * rss,struct folio ** prealloc)1113 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1114 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
1115 int max_nr, int *rss, struct folio **prealloc)
1116 {
1117 fpb_t flags = FPB_MERGE_WRITE;
1118 struct page *page;
1119 struct folio *folio;
1120 int err, nr;
1121
1122 page = vm_normal_page(src_vma, addr, pte);
1123 if (unlikely(!page))
1124 goto copy_pte;
1125
1126 folio = page_folio(page);
1127
1128 /*
1129 * If we likely have to copy, just don't bother with batching. Make
1130 * sure that the common "small folio" case is as fast as possible
1131 * by keeping the batching logic separate.
1132 */
1133 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1134 if (!(src_vma->vm_flags & VM_SHARED))
1135 flags |= FPB_RESPECT_DIRTY;
1136 if (vma_soft_dirty_enabled(src_vma))
1137 flags |= FPB_RESPECT_SOFT_DIRTY;
1138
1139 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags);
1140 folio_ref_add(folio, nr);
1141 if (folio_test_anon(folio)) {
1142 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1143 nr, dst_vma, src_vma))) {
1144 folio_ref_sub(folio, nr);
1145 return -EAGAIN;
1146 }
1147 rss[MM_ANONPAGES] += nr;
1148 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1149 } else {
1150 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma);
1151 rss[mm_counter_file(folio)] += nr;
1152 }
1153 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1154 addr, nr);
1155 return nr;
1156 }
1157
1158 folio_get(folio);
1159 if (folio_test_anon(folio)) {
1160 /*
1161 * If this page may have been pinned by the parent process,
1162 * copy the page immediately for the child so that we'll always
1163 * guarantee the pinned page won't be randomly replaced in the
1164 * future.
1165 */
1166 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) {
1167 /* Page may be pinned, we have to copy. */
1168 folio_put(folio);
1169 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1170 addr, rss, prealloc, page);
1171 return err ? err : 1;
1172 }
1173 rss[MM_ANONPAGES]++;
1174 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1175 } else {
1176 folio_dup_file_rmap_pte(folio, page, dst_vma);
1177 rss[mm_counter_file(folio)]++;
1178 }
1179
1180 copy_pte:
1181 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1182 return 1;
1183 }
1184
folio_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr,bool need_zero)1185 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1186 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1187 {
1188 struct folio *new_folio;
1189
1190 if (need_zero)
1191 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1192 else
1193 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1194
1195 if (!new_folio)
1196 return NULL;
1197
1198 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1199 folio_put(new_folio);
1200 return NULL;
1201 }
1202 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1203
1204 return new_folio;
1205 }
1206
1207 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1208 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1209 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1210 unsigned long end)
1211 {
1212 struct mm_struct *dst_mm = dst_vma->vm_mm;
1213 struct mm_struct *src_mm = src_vma->vm_mm;
1214 pte_t *orig_src_pte, *orig_dst_pte;
1215 pte_t *src_pte, *dst_pte;
1216 pmd_t dummy_pmdval;
1217 pte_t ptent;
1218 spinlock_t *src_ptl, *dst_ptl;
1219 int progress, max_nr, ret = 0;
1220 int rss[NR_MM_COUNTERS];
1221 softleaf_t entry = softleaf_mk_none();
1222 struct folio *prealloc = NULL;
1223 int nr;
1224
1225 again:
1226 progress = 0;
1227 init_rss_vec(rss);
1228
1229 /*
1230 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1231 * error handling here, assume that exclusive mmap_lock on dst and src
1232 * protects anon from unexpected THP transitions; with shmem and file
1233 * protected by mmap_lock-less collapse skipping areas with anon_vma
1234 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1235 * can remove such assumptions later, but this is good enough for now.
1236 */
1237 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1238 if (!dst_pte) {
1239 ret = -ENOMEM;
1240 goto out;
1241 }
1242
1243 /*
1244 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1245 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1246 * the PTE page is stable, and there is no need to get pmdval and do
1247 * pmd_same() check.
1248 */
1249 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1250 &src_ptl);
1251 if (!src_pte) {
1252 pte_unmap_unlock(dst_pte, dst_ptl);
1253 /* ret == 0 */
1254 goto out;
1255 }
1256 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1257 orig_src_pte = src_pte;
1258 orig_dst_pte = dst_pte;
1259 arch_enter_lazy_mmu_mode();
1260
1261 do {
1262 nr = 1;
1263
1264 /*
1265 * We are holding two locks at this point - either of them
1266 * could generate latencies in another task on another CPU.
1267 */
1268 if (progress >= 32) {
1269 progress = 0;
1270 if (need_resched() ||
1271 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1272 break;
1273 }
1274 ptent = ptep_get(src_pte);
1275 if (pte_none(ptent)) {
1276 progress++;
1277 continue;
1278 }
1279 if (unlikely(!pte_present(ptent))) {
1280 ret = copy_nonpresent_pte(dst_mm, src_mm,
1281 dst_pte, src_pte,
1282 dst_vma, src_vma,
1283 addr, rss);
1284 if (ret == -EIO) {
1285 entry = softleaf_from_pte(ptep_get(src_pte));
1286 break;
1287 } else if (ret == -EBUSY) {
1288 break;
1289 } else if (!ret) {
1290 progress += 8;
1291 continue;
1292 }
1293 ptent = ptep_get(src_pte);
1294 VM_WARN_ON_ONCE(!pte_present(ptent));
1295
1296 /*
1297 * Device exclusive entry restored, continue by copying
1298 * the now present pte.
1299 */
1300 WARN_ON_ONCE(ret != -ENOENT);
1301 }
1302 /* copy_present_ptes() will clear `*prealloc' if consumed */
1303 max_nr = (end - addr) / PAGE_SIZE;
1304 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1305 ptent, addr, max_nr, rss, &prealloc);
1306 /*
1307 * If we need a pre-allocated page for this pte, drop the
1308 * locks, allocate, and try again.
1309 * If copy failed due to hwpoison in source page, break out.
1310 */
1311 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1312 break;
1313 if (unlikely(prealloc)) {
1314 /*
1315 * pre-alloc page cannot be reused by next time so as
1316 * to strictly follow mempolicy (e.g., alloc_page_vma()
1317 * will allocate page according to address). This
1318 * could only happen if one pinned pte changed.
1319 */
1320 folio_put(prealloc);
1321 prealloc = NULL;
1322 }
1323 nr = ret;
1324 progress += 8 * nr;
1325 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1326 addr != end);
1327
1328 arch_leave_lazy_mmu_mode();
1329 pte_unmap_unlock(orig_src_pte, src_ptl);
1330 add_mm_rss_vec(dst_mm, rss);
1331 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1332 cond_resched();
1333
1334 if (ret == -EIO) {
1335 VM_WARN_ON_ONCE(!entry.val);
1336 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1337 ret = -ENOMEM;
1338 goto out;
1339 }
1340 entry.val = 0;
1341 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1342 goto out;
1343 } else if (ret == -EAGAIN) {
1344 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1345 if (!prealloc)
1346 return -ENOMEM;
1347 } else if (ret < 0) {
1348 VM_WARN_ON_ONCE(1);
1349 }
1350
1351 /* We've captured and resolved the error. Reset, try again. */
1352 ret = 0;
1353
1354 if (addr != end)
1355 goto again;
1356 out:
1357 if (unlikely(prealloc))
1358 folio_put(prealloc);
1359 return ret;
1360 }
1361
1362 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1363 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1364 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1365 unsigned long end)
1366 {
1367 struct mm_struct *dst_mm = dst_vma->vm_mm;
1368 struct mm_struct *src_mm = src_vma->vm_mm;
1369 pmd_t *src_pmd, *dst_pmd;
1370 unsigned long next;
1371
1372 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1373 if (!dst_pmd)
1374 return -ENOMEM;
1375 src_pmd = pmd_offset(src_pud, addr);
1376 do {
1377 next = pmd_addr_end(addr, end);
1378 if (pmd_is_huge(*src_pmd)) {
1379 int err;
1380
1381 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1382 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1383 addr, dst_vma, src_vma);
1384 if (err == -ENOMEM)
1385 return -ENOMEM;
1386 if (!err)
1387 continue;
1388 /* fall through */
1389 }
1390 if (pmd_none_or_clear_bad(src_pmd))
1391 continue;
1392 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1393 addr, next))
1394 return -ENOMEM;
1395 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1396 return 0;
1397 }
1398
1399 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1400 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1401 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1402 unsigned long end)
1403 {
1404 struct mm_struct *dst_mm = dst_vma->vm_mm;
1405 struct mm_struct *src_mm = src_vma->vm_mm;
1406 pud_t *src_pud, *dst_pud;
1407 unsigned long next;
1408
1409 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1410 if (!dst_pud)
1411 return -ENOMEM;
1412 src_pud = pud_offset(src_p4d, addr);
1413 do {
1414 next = pud_addr_end(addr, end);
1415 if (pud_trans_huge(*src_pud)) {
1416 int err;
1417
1418 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1419 err = copy_huge_pud(dst_mm, src_mm,
1420 dst_pud, src_pud, addr, src_vma);
1421 if (err == -ENOMEM)
1422 return -ENOMEM;
1423 if (!err)
1424 continue;
1425 /* fall through */
1426 }
1427 if (pud_none_or_clear_bad(src_pud))
1428 continue;
1429 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1430 addr, next))
1431 return -ENOMEM;
1432 } while (dst_pud++, src_pud++, addr = next, addr != end);
1433 return 0;
1434 }
1435
1436 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1437 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1438 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1439 unsigned long end)
1440 {
1441 struct mm_struct *dst_mm = dst_vma->vm_mm;
1442 p4d_t *src_p4d, *dst_p4d;
1443 unsigned long next;
1444
1445 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1446 if (!dst_p4d)
1447 return -ENOMEM;
1448 src_p4d = p4d_offset(src_pgd, addr);
1449 do {
1450 next = p4d_addr_end(addr, end);
1451 if (p4d_none_or_clear_bad(src_p4d))
1452 continue;
1453 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1454 addr, next))
1455 return -ENOMEM;
1456 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1457 return 0;
1458 }
1459
1460 /*
1461 * Return true if the vma needs to copy the pgtable during this fork(). Return
1462 * false when we can speed up fork() by allowing lazy page faults later until
1463 * when the child accesses the memory range.
1464 */
1465 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1466 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1467 {
1468 if (src_vma->vm_flags & VM_COPY_ON_FORK)
1469 return true;
1470 /*
1471 * The presence of an anon_vma indicates an anonymous VMA has page
1472 * tables which naturally cannot be reconstituted on page fault.
1473 */
1474 if (src_vma->anon_vma)
1475 return true;
1476
1477 /*
1478 * Don't copy ptes where a page fault will fill them correctly. Fork
1479 * becomes much lighter when there are big shared or private readonly
1480 * mappings. The tradeoff is that copy_page_range is more efficient
1481 * than faulting.
1482 */
1483 return false;
1484 }
1485
1486 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1487 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1488 {
1489 pgd_t *src_pgd, *dst_pgd;
1490 unsigned long addr = src_vma->vm_start;
1491 unsigned long end = src_vma->vm_end;
1492 struct mm_struct *dst_mm = dst_vma->vm_mm;
1493 struct mm_struct *src_mm = src_vma->vm_mm;
1494 struct mmu_notifier_range range;
1495 unsigned long next;
1496 bool is_cow;
1497 int ret;
1498
1499 if (!vma_needs_copy(dst_vma, src_vma))
1500 return 0;
1501
1502 if (is_vm_hugetlb_page(src_vma))
1503 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1504
1505 /*
1506 * We need to invalidate the secondary MMU mappings only when
1507 * there could be a permission downgrade on the ptes of the
1508 * parent mm. And a permission downgrade will only happen if
1509 * is_cow_mapping() returns true.
1510 */
1511 is_cow = is_cow_mapping(src_vma->vm_flags);
1512
1513 if (is_cow) {
1514 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1515 0, src_mm, addr, end);
1516 mmu_notifier_invalidate_range_start(&range);
1517 /*
1518 * Disabling preemption is not needed for the write side, as
1519 * the read side doesn't spin, but goes to the mmap_lock.
1520 *
1521 * Use the raw variant of the seqcount_t write API to avoid
1522 * lockdep complaining about preemptibility.
1523 */
1524 vma_assert_write_locked(src_vma);
1525 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1526 }
1527
1528 ret = 0;
1529 dst_pgd = pgd_offset(dst_mm, addr);
1530 src_pgd = pgd_offset(src_mm, addr);
1531 do {
1532 next = pgd_addr_end(addr, end);
1533 if (pgd_none_or_clear_bad(src_pgd))
1534 continue;
1535 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1536 addr, next))) {
1537 ret = -ENOMEM;
1538 break;
1539 }
1540 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1541
1542 if (is_cow) {
1543 raw_write_seqcount_end(&src_mm->write_protect_seq);
1544 mmu_notifier_invalidate_range_end(&range);
1545 }
1546 return ret;
1547 }
1548
1549 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1550 static inline bool should_zap_cows(struct zap_details *details)
1551 {
1552 /* By default, zap all pages */
1553 if (!details || details->reclaim_pt)
1554 return true;
1555
1556 /* Or, we zap COWed pages only if the caller wants to */
1557 return details->even_cows;
1558 }
1559
1560 /* Decides whether we should zap this folio with the folio pointer specified */
should_zap_folio(struct zap_details * details,struct folio * folio)1561 static inline bool should_zap_folio(struct zap_details *details,
1562 struct folio *folio)
1563 {
1564 /* If we can make a decision without *folio.. */
1565 if (should_zap_cows(details))
1566 return true;
1567
1568 /* Otherwise we should only zap non-anon folios */
1569 return !folio_test_anon(folio);
1570 }
1571
zap_drop_markers(struct zap_details * details)1572 static inline bool zap_drop_markers(struct zap_details *details)
1573 {
1574 if (!details)
1575 return false;
1576
1577 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1578 }
1579
1580 /*
1581 * This function makes sure that we'll replace the none pte with an uffd-wp
1582 * swap special pte marker when necessary. Must be with the pgtable lock held.
1583 *
1584 * Returns true if uffd-wp ptes was installed, false otherwise.
1585 */
1586 static inline bool
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,int nr,struct zap_details * details,pte_t pteval)1587 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1588 unsigned long addr, pte_t *pte, int nr,
1589 struct zap_details *details, pte_t pteval)
1590 {
1591 bool was_installed = false;
1592
1593 if (!uffd_supports_wp_marker())
1594 return false;
1595
1596 /* Zap on anonymous always means dropping everything */
1597 if (vma_is_anonymous(vma))
1598 return false;
1599
1600 if (zap_drop_markers(details))
1601 return false;
1602
1603 for (;;) {
1604 /* the PFN in the PTE is irrelevant. */
1605 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1606 was_installed = true;
1607 if (--nr == 0)
1608 break;
1609 pte++;
1610 addr += PAGE_SIZE;
1611 }
1612
1613 return was_installed;
1614 }
1615
zap_present_folio_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,struct folio * folio,struct page * page,pte_t * pte,pte_t ptent,unsigned int nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1616 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1617 struct vm_area_struct *vma, struct folio *folio,
1618 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1619 unsigned long addr, struct zap_details *details, int *rss,
1620 bool *force_flush, bool *force_break, bool *any_skipped)
1621 {
1622 struct mm_struct *mm = tlb->mm;
1623 bool delay_rmap = false;
1624
1625 if (!folio_test_anon(folio)) {
1626 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1627 if (pte_dirty(ptent)) {
1628 folio_mark_dirty(folio);
1629 if (tlb_delay_rmap(tlb)) {
1630 delay_rmap = true;
1631 *force_flush = true;
1632 }
1633 }
1634 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1635 folio_mark_accessed(folio);
1636 rss[mm_counter(folio)] -= nr;
1637 } else {
1638 /* We don't need up-to-date accessed/dirty bits. */
1639 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1640 rss[MM_ANONPAGES] -= nr;
1641 }
1642 /* Checking a single PTE in a batch is sufficient. */
1643 arch_check_zapped_pte(vma, ptent);
1644 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1645 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1646 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1647 nr, details, ptent);
1648
1649 if (!delay_rmap) {
1650 folio_remove_rmap_ptes(folio, page, nr, vma);
1651
1652 if (unlikely(folio_mapcount(folio) < 0))
1653 print_bad_pte(vma, addr, ptent, page);
1654 }
1655 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1656 *force_flush = true;
1657 *force_break = true;
1658 }
1659 }
1660
1661 /*
1662 * Zap or skip at least one present PTE, trying to batch-process subsequent
1663 * PTEs that map consecutive pages of the same folio.
1664 *
1665 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1666 */
zap_present_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1667 static inline int zap_present_ptes(struct mmu_gather *tlb,
1668 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1669 unsigned int max_nr, unsigned long addr,
1670 struct zap_details *details, int *rss, bool *force_flush,
1671 bool *force_break, bool *any_skipped)
1672 {
1673 struct mm_struct *mm = tlb->mm;
1674 struct folio *folio;
1675 struct page *page;
1676 int nr;
1677
1678 page = vm_normal_page(vma, addr, ptent);
1679 if (!page) {
1680 /* We don't need up-to-date accessed/dirty bits. */
1681 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1682 arch_check_zapped_pte(vma, ptent);
1683 tlb_remove_tlb_entry(tlb, pte, addr);
1684 if (userfaultfd_pte_wp(vma, ptent))
1685 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1686 pte, 1, details, ptent);
1687 ksm_might_unmap_zero_page(mm, ptent);
1688 return 1;
1689 }
1690
1691 folio = page_folio(page);
1692 if (unlikely(!should_zap_folio(details, folio))) {
1693 *any_skipped = true;
1694 return 1;
1695 }
1696
1697 /*
1698 * Make sure that the common "small folio" case is as fast as possible
1699 * by keeping the batching logic separate.
1700 */
1701 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1702 nr = folio_pte_batch(folio, pte, ptent, max_nr);
1703 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1704 addr, details, rss, force_flush,
1705 force_break, any_skipped);
1706 return nr;
1707 }
1708 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1709 details, rss, force_flush, force_break, any_skipped);
1710 return 1;
1711 }
1712
zap_nonpresent_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * any_skipped)1713 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1714 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1715 unsigned int max_nr, unsigned long addr,
1716 struct zap_details *details, int *rss, bool *any_skipped)
1717 {
1718 softleaf_t entry;
1719 int nr = 1;
1720
1721 *any_skipped = true;
1722 entry = softleaf_from_pte(ptent);
1723 if (softleaf_is_device_private(entry) ||
1724 softleaf_is_device_exclusive(entry)) {
1725 struct page *page = softleaf_to_page(entry);
1726 struct folio *folio = page_folio(page);
1727
1728 if (unlikely(!should_zap_folio(details, folio)))
1729 return 1;
1730 /*
1731 * Both device private/exclusive mappings should only
1732 * work with anonymous page so far, so we don't need to
1733 * consider uffd-wp bit when zap. For more information,
1734 * see zap_install_uffd_wp_if_needed().
1735 */
1736 WARN_ON_ONCE(!vma_is_anonymous(vma));
1737 rss[mm_counter(folio)]--;
1738 folio_remove_rmap_pte(folio, page, vma);
1739 folio_put(folio);
1740 } else if (softleaf_is_swap(entry)) {
1741 /* Genuine swap entries, hence a private anon pages */
1742 if (!should_zap_cows(details))
1743 return 1;
1744
1745 nr = swap_pte_batch(pte, max_nr, ptent);
1746 rss[MM_SWAPENTS] -= nr;
1747 free_swap_and_cache_nr(entry, nr);
1748 } else if (softleaf_is_migration(entry)) {
1749 struct folio *folio = softleaf_to_folio(entry);
1750
1751 if (!should_zap_folio(details, folio))
1752 return 1;
1753 rss[mm_counter(folio)]--;
1754 } else if (softleaf_is_uffd_wp_marker(entry)) {
1755 /*
1756 * For anon: always drop the marker; for file: only
1757 * drop the marker if explicitly requested.
1758 */
1759 if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1760 return 1;
1761 } else if (softleaf_is_guard_marker(entry)) {
1762 /*
1763 * Ordinary zapping should not remove guard PTE
1764 * markers. Only do so if we should remove PTE markers
1765 * in general.
1766 */
1767 if (!zap_drop_markers(details))
1768 return 1;
1769 } else if (softleaf_is_hwpoison(entry) ||
1770 softleaf_is_poison_marker(entry)) {
1771 if (!should_zap_cows(details))
1772 return 1;
1773 } else {
1774 /* We should have covered all the swap entry types */
1775 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1776 WARN_ON_ONCE(1);
1777 }
1778 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1779 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1780
1781 return nr;
1782 }
1783
do_zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,unsigned long addr,unsigned long end,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1784 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1785 struct vm_area_struct *vma, pte_t *pte,
1786 unsigned long addr, unsigned long end,
1787 struct zap_details *details, int *rss,
1788 bool *force_flush, bool *force_break,
1789 bool *any_skipped)
1790 {
1791 pte_t ptent = ptep_get(pte);
1792 int max_nr = (end - addr) / PAGE_SIZE;
1793 int nr = 0;
1794
1795 /* Skip all consecutive none ptes */
1796 if (pte_none(ptent)) {
1797 for (nr = 1; nr < max_nr; nr++) {
1798 ptent = ptep_get(pte + nr);
1799 if (!pte_none(ptent))
1800 break;
1801 }
1802 max_nr -= nr;
1803 if (!max_nr)
1804 return nr;
1805 pte += nr;
1806 addr += nr * PAGE_SIZE;
1807 }
1808
1809 if (pte_present(ptent))
1810 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1811 details, rss, force_flush, force_break,
1812 any_skipped);
1813 else
1814 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1815 details, rss, any_skipped);
1816
1817 return nr;
1818 }
1819
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1820 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1821 struct vm_area_struct *vma, pmd_t *pmd,
1822 unsigned long addr, unsigned long end,
1823 struct zap_details *details)
1824 {
1825 bool force_flush = false, force_break = false;
1826 struct mm_struct *mm = tlb->mm;
1827 int rss[NR_MM_COUNTERS];
1828 spinlock_t *ptl;
1829 pte_t *start_pte;
1830 pte_t *pte;
1831 pmd_t pmdval;
1832 unsigned long start = addr;
1833 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1834 bool direct_reclaim = true;
1835 int nr;
1836
1837 retry:
1838 tlb_change_page_size(tlb, PAGE_SIZE);
1839 init_rss_vec(rss);
1840 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1841 if (!pte)
1842 return addr;
1843
1844 flush_tlb_batched_pending(mm);
1845 arch_enter_lazy_mmu_mode();
1846 do {
1847 bool any_skipped = false;
1848
1849 if (need_resched()) {
1850 direct_reclaim = false;
1851 break;
1852 }
1853
1854 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1855 &force_flush, &force_break, &any_skipped);
1856 if (any_skipped)
1857 can_reclaim_pt = false;
1858 if (unlikely(force_break)) {
1859 addr += nr * PAGE_SIZE;
1860 direct_reclaim = false;
1861 break;
1862 }
1863 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1864
1865 /*
1866 * Fast path: try to hold the pmd lock and unmap the PTE page.
1867 *
1868 * If the pte lock was released midway (retry case), or if the attempt
1869 * to hold the pmd lock failed, then we need to recheck all pte entries
1870 * to ensure they are still none, thereby preventing the pte entries
1871 * from being repopulated by another thread.
1872 */
1873 if (can_reclaim_pt && direct_reclaim && addr == end)
1874 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1875
1876 add_mm_rss_vec(mm, rss);
1877 arch_leave_lazy_mmu_mode();
1878
1879 /* Do the actual TLB flush before dropping ptl */
1880 if (force_flush) {
1881 tlb_flush_mmu_tlbonly(tlb);
1882 tlb_flush_rmaps(tlb, vma);
1883 }
1884 pte_unmap_unlock(start_pte, ptl);
1885
1886 /*
1887 * If we forced a TLB flush (either due to running out of
1888 * batch buffers or because we needed to flush dirty TLB
1889 * entries before releasing the ptl), free the batched
1890 * memory too. Come back again if we didn't do everything.
1891 */
1892 if (force_flush)
1893 tlb_flush_mmu(tlb);
1894
1895 if (addr != end) {
1896 cond_resched();
1897 force_flush = false;
1898 force_break = false;
1899 goto retry;
1900 }
1901
1902 if (can_reclaim_pt) {
1903 if (direct_reclaim)
1904 free_pte(mm, start, tlb, pmdval);
1905 else
1906 try_to_free_pte(mm, pmd, start, tlb);
1907 }
1908
1909 return addr;
1910 }
1911
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1912 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1913 struct vm_area_struct *vma, pud_t *pud,
1914 unsigned long addr, unsigned long end,
1915 struct zap_details *details)
1916 {
1917 pmd_t *pmd;
1918 unsigned long next;
1919
1920 pmd = pmd_offset(pud, addr);
1921 do {
1922 next = pmd_addr_end(addr, end);
1923 if (pmd_is_huge(*pmd)) {
1924 if (next - addr != HPAGE_PMD_SIZE)
1925 __split_huge_pmd(vma, pmd, addr, false);
1926 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1927 addr = next;
1928 continue;
1929 }
1930 /* fall through */
1931 } else if (details && details->single_folio &&
1932 folio_test_pmd_mappable(details->single_folio) &&
1933 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1934 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1935 /*
1936 * Take and drop THP pmd lock so that we cannot return
1937 * prematurely, while zap_huge_pmd() has cleared *pmd,
1938 * but not yet decremented compound_mapcount().
1939 */
1940 spin_unlock(ptl);
1941 }
1942 if (pmd_none(*pmd)) {
1943 addr = next;
1944 continue;
1945 }
1946 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1947 if (addr != next)
1948 pmd--;
1949 } while (pmd++, cond_resched(), addr != end);
1950
1951 return addr;
1952 }
1953
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1954 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1955 struct vm_area_struct *vma, p4d_t *p4d,
1956 unsigned long addr, unsigned long end,
1957 struct zap_details *details)
1958 {
1959 pud_t *pud;
1960 unsigned long next;
1961
1962 pud = pud_offset(p4d, addr);
1963 do {
1964 next = pud_addr_end(addr, end);
1965 if (pud_trans_huge(*pud)) {
1966 if (next - addr != HPAGE_PUD_SIZE) {
1967 mmap_assert_locked(tlb->mm);
1968 split_huge_pud(vma, pud, addr);
1969 } else if (zap_huge_pud(tlb, vma, pud, addr))
1970 goto next;
1971 /* fall through */
1972 }
1973 if (pud_none_or_clear_bad(pud))
1974 continue;
1975 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1976 next:
1977 cond_resched();
1978 } while (pud++, addr = next, addr != end);
1979
1980 return addr;
1981 }
1982
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1983 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1984 struct vm_area_struct *vma, pgd_t *pgd,
1985 unsigned long addr, unsigned long end,
1986 struct zap_details *details)
1987 {
1988 p4d_t *p4d;
1989 unsigned long next;
1990
1991 p4d = p4d_offset(pgd, addr);
1992 do {
1993 next = p4d_addr_end(addr, end);
1994 if (p4d_none_or_clear_bad(p4d))
1995 continue;
1996 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1997 } while (p4d++, addr = next, addr != end);
1998
1999 return addr;
2000 }
2001
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)2002 void unmap_page_range(struct mmu_gather *tlb,
2003 struct vm_area_struct *vma,
2004 unsigned long addr, unsigned long end,
2005 struct zap_details *details)
2006 {
2007 pgd_t *pgd;
2008 unsigned long next;
2009
2010 BUG_ON(addr >= end);
2011 tlb_start_vma(tlb, vma);
2012 pgd = pgd_offset(vma->vm_mm, addr);
2013 do {
2014 next = pgd_addr_end(addr, end);
2015 if (pgd_none_or_clear_bad(pgd))
2016 continue;
2017 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
2018 } while (pgd++, addr = next, addr != end);
2019 tlb_end_vma(tlb, vma);
2020 }
2021
2022
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2023 static void unmap_single_vma(struct mmu_gather *tlb,
2024 struct vm_area_struct *vma, unsigned long start_addr,
2025 unsigned long end_addr, struct zap_details *details)
2026 {
2027 unsigned long start = max(vma->vm_start, start_addr);
2028 unsigned long end;
2029
2030 if (start >= vma->vm_end)
2031 return;
2032 end = min(vma->vm_end, end_addr);
2033 if (end <= vma->vm_start)
2034 return;
2035
2036 if (vma->vm_file)
2037 uprobe_munmap(vma, start, end);
2038
2039 if (start != end) {
2040 if (unlikely(is_vm_hugetlb_page(vma))) {
2041 /*
2042 * It is undesirable to test vma->vm_file as it
2043 * should be non-null for valid hugetlb area.
2044 * However, vm_file will be NULL in the error
2045 * cleanup path of mmap_region. When
2046 * hugetlbfs ->mmap method fails,
2047 * mmap_region() nullifies vma->vm_file
2048 * before calling this function to clean up.
2049 * Since no pte has actually been setup, it is
2050 * safe to do nothing in this case.
2051 */
2052 if (vma->vm_file) {
2053 zap_flags_t zap_flags = details ?
2054 details->zap_flags : 0;
2055 __unmap_hugepage_range(tlb, vma, start, end,
2056 NULL, zap_flags);
2057 }
2058 } else
2059 unmap_page_range(tlb, vma, start, end, details);
2060 }
2061 }
2062
2063 /**
2064 * unmap_vmas - unmap a range of memory covered by a list of vma's
2065 * @tlb: address of the caller's struct mmu_gather
2066 * @mas: the maple state
2067 * @vma: the starting vma
2068 * @start_addr: virtual address at which to start unmapping
2069 * @end_addr: virtual address at which to end unmapping
2070 * @tree_end: The maximum index to check
2071 *
2072 * Unmap all pages in the vma list.
2073 *
2074 * Only addresses between `start' and `end' will be unmapped.
2075 *
2076 * The VMA list must be sorted in ascending virtual address order.
2077 *
2078 * unmap_vmas() assumes that the caller will flush the whole unmapped address
2079 * range after unmap_vmas() returns. So the only responsibility here is to
2080 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
2081 * drops the lock and schedules.
2082 */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end)2083 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2084 struct vm_area_struct *vma, unsigned long start_addr,
2085 unsigned long end_addr, unsigned long tree_end)
2086 {
2087 struct mmu_notifier_range range;
2088 struct zap_details details = {
2089 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
2090 /* Careful - we need to zap private pages too! */
2091 .even_cows = true,
2092 };
2093
2094 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
2095 start_addr, end_addr);
2096 mmu_notifier_invalidate_range_start(&range);
2097 do {
2098 unsigned long start = start_addr;
2099 unsigned long end = end_addr;
2100 hugetlb_zap_begin(vma, &start, &end);
2101 unmap_single_vma(tlb, vma, start, end, &details);
2102 hugetlb_zap_end(vma, &details);
2103 vma = mas_find(mas, tree_end - 1);
2104 } while (vma && likely(!xa_is_zero(vma)));
2105 mmu_notifier_invalidate_range_end(&range);
2106 }
2107
2108 /**
2109 * zap_page_range_single_batched - remove user pages in a given range
2110 * @tlb: pointer to the caller's struct mmu_gather
2111 * @vma: vm_area_struct holding the applicable pages
2112 * @address: starting address of pages to remove
2113 * @size: number of bytes to remove
2114 * @details: details of shared cache invalidation
2115 *
2116 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for
2117 * hugetlb, @tlb is flushed and re-initialized by this function.
2118 */
zap_page_range_single_batched(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2119 void zap_page_range_single_batched(struct mmu_gather *tlb,
2120 struct vm_area_struct *vma, unsigned long address,
2121 unsigned long size, struct zap_details *details)
2122 {
2123 const unsigned long end = address + size;
2124 struct mmu_notifier_range range;
2125
2126 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm);
2127
2128 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2129 address, end);
2130 hugetlb_zap_begin(vma, &range.start, &range.end);
2131 update_hiwater_rss(vma->vm_mm);
2132 mmu_notifier_invalidate_range_start(&range);
2133 /*
2134 * unmap 'address-end' not 'range.start-range.end' as range
2135 * could have been expanded for hugetlb pmd sharing.
2136 */
2137 unmap_single_vma(tlb, vma, address, end, details);
2138 mmu_notifier_invalidate_range_end(&range);
2139 if (is_vm_hugetlb_page(vma)) {
2140 /*
2141 * flush tlb and free resources before hugetlb_zap_end(), to
2142 * avoid concurrent page faults' allocation failure.
2143 */
2144 tlb_finish_mmu(tlb);
2145 hugetlb_zap_end(vma, details);
2146 tlb_gather_mmu(tlb, vma->vm_mm);
2147 }
2148 }
2149
2150 /**
2151 * zap_page_range_single - remove user pages in a given range
2152 * @vma: vm_area_struct holding the applicable pages
2153 * @address: starting address of pages to zap
2154 * @size: number of bytes to zap
2155 * @details: details of shared cache invalidation
2156 *
2157 * The range must fit into one VMA.
2158 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2159 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2160 unsigned long size, struct zap_details *details)
2161 {
2162 struct mmu_gather tlb;
2163
2164 tlb_gather_mmu(&tlb, vma->vm_mm);
2165 zap_page_range_single_batched(&tlb, vma, address, size, details);
2166 tlb_finish_mmu(&tlb);
2167 }
2168
2169 /**
2170 * zap_vma_ptes - remove ptes mapping the vma
2171 * @vma: vm_area_struct holding ptes to be zapped
2172 * @address: starting address of pages to zap
2173 * @size: number of bytes to zap
2174 *
2175 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2176 *
2177 * The entire address range must be fully contained within the vma.
2178 *
2179 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)2180 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2181 unsigned long size)
2182 {
2183 if (!range_in_vma(vma, address, address + size) ||
2184 !(vma->vm_flags & VM_PFNMAP))
2185 return;
2186
2187 zap_page_range_single(vma, address, size, NULL);
2188 }
2189 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2190
walk_to_pmd(struct mm_struct * mm,unsigned long addr)2191 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2192 {
2193 pgd_t *pgd;
2194 p4d_t *p4d;
2195 pud_t *pud;
2196 pmd_t *pmd;
2197
2198 pgd = pgd_offset(mm, addr);
2199 p4d = p4d_alloc(mm, pgd, addr);
2200 if (!p4d)
2201 return NULL;
2202 pud = pud_alloc(mm, p4d, addr);
2203 if (!pud)
2204 return NULL;
2205 pmd = pmd_alloc(mm, pud, addr);
2206 if (!pmd)
2207 return NULL;
2208
2209 VM_BUG_ON(pmd_trans_huge(*pmd));
2210 return pmd;
2211 }
2212
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2213 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2214 spinlock_t **ptl)
2215 {
2216 pmd_t *pmd = walk_to_pmd(mm, addr);
2217
2218 if (!pmd)
2219 return NULL;
2220 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2221 }
2222
vm_mixed_zeropage_allowed(struct vm_area_struct * vma)2223 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2224 {
2225 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2226 /*
2227 * Whoever wants to forbid the zeropage after some zeropages
2228 * might already have been mapped has to scan the page tables and
2229 * bail out on any zeropages. Zeropages in COW mappings can
2230 * be unshared using FAULT_FLAG_UNSHARE faults.
2231 */
2232 if (mm_forbids_zeropage(vma->vm_mm))
2233 return false;
2234 /* zeropages in COW mappings are common and unproblematic. */
2235 if (is_cow_mapping(vma->vm_flags))
2236 return true;
2237 /* Mappings that do not allow for writable PTEs are unproblematic. */
2238 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2239 return true;
2240 /*
2241 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2242 * find the shared zeropage and longterm-pin it, which would
2243 * be problematic as soon as the zeropage gets replaced by a different
2244 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2245 * now differ to what GUP looked up. FSDAX is incompatible to
2246 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2247 * check_vma_flags).
2248 */
2249 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2250 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2251 }
2252
validate_page_before_insert(struct vm_area_struct * vma,struct page * page)2253 static int validate_page_before_insert(struct vm_area_struct *vma,
2254 struct page *page)
2255 {
2256 struct folio *folio = page_folio(page);
2257
2258 if (!folio_ref_count(folio))
2259 return -EINVAL;
2260 if (unlikely(is_zero_folio(folio))) {
2261 if (!vm_mixed_zeropage_allowed(vma))
2262 return -EINVAL;
2263 return 0;
2264 }
2265 if (folio_test_anon(folio) || page_has_type(page))
2266 return -EINVAL;
2267 flush_dcache_folio(folio);
2268 return 0;
2269 }
2270
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2271 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2272 unsigned long addr, struct page *page,
2273 pgprot_t prot, bool mkwrite)
2274 {
2275 struct folio *folio = page_folio(page);
2276 pte_t pteval = ptep_get(pte);
2277
2278 if (!pte_none(pteval)) {
2279 if (!mkwrite)
2280 return -EBUSY;
2281
2282 /* see insert_pfn(). */
2283 if (pte_pfn(pteval) != page_to_pfn(page)) {
2284 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval)));
2285 return -EFAULT;
2286 }
2287 pteval = maybe_mkwrite(pteval, vma);
2288 pteval = pte_mkyoung(pteval);
2289 if (ptep_set_access_flags(vma, addr, pte, pteval, 1))
2290 update_mmu_cache(vma, addr, pte);
2291 return 0;
2292 }
2293
2294 /* Ok, finally just insert the thing.. */
2295 pteval = mk_pte(page, prot);
2296 if (unlikely(is_zero_folio(folio))) {
2297 pteval = pte_mkspecial(pteval);
2298 } else {
2299 folio_get(folio);
2300 pteval = mk_pte(page, prot);
2301 if (mkwrite) {
2302 pteval = pte_mkyoung(pteval);
2303 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma);
2304 }
2305 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2306 folio_add_file_rmap_pte(folio, page, vma);
2307 }
2308 set_pte_at(vma->vm_mm, addr, pte, pteval);
2309 return 0;
2310 }
2311
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2312 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2313 struct page *page, pgprot_t prot, bool mkwrite)
2314 {
2315 int retval;
2316 pte_t *pte;
2317 spinlock_t *ptl;
2318
2319 retval = validate_page_before_insert(vma, page);
2320 if (retval)
2321 goto out;
2322 retval = -ENOMEM;
2323 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2324 if (!pte)
2325 goto out;
2326 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot,
2327 mkwrite);
2328 pte_unmap_unlock(pte, ptl);
2329 out:
2330 return retval;
2331 }
2332
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2333 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2334 unsigned long addr, struct page *page, pgprot_t prot)
2335 {
2336 int err;
2337
2338 err = validate_page_before_insert(vma, page);
2339 if (err)
2340 return err;
2341 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false);
2342 }
2343
2344 /* insert_pages() amortizes the cost of spinlock operations
2345 * when inserting pages in a loop.
2346 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)2347 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2348 struct page **pages, unsigned long *num, pgprot_t prot)
2349 {
2350 pmd_t *pmd = NULL;
2351 pte_t *start_pte, *pte;
2352 spinlock_t *pte_lock;
2353 struct mm_struct *const mm = vma->vm_mm;
2354 unsigned long curr_page_idx = 0;
2355 unsigned long remaining_pages_total = *num;
2356 unsigned long pages_to_write_in_pmd;
2357 int ret;
2358 more:
2359 ret = -EFAULT;
2360 pmd = walk_to_pmd(mm, addr);
2361 if (!pmd)
2362 goto out;
2363
2364 pages_to_write_in_pmd = min_t(unsigned long,
2365 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2366
2367 /* Allocate the PTE if necessary; takes PMD lock once only. */
2368 ret = -ENOMEM;
2369 if (pte_alloc(mm, pmd))
2370 goto out;
2371
2372 while (pages_to_write_in_pmd) {
2373 int pte_idx = 0;
2374 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2375
2376 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2377 if (!start_pte) {
2378 ret = -EFAULT;
2379 goto out;
2380 }
2381 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2382 int err = insert_page_in_batch_locked(vma, pte,
2383 addr, pages[curr_page_idx], prot);
2384 if (unlikely(err)) {
2385 pte_unmap_unlock(start_pte, pte_lock);
2386 ret = err;
2387 remaining_pages_total -= pte_idx;
2388 goto out;
2389 }
2390 addr += PAGE_SIZE;
2391 ++curr_page_idx;
2392 }
2393 pte_unmap_unlock(start_pte, pte_lock);
2394 pages_to_write_in_pmd -= batch_size;
2395 remaining_pages_total -= batch_size;
2396 }
2397 if (remaining_pages_total)
2398 goto more;
2399 ret = 0;
2400 out:
2401 *num = remaining_pages_total;
2402 return ret;
2403 }
2404
2405 /**
2406 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2407 * @vma: user vma to map to
2408 * @addr: target start user address of these pages
2409 * @pages: source kernel pages
2410 * @num: in: number of pages to map. out: number of pages that were *not*
2411 * mapped. (0 means all pages were successfully mapped).
2412 *
2413 * Preferred over vm_insert_page() when inserting multiple pages.
2414 *
2415 * In case of error, we may have mapped a subset of the provided
2416 * pages. It is the caller's responsibility to account for this case.
2417 *
2418 * The same restrictions apply as in vm_insert_page().
2419 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)2420 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2421 struct page **pages, unsigned long *num)
2422 {
2423 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2424
2425 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2426 return -EFAULT;
2427 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2428 BUG_ON(mmap_read_trylock(vma->vm_mm));
2429 BUG_ON(vma->vm_flags & VM_PFNMAP);
2430 vm_flags_set(vma, VM_MIXEDMAP);
2431 }
2432 /* Defer page refcount checking till we're about to map that page. */
2433 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2434 }
2435 EXPORT_SYMBOL(vm_insert_pages);
2436
2437 /**
2438 * vm_insert_page - insert single page into user vma
2439 * @vma: user vma to map to
2440 * @addr: target user address of this page
2441 * @page: source kernel page
2442 *
2443 * This allows drivers to insert individual pages they've allocated
2444 * into a user vma. The zeropage is supported in some VMAs,
2445 * see vm_mixed_zeropage_allowed().
2446 *
2447 * The page has to be a nice clean _individual_ kernel allocation.
2448 * If you allocate a compound page, you need to have marked it as
2449 * such (__GFP_COMP), or manually just split the page up yourself
2450 * (see split_page()).
2451 *
2452 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2453 * took an arbitrary page protection parameter. This doesn't allow
2454 * that. Your vma protection will have to be set up correctly, which
2455 * means that if you want a shared writable mapping, you'd better
2456 * ask for a shared writable mapping!
2457 *
2458 * The page does not need to be reserved.
2459 *
2460 * Usually this function is called from f_op->mmap() handler
2461 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2462 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2463 * function from other places, for example from page-fault handler.
2464 *
2465 * Return: %0 on success, negative error code otherwise.
2466 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2467 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2468 struct page *page)
2469 {
2470 if (addr < vma->vm_start || addr >= vma->vm_end)
2471 return -EFAULT;
2472 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2473 BUG_ON(mmap_read_trylock(vma->vm_mm));
2474 BUG_ON(vma->vm_flags & VM_PFNMAP);
2475 vm_flags_set(vma, VM_MIXEDMAP);
2476 }
2477 return insert_page(vma, addr, page, vma->vm_page_prot, false);
2478 }
2479 EXPORT_SYMBOL(vm_insert_page);
2480
2481 /*
2482 * __vm_map_pages - maps range of kernel pages into user vma
2483 * @vma: user vma to map to
2484 * @pages: pointer to array of source kernel pages
2485 * @num: number of pages in page array
2486 * @offset: user's requested vm_pgoff
2487 *
2488 * This allows drivers to map range of kernel pages into a user vma.
2489 * The zeropage is supported in some VMAs, see
2490 * vm_mixed_zeropage_allowed().
2491 *
2492 * Return: 0 on success and error code otherwise.
2493 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2494 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2495 unsigned long num, unsigned long offset)
2496 {
2497 unsigned long count = vma_pages(vma);
2498 unsigned long uaddr = vma->vm_start;
2499 int ret, i;
2500
2501 /* Fail if the user requested offset is beyond the end of the object */
2502 if (offset >= num)
2503 return -ENXIO;
2504
2505 /* Fail if the user requested size exceeds available object size */
2506 if (count > num - offset)
2507 return -ENXIO;
2508
2509 for (i = 0; i < count; i++) {
2510 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2511 if (ret < 0)
2512 return ret;
2513 uaddr += PAGE_SIZE;
2514 }
2515
2516 return 0;
2517 }
2518
2519 /**
2520 * vm_map_pages - maps range of kernel pages starts with non zero offset
2521 * @vma: user vma to map to
2522 * @pages: pointer to array of source kernel pages
2523 * @num: number of pages in page array
2524 *
2525 * Maps an object consisting of @num pages, catering for the user's
2526 * requested vm_pgoff
2527 *
2528 * If we fail to insert any page into the vma, the function will return
2529 * immediately leaving any previously inserted pages present. Callers
2530 * from the mmap handler may immediately return the error as their caller
2531 * will destroy the vma, removing any successfully inserted pages. Other
2532 * callers should make their own arrangements for calling unmap_region().
2533 *
2534 * Context: Process context. Called by mmap handlers.
2535 * Return: 0 on success and error code otherwise.
2536 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2537 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2538 unsigned long num)
2539 {
2540 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2541 }
2542 EXPORT_SYMBOL(vm_map_pages);
2543
2544 /**
2545 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2546 * @vma: user vma to map to
2547 * @pages: pointer to array of source kernel pages
2548 * @num: number of pages in page array
2549 *
2550 * Similar to vm_map_pages(), except that it explicitly sets the offset
2551 * to 0. This function is intended for the drivers that did not consider
2552 * vm_pgoff.
2553 *
2554 * Context: Process context. Called by mmap handlers.
2555 * Return: 0 on success and error code otherwise.
2556 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2557 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2558 unsigned long num)
2559 {
2560 return __vm_map_pages(vma, pages, num, 0);
2561 }
2562 EXPORT_SYMBOL(vm_map_pages_zero);
2563
insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot,bool mkwrite)2564 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2565 unsigned long pfn, pgprot_t prot, bool mkwrite)
2566 {
2567 struct mm_struct *mm = vma->vm_mm;
2568 pte_t *pte, entry;
2569 spinlock_t *ptl;
2570
2571 pte = get_locked_pte(mm, addr, &ptl);
2572 if (!pte)
2573 return VM_FAULT_OOM;
2574 entry = ptep_get(pte);
2575 if (!pte_none(entry)) {
2576 if (mkwrite) {
2577 /*
2578 * For read faults on private mappings the PFN passed
2579 * in may not match the PFN we have mapped if the
2580 * mapped PFN is a writeable COW page. In the mkwrite
2581 * case we are creating a writable PTE for a shared
2582 * mapping and we expect the PFNs to match. If they
2583 * don't match, we are likely racing with block
2584 * allocation and mapping invalidation so just skip the
2585 * update.
2586 */
2587 if (pte_pfn(entry) != pfn) {
2588 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2589 goto out_unlock;
2590 }
2591 entry = pte_mkyoung(entry);
2592 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2593 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2594 update_mmu_cache(vma, addr, pte);
2595 }
2596 goto out_unlock;
2597 }
2598
2599 /* Ok, finally just insert the thing.. */
2600 entry = pte_mkspecial(pfn_pte(pfn, prot));
2601
2602 if (mkwrite) {
2603 entry = pte_mkyoung(entry);
2604 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2605 }
2606
2607 set_pte_at(mm, addr, pte, entry);
2608 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2609
2610 out_unlock:
2611 pte_unmap_unlock(pte, ptl);
2612 return VM_FAULT_NOPAGE;
2613 }
2614
2615 /**
2616 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2617 * @vma: user vma to map to
2618 * @addr: target user address of this page
2619 * @pfn: source kernel pfn
2620 * @pgprot: pgprot flags for the inserted page
2621 *
2622 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2623 * to override pgprot on a per-page basis.
2624 *
2625 * This only makes sense for IO mappings, and it makes no sense for
2626 * COW mappings. In general, using multiple vmas is preferable;
2627 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2628 * impractical.
2629 *
2630 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2631 * caching- and encryption bits different than those of @vma->vm_page_prot,
2632 * because the caching- or encryption mode may not be known at mmap() time.
2633 *
2634 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2635 * to set caching and encryption bits for those vmas (except for COW pages).
2636 * This is ensured by core vm only modifying these page table entries using
2637 * functions that don't touch caching- or encryption bits, using pte_modify()
2638 * if needed. (See for example mprotect()).
2639 *
2640 * Also when new page-table entries are created, this is only done using the
2641 * fault() callback, and never using the value of vma->vm_page_prot,
2642 * except for page-table entries that point to anonymous pages as the result
2643 * of COW.
2644 *
2645 * Context: Process context. May allocate using %GFP_KERNEL.
2646 * Return: vm_fault_t value.
2647 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2648 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2649 unsigned long pfn, pgprot_t pgprot)
2650 {
2651 /*
2652 * Technically, architectures with pte_special can avoid all these
2653 * restrictions (same for remap_pfn_range). However we would like
2654 * consistency in testing and feature parity among all, so we should
2655 * try to keep these invariants in place for everybody.
2656 */
2657 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2658 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2659 (VM_PFNMAP|VM_MIXEDMAP));
2660 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2661 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2662
2663 if (addr < vma->vm_start || addr >= vma->vm_end)
2664 return VM_FAULT_SIGBUS;
2665
2666 if (!pfn_modify_allowed(pfn, pgprot))
2667 return VM_FAULT_SIGBUS;
2668
2669 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2670
2671 return insert_pfn(vma, addr, pfn, pgprot, false);
2672 }
2673 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2674
2675 /**
2676 * vmf_insert_pfn - insert single pfn into user vma
2677 * @vma: user vma to map to
2678 * @addr: target user address of this page
2679 * @pfn: source kernel pfn
2680 *
2681 * Similar to vm_insert_page, this allows drivers to insert individual pages
2682 * they've allocated into a user vma. Same comments apply.
2683 *
2684 * This function should only be called from a vm_ops->fault handler, and
2685 * in that case the handler should return the result of this function.
2686 *
2687 * vma cannot be a COW mapping.
2688 *
2689 * As this is called only for pages that do not currently exist, we
2690 * do not need to flush old virtual caches or the TLB.
2691 *
2692 * Context: Process context. May allocate using %GFP_KERNEL.
2693 * Return: vm_fault_t value.
2694 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2695 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2696 unsigned long pfn)
2697 {
2698 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2699 }
2700 EXPORT_SYMBOL(vmf_insert_pfn);
2701
vm_mixed_ok(struct vm_area_struct * vma,unsigned long pfn,bool mkwrite)2702 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn,
2703 bool mkwrite)
2704 {
2705 if (unlikely(is_zero_pfn(pfn)) &&
2706 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2707 return false;
2708 /* these checks mirror the abort conditions in vm_normal_page */
2709 if (vma->vm_flags & VM_MIXEDMAP)
2710 return true;
2711 if (is_zero_pfn(pfn))
2712 return true;
2713 return false;
2714 }
2715
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,bool mkwrite)2716 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2717 unsigned long addr, unsigned long pfn, bool mkwrite)
2718 {
2719 pgprot_t pgprot = vma->vm_page_prot;
2720 int err;
2721
2722 if (!vm_mixed_ok(vma, pfn, mkwrite))
2723 return VM_FAULT_SIGBUS;
2724
2725 if (addr < vma->vm_start || addr >= vma->vm_end)
2726 return VM_FAULT_SIGBUS;
2727
2728 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2729
2730 if (!pfn_modify_allowed(pfn, pgprot))
2731 return VM_FAULT_SIGBUS;
2732
2733 /*
2734 * If we don't have pte special, then we have to use the pfn_valid()
2735 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2736 * refcount the page if pfn_valid is true (hence insert_page rather
2737 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2738 * without pte special, it would there be refcounted as a normal page.
2739 */
2740 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) {
2741 struct page *page;
2742
2743 /*
2744 * At this point we are committed to insert_page()
2745 * regardless of whether the caller specified flags that
2746 * result in pfn_t_has_page() == false.
2747 */
2748 page = pfn_to_page(pfn);
2749 err = insert_page(vma, addr, page, pgprot, mkwrite);
2750 } else {
2751 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2752 }
2753
2754 if (err == -ENOMEM)
2755 return VM_FAULT_OOM;
2756 if (err < 0 && err != -EBUSY)
2757 return VM_FAULT_SIGBUS;
2758
2759 return VM_FAULT_NOPAGE;
2760 }
2761
vmf_insert_page_mkwrite(struct vm_fault * vmf,struct page * page,bool write)2762 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
2763 bool write)
2764 {
2765 pgprot_t pgprot = vmf->vma->vm_page_prot;
2766 unsigned long addr = vmf->address;
2767 int err;
2768
2769 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end)
2770 return VM_FAULT_SIGBUS;
2771
2772 err = insert_page(vmf->vma, addr, page, pgprot, write);
2773 if (err == -ENOMEM)
2774 return VM_FAULT_OOM;
2775 if (err < 0 && err != -EBUSY)
2776 return VM_FAULT_SIGBUS;
2777
2778 return VM_FAULT_NOPAGE;
2779 }
2780 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite);
2781
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2782 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2783 unsigned long pfn)
2784 {
2785 return __vm_insert_mixed(vma, addr, pfn, false);
2786 }
2787 EXPORT_SYMBOL(vmf_insert_mixed);
2788
2789 /*
2790 * If the insertion of PTE failed because someone else already added a
2791 * different entry in the mean time, we treat that as success as we assume
2792 * the same entry was actually inserted.
2793 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2794 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2795 unsigned long addr, unsigned long pfn)
2796 {
2797 return __vm_insert_mixed(vma, addr, pfn, true);
2798 }
2799
2800 /*
2801 * maps a range of physical memory into the requested pages. the old
2802 * mappings are removed. any references to nonexistent pages results
2803 * in null mappings (currently treated as "copy-on-access")
2804 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2805 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2806 unsigned long addr, unsigned long end,
2807 unsigned long pfn, pgprot_t prot)
2808 {
2809 pte_t *pte, *mapped_pte;
2810 spinlock_t *ptl;
2811 int err = 0;
2812
2813 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2814 if (!pte)
2815 return -ENOMEM;
2816 arch_enter_lazy_mmu_mode();
2817 do {
2818 BUG_ON(!pte_none(ptep_get(pte)));
2819 if (!pfn_modify_allowed(pfn, prot)) {
2820 err = -EACCES;
2821 break;
2822 }
2823 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2824 pfn++;
2825 } while (pte++, addr += PAGE_SIZE, addr != end);
2826 arch_leave_lazy_mmu_mode();
2827 pte_unmap_unlock(mapped_pte, ptl);
2828 return err;
2829 }
2830
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2831 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2832 unsigned long addr, unsigned long end,
2833 unsigned long pfn, pgprot_t prot)
2834 {
2835 pmd_t *pmd;
2836 unsigned long next;
2837 int err;
2838
2839 pfn -= addr >> PAGE_SHIFT;
2840 pmd = pmd_alloc(mm, pud, addr);
2841 if (!pmd)
2842 return -ENOMEM;
2843 VM_BUG_ON(pmd_trans_huge(*pmd));
2844 do {
2845 next = pmd_addr_end(addr, end);
2846 err = remap_pte_range(mm, pmd, addr, next,
2847 pfn + (addr >> PAGE_SHIFT), prot);
2848 if (err)
2849 return err;
2850 } while (pmd++, addr = next, addr != end);
2851 return 0;
2852 }
2853
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2854 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2855 unsigned long addr, unsigned long end,
2856 unsigned long pfn, pgprot_t prot)
2857 {
2858 pud_t *pud;
2859 unsigned long next;
2860 int err;
2861
2862 pfn -= addr >> PAGE_SHIFT;
2863 pud = pud_alloc(mm, p4d, addr);
2864 if (!pud)
2865 return -ENOMEM;
2866 do {
2867 next = pud_addr_end(addr, end);
2868 err = remap_pmd_range(mm, pud, addr, next,
2869 pfn + (addr >> PAGE_SHIFT), prot);
2870 if (err)
2871 return err;
2872 } while (pud++, addr = next, addr != end);
2873 return 0;
2874 }
2875
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2876 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2877 unsigned long addr, unsigned long end,
2878 unsigned long pfn, pgprot_t prot)
2879 {
2880 p4d_t *p4d;
2881 unsigned long next;
2882 int err;
2883
2884 pfn -= addr >> PAGE_SHIFT;
2885 p4d = p4d_alloc(mm, pgd, addr);
2886 if (!p4d)
2887 return -ENOMEM;
2888 do {
2889 next = p4d_addr_end(addr, end);
2890 err = remap_pud_range(mm, p4d, addr, next,
2891 pfn + (addr >> PAGE_SHIFT), prot);
2892 if (err)
2893 return err;
2894 } while (p4d++, addr = next, addr != end);
2895 return 0;
2896 }
2897
get_remap_pgoff(vm_flags_t vm_flags,unsigned long addr,unsigned long end,unsigned long vm_start,unsigned long vm_end,unsigned long pfn,pgoff_t * vm_pgoff_p)2898 static int get_remap_pgoff(vm_flags_t vm_flags, unsigned long addr,
2899 unsigned long end, unsigned long vm_start, unsigned long vm_end,
2900 unsigned long pfn, pgoff_t *vm_pgoff_p)
2901 {
2902 /*
2903 * There's a horrible special case to handle copy-on-write
2904 * behaviour that some programs depend on. We mark the "original"
2905 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2906 * See vm_normal_page() for details.
2907 */
2908 if (is_cow_mapping(vm_flags)) {
2909 if (addr != vm_start || end != vm_end)
2910 return -EINVAL;
2911 *vm_pgoff_p = pfn;
2912 }
2913
2914 return 0;
2915 }
2916
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2917 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2918 unsigned long pfn, unsigned long size, pgprot_t prot)
2919 {
2920 pgd_t *pgd;
2921 unsigned long next;
2922 unsigned long end = addr + PAGE_ALIGN(size);
2923 struct mm_struct *mm = vma->vm_mm;
2924 int err;
2925
2926 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2927 return -EINVAL;
2928
2929 VM_WARN_ON_ONCE((vma->vm_flags & VM_REMAP_FLAGS) != VM_REMAP_FLAGS);
2930
2931 BUG_ON(addr >= end);
2932 pfn -= addr >> PAGE_SHIFT;
2933 pgd = pgd_offset(mm, addr);
2934 flush_cache_range(vma, addr, end);
2935 do {
2936 next = pgd_addr_end(addr, end);
2937 err = remap_p4d_range(mm, pgd, addr, next,
2938 pfn + (addr >> PAGE_SHIFT), prot);
2939 if (err)
2940 return err;
2941 } while (pgd++, addr = next, addr != end);
2942
2943 return 0;
2944 }
2945
2946 /*
2947 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2948 * must have pre-validated the caching bits of the pgprot_t.
2949 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2950 static int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2951 unsigned long pfn, unsigned long size, pgprot_t prot)
2952 {
2953 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2954
2955 if (!error)
2956 return 0;
2957
2958 /*
2959 * A partial pfn range mapping is dangerous: it does not
2960 * maintain page reference counts, and callers may free
2961 * pages due to the error. So zap it early.
2962 */
2963 zap_page_range_single(vma, addr, size, NULL);
2964 return error;
2965 }
2966
2967 #ifdef __HAVE_PFNMAP_TRACKING
pfnmap_track_ctx_alloc(unsigned long pfn,unsigned long size,pgprot_t * prot)2968 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn,
2969 unsigned long size, pgprot_t *prot)
2970 {
2971 struct pfnmap_track_ctx *ctx;
2972
2973 if (pfnmap_track(pfn, size, prot))
2974 return ERR_PTR(-EINVAL);
2975
2976 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
2977 if (unlikely(!ctx)) {
2978 pfnmap_untrack(pfn, size);
2979 return ERR_PTR(-ENOMEM);
2980 }
2981
2982 ctx->pfn = pfn;
2983 ctx->size = size;
2984 kref_init(&ctx->kref);
2985 return ctx;
2986 }
2987
pfnmap_track_ctx_release(struct kref * ref)2988 void pfnmap_track_ctx_release(struct kref *ref)
2989 {
2990 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref);
2991
2992 pfnmap_untrack(ctx->pfn, ctx->size);
2993 kfree(ctx);
2994 }
2995
remap_pfn_range_track(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2996 static int remap_pfn_range_track(struct vm_area_struct *vma, unsigned long addr,
2997 unsigned long pfn, unsigned long size, pgprot_t prot)
2998 {
2999 struct pfnmap_track_ctx *ctx = NULL;
3000 int err;
3001
3002 size = PAGE_ALIGN(size);
3003
3004 /*
3005 * If we cover the full VMA, we'll perform actual tracking, and
3006 * remember to untrack when the last reference to our tracking
3007 * context from a VMA goes away. We'll keep tracking the whole pfn
3008 * range even during VMA splits and partial unmapping.
3009 *
3010 * If we only cover parts of the VMA, we'll only setup the cachemode
3011 * in the pgprot for the pfn range.
3012 */
3013 if (addr == vma->vm_start && addr + size == vma->vm_end) {
3014 if (vma->pfnmap_track_ctx)
3015 return -EINVAL;
3016 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot);
3017 if (IS_ERR(ctx))
3018 return PTR_ERR(ctx);
3019 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) {
3020 return -EINVAL;
3021 }
3022
3023 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
3024 if (ctx) {
3025 if (err)
3026 kref_put(&ctx->kref, pfnmap_track_ctx_release);
3027 else
3028 vma->pfnmap_track_ctx = ctx;
3029 }
3030 return err;
3031 }
3032
do_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3033 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3034 unsigned long pfn, unsigned long size, pgprot_t prot)
3035 {
3036 return remap_pfn_range_track(vma, addr, pfn, size, prot);
3037 }
3038 #else
do_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3039 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3040 unsigned long pfn, unsigned long size, pgprot_t prot)
3041 {
3042 return remap_pfn_range_notrack(vma, addr, pfn, size, prot);
3043 }
3044 #endif
3045
remap_pfn_range_prepare(struct vm_area_desc * desc,unsigned long pfn)3046 void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn)
3047 {
3048 /*
3049 * We set addr=VMA start, end=VMA end here, so this won't fail, but we
3050 * check it again on complete and will fail there if specified addr is
3051 * invalid.
3052 */
3053 get_remap_pgoff(desc->vm_flags, desc->start, desc->end,
3054 desc->start, desc->end, pfn, &desc->pgoff);
3055 desc->vm_flags |= VM_REMAP_FLAGS;
3056 }
3057
remap_pfn_range_prepare_vma(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size)3058 static int remap_pfn_range_prepare_vma(struct vm_area_struct *vma, unsigned long addr,
3059 unsigned long pfn, unsigned long size)
3060 {
3061 unsigned long end = addr + PAGE_ALIGN(size);
3062 int err;
3063
3064 err = get_remap_pgoff(vma->vm_flags, addr, end,
3065 vma->vm_start, vma->vm_end,
3066 pfn, &vma->vm_pgoff);
3067 if (err)
3068 return err;
3069
3070 vm_flags_set(vma, VM_REMAP_FLAGS);
3071 return 0;
3072 }
3073
3074 /**
3075 * remap_pfn_range - remap kernel memory to userspace
3076 * @vma: user vma to map to
3077 * @addr: target page aligned user address to start at
3078 * @pfn: page frame number of kernel physical memory address
3079 * @size: size of mapping area
3080 * @prot: page protection flags for this mapping
3081 *
3082 * Note: this is only safe if the mm semaphore is held when called.
3083 *
3084 * Return: %0 on success, negative error code otherwise.
3085 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3086 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3087 unsigned long pfn, unsigned long size, pgprot_t prot)
3088 {
3089 int err;
3090
3091 err = remap_pfn_range_prepare_vma(vma, addr, pfn, size);
3092 if (err)
3093 return err;
3094
3095 return do_remap_pfn_range(vma, addr, pfn, size, prot);
3096 }
3097 EXPORT_SYMBOL(remap_pfn_range);
3098
remap_pfn_range_complete(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3099 int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr,
3100 unsigned long pfn, unsigned long size, pgprot_t prot)
3101 {
3102 return do_remap_pfn_range(vma, addr, pfn, size, prot);
3103 }
3104
3105 /**
3106 * vm_iomap_memory - remap memory to userspace
3107 * @vma: user vma to map to
3108 * @start: start of the physical memory to be mapped
3109 * @len: size of area
3110 *
3111 * This is a simplified io_remap_pfn_range() for common driver use. The
3112 * driver just needs to give us the physical memory range to be mapped,
3113 * we'll figure out the rest from the vma information.
3114 *
3115 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
3116 * whatever write-combining details or similar.
3117 *
3118 * Return: %0 on success, negative error code otherwise.
3119 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)3120 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
3121 {
3122 unsigned long vm_len, pfn, pages;
3123
3124 /* Check that the physical memory area passed in looks valid */
3125 if (start + len < start)
3126 return -EINVAL;
3127 /*
3128 * You *really* shouldn't map things that aren't page-aligned,
3129 * but we've historically allowed it because IO memory might
3130 * just have smaller alignment.
3131 */
3132 len += start & ~PAGE_MASK;
3133 pfn = start >> PAGE_SHIFT;
3134 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
3135 if (pfn + pages < pfn)
3136 return -EINVAL;
3137
3138 /* We start the mapping 'vm_pgoff' pages into the area */
3139 if (vma->vm_pgoff > pages)
3140 return -EINVAL;
3141 pfn += vma->vm_pgoff;
3142 pages -= vma->vm_pgoff;
3143
3144 /* Can we fit all of the mapping? */
3145 vm_len = vma->vm_end - vma->vm_start;
3146 if (vm_len >> PAGE_SHIFT > pages)
3147 return -EINVAL;
3148
3149 /* Ok, let it rip */
3150 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
3151 }
3152 EXPORT_SYMBOL(vm_iomap_memory);
3153
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3154 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
3155 unsigned long addr, unsigned long end,
3156 pte_fn_t fn, void *data, bool create,
3157 pgtbl_mod_mask *mask)
3158 {
3159 pte_t *pte, *mapped_pte;
3160 int err = 0;
3161 spinlock_t *ptl;
3162
3163 if (create) {
3164 mapped_pte = pte = (mm == &init_mm) ?
3165 pte_alloc_kernel_track(pmd, addr, mask) :
3166 pte_alloc_map_lock(mm, pmd, addr, &ptl);
3167 if (!pte)
3168 return -ENOMEM;
3169 } else {
3170 mapped_pte = pte = (mm == &init_mm) ?
3171 pte_offset_kernel(pmd, addr) :
3172 pte_offset_map_lock(mm, pmd, addr, &ptl);
3173 if (!pte)
3174 return -EINVAL;
3175 }
3176
3177 arch_enter_lazy_mmu_mode();
3178
3179 if (fn) {
3180 do {
3181 if (create || !pte_none(ptep_get(pte))) {
3182 err = fn(pte, addr, data);
3183 if (err)
3184 break;
3185 }
3186 } while (pte++, addr += PAGE_SIZE, addr != end);
3187 }
3188 *mask |= PGTBL_PTE_MODIFIED;
3189
3190 arch_leave_lazy_mmu_mode();
3191
3192 if (mm != &init_mm)
3193 pte_unmap_unlock(mapped_pte, ptl);
3194 return err;
3195 }
3196
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3197 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
3198 unsigned long addr, unsigned long end,
3199 pte_fn_t fn, void *data, bool create,
3200 pgtbl_mod_mask *mask)
3201 {
3202 pmd_t *pmd;
3203 unsigned long next;
3204 int err = 0;
3205
3206 BUG_ON(pud_leaf(*pud));
3207
3208 if (create) {
3209 pmd = pmd_alloc_track(mm, pud, addr, mask);
3210 if (!pmd)
3211 return -ENOMEM;
3212 } else {
3213 pmd = pmd_offset(pud, addr);
3214 }
3215 do {
3216 next = pmd_addr_end(addr, end);
3217 if (pmd_none(*pmd) && !create)
3218 continue;
3219 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
3220 return -EINVAL;
3221 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
3222 if (!create)
3223 continue;
3224 pmd_clear_bad(pmd);
3225 }
3226 err = apply_to_pte_range(mm, pmd, addr, next,
3227 fn, data, create, mask);
3228 if (err)
3229 break;
3230 } while (pmd++, addr = next, addr != end);
3231
3232 return err;
3233 }
3234
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3235 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
3236 unsigned long addr, unsigned long end,
3237 pte_fn_t fn, void *data, bool create,
3238 pgtbl_mod_mask *mask)
3239 {
3240 pud_t *pud;
3241 unsigned long next;
3242 int err = 0;
3243
3244 if (create) {
3245 pud = pud_alloc_track(mm, p4d, addr, mask);
3246 if (!pud)
3247 return -ENOMEM;
3248 } else {
3249 pud = pud_offset(p4d, addr);
3250 }
3251 do {
3252 next = pud_addr_end(addr, end);
3253 if (pud_none(*pud) && !create)
3254 continue;
3255 if (WARN_ON_ONCE(pud_leaf(*pud)))
3256 return -EINVAL;
3257 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
3258 if (!create)
3259 continue;
3260 pud_clear_bad(pud);
3261 }
3262 err = apply_to_pmd_range(mm, pud, addr, next,
3263 fn, data, create, mask);
3264 if (err)
3265 break;
3266 } while (pud++, addr = next, addr != end);
3267
3268 return err;
3269 }
3270
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3271 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
3272 unsigned long addr, unsigned long end,
3273 pte_fn_t fn, void *data, bool create,
3274 pgtbl_mod_mask *mask)
3275 {
3276 p4d_t *p4d;
3277 unsigned long next;
3278 int err = 0;
3279
3280 if (create) {
3281 p4d = p4d_alloc_track(mm, pgd, addr, mask);
3282 if (!p4d)
3283 return -ENOMEM;
3284 } else {
3285 p4d = p4d_offset(pgd, addr);
3286 }
3287 do {
3288 next = p4d_addr_end(addr, end);
3289 if (p4d_none(*p4d) && !create)
3290 continue;
3291 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3292 return -EINVAL;
3293 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3294 if (!create)
3295 continue;
3296 p4d_clear_bad(p4d);
3297 }
3298 err = apply_to_pud_range(mm, p4d, addr, next,
3299 fn, data, create, mask);
3300 if (err)
3301 break;
3302 } while (p4d++, addr = next, addr != end);
3303
3304 return err;
3305 }
3306
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)3307 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3308 unsigned long size, pte_fn_t fn,
3309 void *data, bool create)
3310 {
3311 pgd_t *pgd;
3312 unsigned long start = addr, next;
3313 unsigned long end = addr + size;
3314 pgtbl_mod_mask mask = 0;
3315 int err = 0;
3316
3317 if (WARN_ON(addr >= end))
3318 return -EINVAL;
3319
3320 pgd = pgd_offset(mm, addr);
3321 do {
3322 next = pgd_addr_end(addr, end);
3323 if (pgd_none(*pgd) && !create)
3324 continue;
3325 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3326 err = -EINVAL;
3327 break;
3328 }
3329 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3330 if (!create)
3331 continue;
3332 pgd_clear_bad(pgd);
3333 }
3334 err = apply_to_p4d_range(mm, pgd, addr, next,
3335 fn, data, create, &mask);
3336 if (err)
3337 break;
3338 } while (pgd++, addr = next, addr != end);
3339
3340 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3341 arch_sync_kernel_mappings(start, start + size);
3342
3343 return err;
3344 }
3345
3346 /*
3347 * Scan a region of virtual memory, filling in page tables as necessary
3348 * and calling a provided function on each leaf page table.
3349 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3350 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3351 unsigned long size, pte_fn_t fn, void *data)
3352 {
3353 return __apply_to_page_range(mm, addr, size, fn, data, true);
3354 }
3355 EXPORT_SYMBOL_GPL(apply_to_page_range);
3356
3357 /*
3358 * Scan a region of virtual memory, calling a provided function on
3359 * each leaf page table where it exists.
3360 *
3361 * Unlike apply_to_page_range, this does _not_ fill in page tables
3362 * where they are absent.
3363 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3364 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3365 unsigned long size, pte_fn_t fn, void *data)
3366 {
3367 return __apply_to_page_range(mm, addr, size, fn, data, false);
3368 }
3369
3370 /*
3371 * handle_pte_fault chooses page fault handler according to an entry which was
3372 * read non-atomically. Before making any commitment, on those architectures
3373 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3374 * parts, do_swap_page must check under lock before unmapping the pte and
3375 * proceeding (but do_wp_page is only called after already making such a check;
3376 * and do_anonymous_page can safely check later on).
3377 */
pte_unmap_same(struct vm_fault * vmf)3378 static inline int pte_unmap_same(struct vm_fault *vmf)
3379 {
3380 int same = 1;
3381 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3382 if (sizeof(pte_t) > sizeof(unsigned long)) {
3383 spin_lock(vmf->ptl);
3384 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3385 spin_unlock(vmf->ptl);
3386 }
3387 #endif
3388 pte_unmap(vmf->pte);
3389 vmf->pte = NULL;
3390 return same;
3391 }
3392
3393 /*
3394 * Return:
3395 * 0: copied succeeded
3396 * -EHWPOISON: copy failed due to hwpoison in source page
3397 * -EAGAIN: copied failed (some other reason)
3398 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)3399 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3400 struct vm_fault *vmf)
3401 {
3402 int ret;
3403 void *kaddr;
3404 void __user *uaddr;
3405 struct vm_area_struct *vma = vmf->vma;
3406 struct mm_struct *mm = vma->vm_mm;
3407 unsigned long addr = vmf->address;
3408
3409 if (likely(src)) {
3410 if (copy_mc_user_highpage(dst, src, addr, vma))
3411 return -EHWPOISON;
3412 return 0;
3413 }
3414
3415 /*
3416 * If the source page was a PFN mapping, we don't have
3417 * a "struct page" for it. We do a best-effort copy by
3418 * just copying from the original user address. If that
3419 * fails, we just zero-fill it. Live with it.
3420 */
3421 kaddr = kmap_local_page(dst);
3422 pagefault_disable();
3423 uaddr = (void __user *)(addr & PAGE_MASK);
3424
3425 /*
3426 * On architectures with software "accessed" bits, we would
3427 * take a double page fault, so mark it accessed here.
3428 */
3429 vmf->pte = NULL;
3430 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3431 pte_t entry;
3432
3433 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3434 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3435 /*
3436 * Other thread has already handled the fault
3437 * and update local tlb only
3438 */
3439 if (vmf->pte)
3440 update_mmu_tlb(vma, addr, vmf->pte);
3441 ret = -EAGAIN;
3442 goto pte_unlock;
3443 }
3444
3445 entry = pte_mkyoung(vmf->orig_pte);
3446 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3447 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3448 }
3449
3450 /*
3451 * This really shouldn't fail, because the page is there
3452 * in the page tables. But it might just be unreadable,
3453 * in which case we just give up and fill the result with
3454 * zeroes.
3455 */
3456 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3457 if (vmf->pte)
3458 goto warn;
3459
3460 /* Re-validate under PTL if the page is still mapped */
3461 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3462 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3463 /* The PTE changed under us, update local tlb */
3464 if (vmf->pte)
3465 update_mmu_tlb(vma, addr, vmf->pte);
3466 ret = -EAGAIN;
3467 goto pte_unlock;
3468 }
3469
3470 /*
3471 * The same page can be mapped back since last copy attempt.
3472 * Try to copy again under PTL.
3473 */
3474 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3475 /*
3476 * Give a warn in case there can be some obscure
3477 * use-case
3478 */
3479 warn:
3480 WARN_ON_ONCE(1);
3481 clear_page(kaddr);
3482 }
3483 }
3484
3485 ret = 0;
3486
3487 pte_unlock:
3488 if (vmf->pte)
3489 pte_unmap_unlock(vmf->pte, vmf->ptl);
3490 pagefault_enable();
3491 kunmap_local(kaddr);
3492 flush_dcache_page(dst);
3493
3494 return ret;
3495 }
3496
__get_fault_gfp_mask(struct vm_area_struct * vma)3497 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3498 {
3499 struct file *vm_file = vma->vm_file;
3500
3501 if (vm_file)
3502 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3503
3504 /*
3505 * Special mappings (e.g. VDSO) do not have any file so fake
3506 * a default GFP_KERNEL for them.
3507 */
3508 return GFP_KERNEL;
3509 }
3510
3511 /*
3512 * Notify the address space that the page is about to become writable so that
3513 * it can prohibit this or wait for the page to get into an appropriate state.
3514 *
3515 * We do this without the lock held, so that it can sleep if it needs to.
3516 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)3517 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3518 {
3519 vm_fault_t ret;
3520 unsigned int old_flags = vmf->flags;
3521
3522 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3523
3524 if (vmf->vma->vm_file &&
3525 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3526 return VM_FAULT_SIGBUS;
3527
3528 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3529 /* Restore original flags so that caller is not surprised */
3530 vmf->flags = old_flags;
3531 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3532 return ret;
3533 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3534 folio_lock(folio);
3535 if (!folio->mapping) {
3536 folio_unlock(folio);
3537 return 0; /* retry */
3538 }
3539 ret |= VM_FAULT_LOCKED;
3540 } else
3541 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3542 return ret;
3543 }
3544
3545 /*
3546 * Handle dirtying of a page in shared file mapping on a write fault.
3547 *
3548 * The function expects the page to be locked and unlocks it.
3549 */
fault_dirty_shared_page(struct vm_fault * vmf)3550 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3551 {
3552 struct vm_area_struct *vma = vmf->vma;
3553 struct address_space *mapping;
3554 struct folio *folio = page_folio(vmf->page);
3555 bool dirtied;
3556 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3557
3558 dirtied = folio_mark_dirty(folio);
3559 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3560 /*
3561 * Take a local copy of the address_space - folio.mapping may be zeroed
3562 * by truncate after folio_unlock(). The address_space itself remains
3563 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3564 * release semantics to prevent the compiler from undoing this copying.
3565 */
3566 mapping = folio_raw_mapping(folio);
3567 folio_unlock(folio);
3568
3569 if (!page_mkwrite)
3570 file_update_time(vma->vm_file);
3571
3572 /*
3573 * Throttle page dirtying rate down to writeback speed.
3574 *
3575 * mapping may be NULL here because some device drivers do not
3576 * set page.mapping but still dirty their pages
3577 *
3578 * Drop the mmap_lock before waiting on IO, if we can. The file
3579 * is pinning the mapping, as per above.
3580 */
3581 if ((dirtied || page_mkwrite) && mapping) {
3582 struct file *fpin;
3583
3584 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3585 balance_dirty_pages_ratelimited(mapping);
3586 if (fpin) {
3587 fput(fpin);
3588 return VM_FAULT_COMPLETED;
3589 }
3590 }
3591
3592 return 0;
3593 }
3594
3595 /*
3596 * Handle write page faults for pages that can be reused in the current vma
3597 *
3598 * This can happen either due to the mapping being with the VM_SHARED flag,
3599 * or due to us being the last reference standing to the page. In either
3600 * case, all we need to do here is to mark the page as writable and update
3601 * any related book-keeping.
3602 */
wp_page_reuse(struct vm_fault * vmf,struct folio * folio)3603 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3604 __releases(vmf->ptl)
3605 {
3606 struct vm_area_struct *vma = vmf->vma;
3607 pte_t entry;
3608
3609 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3610 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3611
3612 if (folio) {
3613 VM_BUG_ON(folio_test_anon(folio) &&
3614 !PageAnonExclusive(vmf->page));
3615 /*
3616 * Clear the folio's cpupid information as the existing
3617 * information potentially belongs to a now completely
3618 * unrelated process.
3619 */
3620 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3621 }
3622
3623 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3624 entry = pte_mkyoung(vmf->orig_pte);
3625 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3626 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3627 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3628 pte_unmap_unlock(vmf->pte, vmf->ptl);
3629 count_vm_event(PGREUSE);
3630 }
3631
3632 /*
3633 * We could add a bitflag somewhere, but for now, we know that all
3634 * vm_ops that have a ->map_pages have been audited and don't need
3635 * the mmap_lock to be held.
3636 */
vmf_can_call_fault(const struct vm_fault * vmf)3637 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3638 {
3639 struct vm_area_struct *vma = vmf->vma;
3640
3641 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3642 return 0;
3643 vma_end_read(vma);
3644 return VM_FAULT_RETRY;
3645 }
3646
3647 /**
3648 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3649 * @vmf: The vm_fault descriptor passed from the fault handler.
3650 *
3651 * When preparing to insert an anonymous page into a VMA from a
3652 * fault handler, call this function rather than anon_vma_prepare().
3653 * If this vma does not already have an associated anon_vma and we are
3654 * only protected by the per-VMA lock, the caller must retry with the
3655 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3656 * determine if this VMA can share its anon_vma, and that's not safe to
3657 * do with only the per-VMA lock held for this VMA.
3658 *
3659 * Return: 0 if fault handling can proceed. Any other value should be
3660 * returned to the caller.
3661 */
__vmf_anon_prepare(struct vm_fault * vmf)3662 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3663 {
3664 struct vm_area_struct *vma = vmf->vma;
3665 vm_fault_t ret = 0;
3666
3667 if (likely(vma->anon_vma))
3668 return 0;
3669 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3670 if (!mmap_read_trylock(vma->vm_mm))
3671 return VM_FAULT_RETRY;
3672 }
3673 if (__anon_vma_prepare(vma))
3674 ret = VM_FAULT_OOM;
3675 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3676 mmap_read_unlock(vma->vm_mm);
3677 return ret;
3678 }
3679
3680 /*
3681 * Handle the case of a page which we actually need to copy to a new page,
3682 * either due to COW or unsharing.
3683 *
3684 * Called with mmap_lock locked and the old page referenced, but
3685 * without the ptl held.
3686 *
3687 * High level logic flow:
3688 *
3689 * - Allocate a page, copy the content of the old page to the new one.
3690 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3691 * - Take the PTL. If the pte changed, bail out and release the allocated page
3692 * - If the pte is still the way we remember it, update the page table and all
3693 * relevant references. This includes dropping the reference the page-table
3694 * held to the old page, as well as updating the rmap.
3695 * - In any case, unlock the PTL and drop the reference we took to the old page.
3696 */
wp_page_copy(struct vm_fault * vmf)3697 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3698 {
3699 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3700 struct vm_area_struct *vma = vmf->vma;
3701 struct mm_struct *mm = vma->vm_mm;
3702 struct folio *old_folio = NULL;
3703 struct folio *new_folio = NULL;
3704 pte_t entry;
3705 int page_copied = 0;
3706 struct mmu_notifier_range range;
3707 vm_fault_t ret;
3708 bool pfn_is_zero;
3709
3710 delayacct_wpcopy_start();
3711
3712 if (vmf->page)
3713 old_folio = page_folio(vmf->page);
3714 ret = vmf_anon_prepare(vmf);
3715 if (unlikely(ret))
3716 goto out;
3717
3718 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3719 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3720 if (!new_folio)
3721 goto oom;
3722
3723 if (!pfn_is_zero) {
3724 int err;
3725
3726 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3727 if (err) {
3728 /*
3729 * COW failed, if the fault was solved by other,
3730 * it's fine. If not, userspace would re-fault on
3731 * the same address and we will handle the fault
3732 * from the second attempt.
3733 * The -EHWPOISON case will not be retried.
3734 */
3735 folio_put(new_folio);
3736 if (old_folio)
3737 folio_put(old_folio);
3738
3739 delayacct_wpcopy_end();
3740 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3741 }
3742 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3743 }
3744
3745 __folio_mark_uptodate(new_folio);
3746
3747 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3748 vmf->address & PAGE_MASK,
3749 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3750 mmu_notifier_invalidate_range_start(&range);
3751
3752 /*
3753 * Re-check the pte - we dropped the lock
3754 */
3755 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3756 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3757 if (old_folio) {
3758 if (!folio_test_anon(old_folio)) {
3759 dec_mm_counter(mm, mm_counter_file(old_folio));
3760 inc_mm_counter(mm, MM_ANONPAGES);
3761 }
3762 } else {
3763 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3764 inc_mm_counter(mm, MM_ANONPAGES);
3765 }
3766 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3767 entry = folio_mk_pte(new_folio, vma->vm_page_prot);
3768 entry = pte_sw_mkyoung(entry);
3769 if (unlikely(unshare)) {
3770 if (pte_soft_dirty(vmf->orig_pte))
3771 entry = pte_mksoft_dirty(entry);
3772 if (pte_uffd_wp(vmf->orig_pte))
3773 entry = pte_mkuffd_wp(entry);
3774 } else {
3775 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3776 }
3777
3778 /*
3779 * Clear the pte entry and flush it first, before updating the
3780 * pte with the new entry, to keep TLBs on different CPUs in
3781 * sync. This code used to set the new PTE then flush TLBs, but
3782 * that left a window where the new PTE could be loaded into
3783 * some TLBs while the old PTE remains in others.
3784 */
3785 ptep_clear_flush(vma, vmf->address, vmf->pte);
3786 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3787 folio_add_lru_vma(new_folio, vma);
3788 BUG_ON(unshare && pte_write(entry));
3789 set_pte_at(mm, vmf->address, vmf->pte, entry);
3790 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3791 if (old_folio) {
3792 /*
3793 * Only after switching the pte to the new page may
3794 * we remove the mapcount here. Otherwise another
3795 * process may come and find the rmap count decremented
3796 * before the pte is switched to the new page, and
3797 * "reuse" the old page writing into it while our pte
3798 * here still points into it and can be read by other
3799 * threads.
3800 *
3801 * The critical issue is to order this
3802 * folio_remove_rmap_pte() with the ptp_clear_flush
3803 * above. Those stores are ordered by (if nothing else,)
3804 * the barrier present in the atomic_add_negative
3805 * in folio_remove_rmap_pte();
3806 *
3807 * Then the TLB flush in ptep_clear_flush ensures that
3808 * no process can access the old page before the
3809 * decremented mapcount is visible. And the old page
3810 * cannot be reused until after the decremented
3811 * mapcount is visible. So transitively, TLBs to
3812 * old page will be flushed before it can be reused.
3813 */
3814 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3815 }
3816
3817 /* Free the old page.. */
3818 new_folio = old_folio;
3819 page_copied = 1;
3820 pte_unmap_unlock(vmf->pte, vmf->ptl);
3821 } else if (vmf->pte) {
3822 update_mmu_tlb(vma, vmf->address, vmf->pte);
3823 pte_unmap_unlock(vmf->pte, vmf->ptl);
3824 }
3825
3826 mmu_notifier_invalidate_range_end(&range);
3827
3828 if (new_folio)
3829 folio_put(new_folio);
3830 if (old_folio) {
3831 if (page_copied)
3832 free_swap_cache(old_folio);
3833 folio_put(old_folio);
3834 }
3835
3836 delayacct_wpcopy_end();
3837 return 0;
3838 oom:
3839 ret = VM_FAULT_OOM;
3840 out:
3841 if (old_folio)
3842 folio_put(old_folio);
3843
3844 delayacct_wpcopy_end();
3845 return ret;
3846 }
3847
3848 /**
3849 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3850 * writeable once the page is prepared
3851 *
3852 * @vmf: structure describing the fault
3853 * @folio: the folio of vmf->page
3854 *
3855 * This function handles all that is needed to finish a write page fault in a
3856 * shared mapping due to PTE being read-only once the mapped page is prepared.
3857 * It handles locking of PTE and modifying it.
3858 *
3859 * The function expects the page to be locked or other protection against
3860 * concurrent faults / writeback (such as DAX radix tree locks).
3861 *
3862 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3863 * we acquired PTE lock.
3864 */
finish_mkwrite_fault(struct vm_fault * vmf,struct folio * folio)3865 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3866 {
3867 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3868 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3869 &vmf->ptl);
3870 if (!vmf->pte)
3871 return VM_FAULT_NOPAGE;
3872 /*
3873 * We might have raced with another page fault while we released the
3874 * pte_offset_map_lock.
3875 */
3876 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3877 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3878 pte_unmap_unlock(vmf->pte, vmf->ptl);
3879 return VM_FAULT_NOPAGE;
3880 }
3881 wp_page_reuse(vmf, folio);
3882 return 0;
3883 }
3884
3885 /*
3886 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3887 * mapping
3888 */
wp_pfn_shared(struct vm_fault * vmf)3889 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3890 {
3891 struct vm_area_struct *vma = vmf->vma;
3892
3893 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3894 vm_fault_t ret;
3895
3896 pte_unmap_unlock(vmf->pte, vmf->ptl);
3897 ret = vmf_can_call_fault(vmf);
3898 if (ret)
3899 return ret;
3900
3901 vmf->flags |= FAULT_FLAG_MKWRITE;
3902 ret = vma->vm_ops->pfn_mkwrite(vmf);
3903 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3904 return ret;
3905 return finish_mkwrite_fault(vmf, NULL);
3906 }
3907 wp_page_reuse(vmf, NULL);
3908 return 0;
3909 }
3910
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3911 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3912 __releases(vmf->ptl)
3913 {
3914 struct vm_area_struct *vma = vmf->vma;
3915 vm_fault_t ret = 0;
3916
3917 folio_get(folio);
3918
3919 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3920 vm_fault_t tmp;
3921
3922 pte_unmap_unlock(vmf->pte, vmf->ptl);
3923 tmp = vmf_can_call_fault(vmf);
3924 if (tmp) {
3925 folio_put(folio);
3926 return tmp;
3927 }
3928
3929 tmp = do_page_mkwrite(vmf, folio);
3930 if (unlikely(!tmp || (tmp &
3931 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3932 folio_put(folio);
3933 return tmp;
3934 }
3935 tmp = finish_mkwrite_fault(vmf, folio);
3936 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3937 folio_unlock(folio);
3938 folio_put(folio);
3939 return tmp;
3940 }
3941 } else {
3942 wp_page_reuse(vmf, folio);
3943 folio_lock(folio);
3944 }
3945 ret |= fault_dirty_shared_page(vmf);
3946 folio_put(folio);
3947
3948 return ret;
3949 }
3950
3951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)3952 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
3953 struct vm_area_struct *vma)
3954 {
3955 bool exclusive = false;
3956
3957 /* Let's just free up a large folio if only a single page is mapped. */
3958 if (folio_large_mapcount(folio) <= 1)
3959 return false;
3960
3961 /*
3962 * The assumption for anonymous folios is that each page can only get
3963 * mapped once into each MM. The only exception are KSM folios, which
3964 * are always small.
3965 *
3966 * Each taken mapcount must be paired with exactly one taken reference,
3967 * whereby the refcount must be incremented before the mapcount when
3968 * mapping a page, and the refcount must be decremented after the
3969 * mapcount when unmapping a page.
3970 *
3971 * If all folio references are from mappings, and all mappings are in
3972 * the page tables of this MM, then this folio is exclusive to this MM.
3973 */
3974 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3975 return false;
3976
3977 VM_WARN_ON_ONCE(folio_test_ksm(folio));
3978
3979 if (unlikely(folio_test_swapcache(folio))) {
3980 /*
3981 * Note: freeing up the swapcache will fail if some PTEs are
3982 * still swap entries.
3983 */
3984 if (!folio_trylock(folio))
3985 return false;
3986 folio_free_swap(folio);
3987 folio_unlock(folio);
3988 }
3989
3990 if (folio_large_mapcount(folio) != folio_ref_count(folio))
3991 return false;
3992
3993 /* Stabilize the mapcount vs. refcount and recheck. */
3994 folio_lock_large_mapcount(folio);
3995 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio);
3996
3997 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
3998 goto unlock;
3999 if (folio_large_mapcount(folio) != folio_ref_count(folio))
4000 goto unlock;
4001
4002 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio);
4003 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio);
4004 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id &&
4005 folio_mm_id(folio, 1) != vma->vm_mm->mm_id);
4006
4007 /*
4008 * Do we need the folio lock? Likely not. If there would have been
4009 * references from page migration/swapout, we would have detected
4010 * an additional folio reference and never ended up here.
4011 */
4012 exclusive = true;
4013 unlock:
4014 folio_unlock_large_mapcount(folio);
4015 return exclusive;
4016 }
4017 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)4018 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
4019 struct vm_area_struct *vma)
4020 {
4021 BUILD_BUG();
4022 }
4023 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4024
wp_can_reuse_anon_folio(struct folio * folio,struct vm_area_struct * vma)4025 static bool wp_can_reuse_anon_folio(struct folio *folio,
4026 struct vm_area_struct *vma)
4027 {
4028 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio))
4029 return __wp_can_reuse_large_anon_folio(folio, vma);
4030
4031 /*
4032 * We have to verify under folio lock: these early checks are
4033 * just an optimization to avoid locking the folio and freeing
4034 * the swapcache if there is little hope that we can reuse.
4035 *
4036 * KSM doesn't necessarily raise the folio refcount.
4037 */
4038 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
4039 return false;
4040 if (!folio_test_lru(folio))
4041 /*
4042 * We cannot easily detect+handle references from
4043 * remote LRU caches or references to LRU folios.
4044 */
4045 lru_add_drain();
4046 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
4047 return false;
4048 if (!folio_trylock(folio))
4049 return false;
4050 if (folio_test_swapcache(folio))
4051 folio_free_swap(folio);
4052 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
4053 folio_unlock(folio);
4054 return false;
4055 }
4056 /*
4057 * Ok, we've got the only folio reference from our mapping
4058 * and the folio is locked, it's dark out, and we're wearing
4059 * sunglasses. Hit it.
4060 */
4061 folio_move_anon_rmap(folio, vma);
4062 folio_unlock(folio);
4063 return true;
4064 }
4065
4066 /*
4067 * This routine handles present pages, when
4068 * * users try to write to a shared page (FAULT_FLAG_WRITE)
4069 * * GUP wants to take a R/O pin on a possibly shared anonymous page
4070 * (FAULT_FLAG_UNSHARE)
4071 *
4072 * It is done by copying the page to a new address and decrementing the
4073 * shared-page counter for the old page.
4074 *
4075 * Note that this routine assumes that the protection checks have been
4076 * done by the caller (the low-level page fault routine in most cases).
4077 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
4078 * done any necessary COW.
4079 *
4080 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
4081 * though the page will change only once the write actually happens. This
4082 * avoids a few races, and potentially makes it more efficient.
4083 *
4084 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4085 * but allow concurrent faults), with pte both mapped and locked.
4086 * We return with mmap_lock still held, but pte unmapped and unlocked.
4087 */
do_wp_page(struct vm_fault * vmf)4088 static vm_fault_t do_wp_page(struct vm_fault *vmf)
4089 __releases(vmf->ptl)
4090 {
4091 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4092 struct vm_area_struct *vma = vmf->vma;
4093 struct folio *folio = NULL;
4094 pte_t pte;
4095
4096 if (likely(!unshare)) {
4097 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
4098 if (!userfaultfd_wp_async(vma)) {
4099 pte_unmap_unlock(vmf->pte, vmf->ptl);
4100 return handle_userfault(vmf, VM_UFFD_WP);
4101 }
4102
4103 /*
4104 * Nothing needed (cache flush, TLB invalidations,
4105 * etc.) because we're only removing the uffd-wp bit,
4106 * which is completely invisible to the user.
4107 */
4108 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
4109
4110 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4111 /*
4112 * Update this to be prepared for following up CoW
4113 * handling
4114 */
4115 vmf->orig_pte = pte;
4116 }
4117
4118 /*
4119 * Userfaultfd write-protect can defer flushes. Ensure the TLB
4120 * is flushed in this case before copying.
4121 */
4122 if (unlikely(userfaultfd_wp(vmf->vma) &&
4123 mm_tlb_flush_pending(vmf->vma->vm_mm)))
4124 flush_tlb_page(vmf->vma, vmf->address);
4125 }
4126
4127 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
4128
4129 if (vmf->page)
4130 folio = page_folio(vmf->page);
4131
4132 /*
4133 * Shared mapping: we are guaranteed to have VM_WRITE and
4134 * FAULT_FLAG_WRITE set at this point.
4135 */
4136 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4137 /*
4138 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
4139 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called.
4140 *
4141 * We should not cow pages in a shared writeable mapping.
4142 * Just mark the pages writable and/or call ops->pfn_mkwrite.
4143 */
4144 if (!vmf->page || is_fsdax_page(vmf->page)) {
4145 vmf->page = NULL;
4146 return wp_pfn_shared(vmf);
4147 }
4148 return wp_page_shared(vmf, folio);
4149 }
4150
4151 /*
4152 * Private mapping: create an exclusive anonymous page copy if reuse
4153 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
4154 *
4155 * If we encounter a page that is marked exclusive, we must reuse
4156 * the page without further checks.
4157 */
4158 if (folio && folio_test_anon(folio) &&
4159 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
4160 if (!PageAnonExclusive(vmf->page))
4161 SetPageAnonExclusive(vmf->page);
4162 if (unlikely(unshare)) {
4163 pte_unmap_unlock(vmf->pte, vmf->ptl);
4164 return 0;
4165 }
4166 wp_page_reuse(vmf, folio);
4167 return 0;
4168 }
4169 /*
4170 * Ok, we need to copy. Oh, well..
4171 */
4172 if (folio)
4173 folio_get(folio);
4174
4175 pte_unmap_unlock(vmf->pte, vmf->ptl);
4176 #ifdef CONFIG_KSM
4177 if (folio && folio_test_ksm(folio))
4178 count_vm_event(COW_KSM);
4179 #endif
4180 return wp_page_copy(vmf);
4181 }
4182
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)4183 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
4184 unsigned long start_addr, unsigned long end_addr,
4185 struct zap_details *details)
4186 {
4187 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
4188 }
4189
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)4190 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
4191 pgoff_t first_index,
4192 pgoff_t last_index,
4193 struct zap_details *details)
4194 {
4195 struct vm_area_struct *vma;
4196 pgoff_t vba, vea, zba, zea;
4197
4198 vma_interval_tree_foreach(vma, root, first_index, last_index) {
4199 vba = vma->vm_pgoff;
4200 vea = vba + vma_pages(vma) - 1;
4201 zba = max(first_index, vba);
4202 zea = min(last_index, vea);
4203
4204 unmap_mapping_range_vma(vma,
4205 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
4206 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
4207 details);
4208 }
4209 }
4210
4211 /**
4212 * unmap_mapping_folio() - Unmap single folio from processes.
4213 * @folio: The locked folio to be unmapped.
4214 *
4215 * Unmap this folio from any userspace process which still has it mmaped.
4216 * Typically, for efficiency, the range of nearby pages has already been
4217 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
4218 * truncation or invalidation holds the lock on a folio, it may find that
4219 * the page has been remapped again: and then uses unmap_mapping_folio()
4220 * to unmap it finally.
4221 */
unmap_mapping_folio(struct folio * folio)4222 void unmap_mapping_folio(struct folio *folio)
4223 {
4224 struct address_space *mapping = folio->mapping;
4225 struct zap_details details = { };
4226 pgoff_t first_index;
4227 pgoff_t last_index;
4228
4229 VM_BUG_ON(!folio_test_locked(folio));
4230
4231 first_index = folio->index;
4232 last_index = folio_next_index(folio) - 1;
4233
4234 details.even_cows = false;
4235 details.single_folio = folio;
4236 details.zap_flags = ZAP_FLAG_DROP_MARKER;
4237
4238 i_mmap_lock_read(mapping);
4239 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4240 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4241 last_index, &details);
4242 i_mmap_unlock_read(mapping);
4243 }
4244
4245 /**
4246 * unmap_mapping_pages() - Unmap pages from processes.
4247 * @mapping: The address space containing pages to be unmapped.
4248 * @start: Index of first page to be unmapped.
4249 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
4250 * @even_cows: Whether to unmap even private COWed pages.
4251 *
4252 * Unmap the pages in this address space from any userspace process which
4253 * has them mmaped. Generally, you want to remove COWed pages as well when
4254 * a file is being truncated, but not when invalidating pages from the page
4255 * cache.
4256 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)4257 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
4258 pgoff_t nr, bool even_cows)
4259 {
4260 struct zap_details details = { };
4261 pgoff_t first_index = start;
4262 pgoff_t last_index = start + nr - 1;
4263
4264 details.even_cows = even_cows;
4265 if (last_index < first_index)
4266 last_index = ULONG_MAX;
4267
4268 i_mmap_lock_read(mapping);
4269 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4270 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4271 last_index, &details);
4272 i_mmap_unlock_read(mapping);
4273 }
4274 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
4275
4276 /**
4277 * unmap_mapping_range - unmap the portion of all mmaps in the specified
4278 * address_space corresponding to the specified byte range in the underlying
4279 * file.
4280 *
4281 * @mapping: the address space containing mmaps to be unmapped.
4282 * @holebegin: byte in first page to unmap, relative to the start of
4283 * the underlying file. This will be rounded down to a PAGE_SIZE
4284 * boundary. Note that this is different from truncate_pagecache(), which
4285 * must keep the partial page. In contrast, we must get rid of
4286 * partial pages.
4287 * @holelen: size of prospective hole in bytes. This will be rounded
4288 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
4289 * end of the file.
4290 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
4291 * but 0 when invalidating pagecache, don't throw away private data.
4292 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)4293 void unmap_mapping_range(struct address_space *mapping,
4294 loff_t const holebegin, loff_t const holelen, int even_cows)
4295 {
4296 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
4297 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
4298
4299 /* Check for overflow. */
4300 if (sizeof(holelen) > sizeof(hlen)) {
4301 long long holeend =
4302 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
4303 if (holeend & ~(long long)ULONG_MAX)
4304 hlen = ULONG_MAX - hba + 1;
4305 }
4306
4307 unmap_mapping_pages(mapping, hba, hlen, even_cows);
4308 }
4309 EXPORT_SYMBOL(unmap_mapping_range);
4310
4311 /*
4312 * Restore a potential device exclusive pte to a working pte entry
4313 */
remove_device_exclusive_entry(struct vm_fault * vmf)4314 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
4315 {
4316 struct folio *folio = page_folio(vmf->page);
4317 struct vm_area_struct *vma = vmf->vma;
4318 struct mmu_notifier_range range;
4319 vm_fault_t ret;
4320
4321 /*
4322 * We need a reference to lock the folio because we don't hold
4323 * the PTL so a racing thread can remove the device-exclusive
4324 * entry and unmap it. If the folio is free the entry must
4325 * have been removed already. If it happens to have already
4326 * been re-allocated after being freed all we do is lock and
4327 * unlock it.
4328 */
4329 if (!folio_try_get(folio))
4330 return 0;
4331
4332 ret = folio_lock_or_retry(folio, vmf);
4333 if (ret) {
4334 folio_put(folio);
4335 return ret;
4336 }
4337 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0,
4338 vma->vm_mm, vmf->address & PAGE_MASK,
4339 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
4340 mmu_notifier_invalidate_range_start(&range);
4341
4342 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4343 &vmf->ptl);
4344 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4345 restore_exclusive_pte(vma, folio, vmf->page, vmf->address,
4346 vmf->pte, vmf->orig_pte);
4347
4348 if (vmf->pte)
4349 pte_unmap_unlock(vmf->pte, vmf->ptl);
4350 folio_unlock(folio);
4351 folio_put(folio);
4352
4353 mmu_notifier_invalidate_range_end(&range);
4354 return 0;
4355 }
4356
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)4357 static inline bool should_try_to_free_swap(struct folio *folio,
4358 struct vm_area_struct *vma,
4359 unsigned int fault_flags)
4360 {
4361 if (!folio_test_swapcache(folio))
4362 return false;
4363 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4364 folio_test_mlocked(folio))
4365 return true;
4366 /*
4367 * If we want to map a page that's in the swapcache writable, we
4368 * have to detect via the refcount if we're really the exclusive
4369 * user. Try freeing the swapcache to get rid of the swapcache
4370 * reference only in case it's likely that we'll be the exclusive user.
4371 */
4372 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4373 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4374 }
4375
pte_marker_clear(struct vm_fault * vmf)4376 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4377 {
4378 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4379 vmf->address, &vmf->ptl);
4380 if (!vmf->pte)
4381 return 0;
4382 /*
4383 * Be careful so that we will only recover a special uffd-wp pte into a
4384 * none pte. Otherwise it means the pte could have changed, so retry.
4385 *
4386 * This should also cover the case where e.g. the pte changed
4387 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4388 * So pte_is_marker() check is not enough to safely drop the pte.
4389 */
4390 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4391 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4392 pte_unmap_unlock(vmf->pte, vmf->ptl);
4393 return 0;
4394 }
4395
do_pte_missing(struct vm_fault * vmf)4396 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4397 {
4398 if (vma_is_anonymous(vmf->vma))
4399 return do_anonymous_page(vmf);
4400 else
4401 return do_fault(vmf);
4402 }
4403
4404 /*
4405 * This is actually a page-missing access, but with uffd-wp special pte
4406 * installed. It means this pte was wr-protected before being unmapped.
4407 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)4408 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4409 {
4410 /*
4411 * Just in case there're leftover special ptes even after the region
4412 * got unregistered - we can simply clear them.
4413 */
4414 if (unlikely(!userfaultfd_wp(vmf->vma)))
4415 return pte_marker_clear(vmf);
4416
4417 return do_pte_missing(vmf);
4418 }
4419
handle_pte_marker(struct vm_fault * vmf)4420 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4421 {
4422 const softleaf_t entry = softleaf_from_pte(vmf->orig_pte);
4423 const pte_marker marker = softleaf_to_marker(entry);
4424
4425 /*
4426 * PTE markers should never be empty. If anything weird happened,
4427 * the best thing to do is to kill the process along with its mm.
4428 */
4429 if (WARN_ON_ONCE(!marker))
4430 return VM_FAULT_SIGBUS;
4431
4432 /* Higher priority than uffd-wp when data corrupted */
4433 if (marker & PTE_MARKER_POISONED)
4434 return VM_FAULT_HWPOISON;
4435
4436 /* Hitting a guard page is always a fatal condition. */
4437 if (marker & PTE_MARKER_GUARD)
4438 return VM_FAULT_SIGSEGV;
4439
4440 if (softleaf_is_uffd_wp_marker(entry))
4441 return pte_marker_handle_uffd_wp(vmf);
4442
4443 /* This is an unknown pte marker */
4444 return VM_FAULT_SIGBUS;
4445 }
4446
__alloc_swap_folio(struct vm_fault * vmf)4447 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4448 {
4449 struct vm_area_struct *vma = vmf->vma;
4450 struct folio *folio;
4451 softleaf_t entry;
4452
4453 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4454 if (!folio)
4455 return NULL;
4456
4457 entry = softleaf_from_pte(vmf->orig_pte);
4458 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4459 GFP_KERNEL, entry)) {
4460 folio_put(folio);
4461 return NULL;
4462 }
4463
4464 return folio;
4465 }
4466
4467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4468 /*
4469 * Check if the PTEs within a range are contiguous swap entries
4470 * and have consistent swapcache, zeromap.
4471 */
can_swapin_thp(struct vm_fault * vmf,pte_t * ptep,int nr_pages)4472 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4473 {
4474 unsigned long addr;
4475 softleaf_t entry;
4476 int idx;
4477 pte_t pte;
4478
4479 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4480 idx = (vmf->address - addr) / PAGE_SIZE;
4481 pte = ptep_get(ptep);
4482
4483 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4484 return false;
4485 entry = softleaf_from_pte(pte);
4486 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4487 return false;
4488
4489 /*
4490 * swap_read_folio() can't handle the case a large folio is hybridly
4491 * from different backends. And they are likely corner cases. Similar
4492 * things might be added once zswap support large folios.
4493 */
4494 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4495 return false;
4496 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4497 return false;
4498
4499 return true;
4500 }
4501
thp_swap_suitable_orders(pgoff_t swp_offset,unsigned long addr,unsigned long orders)4502 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4503 unsigned long addr,
4504 unsigned long orders)
4505 {
4506 int order, nr;
4507
4508 order = highest_order(orders);
4509
4510 /*
4511 * To swap in a THP with nr pages, we require that its first swap_offset
4512 * is aligned with that number, as it was when the THP was swapped out.
4513 * This helps filter out most invalid entries.
4514 */
4515 while (orders) {
4516 nr = 1 << order;
4517 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4518 break;
4519 order = next_order(&orders, order);
4520 }
4521
4522 return orders;
4523 }
4524
alloc_swap_folio(struct vm_fault * vmf)4525 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4526 {
4527 struct vm_area_struct *vma = vmf->vma;
4528 unsigned long orders;
4529 struct folio *folio;
4530 unsigned long addr;
4531 softleaf_t entry;
4532 spinlock_t *ptl;
4533 pte_t *pte;
4534 gfp_t gfp;
4535 int order;
4536
4537 /*
4538 * If uffd is active for the vma we need per-page fault fidelity to
4539 * maintain the uffd semantics.
4540 */
4541 if (unlikely(userfaultfd_armed(vma)))
4542 goto fallback;
4543
4544 /*
4545 * A large swapped out folio could be partially or fully in zswap. We
4546 * lack handling for such cases, so fallback to swapping in order-0
4547 * folio.
4548 */
4549 if (!zswap_never_enabled())
4550 goto fallback;
4551
4552 entry = softleaf_from_pte(vmf->orig_pte);
4553 /*
4554 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4555 * and suitable for swapping THP.
4556 */
4557 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
4558 BIT(PMD_ORDER) - 1);
4559 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4560 orders = thp_swap_suitable_orders(swp_offset(entry),
4561 vmf->address, orders);
4562
4563 if (!orders)
4564 goto fallback;
4565
4566 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4567 vmf->address & PMD_MASK, &ptl);
4568 if (unlikely(!pte))
4569 goto fallback;
4570
4571 /*
4572 * For do_swap_page, find the highest order where the aligned range is
4573 * completely swap entries with contiguous swap offsets.
4574 */
4575 order = highest_order(orders);
4576 while (orders) {
4577 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4578 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4579 break;
4580 order = next_order(&orders, order);
4581 }
4582
4583 pte_unmap_unlock(pte, ptl);
4584
4585 /* Try allocating the highest of the remaining orders. */
4586 gfp = vma_thp_gfp_mask(vma);
4587 while (orders) {
4588 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4589 folio = vma_alloc_folio(gfp, order, vma, addr);
4590 if (folio) {
4591 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4592 gfp, entry))
4593 return folio;
4594 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4595 folio_put(folio);
4596 }
4597 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4598 order = next_order(&orders, order);
4599 }
4600
4601 fallback:
4602 return __alloc_swap_folio(vmf);
4603 }
4604 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
alloc_swap_folio(struct vm_fault * vmf)4605 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4606 {
4607 return __alloc_swap_folio(vmf);
4608 }
4609 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4610
4611 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4612
4613 /*
4614 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4615 * but allow concurrent faults), and pte mapped but not yet locked.
4616 * We return with pte unmapped and unlocked.
4617 *
4618 * We return with the mmap_lock locked or unlocked in the same cases
4619 * as does filemap_fault().
4620 */
do_swap_page(struct vm_fault * vmf)4621 vm_fault_t do_swap_page(struct vm_fault *vmf)
4622 {
4623 struct vm_area_struct *vma = vmf->vma;
4624 struct folio *swapcache, *folio = NULL;
4625 DECLARE_WAITQUEUE(wait, current);
4626 struct page *page;
4627 struct swap_info_struct *si = NULL;
4628 rmap_t rmap_flags = RMAP_NONE;
4629 bool need_clear_cache = false;
4630 bool exclusive = false;
4631 softleaf_t entry;
4632 pte_t pte;
4633 vm_fault_t ret = 0;
4634 void *shadow = NULL;
4635 int nr_pages;
4636 unsigned long page_idx;
4637 unsigned long address;
4638 pte_t *ptep;
4639
4640 if (!pte_unmap_same(vmf))
4641 goto out;
4642
4643 entry = softleaf_from_pte(vmf->orig_pte);
4644 if (unlikely(!softleaf_is_swap(entry))) {
4645 if (softleaf_is_migration(entry)) {
4646 migration_entry_wait(vma->vm_mm, vmf->pmd,
4647 vmf->address);
4648 } else if (softleaf_is_device_exclusive(entry)) {
4649 vmf->page = softleaf_to_page(entry);
4650 ret = remove_device_exclusive_entry(vmf);
4651 } else if (softleaf_is_device_private(entry)) {
4652 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4653 /*
4654 * migrate_to_ram is not yet ready to operate
4655 * under VMA lock.
4656 */
4657 vma_end_read(vma);
4658 ret = VM_FAULT_RETRY;
4659 goto out;
4660 }
4661
4662 vmf->page = softleaf_to_page(entry);
4663 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4664 vmf->address, &vmf->ptl);
4665 if (unlikely(!vmf->pte ||
4666 !pte_same(ptep_get(vmf->pte),
4667 vmf->orig_pte)))
4668 goto unlock;
4669
4670 /*
4671 * Get a page reference while we know the page can't be
4672 * freed.
4673 */
4674 if (trylock_page(vmf->page)) {
4675 struct dev_pagemap *pgmap;
4676
4677 get_page(vmf->page);
4678 pte_unmap_unlock(vmf->pte, vmf->ptl);
4679 pgmap = page_pgmap(vmf->page);
4680 ret = pgmap->ops->migrate_to_ram(vmf);
4681 unlock_page(vmf->page);
4682 put_page(vmf->page);
4683 } else {
4684 pte_unmap_unlock(vmf->pte, vmf->ptl);
4685 }
4686 } else if (softleaf_is_hwpoison(entry)) {
4687 ret = VM_FAULT_HWPOISON;
4688 } else if (softleaf_is_marker(entry)) {
4689 ret = handle_pte_marker(vmf);
4690 } else {
4691 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4692 ret = VM_FAULT_SIGBUS;
4693 }
4694 goto out;
4695 }
4696
4697 /* Prevent swapoff from happening to us. */
4698 si = get_swap_device(entry);
4699 if (unlikely(!si))
4700 goto out;
4701
4702 folio = swap_cache_get_folio(entry);
4703 if (folio)
4704 swap_update_readahead(folio, vma, vmf->address);
4705 swapcache = folio;
4706
4707 if (!folio) {
4708 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4709 __swap_count(entry) == 1) {
4710 /* skip swapcache */
4711 folio = alloc_swap_folio(vmf);
4712 if (folio) {
4713 __folio_set_locked(folio);
4714 __folio_set_swapbacked(folio);
4715
4716 nr_pages = folio_nr_pages(folio);
4717 if (folio_test_large(folio))
4718 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4719 /*
4720 * Prevent parallel swapin from proceeding with
4721 * the cache flag. Otherwise, another thread
4722 * may finish swapin first, free the entry, and
4723 * swapout reusing the same entry. It's
4724 * undetectable as pte_same() returns true due
4725 * to entry reuse.
4726 */
4727 if (swapcache_prepare(entry, nr_pages)) {
4728 /*
4729 * Relax a bit to prevent rapid
4730 * repeated page faults.
4731 */
4732 add_wait_queue(&swapcache_wq, &wait);
4733 schedule_timeout_uninterruptible(1);
4734 remove_wait_queue(&swapcache_wq, &wait);
4735 goto out_page;
4736 }
4737 need_clear_cache = true;
4738
4739 memcg1_swapin(entry, nr_pages);
4740
4741 shadow = swap_cache_get_shadow(entry);
4742 if (shadow)
4743 workingset_refault(folio, shadow);
4744
4745 folio_add_lru(folio);
4746
4747 /* To provide entry to swap_read_folio() */
4748 folio->swap = entry;
4749 swap_read_folio(folio, NULL);
4750 folio->private = NULL;
4751 }
4752 } else {
4753 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4754 vmf);
4755 swapcache = folio;
4756 }
4757
4758 if (!folio) {
4759 /*
4760 * Back out if somebody else faulted in this pte
4761 * while we released the pte lock.
4762 */
4763 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4764 vmf->address, &vmf->ptl);
4765 if (likely(vmf->pte &&
4766 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4767 ret = VM_FAULT_OOM;
4768 goto unlock;
4769 }
4770
4771 /* Had to read the page from swap area: Major fault */
4772 ret = VM_FAULT_MAJOR;
4773 count_vm_event(PGMAJFAULT);
4774 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4775 }
4776
4777 ret |= folio_lock_or_retry(folio, vmf);
4778 if (ret & VM_FAULT_RETRY)
4779 goto out_release;
4780
4781 page = folio_file_page(folio, swp_offset(entry));
4782 if (swapcache) {
4783 /*
4784 * Make sure folio_free_swap() or swapoff did not release the
4785 * swapcache from under us. The page pin, and pte_same test
4786 * below, are not enough to exclude that. Even if it is still
4787 * swapcache, we need to check that the page's swap has not
4788 * changed.
4789 */
4790 if (unlikely(!folio_matches_swap_entry(folio, entry)))
4791 goto out_page;
4792
4793 if (unlikely(PageHWPoison(page))) {
4794 /*
4795 * hwpoisoned dirty swapcache pages are kept for killing
4796 * owner processes (which may be unknown at hwpoison time)
4797 */
4798 ret = VM_FAULT_HWPOISON;
4799 goto out_page;
4800 }
4801
4802 /*
4803 * KSM sometimes has to copy on read faults, for example, if
4804 * folio->index of non-ksm folios would be nonlinear inside the
4805 * anon VMA -- the ksm flag is lost on actual swapout.
4806 */
4807 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4808 if (unlikely(!folio)) {
4809 ret = VM_FAULT_OOM;
4810 folio = swapcache;
4811 goto out_page;
4812 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4813 ret = VM_FAULT_HWPOISON;
4814 folio = swapcache;
4815 goto out_page;
4816 }
4817 if (folio != swapcache)
4818 page = folio_page(folio, 0);
4819
4820 /*
4821 * If we want to map a page that's in the swapcache writable, we
4822 * have to detect via the refcount if we're really the exclusive
4823 * owner. Try removing the extra reference from the local LRU
4824 * caches if required.
4825 */
4826 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4827 !folio_test_ksm(folio) && !folio_test_lru(folio))
4828 lru_add_drain();
4829 }
4830
4831 folio_throttle_swaprate(folio, GFP_KERNEL);
4832
4833 /*
4834 * Back out if somebody else already faulted in this pte.
4835 */
4836 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4837 &vmf->ptl);
4838 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4839 goto out_nomap;
4840
4841 if (unlikely(!folio_test_uptodate(folio))) {
4842 ret = VM_FAULT_SIGBUS;
4843 goto out_nomap;
4844 }
4845
4846 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4847 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4848 unsigned long nr = folio_nr_pages(folio);
4849 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4850 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4851 pte_t *folio_ptep = vmf->pte - idx;
4852 pte_t folio_pte = ptep_get(folio_ptep);
4853
4854 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4855 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4856 goto out_nomap;
4857
4858 page_idx = idx;
4859 address = folio_start;
4860 ptep = folio_ptep;
4861 goto check_folio;
4862 }
4863
4864 nr_pages = 1;
4865 page_idx = 0;
4866 address = vmf->address;
4867 ptep = vmf->pte;
4868 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4869 int nr = folio_nr_pages(folio);
4870 unsigned long idx = folio_page_idx(folio, page);
4871 unsigned long folio_start = address - idx * PAGE_SIZE;
4872 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4873 pte_t *folio_ptep;
4874 pte_t folio_pte;
4875
4876 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4877 goto check_folio;
4878 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4879 goto check_folio;
4880
4881 folio_ptep = vmf->pte - idx;
4882 folio_pte = ptep_get(folio_ptep);
4883 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4884 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4885 goto check_folio;
4886
4887 page_idx = idx;
4888 address = folio_start;
4889 ptep = folio_ptep;
4890 nr_pages = nr;
4891 entry = folio->swap;
4892 page = &folio->page;
4893 }
4894
4895 check_folio:
4896 /*
4897 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4898 * must never point at an anonymous page in the swapcache that is
4899 * PG_anon_exclusive. Sanity check that this holds and especially, that
4900 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4901 * check after taking the PT lock and making sure that nobody
4902 * concurrently faulted in this page and set PG_anon_exclusive.
4903 */
4904 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4905 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4906
4907 /*
4908 * Check under PT lock (to protect against concurrent fork() sharing
4909 * the swap entry concurrently) for certainly exclusive pages.
4910 */
4911 if (!folio_test_ksm(folio)) {
4912 exclusive = pte_swp_exclusive(vmf->orig_pte);
4913 if (folio != swapcache) {
4914 /*
4915 * We have a fresh page that is not exposed to the
4916 * swapcache -> certainly exclusive.
4917 */
4918 exclusive = true;
4919 } else if (exclusive && folio_test_writeback(folio) &&
4920 data_race(si->flags & SWP_STABLE_WRITES)) {
4921 /*
4922 * This is tricky: not all swap backends support
4923 * concurrent page modifications while under writeback.
4924 *
4925 * So if we stumble over such a page in the swapcache
4926 * we must not set the page exclusive, otherwise we can
4927 * map it writable without further checks and modify it
4928 * while still under writeback.
4929 *
4930 * For these problematic swap backends, simply drop the
4931 * exclusive marker: this is perfectly fine as we start
4932 * writeback only if we fully unmapped the page and
4933 * there are no unexpected references on the page after
4934 * unmapping succeeded. After fully unmapped, no
4935 * further GUP references (FOLL_GET and FOLL_PIN) can
4936 * appear, so dropping the exclusive marker and mapping
4937 * it only R/O is fine.
4938 */
4939 exclusive = false;
4940 }
4941 }
4942
4943 /*
4944 * Some architectures may have to restore extra metadata to the page
4945 * when reading from swap. This metadata may be indexed by swap entry
4946 * so this must be called before swap_free().
4947 */
4948 arch_swap_restore(folio_swap(entry, folio), folio);
4949
4950 /*
4951 * Remove the swap entry and conditionally try to free up the swapcache.
4952 * We're already holding a reference on the page but haven't mapped it
4953 * yet.
4954 */
4955 swap_free_nr(entry, nr_pages);
4956 if (should_try_to_free_swap(folio, vma, vmf->flags))
4957 folio_free_swap(folio);
4958
4959 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4960 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4961 pte = mk_pte(page, vma->vm_page_prot);
4962 if (pte_swp_soft_dirty(vmf->orig_pte))
4963 pte = pte_mksoft_dirty(pte);
4964 if (pte_swp_uffd_wp(vmf->orig_pte))
4965 pte = pte_mkuffd_wp(pte);
4966
4967 /*
4968 * Same logic as in do_wp_page(); however, optimize for pages that are
4969 * certainly not shared either because we just allocated them without
4970 * exposing them to the swapcache or because the swap entry indicates
4971 * exclusivity.
4972 */
4973 if (!folio_test_ksm(folio) &&
4974 (exclusive || folio_ref_count(folio) == 1)) {
4975 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4976 !pte_needs_soft_dirty_wp(vma, pte)) {
4977 pte = pte_mkwrite(pte, vma);
4978 if (vmf->flags & FAULT_FLAG_WRITE) {
4979 pte = pte_mkdirty(pte);
4980 vmf->flags &= ~FAULT_FLAG_WRITE;
4981 }
4982 }
4983 rmap_flags |= RMAP_EXCLUSIVE;
4984 }
4985 folio_ref_add(folio, nr_pages - 1);
4986 flush_icache_pages(vma, page, nr_pages);
4987 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4988
4989 /* ksm created a completely new copy */
4990 if (unlikely(folio != swapcache && swapcache)) {
4991 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4992 folio_add_lru_vma(folio, vma);
4993 } else if (!folio_test_anon(folio)) {
4994 /*
4995 * We currently only expect small !anon folios which are either
4996 * fully exclusive or fully shared, or new allocated large
4997 * folios which are fully exclusive. If we ever get large
4998 * folios within swapcache here, we have to be careful.
4999 */
5000 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
5001 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
5002 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
5003 } else {
5004 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
5005 rmap_flags);
5006 }
5007
5008 VM_BUG_ON(!folio_test_anon(folio) ||
5009 (pte_write(pte) && !PageAnonExclusive(page)));
5010 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
5011 arch_do_swap_page_nr(vma->vm_mm, vma, address,
5012 pte, pte, nr_pages);
5013
5014 folio_unlock(folio);
5015 if (folio != swapcache && swapcache) {
5016 /*
5017 * Hold the lock to avoid the swap entry to be reused
5018 * until we take the PT lock for the pte_same() check
5019 * (to avoid false positives from pte_same). For
5020 * further safety release the lock after the swap_free
5021 * so that the swap count won't change under a
5022 * parallel locked swapcache.
5023 */
5024 folio_unlock(swapcache);
5025 folio_put(swapcache);
5026 }
5027
5028 if (vmf->flags & FAULT_FLAG_WRITE) {
5029 ret |= do_wp_page(vmf);
5030 if (ret & VM_FAULT_ERROR)
5031 ret &= VM_FAULT_ERROR;
5032 goto out;
5033 }
5034
5035 /* No need to invalidate - it was non-present before */
5036 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
5037 unlock:
5038 if (vmf->pte)
5039 pte_unmap_unlock(vmf->pte, vmf->ptl);
5040 out:
5041 /* Clear the swap cache pin for direct swapin after PTL unlock */
5042 if (need_clear_cache) {
5043 swapcache_clear(si, entry, nr_pages);
5044 if (waitqueue_active(&swapcache_wq))
5045 wake_up(&swapcache_wq);
5046 }
5047 if (si)
5048 put_swap_device(si);
5049 return ret;
5050 out_nomap:
5051 if (vmf->pte)
5052 pte_unmap_unlock(vmf->pte, vmf->ptl);
5053 out_page:
5054 folio_unlock(folio);
5055 out_release:
5056 folio_put(folio);
5057 if (folio != swapcache && swapcache) {
5058 folio_unlock(swapcache);
5059 folio_put(swapcache);
5060 }
5061 if (need_clear_cache) {
5062 swapcache_clear(si, entry, nr_pages);
5063 if (waitqueue_active(&swapcache_wq))
5064 wake_up(&swapcache_wq);
5065 }
5066 if (si)
5067 put_swap_device(si);
5068 return ret;
5069 }
5070
pte_range_none(pte_t * pte,int nr_pages)5071 static bool pte_range_none(pte_t *pte, int nr_pages)
5072 {
5073 int i;
5074
5075 for (i = 0; i < nr_pages; i++) {
5076 if (!pte_none(ptep_get_lockless(pte + i)))
5077 return false;
5078 }
5079
5080 return true;
5081 }
5082
alloc_anon_folio(struct vm_fault * vmf)5083 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
5084 {
5085 struct vm_area_struct *vma = vmf->vma;
5086 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5087 unsigned long orders;
5088 struct folio *folio;
5089 unsigned long addr;
5090 pte_t *pte;
5091 gfp_t gfp;
5092 int order;
5093
5094 /*
5095 * If uffd is active for the vma we need per-page fault fidelity to
5096 * maintain the uffd semantics.
5097 */
5098 if (unlikely(userfaultfd_armed(vma)))
5099 goto fallback;
5100
5101 /*
5102 * Get a list of all the (large) orders below PMD_ORDER that are enabled
5103 * for this vma. Then filter out the orders that can't be allocated over
5104 * the faulting address and still be fully contained in the vma.
5105 */
5106 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
5107 BIT(PMD_ORDER) - 1);
5108 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
5109
5110 if (!orders)
5111 goto fallback;
5112
5113 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
5114 if (!pte)
5115 return ERR_PTR(-EAGAIN);
5116
5117 /*
5118 * Find the highest order where the aligned range is completely
5119 * pte_none(). Note that all remaining orders will be completely
5120 * pte_none().
5121 */
5122 order = highest_order(orders);
5123 while (orders) {
5124 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
5125 if (pte_range_none(pte + pte_index(addr), 1 << order))
5126 break;
5127 order = next_order(&orders, order);
5128 }
5129
5130 pte_unmap(pte);
5131
5132 if (!orders)
5133 goto fallback;
5134
5135 /* Try allocating the highest of the remaining orders. */
5136 gfp = vma_thp_gfp_mask(vma);
5137 while (orders) {
5138 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
5139 folio = vma_alloc_folio(gfp, order, vma, addr);
5140 if (folio) {
5141 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
5142 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
5143 folio_put(folio);
5144 goto next;
5145 }
5146 folio_throttle_swaprate(folio, gfp);
5147 /*
5148 * When a folio is not zeroed during allocation
5149 * (__GFP_ZERO not used) or user folios require special
5150 * handling, folio_zero_user() is used to make sure
5151 * that the page corresponding to the faulting address
5152 * will be hot in the cache after zeroing.
5153 */
5154 if (user_alloc_needs_zeroing())
5155 folio_zero_user(folio, vmf->address);
5156 return folio;
5157 }
5158 next:
5159 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
5160 order = next_order(&orders, order);
5161 }
5162
5163 fallback:
5164 #endif
5165 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
5166 }
5167
5168 /*
5169 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5170 * but allow concurrent faults), and pte mapped but not yet locked.
5171 * We return with mmap_lock still held, but pte unmapped and unlocked.
5172 */
do_anonymous_page(struct vm_fault * vmf)5173 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
5174 {
5175 struct vm_area_struct *vma = vmf->vma;
5176 unsigned long addr = vmf->address;
5177 struct folio *folio;
5178 vm_fault_t ret = 0;
5179 int nr_pages = 1;
5180 pte_t entry;
5181
5182 /* File mapping without ->vm_ops ? */
5183 if (vma->vm_flags & VM_SHARED)
5184 return VM_FAULT_SIGBUS;
5185
5186 /*
5187 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
5188 * be distinguished from a transient failure of pte_offset_map().
5189 */
5190 if (pte_alloc(vma->vm_mm, vmf->pmd))
5191 return VM_FAULT_OOM;
5192
5193 /* Use the zero-page for reads */
5194 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
5195 !mm_forbids_zeropage(vma->vm_mm)) {
5196 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
5197 vma->vm_page_prot));
5198 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5199 vmf->address, &vmf->ptl);
5200 if (!vmf->pte)
5201 goto unlock;
5202 if (vmf_pte_changed(vmf)) {
5203 update_mmu_tlb(vma, vmf->address, vmf->pte);
5204 goto unlock;
5205 }
5206 ret = check_stable_address_space(vma->vm_mm);
5207 if (ret)
5208 goto unlock;
5209 /* Deliver the page fault to userland, check inside PT lock */
5210 if (userfaultfd_missing(vma)) {
5211 pte_unmap_unlock(vmf->pte, vmf->ptl);
5212 return handle_userfault(vmf, VM_UFFD_MISSING);
5213 }
5214 goto setpte;
5215 }
5216
5217 /* Allocate our own private page. */
5218 ret = vmf_anon_prepare(vmf);
5219 if (ret)
5220 return ret;
5221 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
5222 folio = alloc_anon_folio(vmf);
5223 if (IS_ERR(folio))
5224 return 0;
5225 if (!folio)
5226 goto oom;
5227
5228 nr_pages = folio_nr_pages(folio);
5229 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
5230
5231 /*
5232 * The memory barrier inside __folio_mark_uptodate makes sure that
5233 * preceding stores to the page contents become visible before
5234 * the set_pte_at() write.
5235 */
5236 __folio_mark_uptodate(folio);
5237
5238 entry = folio_mk_pte(folio, vma->vm_page_prot);
5239 entry = pte_sw_mkyoung(entry);
5240 if (vma->vm_flags & VM_WRITE)
5241 entry = pte_mkwrite(pte_mkdirty(entry), vma);
5242
5243 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
5244 if (!vmf->pte)
5245 goto release;
5246 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
5247 update_mmu_tlb(vma, addr, vmf->pte);
5248 goto release;
5249 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5250 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5251 goto release;
5252 }
5253
5254 ret = check_stable_address_space(vma->vm_mm);
5255 if (ret)
5256 goto release;
5257
5258 /* Deliver the page fault to userland, check inside PT lock */
5259 if (userfaultfd_missing(vma)) {
5260 pte_unmap_unlock(vmf->pte, vmf->ptl);
5261 folio_put(folio);
5262 return handle_userfault(vmf, VM_UFFD_MISSING);
5263 }
5264
5265 folio_ref_add(folio, nr_pages - 1);
5266 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
5267 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
5268 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5269 folio_add_lru_vma(folio, vma);
5270 setpte:
5271 if (vmf_orig_pte_uffd_wp(vmf))
5272 entry = pte_mkuffd_wp(entry);
5273 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
5274
5275 /* No need to invalidate - it was non-present before */
5276 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
5277 unlock:
5278 if (vmf->pte)
5279 pte_unmap_unlock(vmf->pte, vmf->ptl);
5280 return ret;
5281 release:
5282 folio_put(folio);
5283 goto unlock;
5284 oom:
5285 return VM_FAULT_OOM;
5286 }
5287
5288 /*
5289 * The mmap_lock must have been held on entry, and may have been
5290 * released depending on flags and vma->vm_ops->fault() return value.
5291 * See filemap_fault() and __lock_page_retry().
5292 */
__do_fault(struct vm_fault * vmf)5293 static vm_fault_t __do_fault(struct vm_fault *vmf)
5294 {
5295 struct vm_area_struct *vma = vmf->vma;
5296 struct folio *folio;
5297 vm_fault_t ret;
5298
5299 /*
5300 * Preallocate pte before we take page_lock because this might lead to
5301 * deadlocks for memcg reclaim which waits for pages under writeback:
5302 * lock_page(A)
5303 * SetPageWriteback(A)
5304 * unlock_page(A)
5305 * lock_page(B)
5306 * lock_page(B)
5307 * pte_alloc_one
5308 * shrink_folio_list
5309 * wait_on_page_writeback(A)
5310 * SetPageWriteback(B)
5311 * unlock_page(B)
5312 * # flush A, B to clear the writeback
5313 */
5314 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
5315 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5316 if (!vmf->prealloc_pte)
5317 return VM_FAULT_OOM;
5318 }
5319
5320 ret = vma->vm_ops->fault(vmf);
5321 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
5322 VM_FAULT_DONE_COW)))
5323 return ret;
5324
5325 folio = page_folio(vmf->page);
5326 if (unlikely(PageHWPoison(vmf->page))) {
5327 vm_fault_t poisonret = VM_FAULT_HWPOISON;
5328 if (ret & VM_FAULT_LOCKED) {
5329 if (page_mapped(vmf->page))
5330 unmap_mapping_folio(folio);
5331 /* Retry if a clean folio was removed from the cache. */
5332 if (mapping_evict_folio(folio->mapping, folio))
5333 poisonret = VM_FAULT_NOPAGE;
5334 folio_unlock(folio);
5335 }
5336 folio_put(folio);
5337 vmf->page = NULL;
5338 return poisonret;
5339 }
5340
5341 if (unlikely(!(ret & VM_FAULT_LOCKED)))
5342 folio_lock(folio);
5343 else
5344 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5345
5346 return ret;
5347 }
5348
5349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)5350 static void deposit_prealloc_pte(struct vm_fault *vmf)
5351 {
5352 struct vm_area_struct *vma = vmf->vma;
5353
5354 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5355 /*
5356 * We are going to consume the prealloc table,
5357 * count that as nr_ptes.
5358 */
5359 mm_inc_nr_ptes(vma->vm_mm);
5360 vmf->prealloc_pte = NULL;
5361 }
5362
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5363 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5364 {
5365 struct vm_area_struct *vma = vmf->vma;
5366 bool write = vmf->flags & FAULT_FLAG_WRITE;
5367 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5368 pmd_t entry;
5369 vm_fault_t ret = VM_FAULT_FALLBACK;
5370
5371 /*
5372 * It is too late to allocate a small folio, we already have a large
5373 * folio in the pagecache: especially s390 KVM cannot tolerate any
5374 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5375 * PMD mappings if THPs are disabled. As we already have a THP,
5376 * behave as if we are forcing a collapse.
5377 */
5378 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags,
5379 /* forced_collapse=*/ true))
5380 return ret;
5381
5382 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5383 return ret;
5384
5385 if (folio_order(folio) != HPAGE_PMD_ORDER)
5386 return ret;
5387 page = &folio->page;
5388
5389 /*
5390 * Just backoff if any subpage of a THP is corrupted otherwise
5391 * the corrupted page may mapped by PMD silently to escape the
5392 * check. This kind of THP just can be PTE mapped. Access to
5393 * the corrupted subpage should trigger SIGBUS as expected.
5394 */
5395 if (unlikely(folio_test_has_hwpoisoned(folio)))
5396 return ret;
5397
5398 /*
5399 * Archs like ppc64 need additional space to store information
5400 * related to pte entry. Use the preallocated table for that.
5401 */
5402 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5403 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5404 if (!vmf->prealloc_pte)
5405 return VM_FAULT_OOM;
5406 }
5407
5408 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5409 if (unlikely(!pmd_none(*vmf->pmd)))
5410 goto out;
5411
5412 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5413
5414 entry = folio_mk_pmd(folio, vma->vm_page_prot);
5415 if (write)
5416 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5417
5418 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5419 folio_add_file_rmap_pmd(folio, page, vma);
5420
5421 /*
5422 * deposit and withdraw with pmd lock held
5423 */
5424 if (arch_needs_pgtable_deposit())
5425 deposit_prealloc_pte(vmf);
5426
5427 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5428
5429 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5430
5431 /* fault is handled */
5432 ret = 0;
5433 count_vm_event(THP_FILE_MAPPED);
5434 out:
5435 spin_unlock(vmf->ptl);
5436 return ret;
5437 }
5438 #else
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5439 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5440 {
5441 return VM_FAULT_FALLBACK;
5442 }
5443 #endif
5444
5445 /**
5446 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5447 * @vmf: Fault description.
5448 * @folio: The folio that contains @page.
5449 * @page: The first page to create a PTE for.
5450 * @nr: The number of PTEs to create.
5451 * @addr: The first address to create a PTE for.
5452 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)5453 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5454 struct page *page, unsigned int nr, unsigned long addr)
5455 {
5456 struct vm_area_struct *vma = vmf->vma;
5457 bool write = vmf->flags & FAULT_FLAG_WRITE;
5458 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5459 pte_t entry;
5460
5461 flush_icache_pages(vma, page, nr);
5462 entry = mk_pte(page, vma->vm_page_prot);
5463
5464 if (prefault && arch_wants_old_prefaulted_pte())
5465 entry = pte_mkold(entry);
5466 else
5467 entry = pte_sw_mkyoung(entry);
5468
5469 if (write)
5470 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5471 else if (pte_write(entry) && folio_test_dirty(folio))
5472 entry = pte_mkdirty(entry);
5473 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5474 entry = pte_mkuffd_wp(entry);
5475 /* copy-on-write page */
5476 if (write && !(vma->vm_flags & VM_SHARED)) {
5477 VM_BUG_ON_FOLIO(nr != 1, folio);
5478 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5479 folio_add_lru_vma(folio, vma);
5480 } else {
5481 folio_add_file_rmap_ptes(folio, page, nr, vma);
5482 }
5483 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5484
5485 /* no need to invalidate: a not-present page won't be cached */
5486 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5487 }
5488
vmf_pte_changed(struct vm_fault * vmf)5489 static bool vmf_pte_changed(struct vm_fault *vmf)
5490 {
5491 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5492 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5493
5494 return !pte_none(ptep_get(vmf->pte));
5495 }
5496
5497 /**
5498 * finish_fault - finish page fault once we have prepared the page to fault
5499 *
5500 * @vmf: structure describing the fault
5501 *
5502 * This function handles all that is needed to finish a page fault once the
5503 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5504 * given page, adds reverse page mapping, handles memcg charges and LRU
5505 * addition.
5506 *
5507 * The function expects the page to be locked and on success it consumes a
5508 * reference of a page being mapped (for the PTE which maps it).
5509 *
5510 * Return: %0 on success, %VM_FAULT_ code in case of error.
5511 */
finish_fault(struct vm_fault * vmf)5512 vm_fault_t finish_fault(struct vm_fault *vmf)
5513 {
5514 struct vm_area_struct *vma = vmf->vma;
5515 struct page *page;
5516 struct folio *folio;
5517 vm_fault_t ret;
5518 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5519 !(vma->vm_flags & VM_SHARED);
5520 int type, nr_pages;
5521 unsigned long addr;
5522 bool needs_fallback = false;
5523
5524 fallback:
5525 addr = vmf->address;
5526
5527 /* Did we COW the page? */
5528 if (is_cow)
5529 page = vmf->cow_page;
5530 else
5531 page = vmf->page;
5532
5533 folio = page_folio(page);
5534 /*
5535 * check even for read faults because we might have lost our CoWed
5536 * page
5537 */
5538 if (!(vma->vm_flags & VM_SHARED)) {
5539 ret = check_stable_address_space(vma->vm_mm);
5540 if (ret)
5541 return ret;
5542 }
5543
5544 if (!needs_fallback && vma->vm_file) {
5545 struct address_space *mapping = vma->vm_file->f_mapping;
5546 pgoff_t file_end;
5547
5548 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
5549
5550 /*
5551 * Do not allow to map with PTEs beyond i_size and with PMD
5552 * across i_size to preserve SIGBUS semantics.
5553 *
5554 * Make an exception for shmem/tmpfs that for long time
5555 * intentionally mapped with PMDs across i_size.
5556 */
5557 needs_fallback = !shmem_mapping(mapping) &&
5558 file_end < folio_next_index(folio);
5559 }
5560
5561 if (pmd_none(*vmf->pmd)) {
5562 if (!needs_fallback && folio_test_pmd_mappable(folio)) {
5563 ret = do_set_pmd(vmf, folio, page);
5564 if (ret != VM_FAULT_FALLBACK)
5565 return ret;
5566 }
5567
5568 if (vmf->prealloc_pte)
5569 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5570 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5571 return VM_FAULT_OOM;
5572 }
5573
5574 nr_pages = folio_nr_pages(folio);
5575
5576 /* Using per-page fault to maintain the uffd semantics */
5577 if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) {
5578 nr_pages = 1;
5579 } else if (nr_pages > 1) {
5580 pgoff_t idx = folio_page_idx(folio, page);
5581 /* The page offset of vmf->address within the VMA. */
5582 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5583 /* The index of the entry in the pagetable for fault page. */
5584 pgoff_t pte_off = pte_index(vmf->address);
5585
5586 /*
5587 * Fallback to per-page fault in case the folio size in page
5588 * cache beyond the VMA limits and PMD pagetable limits.
5589 */
5590 if (unlikely(vma_off < idx ||
5591 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5592 pte_off < idx ||
5593 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5594 nr_pages = 1;
5595 } else {
5596 /* Now we can set mappings for the whole large folio. */
5597 addr = vmf->address - idx * PAGE_SIZE;
5598 page = &folio->page;
5599 }
5600 }
5601
5602 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5603 addr, &vmf->ptl);
5604 if (!vmf->pte)
5605 return VM_FAULT_NOPAGE;
5606
5607 /* Re-check under ptl */
5608 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5609 update_mmu_tlb(vma, addr, vmf->pte);
5610 ret = VM_FAULT_NOPAGE;
5611 goto unlock;
5612 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5613 needs_fallback = true;
5614 pte_unmap_unlock(vmf->pte, vmf->ptl);
5615 goto fallback;
5616 }
5617
5618 folio_ref_add(folio, nr_pages - 1);
5619 set_pte_range(vmf, folio, page, nr_pages, addr);
5620 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5621 add_mm_counter(vma->vm_mm, type, nr_pages);
5622 ret = 0;
5623
5624 unlock:
5625 pte_unmap_unlock(vmf->pte, vmf->ptl);
5626 return ret;
5627 }
5628
5629 static unsigned long fault_around_pages __read_mostly =
5630 65536 >> PAGE_SHIFT;
5631
5632 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)5633 static int fault_around_bytes_get(void *data, u64 *val)
5634 {
5635 *val = fault_around_pages << PAGE_SHIFT;
5636 return 0;
5637 }
5638
5639 /*
5640 * fault_around_bytes must be rounded down to the nearest page order as it's
5641 * what do_fault_around() expects to see.
5642 */
fault_around_bytes_set(void * data,u64 val)5643 static int fault_around_bytes_set(void *data, u64 val)
5644 {
5645 if (val / PAGE_SIZE > PTRS_PER_PTE)
5646 return -EINVAL;
5647
5648 /*
5649 * The minimum value is 1 page, however this results in no fault-around
5650 * at all. See should_fault_around().
5651 */
5652 val = max(val, PAGE_SIZE);
5653 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5654
5655 return 0;
5656 }
5657 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5658 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5659
fault_around_debugfs(void)5660 static int __init fault_around_debugfs(void)
5661 {
5662 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5663 &fault_around_bytes_fops);
5664 return 0;
5665 }
5666 late_initcall(fault_around_debugfs);
5667 #endif
5668
5669 /*
5670 * do_fault_around() tries to map few pages around the fault address. The hope
5671 * is that the pages will be needed soon and this will lower the number of
5672 * faults to handle.
5673 *
5674 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5675 * not ready to be mapped: not up-to-date, locked, etc.
5676 *
5677 * This function doesn't cross VMA or page table boundaries, in order to call
5678 * map_pages() and acquire a PTE lock only once.
5679 *
5680 * fault_around_pages defines how many pages we'll try to map.
5681 * do_fault_around() expects it to be set to a power of two less than or equal
5682 * to PTRS_PER_PTE.
5683 *
5684 * The virtual address of the area that we map is naturally aligned to
5685 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5686 * (and therefore to page order). This way it's easier to guarantee
5687 * that we don't cross page table boundaries.
5688 */
do_fault_around(struct vm_fault * vmf)5689 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5690 {
5691 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5692 pgoff_t pte_off = pte_index(vmf->address);
5693 /* The page offset of vmf->address within the VMA. */
5694 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5695 pgoff_t from_pte, to_pte;
5696 vm_fault_t ret;
5697
5698 /* The PTE offset of the start address, clamped to the VMA. */
5699 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5700 pte_off - min(pte_off, vma_off));
5701
5702 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5703 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5704 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5705
5706 if (pmd_none(*vmf->pmd)) {
5707 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5708 if (!vmf->prealloc_pte)
5709 return VM_FAULT_OOM;
5710 }
5711
5712 rcu_read_lock();
5713 ret = vmf->vma->vm_ops->map_pages(vmf,
5714 vmf->pgoff + from_pte - pte_off,
5715 vmf->pgoff + to_pte - pte_off);
5716 rcu_read_unlock();
5717
5718 return ret;
5719 }
5720
5721 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)5722 static inline bool should_fault_around(struct vm_fault *vmf)
5723 {
5724 /* No ->map_pages? No way to fault around... */
5725 if (!vmf->vma->vm_ops->map_pages)
5726 return false;
5727
5728 if (uffd_disable_fault_around(vmf->vma))
5729 return false;
5730
5731 /* A single page implies no faulting 'around' at all. */
5732 return fault_around_pages > 1;
5733 }
5734
do_read_fault(struct vm_fault * vmf)5735 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5736 {
5737 vm_fault_t ret = 0;
5738 struct folio *folio;
5739
5740 /*
5741 * Let's call ->map_pages() first and use ->fault() as fallback
5742 * if page by the offset is not ready to be mapped (cold cache or
5743 * something).
5744 */
5745 if (should_fault_around(vmf)) {
5746 ret = do_fault_around(vmf);
5747 if (ret)
5748 return ret;
5749 }
5750
5751 ret = vmf_can_call_fault(vmf);
5752 if (ret)
5753 return ret;
5754
5755 ret = __do_fault(vmf);
5756 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5757 return ret;
5758
5759 ret |= finish_fault(vmf);
5760 folio = page_folio(vmf->page);
5761 folio_unlock(folio);
5762 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5763 folio_put(folio);
5764 return ret;
5765 }
5766
do_cow_fault(struct vm_fault * vmf)5767 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5768 {
5769 struct vm_area_struct *vma = vmf->vma;
5770 struct folio *folio;
5771 vm_fault_t ret;
5772
5773 ret = vmf_can_call_fault(vmf);
5774 if (!ret)
5775 ret = vmf_anon_prepare(vmf);
5776 if (ret)
5777 return ret;
5778
5779 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5780 if (!folio)
5781 return VM_FAULT_OOM;
5782
5783 vmf->cow_page = &folio->page;
5784
5785 ret = __do_fault(vmf);
5786 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5787 goto uncharge_out;
5788 if (ret & VM_FAULT_DONE_COW)
5789 return ret;
5790
5791 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5792 ret = VM_FAULT_HWPOISON;
5793 goto unlock;
5794 }
5795 __folio_mark_uptodate(folio);
5796
5797 ret |= finish_fault(vmf);
5798 unlock:
5799 unlock_page(vmf->page);
5800 put_page(vmf->page);
5801 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5802 goto uncharge_out;
5803 return ret;
5804 uncharge_out:
5805 folio_put(folio);
5806 return ret;
5807 }
5808
do_shared_fault(struct vm_fault * vmf)5809 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5810 {
5811 struct vm_area_struct *vma = vmf->vma;
5812 vm_fault_t ret, tmp;
5813 struct folio *folio;
5814
5815 ret = vmf_can_call_fault(vmf);
5816 if (ret)
5817 return ret;
5818
5819 ret = __do_fault(vmf);
5820 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5821 return ret;
5822
5823 folio = page_folio(vmf->page);
5824
5825 /*
5826 * Check if the backing address space wants to know that the page is
5827 * about to become writable
5828 */
5829 if (vma->vm_ops->page_mkwrite) {
5830 folio_unlock(folio);
5831 tmp = do_page_mkwrite(vmf, folio);
5832 if (unlikely(!tmp ||
5833 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5834 folio_put(folio);
5835 return tmp;
5836 }
5837 }
5838
5839 ret |= finish_fault(vmf);
5840 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5841 VM_FAULT_RETRY))) {
5842 folio_unlock(folio);
5843 folio_put(folio);
5844 return ret;
5845 }
5846
5847 ret |= fault_dirty_shared_page(vmf);
5848 return ret;
5849 }
5850
5851 /*
5852 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5853 * but allow concurrent faults).
5854 * The mmap_lock may have been released depending on flags and our
5855 * return value. See filemap_fault() and __folio_lock_or_retry().
5856 * If mmap_lock is released, vma may become invalid (for example
5857 * by other thread calling munmap()).
5858 */
do_fault(struct vm_fault * vmf)5859 static vm_fault_t do_fault(struct vm_fault *vmf)
5860 {
5861 struct vm_area_struct *vma = vmf->vma;
5862 struct mm_struct *vm_mm = vma->vm_mm;
5863 vm_fault_t ret;
5864
5865 /*
5866 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5867 */
5868 if (!vma->vm_ops->fault) {
5869 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5870 vmf->address, &vmf->ptl);
5871 if (unlikely(!vmf->pte))
5872 ret = VM_FAULT_SIGBUS;
5873 else {
5874 /*
5875 * Make sure this is not a temporary clearing of pte
5876 * by holding ptl and checking again. A R/M/W update
5877 * of pte involves: take ptl, clearing the pte so that
5878 * we don't have concurrent modification by hardware
5879 * followed by an update.
5880 */
5881 if (unlikely(pte_none(ptep_get(vmf->pte))))
5882 ret = VM_FAULT_SIGBUS;
5883 else
5884 ret = VM_FAULT_NOPAGE;
5885
5886 pte_unmap_unlock(vmf->pte, vmf->ptl);
5887 }
5888 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5889 ret = do_read_fault(vmf);
5890 else if (!(vma->vm_flags & VM_SHARED))
5891 ret = do_cow_fault(vmf);
5892 else
5893 ret = do_shared_fault(vmf);
5894
5895 /* preallocated pagetable is unused: free it */
5896 if (vmf->prealloc_pte) {
5897 pte_free(vm_mm, vmf->prealloc_pte);
5898 vmf->prealloc_pte = NULL;
5899 }
5900 return ret;
5901 }
5902
numa_migrate_check(struct folio * folio,struct vm_fault * vmf,unsigned long addr,int * flags,bool writable,int * last_cpupid)5903 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5904 unsigned long addr, int *flags,
5905 bool writable, int *last_cpupid)
5906 {
5907 struct vm_area_struct *vma = vmf->vma;
5908
5909 /*
5910 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5911 * much anyway since they can be in shared cache state. This misses
5912 * the case where a mapping is writable but the process never writes
5913 * to it but pte_write gets cleared during protection updates and
5914 * pte_dirty has unpredictable behaviour between PTE scan updates,
5915 * background writeback, dirty balancing and application behaviour.
5916 */
5917 if (!writable)
5918 *flags |= TNF_NO_GROUP;
5919
5920 /*
5921 * Flag if the folio is shared between multiple address spaces. This
5922 * is later used when determining whether to group tasks together
5923 */
5924 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5925 *flags |= TNF_SHARED;
5926 /*
5927 * For memory tiering mode, cpupid of slow memory page is used
5928 * to record page access time. So use default value.
5929 */
5930 if (folio_use_access_time(folio))
5931 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5932 else
5933 *last_cpupid = folio_last_cpupid(folio);
5934
5935 /* Record the current PID acceesing VMA */
5936 vma_set_access_pid_bit(vma);
5937
5938 count_vm_numa_event(NUMA_HINT_FAULTS);
5939 #ifdef CONFIG_NUMA_BALANCING
5940 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5941 #endif
5942 if (folio_nid(folio) == numa_node_id()) {
5943 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5944 *flags |= TNF_FAULT_LOCAL;
5945 }
5946
5947 return mpol_misplaced(folio, vmf, addr);
5948 }
5949
numa_rebuild_single_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long fault_addr,pte_t * fault_pte,bool writable)5950 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5951 unsigned long fault_addr, pte_t *fault_pte,
5952 bool writable)
5953 {
5954 pte_t pte, old_pte;
5955
5956 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5957 pte = pte_modify(old_pte, vma->vm_page_prot);
5958 pte = pte_mkyoung(pte);
5959 if (writable)
5960 pte = pte_mkwrite(pte, vma);
5961 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5962 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5963 }
5964
numa_rebuild_large_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,struct folio * folio,pte_t fault_pte,bool ignore_writable,bool pte_write_upgrade)5965 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5966 struct folio *folio, pte_t fault_pte,
5967 bool ignore_writable, bool pte_write_upgrade)
5968 {
5969 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5970 unsigned long start, end, addr = vmf->address;
5971 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5972 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5973 pte_t *start_ptep;
5974
5975 /* Stay within the VMA and within the page table. */
5976 start = max3(addr_start, pt_start, vma->vm_start);
5977 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5978 vma->vm_end);
5979 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5980
5981 /* Restore all PTEs' mapping of the large folio */
5982 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5983 pte_t ptent = ptep_get(start_ptep);
5984 bool writable = false;
5985
5986 if (!pte_present(ptent) || !pte_protnone(ptent))
5987 continue;
5988
5989 if (pfn_folio(pte_pfn(ptent)) != folio)
5990 continue;
5991
5992 if (!ignore_writable) {
5993 ptent = pte_modify(ptent, vma->vm_page_prot);
5994 writable = pte_write(ptent);
5995 if (!writable && pte_write_upgrade &&
5996 can_change_pte_writable(vma, addr, ptent))
5997 writable = true;
5998 }
5999
6000 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
6001 }
6002 }
6003
do_numa_page(struct vm_fault * vmf)6004 static vm_fault_t do_numa_page(struct vm_fault *vmf)
6005 {
6006 struct vm_area_struct *vma = vmf->vma;
6007 struct folio *folio = NULL;
6008 int nid = NUMA_NO_NODE;
6009 bool writable = false, ignore_writable = false;
6010 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
6011 int last_cpupid;
6012 int target_nid;
6013 pte_t pte, old_pte;
6014 int flags = 0, nr_pages;
6015
6016 /*
6017 * The pte cannot be used safely until we verify, while holding the page
6018 * table lock, that its contents have not changed during fault handling.
6019 */
6020 spin_lock(vmf->ptl);
6021 /* Read the live PTE from the page tables: */
6022 old_pte = ptep_get(vmf->pte);
6023
6024 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
6025 pte_unmap_unlock(vmf->pte, vmf->ptl);
6026 return 0;
6027 }
6028
6029 pte = pte_modify(old_pte, vma->vm_page_prot);
6030
6031 /*
6032 * Detect now whether the PTE could be writable; this information
6033 * is only valid while holding the PT lock.
6034 */
6035 writable = pte_write(pte);
6036 if (!writable && pte_write_upgrade &&
6037 can_change_pte_writable(vma, vmf->address, pte))
6038 writable = true;
6039
6040 folio = vm_normal_folio(vma, vmf->address, pte);
6041 if (!folio || folio_is_zone_device(folio))
6042 goto out_map;
6043
6044 nid = folio_nid(folio);
6045 nr_pages = folio_nr_pages(folio);
6046
6047 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
6048 writable, &last_cpupid);
6049 if (target_nid == NUMA_NO_NODE)
6050 goto out_map;
6051 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
6052 flags |= TNF_MIGRATE_FAIL;
6053 goto out_map;
6054 }
6055 /* The folio is isolated and isolation code holds a folio reference. */
6056 pte_unmap_unlock(vmf->pte, vmf->ptl);
6057 writable = false;
6058 ignore_writable = true;
6059
6060 /* Migrate to the requested node */
6061 if (!migrate_misplaced_folio(folio, target_nid)) {
6062 nid = target_nid;
6063 flags |= TNF_MIGRATED;
6064 task_numa_fault(last_cpupid, nid, nr_pages, flags);
6065 return 0;
6066 }
6067
6068 flags |= TNF_MIGRATE_FAIL;
6069 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
6070 vmf->address, &vmf->ptl);
6071 if (unlikely(!vmf->pte))
6072 return 0;
6073 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
6074 pte_unmap_unlock(vmf->pte, vmf->ptl);
6075 return 0;
6076 }
6077 out_map:
6078 /*
6079 * Make it present again, depending on how arch implements
6080 * non-accessible ptes, some can allow access by kernel mode.
6081 */
6082 if (folio && folio_test_large(folio))
6083 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
6084 pte_write_upgrade);
6085 else
6086 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
6087 writable);
6088 pte_unmap_unlock(vmf->pte, vmf->ptl);
6089
6090 if (nid != NUMA_NO_NODE)
6091 task_numa_fault(last_cpupid, nid, nr_pages, flags);
6092 return 0;
6093 }
6094
create_huge_pmd(struct vm_fault * vmf)6095 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
6096 {
6097 struct vm_area_struct *vma = vmf->vma;
6098 if (vma_is_anonymous(vma))
6099 return do_huge_pmd_anonymous_page(vmf);
6100 if (vma->vm_ops->huge_fault)
6101 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
6102 return VM_FAULT_FALLBACK;
6103 }
6104
6105 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)6106 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
6107 {
6108 struct vm_area_struct *vma = vmf->vma;
6109 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6110 vm_fault_t ret;
6111
6112 if (vma_is_anonymous(vma)) {
6113 if (likely(!unshare) &&
6114 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
6115 if (userfaultfd_wp_async(vmf->vma))
6116 goto split;
6117 return handle_userfault(vmf, VM_UFFD_WP);
6118 }
6119 return do_huge_pmd_wp_page(vmf);
6120 }
6121
6122 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
6123 if (vma->vm_ops->huge_fault) {
6124 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
6125 if (!(ret & VM_FAULT_FALLBACK))
6126 return ret;
6127 }
6128 }
6129
6130 split:
6131 /* COW or write-notify handled on pte level: split pmd. */
6132 __split_huge_pmd(vma, vmf->pmd, vmf->address, false);
6133
6134 return VM_FAULT_FALLBACK;
6135 }
6136
create_huge_pud(struct vm_fault * vmf)6137 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
6138 {
6139 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
6140 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
6141 struct vm_area_struct *vma = vmf->vma;
6142 /* No support for anonymous transparent PUD pages yet */
6143 if (vma_is_anonymous(vma))
6144 return VM_FAULT_FALLBACK;
6145 if (vma->vm_ops->huge_fault)
6146 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
6147 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
6148 return VM_FAULT_FALLBACK;
6149 }
6150
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)6151 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
6152 {
6153 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
6154 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
6155 struct vm_area_struct *vma = vmf->vma;
6156 vm_fault_t ret;
6157
6158 /* No support for anonymous transparent PUD pages yet */
6159 if (vma_is_anonymous(vma))
6160 goto split;
6161 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
6162 if (vma->vm_ops->huge_fault) {
6163 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
6164 if (!(ret & VM_FAULT_FALLBACK))
6165 return ret;
6166 }
6167 }
6168 split:
6169 /* COW or write-notify not handled on PUD level: split pud.*/
6170 __split_huge_pud(vma, vmf->pud, vmf->address);
6171 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
6172 return VM_FAULT_FALLBACK;
6173 }
6174
6175 /*
6176 * The page faults may be spurious because of the racy access to the
6177 * page table. For example, a non-populated virtual page is accessed
6178 * on 2 CPUs simultaneously, thus the page faults are triggered on
6179 * both CPUs. However, it's possible that one CPU (say CPU A) cannot
6180 * find the reason for the page fault if the other CPU (say CPU B) has
6181 * changed the page table before the PTE is checked on CPU A. Most of
6182 * the time, the spurious page faults can be ignored safely. However,
6183 * if the page fault is for the write access, it's possible that a
6184 * stale read-only TLB entry exists in the local CPU and needs to be
6185 * flushed on some architectures. This is called the spurious page
6186 * fault fixing.
6187 *
6188 * Note: flush_tlb_fix_spurious_fault() is defined as flush_tlb_page()
6189 * by default and used as such on most architectures, while
6190 * flush_tlb_fix_spurious_fault_pmd() is defined as NOP by default and
6191 * used as such on most architectures.
6192 */
fix_spurious_fault(struct vm_fault * vmf,enum pgtable_level ptlevel)6193 static void fix_spurious_fault(struct vm_fault *vmf,
6194 enum pgtable_level ptlevel)
6195 {
6196 /* Skip spurious TLB flush for retried page fault */
6197 if (vmf->flags & FAULT_FLAG_TRIED)
6198 return;
6199 /*
6200 * This is needed only for protection faults but the arch code
6201 * is not yet telling us if this is a protection fault or not.
6202 * This still avoids useless tlb flushes for .text page faults
6203 * with threads.
6204 */
6205 if (vmf->flags & FAULT_FLAG_WRITE) {
6206 if (ptlevel == PGTABLE_LEVEL_PTE)
6207 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
6208 vmf->pte);
6209 else
6210 flush_tlb_fix_spurious_fault_pmd(vmf->vma, vmf->address,
6211 vmf->pmd);
6212 }
6213 }
6214 /*
6215 * These routines also need to handle stuff like marking pages dirty
6216 * and/or accessed for architectures that don't do it in hardware (most
6217 * RISC architectures). The early dirtying is also good on the i386.
6218 *
6219 * There is also a hook called "update_mmu_cache()" that architectures
6220 * with external mmu caches can use to update those (ie the Sparc or
6221 * PowerPC hashed page tables that act as extended TLBs).
6222 *
6223 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
6224 * concurrent faults).
6225 *
6226 * The mmap_lock may have been released depending on flags and our return value.
6227 * See filemap_fault() and __folio_lock_or_retry().
6228 */
handle_pte_fault(struct vm_fault * vmf)6229 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
6230 {
6231 pte_t entry;
6232
6233 if (unlikely(pmd_none(*vmf->pmd))) {
6234 /*
6235 * Leave __pte_alloc() until later: because vm_ops->fault may
6236 * want to allocate huge page, and if we expose page table
6237 * for an instant, it will be difficult to retract from
6238 * concurrent faults and from rmap lookups.
6239 */
6240 vmf->pte = NULL;
6241 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
6242 } else {
6243 pmd_t dummy_pmdval;
6244
6245 /*
6246 * A regular pmd is established and it can't morph into a huge
6247 * pmd by anon khugepaged, since that takes mmap_lock in write
6248 * mode; but shmem or file collapse to THP could still morph
6249 * it into a huge pmd: just retry later if so.
6250 *
6251 * Use the maywrite version to indicate that vmf->pte may be
6252 * modified, but since we will use pte_same() to detect the
6253 * change of the !pte_none() entry, there is no need to recheck
6254 * the pmdval. Here we chooes to pass a dummy variable instead
6255 * of NULL, which helps new user think about why this place is
6256 * special.
6257 */
6258 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
6259 vmf->address, &dummy_pmdval,
6260 &vmf->ptl);
6261 if (unlikely(!vmf->pte))
6262 return 0;
6263 vmf->orig_pte = ptep_get_lockless(vmf->pte);
6264 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
6265
6266 if (pte_none(vmf->orig_pte)) {
6267 pte_unmap(vmf->pte);
6268 vmf->pte = NULL;
6269 }
6270 }
6271
6272 if (!vmf->pte)
6273 return do_pte_missing(vmf);
6274
6275 if (!pte_present(vmf->orig_pte))
6276 return do_swap_page(vmf);
6277
6278 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
6279 return do_numa_page(vmf);
6280
6281 spin_lock(vmf->ptl);
6282 entry = vmf->orig_pte;
6283 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
6284 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
6285 goto unlock;
6286 }
6287 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6288 if (!pte_write(entry))
6289 return do_wp_page(vmf);
6290 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
6291 entry = pte_mkdirty(entry);
6292 }
6293 entry = pte_mkyoung(entry);
6294 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
6295 vmf->flags & FAULT_FLAG_WRITE))
6296 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
6297 vmf->pte, 1);
6298 else
6299 fix_spurious_fault(vmf, PGTABLE_LEVEL_PTE);
6300 unlock:
6301 pte_unmap_unlock(vmf->pte, vmf->ptl);
6302 return 0;
6303 }
6304
6305 /*
6306 * On entry, we hold either the VMA lock or the mmap_lock
6307 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
6308 * the result, the mmap_lock is not held on exit. See filemap_fault()
6309 * and __folio_lock_or_retry().
6310 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)6311 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
6312 unsigned long address, unsigned int flags)
6313 {
6314 struct vm_fault vmf = {
6315 .vma = vma,
6316 .address = address & PAGE_MASK,
6317 .real_address = address,
6318 .flags = flags,
6319 .pgoff = linear_page_index(vma, address),
6320 .gfp_mask = __get_fault_gfp_mask(vma),
6321 };
6322 struct mm_struct *mm = vma->vm_mm;
6323 vm_flags_t vm_flags = vma->vm_flags;
6324 pgd_t *pgd;
6325 p4d_t *p4d;
6326 vm_fault_t ret;
6327
6328 pgd = pgd_offset(mm, address);
6329 p4d = p4d_alloc(mm, pgd, address);
6330 if (!p4d)
6331 return VM_FAULT_OOM;
6332
6333 vmf.pud = pud_alloc(mm, p4d, address);
6334 if (!vmf.pud)
6335 return VM_FAULT_OOM;
6336 retry_pud:
6337 if (pud_none(*vmf.pud) &&
6338 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) {
6339 ret = create_huge_pud(&vmf);
6340 if (!(ret & VM_FAULT_FALLBACK))
6341 return ret;
6342 } else {
6343 pud_t orig_pud = *vmf.pud;
6344
6345 barrier();
6346 if (pud_trans_huge(orig_pud)) {
6347
6348 /*
6349 * TODO once we support anonymous PUDs: NUMA case and
6350 * FAULT_FLAG_UNSHARE handling.
6351 */
6352 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
6353 ret = wp_huge_pud(&vmf, orig_pud);
6354 if (!(ret & VM_FAULT_FALLBACK))
6355 return ret;
6356 } else {
6357 huge_pud_set_accessed(&vmf, orig_pud);
6358 return 0;
6359 }
6360 }
6361 }
6362
6363 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
6364 if (!vmf.pmd)
6365 return VM_FAULT_OOM;
6366
6367 /* Huge pud page fault raced with pmd_alloc? */
6368 if (pud_trans_unstable(vmf.pud))
6369 goto retry_pud;
6370
6371 if (pmd_none(*vmf.pmd) &&
6372 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) {
6373 ret = create_huge_pmd(&vmf);
6374 if (ret & VM_FAULT_FALLBACK)
6375 goto fallback;
6376 else
6377 return ret;
6378 }
6379
6380 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6381 if (pmd_none(vmf.orig_pmd))
6382 goto fallback;
6383
6384 if (unlikely(!pmd_present(vmf.orig_pmd))) {
6385 if (pmd_is_device_private_entry(vmf.orig_pmd))
6386 return do_huge_pmd_device_private(&vmf);
6387
6388 if (pmd_is_migration_entry(vmf.orig_pmd))
6389 pmd_migration_entry_wait(mm, vmf.pmd);
6390 return 0;
6391 }
6392 if (pmd_trans_huge(vmf.orig_pmd)) {
6393 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6394 return do_huge_pmd_numa_page(&vmf);
6395
6396 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6397 !pmd_write(vmf.orig_pmd)) {
6398 ret = wp_huge_pmd(&vmf);
6399 if (!(ret & VM_FAULT_FALLBACK))
6400 return ret;
6401 } else {
6402 vmf.ptl = pmd_lock(mm, vmf.pmd);
6403 if (!huge_pmd_set_accessed(&vmf))
6404 fix_spurious_fault(&vmf, PGTABLE_LEVEL_PMD);
6405 spin_unlock(vmf.ptl);
6406 return 0;
6407 }
6408 }
6409
6410 fallback:
6411 return handle_pte_fault(&vmf);
6412 }
6413
6414 /**
6415 * mm_account_fault - Do page fault accounting
6416 * @mm: mm from which memcg should be extracted. It can be NULL.
6417 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
6418 * of perf event counters, but we'll still do the per-task accounting to
6419 * the task who triggered this page fault.
6420 * @address: the faulted address.
6421 * @flags: the fault flags.
6422 * @ret: the fault retcode.
6423 *
6424 * This will take care of most of the page fault accounting. Meanwhile, it
6425 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6426 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6427 * still be in per-arch page fault handlers at the entry of page fault.
6428 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)6429 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6430 unsigned long address, unsigned int flags,
6431 vm_fault_t ret)
6432 {
6433 bool major;
6434
6435 /* Incomplete faults will be accounted upon completion. */
6436 if (ret & VM_FAULT_RETRY)
6437 return;
6438
6439 /*
6440 * To preserve the behavior of older kernels, PGFAULT counters record
6441 * both successful and failed faults, as opposed to perf counters,
6442 * which ignore failed cases.
6443 */
6444 count_vm_event(PGFAULT);
6445 count_memcg_event_mm(mm, PGFAULT);
6446
6447 /*
6448 * Do not account for unsuccessful faults (e.g. when the address wasn't
6449 * valid). That includes arch_vma_access_permitted() failing before
6450 * reaching here. So this is not a "this many hardware page faults"
6451 * counter. We should use the hw profiling for that.
6452 */
6453 if (ret & VM_FAULT_ERROR)
6454 return;
6455
6456 /*
6457 * We define the fault as a major fault when the final successful fault
6458 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6459 * handle it immediately previously).
6460 */
6461 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6462
6463 if (major)
6464 current->maj_flt++;
6465 else
6466 current->min_flt++;
6467
6468 /*
6469 * If the fault is done for GUP, regs will be NULL. We only do the
6470 * accounting for the per thread fault counters who triggered the
6471 * fault, and we skip the perf event updates.
6472 */
6473 if (!regs)
6474 return;
6475
6476 if (major)
6477 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6478 else
6479 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6480 }
6481
6482 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)6483 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6484 {
6485 /* the LRU algorithm only applies to accesses with recency */
6486 current->in_lru_fault = vma_has_recency(vma);
6487 }
6488
lru_gen_exit_fault(void)6489 static void lru_gen_exit_fault(void)
6490 {
6491 current->in_lru_fault = false;
6492 }
6493 #else
lru_gen_enter_fault(struct vm_area_struct * vma)6494 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6495 {
6496 }
6497
lru_gen_exit_fault(void)6498 static void lru_gen_exit_fault(void)
6499 {
6500 }
6501 #endif /* CONFIG_LRU_GEN */
6502
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)6503 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6504 unsigned int *flags)
6505 {
6506 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6507 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6508 return VM_FAULT_SIGSEGV;
6509 /*
6510 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6511 * just treat it like an ordinary read-fault otherwise.
6512 */
6513 if (!is_cow_mapping(vma->vm_flags))
6514 *flags &= ~FAULT_FLAG_UNSHARE;
6515 } else if (*flags & FAULT_FLAG_WRITE) {
6516 /* Write faults on read-only mappings are impossible ... */
6517 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6518 return VM_FAULT_SIGSEGV;
6519 /* ... and FOLL_FORCE only applies to COW mappings. */
6520 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6521 !is_cow_mapping(vma->vm_flags)))
6522 return VM_FAULT_SIGSEGV;
6523 }
6524 #ifdef CONFIG_PER_VMA_LOCK
6525 /*
6526 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6527 * the assumption that lock is dropped on VM_FAULT_RETRY.
6528 */
6529 if (WARN_ON_ONCE((*flags &
6530 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6531 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6532 return VM_FAULT_SIGSEGV;
6533 #endif
6534
6535 return 0;
6536 }
6537
6538 /*
6539 * By the time we get here, we already hold either the VMA lock or the
6540 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6541 *
6542 * The mmap_lock may have been released depending on flags and our
6543 * return value. See filemap_fault() and __folio_lock_or_retry().
6544 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)6545 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6546 unsigned int flags, struct pt_regs *regs)
6547 {
6548 /* If the fault handler drops the mmap_lock, vma may be freed */
6549 struct mm_struct *mm = vma->vm_mm;
6550 vm_fault_t ret;
6551 bool is_droppable;
6552
6553 __set_current_state(TASK_RUNNING);
6554
6555 ret = sanitize_fault_flags(vma, &flags);
6556 if (ret)
6557 goto out;
6558
6559 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6560 flags & FAULT_FLAG_INSTRUCTION,
6561 flags & FAULT_FLAG_REMOTE)) {
6562 ret = VM_FAULT_SIGSEGV;
6563 goto out;
6564 }
6565
6566 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6567
6568 /*
6569 * Enable the memcg OOM handling for faults triggered in user
6570 * space. Kernel faults are handled more gracefully.
6571 */
6572 if (flags & FAULT_FLAG_USER)
6573 mem_cgroup_enter_user_fault();
6574
6575 lru_gen_enter_fault(vma);
6576
6577 if (unlikely(is_vm_hugetlb_page(vma)))
6578 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6579 else
6580 ret = __handle_mm_fault(vma, address, flags);
6581
6582 /*
6583 * Warning: It is no longer safe to dereference vma-> after this point,
6584 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6585 * vma might be destroyed from underneath us.
6586 */
6587
6588 lru_gen_exit_fault();
6589
6590 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6591 if (is_droppable)
6592 ret &= ~VM_FAULT_OOM;
6593
6594 if (flags & FAULT_FLAG_USER) {
6595 mem_cgroup_exit_user_fault();
6596 /*
6597 * The task may have entered a memcg OOM situation but
6598 * if the allocation error was handled gracefully (no
6599 * VM_FAULT_OOM), there is no need to kill anything.
6600 * Just clean up the OOM state peacefully.
6601 */
6602 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6603 mem_cgroup_oom_synchronize(false);
6604 }
6605 out:
6606 mm_account_fault(mm, regs, address, flags, ret);
6607
6608 return ret;
6609 }
6610 EXPORT_SYMBOL_GPL(handle_mm_fault);
6611
6612 #ifndef __PAGETABLE_P4D_FOLDED
6613 /*
6614 * Allocate p4d page table.
6615 * We've already handled the fast-path in-line.
6616 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)6617 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6618 {
6619 p4d_t *new = p4d_alloc_one(mm, address);
6620 if (!new)
6621 return -ENOMEM;
6622
6623 spin_lock(&mm->page_table_lock);
6624 if (pgd_present(*pgd)) { /* Another has populated it */
6625 p4d_free(mm, new);
6626 } else {
6627 smp_wmb(); /* See comment in pmd_install() */
6628 pgd_populate(mm, pgd, new);
6629 }
6630 spin_unlock(&mm->page_table_lock);
6631 return 0;
6632 }
6633 #endif /* __PAGETABLE_P4D_FOLDED */
6634
6635 #ifndef __PAGETABLE_PUD_FOLDED
6636 /*
6637 * Allocate page upper directory.
6638 * We've already handled the fast-path in-line.
6639 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)6640 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6641 {
6642 pud_t *new = pud_alloc_one(mm, address);
6643 if (!new)
6644 return -ENOMEM;
6645
6646 spin_lock(&mm->page_table_lock);
6647 if (!p4d_present(*p4d)) {
6648 mm_inc_nr_puds(mm);
6649 smp_wmb(); /* See comment in pmd_install() */
6650 p4d_populate(mm, p4d, new);
6651 } else /* Another has populated it */
6652 pud_free(mm, new);
6653 spin_unlock(&mm->page_table_lock);
6654 return 0;
6655 }
6656 #endif /* __PAGETABLE_PUD_FOLDED */
6657
6658 #ifndef __PAGETABLE_PMD_FOLDED
6659 /*
6660 * Allocate page middle directory.
6661 * We've already handled the fast-path in-line.
6662 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)6663 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6664 {
6665 spinlock_t *ptl;
6666 pmd_t *new = pmd_alloc_one(mm, address);
6667 if (!new)
6668 return -ENOMEM;
6669
6670 ptl = pud_lock(mm, pud);
6671 if (!pud_present(*pud)) {
6672 mm_inc_nr_pmds(mm);
6673 smp_wmb(); /* See comment in pmd_install() */
6674 pud_populate(mm, pud, new);
6675 } else { /* Another has populated it */
6676 pmd_free(mm, new);
6677 }
6678 spin_unlock(ptl);
6679 return 0;
6680 }
6681 #endif /* __PAGETABLE_PMD_FOLDED */
6682
pfnmap_args_setup(struct follow_pfnmap_args * args,spinlock_t * lock,pte_t * ptep,pgprot_t pgprot,unsigned long pfn_base,unsigned long addr_mask,bool writable,bool special)6683 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6684 spinlock_t *lock, pte_t *ptep,
6685 pgprot_t pgprot, unsigned long pfn_base,
6686 unsigned long addr_mask, bool writable,
6687 bool special)
6688 {
6689 args->lock = lock;
6690 args->ptep = ptep;
6691 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6692 args->addr_mask = addr_mask;
6693 args->pgprot = pgprot;
6694 args->writable = writable;
6695 args->special = special;
6696 }
6697
pfnmap_lockdep_assert(struct vm_area_struct * vma)6698 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6699 {
6700 #ifdef CONFIG_LOCKDEP
6701 struct file *file = vma->vm_file;
6702 struct address_space *mapping = file ? file->f_mapping : NULL;
6703
6704 if (mapping)
6705 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6706 lockdep_is_held(&vma->vm_mm->mmap_lock));
6707 else
6708 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6709 #endif
6710 }
6711
6712 /**
6713 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6714 * @args: Pointer to struct @follow_pfnmap_args
6715 *
6716 * The caller needs to setup args->vma and args->address to point to the
6717 * virtual address as the target of such lookup. On a successful return,
6718 * the results will be put into other output fields.
6719 *
6720 * After the caller finished using the fields, the caller must invoke
6721 * another follow_pfnmap_end() to proper releases the locks and resources
6722 * of such look up request.
6723 *
6724 * During the start() and end() calls, the results in @args will be valid
6725 * as proper locks will be held. After the end() is called, all the fields
6726 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6727 * use of such information after end() may require proper synchronizations
6728 * by the caller with page table updates, otherwise it can create a
6729 * security bug.
6730 *
6731 * If the PTE maps a refcounted page, callers are responsible to protect
6732 * against invalidation with MMU notifiers; otherwise access to the PFN at
6733 * a later point in time can trigger use-after-free.
6734 *
6735 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6736 * should be taken for read, and the mmap semaphore cannot be released
6737 * before the end() is invoked.
6738 *
6739 * This function must not be used to modify PTE content.
6740 *
6741 * Return: zero on success, negative otherwise.
6742 */
follow_pfnmap_start(struct follow_pfnmap_args * args)6743 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6744 {
6745 struct vm_area_struct *vma = args->vma;
6746 unsigned long address = args->address;
6747 struct mm_struct *mm = vma->vm_mm;
6748 spinlock_t *lock;
6749 pgd_t *pgdp;
6750 p4d_t *p4dp, p4d;
6751 pud_t *pudp, pud;
6752 pmd_t *pmdp, pmd;
6753 pte_t *ptep, pte;
6754
6755 pfnmap_lockdep_assert(vma);
6756
6757 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6758 goto out;
6759
6760 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6761 goto out;
6762 retry:
6763 pgdp = pgd_offset(mm, address);
6764 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6765 goto out;
6766
6767 p4dp = p4d_offset(pgdp, address);
6768 p4d = p4dp_get(p4dp);
6769 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6770 goto out;
6771
6772 pudp = pud_offset(p4dp, address);
6773 pud = pudp_get(pudp);
6774 if (pud_none(pud))
6775 goto out;
6776 if (pud_leaf(pud)) {
6777 lock = pud_lock(mm, pudp);
6778 if (!unlikely(pud_leaf(pud))) {
6779 spin_unlock(lock);
6780 goto retry;
6781 }
6782 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6783 pud_pfn(pud), PUD_MASK, pud_write(pud),
6784 pud_special(pud));
6785 return 0;
6786 }
6787
6788 pmdp = pmd_offset(pudp, address);
6789 pmd = pmdp_get_lockless(pmdp);
6790 if (pmd_leaf(pmd)) {
6791 lock = pmd_lock(mm, pmdp);
6792 if (!unlikely(pmd_leaf(pmd))) {
6793 spin_unlock(lock);
6794 goto retry;
6795 }
6796 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6797 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6798 pmd_special(pmd));
6799 return 0;
6800 }
6801
6802 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6803 if (!ptep)
6804 goto out;
6805 pte = ptep_get(ptep);
6806 if (!pte_present(pte))
6807 goto unlock;
6808 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6809 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6810 pte_special(pte));
6811 return 0;
6812 unlock:
6813 pte_unmap_unlock(ptep, lock);
6814 out:
6815 return -EINVAL;
6816 }
6817 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6818
6819 /**
6820 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6821 * @args: Pointer to struct @follow_pfnmap_args
6822 *
6823 * Must be used in pair of follow_pfnmap_start(). See the start() function
6824 * above for more information.
6825 */
follow_pfnmap_end(struct follow_pfnmap_args * args)6826 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6827 {
6828 if (args->lock)
6829 spin_unlock(args->lock);
6830 if (args->ptep)
6831 pte_unmap(args->ptep);
6832 }
6833 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6834
6835 #ifdef CONFIG_HAVE_IOREMAP_PROT
6836 /**
6837 * generic_access_phys - generic implementation for iomem mmap access
6838 * @vma: the vma to access
6839 * @addr: userspace address, not relative offset within @vma
6840 * @buf: buffer to read/write
6841 * @len: length of transfer
6842 * @write: set to FOLL_WRITE when writing, otherwise reading
6843 *
6844 * This is a generic implementation for &vm_operations_struct.access for an
6845 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6846 * not page based.
6847 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)6848 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6849 void *buf, int len, int write)
6850 {
6851 resource_size_t phys_addr;
6852 pgprot_t prot = __pgprot(0);
6853 void __iomem *maddr;
6854 int offset = offset_in_page(addr);
6855 int ret = -EINVAL;
6856 bool writable;
6857 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6858
6859 retry:
6860 if (follow_pfnmap_start(&args))
6861 return -EINVAL;
6862 prot = args.pgprot;
6863 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6864 writable = args.writable;
6865 follow_pfnmap_end(&args);
6866
6867 if ((write & FOLL_WRITE) && !writable)
6868 return -EINVAL;
6869
6870 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6871 if (!maddr)
6872 return -ENOMEM;
6873
6874 if (follow_pfnmap_start(&args))
6875 goto out_unmap;
6876
6877 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) ||
6878 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6879 (writable != args.writable)) {
6880 follow_pfnmap_end(&args);
6881 iounmap(maddr);
6882 goto retry;
6883 }
6884
6885 if (write)
6886 memcpy_toio(maddr + offset, buf, len);
6887 else
6888 memcpy_fromio(buf, maddr + offset, len);
6889 ret = len;
6890 follow_pfnmap_end(&args);
6891 out_unmap:
6892 iounmap(maddr);
6893
6894 return ret;
6895 }
6896 EXPORT_SYMBOL_GPL(generic_access_phys);
6897 #endif
6898
6899 /*
6900 * Access another process' address space as given in mm.
6901 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6902 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6903 void *buf, int len, unsigned int gup_flags)
6904 {
6905 void *old_buf = buf;
6906 int write = gup_flags & FOLL_WRITE;
6907
6908 if (mmap_read_lock_killable(mm))
6909 return 0;
6910
6911 /* Untag the address before looking up the VMA */
6912 addr = untagged_addr_remote(mm, addr);
6913
6914 /* Avoid triggering the temporary warning in __get_user_pages */
6915 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6916 return 0;
6917
6918 /* ignore errors, just check how much was successfully transferred */
6919 while (len) {
6920 int bytes, offset;
6921 void *maddr;
6922 struct folio *folio;
6923 struct vm_area_struct *vma = NULL;
6924 struct page *page = get_user_page_vma_remote(mm, addr,
6925 gup_flags, &vma);
6926
6927 if (IS_ERR(page)) {
6928 /* We might need to expand the stack to access it */
6929 vma = vma_lookup(mm, addr);
6930 if (!vma) {
6931 vma = expand_stack(mm, addr);
6932
6933 /* mmap_lock was dropped on failure */
6934 if (!vma)
6935 return buf - old_buf;
6936
6937 /* Try again if stack expansion worked */
6938 continue;
6939 }
6940
6941 /*
6942 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6943 * we can access using slightly different code.
6944 */
6945 bytes = 0;
6946 #ifdef CONFIG_HAVE_IOREMAP_PROT
6947 if (vma->vm_ops && vma->vm_ops->access)
6948 bytes = vma->vm_ops->access(vma, addr, buf,
6949 len, write);
6950 #endif
6951 if (bytes <= 0)
6952 break;
6953 } else {
6954 folio = page_folio(page);
6955 bytes = len;
6956 offset = addr & (PAGE_SIZE-1);
6957 if (bytes > PAGE_SIZE-offset)
6958 bytes = PAGE_SIZE-offset;
6959
6960 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
6961 if (write) {
6962 copy_to_user_page(vma, page, addr,
6963 maddr + offset, buf, bytes);
6964 folio_mark_dirty_lock(folio);
6965 } else {
6966 copy_from_user_page(vma, page, addr,
6967 buf, maddr + offset, bytes);
6968 }
6969 folio_release_kmap(folio, maddr);
6970 }
6971 len -= bytes;
6972 buf += bytes;
6973 addr += bytes;
6974 }
6975 mmap_read_unlock(mm);
6976
6977 return buf - old_buf;
6978 }
6979
6980 /**
6981 * access_remote_vm - access another process' address space
6982 * @mm: the mm_struct of the target address space
6983 * @addr: start address to access
6984 * @buf: source or destination buffer
6985 * @len: number of bytes to transfer
6986 * @gup_flags: flags modifying lookup behaviour
6987 *
6988 * The caller must hold a reference on @mm.
6989 *
6990 * Return: number of bytes copied from source to destination.
6991 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6992 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6993 void *buf, int len, unsigned int gup_flags)
6994 {
6995 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6996 }
6997
6998 /*
6999 * Access another process' address space.
7000 * Source/target buffer must be kernel space,
7001 * Do not walk the page table directly, use get_user_pages
7002 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)7003 int access_process_vm(struct task_struct *tsk, unsigned long addr,
7004 void *buf, int len, unsigned int gup_flags)
7005 {
7006 struct mm_struct *mm;
7007 int ret;
7008
7009 mm = get_task_mm(tsk);
7010 if (!mm)
7011 return 0;
7012
7013 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
7014
7015 mmput(mm);
7016
7017 return ret;
7018 }
7019 EXPORT_SYMBOL_GPL(access_process_vm);
7020
7021 #ifdef CONFIG_BPF_SYSCALL
7022 /*
7023 * Copy a string from another process's address space as given in mm.
7024 * If there is any error return -EFAULT.
7025 */
__copy_remote_vm_str(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)7026 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
7027 void *buf, int len, unsigned int gup_flags)
7028 {
7029 void *old_buf = buf;
7030 int err = 0;
7031
7032 *(char *)buf = '\0';
7033
7034 if (mmap_read_lock_killable(mm))
7035 return -EFAULT;
7036
7037 addr = untagged_addr_remote(mm, addr);
7038
7039 /* Avoid triggering the temporary warning in __get_user_pages */
7040 if (!vma_lookup(mm, addr)) {
7041 err = -EFAULT;
7042 goto out;
7043 }
7044
7045 while (len) {
7046 int bytes, offset, retval;
7047 void *maddr;
7048 struct folio *folio;
7049 struct page *page;
7050 struct vm_area_struct *vma = NULL;
7051
7052 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma);
7053 if (IS_ERR(page)) {
7054 /*
7055 * Treat as a total failure for now until we decide how
7056 * to handle the CONFIG_HAVE_IOREMAP_PROT case and
7057 * stack expansion.
7058 */
7059 *(char *)buf = '\0';
7060 err = -EFAULT;
7061 goto out;
7062 }
7063
7064 folio = page_folio(page);
7065 bytes = len;
7066 offset = addr & (PAGE_SIZE - 1);
7067 if (bytes > PAGE_SIZE - offset)
7068 bytes = PAGE_SIZE - offset;
7069
7070 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
7071 retval = strscpy(buf, maddr + offset, bytes);
7072 if (retval >= 0) {
7073 /* Found the end of the string */
7074 buf += retval;
7075 folio_release_kmap(folio, maddr);
7076 break;
7077 }
7078
7079 buf += bytes - 1;
7080 /*
7081 * Because strscpy always NUL terminates we need to
7082 * copy the last byte in the page if we are going to
7083 * load more pages
7084 */
7085 if (bytes != len) {
7086 addr += bytes - 1;
7087 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1);
7088 buf += 1;
7089 addr += 1;
7090 }
7091 len -= bytes;
7092
7093 folio_release_kmap(folio, maddr);
7094 }
7095
7096 out:
7097 mmap_read_unlock(mm);
7098 if (err)
7099 return err;
7100 return buf - old_buf;
7101 }
7102
7103 /**
7104 * copy_remote_vm_str - copy a string from another process's address space.
7105 * @tsk: the task of the target address space
7106 * @addr: start address to read from
7107 * @buf: destination buffer
7108 * @len: number of bytes to copy
7109 * @gup_flags: flags modifying lookup behaviour
7110 *
7111 * The caller must hold a reference on @mm.
7112 *
7113 * Return: number of bytes copied from @addr (source) to @buf (destination);
7114 * not including the trailing NUL. Always guaranteed to leave NUL-terminated
7115 * buffer. On any error, return -EFAULT.
7116 */
copy_remote_vm_str(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)7117 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
7118 void *buf, int len, unsigned int gup_flags)
7119 {
7120 struct mm_struct *mm;
7121 int ret;
7122
7123 if (unlikely(len == 0))
7124 return 0;
7125
7126 mm = get_task_mm(tsk);
7127 if (!mm) {
7128 *(char *)buf = '\0';
7129 return -EFAULT;
7130 }
7131
7132 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags);
7133
7134 mmput(mm);
7135
7136 return ret;
7137 }
7138 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
7139 #endif /* CONFIG_BPF_SYSCALL */
7140
7141 /*
7142 * Print the name of a VMA.
7143 */
print_vma_addr(char * prefix,unsigned long ip)7144 void print_vma_addr(char *prefix, unsigned long ip)
7145 {
7146 struct mm_struct *mm = current->mm;
7147 struct vm_area_struct *vma;
7148
7149 /*
7150 * we might be running from an atomic context so we cannot sleep
7151 */
7152 if (!mmap_read_trylock(mm))
7153 return;
7154
7155 vma = vma_lookup(mm, ip);
7156 if (vma && vma->vm_file) {
7157 struct file *f = vma->vm_file;
7158 ip -= vma->vm_start;
7159 ip += vma->vm_pgoff << PAGE_SHIFT;
7160 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
7161 vma->vm_start,
7162 vma->vm_end - vma->vm_start);
7163 }
7164 mmap_read_unlock(mm);
7165 }
7166
7167 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)7168 void __might_fault(const char *file, int line)
7169 {
7170 if (pagefault_disabled())
7171 return;
7172 __might_sleep(file, line);
7173 if (current->mm)
7174 might_lock_read(¤t->mm->mmap_lock);
7175 }
7176 EXPORT_SYMBOL(__might_fault);
7177 #endif
7178
7179 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
7180 /*
7181 * Process all subpages of the specified huge page with the specified
7182 * operation. The target subpage will be processed last to keep its
7183 * cache lines hot.
7184 */
process_huge_page(unsigned long addr_hint,unsigned int nr_pages,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)7185 static inline int process_huge_page(
7186 unsigned long addr_hint, unsigned int nr_pages,
7187 int (*process_subpage)(unsigned long addr, int idx, void *arg),
7188 void *arg)
7189 {
7190 int i, n, base, l, ret;
7191 unsigned long addr = addr_hint &
7192 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
7193
7194 /* Process target subpage last to keep its cache lines hot */
7195 might_sleep();
7196 n = (addr_hint - addr) / PAGE_SIZE;
7197 if (2 * n <= nr_pages) {
7198 /* If target subpage in first half of huge page */
7199 base = 0;
7200 l = n;
7201 /* Process subpages at the end of huge page */
7202 for (i = nr_pages - 1; i >= 2 * n; i--) {
7203 cond_resched();
7204 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7205 if (ret)
7206 return ret;
7207 }
7208 } else {
7209 /* If target subpage in second half of huge page */
7210 base = nr_pages - 2 * (nr_pages - n);
7211 l = nr_pages - n;
7212 /* Process subpages at the begin of huge page */
7213 for (i = 0; i < base; i++) {
7214 cond_resched();
7215 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7216 if (ret)
7217 return ret;
7218 }
7219 }
7220 /*
7221 * Process remaining subpages in left-right-left-right pattern
7222 * towards the target subpage
7223 */
7224 for (i = 0; i < l; i++) {
7225 int left_idx = base + i;
7226 int right_idx = base + 2 * l - 1 - i;
7227
7228 cond_resched();
7229 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
7230 if (ret)
7231 return ret;
7232 cond_resched();
7233 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
7234 if (ret)
7235 return ret;
7236 }
7237 return 0;
7238 }
7239
clear_gigantic_page(struct folio * folio,unsigned long addr_hint,unsigned int nr_pages)7240 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
7241 unsigned int nr_pages)
7242 {
7243 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
7244 int i;
7245
7246 might_sleep();
7247 for (i = 0; i < nr_pages; i++) {
7248 cond_resched();
7249 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
7250 }
7251 }
7252
clear_subpage(unsigned long addr,int idx,void * arg)7253 static int clear_subpage(unsigned long addr, int idx, void *arg)
7254 {
7255 struct folio *folio = arg;
7256
7257 clear_user_highpage(folio_page(folio, idx), addr);
7258 return 0;
7259 }
7260
7261 /**
7262 * folio_zero_user - Zero a folio which will be mapped to userspace.
7263 * @folio: The folio to zero.
7264 * @addr_hint: The address will be accessed or the base address if uncelar.
7265 */
folio_zero_user(struct folio * folio,unsigned long addr_hint)7266 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
7267 {
7268 unsigned int nr_pages = folio_nr_pages(folio);
7269
7270 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7271 clear_gigantic_page(folio, addr_hint, nr_pages);
7272 else
7273 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
7274 }
7275
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int nr_pages)7276 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
7277 unsigned long addr_hint,
7278 struct vm_area_struct *vma,
7279 unsigned int nr_pages)
7280 {
7281 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
7282 struct page *dst_page;
7283 struct page *src_page;
7284 int i;
7285
7286 for (i = 0; i < nr_pages; i++) {
7287 dst_page = folio_page(dst, i);
7288 src_page = folio_page(src, i);
7289
7290 cond_resched();
7291 if (copy_mc_user_highpage(dst_page, src_page,
7292 addr + i*PAGE_SIZE, vma))
7293 return -EHWPOISON;
7294 }
7295 return 0;
7296 }
7297
7298 struct copy_subpage_arg {
7299 struct folio *dst;
7300 struct folio *src;
7301 struct vm_area_struct *vma;
7302 };
7303
copy_subpage(unsigned long addr,int idx,void * arg)7304 static int copy_subpage(unsigned long addr, int idx, void *arg)
7305 {
7306 struct copy_subpage_arg *copy_arg = arg;
7307 struct page *dst = folio_page(copy_arg->dst, idx);
7308 struct page *src = folio_page(copy_arg->src, idx);
7309
7310 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
7311 return -EHWPOISON;
7312 return 0;
7313 }
7314
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)7315 int copy_user_large_folio(struct folio *dst, struct folio *src,
7316 unsigned long addr_hint, struct vm_area_struct *vma)
7317 {
7318 unsigned int nr_pages = folio_nr_pages(dst);
7319 struct copy_subpage_arg arg = {
7320 .dst = dst,
7321 .src = src,
7322 .vma = vma,
7323 };
7324
7325 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7326 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7327
7328 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7329 }
7330
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)7331 long copy_folio_from_user(struct folio *dst_folio,
7332 const void __user *usr_src,
7333 bool allow_pagefault)
7334 {
7335 void *kaddr;
7336 unsigned long i, rc = 0;
7337 unsigned int nr_pages = folio_nr_pages(dst_folio);
7338 unsigned long ret_val = nr_pages * PAGE_SIZE;
7339 struct page *subpage;
7340
7341 for (i = 0; i < nr_pages; i++) {
7342 subpage = folio_page(dst_folio, i);
7343 kaddr = kmap_local_page(subpage);
7344 if (!allow_pagefault)
7345 pagefault_disable();
7346 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7347 if (!allow_pagefault)
7348 pagefault_enable();
7349 kunmap_local(kaddr);
7350
7351 ret_val -= (PAGE_SIZE - rc);
7352 if (rc)
7353 break;
7354
7355 flush_dcache_page(subpage);
7356
7357 cond_resched();
7358 }
7359 return ret_val;
7360 }
7361 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7362
7363 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7364
7365 static struct kmem_cache *page_ptl_cachep;
7366
ptlock_cache_init(void)7367 void __init ptlock_cache_init(void)
7368 {
7369 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7370 SLAB_PANIC, NULL);
7371 }
7372
ptlock_alloc(struct ptdesc * ptdesc)7373 bool ptlock_alloc(struct ptdesc *ptdesc)
7374 {
7375 spinlock_t *ptl;
7376
7377 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7378 if (!ptl)
7379 return false;
7380 ptdesc->ptl = ptl;
7381 return true;
7382 }
7383
ptlock_free(struct ptdesc * ptdesc)7384 void ptlock_free(struct ptdesc *ptdesc)
7385 {
7386 if (ptdesc->ptl)
7387 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7388 }
7389 #endif
7390
vma_pgtable_walk_begin(struct vm_area_struct * vma)7391 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7392 {
7393 if (is_vm_hugetlb_page(vma))
7394 hugetlb_vma_lock_read(vma);
7395 }
7396
vma_pgtable_walk_end(struct vm_area_struct * vma)7397 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7398 {
7399 if (is_vm_hugetlb_page(vma))
7400 hugetlb_vma_unlock_read(vma);
7401 }
7402