xref: /linux/drivers/platform/x86/intel/pmc/core.c (revision 9d588a1140b9ae211581a7a154d0b806d8cd8238)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Intel Core SoC Power Management Controller Driver
4  *
5  * Copyright (c) 2016, Intel Corporation.
6  * All Rights Reserved.
7  *
8  * Authors: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
9  *          Vishwanath Somayaji <vishwanath.somayaji@intel.com>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 enum header_type {
15 	HEADER_STATUS,
16 	HEADER_VALUE,
17 };
18 
19 #include <linux/bitfield.h>
20 #include <linux/debugfs.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/err.h>
24 #include <linux/io.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/units.h>
30 
31 #include <asm/cpuid/api.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/msr.h>
35 #include <asm/tsc.h>
36 
37 #include "core.h"
38 #include "ssram_telemetry.h"
39 #include "../pmt/telemetry.h"
40 
41 /* Maximum number of modes supported by platfoms that has low power mode capability */
42 const char *pmc_lpm_modes[] = {
43 	"S0i2.0",
44 	"S0i2.1",
45 	"S0i2.2",
46 	"S0i3.0",
47 	"S0i3.1",
48 	"S0i3.2",
49 	"S0i3.3",
50 	"S0i3.4",
51 	NULL
52 };
53 
54 /* PKGC MSRs are common across Intel Core SoCs */
55 const struct pmc_bit_map msr_map[] = {
56 	{"Package C2",                  MSR_PKG_C2_RESIDENCY},
57 	{"Package C3",                  MSR_PKG_C3_RESIDENCY},
58 	{"Package C6",                  MSR_PKG_C6_RESIDENCY},
59 	{"Package C7",                  MSR_PKG_C7_RESIDENCY},
60 	{"Package C8",                  MSR_PKG_C8_RESIDENCY},
61 	{"Package C9",                  MSR_PKG_C9_RESIDENCY},
62 	{"Package C10",                 MSR_PKG_C10_RESIDENCY},
63 	{}
64 };
65 
pmc_core_reg_read(struct pmc * pmc,int reg_offset)66 static inline u32 pmc_core_reg_read(struct pmc *pmc, int reg_offset)
67 {
68 	return readl(pmc->regbase + reg_offset);
69 }
70 
pmc_core_reg_write(struct pmc * pmc,int reg_offset,u32 val)71 static inline void pmc_core_reg_write(struct pmc *pmc, int reg_offset,
72 				      u32 val)
73 {
74 	writel(val, pmc->regbase + reg_offset);
75 }
76 
pmc_core_adjust_slp_s0_step(struct pmc * pmc,u32 value)77 static inline u64 pmc_core_adjust_slp_s0_step(struct pmc *pmc, u32 value)
78 {
79 	/*
80 	 * ADL PCH does not have the SLP_S0 counter and LPM Residency counters are
81 	 * used as a workaround which uses 30.5 usec tick. All other client
82 	 * programs have the legacy SLP_S0 residency counter that is using the 122
83 	 * usec tick.
84 	 */
85 	const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
86 
87 	if (pmc->map == &adl_reg_map)
88 		return (u64)value * GET_X2_COUNTER((u64)lpm_adj_x2);
89 	else
90 		return (u64)value * pmc->map->slp_s0_res_counter_step;
91 }
92 
set_etr3(struct pmc_dev * pmcdev)93 static int set_etr3(struct pmc_dev *pmcdev)
94 {
95 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
96 	const struct pmc_reg_map *map = pmc->map;
97 	u32 reg;
98 
99 	if (!map->etr3_offset)
100 		return -EOPNOTSUPP;
101 
102 	guard(mutex)(&pmcdev->lock);
103 
104 	/* check if CF9 is locked */
105 	reg = pmc_core_reg_read(pmc, map->etr3_offset);
106 	if (reg & ETR3_CF9LOCK)
107 		return -EACCES;
108 
109 	/* write CF9 global reset bit */
110 	reg |= ETR3_CF9GR;
111 	pmc_core_reg_write(pmc, map->etr3_offset, reg);
112 
113 	reg = pmc_core_reg_read(pmc, map->etr3_offset);
114 	if (!(reg & ETR3_CF9GR))
115 		return -EIO;
116 
117 	return 0;
118 }
etr3_is_visible(struct kobject * kobj,struct attribute * attr,int idx)119 static umode_t etr3_is_visible(struct kobject *kobj,
120 				struct attribute *attr,
121 				int idx)
122 {
123 	struct device *dev = kobj_to_dev(kobj);
124 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
125 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
126 	const struct pmc_reg_map *map = pmc->map;
127 	u32 reg;
128 
129 	scoped_guard(mutex, &pmcdev->lock)
130 		reg = pmc_core_reg_read(pmc, map->etr3_offset);
131 
132 	return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode;
133 }
134 
etr3_show(struct device * dev,struct device_attribute * attr,char * buf)135 static ssize_t etr3_show(struct device *dev,
136 				 struct device_attribute *attr, char *buf)
137 {
138 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
139 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
140 	const struct pmc_reg_map *map = pmc->map;
141 	u32 reg;
142 
143 	if (!map->etr3_offset)
144 		return -EOPNOTSUPP;
145 
146 	scoped_guard(mutex, &pmcdev->lock) {
147 		reg = pmc_core_reg_read(pmc, map->etr3_offset);
148 		reg &= ETR3_CF9GR | ETR3_CF9LOCK;
149 	}
150 
151 	return sysfs_emit(buf, "0x%08x", reg);
152 }
153 
etr3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)154 static ssize_t etr3_store(struct device *dev,
155 				  struct device_attribute *attr,
156 				  const char *buf, size_t len)
157 {
158 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
159 	int err;
160 	u32 reg;
161 
162 	err = kstrtouint(buf, 16, &reg);
163 	if (err)
164 		return err;
165 
166 	/* allow only CF9 writes */
167 	if (reg != ETR3_CF9GR)
168 		return -EINVAL;
169 
170 	err = set_etr3(pmcdev);
171 	if (err)
172 		return err;
173 
174 	return len;
175 }
176 static DEVICE_ATTR_RW(etr3);
177 
178 static struct attribute *pmc_attrs[] = {
179 	&dev_attr_etr3.attr,
180 	NULL
181 };
182 
183 static const struct attribute_group pmc_attr_group = {
184 	.attrs = pmc_attrs,
185 	.is_visible = etr3_is_visible,
186 };
187 
188 static const struct attribute_group *pmc_dev_groups[] = {
189 	&pmc_attr_group,
190 	NULL
191 };
192 
pmc_core_dev_state_get(void * data,u64 * val)193 static int pmc_core_dev_state_get(void *data, u64 *val)
194 {
195 	struct pmc *pmc = data;
196 	const struct pmc_reg_map *map = pmc->map;
197 	u32 value;
198 
199 	value = pmc_core_reg_read(pmc, map->slp_s0_offset);
200 	*val = pmc_core_adjust_slp_s0_step(pmc, value);
201 
202 	return 0;
203 }
204 
205 DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n");
206 
pmc_core_pson_residency_get(void * data,u64 * val)207 static int pmc_core_pson_residency_get(void *data, u64 *val)
208 {
209 	struct pmc *pmc = data;
210 	const struct pmc_reg_map *map = pmc->map;
211 	u32 value;
212 
213 	value = pmc_core_reg_read(pmc, map->pson_residency_offset);
214 	*val = (u64)value * map->pson_residency_counter_step;
215 
216 	return 0;
217 }
218 
219 DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_pson_residency, pmc_core_pson_residency_get, NULL, "%llu\n");
220 
pmc_core_check_read_lock_bit(struct pmc * pmc)221 static int pmc_core_check_read_lock_bit(struct pmc *pmc)
222 {
223 	u32 value;
224 
225 	value = pmc_core_reg_read(pmc, pmc->map->pm_cfg_offset);
226 	return value & BIT(pmc->map->pm_read_disable_bit);
227 }
228 
pmc_core_slps0_display(struct pmc * pmc,struct device * dev,struct seq_file * s)229 static void pmc_core_slps0_display(struct pmc *pmc, struct device *dev,
230 				   struct seq_file *s)
231 {
232 	const struct pmc_bit_map **maps = pmc->map->slps0_dbg_maps;
233 	const struct pmc_bit_map *map;
234 	int offset = pmc->map->slps0_dbg_offset;
235 	u32 data;
236 
237 	while (*maps) {
238 		map = *maps;
239 		data = pmc_core_reg_read(pmc, offset);
240 		offset += 4;
241 		while (map->name) {
242 			if (dev)
243 				dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n",
244 					map->name,
245 					data & map->bit_mask ? "Yes" : "No");
246 			if (s)
247 				seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n",
248 					   map->name,
249 					   data & map->bit_mask ? "Yes" : "No");
250 			++map;
251 		}
252 		++maps;
253 	}
254 }
255 
pmc_core_lpm_get_arr_size(const struct pmc_bit_map ** maps)256 static unsigned int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps)
257 {
258 	unsigned int idx;
259 
260 	for (idx = 0; maps[idx]; idx++)
261 		;/* Nothing */
262 
263 	return idx;
264 }
265 
pmc_core_lpm_display(struct pmc * pmc,struct device * dev,struct seq_file * s,u32 offset,int pmc_index,const char * str,const struct pmc_bit_map ** maps)266 static void pmc_core_lpm_display(struct pmc *pmc, struct device *dev,
267 				 struct seq_file *s, u32 offset, int pmc_index,
268 				 const char *str,
269 				 const struct pmc_bit_map **maps)
270 {
271 	unsigned int index, idx, len = 32, arr_size;
272 	u32 bit_mask, *lpm_regs;
273 
274 	arr_size = pmc_core_lpm_get_arr_size(maps);
275 	lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL);
276 	if (!lpm_regs)
277 		return;
278 
279 	for (index = 0; index < arr_size; index++) {
280 		lpm_regs[index] = pmc_core_reg_read(pmc, offset);
281 		offset += 4;
282 	}
283 
284 	for (idx = 0; idx < arr_size; idx++) {
285 		if (dev)
286 			dev_info(dev, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
287 				lpm_regs[idx]);
288 		if (s)
289 			seq_printf(s, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
290 				   lpm_regs[idx]);
291 		for (index = 0; maps[idx][index].name && index < len; index++) {
292 			bit_mask = maps[idx][index].bit_mask;
293 			if (dev)
294 				dev_info(dev, "PMC%d:%-30s %-30d\n", pmc_index,
295 					maps[idx][index].name,
296 					lpm_regs[idx] & bit_mask ? 1 : 0);
297 			if (s)
298 				seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_index,
299 					   maps[idx][index].name,
300 					   lpm_regs[idx] & bit_mask ? 1 : 0);
301 		}
302 	}
303 
304 	kfree(lpm_regs);
305 }
306 
307 static bool slps0_dbg_latch;
308 
pmc_core_reg_read_byte(struct pmc * pmc,int offset)309 static inline u8 pmc_core_reg_read_byte(struct pmc *pmc, int offset)
310 {
311 	return readb(pmc->regbase + offset);
312 }
313 
pmc_core_display_map(struct seq_file * s,int index,int idx,int ip,int pmc_idx,u8 pf_reg,const struct pmc_bit_map ** pf_map)314 static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip,
315 				 int pmc_idx, u8 pf_reg, const struct pmc_bit_map **pf_map)
316 {
317 	seq_printf(s, "PMC%d:PCH IP: %-2d - %-32s\tState: %s\n",
318 		   pmc_idx, ip, pf_map[idx][index].name,
319 		   pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On");
320 }
321 
pmc_core_ppfear_show(struct seq_file * s,void * unused)322 static int pmc_core_ppfear_show(struct seq_file *s, void *unused)
323 {
324 	struct pmc_dev *pmcdev = s->private;
325 	unsigned int pmc_idx;
326 
327 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
328 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
329 		const struct pmc_bit_map **maps;
330 		u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES];
331 		unsigned int index, iter, idx, ip = 0;
332 
333 		if (!pmc)
334 			continue;
335 
336 		maps = pmc->map->pfear_sts;
337 		iter = pmc->map->ppfear0_offset;
338 
339 		for (index = 0; index < pmc->map->ppfear_buckets &&
340 		     index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++)
341 			pf_regs[index] = pmc_core_reg_read_byte(pmc, iter);
342 
343 		for (idx = 0; maps[idx]; idx++) {
344 			for (index = 0; maps[idx][index].name &&
345 			     index < pmc->map->ppfear_buckets * 8; ip++, index++)
346 				pmc_core_display_map(s, index, idx, ip, pmc_idx,
347 						     pf_regs[index / 8], maps);
348 		}
349 	}
350 
351 	return 0;
352 }
353 DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear);
354 
355 /* This function should return link status, 0 means ready */
pmc_core_mtpmc_link_status(struct pmc * pmc)356 static int pmc_core_mtpmc_link_status(struct pmc *pmc)
357 {
358 	u32 value;
359 
360 	value = pmc_core_reg_read(pmc, SPT_PMC_PM_STS_OFFSET);
361 	return value & BIT(SPT_PMC_MSG_FULL_STS_BIT);
362 }
363 
pmc_core_send_msg(struct pmc * pmc,u32 * addr_xram)364 static int pmc_core_send_msg(struct pmc *pmc, u32 *addr_xram)
365 {
366 	u32 dest;
367 	int timeout;
368 
369 	for (timeout = NUM_RETRIES; timeout > 0; timeout--) {
370 		if (pmc_core_mtpmc_link_status(pmc) == 0)
371 			break;
372 		msleep(5);
373 	}
374 
375 	if (timeout <= 0 && pmc_core_mtpmc_link_status(pmc))
376 		return -EBUSY;
377 
378 	dest = (*addr_xram & MTPMC_MASK) | (1U << 1);
379 	pmc_core_reg_write(pmc, SPT_PMC_MTPMC_OFFSET, dest);
380 	return 0;
381 }
382 
pmc_core_mphy_pg_show(struct seq_file * s,void * unused)383 static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused)
384 {
385 	struct pmc_dev *pmcdev = s->private;
386 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
387 	const struct pmc_bit_map *map = pmc->map->mphy_sts;
388 	u32 mphy_core_reg_low, mphy_core_reg_high;
389 	u32 val_low, val_high;
390 	unsigned int index;
391 	int err = 0;
392 
393 	if (pmcdev->pmc_xram_read_bit) {
394 		seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
395 		return 0;
396 	}
397 
398 	mphy_core_reg_low  = (SPT_PMC_MPHY_CORE_STS_0 << 16);
399 	mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16);
400 
401 	guard(mutex)(&pmcdev->lock);
402 
403 	err = pmc_core_send_msg(pmc, &mphy_core_reg_low);
404 	if (err)
405 		return err;
406 
407 	msleep(10);
408 	val_low = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
409 
410 	err = pmc_core_send_msg(pmc, &mphy_core_reg_high);
411 	if (err)
412 		return err;
413 
414 	msleep(10);
415 	val_high = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
416 
417 	for (index = 0; index < 8 && map[index].name; index++) {
418 		seq_printf(s, "%-32s\tState: %s\n",
419 			   map[index].name,
420 			   map[index].bit_mask & val_low ? "Not power gated" :
421 			   "Power gated");
422 	}
423 
424 	for (index = 8; map[index].name; index++) {
425 		seq_printf(s, "%-32s\tState: %s\n",
426 			   map[index].name,
427 			   map[index].bit_mask & val_high ? "Not power gated" :
428 			   "Power gated");
429 	}
430 
431 	return 0;
432 }
433 DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg);
434 
pmc_core_pll_show(struct seq_file * s,void * unused)435 static int pmc_core_pll_show(struct seq_file *s, void *unused)
436 {
437 	struct pmc_dev *pmcdev = s->private;
438 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
439 	const struct pmc_bit_map *map = pmc->map->pll_sts;
440 	u32 mphy_common_reg, val;
441 	unsigned int index;
442 	int err = 0;
443 
444 	if (pmcdev->pmc_xram_read_bit) {
445 		seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
446 		return 0;
447 	}
448 
449 	mphy_common_reg  = (SPT_PMC_MPHY_COM_STS_0 << 16);
450 	guard(mutex)(&pmcdev->lock);
451 
452 	err = pmc_core_send_msg(pmc, &mphy_common_reg);
453 	if (err)
454 		return err;
455 
456 	/* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */
457 	msleep(10);
458 	val = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
459 
460 	for (index = 0; map[index].name ; index++) {
461 		seq_printf(s, "%-32s\tState: %s\n",
462 			   map[index].name,
463 			   map[index].bit_mask & val ? "Active" : "Idle");
464 	}
465 
466 	return 0;
467 }
468 DEFINE_SHOW_ATTRIBUTE(pmc_core_pll);
469 
pmc_core_send_ltr_ignore(struct pmc_dev * pmcdev,u32 value,int ignore)470 int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value, int ignore)
471 {
472 	struct pmc *pmc;
473 	const struct pmc_reg_map *map;
474 	u32 reg;
475 	unsigned int pmc_idx;
476 	int ltr_index;
477 
478 	ltr_index = value;
479 	/* For platforms with multiple pmcs, ltr index value given by user
480 	 * is based on the contiguous indexes from ltr_show output.
481 	 * pmc index and ltr index needs to be calculated from it.
482 	 */
483 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs) && ltr_index >= 0; pmc_idx++) {
484 		pmc = pmcdev->pmcs[pmc_idx];
485 
486 		if (!pmc)
487 			continue;
488 
489 		map = pmc->map;
490 		if (ltr_index <= map->ltr_ignore_max)
491 			break;
492 
493 		/* Along with IP names, ltr_show map includes CURRENT_PLATFORM
494 		 * and AGGREGATED_SYSTEM values per PMC. Take these two index
495 		 * values into account in ltr_index calculation. Also, to start
496 		 * ltr index from zero for next pmc, subtract it by 1.
497 		 */
498 		ltr_index = ltr_index - (map->ltr_ignore_max + 2) - 1;
499 	}
500 
501 	if (pmc_idx >= ARRAY_SIZE(pmcdev->pmcs) || ltr_index < 0)
502 		return -EINVAL;
503 
504 	pr_debug("ltr_ignore for pmc%d: ltr_index:%d\n", pmc_idx, ltr_index);
505 
506 	guard(mutex)(&pmcdev->lock);
507 
508 	reg = pmc_core_reg_read(pmc, map->ltr_ignore_offset);
509 	if (ignore)
510 		reg |= BIT(ltr_index);
511 	else
512 		reg &= ~BIT(ltr_index);
513 	pmc_core_reg_write(pmc, map->ltr_ignore_offset, reg);
514 
515 	return 0;
516 }
517 
pmc_core_ltr_write(struct pmc_dev * pmcdev,const char __user * userbuf,size_t count,int ignore)518 static ssize_t pmc_core_ltr_write(struct pmc_dev *pmcdev,
519 				  const char __user *userbuf,
520 				  size_t count, int ignore)
521 {
522 	u32 value;
523 	int err;
524 
525 	err = kstrtou32_from_user(userbuf, count, 10, &value);
526 	if (err)
527 		return err;
528 
529 	err = pmc_core_send_ltr_ignore(pmcdev, value, ignore);
530 
531 	return err ?: count;
532 }
533 
pmc_core_ltr_ignore_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)534 static ssize_t pmc_core_ltr_ignore_write(struct file *file,
535 					 const char __user *userbuf,
536 					 size_t count, loff_t *ppos)
537 {
538 	struct seq_file *s = file->private_data;
539 	struct pmc_dev *pmcdev = s->private;
540 
541 	return pmc_core_ltr_write(pmcdev, userbuf, count, 1);
542 }
543 
pmc_core_ltr_ignore_show(struct seq_file * s,void * unused)544 static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused)
545 {
546 	return 0;
547 }
548 DEFINE_SHOW_STORE_ATTRIBUTE(pmc_core_ltr_ignore);
549 
pmc_core_ltr_restore_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)550 static ssize_t pmc_core_ltr_restore_write(struct file *file,
551 					  const char __user *userbuf,
552 					  size_t count, loff_t *ppos)
553 {
554 	struct seq_file *s = file->private_data;
555 	struct pmc_dev *pmcdev = s->private;
556 
557 	return pmc_core_ltr_write(pmcdev, userbuf, count, 0);
558 }
559 
pmc_core_ltr_restore_show(struct seq_file * s,void * unused)560 static int pmc_core_ltr_restore_show(struct seq_file *s, void *unused)
561 {
562 	return 0;
563 }
564 DEFINE_SHOW_STORE_ATTRIBUTE(pmc_core_ltr_restore);
565 
pmc_core_slps0_dbg_latch(struct pmc_dev * pmcdev,bool reset)566 static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset)
567 {
568 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
569 	const struct pmc_reg_map *map = pmc->map;
570 	u32 fd;
571 
572 	guard(mutex)(&pmcdev->lock);
573 
574 	if (!reset && !slps0_dbg_latch)
575 		return;
576 
577 	fd = pmc_core_reg_read(pmc, map->slps0_dbg_offset);
578 	if (reset)
579 		fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS;
580 	else
581 		fd |= CNP_PMC_LATCH_SLPS0_EVENTS;
582 	pmc_core_reg_write(pmc, map->slps0_dbg_offset, fd);
583 
584 	slps0_dbg_latch = false;
585 }
586 
pmc_core_slps0_dbg_show(struct seq_file * s,void * unused)587 static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused)
588 {
589 	struct pmc_dev *pmcdev = s->private;
590 
591 	pmc_core_slps0_dbg_latch(pmcdev, false);
592 	pmc_core_slps0_display(pmcdev->pmcs[PMC_IDX_MAIN], NULL, s);
593 	pmc_core_slps0_dbg_latch(pmcdev, true);
594 
595 	return 0;
596 }
597 DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg);
598 
convert_ltr_scale(u32 val)599 static u32 convert_ltr_scale(u32 val)
600 {
601 	/*
602 	 * As per PCIE specification supporting document
603 	 * ECN_LatencyTolnReporting_14Aug08.pdf the Latency
604 	 * Tolerance Reporting data payload is encoded in a
605 	 * 3 bit scale and 10 bit value fields. Values are
606 	 * multiplied by the indicated scale to yield an absolute time
607 	 * value, expressible in a range from 1 nanosecond to
608 	 * 2^25*(2^10-1) = 34,326,183,936 nanoseconds.
609 	 *
610 	 * scale encoding is as follows:
611 	 *
612 	 * ----------------------------------------------
613 	 * |scale factor	|	Multiplier (ns)	|
614 	 * ----------------------------------------------
615 	 * |	0		|	1		|
616 	 * |	1		|	32		|
617 	 * |	2		|	1024		|
618 	 * |	3		|	32768		|
619 	 * |	4		|	1048576		|
620 	 * |	5		|	33554432	|
621 	 * |	6		|	Invalid		|
622 	 * |	7		|	Invalid		|
623 	 * ----------------------------------------------
624 	 */
625 	if (val > 5) {
626 		pr_warn("Invalid LTR scale factor.\n");
627 		return 0;
628 	}
629 
630 	return 1U << (5 * val);
631 }
632 
pmc_core_ltr_show(struct seq_file * s,void * unused)633 static int pmc_core_ltr_show(struct seq_file *s, void *unused)
634 {
635 	struct pmc_dev *pmcdev = s->private;
636 	u64 decoded_snoop_ltr, decoded_non_snoop_ltr, val;
637 	u32 ltr_raw_data, scale;
638 	u16 snoop_ltr, nonsnoop_ltr;
639 	unsigned int pmc_idx, index, ltr_index = 0;
640 
641 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
642 		struct pmc *pmc;
643 		const struct pmc_bit_map *map;
644 		u32 ltr_ign_reg;
645 
646 		pmc = pmcdev->pmcs[pmc_idx];
647 		if (!pmc)
648 			continue;
649 
650 		scoped_guard(mutex, &pmcdev->lock)
651 			ltr_ign_reg = pmc_core_reg_read(pmc, pmc->map->ltr_ignore_offset);
652 
653 		map = pmc->map->ltr_show_sts;
654 		for (index = 0; map[index].name; index++) {
655 			bool ltr_ign_data;
656 
657 			if (index > pmc->map->ltr_ignore_max)
658 				ltr_ign_data = false;
659 			else
660 				ltr_ign_data = ltr_ign_reg & BIT(index);
661 
662 			decoded_snoop_ltr = decoded_non_snoop_ltr = 0;
663 			ltr_raw_data = pmc_core_reg_read(pmc,
664 							 map[index].bit_mask);
665 			snoop_ltr = ltr_raw_data & ~MTPMC_MASK;
666 			nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK;
667 
668 			if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) {
669 				scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr);
670 				val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr);
671 				decoded_non_snoop_ltr = val * convert_ltr_scale(scale);
672 			}
673 			if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) {
674 				scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr);
675 				val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr);
676 				decoded_snoop_ltr = val * convert_ltr_scale(scale);
677 			}
678 
679 			seq_printf(s, "%d\tPMC%d:%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\tLTR_IGNORE: %d\n",
680 				   ltr_index, pmc_idx, map[index].name, ltr_raw_data,
681 				   decoded_non_snoop_ltr,
682 				   decoded_snoop_ltr, ltr_ign_data);
683 			ltr_index++;
684 		}
685 	}
686 	return 0;
687 }
688 DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr);
689 
pmc_core_s0ix_blocker_show(struct seq_file * s,void * unused)690 static int pmc_core_s0ix_blocker_show(struct seq_file *s, void *unused)
691 {
692 	struct pmc_dev *pmcdev = s->private;
693 	unsigned int pmc_idx;
694 
695 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
696 		const struct pmc_bit_map **maps;
697 		unsigned int arr_size, r_idx;
698 		u32 offset, counter;
699 		struct pmc *pmc;
700 
701 		pmc = pmcdev->pmcs[pmc_idx];
702 		if (!pmc)
703 			continue;
704 		maps = pmc->map->s0ix_blocker_maps;
705 		offset = pmc->map->s0ix_blocker_offset;
706 		arr_size = pmc_core_lpm_get_arr_size(maps);
707 
708 		for (r_idx = 0; r_idx < arr_size; r_idx++) {
709 			const struct pmc_bit_map *map;
710 
711 			for (map = maps[r_idx]; map->name; map++) {
712 				if (!map->blk)
713 					continue;
714 				counter = pmc_core_reg_read(pmc, offset);
715 				seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_idx,
716 					   map->name, counter);
717 				offset += map->blk * S0IX_BLK_SIZE;
718 			}
719 		}
720 	}
721 	return 0;
722 }
723 DEFINE_SHOW_ATTRIBUTE(pmc_core_s0ix_blocker);
724 
pmc_core_ltr_ignore_all(struct pmc_dev * pmcdev)725 static void pmc_core_ltr_ignore_all(struct pmc_dev *pmcdev)
726 {
727 	unsigned int pmc_idx;
728 
729 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
730 		struct pmc *pmc;
731 		u32 ltr_ign;
732 
733 		pmc = pmcdev->pmcs[pmc_idx];
734 		if (!pmc)
735 			continue;
736 
737 		guard(mutex)(&pmcdev->lock);
738 		pmc->ltr_ign = pmc_core_reg_read(pmc, pmc->map->ltr_ignore_offset);
739 
740 		/* ltr_ignore_max is the max index value for LTR ignore register */
741 		ltr_ign = pmc->ltr_ign | GENMASK(pmc->map->ltr_ignore_max, 0);
742 		pmc_core_reg_write(pmc, pmc->map->ltr_ignore_offset, ltr_ign);
743 	}
744 
745 	/*
746 	 * Ignoring ME during suspend is blocking platforms with ADL PCH to get to
747 	 * deeper S0ix substate.
748 	 */
749 	pmc_core_send_ltr_ignore(pmcdev, 6, 0);
750 }
751 
pmc_core_ltr_restore_all(struct pmc_dev * pmcdev)752 static void pmc_core_ltr_restore_all(struct pmc_dev *pmcdev)
753 {
754 	unsigned int pmc_idx;
755 
756 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
757 		struct pmc *pmc;
758 
759 		pmc = pmcdev->pmcs[pmc_idx];
760 		if (!pmc)
761 			continue;
762 
763 		guard(mutex)(&pmcdev->lock);
764 		pmc_core_reg_write(pmc, pmc->map->ltr_ignore_offset, pmc->ltr_ign);
765 	}
766 }
767 
adjust_lpm_residency(struct pmc * pmc,u32 offset,const int lpm_adj_x2)768 static inline u64 adjust_lpm_residency(struct pmc *pmc, u32 offset,
769 				       const int lpm_adj_x2)
770 {
771 	u64 lpm_res = pmc_core_reg_read(pmc, offset);
772 
773 	return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res);
774 }
775 
pmc_core_substate_res_show(struct seq_file * s,void * unused)776 static int pmc_core_substate_res_show(struct seq_file *s, void *unused)
777 {
778 	struct pmc_dev *pmcdev = s->private;
779 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
780 	const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
781 	u32 offset = pmc->map->lpm_residency_offset;
782 	int mode;
783 
784 	seq_printf(s, "%-10s %-15s\n", "Substate", "Residency");
785 
786 	pmc_for_each_mode(mode, pmcdev) {
787 		seq_printf(s, "%-10s %-15llu\n", pmc_lpm_modes[mode],
788 			   adjust_lpm_residency(pmc, offset + (4 * mode), lpm_adj_x2));
789 	}
790 
791 	return 0;
792 }
793 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res);
794 
pmc_core_substate_sts_regs_show(struct seq_file * s,void * unused)795 static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused)
796 {
797 	struct pmc_dev *pmcdev = s->private;
798 	unsigned int pmc_idx;
799 
800 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
801 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
802 		const struct pmc_bit_map **maps;
803 		u32 offset;
804 
805 		if (!pmc)
806 			continue;
807 		maps = pmc->map->lpm_sts;
808 		offset = pmc->map->lpm_status_offset;
809 		pmc_core_lpm_display(pmc, NULL, s, offset, pmc_idx, "STATUS", maps);
810 	}
811 
812 	return 0;
813 }
814 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs);
815 
pmc_core_substate_l_sts_regs_show(struct seq_file * s,void * unused)816 static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused)
817 {
818 	struct pmc_dev *pmcdev = s->private;
819 	unsigned int pmc_idx;
820 
821 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
822 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
823 		const struct pmc_bit_map **maps;
824 		u32 offset;
825 
826 		if (!pmc)
827 			continue;
828 		maps = pmc->map->lpm_sts;
829 		offset = pmc->map->lpm_live_status_offset;
830 		pmc_core_lpm_display(pmc, NULL, s, offset, pmc_idx, "LIVE_STATUS", maps);
831 	}
832 
833 	return 0;
834 }
835 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs);
836 
pmc_core_substate_req_header_show(struct seq_file * s,int pmc_index,enum header_type type)837 static void pmc_core_substate_req_header_show(struct seq_file *s, int pmc_index,
838 					      enum header_type type)
839 {
840 	struct pmc_dev *pmcdev = s->private;
841 	int mode;
842 
843 	seq_printf(s, "%40s |", "Element");
844 	pmc_for_each_mode(mode, pmcdev)
845 		seq_printf(s, " %9s |", pmc_lpm_modes[mode]);
846 
847 	if (type == HEADER_STATUS) {
848 		seq_printf(s, " %9s |", "Status");
849 		seq_printf(s, " %11s |\n", "Live Status");
850 	} else {
851 		seq_printf(s, " %9s |\n", "Value");
852 	}
853 }
854 
pmc_core_substate_blk_req_show(struct seq_file * s,void * unused)855 static int pmc_core_substate_blk_req_show(struct seq_file *s, void *unused)
856 {
857 	struct pmc_dev *pmcdev = s->private;
858 	unsigned int pmc_idx;
859 
860 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
861 		const struct pmc_bit_map **maps;
862 		unsigned int arr_size, r_idx;
863 		u32 offset, counter;
864 		u32 *lpm_req_regs;
865 		struct pmc *pmc;
866 
867 		pmc = pmcdev->pmcs[pmc_idx];
868 		if (!pmc || !pmc->lpm_req_regs)
869 			continue;
870 
871 		lpm_req_regs = pmc->lpm_req_regs;
872 		maps = pmc->map->s0ix_blocker_maps;
873 		offset = pmc->map->s0ix_blocker_offset;
874 		arr_size = pmc_core_lpm_get_arr_size(maps);
875 
876 		/* Display the header */
877 		pmc_core_substate_req_header_show(s, pmc_idx, HEADER_VALUE);
878 
879 		for (r_idx = 0; r_idx < arr_size; r_idx++) {
880 			const struct pmc_bit_map *map;
881 
882 			for (map = maps[r_idx]; map->name; map++) {
883 				int mode;
884 
885 				if (!map->blk)
886 					continue;
887 
888 				counter = pmc_core_reg_read(pmc, offset);
889 				seq_printf(s, "pmc%u: %34s |", pmc_idx, map->name);
890 				pmc_for_each_mode(mode, pmcdev) {
891 					bool required = *lpm_req_regs & BIT(mode);
892 
893 					seq_printf(s, " %9s |", required ? "Required" : " ");
894 				}
895 				seq_printf(s, " %9u |\n", counter);
896 				offset += map->blk * S0IX_BLK_SIZE;
897 				lpm_req_regs++;
898 			}
899 		}
900 	}
901 	return 0;
902 }
903 
pmc_core_substate_blk_req_open(struct inode * inode,struct file * file)904 static int pmc_core_substate_blk_req_open(struct inode *inode, struct file *file)
905 {
906 	return single_open(file, pmc_core_substate_blk_req_show, inode->i_private);
907 }
908 
909 const struct file_operations pmc_core_substate_blk_req_fops = {
910 	.owner		= THIS_MODULE,
911 	.open		= pmc_core_substate_blk_req_open,
912 	.read		= seq_read,
913 	.llseek		= seq_lseek,
914 	.release	= single_release,
915 };
916 
pmc_core_substate_req_regs_show(struct seq_file * s,void * unused)917 static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused)
918 {
919 	struct pmc_dev *pmcdev = s->private;
920 	u32 sts_offset;
921 	u32 sts_offset_live;
922 	u32 *lpm_req_regs;
923 	unsigned int mp, pmc_idx;
924 	int num_maps;
925 
926 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
927 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
928 		const struct pmc_bit_map **maps;
929 
930 		if (!pmc)
931 			continue;
932 
933 		maps = pmc->map->lpm_sts;
934 		num_maps = pmc->map->lpm_num_maps;
935 		sts_offset = pmc->map->lpm_status_offset;
936 		sts_offset_live = pmc->map->lpm_live_status_offset;
937 		lpm_req_regs = pmc->lpm_req_regs;
938 
939 		/*
940 		 * When there are multiple PMCs, though the PMC may exist, the
941 		 * requirement register discovery could have failed so check
942 		 * before accessing.
943 		 */
944 		if (!lpm_req_regs)
945 			continue;
946 
947 		/* Display the header */
948 		pmc_core_substate_req_header_show(s, pmc_idx, HEADER_STATUS);
949 
950 		/* Loop over maps */
951 		for (mp = 0; mp < num_maps; mp++) {
952 			u32 req_mask = 0;
953 			u32 lpm_status;
954 			u32 lpm_status_live;
955 			const struct pmc_bit_map *map;
956 			int mode, i, len = 32;
957 
958 			/*
959 			 * Capture the requirements and create a mask so that we only
960 			 * show an element if it's required for at least one of the
961 			 * enabled low power modes
962 			 */
963 			pmc_for_each_mode(mode, pmcdev)
964 				req_mask |= lpm_req_regs[mp + (mode * num_maps)];
965 
966 			/* Get the last latched status for this map */
967 			lpm_status = pmc_core_reg_read(pmc, sts_offset + (mp * 4));
968 
969 			/* Get the runtime status for this map */
970 			lpm_status_live = pmc_core_reg_read(pmc, sts_offset_live + (mp * 4));
971 
972 			/*  Loop over elements in this map */
973 			map = maps[mp];
974 			for (i = 0; map[i].name && i < len; i++) {
975 				u32 bit_mask = map[i].bit_mask;
976 
977 				if (!(bit_mask & req_mask)) {
978 					/*
979 					 * Not required for any enabled states
980 					 * so don't display
981 					 */
982 					continue;
983 				}
984 
985 				/* Display the element name in the first column */
986 				seq_printf(s, "pmc%d: %34s |", pmc_idx, map[i].name);
987 
988 				/* Loop over the enabled states and display if required */
989 				pmc_for_each_mode(mode, pmcdev) {
990 					bool required = lpm_req_regs[mp + (mode * num_maps)] &
991 							bit_mask;
992 					seq_printf(s, " %9s |", required ? "Required" : " ");
993 				}
994 
995 				/* In Status column, show the last captured state of this agent */
996 				seq_printf(s, " %9s |", lpm_status & bit_mask ? "Yes" : " ");
997 
998 				/* In Live status column, show the live state of this agent */
999 				seq_printf(s, " %11s |", lpm_status_live & bit_mask ? "Yes" : " ");
1000 
1001 				seq_puts(s, "\n");
1002 			}
1003 		}
1004 	}
1005 	return 0;
1006 }
1007 
pmc_core_substate_req_regs_open(struct inode * inode,struct file * file)1008 static int pmc_core_substate_req_regs_open(struct inode *inode, struct file *file)
1009 {
1010 	return single_open(file, pmc_core_substate_req_regs_show, inode->i_private);
1011 }
1012 
1013 const struct file_operations pmc_core_substate_req_regs_fops = {
1014 	.owner		= THIS_MODULE,
1015 	.open		= pmc_core_substate_req_regs_open,
1016 	.read		= seq_read,
1017 	.llseek		= seq_lseek,
1018 	.release	= single_release,
1019 };
1020 
pmc_core_get_crystal_freq(void)1021 static unsigned int pmc_core_get_crystal_freq(void)
1022 {
1023 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
1024 
1025 	if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC)
1026 		return 0;
1027 
1028 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
1029 
1030 	/* TSC/Crystal ratio, plus optionally Crystal Hz */
1031 	cpuid(CPUID_LEAF_TSC, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
1032 
1033 	if (ebx_numerator == 0 || eax_denominator == 0)
1034 		return 0;
1035 
1036 	return ecx_hz;
1037 }
1038 
pmc_core_die_c6_us_show(struct seq_file * s,void * unused)1039 static int pmc_core_die_c6_us_show(struct seq_file *s, void *unused)
1040 {
1041 	struct pmc_dev *pmcdev = s->private;
1042 	u64 die_c6_res, count;
1043 	int ret;
1044 
1045 	if (!pmcdev->crystal_freq) {
1046 		dev_warn_once(&pmcdev->pdev->dev, "Crystal frequency unavailable\n");
1047 		return -ENXIO;
1048 	}
1049 
1050 	ret = pmt_telem_read(pmcdev->punit_ep, pmcdev->die_c6_offset,
1051 			     &count, 1);
1052 	if (ret)
1053 		return ret;
1054 
1055 	die_c6_res = div64_u64(count * HZ_PER_MHZ, pmcdev->crystal_freq);
1056 	seq_printf(s, "%llu\n", die_c6_res);
1057 
1058 	return 0;
1059 }
1060 DEFINE_SHOW_ATTRIBUTE(pmc_core_die_c6_us);
1061 
pmc_core_lpm_latch_mode_show(struct seq_file * s,void * unused)1062 static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused)
1063 {
1064 	struct pmc_dev *pmcdev = s->private;
1065 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1066 	bool c10;
1067 	u32 reg;
1068 	int mode;
1069 
1070 	reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
1071 	if (reg & LPM_STS_LATCH_MODE) {
1072 		seq_puts(s, "c10");
1073 		c10 = false;
1074 	} else {
1075 		seq_puts(s, "[c10]");
1076 		c10 = true;
1077 	}
1078 
1079 	pmc_for_each_mode(mode, pmcdev) {
1080 		if ((BIT(mode) & reg) && !c10)
1081 			seq_printf(s, " [%s]", pmc_lpm_modes[mode]);
1082 		else
1083 			seq_printf(s, " %s", pmc_lpm_modes[mode]);
1084 	}
1085 
1086 	seq_puts(s, " clear\n");
1087 
1088 	return 0;
1089 }
1090 
pmc_core_lpm_latch_mode_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)1091 static ssize_t pmc_core_lpm_latch_mode_write(struct file *file,
1092 					     const char __user *userbuf,
1093 					     size_t count, loff_t *ppos)
1094 {
1095 	struct seq_file *s = file->private_data;
1096 	struct pmc_dev *pmcdev = s->private;
1097 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1098 	bool clear = false, c10 = false;
1099 	unsigned char buf[8];
1100 	int m, mode;
1101 	u32 reg;
1102 
1103 	if (count > sizeof(buf) - 1)
1104 		return -EINVAL;
1105 	if (copy_from_user(buf, userbuf, count))
1106 		return -EFAULT;
1107 	buf[count] = '\0';
1108 
1109 	/*
1110 	 * Allowed strings are:
1111 	 *	Any enabled substate, e.g. 'S0i2.0'
1112 	 *	'c10'
1113 	 *	'clear'
1114 	 */
1115 	mode = sysfs_match_string(pmc_lpm_modes, buf);
1116 
1117 	/* Check string matches enabled mode */
1118 	pmc_for_each_mode(m, pmcdev)
1119 		if (mode == m)
1120 			break;
1121 
1122 	if (mode != m || mode < 0) {
1123 		if (sysfs_streq(buf, "clear"))
1124 			clear = true;
1125 		else if (sysfs_streq(buf, "c10"))
1126 			c10 = true;
1127 		else
1128 			return -EINVAL;
1129 	}
1130 
1131 	if (clear) {
1132 		guard(mutex)(&pmcdev->lock);
1133 
1134 		reg = pmc_core_reg_read(pmc, pmc->map->etr3_offset);
1135 		reg |= ETR3_CLEAR_LPM_EVENTS;
1136 		pmc_core_reg_write(pmc, pmc->map->etr3_offset, reg);
1137 
1138 		return count;
1139 	}
1140 
1141 	if (c10) {
1142 		guard(mutex)(&pmcdev->lock);
1143 
1144 		reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
1145 		reg &= ~LPM_STS_LATCH_MODE;
1146 		pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
1147 
1148 		return count;
1149 	}
1150 
1151 	/*
1152 	 * For LPM mode latching we set the latch enable bit and selected mode
1153 	 * and clear everything else.
1154 	 */
1155 	reg = LPM_STS_LATCH_MODE | BIT(mode);
1156 	guard(mutex)(&pmcdev->lock);
1157 	pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
1158 
1159 	return count;
1160 }
1161 DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode);
1162 
pmc_core_pkgc_show(struct seq_file * s,void * unused)1163 static int pmc_core_pkgc_show(struct seq_file *s, void *unused)
1164 {
1165 	struct pmc *pmc = s->private;
1166 	const struct pmc_bit_map *map = pmc->map->msr_sts;
1167 	u64 pcstate_count;
1168 	unsigned int index;
1169 
1170 	for (index = 0; map[index].name ; index++) {
1171 		if (rdmsrq_safe(map[index].bit_mask, &pcstate_count))
1172 			continue;
1173 
1174 		pcstate_count *= 1000;
1175 		do_div(pcstate_count, tsc_khz);
1176 		seq_printf(s, "%-8s : %llu\n", map[index].name,
1177 			   pcstate_count);
1178 	}
1179 
1180 	return 0;
1181 }
1182 DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc);
1183 
pmc_core_pri_verify(u32 lpm_pri,u8 * mode_order)1184 static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order)
1185 {
1186 	unsigned int i, j;
1187 
1188 	if (!lpm_pri)
1189 		return false;
1190 	/*
1191 	 * Each byte contains the priority level for 2 modes (7:4 and 3:0).
1192 	 * In a 32 bit register this allows for describing 8 modes. Store the
1193 	 * levels and look for values out of range.
1194 	 */
1195 	for (i = 0; i < 8; i++) {
1196 		int level = lpm_pri & GENMASK(3, 0);
1197 
1198 		if (level >= LPM_MAX_NUM_MODES)
1199 			return false;
1200 
1201 		mode_order[i] = level;
1202 		lpm_pri >>= 4;
1203 	}
1204 
1205 	/* Check that we have unique values */
1206 	for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++)
1207 		for (j = i + 1; j < LPM_MAX_NUM_MODES; j++)
1208 			if (mode_order[i] == mode_order[j])
1209 				return false;
1210 
1211 	return true;
1212 }
1213 
pmc_core_get_low_power_modes(struct pmc_dev * pmcdev)1214 void pmc_core_get_low_power_modes(struct pmc_dev *pmcdev)
1215 {
1216 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1217 	u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI;
1218 	u8 mode_order[LPM_MAX_NUM_MODES];
1219 	u32 lpm_pri;
1220 	u32 lpm_en;
1221 	unsigned int i;
1222 	int mode, p;
1223 
1224 	/* Use LPM Maps to indicate support for substates */
1225 	if (!pmc->map->lpm_num_maps)
1226 		return;
1227 
1228 	lpm_en = pmc_core_reg_read(pmc, pmc->map->lpm_en_offset);
1229 	/* For MTL, BIT 31 is not an lpm mode but a enable bit.
1230 	 * Lower byte is enough to cover the number of lpm modes for all
1231 	 * platforms and hence mask the upper 3 bytes.
1232 	 */
1233 	pmcdev->num_lpm_modes = hweight32(lpm_en & 0xFF);
1234 
1235 	/* Read 32 bit LPM_PRI register */
1236 	lpm_pri = pmc_core_reg_read(pmc, pmc->map->lpm_priority_offset);
1237 
1238 
1239 	/*
1240 	 * If lpm_pri value passes verification, then override the default
1241 	 * modes here. Otherwise stick with the default.
1242 	 */
1243 	if (pmc_core_pri_verify(lpm_pri, mode_order))
1244 		/* Get list of modes in priority order */
1245 		for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++)
1246 			pri_order[mode_order[mode]] = mode;
1247 	else
1248 		dev_dbg(&pmcdev->pdev->dev,
1249 			 "Assuming a default substate order for this platform\n");
1250 
1251 	/*
1252 	 * Loop through all modes from lowest to highest priority,
1253 	 * and capture all enabled modes in order
1254 	 */
1255 	i = 0;
1256 	for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) {
1257 		int mode = pri_order[p];
1258 
1259 		if (!(BIT(mode) & lpm_en))
1260 			continue;
1261 
1262 		pmcdev->lpm_en_modes[i++] = mode;
1263 	}
1264 }
1265 
get_primary_reg_base(struct pmc * pmc)1266 int get_primary_reg_base(struct pmc *pmc)
1267 {
1268 	u64 slp_s0_addr;
1269 
1270 	if (lpit_read_residency_count_address(&slp_s0_addr)) {
1271 		pmc->base_addr = PMC_BASE_ADDR_DEFAULT;
1272 
1273 		if (page_is_ram(PHYS_PFN(pmc->base_addr)))
1274 			return -ENODEV;
1275 	} else {
1276 		pmc->base_addr = slp_s0_addr - pmc->map->slp_s0_offset;
1277 	}
1278 
1279 	pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1280 	if (!pmc->regbase)
1281 		return -ENOMEM;
1282 	return 0;
1283 }
1284 
pmc_core_register_endpoint(struct pci_dev * pcidev,u32 * guids)1285 static struct telem_endpoint *pmc_core_register_endpoint(struct pci_dev *pcidev, u32 *guids)
1286 {
1287 	struct telem_endpoint *ep;
1288 	unsigned int i;
1289 
1290 	for (i = 0; guids[i]; i++) {
1291 		ep = pmt_telem_find_and_register_endpoint(pcidev, guids[i], 0);
1292 		if (!IS_ERR(ep))
1293 			return ep;
1294 	}
1295 	return ERR_PTR(-ENODEV);
1296 }
1297 
pmc_core_punit_pmt_init(struct pmc_dev * pmcdev,u32 * guids)1298 void pmc_core_punit_pmt_init(struct pmc_dev *pmcdev, u32 *guids)
1299 {
1300 	struct telem_endpoint *ep;
1301 	struct pci_dev *pcidev;
1302 
1303 	pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(10, 0));
1304 	if (!pcidev) {
1305 		dev_err(&pmcdev->pdev->dev, "PUNIT PMT device not found.");
1306 		return;
1307 	}
1308 
1309 	ep = pmc_core_register_endpoint(pcidev, guids);
1310 	pci_dev_put(pcidev);
1311 	if (IS_ERR(ep)) {
1312 		dev_err(&pmcdev->pdev->dev,
1313 			"pmc_core: couldn't get DMU telem endpoint %ld",
1314 			PTR_ERR(ep));
1315 		return;
1316 	}
1317 
1318 	pmcdev->punit_ep = ep;
1319 	pmcdev->die_c6_offset = MTL_PMT_DMU_DIE_C6_OFFSET;
1320 }
1321 
pmc_core_set_device_d3(unsigned int device)1322 void pmc_core_set_device_d3(unsigned int device)
1323 {
1324 	struct pci_dev *pcidev;
1325 
1326 	pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL);
1327 	if (pcidev) {
1328 		if (!device_trylock(&pcidev->dev)) {
1329 			pci_dev_put(pcidev);
1330 			return;
1331 		}
1332 		if (!pcidev->dev.driver) {
1333 			dev_info(&pcidev->dev, "Setting to D3hot\n");
1334 			pci_set_power_state(pcidev, PCI_D3hot);
1335 		}
1336 		device_unlock(&pcidev->dev);
1337 		pci_dev_put(pcidev);
1338 	}
1339 }
1340 
pmc_core_is_pson_residency_enabled(struct pmc_dev * pmcdev)1341 static bool pmc_core_is_pson_residency_enabled(struct pmc_dev *pmcdev)
1342 {
1343 	struct platform_device *pdev = pmcdev->pdev;
1344 	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1345 	u8 val;
1346 
1347 	if (!adev)
1348 		return false;
1349 
1350 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev),
1351 				    "intel-cec-pson-switching-enabled-in-s0",
1352 				    &val))
1353 		return false;
1354 
1355 	return val == 1;
1356 }
1357 
pmc_core_dbgfs_unregister(struct pmc_dev * pmcdev)1358 static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev)
1359 {
1360 	debugfs_remove_recursive(pmcdev->dbgfs_dir);
1361 }
1362 
pmc_core_dbgfs_register(struct pmc_dev * pmcdev,struct pmc_dev_info * pmc_dev_info)1363 static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1364 {
1365 	struct pmc *primary_pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1366 	struct dentry *dir;
1367 
1368 	dir = debugfs_create_dir("pmc_core", NULL);
1369 	pmcdev->dbgfs_dir = dir;
1370 
1371 	debugfs_create_file("slp_s0_residency_usec", 0444, dir, primary_pmc,
1372 			    &pmc_core_dev_state);
1373 
1374 	if (primary_pmc->map->pfear_sts)
1375 		debugfs_create_file("pch_ip_power_gating_status", 0444, dir,
1376 				    pmcdev, &pmc_core_ppfear_fops);
1377 
1378 	debugfs_create_file("ltr_ignore", 0644, dir, pmcdev,
1379 			    &pmc_core_ltr_ignore_fops);
1380 
1381 	debugfs_create_file("ltr_restore", 0200, dir, pmcdev, &pmc_core_ltr_restore_fops);
1382 
1383 	debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops);
1384 
1385 	if (primary_pmc->map->s0ix_blocker_maps)
1386 		debugfs_create_file("s0ix_blocker", 0444, dir, pmcdev, &pmc_core_s0ix_blocker_fops);
1387 
1388 	debugfs_create_file("package_cstate_show", 0444, dir, primary_pmc,
1389 			    &pmc_core_pkgc_fops);
1390 
1391 	if (primary_pmc->map->pll_sts)
1392 		debugfs_create_file("pll_status", 0444, dir, pmcdev,
1393 				    &pmc_core_pll_fops);
1394 
1395 	if (primary_pmc->map->mphy_sts)
1396 		debugfs_create_file("mphy_core_lanes_power_gating_status",
1397 				    0444, dir, pmcdev,
1398 				    &pmc_core_mphy_pg_fops);
1399 
1400 	if (primary_pmc->map->slps0_dbg_maps) {
1401 		debugfs_create_file("slp_s0_debug_status", 0444,
1402 				    dir, pmcdev,
1403 				    &pmc_core_slps0_dbg_fops);
1404 
1405 		debugfs_create_bool("slp_s0_dbg_latch", 0644,
1406 				    dir, &slps0_dbg_latch);
1407 	}
1408 
1409 	if (primary_pmc->map->lpm_en_offset) {
1410 		debugfs_create_file("substate_residencies", 0444,
1411 				    pmcdev->dbgfs_dir, pmcdev,
1412 				    &pmc_core_substate_res_fops);
1413 	}
1414 
1415 	if (primary_pmc->map->lpm_status_offset) {
1416 		debugfs_create_file("substate_status_registers", 0444,
1417 				    pmcdev->dbgfs_dir, pmcdev,
1418 				    &pmc_core_substate_sts_regs_fops);
1419 		debugfs_create_file("substate_live_status_registers", 0444,
1420 				    pmcdev->dbgfs_dir, pmcdev,
1421 				    &pmc_core_substate_l_sts_regs_fops);
1422 		debugfs_create_file("lpm_latch_mode", 0644,
1423 				    pmcdev->dbgfs_dir, pmcdev,
1424 				    &pmc_core_lpm_latch_mode_fops);
1425 	}
1426 
1427 	if (primary_pmc->lpm_req_regs) {
1428 		debugfs_create_file("substate_requirements", 0444,
1429 				    pmcdev->dbgfs_dir, pmcdev,
1430 				    pmc_dev_info->sub_req_show);
1431 	}
1432 
1433 	if (primary_pmc->map->pson_residency_offset && pmc_core_is_pson_residency_enabled(pmcdev)) {
1434 		debugfs_create_file("pson_residency_usec", 0444,
1435 				    pmcdev->dbgfs_dir, primary_pmc, &pmc_core_pson_residency);
1436 	}
1437 
1438 	if (pmcdev->punit_ep) {
1439 		debugfs_create_file("die_c6_us_show", 0444,
1440 				    pmcdev->dbgfs_dir, pmcdev,
1441 				    &pmc_core_die_c6_us_fops);
1442 	}
1443 }
1444 
1445 /*
1446  * This function retrieves low power mode requirement data from PMC Low
1447  * Power Mode (LPM) table.
1448  *
1449  * In telemetry space, the LPM table contains a 4 byte header followed
1450  * by 8 consecutive mode blocks (one for each LPM mode). Each block
1451  * has a 4 byte header followed by a set of registers that describe the
1452  * IP state requirements for the given mode. The IP mapping is platform
1453  * specific but the same for each block, making for easy analysis.
1454  * Platforms only use a subset of the space to track the requirements
1455  * for their IPs. Callers provide the requirement registers they use as
1456  * a list of indices. Each requirement register is associated with an
1457  * IP map that's maintained by the caller.
1458  *
1459  * Header
1460  * +----+----------------------------+----------------------------+
1461  * |  0 |      REVISION              |      ENABLED MODES         |
1462  * +----+--------------+-------------+-------------+--------------+
1463  *
1464  * Low Power Mode 0 Block
1465  * +----+--------------+-------------+-------------+--------------+
1466  * |  1 |     SUB ID   |     SIZE    |   MAJOR     |   MINOR      |
1467  * +----+--------------+-------------+-------------+--------------+
1468  * |  2 |           LPM0 Requirements 0                           |
1469  * +----+---------------------------------------------------------+
1470  * |    |                  ...                                    |
1471  * +----+---------------------------------------------------------+
1472  * | 29 |           LPM0 Requirements 27                          |
1473  * +----+---------------------------------------------------------+
1474  *
1475  * ...
1476  *
1477  * Low Power Mode 7 Block
1478  * +----+--------------+-------------+-------------+--------------+
1479  * |    |     SUB ID   |     SIZE    |   MAJOR     |   MINOR      |
1480  * +----+--------------+-------------+-------------+--------------+
1481  * | 60 |           LPM7 Requirements 0                           |
1482  * +----+---------------------------------------------------------+
1483  * |    |                  ...                                    |
1484  * +----+---------------------------------------------------------+
1485  * | 87 |           LPM7 Requirements 27                          |
1486  * +----+---------------------------------------------------------+
1487  *
1488  */
pmc_core_pmt_get_lpm_req(struct pmc_dev * pmcdev,struct pmc * pmc,struct telem_endpoint * ep)1489 int pmc_core_pmt_get_lpm_req(struct pmc_dev *pmcdev, struct pmc *pmc, struct telem_endpoint *ep)
1490 {
1491 	const u8 *lpm_indices;
1492 	int num_maps, mode_offset = 0;
1493 	int ret, mode;
1494 	int lpm_size;
1495 
1496 	lpm_indices = pmc->map->lpm_reg_index;
1497 	num_maps = pmc->map->lpm_num_maps;
1498 	lpm_size = LPM_MAX_NUM_MODES * num_maps;
1499 
1500 	pmc->lpm_req_regs = devm_kzalloc(&pmcdev->pdev->dev,
1501 					 lpm_size * sizeof(u32),
1502 					 GFP_KERNEL);
1503 	if (!pmc->lpm_req_regs)
1504 		return -ENOMEM;
1505 
1506 	mode_offset = LPM_HEADER_OFFSET + LPM_MODE_OFFSET;
1507 	pmc_for_each_mode(mode, pmcdev) {
1508 		u32 *req_offset = pmc->lpm_req_regs + (mode * num_maps);
1509 		int m;
1510 
1511 		for (m = 0; m < num_maps; m++) {
1512 			u8 sample_id = lpm_indices[m] + mode_offset;
1513 
1514 			ret = pmt_telem_read32(ep, sample_id, req_offset, 1);
1515 			if (ret) {
1516 				dev_err(&pmcdev->pdev->dev,
1517 					"couldn't read Low Power Mode requirements: %d\n", ret);
1518 				return ret;
1519 			}
1520 			++req_offset;
1521 		}
1522 		mode_offset += LPM_REG_COUNT + LPM_MODE_OFFSET;
1523 	}
1524 	return ret;
1525 }
1526 
pmc_core_pmt_get_blk_sub_req(struct pmc_dev * pmcdev,struct pmc * pmc,struct telem_endpoint * ep)1527 int pmc_core_pmt_get_blk_sub_req(struct pmc_dev *pmcdev, struct pmc *pmc,
1528 				 struct telem_endpoint *ep)
1529 {
1530 	u32 num_blocker, sample_offset;
1531 	unsigned int index;
1532 	u32 *req_offset;
1533 	int ret;
1534 
1535 	num_blocker = pmc->map->num_s0ix_blocker;
1536 	sample_offset = pmc->map->blocker_req_offset;
1537 
1538 	pmc->lpm_req_regs = devm_kcalloc(&pmcdev->pdev->dev, num_blocker,
1539 					 sizeof(u32), GFP_KERNEL);
1540 	if (!pmc->lpm_req_regs)
1541 		return -ENOMEM;
1542 
1543 	req_offset = pmc->lpm_req_regs;
1544 	for (index = 0; index < num_blocker; index++, req_offset++) {
1545 		ret = pmt_telem_read32(ep, index + sample_offset, req_offset, 1);
1546 		if (ret) {
1547 			dev_err(&pmcdev->pdev->dev,
1548 				"couldn't read Low Power Mode requirements: %d\n", ret);
1549 			return ret;
1550 		}
1551 	}
1552 	return 0;
1553 }
1554 
pmc_core_get_telem_info(struct pmc_dev * pmcdev,struct pmc_dev_info * pmc_dev_info)1555 static int pmc_core_get_telem_info(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1556 {
1557 	struct pci_dev *pcidev __free(pci_dev_put) = NULL;
1558 	struct telem_endpoint *ep;
1559 	unsigned int pmc_idx;
1560 	int ret;
1561 
1562 	pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(20, pmc_dev_info->pci_func));
1563 	if (!pcidev)
1564 		return -ENODEV;
1565 
1566 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
1567 		struct pmc *pmc;
1568 
1569 		pmc = pmcdev->pmcs[pmc_idx];
1570 		if (!pmc)
1571 			continue;
1572 
1573 		if (!pmc->map->lpm_req_guid)
1574 			return -ENXIO;
1575 
1576 		ep = pmt_telem_find_and_register_endpoint(pcidev, pmc->map->lpm_req_guid, 0);
1577 		if (IS_ERR(ep)) {
1578 			dev_dbg(&pmcdev->pdev->dev, "couldn't get telem endpoint %pe", ep);
1579 			return -EPROBE_DEFER;
1580 		}
1581 
1582 		ret = pmc_dev_info->sub_req(pmcdev, pmc, ep);
1583 		pmt_telem_unregister_endpoint(ep);
1584 		if (ret)
1585 			return ret;
1586 	}
1587 
1588 	return 0;
1589 }
1590 
pmc_core_find_regmap(struct pmc_info * list,u16 devid)1591 static const struct pmc_reg_map *pmc_core_find_regmap(struct pmc_info *list, u16 devid)
1592 {
1593 	for (; list->map; ++list)
1594 		if (devid == list->devid)
1595 			return list->map;
1596 
1597 	return NULL;
1598 }
1599 
pmc_core_pmc_add(struct pmc_dev * pmcdev,unsigned int pmc_idx)1600 static int pmc_core_pmc_add(struct pmc_dev *pmcdev, unsigned int pmc_idx)
1601 
1602 {
1603 	struct pmc_ssram_telemetry pmc_ssram_telemetry;
1604 	const struct pmc_reg_map *map;
1605 	struct pmc *pmc;
1606 	int ret;
1607 
1608 	ret = pmc_ssram_telemetry_get_pmc_info(pmc_idx, &pmc_ssram_telemetry);
1609 	if (ret)
1610 		return ret;
1611 
1612 	map = pmc_core_find_regmap(pmcdev->regmap_list, pmc_ssram_telemetry.devid);
1613 	if (!map)
1614 		return -ENODEV;
1615 
1616 	pmc = pmcdev->pmcs[pmc_idx];
1617 	/* Memory for primary PMC has been allocated */
1618 	if (!pmc) {
1619 		pmc = devm_kzalloc(&pmcdev->pdev->dev, sizeof(*pmc), GFP_KERNEL);
1620 		if (!pmc)
1621 			return -ENOMEM;
1622 	}
1623 
1624 	pmc->map = map;
1625 	pmc->base_addr = pmc_ssram_telemetry.base_addr;
1626 	pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1627 
1628 	if (!pmc->regbase) {
1629 		devm_kfree(&pmcdev->pdev->dev, pmc);
1630 		return -ENOMEM;
1631 	}
1632 
1633 	pmcdev->pmcs[pmc_idx] = pmc;
1634 
1635 	return 0;
1636 }
1637 
pmc_core_ssram_get_reg_base(struct pmc_dev * pmcdev)1638 static int pmc_core_ssram_get_reg_base(struct pmc_dev *pmcdev)
1639 {
1640 	int ret;
1641 
1642 	ret = pmc_core_pmc_add(pmcdev, PMC_IDX_MAIN);
1643 	if (ret)
1644 		return ret;
1645 
1646 	pmc_core_pmc_add(pmcdev, PMC_IDX_IOE);
1647 	pmc_core_pmc_add(pmcdev, PMC_IDX_PCH);
1648 
1649 	return 0;
1650 }
1651 
1652 /*
1653  * When supported, ssram init is used to achieve all available PMCs.
1654  * If ssram init fails, this function uses legacy method to at least get the
1655  * primary PMC.
1656  */
generic_core_init(struct pmc_dev * pmcdev,struct pmc_dev_info * pmc_dev_info)1657 int generic_core_init(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1658 {
1659 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1660 	bool ssram;
1661 	int ret;
1662 
1663 	pmcdev->suspend = pmc_dev_info->suspend;
1664 	pmcdev->resume = pmc_dev_info->resume;
1665 
1666 	ssram = pmc_dev_info->regmap_list != NULL;
1667 	if (ssram) {
1668 		pmcdev->regmap_list = pmc_dev_info->regmap_list;
1669 		ret = pmc_core_ssram_get_reg_base(pmcdev);
1670 		/*
1671 		 * EAGAIN error code indicates Intel PMC SSRAM Telemetry driver
1672 		 * has not finished probe and PMC info is not available yet. Try
1673 		 * again later.
1674 		 */
1675 		if (ret == -EAGAIN)
1676 			return -EPROBE_DEFER;
1677 
1678 		if (ret) {
1679 			dev_warn(&pmcdev->pdev->dev,
1680 				 "Failed to get PMC info from SSRAM, %d, using legacy init\n", ret);
1681 			ssram = false;
1682 		}
1683 	}
1684 
1685 	if (!ssram) {
1686 		pmc->map = pmc_dev_info->map;
1687 		ret = get_primary_reg_base(pmc);
1688 		if (ret)
1689 			return ret;
1690 	}
1691 
1692 	pmc_core_get_low_power_modes(pmcdev);
1693 	if (pmc_dev_info->dmu_guids)
1694 		pmc_core_punit_pmt_init(pmcdev, pmc_dev_info->dmu_guids);
1695 
1696 	if (ssram) {
1697 		ret = pmc_core_get_telem_info(pmcdev, pmc_dev_info);
1698 		if (ret)
1699 			goto unmap_regbase;
1700 	}
1701 
1702 	return 0;
1703 
1704 unmap_regbase:
1705 	for (unsigned int pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
1706 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
1707 
1708 		if (pmc && pmc->regbase)
1709 			iounmap(pmc->regbase);
1710 	}
1711 
1712 	if (pmcdev->punit_ep)
1713 		pmt_telem_unregister_endpoint(pmcdev->punit_ep);
1714 
1715 	return ret;
1716 }
1717 
1718 static const struct x86_cpu_id intel_pmc_core_ids[] = {
1719 	X86_MATCH_VFM(INTEL_SKYLAKE_L,		&spt_pmc_dev),
1720 	X86_MATCH_VFM(INTEL_SKYLAKE,		&spt_pmc_dev),
1721 	X86_MATCH_VFM(INTEL_KABYLAKE_L,		&spt_pmc_dev),
1722 	X86_MATCH_VFM(INTEL_KABYLAKE,		&spt_pmc_dev),
1723 	X86_MATCH_VFM(INTEL_CANNONLAKE_L,	&cnp_pmc_dev),
1724 	X86_MATCH_VFM(INTEL_ICELAKE_L,		&icl_pmc_dev),
1725 	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	&icl_pmc_dev),
1726 	X86_MATCH_VFM(INTEL_COMETLAKE,		&cnp_pmc_dev),
1727 	X86_MATCH_VFM(INTEL_COMETLAKE_L,	&cnp_pmc_dev),
1728 	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	&tgl_l_pmc_dev),
1729 	X86_MATCH_VFM(INTEL_TIGERLAKE,		&tgl_pmc_dev),
1730 	X86_MATCH_VFM(INTEL_ATOM_TREMONT,	&tgl_l_pmc_dev),
1731 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_L,	&icl_pmc_dev),
1732 	X86_MATCH_VFM(INTEL_ROCKETLAKE,		&tgl_pmc_dev),
1733 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,	&tgl_l_pmc_dev),
1734 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT,	&tgl_l_pmc_dev),
1735 	X86_MATCH_VFM(INTEL_ALDERLAKE,		&adl_pmc_dev),
1736 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,	&tgl_l_pmc_dev),
1737 	X86_MATCH_VFM(INTEL_RAPTORLAKE,		&adl_pmc_dev),
1738 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,	&adl_pmc_dev),
1739 	X86_MATCH_VFM(INTEL_BARTLETTLAKE,       &adl_pmc_dev),
1740 	X86_MATCH_VFM(INTEL_METEORLAKE_L,	&mtl_pmc_dev),
1741 	X86_MATCH_VFM(INTEL_ARROWLAKE,		&arl_pmc_dev),
1742 	X86_MATCH_VFM(INTEL_ARROWLAKE_H,	&arl_h_pmc_dev),
1743 	X86_MATCH_VFM(INTEL_ARROWLAKE_U,	&arl_h_pmc_dev),
1744 	X86_MATCH_VFM(INTEL_LUNARLAKE_M,	&lnl_pmc_dev),
1745 	X86_MATCH_VFM(INTEL_PANTHERLAKE_L,	&ptl_pmc_dev),
1746 	X86_MATCH_VFM(INTEL_WILDCATLAKE_L,	&wcl_pmc_dev),
1747 	{}
1748 };
1749 
1750 MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids);
1751 
1752 /*
1753  * This quirk can be used on those platforms where
1754  * the platform BIOS enforces 24Mhz crystal to shutdown
1755  * before PMC can assert SLP_S0#.
1756  */
1757 static bool xtal_ignore;
quirk_xtal_ignore(const struct dmi_system_id * id)1758 static int quirk_xtal_ignore(const struct dmi_system_id *id)
1759 {
1760 	xtal_ignore = true;
1761 	return 0;
1762 }
1763 
pmc_core_xtal_ignore(struct pmc * pmc)1764 static void pmc_core_xtal_ignore(struct pmc *pmc)
1765 {
1766 	u32 value;
1767 
1768 	value = pmc_core_reg_read(pmc, pmc->map->pm_vric1_offset);
1769 	/* 24MHz Crystal Shutdown Qualification Disable */
1770 	value |= SPT_PMC_VRIC1_XTALSDQDIS;
1771 	/* Low Voltage Mode Enable */
1772 	value &= ~SPT_PMC_VRIC1_SLPS0LVEN;
1773 	pmc_core_reg_write(pmc, pmc->map->pm_vric1_offset, value);
1774 }
1775 
1776 static const struct dmi_system_id pmc_core_dmi_table[]  = {
1777 	{
1778 	.callback = quirk_xtal_ignore,
1779 	.ident = "HP Elite x2 1013 G3",
1780 	.matches = {
1781 		DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1782 		DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"),
1783 		},
1784 	},
1785 	{}
1786 };
1787 
pmc_core_do_dmi_quirks(struct pmc * pmc)1788 static void pmc_core_do_dmi_quirks(struct pmc *pmc)
1789 {
1790 	dmi_check_system(pmc_core_dmi_table);
1791 
1792 	if (xtal_ignore)
1793 		pmc_core_xtal_ignore(pmc);
1794 }
1795 
pmc_core_clean_structure(struct platform_device * pdev)1796 static void pmc_core_clean_structure(struct platform_device *pdev)
1797 {
1798 	struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1799 	unsigned int pmc_idx;
1800 
1801 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
1802 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
1803 
1804 		if (pmc && pmc->regbase)
1805 			iounmap(pmc->regbase);
1806 	}
1807 
1808 	if (pmcdev->punit_ep)
1809 		pmt_telem_unregister_endpoint(pmcdev->punit_ep);
1810 
1811 	platform_set_drvdata(pdev, NULL);
1812 }
1813 
pmc_core_probe(struct platform_device * pdev)1814 static int pmc_core_probe(struct platform_device *pdev)
1815 {
1816 	static bool device_initialized;
1817 	struct pmc_dev *pmcdev;
1818 	const struct x86_cpu_id *cpu_id;
1819 	struct pmc_dev_info *pmc_dev_info;
1820 	struct pmc *primary_pmc;
1821 	int ret;
1822 
1823 	if (device_initialized)
1824 		return -ENODEV;
1825 
1826 	pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL);
1827 	if (!pmcdev)
1828 		return -ENOMEM;
1829 
1830 	pmcdev->crystal_freq = pmc_core_get_crystal_freq();
1831 
1832 	platform_set_drvdata(pdev, pmcdev);
1833 	pmcdev->pdev = pdev;
1834 
1835 	cpu_id = x86_match_cpu(intel_pmc_core_ids);
1836 	if (!cpu_id)
1837 		return -ENODEV;
1838 
1839 	pmc_dev_info = (struct pmc_dev_info *)cpu_id->driver_data;
1840 
1841 	/* Primary PMC */
1842 	primary_pmc = devm_kzalloc(&pdev->dev, sizeof(*primary_pmc), GFP_KERNEL);
1843 	if (!primary_pmc)
1844 		return -ENOMEM;
1845 	pmcdev->pmcs[PMC_IDX_MAIN] = primary_pmc;
1846 
1847 	/* The last element in msr_map is empty */
1848 	pmcdev->num_of_pkgc = ARRAY_SIZE(msr_map) - 1;
1849 	pmcdev->pkgc_res_cnt = devm_kcalloc(&pdev->dev,
1850 					    pmcdev->num_of_pkgc,
1851 					    sizeof(*pmcdev->pkgc_res_cnt),
1852 					    GFP_KERNEL);
1853 	if (!pmcdev->pkgc_res_cnt)
1854 		return -ENOMEM;
1855 
1856 	ret = devm_mutex_init(&pdev->dev, &pmcdev->lock);
1857 	if (ret)
1858 		return ret;
1859 
1860 	if (pmc_dev_info->init)
1861 		ret = pmc_dev_info->init(pmcdev, pmc_dev_info);
1862 	else
1863 		ret = generic_core_init(pmcdev, pmc_dev_info);
1864 
1865 	if (ret) {
1866 		platform_set_drvdata(pdev, NULL);
1867 		return ret;
1868 	}
1869 
1870 	pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(primary_pmc);
1871 	pmc_core_do_dmi_quirks(primary_pmc);
1872 
1873 	pmc_core_dbgfs_register(pmcdev, pmc_dev_info);
1874 	pm_report_max_hw_sleep(FIELD_MAX(SLP_S0_RES_COUNTER_MASK) *
1875 			       pmc_core_adjust_slp_s0_step(primary_pmc, 1));
1876 
1877 	device_initialized = true;
1878 	dev_info(&pdev->dev, " initialized\n");
1879 
1880 	return 0;
1881 }
1882 
pmc_core_remove(struct platform_device * pdev)1883 static void pmc_core_remove(struct platform_device *pdev)
1884 {
1885 	struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1886 	pmc_core_dbgfs_unregister(pmcdev);
1887 	pmc_core_clean_structure(pdev);
1888 }
1889 
1890 static bool warn_on_s0ix_failures;
1891 module_param(warn_on_s0ix_failures, bool, 0644);
1892 MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures");
1893 
1894 static bool ltr_ignore_all_suspend = true;
1895 module_param(ltr_ignore_all_suspend, bool, 0644);
1896 MODULE_PARM_DESC(ltr_ignore_all_suspend, "Ignore all LTRs during suspend");
1897 
pmc_core_suspend(struct device * dev)1898 static __maybe_unused int pmc_core_suspend(struct device *dev)
1899 {
1900 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1901 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1902 	unsigned int i;
1903 
1904 	if (pmcdev->suspend)
1905 		pmcdev->suspend(pmcdev);
1906 
1907 	if (ltr_ignore_all_suspend)
1908 		pmc_core_ltr_ignore_all(pmcdev);
1909 
1910 	/* Check if the syspend will actually use S0ix */
1911 	if (pm_suspend_via_firmware())
1912 		return 0;
1913 
1914 	/* Save PKGC residency for checking later */
1915 	for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1916 		if (rdmsrq_safe(msr_map[i].bit_mask, &pmcdev->pkgc_res_cnt[i]))
1917 			return -EIO;
1918 	}
1919 
1920 	/* Save S0ix residency for checking later */
1921 	if (pmc_core_dev_state_get(pmc, &pmcdev->s0ix_counter))
1922 		return -EIO;
1923 
1924 	return 0;
1925 }
1926 
pmc_core_is_deepest_pkgc_failed(struct pmc_dev * pmcdev)1927 static inline bool pmc_core_is_deepest_pkgc_failed(struct pmc_dev *pmcdev)
1928 {
1929 	u32 deepest_pkgc_msr = msr_map[pmcdev->num_of_pkgc - 1].bit_mask;
1930 	u64 deepest_pkgc_residency;
1931 
1932 	if (rdmsrq_safe(deepest_pkgc_msr, &deepest_pkgc_residency))
1933 		return false;
1934 
1935 	if (deepest_pkgc_residency == pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1])
1936 		return true;
1937 
1938 	return false;
1939 }
1940 
pmc_core_is_s0ix_failed(struct pmc_dev * pmcdev)1941 static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev)
1942 {
1943 	u64 s0ix_counter;
1944 
1945 	if (pmc_core_dev_state_get(pmcdev->pmcs[PMC_IDX_MAIN], &s0ix_counter))
1946 		return false;
1947 
1948 	pm_report_hw_sleep_time((u32)(s0ix_counter - pmcdev->s0ix_counter));
1949 
1950 	if (s0ix_counter == pmcdev->s0ix_counter)
1951 		return true;
1952 
1953 	return false;
1954 }
1955 
pmc_core_resume_common(struct pmc_dev * pmcdev)1956 int pmc_core_resume_common(struct pmc_dev *pmcdev)
1957 {
1958 	struct device *dev = &pmcdev->pdev->dev;
1959 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1960 	const struct pmc_bit_map **maps = pmc->map->lpm_sts;
1961 	int offset = pmc->map->lpm_status_offset;
1962 	unsigned int pmc_idx, i;
1963 
1964 	/* Check if the syspend used S0ix */
1965 	if (pm_suspend_via_firmware())
1966 		return 0;
1967 
1968 	if (!pmc_core_is_s0ix_failed(pmcdev))
1969 		return 0;
1970 
1971 	if (!warn_on_s0ix_failures)
1972 		return 0;
1973 
1974 	if (pmc_core_is_deepest_pkgc_failed(pmcdev)) {
1975 		/* S0ix failed because of deepest PKGC entry failure */
1976 		dev_info(dev, "CPU did not enter %s!!! (%s cnt=0x%llx)\n",
1977 			 msr_map[pmcdev->num_of_pkgc - 1].name,
1978 			 msr_map[pmcdev->num_of_pkgc - 1].name,
1979 			 pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1]);
1980 
1981 		for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1982 			u64 pc_cnt;
1983 
1984 			if (!rdmsrq_safe(msr_map[i].bit_mask, &pc_cnt)) {
1985 				dev_info(dev, "Prev %s cnt = 0x%llx, Current %s cnt = 0x%llx\n",
1986 					 msr_map[i].name, pmcdev->pkgc_res_cnt[i],
1987 					 msr_map[i].name, pc_cnt);
1988 			}
1989 		}
1990 		return 0;
1991 	}
1992 
1993 	/* The real interesting case - S0ix failed - lets ask PMC why. */
1994 	dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n",
1995 		 pmcdev->s0ix_counter);
1996 
1997 	if (pmc->map->slps0_dbg_maps)
1998 		pmc_core_slps0_display(pmc, dev, NULL);
1999 
2000 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
2001 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
2002 
2003 		if (!pmc)
2004 			continue;
2005 		if (pmc->map->lpm_sts)
2006 			pmc_core_lpm_display(pmc, dev, NULL, offset, pmc_idx, "STATUS", maps);
2007 	}
2008 
2009 	return 0;
2010 }
2011 
pmc_core_resume(struct device * dev)2012 static __maybe_unused int pmc_core_resume(struct device *dev)
2013 {
2014 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
2015 
2016 	if (ltr_ignore_all_suspend)
2017 		pmc_core_ltr_restore_all(pmcdev);
2018 
2019 	if (pmcdev->resume)
2020 		return pmcdev->resume(pmcdev);
2021 
2022 	return pmc_core_resume_common(pmcdev);
2023 }
2024 
2025 static const struct dev_pm_ops pmc_core_pm_ops = {
2026 	SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume)
2027 };
2028 
2029 static const struct acpi_device_id pmc_core_acpi_ids[] = {
2030 	{"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/
2031 	{ }
2032 };
2033 MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids);
2034 
2035 static struct platform_driver pmc_core_driver = {
2036 	.driver = {
2037 		.name = "intel_pmc_core",
2038 		.acpi_match_table = ACPI_PTR(pmc_core_acpi_ids),
2039 		.pm = &pmc_core_pm_ops,
2040 		.dev_groups = pmc_dev_groups,
2041 	},
2042 	.probe = pmc_core_probe,
2043 	.remove = pmc_core_remove,
2044 };
2045 
2046 module_platform_driver(pmc_core_driver);
2047 
2048 MODULE_IMPORT_NS("INTEL_PMT_TELEMETRY");
2049 MODULE_LICENSE("GPL v2");
2050 MODULE_DESCRIPTION("Intel PMC Core Driver");
2051