1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel Atom SoC Power Management Controller Driver
4 * Copyright (c) 2014-2015,2017,2022 Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/acpi.h>
10 #include <linux/debugfs.h>
11 #include <linux/device.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/platform_data/x86/clk-pmc-atom.h>
16 #include <linux/platform_data/x86/pmc_atom.h>
17 #include <linux/platform_data/x86/simatic-ipc.h>
18 #include <linux/platform_device.h>
19 #include <linux/pci.h>
20 #include <linux/seq_file.h>
21 #include <linux/suspend.h>
22
23 struct pmc_bit_map {
24 const char *name;
25 u32 bit_mask;
26 };
27
28 struct pmc_reg_map {
29 const struct pmc_bit_map *d3_sts_0;
30 const struct pmc_bit_map *d3_sts_1;
31 const struct pmc_bit_map *func_dis;
32 const struct pmc_bit_map *func_dis_2;
33 const struct pmc_bit_map *pss;
34 };
35
36 struct pmc_data {
37 const struct pmc_reg_map *map;
38 const struct pmc_clk *clks;
39 };
40
41 struct pmc_dev {
42 u32 base_addr;
43 void __iomem *regmap;
44 const struct pmc_reg_map *map;
45 #ifdef CONFIG_DEBUG_FS
46 struct dentry *dbgfs_dir;
47 #endif /* CONFIG_DEBUG_FS */
48 bool init;
49 };
50
51 static struct pmc_dev pmc_device;
52 static u32 acpi_base_addr;
53
54 static const struct pmc_clk byt_clks[] = {
55 {
56 .name = "xtal",
57 .freq = 25000000,
58 .parent_name = NULL,
59 },
60 {
61 .name = "pll",
62 .freq = 19200000,
63 .parent_name = "xtal",
64 },
65 {}
66 };
67
68 static const struct pmc_clk cht_clks[] = {
69 {
70 .name = "xtal",
71 .freq = 19200000,
72 .parent_name = NULL,
73 },
74 {}
75 };
76
77 static const struct pmc_bit_map d3_sts_0_map[] = {
78 {"LPSS1_F0_DMA", BIT_LPSS1_F0_DMA},
79 {"LPSS1_F1_PWM1", BIT_LPSS1_F1_PWM1},
80 {"LPSS1_F2_PWM2", BIT_LPSS1_F2_PWM2},
81 {"LPSS1_F3_HSUART1", BIT_LPSS1_F3_HSUART1},
82 {"LPSS1_F4_HSUART2", BIT_LPSS1_F4_HSUART2},
83 {"LPSS1_F5_SPI", BIT_LPSS1_F5_SPI},
84 {"LPSS1_F6_Reserved", BIT_LPSS1_F6_XXX},
85 {"LPSS1_F7_Reserved", BIT_LPSS1_F7_XXX},
86 {"SCC_EMMC", BIT_SCC_EMMC},
87 {"SCC_SDIO", BIT_SCC_SDIO},
88 {"SCC_SDCARD", BIT_SCC_SDCARD},
89 {"SCC_MIPI", BIT_SCC_MIPI},
90 {"HDA", BIT_HDA},
91 {"LPE", BIT_LPE},
92 {"OTG", BIT_OTG},
93 {"USH", BIT_USH},
94 {"GBE", BIT_GBE},
95 {"SATA", BIT_SATA},
96 {"USB_EHCI", BIT_USB_EHCI},
97 {"SEC", BIT_SEC},
98 {"PCIE_PORT0", BIT_PCIE_PORT0},
99 {"PCIE_PORT1", BIT_PCIE_PORT1},
100 {"PCIE_PORT2", BIT_PCIE_PORT2},
101 {"PCIE_PORT3", BIT_PCIE_PORT3},
102 {"LPSS2_F0_DMA", BIT_LPSS2_F0_DMA},
103 {"LPSS2_F1_I2C1", BIT_LPSS2_F1_I2C1},
104 {"LPSS2_F2_I2C2", BIT_LPSS2_F2_I2C2},
105 {"LPSS2_F3_I2C3", BIT_LPSS2_F3_I2C3},
106 {"LPSS2_F3_I2C4", BIT_LPSS2_F4_I2C4},
107 {"LPSS2_F5_I2C5", BIT_LPSS2_F5_I2C5},
108 {"LPSS2_F6_I2C6", BIT_LPSS2_F6_I2C6},
109 {"LPSS2_F7_I2C7", BIT_LPSS2_F7_I2C7},
110 {}
111 };
112
113 static struct pmc_bit_map byt_d3_sts_1_map[] = {
114 {"SMB", BIT_SMB},
115 {"OTG_SS_PHY", BIT_OTG_SS_PHY},
116 {"USH_SS_PHY", BIT_USH_SS_PHY},
117 {"DFX", BIT_DFX},
118 {}
119 };
120
121 static struct pmc_bit_map cht_d3_sts_1_map[] = {
122 {"SMB", BIT_SMB},
123 {"GMM", BIT_STS_GMM},
124 {"ISH", BIT_STS_ISH},
125 {}
126 };
127
128 static struct pmc_bit_map cht_func_dis_2_map[] = {
129 {"SMB", BIT_SMB},
130 {"GMM", BIT_FD_GMM},
131 {"ISH", BIT_FD_ISH},
132 {}
133 };
134
135 static const struct pmc_bit_map byt_pss_map[] = {
136 {"GBE", PMC_PSS_BIT_GBE},
137 {"SATA", PMC_PSS_BIT_SATA},
138 {"HDA", PMC_PSS_BIT_HDA},
139 {"SEC", PMC_PSS_BIT_SEC},
140 {"PCIE", PMC_PSS_BIT_PCIE},
141 {"LPSS", PMC_PSS_BIT_LPSS},
142 {"LPE", PMC_PSS_BIT_LPE},
143 {"DFX", PMC_PSS_BIT_DFX},
144 {"USH_CTRL", PMC_PSS_BIT_USH_CTRL},
145 {"USH_SUS", PMC_PSS_BIT_USH_SUS},
146 {"USH_VCCS", PMC_PSS_BIT_USH_VCCS},
147 {"USH_VCCA", PMC_PSS_BIT_USH_VCCA},
148 {"OTG_CTRL", PMC_PSS_BIT_OTG_CTRL},
149 {"OTG_VCCS", PMC_PSS_BIT_OTG_VCCS},
150 {"OTG_VCCA_CLK", PMC_PSS_BIT_OTG_VCCA_CLK},
151 {"OTG_VCCA", PMC_PSS_BIT_OTG_VCCA},
152 {"USB", PMC_PSS_BIT_USB},
153 {"USB_SUS", PMC_PSS_BIT_USB_SUS},
154 {}
155 };
156
157 static const struct pmc_bit_map cht_pss_map[] = {
158 {"SATA", PMC_PSS_BIT_SATA},
159 {"HDA", PMC_PSS_BIT_HDA},
160 {"SEC", PMC_PSS_BIT_SEC},
161 {"PCIE", PMC_PSS_BIT_PCIE},
162 {"LPSS", PMC_PSS_BIT_LPSS},
163 {"LPE", PMC_PSS_BIT_LPE},
164 {"UFS", PMC_PSS_BIT_CHT_UFS},
165 {"UXD", PMC_PSS_BIT_CHT_UXD},
166 {"UXD_FD", PMC_PSS_BIT_CHT_UXD_FD},
167 {"UX_ENG", PMC_PSS_BIT_CHT_UX_ENG},
168 {"USB_SUS", PMC_PSS_BIT_CHT_USB_SUS},
169 {"GMM", PMC_PSS_BIT_CHT_GMM},
170 {"ISH", PMC_PSS_BIT_CHT_ISH},
171 {"DFX_MASTER", PMC_PSS_BIT_CHT_DFX_MASTER},
172 {"DFX_CLUSTER1", PMC_PSS_BIT_CHT_DFX_CLUSTER1},
173 {"DFX_CLUSTER2", PMC_PSS_BIT_CHT_DFX_CLUSTER2},
174 {"DFX_CLUSTER3", PMC_PSS_BIT_CHT_DFX_CLUSTER3},
175 {"DFX_CLUSTER4", PMC_PSS_BIT_CHT_DFX_CLUSTER4},
176 {"DFX_CLUSTER5", PMC_PSS_BIT_CHT_DFX_CLUSTER5},
177 {}
178 };
179
180 static const struct pmc_reg_map byt_reg_map = {
181 .d3_sts_0 = d3_sts_0_map,
182 .d3_sts_1 = byt_d3_sts_1_map,
183 .func_dis = d3_sts_0_map,
184 .func_dis_2 = byt_d3_sts_1_map,
185 .pss = byt_pss_map,
186 };
187
188 static const struct pmc_reg_map cht_reg_map = {
189 .d3_sts_0 = d3_sts_0_map,
190 .d3_sts_1 = cht_d3_sts_1_map,
191 .func_dis = d3_sts_0_map,
192 .func_dis_2 = cht_func_dis_2_map,
193 .pss = cht_pss_map,
194 };
195
196 static const struct pmc_data byt_data = {
197 .map = &byt_reg_map,
198 .clks = byt_clks,
199 };
200
201 static const struct pmc_data cht_data = {
202 .map = &cht_reg_map,
203 .clks = cht_clks,
204 };
205
pmc_reg_read(struct pmc_dev * pmc,int reg_offset)206 static inline u32 pmc_reg_read(struct pmc_dev *pmc, int reg_offset)
207 {
208 return readl(pmc->regmap + reg_offset);
209 }
210
pmc_reg_write(struct pmc_dev * pmc,int reg_offset,u32 val)211 static inline void pmc_reg_write(struct pmc_dev *pmc, int reg_offset, u32 val)
212 {
213 writel(val, pmc->regmap + reg_offset);
214 }
215
pmc_atom_read(int offset,u32 * value)216 int pmc_atom_read(int offset, u32 *value)
217 {
218 struct pmc_dev *pmc = &pmc_device;
219
220 if (!pmc->init)
221 return -ENODEV;
222
223 *value = pmc_reg_read(pmc, offset);
224 return 0;
225 }
226
pmc_power_off(void)227 static void pmc_power_off(void)
228 {
229 u16 pm1_cnt_port;
230 u32 pm1_cnt_value;
231
232 pr_info("Preparing to enter system sleep state S5\n");
233
234 pm1_cnt_port = acpi_base_addr + PM1_CNT;
235
236 pm1_cnt_value = inl(pm1_cnt_port);
237 pm1_cnt_value &= ~SLEEP_TYPE_MASK;
238 pm1_cnt_value |= SLEEP_TYPE_S5;
239 pm1_cnt_value |= SLEEP_ENABLE;
240
241 outl(pm1_cnt_value, pm1_cnt_port);
242 }
243
pmc_hw_reg_setup(struct pmc_dev * pmc)244 static void pmc_hw_reg_setup(struct pmc_dev *pmc)
245 {
246 /*
247 * Disable PMC S0IX_WAKE_EN events coming from:
248 * - LPC clock run
249 * - GPIO_SUS ored dedicated IRQs
250 * - GPIO_SCORE ored dedicated IRQs
251 * - GPIO_SUS shared IRQ
252 * - GPIO_SCORE shared IRQ
253 */
254 pmc_reg_write(pmc, PMC_S0IX_WAKE_EN, (u32)PMC_WAKE_EN_SETTING);
255 }
256
257 #ifdef CONFIG_DEBUG_FS
pmc_dev_state_print(struct seq_file * s,int reg_index,u32 sts,const struct pmc_bit_map * sts_map,u32 fd,const struct pmc_bit_map * fd_map)258 static void pmc_dev_state_print(struct seq_file *s, int reg_index,
259 u32 sts, const struct pmc_bit_map *sts_map,
260 u32 fd, const struct pmc_bit_map *fd_map)
261 {
262 int offset = PMC_REG_BIT_WIDTH * reg_index;
263 int index;
264
265 for (index = 0; sts_map[index].name; index++) {
266 seq_printf(s, "Dev: %-2d - %-32s\tState: %s [%s]\n",
267 offset + index, sts_map[index].name,
268 fd_map[index].bit_mask & fd ? "Disabled" : "Enabled ",
269 sts_map[index].bit_mask & sts ? "D3" : "D0");
270 }
271 }
272
pmc_dev_state_show(struct seq_file * s,void * unused)273 static int pmc_dev_state_show(struct seq_file *s, void *unused)
274 {
275 struct pmc_dev *pmc = s->private;
276 const struct pmc_reg_map *m = pmc->map;
277 u32 func_dis, func_dis_2;
278 u32 d3_sts_0, d3_sts_1;
279
280 func_dis = pmc_reg_read(pmc, PMC_FUNC_DIS);
281 func_dis_2 = pmc_reg_read(pmc, PMC_FUNC_DIS_2);
282 d3_sts_0 = pmc_reg_read(pmc, PMC_D3_STS_0);
283 d3_sts_1 = pmc_reg_read(pmc, PMC_D3_STS_1);
284
285 /* Low part */
286 pmc_dev_state_print(s, 0, d3_sts_0, m->d3_sts_0, func_dis, m->func_dis);
287
288 /* High part */
289 pmc_dev_state_print(s, 1, d3_sts_1, m->d3_sts_1, func_dis_2, m->func_dis_2);
290
291 return 0;
292 }
293
294 DEFINE_SHOW_ATTRIBUTE(pmc_dev_state);
295
pmc_pss_state_show(struct seq_file * s,void * unused)296 static int pmc_pss_state_show(struct seq_file *s, void *unused)
297 {
298 struct pmc_dev *pmc = s->private;
299 const struct pmc_bit_map *map = pmc->map->pss;
300 u32 pss = pmc_reg_read(pmc, PMC_PSS);
301 int index;
302
303 for (index = 0; map[index].name; index++) {
304 seq_printf(s, "Island: %-2d - %-32s\tState: %s\n",
305 index, map[index].name,
306 map[index].bit_mask & pss ? "Off" : "On");
307 }
308 return 0;
309 }
310
311 DEFINE_SHOW_ATTRIBUTE(pmc_pss_state);
312
pmc_sleep_tmr_show(struct seq_file * s,void * unused)313 static int pmc_sleep_tmr_show(struct seq_file *s, void *unused)
314 {
315 struct pmc_dev *pmc = s->private;
316 u64 s0ir_tmr, s0i1_tmr, s0i2_tmr, s0i3_tmr, s0_tmr;
317
318 s0ir_tmr = (u64)pmc_reg_read(pmc, PMC_S0IR_TMR) << PMC_TMR_SHIFT;
319 s0i1_tmr = (u64)pmc_reg_read(pmc, PMC_S0I1_TMR) << PMC_TMR_SHIFT;
320 s0i2_tmr = (u64)pmc_reg_read(pmc, PMC_S0I2_TMR) << PMC_TMR_SHIFT;
321 s0i3_tmr = (u64)pmc_reg_read(pmc, PMC_S0I3_TMR) << PMC_TMR_SHIFT;
322 s0_tmr = (u64)pmc_reg_read(pmc, PMC_S0_TMR) << PMC_TMR_SHIFT;
323
324 seq_printf(s, "S0IR Residency:\t%lldus\n", s0ir_tmr);
325 seq_printf(s, "S0I1 Residency:\t%lldus\n", s0i1_tmr);
326 seq_printf(s, "S0I2 Residency:\t%lldus\n", s0i2_tmr);
327 seq_printf(s, "S0I3 Residency:\t%lldus\n", s0i3_tmr);
328 seq_printf(s, "S0 Residency:\t%lldus\n", s0_tmr);
329 return 0;
330 }
331
332 DEFINE_SHOW_ATTRIBUTE(pmc_sleep_tmr);
333
pmc_dbgfs_register(struct pmc_dev * pmc)334 static void pmc_dbgfs_register(struct pmc_dev *pmc)
335 {
336 struct dentry *dir;
337
338 dir = debugfs_create_dir("pmc_atom", NULL);
339
340 pmc->dbgfs_dir = dir;
341
342 debugfs_create_file("dev_state", S_IFREG | S_IRUGO, dir, pmc,
343 &pmc_dev_state_fops);
344 debugfs_create_file("pss_state", S_IFREG | S_IRUGO, dir, pmc,
345 &pmc_pss_state_fops);
346 debugfs_create_file("sleep_state", S_IFREG | S_IRUGO, dir, pmc,
347 &pmc_sleep_tmr_fops);
348 }
349 #else
pmc_dbgfs_register(struct pmc_dev * pmc)350 static void pmc_dbgfs_register(struct pmc_dev *pmc)
351 {
352 }
353 #endif /* CONFIG_DEBUG_FS */
354
355 static bool pmc_clk_is_critical = true;
356
dmi_callback(const struct dmi_system_id * d)357 static int dmi_callback(const struct dmi_system_id *d)
358 {
359 pr_info("%s: PMC critical clocks quirk enabled\n", d->ident);
360
361 return 1;
362 }
363
dmi_callback_siemens(const struct dmi_system_id * d)364 static int dmi_callback_siemens(const struct dmi_system_id *d)
365 {
366 u32 st_id;
367
368 if (dmi_walk(simatic_ipc_find_dmi_entry_helper, &st_id))
369 goto out;
370
371 if (st_id == SIMATIC_IPC_IPC227E || st_id == SIMATIC_IPC_IPC277E)
372 return dmi_callback(d);
373
374 out:
375 pmc_clk_is_critical = false;
376 return 1;
377 }
378
379 /*
380 * Some systems need one or more of their pmc_plt_clks to be
381 * marked as critical.
382 */
383 static const struct dmi_system_id critclk_systems[] = {
384 {
385 /* pmc_plt_clk0 is used for an external HSIC USB HUB */
386 .ident = "MPL CEC1x",
387 .callback = dmi_callback,
388 .matches = {
389 DMI_MATCH(DMI_SYS_VENDOR, "MPL AG"),
390 DMI_MATCH(DMI_PRODUCT_NAME, "CEC10 Family"),
391 },
392 },
393 {
394 /*
395 * Lex System / Lex Computech Co. makes a lot of Bay Trail
396 * based embedded boards which often come with multiple
397 * ethernet controllers using multiple pmc_plt_clks. See:
398 * https://www.lex.com.tw/products/embedded-ipc-board/
399 */
400 .ident = "Lex BayTrail",
401 .callback = dmi_callback,
402 .matches = {
403 DMI_MATCH(DMI_SYS_VENDOR, "Lex BayTrail"),
404 },
405 },
406 {
407 /* pmc_plt_clk* - are used for ethernet controllers */
408 .ident = "Beckhoff Baytrail",
409 .callback = dmi_callback,
410 .matches = {
411 DMI_MATCH(DMI_SYS_VENDOR, "Beckhoff Automation"),
412 DMI_MATCH(DMI_PRODUCT_FAMILY, "CBxx63"),
413 },
414 },
415 {
416 .ident = "SIEMENS AG",
417 .callback = dmi_callback_siemens,
418 .matches = {
419 DMI_MATCH(DMI_SYS_VENDOR, "SIEMENS AG"),
420 },
421 },
422 {}
423 };
424
pmc_setup_clks(struct pci_dev * pdev,void __iomem * pmc_regmap,const struct pmc_data * pmc_data)425 static int pmc_setup_clks(struct pci_dev *pdev, void __iomem *pmc_regmap,
426 const struct pmc_data *pmc_data)
427 {
428 struct platform_device *clkdev;
429 struct pmc_clk_data *clk_data;
430
431 clk_data = kzalloc(sizeof(*clk_data), GFP_KERNEL);
432 if (!clk_data)
433 return -ENOMEM;
434
435 clk_data->base = pmc_regmap; /* offset is added by client */
436 clk_data->clks = pmc_data->clks;
437 if (dmi_check_system(critclk_systems))
438 clk_data->critical = pmc_clk_is_critical;
439
440 clkdev = platform_device_register_data(&pdev->dev, "clk-pmc-atom",
441 PLATFORM_DEVID_NONE,
442 clk_data, sizeof(*clk_data));
443 if (IS_ERR(clkdev)) {
444 kfree(clk_data);
445 return PTR_ERR(clkdev);
446 }
447
448 kfree(clk_data);
449
450 return 0;
451 }
452
453 #ifdef CONFIG_SUSPEND
pmc_dev_state_check(u32 sts,const struct pmc_bit_map * sts_map,u32 fd,const struct pmc_bit_map * fd_map,u32 sts_possible_false_pos)454 static void pmc_dev_state_check(u32 sts, const struct pmc_bit_map *sts_map,
455 u32 fd, const struct pmc_bit_map *fd_map,
456 u32 sts_possible_false_pos)
457 {
458 int index;
459
460 for (index = 0; sts_map[index].name; index++) {
461 if (!(fd_map[index].bit_mask & fd) &&
462 !(sts_map[index].bit_mask & sts)) {
463 if (sts_map[index].bit_mask & sts_possible_false_pos)
464 pm_pr_dbg("%s is in D0 prior to s2idle\n",
465 sts_map[index].name);
466 else
467 pr_err("%s is in D0 prior to s2idle\n",
468 sts_map[index].name);
469 }
470 }
471 }
472
pmc_s2idle_check(void)473 static void pmc_s2idle_check(void)
474 {
475 struct pmc_dev *pmc = &pmc_device;
476 const struct pmc_reg_map *m = pmc->map;
477 u32 func_dis, func_dis_2;
478 u32 d3_sts_0, d3_sts_1;
479 u32 false_pos_sts_0, false_pos_sts_1;
480 int i;
481
482 func_dis = pmc_reg_read(pmc, PMC_FUNC_DIS);
483 func_dis_2 = pmc_reg_read(pmc, PMC_FUNC_DIS_2);
484 d3_sts_0 = pmc_reg_read(pmc, PMC_D3_STS_0);
485 d3_sts_1 = pmc_reg_read(pmc, PMC_D3_STS_1);
486
487 /*
488 * Some blocks are not used on lower-featured versions of the SoC and
489 * always report D0, add these to false_pos mask to log at debug level.
490 */
491 if (m->d3_sts_1 == byt_d3_sts_1_map) {
492 /* Bay Trail */
493 false_pos_sts_0 = BIT_GBE | BIT_SATA | BIT_PCIE_PORT0 |
494 BIT_PCIE_PORT1 | BIT_PCIE_PORT2 | BIT_PCIE_PORT3 |
495 BIT_LPSS2_F5_I2C5;
496 false_pos_sts_1 = BIT_SMB | BIT_USH_SS_PHY | BIT_DFX;
497 } else {
498 /* Cherry Trail */
499 false_pos_sts_0 = BIT_GBE | BIT_SATA | BIT_LPSS2_F7_I2C7;
500 false_pos_sts_1 = BIT_SMB | BIT_STS_ISH;
501 }
502
503 pmc_dev_state_check(d3_sts_0, m->d3_sts_0, func_dis, m->func_dis, false_pos_sts_0);
504 pmc_dev_state_check(d3_sts_1, m->d3_sts_1, func_dis_2, m->func_dis_2, false_pos_sts_1);
505
506 /* Forced-on PMC clocks prevent S0i3 */
507 for (i = 0; i < PMC_CLK_NUM; i++) {
508 u32 ctl = pmc_reg_read(pmc, PMC_CLK_CTL_OFFSET + 4 * i);
509
510 if ((ctl & PMC_MASK_CLK_CTL) != PMC_CLK_CTL_FORCE_ON)
511 continue;
512
513 pr_err("clock %d is ON prior to freeze (ctl 0x%08x)\n", i, ctl);
514 }
515 }
516
517 static struct acpi_s2idle_dev_ops pmc_s2idle_ops = {
518 .check = pmc_s2idle_check,
519 };
520
pmc_s2idle_check_register(void)521 static void pmc_s2idle_check_register(void)
522 {
523 acpi_register_lps0_dev(&pmc_s2idle_ops);
524 }
525 #else
pmc_s2idle_check_register(void)526 static void pmc_s2idle_check_register(void) {}
527 #endif
528
pmc_setup_dev(struct pci_dev * pdev,const struct pci_device_id * ent)529 static int pmc_setup_dev(struct pci_dev *pdev, const struct pci_device_id *ent)
530 {
531 struct pmc_dev *pmc = &pmc_device;
532 const struct pmc_data *data = (struct pmc_data *)ent->driver_data;
533 const struct pmc_reg_map *map = data->map;
534 int ret;
535
536 /* Obtain ACPI base address */
537 pci_read_config_dword(pdev, ACPI_BASE_ADDR_OFFSET, &acpi_base_addr);
538 acpi_base_addr &= ACPI_BASE_ADDR_MASK;
539
540 /* Install power off function */
541 if (acpi_base_addr != 0 && pm_power_off == NULL)
542 pm_power_off = pmc_power_off;
543
544 pci_read_config_dword(pdev, PMC_BASE_ADDR_OFFSET, &pmc->base_addr);
545 pmc->base_addr &= PMC_BASE_ADDR_MASK;
546
547 pmc->regmap = ioremap(pmc->base_addr, PMC_MMIO_REG_LEN);
548 if (!pmc->regmap) {
549 dev_err(&pdev->dev, "error: ioremap failed\n");
550 return -ENOMEM;
551 }
552
553 pmc->map = map;
554
555 /* PMC hardware registers setup */
556 pmc_hw_reg_setup(pmc);
557
558 pmc_dbgfs_register(pmc);
559
560 /* Register platform clocks - PMC_PLT_CLK [0..5] */
561 ret = pmc_setup_clks(pdev, pmc->regmap, data);
562 if (ret)
563 dev_warn(&pdev->dev, "platform clocks register failed: %d\n",
564 ret);
565
566 pmc_s2idle_check_register();
567 pmc->init = true;
568 return ret;
569 }
570
571 /* Data for PCI driver interface used by pci_match_id() call below */
572 static const struct pci_device_id pmc_pci_ids[] = {
573 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_VLV_PMC), (kernel_ulong_t)&byt_data },
574 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CHT_PMC), (kernel_ulong_t)&cht_data },
575 {}
576 };
577
pmc_atom_init(void)578 static int __init pmc_atom_init(void)
579 {
580 struct pci_dev *pdev = NULL;
581 const struct pci_device_id *ent;
582
583 /*
584 * We look for our device - PCU PMC.
585 * We assume that there is maximum one device.
586 *
587 * We can't use plain pci_driver mechanism,
588 * as the device is really a multiple function device,
589 * main driver that binds to the pci_device is lpc_ich
590 * and have to find & bind to the device this way.
591 */
592 for_each_pci_dev(pdev) {
593 ent = pci_match_id(pmc_pci_ids, pdev);
594 if (ent)
595 return pmc_setup_dev(pdev, ent);
596 }
597 /* Device not found */
598 return -ENODEV;
599 }
600
601 device_initcall(pmc_atom_init);
602
603 /*
604 MODULE_AUTHOR("Aubrey Li <aubrey.li@linux.intel.com>");
605 MODULE_DESCRIPTION("Intel Atom SoC Power Management Controller Interface");
606 MODULE_LICENSE("GPL v2");
607 */
608