xref: /linux/drivers/platform/x86/intel/pmc/core.c (revision ceeb5c9835696065323cc4c2ab48b1a7a46d8269)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Intel Core SoC Power Management Controller Driver
4  *
5  * Copyright (c) 2016, Intel Corporation.
6  * All Rights Reserved.
7  *
8  * Authors: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
9  *          Vishwanath Somayaji <vishwanath.somayaji@intel.com>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 enum header_type {
15 	HEADER_STATUS,
16 	HEADER_VALUE,
17 };
18 
19 #include <linux/bitfield.h>
20 #include <linux/debugfs.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/err.h>
24 #include <linux/io.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/units.h>
30 
31 #include <asm/cpuid/api.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/msr.h>
35 #include <asm/tsc.h>
36 
37 #include "core.h"
38 #include "ssram_telemetry.h"
39 #include "../pmt/telemetry.h"
40 
41 /* Maximum number of modes supported by platfoms that has low power mode capability */
42 const char *pmc_lpm_modes[] = {
43 	"S0i2.0",
44 	"S0i2.1",
45 	"S0i2.2",
46 	"S0i3.0",
47 	"S0i3.1",
48 	"S0i3.2",
49 	"S0i3.3",
50 	"S0i3.4",
51 	NULL
52 };
53 
54 /* PKGC MSRs are common across Intel Core SoCs */
55 const struct pmc_bit_map msr_map[] = {
56 	{"Package C2",                  MSR_PKG_C2_RESIDENCY},
57 	{"Package C3",                  MSR_PKG_C3_RESIDENCY},
58 	{"Package C6",                  MSR_PKG_C6_RESIDENCY},
59 	{"Package C7",                  MSR_PKG_C7_RESIDENCY},
60 	{"Package C8",                  MSR_PKG_C8_RESIDENCY},
61 	{"Package C9",                  MSR_PKG_C9_RESIDENCY},
62 	{"Package C10",                 MSR_PKG_C10_RESIDENCY},
63 	{}
64 };
65 
66 static inline u32 pmc_core_reg_read(struct pmc *pmc, int reg_offset)
67 {
68 	return readl(pmc->regbase + reg_offset);
69 }
70 
71 static inline void pmc_core_reg_write(struct pmc *pmc, int reg_offset,
72 				      u32 val)
73 {
74 	writel(val, pmc->regbase + reg_offset);
75 }
76 
77 static inline u64 pmc_core_adjust_slp_s0_step(struct pmc *pmc, u32 value)
78 {
79 	/*
80 	 * ADL PCH does not have the SLP_S0 counter and LPM Residency counters are
81 	 * used as a workaround which uses 30.5 usec tick. All other client
82 	 * programs have the legacy SLP_S0 residency counter that is using the 122
83 	 * usec tick.
84 	 */
85 	const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
86 
87 	if (pmc->map == &adl_reg_map)
88 		return (u64)value * GET_X2_COUNTER((u64)lpm_adj_x2);
89 	else
90 		return (u64)value * pmc->map->slp_s0_res_counter_step;
91 }
92 
93 static int set_etr3(struct pmc_dev *pmcdev)
94 {
95 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
96 	const struct pmc_reg_map *map = pmc->map;
97 	u32 reg;
98 
99 	if (!map->etr3_offset)
100 		return -EOPNOTSUPP;
101 
102 	guard(mutex)(&pmcdev->lock);
103 
104 	/* check if CF9 is locked */
105 	reg = pmc_core_reg_read(pmc, map->etr3_offset);
106 	if (reg & ETR3_CF9LOCK)
107 		return -EACCES;
108 
109 	/* write CF9 global reset bit */
110 	reg |= ETR3_CF9GR;
111 	pmc_core_reg_write(pmc, map->etr3_offset, reg);
112 
113 	reg = pmc_core_reg_read(pmc, map->etr3_offset);
114 	if (!(reg & ETR3_CF9GR))
115 		return -EIO;
116 
117 	return 0;
118 }
119 static umode_t etr3_is_visible(struct kobject *kobj,
120 				struct attribute *attr,
121 				int idx)
122 {
123 	struct device *dev = kobj_to_dev(kobj);
124 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
125 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
126 	const struct pmc_reg_map *map = pmc->map;
127 	u32 reg;
128 
129 	scoped_guard(mutex, &pmcdev->lock)
130 		reg = pmc_core_reg_read(pmc, map->etr3_offset);
131 
132 	return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode;
133 }
134 
135 static ssize_t etr3_show(struct device *dev,
136 				 struct device_attribute *attr, char *buf)
137 {
138 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
139 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
140 	const struct pmc_reg_map *map = pmc->map;
141 	u32 reg;
142 
143 	if (!map->etr3_offset)
144 		return -EOPNOTSUPP;
145 
146 	scoped_guard(mutex, &pmcdev->lock) {
147 		reg = pmc_core_reg_read(pmc, map->etr3_offset);
148 		reg &= ETR3_CF9GR | ETR3_CF9LOCK;
149 	}
150 
151 	return sysfs_emit(buf, "0x%08x", reg);
152 }
153 
154 static ssize_t etr3_store(struct device *dev,
155 				  struct device_attribute *attr,
156 				  const char *buf, size_t len)
157 {
158 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
159 	int err;
160 	u32 reg;
161 
162 	err = kstrtouint(buf, 16, &reg);
163 	if (err)
164 		return err;
165 
166 	/* allow only CF9 writes */
167 	if (reg != ETR3_CF9GR)
168 		return -EINVAL;
169 
170 	err = set_etr3(pmcdev);
171 	if (err)
172 		return err;
173 
174 	return len;
175 }
176 static DEVICE_ATTR_RW(etr3);
177 
178 static struct attribute *pmc_attrs[] = {
179 	&dev_attr_etr3.attr,
180 	NULL
181 };
182 
183 static const struct attribute_group pmc_attr_group = {
184 	.attrs = pmc_attrs,
185 	.is_visible = etr3_is_visible,
186 };
187 
188 static const struct attribute_group *pmc_dev_groups[] = {
189 	&pmc_attr_group,
190 	NULL
191 };
192 
193 static int pmc_core_dev_state_get(void *data, u64 *val)
194 {
195 	struct pmc *pmc = data;
196 	const struct pmc_reg_map *map = pmc->map;
197 	u32 value;
198 
199 	value = pmc_core_reg_read(pmc, map->slp_s0_offset);
200 	*val = pmc_core_adjust_slp_s0_step(pmc, value);
201 
202 	return 0;
203 }
204 
205 DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n");
206 
207 static int pmc_core_pson_residency_get(void *data, u64 *val)
208 {
209 	struct pmc *pmc = data;
210 	const struct pmc_reg_map *map = pmc->map;
211 	u32 value;
212 
213 	value = pmc_core_reg_read(pmc, map->pson_residency_offset);
214 	*val = (u64)value * map->pson_residency_counter_step;
215 
216 	return 0;
217 }
218 
219 DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_pson_residency, pmc_core_pson_residency_get, NULL, "%llu\n");
220 
221 static int pmc_core_check_read_lock_bit(struct pmc *pmc)
222 {
223 	u32 value;
224 
225 	value = pmc_core_reg_read(pmc, pmc->map->pm_cfg_offset);
226 	return value & BIT(pmc->map->pm_read_disable_bit);
227 }
228 
229 static void pmc_core_slps0_display(struct pmc *pmc, struct device *dev,
230 				   struct seq_file *s)
231 {
232 	const struct pmc_bit_map **maps = pmc->map->slps0_dbg_maps;
233 	const struct pmc_bit_map *map;
234 	int offset = pmc->map->slps0_dbg_offset;
235 	u32 data;
236 
237 	while (*maps) {
238 		map = *maps;
239 		data = pmc_core_reg_read(pmc, offset);
240 		offset += 4;
241 		while (map->name) {
242 			if (dev)
243 				dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n",
244 					map->name,
245 					data & map->bit_mask ? "Yes" : "No");
246 			if (s)
247 				seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n",
248 					   map->name,
249 					   data & map->bit_mask ? "Yes" : "No");
250 			++map;
251 		}
252 		++maps;
253 	}
254 }
255 
256 static unsigned int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps)
257 {
258 	unsigned int idx;
259 
260 	for (idx = 0; maps[idx]; idx++)
261 		;/* Nothing */
262 
263 	return idx;
264 }
265 
266 static void pmc_core_lpm_display(struct pmc *pmc, struct device *dev,
267 				 struct seq_file *s, u32 offset, int pmc_index,
268 				 const char *str,
269 				 const struct pmc_bit_map **maps)
270 {
271 	unsigned int index, idx, len = 32, arr_size;
272 	u32 bit_mask, *lpm_regs;
273 
274 	arr_size = pmc_core_lpm_get_arr_size(maps);
275 	lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL);
276 	if (!lpm_regs)
277 		return;
278 
279 	for (index = 0; index < arr_size; index++) {
280 		lpm_regs[index] = pmc_core_reg_read(pmc, offset);
281 		offset += 4;
282 	}
283 
284 	for (idx = 0; idx < arr_size; idx++) {
285 		if (dev)
286 			dev_info(dev, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
287 				lpm_regs[idx]);
288 		if (s)
289 			seq_printf(s, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
290 				   lpm_regs[idx]);
291 		for (index = 0; maps[idx][index].name && index < len; index++) {
292 			bit_mask = maps[idx][index].bit_mask;
293 			if (dev)
294 				dev_info(dev, "PMC%d:%-30s %-30d\n", pmc_index,
295 					maps[idx][index].name,
296 					lpm_regs[idx] & bit_mask ? 1 : 0);
297 			if (s)
298 				seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_index,
299 					   maps[idx][index].name,
300 					   lpm_regs[idx] & bit_mask ? 1 : 0);
301 		}
302 	}
303 
304 	kfree(lpm_regs);
305 }
306 
307 static bool slps0_dbg_latch;
308 
309 static inline u8 pmc_core_reg_read_byte(struct pmc *pmc, int offset)
310 {
311 	return readb(pmc->regbase + offset);
312 }
313 
314 static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip,
315 				 int pmc_idx, u8 pf_reg, const struct pmc_bit_map **pf_map)
316 {
317 	seq_printf(s, "PMC%d:PCH IP: %-2d - %-32s\tState: %s\n",
318 		   pmc_idx, ip, pf_map[idx][index].name,
319 		   pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On");
320 }
321 
322 static int pmc_core_ppfear_show(struct seq_file *s, void *unused)
323 {
324 	struct pmc_dev *pmcdev = s->private;
325 	unsigned int pmc_idx;
326 
327 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
328 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
329 		const struct pmc_bit_map **maps;
330 		u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES];
331 		unsigned int index, iter, idx, ip = 0;
332 
333 		if (!pmc)
334 			continue;
335 
336 		maps = pmc->map->pfear_sts;
337 		iter = pmc->map->ppfear0_offset;
338 
339 		for (index = 0; index < pmc->map->ppfear_buckets &&
340 		     index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++)
341 			pf_regs[index] = pmc_core_reg_read_byte(pmc, iter);
342 
343 		for (idx = 0; maps[idx]; idx++) {
344 			for (index = 0; maps[idx][index].name &&
345 			     index < pmc->map->ppfear_buckets * 8; ip++, index++)
346 				pmc_core_display_map(s, index, idx, ip, pmc_idx,
347 						     pf_regs[index / 8], maps);
348 		}
349 	}
350 
351 	return 0;
352 }
353 DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear);
354 
355 /* This function should return link status, 0 means ready */
356 static int pmc_core_mtpmc_link_status(struct pmc *pmc)
357 {
358 	u32 value;
359 
360 	value = pmc_core_reg_read(pmc, SPT_PMC_PM_STS_OFFSET);
361 	return value & BIT(SPT_PMC_MSG_FULL_STS_BIT);
362 }
363 
364 static int pmc_core_send_msg(struct pmc *pmc, u32 *addr_xram)
365 {
366 	u32 dest;
367 	int timeout;
368 
369 	for (timeout = NUM_RETRIES; timeout > 0; timeout--) {
370 		if (pmc_core_mtpmc_link_status(pmc) == 0)
371 			break;
372 		msleep(5);
373 	}
374 
375 	if (timeout <= 0 && pmc_core_mtpmc_link_status(pmc))
376 		return -EBUSY;
377 
378 	dest = (*addr_xram & MTPMC_MASK) | (1U << 1);
379 	pmc_core_reg_write(pmc, SPT_PMC_MTPMC_OFFSET, dest);
380 	return 0;
381 }
382 
383 static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused)
384 {
385 	struct pmc_dev *pmcdev = s->private;
386 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
387 	const struct pmc_bit_map *map = pmc->map->mphy_sts;
388 	u32 mphy_core_reg_low, mphy_core_reg_high;
389 	u32 val_low, val_high;
390 	unsigned int index;
391 	int err = 0;
392 
393 	if (pmcdev->pmc_xram_read_bit) {
394 		seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
395 		return 0;
396 	}
397 
398 	mphy_core_reg_low  = (SPT_PMC_MPHY_CORE_STS_0 << 16);
399 	mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16);
400 
401 	guard(mutex)(&pmcdev->lock);
402 
403 	err = pmc_core_send_msg(pmc, &mphy_core_reg_low);
404 	if (err)
405 		return err;
406 
407 	msleep(10);
408 	val_low = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
409 
410 	err = pmc_core_send_msg(pmc, &mphy_core_reg_high);
411 	if (err)
412 		return err;
413 
414 	msleep(10);
415 	val_high = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
416 
417 	for (index = 0; index < 8 && map[index].name; index++) {
418 		seq_printf(s, "%-32s\tState: %s\n",
419 			   map[index].name,
420 			   map[index].bit_mask & val_low ? "Not power gated" :
421 			   "Power gated");
422 	}
423 
424 	for (index = 8; map[index].name; index++) {
425 		seq_printf(s, "%-32s\tState: %s\n",
426 			   map[index].name,
427 			   map[index].bit_mask & val_high ? "Not power gated" :
428 			   "Power gated");
429 	}
430 
431 	return 0;
432 }
433 DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg);
434 
435 static int pmc_core_pll_show(struct seq_file *s, void *unused)
436 {
437 	struct pmc_dev *pmcdev = s->private;
438 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
439 	const struct pmc_bit_map *map = pmc->map->pll_sts;
440 	u32 mphy_common_reg, val;
441 	unsigned int index;
442 	int err = 0;
443 
444 	if (pmcdev->pmc_xram_read_bit) {
445 		seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
446 		return 0;
447 	}
448 
449 	mphy_common_reg  = (SPT_PMC_MPHY_COM_STS_0 << 16);
450 	guard(mutex)(&pmcdev->lock);
451 
452 	err = pmc_core_send_msg(pmc, &mphy_common_reg);
453 	if (err)
454 		return err;
455 
456 	/* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */
457 	msleep(10);
458 	val = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
459 
460 	for (index = 0; map[index].name ; index++) {
461 		seq_printf(s, "%-32s\tState: %s\n",
462 			   map[index].name,
463 			   map[index].bit_mask & val ? "Active" : "Idle");
464 	}
465 
466 	return 0;
467 }
468 DEFINE_SHOW_ATTRIBUTE(pmc_core_pll);
469 
470 int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value, int ignore)
471 {
472 	struct pmc *pmc;
473 	const struct pmc_reg_map *map;
474 	u32 reg;
475 	unsigned int pmc_idx;
476 	int ltr_index;
477 
478 	ltr_index = value;
479 	/* For platforms with multiple pmcs, ltr index value given by user
480 	 * is based on the contiguous indexes from ltr_show output.
481 	 * pmc index and ltr index needs to be calculated from it.
482 	 */
483 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs) && ltr_index >= 0; pmc_idx++) {
484 		pmc = pmcdev->pmcs[pmc_idx];
485 
486 		if (!pmc)
487 			continue;
488 
489 		map = pmc->map;
490 		if (ltr_index <= map->ltr_ignore_max)
491 			break;
492 
493 		/* Along with IP names, ltr_show map includes CURRENT_PLATFORM
494 		 * and AGGREGATED_SYSTEM values per PMC. Take these two index
495 		 * values into account in ltr_index calculation. Also, to start
496 		 * ltr index from zero for next pmc, subtract it by 1.
497 		 */
498 		ltr_index = ltr_index - (map->ltr_ignore_max + 2) - 1;
499 	}
500 
501 	if (pmc_idx >= ARRAY_SIZE(pmcdev->pmcs) || ltr_index < 0)
502 		return -EINVAL;
503 
504 	pr_debug("ltr_ignore for pmc%d: ltr_index:%d\n", pmc_idx, ltr_index);
505 
506 	guard(mutex)(&pmcdev->lock);
507 
508 	reg = pmc_core_reg_read(pmc, map->ltr_ignore_offset);
509 	if (ignore)
510 		reg |= BIT(ltr_index);
511 	else
512 		reg &= ~BIT(ltr_index);
513 	pmc_core_reg_write(pmc, map->ltr_ignore_offset, reg);
514 
515 	return 0;
516 }
517 
518 static ssize_t pmc_core_ltr_write(struct pmc_dev *pmcdev,
519 				  const char __user *userbuf,
520 				  size_t count, int ignore)
521 {
522 	u32 value;
523 	int err;
524 
525 	err = kstrtou32_from_user(userbuf, count, 10, &value);
526 	if (err)
527 		return err;
528 
529 	err = pmc_core_send_ltr_ignore(pmcdev, value, ignore);
530 
531 	return err ?: count;
532 }
533 
534 static ssize_t pmc_core_ltr_ignore_write(struct file *file,
535 					 const char __user *userbuf,
536 					 size_t count, loff_t *ppos)
537 {
538 	struct seq_file *s = file->private_data;
539 	struct pmc_dev *pmcdev = s->private;
540 
541 	return pmc_core_ltr_write(pmcdev, userbuf, count, 1);
542 }
543 
544 static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused)
545 {
546 	return 0;
547 }
548 DEFINE_SHOW_STORE_ATTRIBUTE(pmc_core_ltr_ignore);
549 
550 static ssize_t pmc_core_ltr_restore_write(struct file *file,
551 					  const char __user *userbuf,
552 					  size_t count, loff_t *ppos)
553 {
554 	struct seq_file *s = file->private_data;
555 	struct pmc_dev *pmcdev = s->private;
556 
557 	return pmc_core_ltr_write(pmcdev, userbuf, count, 0);
558 }
559 
560 static int pmc_core_ltr_restore_show(struct seq_file *s, void *unused)
561 {
562 	return 0;
563 }
564 DEFINE_SHOW_STORE_ATTRIBUTE(pmc_core_ltr_restore);
565 
566 static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset)
567 {
568 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
569 	const struct pmc_reg_map *map = pmc->map;
570 	u32 fd;
571 
572 	guard(mutex)(&pmcdev->lock);
573 
574 	if (!reset && !slps0_dbg_latch)
575 		return;
576 
577 	fd = pmc_core_reg_read(pmc, map->slps0_dbg_offset);
578 	if (reset)
579 		fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS;
580 	else
581 		fd |= CNP_PMC_LATCH_SLPS0_EVENTS;
582 	pmc_core_reg_write(pmc, map->slps0_dbg_offset, fd);
583 
584 	slps0_dbg_latch = false;
585 }
586 
587 static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused)
588 {
589 	struct pmc_dev *pmcdev = s->private;
590 
591 	pmc_core_slps0_dbg_latch(pmcdev, false);
592 	pmc_core_slps0_display(pmcdev->pmcs[PMC_IDX_MAIN], NULL, s);
593 	pmc_core_slps0_dbg_latch(pmcdev, true);
594 
595 	return 0;
596 }
597 DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg);
598 
599 static u32 convert_ltr_scale(u32 val)
600 {
601 	/*
602 	 * As per PCIE specification supporting document
603 	 * ECN_LatencyTolnReporting_14Aug08.pdf the Latency
604 	 * Tolerance Reporting data payload is encoded in a
605 	 * 3 bit scale and 10 bit value fields. Values are
606 	 * multiplied by the indicated scale to yield an absolute time
607 	 * value, expressible in a range from 1 nanosecond to
608 	 * 2^25*(2^10-1) = 34,326,183,936 nanoseconds.
609 	 *
610 	 * scale encoding is as follows:
611 	 *
612 	 * ----------------------------------------------
613 	 * |scale factor	|	Multiplier (ns)	|
614 	 * ----------------------------------------------
615 	 * |	0		|	1		|
616 	 * |	1		|	32		|
617 	 * |	2		|	1024		|
618 	 * |	3		|	32768		|
619 	 * |	4		|	1048576		|
620 	 * |	5		|	33554432	|
621 	 * |	6		|	Invalid		|
622 	 * |	7		|	Invalid		|
623 	 * ----------------------------------------------
624 	 */
625 	if (val > 5) {
626 		pr_warn("Invalid LTR scale factor.\n");
627 		return 0;
628 	}
629 
630 	return 1U << (5 * val);
631 }
632 
633 static int pmc_core_ltr_show(struct seq_file *s, void *unused)
634 {
635 	struct pmc_dev *pmcdev = s->private;
636 	u64 decoded_snoop_ltr, decoded_non_snoop_ltr, val;
637 	u32 ltr_raw_data, scale;
638 	u16 snoop_ltr, nonsnoop_ltr;
639 	unsigned int pmc_idx, index, ltr_index = 0;
640 
641 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
642 		struct pmc *pmc;
643 		const struct pmc_bit_map *map;
644 		u32 ltr_ign_reg;
645 
646 		pmc = pmcdev->pmcs[pmc_idx];
647 		if (!pmc)
648 			continue;
649 
650 		scoped_guard(mutex, &pmcdev->lock)
651 			ltr_ign_reg = pmc_core_reg_read(pmc, pmc->map->ltr_ignore_offset);
652 
653 		map = pmc->map->ltr_show_sts;
654 		for (index = 0; map[index].name; index++) {
655 			bool ltr_ign_data;
656 
657 			if (index > pmc->map->ltr_ignore_max)
658 				ltr_ign_data = false;
659 			else
660 				ltr_ign_data = ltr_ign_reg & BIT(index);
661 
662 			decoded_snoop_ltr = decoded_non_snoop_ltr = 0;
663 			ltr_raw_data = pmc_core_reg_read(pmc,
664 							 map[index].bit_mask);
665 			snoop_ltr = ltr_raw_data & ~MTPMC_MASK;
666 			nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK;
667 
668 			if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) {
669 				scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr);
670 				val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr);
671 				decoded_non_snoop_ltr = val * convert_ltr_scale(scale);
672 			}
673 			if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) {
674 				scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr);
675 				val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr);
676 				decoded_snoop_ltr = val * convert_ltr_scale(scale);
677 			}
678 
679 			seq_printf(s, "%d\tPMC%d:%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\tLTR_IGNORE: %d\n",
680 				   ltr_index, pmc_idx, map[index].name, ltr_raw_data,
681 				   decoded_non_snoop_ltr,
682 				   decoded_snoop_ltr, ltr_ign_data);
683 			ltr_index++;
684 		}
685 	}
686 	return 0;
687 }
688 DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr);
689 
690 static int pmc_core_s0ix_blocker_show(struct seq_file *s, void *unused)
691 {
692 	struct pmc_dev *pmcdev = s->private;
693 	unsigned int pmc_idx;
694 
695 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
696 		const struct pmc_bit_map **maps;
697 		unsigned int arr_size, r_idx;
698 		u32 offset, counter;
699 		struct pmc *pmc;
700 
701 		pmc = pmcdev->pmcs[pmc_idx];
702 		if (!pmc)
703 			continue;
704 		maps = pmc->map->s0ix_blocker_maps;
705 		offset = pmc->map->s0ix_blocker_offset;
706 		arr_size = pmc_core_lpm_get_arr_size(maps);
707 
708 		for (r_idx = 0; r_idx < arr_size; r_idx++) {
709 			const struct pmc_bit_map *map;
710 
711 			for (map = maps[r_idx]; map->name; map++) {
712 				if (!map->blk)
713 					continue;
714 				counter = pmc_core_reg_read(pmc, offset);
715 				seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_idx,
716 					   map->name, counter);
717 				offset += map->blk * S0IX_BLK_SIZE;
718 			}
719 		}
720 	}
721 	return 0;
722 }
723 DEFINE_SHOW_ATTRIBUTE(pmc_core_s0ix_blocker);
724 
725 static void pmc_core_ltr_ignore_all(struct pmc_dev *pmcdev)
726 {
727 	unsigned int pmc_idx;
728 
729 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
730 		struct pmc *pmc;
731 		u32 ltr_ign;
732 
733 		pmc = pmcdev->pmcs[pmc_idx];
734 		if (!pmc)
735 			continue;
736 
737 		guard(mutex)(&pmcdev->lock);
738 		pmc->ltr_ign = pmc_core_reg_read(pmc, pmc->map->ltr_ignore_offset);
739 
740 		/* ltr_ignore_max is the max index value for LTR ignore register */
741 		ltr_ign = pmc->ltr_ign | GENMASK(pmc->map->ltr_ignore_max, 0);
742 		pmc_core_reg_write(pmc, pmc->map->ltr_ignore_offset, ltr_ign);
743 	}
744 
745 	/*
746 	 * Ignoring ME during suspend is blocking platforms with ADL PCH to get to
747 	 * deeper S0ix substate.
748 	 */
749 	pmc_core_send_ltr_ignore(pmcdev, 6, 0);
750 }
751 
752 static void pmc_core_ltr_restore_all(struct pmc_dev *pmcdev)
753 {
754 	unsigned int pmc_idx;
755 
756 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
757 		struct pmc *pmc;
758 
759 		pmc = pmcdev->pmcs[pmc_idx];
760 		if (!pmc)
761 			continue;
762 
763 		guard(mutex)(&pmcdev->lock);
764 		pmc_core_reg_write(pmc, pmc->map->ltr_ignore_offset, pmc->ltr_ign);
765 	}
766 }
767 
768 static inline u64 adjust_lpm_residency(struct pmc *pmc, u32 offset,
769 				       const int lpm_adj_x2)
770 {
771 	u64 lpm_res = pmc_core_reg_read(pmc, offset);
772 
773 	return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res);
774 }
775 
776 static int pmc_core_substate_res_show(struct seq_file *s, void *unused)
777 {
778 	struct pmc_dev *pmcdev = s->private;
779 	unsigned int pmc_idx;
780 
781 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
782 		int lpm_adj_x2;
783 		struct pmc *pmc;
784 		u32 offset;
785 		u8 mode;
786 
787 		pmc = pmcdev->pmcs[pmc_idx];
788 		if (!pmc)
789 			continue;
790 
791 		lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
792 		offset = pmc->map->lpm_residency_offset;
793 
794 		seq_printf(s, "pmc%u %10s %15s\n", pmc_idx, "Substate", "Residency");
795 		pmc_for_each_mode(mode, pmc) {
796 			seq_printf(s, "%15s %15llu\n", pmc_lpm_modes[mode],
797 				   adjust_lpm_residency(pmc, offset + (4 * mode), lpm_adj_x2));
798 		}
799 	}
800 
801 	return 0;
802 }
803 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res);
804 
805 static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused)
806 {
807 	struct pmc_dev *pmcdev = s->private;
808 	unsigned int pmc_idx;
809 
810 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
811 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
812 		const struct pmc_bit_map **maps;
813 		u32 offset;
814 
815 		if (!pmc)
816 			continue;
817 		maps = pmc->map->lpm_sts;
818 		offset = pmc->map->lpm_status_offset;
819 		pmc_core_lpm_display(pmc, NULL, s, offset, pmc_idx, "STATUS", maps);
820 	}
821 
822 	return 0;
823 }
824 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs);
825 
826 static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused)
827 {
828 	struct pmc_dev *pmcdev = s->private;
829 	unsigned int pmc_idx;
830 
831 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
832 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
833 		const struct pmc_bit_map **maps;
834 		u32 offset;
835 
836 		if (!pmc)
837 			continue;
838 		maps = pmc->map->lpm_sts;
839 		offset = pmc->map->lpm_live_status_offset;
840 		pmc_core_lpm_display(pmc, NULL, s, offset, pmc_idx, "LIVE_STATUS", maps);
841 	}
842 
843 	return 0;
844 }
845 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs);
846 
847 static void pmc_core_substate_req_header_show(struct seq_file *s, int pmc_index,
848 					      enum header_type type)
849 {
850 	struct pmc_dev *pmcdev = s->private;
851 	struct pmc *pmc = pmcdev->pmcs[pmc_index];
852 	u8 mode;
853 
854 	seq_printf(s, "%40s |", "Element");
855 	pmc_for_each_mode(mode, pmc)
856 		seq_printf(s, " %9s |", pmc_lpm_modes[mode]);
857 
858 	if (type == HEADER_STATUS) {
859 		seq_printf(s, " %9s |", "Status");
860 		seq_printf(s, " %11s |\n", "Live Status");
861 	} else {
862 		seq_printf(s, " %9s |\n", "Value");
863 	}
864 }
865 
866 static int pmc_core_substate_blk_req_show(struct seq_file *s, void *unused)
867 {
868 	struct pmc_dev *pmcdev = s->private;
869 	unsigned int pmc_idx;
870 
871 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
872 		const struct pmc_bit_map **maps;
873 		unsigned int arr_size, r_idx;
874 		u32 offset, counter;
875 		u32 *lpm_req_regs;
876 		struct pmc *pmc;
877 
878 		pmc = pmcdev->pmcs[pmc_idx];
879 		if (!pmc || !pmc->lpm_req_regs)
880 			continue;
881 
882 		lpm_req_regs = pmc->lpm_req_regs;
883 		maps = pmc->map->s0ix_blocker_maps;
884 		offset = pmc->map->s0ix_blocker_offset;
885 		arr_size = pmc_core_lpm_get_arr_size(maps);
886 
887 		/* Display the header */
888 		pmc_core_substate_req_header_show(s, pmc_idx, HEADER_VALUE);
889 
890 		for (r_idx = 0; r_idx < arr_size; r_idx++) {
891 			const struct pmc_bit_map *map;
892 
893 			for (map = maps[r_idx]; map->name; map++) {
894 				u8 mode;
895 
896 				if (!map->blk)
897 					continue;
898 
899 				counter = pmc_core_reg_read(pmc, offset);
900 				seq_printf(s, "pmc%u: %34s |", pmc_idx, map->name);
901 				pmc_for_each_mode(mode, pmc) {
902 					bool required = *lpm_req_regs & BIT(mode);
903 
904 					seq_printf(s, " %9s |", required ? "Required" : " ");
905 				}
906 				seq_printf(s, " %9u |\n", counter);
907 				offset += map->blk * S0IX_BLK_SIZE;
908 				lpm_req_regs++;
909 			}
910 		}
911 	}
912 	return 0;
913 }
914 
915 static int pmc_core_substate_blk_req_open(struct inode *inode, struct file *file)
916 {
917 	return single_open(file, pmc_core_substate_blk_req_show, inode->i_private);
918 }
919 
920 const struct file_operations pmc_core_substate_blk_req_fops = {
921 	.owner		= THIS_MODULE,
922 	.open		= pmc_core_substate_blk_req_open,
923 	.read		= seq_read,
924 	.llseek		= seq_lseek,
925 	.release	= single_release,
926 };
927 
928 static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused)
929 {
930 	struct pmc_dev *pmcdev = s->private;
931 	u32 sts_offset;
932 	u32 sts_offset_live;
933 	u32 *lpm_req_regs;
934 	unsigned int mp, pmc_idx;
935 	int num_maps;
936 
937 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
938 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
939 		const struct pmc_bit_map **maps;
940 
941 		if (!pmc)
942 			continue;
943 
944 		maps = pmc->map->lpm_sts;
945 		num_maps = pmc->map->lpm_num_maps;
946 		sts_offset = pmc->map->lpm_status_offset;
947 		sts_offset_live = pmc->map->lpm_live_status_offset;
948 		lpm_req_regs = pmc->lpm_req_regs;
949 
950 		/*
951 		 * When there are multiple PMCs, though the PMC may exist, the
952 		 * requirement register discovery could have failed so check
953 		 * before accessing.
954 		 */
955 		if (!lpm_req_regs)
956 			continue;
957 
958 		/* Display the header */
959 		pmc_core_substate_req_header_show(s, pmc_idx, HEADER_STATUS);
960 
961 		/* Loop over maps */
962 		for (mp = 0; mp < num_maps; mp++) {
963 			u32 req_mask = 0;
964 			u32 lpm_status;
965 			u32 lpm_status_live;
966 			const struct pmc_bit_map *map;
967 			int i, len = 32;
968 			u8 mode;
969 
970 			/*
971 			 * Capture the requirements and create a mask so that we only
972 			 * show an element if it's required for at least one of the
973 			 * enabled low power modes
974 			 */
975 			pmc_for_each_mode(mode, pmc)
976 				req_mask |= lpm_req_regs[mp + (mode * num_maps)];
977 
978 			/* Get the last latched status for this map */
979 			lpm_status = pmc_core_reg_read(pmc, sts_offset + (mp * 4));
980 
981 			/* Get the runtime status for this map */
982 			lpm_status_live = pmc_core_reg_read(pmc, sts_offset_live + (mp * 4));
983 
984 			/*  Loop over elements in this map */
985 			map = maps[mp];
986 			for (i = 0; map[i].name && i < len; i++) {
987 				u32 bit_mask = map[i].bit_mask;
988 
989 				if (!(bit_mask & req_mask)) {
990 					/*
991 					 * Not required for any enabled states
992 					 * so don't display
993 					 */
994 					continue;
995 				}
996 
997 				/* Display the element name in the first column */
998 				seq_printf(s, "pmc%d: %34s |", pmc_idx, map[i].name);
999 
1000 				/* Loop over the enabled states and display if required */
1001 				pmc_for_each_mode(mode, pmc) {
1002 					bool required = lpm_req_regs[mp + (mode * num_maps)] &
1003 							bit_mask;
1004 					seq_printf(s, " %9s |", required ? "Required" : " ");
1005 				}
1006 
1007 				/* In Status column, show the last captured state of this agent */
1008 				seq_printf(s, " %9s |", lpm_status & bit_mask ? "Yes" : " ");
1009 
1010 				/* In Live status column, show the live state of this agent */
1011 				seq_printf(s, " %11s |", lpm_status_live & bit_mask ? "Yes" : " ");
1012 
1013 				seq_puts(s, "\n");
1014 			}
1015 		}
1016 	}
1017 	return 0;
1018 }
1019 
1020 static int pmc_core_substate_req_regs_open(struct inode *inode, struct file *file)
1021 {
1022 	return single_open(file, pmc_core_substate_req_regs_show, inode->i_private);
1023 }
1024 
1025 const struct file_operations pmc_core_substate_req_regs_fops = {
1026 	.owner		= THIS_MODULE,
1027 	.open		= pmc_core_substate_req_regs_open,
1028 	.read		= seq_read,
1029 	.llseek		= seq_lseek,
1030 	.release	= single_release,
1031 };
1032 
1033 static unsigned int pmc_core_get_crystal_freq(void)
1034 {
1035 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
1036 
1037 	if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC)
1038 		return 0;
1039 
1040 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
1041 
1042 	/* TSC/Crystal ratio, plus optionally Crystal Hz */
1043 	cpuid(CPUID_LEAF_TSC, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
1044 
1045 	if (ebx_numerator == 0 || eax_denominator == 0)
1046 		return 0;
1047 
1048 	return ecx_hz;
1049 }
1050 
1051 static int pmc_core_die_c6_us_show(struct seq_file *s, void *unused)
1052 {
1053 	struct pmc_dev *pmcdev = s->private;
1054 	u64 die_c6_res, count;
1055 	int ret;
1056 
1057 	if (!pmcdev->crystal_freq) {
1058 		dev_warn_once(&pmcdev->pdev->dev, "Crystal frequency unavailable\n");
1059 		return -ENXIO;
1060 	}
1061 
1062 	ret = pmt_telem_read(pmcdev->punit_ep, pmcdev->die_c6_offset,
1063 			     &count, 1);
1064 	if (ret)
1065 		return ret;
1066 
1067 	die_c6_res = div64_u64(count * HZ_PER_MHZ, pmcdev->crystal_freq);
1068 	seq_printf(s, "%llu\n", die_c6_res);
1069 
1070 	return 0;
1071 }
1072 DEFINE_SHOW_ATTRIBUTE(pmc_core_die_c6_us);
1073 
1074 static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused)
1075 {
1076 	struct pmc_dev *pmcdev = s->private;
1077 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1078 	bool c10;
1079 	u32 reg;
1080 	u8 mode;
1081 
1082 	reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
1083 	if (reg & LPM_STS_LATCH_MODE) {
1084 		seq_puts(s, "c10");
1085 		c10 = false;
1086 	} else {
1087 		seq_puts(s, "[c10]");
1088 		c10 = true;
1089 	}
1090 
1091 	pmc_for_each_mode(mode, pmc) {
1092 		if ((BIT(mode) & reg) && !c10)
1093 			seq_printf(s, " [%s]", pmc_lpm_modes[mode]);
1094 		else
1095 			seq_printf(s, " %s", pmc_lpm_modes[mode]);
1096 	}
1097 
1098 	seq_puts(s, " clear\n");
1099 
1100 	return 0;
1101 }
1102 
1103 static ssize_t pmc_core_lpm_latch_mode_write(struct file *file,
1104 					     const char __user *userbuf,
1105 					     size_t count, loff_t *ppos)
1106 {
1107 	struct seq_file *s = file->private_data;
1108 	struct pmc_dev *pmcdev = s->private;
1109 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1110 	bool clear = false, c10 = false;
1111 	unsigned char buf[8];
1112 	int mode;
1113 	u32 reg;
1114 	u8 m;
1115 
1116 	if (count > sizeof(buf) - 1)
1117 		return -EINVAL;
1118 	if (copy_from_user(buf, userbuf, count))
1119 		return -EFAULT;
1120 	buf[count] = '\0';
1121 
1122 	/*
1123 	 * Allowed strings are:
1124 	 *	Any enabled substate, e.g. 'S0i2.0'
1125 	 *	'c10'
1126 	 *	'clear'
1127 	 */
1128 	mode = sysfs_match_string(pmc_lpm_modes, buf);
1129 
1130 	/* Check string matches enabled mode */
1131 	pmc_for_each_mode(m, pmc)
1132 		if (mode == m)
1133 			break;
1134 
1135 	if (mode != m || mode < 0) {
1136 		if (sysfs_streq(buf, "clear"))
1137 			clear = true;
1138 		else if (sysfs_streq(buf, "c10"))
1139 			c10 = true;
1140 		else
1141 			return -EINVAL;
1142 	}
1143 
1144 	if (clear) {
1145 		guard(mutex)(&pmcdev->lock);
1146 
1147 		reg = pmc_core_reg_read(pmc, pmc->map->etr3_offset);
1148 		reg |= ETR3_CLEAR_LPM_EVENTS;
1149 		pmc_core_reg_write(pmc, pmc->map->etr3_offset, reg);
1150 
1151 		return count;
1152 	}
1153 
1154 	if (c10) {
1155 		guard(mutex)(&pmcdev->lock);
1156 
1157 		reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
1158 		reg &= ~LPM_STS_LATCH_MODE;
1159 		pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
1160 
1161 		return count;
1162 	}
1163 
1164 	/*
1165 	 * For LPM mode latching we set the latch enable bit and selected mode
1166 	 * and clear everything else.
1167 	 */
1168 	reg = LPM_STS_LATCH_MODE | BIT(mode);
1169 	guard(mutex)(&pmcdev->lock);
1170 	pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
1171 
1172 	return count;
1173 }
1174 DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode);
1175 
1176 static int pmc_core_pkgc_show(struct seq_file *s, void *unused)
1177 {
1178 	struct pmc *pmc = s->private;
1179 	const struct pmc_bit_map *map = pmc->map->msr_sts;
1180 	u64 pcstate_count;
1181 	unsigned int index;
1182 
1183 	for (index = 0; map[index].name ; index++) {
1184 		if (rdmsrq_safe(map[index].bit_mask, &pcstate_count))
1185 			continue;
1186 
1187 		pcstate_count *= 1000;
1188 		do_div(pcstate_count, tsc_khz);
1189 		seq_printf(s, "%-8s : %llu\n", map[index].name,
1190 			   pcstate_count);
1191 	}
1192 
1193 	return 0;
1194 }
1195 DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc);
1196 
1197 static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order)
1198 {
1199 	unsigned int i, j;
1200 
1201 	if (!lpm_pri)
1202 		return false;
1203 	/*
1204 	 * Each byte contains the priority level for 2 modes (7:4 and 3:0).
1205 	 * In a 32 bit register this allows for describing 8 modes. Store the
1206 	 * levels and look for values out of range.
1207 	 */
1208 	for (i = 0; i < 8; i++) {
1209 		int level = lpm_pri & GENMASK(3, 0);
1210 
1211 		if (level >= LPM_MAX_NUM_MODES)
1212 			return false;
1213 
1214 		mode_order[i] = level;
1215 		lpm_pri >>= 4;
1216 	}
1217 
1218 	/* Check that we have unique values */
1219 	for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++)
1220 		for (j = i + 1; j < LPM_MAX_NUM_MODES; j++)
1221 			if (mode_order[i] == mode_order[j])
1222 				return false;
1223 
1224 	return true;
1225 }
1226 
1227 static void pmc_core_pmc_get_low_power_modes(struct pmc_dev *pmcdev, struct pmc *pmc)
1228 {
1229 	u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI;
1230 	u8 mode_order[LPM_MAX_NUM_MODES];
1231 	u32 lpm_pri;
1232 	u32 lpm_en;
1233 	u8 mode;
1234 	unsigned int i;
1235 	int p;
1236 
1237 	/* Use LPM Maps to indicate support for substates */
1238 	if (!pmc->map->lpm_num_maps)
1239 		return;
1240 
1241 	lpm_en = pmc_core_reg_read(pmc, pmc->map->lpm_en_offset);
1242 	/* For MTL, BIT 31 is not an lpm mode but a enable bit.
1243 	 * Lower byte is enough to cover the number of lpm modes for all
1244 	 * platforms and hence mask the upper 3 bytes.
1245 	 */
1246 	pmc->num_lpm_modes = hweight32(lpm_en & 0xFF);
1247 
1248 	/* Read 32 bit LPM_PRI register */
1249 	lpm_pri = pmc_core_reg_read(pmc, pmc->map->lpm_priority_offset);
1250 
1251 	/*
1252 	 * If lpm_pri value passes verification, then override the default
1253 	 * modes here. Otherwise stick with the default.
1254 	 */
1255 	if (pmc_core_pri_verify(lpm_pri, mode_order))
1256 		/* Get list of modes in priority order */
1257 		for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++)
1258 			pri_order[mode_order[mode]] = mode;
1259 	else
1260 		dev_dbg(&pmcdev->pdev->dev,
1261 			 "Assuming a default substate order for this platform\n");
1262 
1263 	/*
1264 	 * Loop through all modes from lowest to highest priority,
1265 	 * and capture all enabled modes in order
1266 	 */
1267 	i = 0;
1268 	for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) {
1269 		u8 mode = pri_order[p];
1270 
1271 		if (!(BIT(mode) & lpm_en))
1272 			continue;
1273 
1274 		pmc->lpm_en_modes[i++] = mode;
1275 	}
1276 }
1277 
1278 static void pmc_core_get_low_power_modes(struct pmc_dev *pmcdev)
1279 {
1280 	unsigned int pmc_idx;
1281 
1282 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
1283 		struct pmc *pmc;
1284 
1285 		pmc = pmcdev->pmcs[pmc_idx];
1286 		if (!pmc)
1287 			continue;
1288 
1289 		pmc_core_pmc_get_low_power_modes(pmcdev, pmc);
1290 	}
1291 }
1292 
1293 int get_primary_reg_base(struct pmc *pmc)
1294 {
1295 	u64 slp_s0_addr;
1296 
1297 	if (lpit_read_residency_count_address(&slp_s0_addr)) {
1298 		pmc->base_addr = PMC_BASE_ADDR_DEFAULT;
1299 
1300 		if (page_is_ram(PHYS_PFN(pmc->base_addr)))
1301 			return -ENODEV;
1302 	} else {
1303 		pmc->base_addr = slp_s0_addr - pmc->map->slp_s0_offset;
1304 	}
1305 
1306 	pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1307 	if (!pmc->regbase)
1308 		return -ENOMEM;
1309 	return 0;
1310 }
1311 
1312 static struct telem_endpoint *pmc_core_register_endpoint(struct pci_dev *pcidev, u32 *guids)
1313 {
1314 	struct telem_endpoint *ep;
1315 	unsigned int i;
1316 
1317 	for (i = 0; guids[i]; i++) {
1318 		ep = pmt_telem_find_and_register_endpoint(pcidev, guids[i], 0);
1319 		if (!IS_ERR(ep))
1320 			return ep;
1321 	}
1322 	return ERR_PTR(-ENODEV);
1323 }
1324 
1325 void pmc_core_punit_pmt_init(struct pmc_dev *pmcdev, u32 *guids)
1326 {
1327 	struct telem_endpoint *ep;
1328 	struct pci_dev *pcidev;
1329 
1330 	pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(10, 0));
1331 	if (!pcidev) {
1332 		dev_err(&pmcdev->pdev->dev, "PUNIT PMT device not found.");
1333 		return;
1334 	}
1335 
1336 	ep = pmc_core_register_endpoint(pcidev, guids);
1337 	pci_dev_put(pcidev);
1338 	if (IS_ERR(ep)) {
1339 		dev_err(&pmcdev->pdev->dev,
1340 			"pmc_core: couldn't get DMU telem endpoint %ld",
1341 			PTR_ERR(ep));
1342 		return;
1343 	}
1344 
1345 	pmcdev->punit_ep = ep;
1346 	pmcdev->die_c6_offset = MTL_PMT_DMU_DIE_C6_OFFSET;
1347 }
1348 
1349 void pmc_core_set_device_d3(unsigned int device)
1350 {
1351 	struct pci_dev *pcidev;
1352 
1353 	pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL);
1354 	if (pcidev) {
1355 		if (!device_trylock(&pcidev->dev)) {
1356 			pci_dev_put(pcidev);
1357 			return;
1358 		}
1359 		if (!pcidev->dev.driver) {
1360 			dev_info(&pcidev->dev, "Setting to D3hot\n");
1361 			pci_set_power_state(pcidev, PCI_D3hot);
1362 		}
1363 		device_unlock(&pcidev->dev);
1364 		pci_dev_put(pcidev);
1365 	}
1366 }
1367 
1368 static bool pmc_core_is_pson_residency_enabled(struct pmc_dev *pmcdev)
1369 {
1370 	struct platform_device *pdev = pmcdev->pdev;
1371 	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1372 	u8 val;
1373 
1374 	if (!adev)
1375 		return false;
1376 
1377 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev),
1378 				    "intel-cec-pson-switching-enabled-in-s0",
1379 				    &val))
1380 		return false;
1381 
1382 	return val == 1;
1383 }
1384 
1385 static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev)
1386 {
1387 	debugfs_remove_recursive(pmcdev->dbgfs_dir);
1388 }
1389 
1390 static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1391 {
1392 	struct pmc *primary_pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1393 	struct dentry *dir;
1394 
1395 	dir = debugfs_create_dir("pmc_core", NULL);
1396 	pmcdev->dbgfs_dir = dir;
1397 
1398 	debugfs_create_file("slp_s0_residency_usec", 0444, dir, primary_pmc,
1399 			    &pmc_core_dev_state);
1400 
1401 	if (primary_pmc->map->pfear_sts)
1402 		debugfs_create_file("pch_ip_power_gating_status", 0444, dir,
1403 				    pmcdev, &pmc_core_ppfear_fops);
1404 
1405 	debugfs_create_file("ltr_ignore", 0644, dir, pmcdev,
1406 			    &pmc_core_ltr_ignore_fops);
1407 
1408 	debugfs_create_file("ltr_restore", 0200, dir, pmcdev, &pmc_core_ltr_restore_fops);
1409 
1410 	debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops);
1411 
1412 	if (primary_pmc->map->s0ix_blocker_maps)
1413 		debugfs_create_file("s0ix_blocker", 0444, dir, pmcdev, &pmc_core_s0ix_blocker_fops);
1414 
1415 	debugfs_create_file("package_cstate_show", 0444, dir, primary_pmc,
1416 			    &pmc_core_pkgc_fops);
1417 
1418 	if (primary_pmc->map->pll_sts)
1419 		debugfs_create_file("pll_status", 0444, dir, pmcdev,
1420 				    &pmc_core_pll_fops);
1421 
1422 	if (primary_pmc->map->mphy_sts)
1423 		debugfs_create_file("mphy_core_lanes_power_gating_status",
1424 				    0444, dir, pmcdev,
1425 				    &pmc_core_mphy_pg_fops);
1426 
1427 	if (primary_pmc->map->slps0_dbg_maps) {
1428 		debugfs_create_file("slp_s0_debug_status", 0444,
1429 				    dir, pmcdev,
1430 				    &pmc_core_slps0_dbg_fops);
1431 
1432 		debugfs_create_bool("slp_s0_dbg_latch", 0644,
1433 				    dir, &slps0_dbg_latch);
1434 	}
1435 
1436 	if (primary_pmc->map->lpm_en_offset) {
1437 		debugfs_create_file("substate_residencies", 0444,
1438 				    pmcdev->dbgfs_dir, pmcdev,
1439 				    &pmc_core_substate_res_fops);
1440 	}
1441 
1442 	if (primary_pmc->map->lpm_status_offset) {
1443 		debugfs_create_file("substate_status_registers", 0444,
1444 				    pmcdev->dbgfs_dir, pmcdev,
1445 				    &pmc_core_substate_sts_regs_fops);
1446 		debugfs_create_file("substate_live_status_registers", 0444,
1447 				    pmcdev->dbgfs_dir, pmcdev,
1448 				    &pmc_core_substate_l_sts_regs_fops);
1449 		debugfs_create_file("lpm_latch_mode", 0644,
1450 				    pmcdev->dbgfs_dir, pmcdev,
1451 				    &pmc_core_lpm_latch_mode_fops);
1452 	}
1453 
1454 	if (primary_pmc->lpm_req_regs) {
1455 		debugfs_create_file("substate_requirements", 0444,
1456 				    pmcdev->dbgfs_dir, pmcdev,
1457 				    pmc_dev_info->sub_req_show);
1458 	}
1459 
1460 	if (primary_pmc->map->pson_residency_offset && pmc_core_is_pson_residency_enabled(pmcdev)) {
1461 		debugfs_create_file("pson_residency_usec", 0444,
1462 				    pmcdev->dbgfs_dir, primary_pmc, &pmc_core_pson_residency);
1463 	}
1464 
1465 	if (pmcdev->punit_ep) {
1466 		debugfs_create_file("die_c6_us_show", 0444,
1467 				    pmcdev->dbgfs_dir, pmcdev,
1468 				    &pmc_core_die_c6_us_fops);
1469 	}
1470 }
1471 
1472 /*
1473  * This function retrieves low power mode requirement data from PMC Low
1474  * Power Mode (LPM) table.
1475  *
1476  * In telemetry space, the LPM table contains a 4 byte header followed
1477  * by 8 consecutive mode blocks (one for each LPM mode). Each block
1478  * has a 4 byte header followed by a set of registers that describe the
1479  * IP state requirements for the given mode. The IP mapping is platform
1480  * specific but the same for each block, making for easy analysis.
1481  * Platforms only use a subset of the space to track the requirements
1482  * for their IPs. Callers provide the requirement registers they use as
1483  * a list of indices. Each requirement register is associated with an
1484  * IP map that's maintained by the caller.
1485  *
1486  * Header
1487  * +----+----------------------------+----------------------------+
1488  * |  0 |      REVISION              |      ENABLED MODES         |
1489  * +----+--------------+-------------+-------------+--------------+
1490  *
1491  * Low Power Mode 0 Block
1492  * +----+--------------+-------------+-------------+--------------+
1493  * |  1 |     SUB ID   |     SIZE    |   MAJOR     |   MINOR      |
1494  * +----+--------------+-------------+-------------+--------------+
1495  * |  2 |           LPM0 Requirements 0                           |
1496  * +----+---------------------------------------------------------+
1497  * |    |                  ...                                    |
1498  * +----+---------------------------------------------------------+
1499  * | 29 |           LPM0 Requirements 27                          |
1500  * +----+---------------------------------------------------------+
1501  *
1502  * ...
1503  *
1504  * Low Power Mode 7 Block
1505  * +----+--------------+-------------+-------------+--------------+
1506  * |    |     SUB ID   |     SIZE    |   MAJOR     |   MINOR      |
1507  * +----+--------------+-------------+-------------+--------------+
1508  * | 60 |           LPM7 Requirements 0                           |
1509  * +----+---------------------------------------------------------+
1510  * |    |                  ...                                    |
1511  * +----+---------------------------------------------------------+
1512  * | 87 |           LPM7 Requirements 27                          |
1513  * +----+---------------------------------------------------------+
1514  *
1515  */
1516 int pmc_core_pmt_get_lpm_req(struct pmc_dev *pmcdev, struct pmc *pmc, struct telem_endpoint *ep)
1517 {
1518 	const u8 *lpm_indices;
1519 	int num_maps, mode_offset = 0;
1520 	int ret, lpm_size;
1521 	u8 mode;
1522 
1523 	lpm_indices = pmc->map->lpm_reg_index;
1524 	num_maps = pmc->map->lpm_num_maps;
1525 	lpm_size = LPM_MAX_NUM_MODES * num_maps;
1526 
1527 	pmc->lpm_req_regs = devm_kzalloc(&pmcdev->pdev->dev,
1528 					 lpm_size * sizeof(u32),
1529 					 GFP_KERNEL);
1530 	if (!pmc->lpm_req_regs)
1531 		return -ENOMEM;
1532 
1533 	mode_offset = LPM_HEADER_OFFSET + LPM_MODE_OFFSET;
1534 	pmc_for_each_mode(mode, pmc) {
1535 		u32 *req_offset = pmc->lpm_req_regs + (mode * num_maps);
1536 		int m;
1537 
1538 		for (m = 0; m < num_maps; m++) {
1539 			u8 sample_id = lpm_indices[m] + mode_offset;
1540 
1541 			ret = pmt_telem_read32(ep, sample_id, req_offset, 1);
1542 			if (ret) {
1543 				dev_err(&pmcdev->pdev->dev,
1544 					"couldn't read Low Power Mode requirements: %d\n", ret);
1545 				return ret;
1546 			}
1547 			++req_offset;
1548 		}
1549 		mode_offset += LPM_REG_COUNT + LPM_MODE_OFFSET;
1550 	}
1551 	return ret;
1552 }
1553 
1554 int pmc_core_pmt_get_blk_sub_req(struct pmc_dev *pmcdev, struct pmc *pmc,
1555 				 struct telem_endpoint *ep)
1556 {
1557 	u32 num_blocker, sample_offset;
1558 	unsigned int index;
1559 	u32 *req_offset;
1560 	int ret;
1561 
1562 	num_blocker = pmc->map->num_s0ix_blocker;
1563 	sample_offset = pmc->map->blocker_req_offset;
1564 
1565 	pmc->lpm_req_regs = devm_kcalloc(&pmcdev->pdev->dev, num_blocker,
1566 					 sizeof(u32), GFP_KERNEL);
1567 	if (!pmc->lpm_req_regs)
1568 		return -ENOMEM;
1569 
1570 	req_offset = pmc->lpm_req_regs;
1571 	for (index = 0; index < num_blocker; index++, req_offset++) {
1572 		ret = pmt_telem_read32(ep, index + sample_offset, req_offset, 1);
1573 		if (ret) {
1574 			dev_err(&pmcdev->pdev->dev,
1575 				"couldn't read Low Power Mode requirements: %d\n", ret);
1576 			return ret;
1577 		}
1578 	}
1579 	return 0;
1580 }
1581 
1582 static int pmc_core_get_telem_info(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1583 {
1584 	struct pci_dev *pcidev __free(pci_dev_put) = NULL;
1585 	struct telem_endpoint *ep;
1586 	unsigned int pmc_idx;
1587 	int ret;
1588 
1589 	pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(20, pmc_dev_info->pci_func));
1590 	if (!pcidev)
1591 		return -ENODEV;
1592 
1593 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
1594 		struct pmc *pmc;
1595 
1596 		pmc = pmcdev->pmcs[pmc_idx];
1597 		if (!pmc)
1598 			continue;
1599 
1600 		if (!pmc->map->lpm_req_guid)
1601 			return -ENXIO;
1602 
1603 		ep = pmt_telem_find_and_register_endpoint(pcidev, pmc->map->lpm_req_guid, 0);
1604 		if (IS_ERR(ep)) {
1605 			dev_dbg(&pmcdev->pdev->dev, "couldn't get telem endpoint %pe", ep);
1606 			return -EPROBE_DEFER;
1607 		}
1608 
1609 		ret = pmc_dev_info->sub_req(pmcdev, pmc, ep);
1610 		pmt_telem_unregister_endpoint(ep);
1611 		if (ret)
1612 			return ret;
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 static const struct pmc_reg_map *pmc_core_find_regmap(struct pmc_info *list, u16 devid)
1619 {
1620 	for (; list->map; ++list)
1621 		if (devid == list->devid)
1622 			return list->map;
1623 
1624 	return NULL;
1625 }
1626 
1627 static int pmc_core_pmc_add(struct pmc_dev *pmcdev, unsigned int pmc_idx)
1628 
1629 {
1630 	struct pmc_ssram_telemetry pmc_ssram_telemetry;
1631 	const struct pmc_reg_map *map;
1632 	struct pmc *pmc;
1633 	int ret;
1634 
1635 	ret = pmc_ssram_telemetry_get_pmc_info(pmc_idx, &pmc_ssram_telemetry);
1636 	if (ret)
1637 		return ret;
1638 
1639 	map = pmc_core_find_regmap(pmcdev->regmap_list, pmc_ssram_telemetry.devid);
1640 	if (!map)
1641 		return -ENODEV;
1642 
1643 	pmc = pmcdev->pmcs[pmc_idx];
1644 	/* Memory for primary PMC has been allocated */
1645 	if (!pmc) {
1646 		pmc = devm_kzalloc(&pmcdev->pdev->dev, sizeof(*pmc), GFP_KERNEL);
1647 		if (!pmc)
1648 			return -ENOMEM;
1649 	}
1650 
1651 	pmc->map = map;
1652 	pmc->base_addr = pmc_ssram_telemetry.base_addr;
1653 	pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1654 
1655 	if (!pmc->regbase) {
1656 		devm_kfree(&pmcdev->pdev->dev, pmc);
1657 		return -ENOMEM;
1658 	}
1659 
1660 	pmcdev->pmcs[pmc_idx] = pmc;
1661 
1662 	return 0;
1663 }
1664 
1665 static int pmc_core_ssram_get_reg_base(struct pmc_dev *pmcdev)
1666 {
1667 	int ret;
1668 
1669 	ret = pmc_core_pmc_add(pmcdev, PMC_IDX_MAIN);
1670 	if (ret)
1671 		return ret;
1672 
1673 	pmc_core_pmc_add(pmcdev, PMC_IDX_IOE);
1674 	pmc_core_pmc_add(pmcdev, PMC_IDX_PCH);
1675 
1676 	return 0;
1677 }
1678 
1679 /*
1680  * When supported, ssram init is used to achieve all available PMCs.
1681  * If ssram init fails, this function uses legacy method to at least get the
1682  * primary PMC.
1683  */
1684 int generic_core_init(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1685 {
1686 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1687 	bool ssram;
1688 	int ret;
1689 
1690 	pmcdev->suspend = pmc_dev_info->suspend;
1691 	pmcdev->resume = pmc_dev_info->resume;
1692 
1693 	ssram = pmc_dev_info->regmap_list != NULL;
1694 	if (ssram) {
1695 		pmcdev->regmap_list = pmc_dev_info->regmap_list;
1696 		ret = pmc_core_ssram_get_reg_base(pmcdev);
1697 		/*
1698 		 * EAGAIN error code indicates Intel PMC SSRAM Telemetry driver
1699 		 * has not finished probe and PMC info is not available yet. Try
1700 		 * again later.
1701 		 */
1702 		if (ret == -EAGAIN)
1703 			return -EPROBE_DEFER;
1704 
1705 		if (ret) {
1706 			dev_warn(&pmcdev->pdev->dev,
1707 				 "Failed to get PMC info from SSRAM, %d, using legacy init\n", ret);
1708 			ssram = false;
1709 		}
1710 	}
1711 
1712 	if (!ssram) {
1713 		pmc->map = pmc_dev_info->map;
1714 		ret = get_primary_reg_base(pmc);
1715 		if (ret)
1716 			return ret;
1717 	}
1718 
1719 	pmc_core_get_low_power_modes(pmcdev);
1720 	if (pmc_dev_info->dmu_guids)
1721 		pmc_core_punit_pmt_init(pmcdev, pmc_dev_info->dmu_guids);
1722 
1723 	if (ssram) {
1724 		ret = pmc_core_get_telem_info(pmcdev, pmc_dev_info);
1725 		if (ret)
1726 			goto unmap_regbase;
1727 	}
1728 
1729 	return 0;
1730 
1731 unmap_regbase:
1732 	for (unsigned int pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
1733 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
1734 
1735 		if (pmc && pmc->regbase)
1736 			iounmap(pmc->regbase);
1737 	}
1738 
1739 	if (pmcdev->punit_ep)
1740 		pmt_telem_unregister_endpoint(pmcdev->punit_ep);
1741 
1742 	return ret;
1743 }
1744 
1745 static const struct x86_cpu_id intel_pmc_core_ids[] = {
1746 	X86_MATCH_VFM(INTEL_SKYLAKE_L,		&spt_pmc_dev),
1747 	X86_MATCH_VFM(INTEL_SKYLAKE,		&spt_pmc_dev),
1748 	X86_MATCH_VFM(INTEL_KABYLAKE_L,		&spt_pmc_dev),
1749 	X86_MATCH_VFM(INTEL_KABYLAKE,		&spt_pmc_dev),
1750 	X86_MATCH_VFM(INTEL_CANNONLAKE_L,	&cnp_pmc_dev),
1751 	X86_MATCH_VFM(INTEL_ICELAKE_L,		&icl_pmc_dev),
1752 	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	&icl_pmc_dev),
1753 	X86_MATCH_VFM(INTEL_COMETLAKE,		&cnp_pmc_dev),
1754 	X86_MATCH_VFM(INTEL_COMETLAKE_L,	&cnp_pmc_dev),
1755 	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	&tgl_l_pmc_dev),
1756 	X86_MATCH_VFM(INTEL_TIGERLAKE,		&tgl_pmc_dev),
1757 	X86_MATCH_VFM(INTEL_ATOM_TREMONT,	&tgl_l_pmc_dev),
1758 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_L,	&icl_pmc_dev),
1759 	X86_MATCH_VFM(INTEL_ROCKETLAKE,		&tgl_pmc_dev),
1760 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,	&tgl_l_pmc_dev),
1761 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT,	&tgl_l_pmc_dev),
1762 	X86_MATCH_VFM(INTEL_ALDERLAKE,		&adl_pmc_dev),
1763 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,	&tgl_l_pmc_dev),
1764 	X86_MATCH_VFM(INTEL_RAPTORLAKE,		&adl_pmc_dev),
1765 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,	&adl_pmc_dev),
1766 	X86_MATCH_VFM(INTEL_BARTLETTLAKE,       &adl_pmc_dev),
1767 	X86_MATCH_VFM(INTEL_METEORLAKE_L,	&mtl_pmc_dev),
1768 	X86_MATCH_VFM(INTEL_ARROWLAKE,		&arl_pmc_dev),
1769 	X86_MATCH_VFM(INTEL_ARROWLAKE_H,	&arl_h_pmc_dev),
1770 	X86_MATCH_VFM(INTEL_ARROWLAKE_U,	&arl_h_pmc_dev),
1771 	X86_MATCH_VFM(INTEL_LUNARLAKE_M,	&lnl_pmc_dev),
1772 	X86_MATCH_VFM(INTEL_PANTHERLAKE_L,	&ptl_pmc_dev),
1773 	X86_MATCH_VFM(INTEL_WILDCATLAKE_L,	&wcl_pmc_dev),
1774 	{}
1775 };
1776 
1777 MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids);
1778 
1779 /*
1780  * This quirk can be used on those platforms where
1781  * the platform BIOS enforces 24Mhz crystal to shutdown
1782  * before PMC can assert SLP_S0#.
1783  */
1784 static bool xtal_ignore;
1785 static int quirk_xtal_ignore(const struct dmi_system_id *id)
1786 {
1787 	xtal_ignore = true;
1788 	return 0;
1789 }
1790 
1791 static void pmc_core_xtal_ignore(struct pmc *pmc)
1792 {
1793 	u32 value;
1794 
1795 	value = pmc_core_reg_read(pmc, pmc->map->pm_vric1_offset);
1796 	/* 24MHz Crystal Shutdown Qualification Disable */
1797 	value |= SPT_PMC_VRIC1_XTALSDQDIS;
1798 	/* Low Voltage Mode Enable */
1799 	value &= ~SPT_PMC_VRIC1_SLPS0LVEN;
1800 	pmc_core_reg_write(pmc, pmc->map->pm_vric1_offset, value);
1801 }
1802 
1803 static const struct dmi_system_id pmc_core_dmi_table[]  = {
1804 	{
1805 	.callback = quirk_xtal_ignore,
1806 	.ident = "HP Elite x2 1013 G3",
1807 	.matches = {
1808 		DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1809 		DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"),
1810 		},
1811 	},
1812 	{}
1813 };
1814 
1815 static void pmc_core_do_dmi_quirks(struct pmc *pmc)
1816 {
1817 	dmi_check_system(pmc_core_dmi_table);
1818 
1819 	if (xtal_ignore)
1820 		pmc_core_xtal_ignore(pmc);
1821 }
1822 
1823 static void pmc_core_clean_structure(struct platform_device *pdev)
1824 {
1825 	struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1826 	unsigned int pmc_idx;
1827 
1828 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
1829 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
1830 
1831 		if (pmc && pmc->regbase)
1832 			iounmap(pmc->regbase);
1833 	}
1834 
1835 	if (pmcdev->punit_ep)
1836 		pmt_telem_unregister_endpoint(pmcdev->punit_ep);
1837 
1838 	platform_set_drvdata(pdev, NULL);
1839 }
1840 
1841 static int pmc_core_probe(struct platform_device *pdev)
1842 {
1843 	static bool device_initialized;
1844 	struct pmc_dev *pmcdev;
1845 	const struct x86_cpu_id *cpu_id;
1846 	struct pmc_dev_info *pmc_dev_info;
1847 	struct pmc *primary_pmc;
1848 	int ret;
1849 
1850 	if (device_initialized)
1851 		return -ENODEV;
1852 
1853 	pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL);
1854 	if (!pmcdev)
1855 		return -ENOMEM;
1856 
1857 	pmcdev->crystal_freq = pmc_core_get_crystal_freq();
1858 
1859 	platform_set_drvdata(pdev, pmcdev);
1860 	pmcdev->pdev = pdev;
1861 
1862 	cpu_id = x86_match_cpu(intel_pmc_core_ids);
1863 	if (!cpu_id)
1864 		return -ENODEV;
1865 
1866 	pmc_dev_info = (struct pmc_dev_info *)cpu_id->driver_data;
1867 
1868 	/* Primary PMC */
1869 	primary_pmc = devm_kzalloc(&pdev->dev, sizeof(*primary_pmc), GFP_KERNEL);
1870 	if (!primary_pmc)
1871 		return -ENOMEM;
1872 	pmcdev->pmcs[PMC_IDX_MAIN] = primary_pmc;
1873 
1874 	/* The last element in msr_map is empty */
1875 	pmcdev->num_of_pkgc = ARRAY_SIZE(msr_map) - 1;
1876 	pmcdev->pkgc_res_cnt = devm_kcalloc(&pdev->dev,
1877 					    pmcdev->num_of_pkgc,
1878 					    sizeof(*pmcdev->pkgc_res_cnt),
1879 					    GFP_KERNEL);
1880 	if (!pmcdev->pkgc_res_cnt)
1881 		return -ENOMEM;
1882 
1883 	ret = devm_mutex_init(&pdev->dev, &pmcdev->lock);
1884 	if (ret)
1885 		return ret;
1886 
1887 	if (pmc_dev_info->init)
1888 		ret = pmc_dev_info->init(pmcdev, pmc_dev_info);
1889 	else
1890 		ret = generic_core_init(pmcdev, pmc_dev_info);
1891 
1892 	if (ret) {
1893 		platform_set_drvdata(pdev, NULL);
1894 		return ret;
1895 	}
1896 
1897 	pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(primary_pmc);
1898 	pmc_core_do_dmi_quirks(primary_pmc);
1899 
1900 	pmc_core_dbgfs_register(pmcdev, pmc_dev_info);
1901 	pm_report_max_hw_sleep(FIELD_MAX(SLP_S0_RES_COUNTER_MASK) *
1902 			       pmc_core_adjust_slp_s0_step(primary_pmc, 1));
1903 
1904 	device_initialized = true;
1905 	dev_info(&pdev->dev, " initialized\n");
1906 
1907 	return 0;
1908 }
1909 
1910 static void pmc_core_remove(struct platform_device *pdev)
1911 {
1912 	struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1913 	pmc_core_dbgfs_unregister(pmcdev);
1914 	pmc_core_clean_structure(pdev);
1915 }
1916 
1917 static bool warn_on_s0ix_failures;
1918 module_param(warn_on_s0ix_failures, bool, 0644);
1919 MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures");
1920 
1921 static bool ltr_ignore_all_suspend = true;
1922 module_param(ltr_ignore_all_suspend, bool, 0644);
1923 MODULE_PARM_DESC(ltr_ignore_all_suspend, "Ignore all LTRs during suspend");
1924 
1925 static __maybe_unused int pmc_core_suspend(struct device *dev)
1926 {
1927 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1928 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1929 	unsigned int i;
1930 
1931 	if (pmcdev->suspend)
1932 		pmcdev->suspend(pmcdev);
1933 
1934 	if (ltr_ignore_all_suspend)
1935 		pmc_core_ltr_ignore_all(pmcdev);
1936 
1937 	/* Check if the syspend will actually use S0ix */
1938 	if (pm_suspend_via_firmware())
1939 		return 0;
1940 
1941 	/* Save PKGC residency for checking later */
1942 	for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1943 		if (rdmsrq_safe(msr_map[i].bit_mask, &pmcdev->pkgc_res_cnt[i]))
1944 			return -EIO;
1945 	}
1946 
1947 	/* Save S0ix residency for checking later */
1948 	if (pmc_core_dev_state_get(pmc, &pmcdev->s0ix_counter))
1949 		return -EIO;
1950 
1951 	return 0;
1952 }
1953 
1954 static inline bool pmc_core_is_deepest_pkgc_failed(struct pmc_dev *pmcdev)
1955 {
1956 	u32 deepest_pkgc_msr = msr_map[pmcdev->num_of_pkgc - 1].bit_mask;
1957 	u64 deepest_pkgc_residency;
1958 
1959 	if (rdmsrq_safe(deepest_pkgc_msr, &deepest_pkgc_residency))
1960 		return false;
1961 
1962 	if (deepest_pkgc_residency == pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1])
1963 		return true;
1964 
1965 	return false;
1966 }
1967 
1968 static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev)
1969 {
1970 	u64 s0ix_counter;
1971 
1972 	if (pmc_core_dev_state_get(pmcdev->pmcs[PMC_IDX_MAIN], &s0ix_counter))
1973 		return false;
1974 
1975 	pm_report_hw_sleep_time((u32)(s0ix_counter - pmcdev->s0ix_counter));
1976 
1977 	if (s0ix_counter == pmcdev->s0ix_counter)
1978 		return true;
1979 
1980 	return false;
1981 }
1982 
1983 int pmc_core_resume_common(struct pmc_dev *pmcdev)
1984 {
1985 	struct device *dev = &pmcdev->pdev->dev;
1986 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1987 	const struct pmc_bit_map **maps = pmc->map->lpm_sts;
1988 	int offset = pmc->map->lpm_status_offset;
1989 	unsigned int pmc_idx, i;
1990 
1991 	/* Check if the syspend used S0ix */
1992 	if (pm_suspend_via_firmware())
1993 		return 0;
1994 
1995 	if (!pmc_core_is_s0ix_failed(pmcdev))
1996 		return 0;
1997 
1998 	if (!warn_on_s0ix_failures)
1999 		return 0;
2000 
2001 	if (pmc_core_is_deepest_pkgc_failed(pmcdev)) {
2002 		/* S0ix failed because of deepest PKGC entry failure */
2003 		dev_info(dev, "CPU did not enter %s!!! (%s cnt=0x%llx)\n",
2004 			 msr_map[pmcdev->num_of_pkgc - 1].name,
2005 			 msr_map[pmcdev->num_of_pkgc - 1].name,
2006 			 pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1]);
2007 
2008 		for (i = 0; i < pmcdev->num_of_pkgc; i++) {
2009 			u64 pc_cnt;
2010 
2011 			if (!rdmsrq_safe(msr_map[i].bit_mask, &pc_cnt)) {
2012 				dev_info(dev, "Prev %s cnt = 0x%llx, Current %s cnt = 0x%llx\n",
2013 					 msr_map[i].name, pmcdev->pkgc_res_cnt[i],
2014 					 msr_map[i].name, pc_cnt);
2015 			}
2016 		}
2017 		return 0;
2018 	}
2019 
2020 	/* The real interesting case - S0ix failed - lets ask PMC why. */
2021 	dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n",
2022 		 pmcdev->s0ix_counter);
2023 
2024 	if (pmc->map->slps0_dbg_maps)
2025 		pmc_core_slps0_display(pmc, dev, NULL);
2026 
2027 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
2028 		struct pmc *pmc = pmcdev->pmcs[pmc_idx];
2029 
2030 		if (!pmc)
2031 			continue;
2032 		if (pmc->map->lpm_sts)
2033 			pmc_core_lpm_display(pmc, dev, NULL, offset, pmc_idx, "STATUS", maps);
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 static __maybe_unused int pmc_core_resume(struct device *dev)
2040 {
2041 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
2042 
2043 	if (ltr_ignore_all_suspend)
2044 		pmc_core_ltr_restore_all(pmcdev);
2045 
2046 	if (pmcdev->resume)
2047 		return pmcdev->resume(pmcdev);
2048 
2049 	return pmc_core_resume_common(pmcdev);
2050 }
2051 
2052 static const struct dev_pm_ops pmc_core_pm_ops = {
2053 	SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume)
2054 };
2055 
2056 static const struct acpi_device_id pmc_core_acpi_ids[] = {
2057 	{"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/
2058 	{ }
2059 };
2060 MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids);
2061 
2062 static struct platform_driver pmc_core_driver = {
2063 	.driver = {
2064 		.name = "intel_pmc_core",
2065 		.acpi_match_table = ACPI_PTR(pmc_core_acpi_ids),
2066 		.pm = &pmc_core_pm_ops,
2067 		.dev_groups = pmc_dev_groups,
2068 	},
2069 	.probe = pmc_core_probe,
2070 	.remove = pmc_core_remove,
2071 };
2072 
2073 module_platform_driver(pmc_core_driver);
2074 
2075 MODULE_IMPORT_NS("INTEL_PMT_TELEMETRY");
2076 MODULE_LICENSE("GPL v2");
2077 MODULE_DESCRIPTION("Intel PMC Core Driver");
2078