1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Intel Core SoC Power Management Controller Driver
4 *
5 * Copyright (c) 2016, Intel Corporation.
6 * All Rights Reserved.
7 *
8 * Authors: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
9 * Vishwanath Somayaji <vishwanath.somayaji@intel.com>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 enum header_type {
15 HEADER_STATUS,
16 HEADER_VALUE,
17 };
18
19 #include <linux/bitfield.h>
20 #include <linux/debugfs.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/err.h>
24 #include <linux/io.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/units.h>
30
31 #include <asm/cpuid/api.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/msr.h>
35 #include <asm/tsc.h>
36
37 #include "core.h"
38 #include "ssram_telemetry.h"
39 #include "../pmt/telemetry.h"
40
41 /* Maximum number of modes supported by platfoms that has low power mode capability */
42 const char *pmc_lpm_modes[] = {
43 "S0i2.0",
44 "S0i2.1",
45 "S0i2.2",
46 "S0i3.0",
47 "S0i3.1",
48 "S0i3.2",
49 "S0i3.3",
50 "S0i3.4",
51 NULL
52 };
53
54 /* PKGC MSRs are common across Intel Core SoCs */
55 const struct pmc_bit_map msr_map[] = {
56 {"Package C2", MSR_PKG_C2_RESIDENCY},
57 {"Package C3", MSR_PKG_C3_RESIDENCY},
58 {"Package C6", MSR_PKG_C6_RESIDENCY},
59 {"Package C7", MSR_PKG_C7_RESIDENCY},
60 {"Package C8", MSR_PKG_C8_RESIDENCY},
61 {"Package C9", MSR_PKG_C9_RESIDENCY},
62 {"Package C10", MSR_PKG_C10_RESIDENCY},
63 {}
64 };
65
pmc_core_reg_read(struct pmc * pmc,int reg_offset)66 static inline u32 pmc_core_reg_read(struct pmc *pmc, int reg_offset)
67 {
68 return readl(pmc->regbase + reg_offset);
69 }
70
pmc_core_reg_write(struct pmc * pmc,int reg_offset,u32 val)71 static inline void pmc_core_reg_write(struct pmc *pmc, int reg_offset,
72 u32 val)
73 {
74 writel(val, pmc->regbase + reg_offset);
75 }
76
pmc_core_adjust_slp_s0_step(struct pmc * pmc,u32 value)77 static inline u64 pmc_core_adjust_slp_s0_step(struct pmc *pmc, u32 value)
78 {
79 /*
80 * ADL PCH does not have the SLP_S0 counter and LPM Residency counters are
81 * used as a workaround which uses 30.5 usec tick. All other client
82 * programs have the legacy SLP_S0 residency counter that is using the 122
83 * usec tick.
84 */
85 const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
86
87 if (pmc->map == &adl_reg_map)
88 return (u64)value * GET_X2_COUNTER((u64)lpm_adj_x2);
89 else
90 return (u64)value * pmc->map->slp_s0_res_counter_step;
91 }
92
set_etr3(struct pmc_dev * pmcdev)93 static int set_etr3(struct pmc_dev *pmcdev)
94 {
95 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
96 const struct pmc_reg_map *map = pmc->map;
97 u32 reg;
98
99 if (!map->etr3_offset)
100 return -EOPNOTSUPP;
101
102 guard(mutex)(&pmcdev->lock);
103
104 /* check if CF9 is locked */
105 reg = pmc_core_reg_read(pmc, map->etr3_offset);
106 if (reg & ETR3_CF9LOCK)
107 return -EACCES;
108
109 /* write CF9 global reset bit */
110 reg |= ETR3_CF9GR;
111 pmc_core_reg_write(pmc, map->etr3_offset, reg);
112
113 reg = pmc_core_reg_read(pmc, map->etr3_offset);
114 if (!(reg & ETR3_CF9GR))
115 return -EIO;
116
117 return 0;
118 }
etr3_is_visible(struct kobject * kobj,struct attribute * attr,int idx)119 static umode_t etr3_is_visible(struct kobject *kobj,
120 struct attribute *attr,
121 int idx)
122 {
123 struct device *dev = kobj_to_dev(kobj);
124 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
125 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
126 const struct pmc_reg_map *map = pmc->map;
127 u32 reg;
128
129 scoped_guard(mutex, &pmcdev->lock)
130 reg = pmc_core_reg_read(pmc, map->etr3_offset);
131
132 return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode;
133 }
134
etr3_show(struct device * dev,struct device_attribute * attr,char * buf)135 static ssize_t etr3_show(struct device *dev,
136 struct device_attribute *attr, char *buf)
137 {
138 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
139 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
140 const struct pmc_reg_map *map = pmc->map;
141 u32 reg;
142
143 if (!map->etr3_offset)
144 return -EOPNOTSUPP;
145
146 scoped_guard(mutex, &pmcdev->lock) {
147 reg = pmc_core_reg_read(pmc, map->etr3_offset);
148 reg &= ETR3_CF9GR | ETR3_CF9LOCK;
149 }
150
151 return sysfs_emit(buf, "0x%08x", reg);
152 }
153
etr3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)154 static ssize_t etr3_store(struct device *dev,
155 struct device_attribute *attr,
156 const char *buf, size_t len)
157 {
158 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
159 int err;
160 u32 reg;
161
162 err = kstrtouint(buf, 16, ®);
163 if (err)
164 return err;
165
166 /* allow only CF9 writes */
167 if (reg != ETR3_CF9GR)
168 return -EINVAL;
169
170 err = set_etr3(pmcdev);
171 if (err)
172 return err;
173
174 return len;
175 }
176 static DEVICE_ATTR_RW(etr3);
177
178 static struct attribute *pmc_attrs[] = {
179 &dev_attr_etr3.attr,
180 NULL
181 };
182
183 static const struct attribute_group pmc_attr_group = {
184 .attrs = pmc_attrs,
185 .is_visible = etr3_is_visible,
186 };
187
188 static const struct attribute_group *pmc_dev_groups[] = {
189 &pmc_attr_group,
190 NULL
191 };
192
pmc_core_dev_state_get(void * data,u64 * val)193 static int pmc_core_dev_state_get(void *data, u64 *val)
194 {
195 struct pmc *pmc = data;
196 const struct pmc_reg_map *map = pmc->map;
197 u32 value;
198
199 value = pmc_core_reg_read(pmc, map->slp_s0_offset);
200 *val = pmc_core_adjust_slp_s0_step(pmc, value);
201
202 return 0;
203 }
204
205 DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n");
206
pmc_core_pson_residency_get(void * data,u64 * val)207 static int pmc_core_pson_residency_get(void *data, u64 *val)
208 {
209 struct pmc *pmc = data;
210 const struct pmc_reg_map *map = pmc->map;
211 u32 value;
212
213 value = pmc_core_reg_read(pmc, map->pson_residency_offset);
214 *val = (u64)value * map->pson_residency_counter_step;
215
216 return 0;
217 }
218
219 DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_pson_residency, pmc_core_pson_residency_get, NULL, "%llu\n");
220
pmc_core_check_read_lock_bit(struct pmc * pmc)221 static int pmc_core_check_read_lock_bit(struct pmc *pmc)
222 {
223 u32 value;
224
225 value = pmc_core_reg_read(pmc, pmc->map->pm_cfg_offset);
226 return value & BIT(pmc->map->pm_read_disable_bit);
227 }
228
pmc_core_slps0_display(struct pmc * pmc,struct device * dev,struct seq_file * s)229 static void pmc_core_slps0_display(struct pmc *pmc, struct device *dev,
230 struct seq_file *s)
231 {
232 const struct pmc_bit_map **maps = pmc->map->slps0_dbg_maps;
233 const struct pmc_bit_map *map;
234 int offset = pmc->map->slps0_dbg_offset;
235 u32 data;
236
237 while (*maps) {
238 map = *maps;
239 data = pmc_core_reg_read(pmc, offset);
240 offset += 4;
241 while (map->name) {
242 if (dev)
243 dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n",
244 map->name,
245 data & map->bit_mask ? "Yes" : "No");
246 if (s)
247 seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n",
248 map->name,
249 data & map->bit_mask ? "Yes" : "No");
250 ++map;
251 }
252 ++maps;
253 }
254 }
255
pmc_core_lpm_get_arr_size(const struct pmc_bit_map ** maps)256 static unsigned int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps)
257 {
258 unsigned int idx;
259
260 for (idx = 0; maps[idx]; idx++)
261 ;/* Nothing */
262
263 return idx;
264 }
265
pmc_core_lpm_display(struct pmc * pmc,struct device * dev,struct seq_file * s,u32 offset,int pmc_index,const char * str,const struct pmc_bit_map ** maps)266 static void pmc_core_lpm_display(struct pmc *pmc, struct device *dev,
267 struct seq_file *s, u32 offset, int pmc_index,
268 const char *str,
269 const struct pmc_bit_map **maps)
270 {
271 unsigned int index, idx, len = 32, arr_size;
272 u32 bit_mask, *lpm_regs;
273
274 arr_size = pmc_core_lpm_get_arr_size(maps);
275 lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL);
276 if (!lpm_regs)
277 return;
278
279 for (index = 0; index < arr_size; index++) {
280 lpm_regs[index] = pmc_core_reg_read(pmc, offset);
281 offset += 4;
282 }
283
284 for (idx = 0; idx < arr_size; idx++) {
285 if (dev)
286 dev_info(dev, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
287 lpm_regs[idx]);
288 if (s)
289 seq_printf(s, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
290 lpm_regs[idx]);
291 for (index = 0; maps[idx][index].name && index < len; index++) {
292 bit_mask = maps[idx][index].bit_mask;
293 if (dev)
294 dev_info(dev, "PMC%d:%-30s %-30d\n", pmc_index,
295 maps[idx][index].name,
296 lpm_regs[idx] & bit_mask ? 1 : 0);
297 if (s)
298 seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_index,
299 maps[idx][index].name,
300 lpm_regs[idx] & bit_mask ? 1 : 0);
301 }
302 }
303
304 kfree(lpm_regs);
305 }
306
307 static bool slps0_dbg_latch;
308
pmc_core_reg_read_byte(struct pmc * pmc,int offset)309 static inline u8 pmc_core_reg_read_byte(struct pmc *pmc, int offset)
310 {
311 return readb(pmc->regbase + offset);
312 }
313
pmc_core_display_map(struct seq_file * s,int index,int idx,int ip,int pmc_idx,u8 pf_reg,const struct pmc_bit_map ** pf_map)314 static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip,
315 int pmc_idx, u8 pf_reg, const struct pmc_bit_map **pf_map)
316 {
317 seq_printf(s, "PMC%d:PCH IP: %-2d - %-32s\tState: %s\n",
318 pmc_idx, ip, pf_map[idx][index].name,
319 pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On");
320 }
321
pmc_core_ppfear_show(struct seq_file * s,void * unused)322 static int pmc_core_ppfear_show(struct seq_file *s, void *unused)
323 {
324 struct pmc_dev *pmcdev = s->private;
325 unsigned int pmc_idx;
326
327 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
328 struct pmc *pmc = pmcdev->pmcs[pmc_idx];
329 const struct pmc_bit_map **maps;
330 u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES];
331 unsigned int index, iter, idx, ip = 0;
332
333 if (!pmc)
334 continue;
335
336 maps = pmc->map->pfear_sts;
337 iter = pmc->map->ppfear0_offset;
338
339 for (index = 0; index < pmc->map->ppfear_buckets &&
340 index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++)
341 pf_regs[index] = pmc_core_reg_read_byte(pmc, iter);
342
343 for (idx = 0; maps[idx]; idx++) {
344 for (index = 0; maps[idx][index].name &&
345 index < pmc->map->ppfear_buckets * 8; ip++, index++)
346 pmc_core_display_map(s, index, idx, ip, pmc_idx,
347 pf_regs[index / 8], maps);
348 }
349 }
350
351 return 0;
352 }
353 DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear);
354
355 /* This function should return link status, 0 means ready */
pmc_core_mtpmc_link_status(struct pmc * pmc)356 static int pmc_core_mtpmc_link_status(struct pmc *pmc)
357 {
358 u32 value;
359
360 value = pmc_core_reg_read(pmc, SPT_PMC_PM_STS_OFFSET);
361 return value & BIT(SPT_PMC_MSG_FULL_STS_BIT);
362 }
363
pmc_core_send_msg(struct pmc * pmc,u32 * addr_xram)364 static int pmc_core_send_msg(struct pmc *pmc, u32 *addr_xram)
365 {
366 u32 dest;
367 int timeout;
368
369 for (timeout = NUM_RETRIES; timeout > 0; timeout--) {
370 if (pmc_core_mtpmc_link_status(pmc) == 0)
371 break;
372 msleep(5);
373 }
374
375 if (timeout <= 0 && pmc_core_mtpmc_link_status(pmc))
376 return -EBUSY;
377
378 dest = (*addr_xram & MTPMC_MASK) | (1U << 1);
379 pmc_core_reg_write(pmc, SPT_PMC_MTPMC_OFFSET, dest);
380 return 0;
381 }
382
pmc_core_mphy_pg_show(struct seq_file * s,void * unused)383 static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused)
384 {
385 struct pmc_dev *pmcdev = s->private;
386 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
387 const struct pmc_bit_map *map = pmc->map->mphy_sts;
388 u32 mphy_core_reg_low, mphy_core_reg_high;
389 u32 val_low, val_high;
390 unsigned int index;
391 int err = 0;
392
393 if (pmcdev->pmc_xram_read_bit) {
394 seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
395 return 0;
396 }
397
398 mphy_core_reg_low = (SPT_PMC_MPHY_CORE_STS_0 << 16);
399 mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16);
400
401 guard(mutex)(&pmcdev->lock);
402
403 err = pmc_core_send_msg(pmc, &mphy_core_reg_low);
404 if (err)
405 return err;
406
407 msleep(10);
408 val_low = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
409
410 err = pmc_core_send_msg(pmc, &mphy_core_reg_high);
411 if (err)
412 return err;
413
414 msleep(10);
415 val_high = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
416
417 for (index = 0; index < 8 && map[index].name; index++) {
418 seq_printf(s, "%-32s\tState: %s\n",
419 map[index].name,
420 map[index].bit_mask & val_low ? "Not power gated" :
421 "Power gated");
422 }
423
424 for (index = 8; map[index].name; index++) {
425 seq_printf(s, "%-32s\tState: %s\n",
426 map[index].name,
427 map[index].bit_mask & val_high ? "Not power gated" :
428 "Power gated");
429 }
430
431 return 0;
432 }
433 DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg);
434
pmc_core_pll_show(struct seq_file * s,void * unused)435 static int pmc_core_pll_show(struct seq_file *s, void *unused)
436 {
437 struct pmc_dev *pmcdev = s->private;
438 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
439 const struct pmc_bit_map *map = pmc->map->pll_sts;
440 u32 mphy_common_reg, val;
441 unsigned int index;
442 int err = 0;
443
444 if (pmcdev->pmc_xram_read_bit) {
445 seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
446 return 0;
447 }
448
449 mphy_common_reg = (SPT_PMC_MPHY_COM_STS_0 << 16);
450 guard(mutex)(&pmcdev->lock);
451
452 err = pmc_core_send_msg(pmc, &mphy_common_reg);
453 if (err)
454 return err;
455
456 /* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */
457 msleep(10);
458 val = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
459
460 for (index = 0; map[index].name ; index++) {
461 seq_printf(s, "%-32s\tState: %s\n",
462 map[index].name,
463 map[index].bit_mask & val ? "Active" : "Idle");
464 }
465
466 return 0;
467 }
468 DEFINE_SHOW_ATTRIBUTE(pmc_core_pll);
469
pmc_core_send_ltr_ignore(struct pmc_dev * pmcdev,u32 value,int ignore)470 int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value, int ignore)
471 {
472 struct pmc *pmc;
473 const struct pmc_reg_map *map;
474 u32 reg;
475 unsigned int pmc_idx;
476 int ltr_index;
477
478 ltr_index = value;
479 /* For platforms with multiple pmcs, ltr index value given by user
480 * is based on the contiguous indexes from ltr_show output.
481 * pmc index and ltr index needs to be calculated from it.
482 */
483 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs) && ltr_index >= 0; pmc_idx++) {
484 pmc = pmcdev->pmcs[pmc_idx];
485
486 if (!pmc)
487 continue;
488
489 map = pmc->map;
490 if (ltr_index <= map->ltr_ignore_max)
491 break;
492
493 /* Along with IP names, ltr_show map includes CURRENT_PLATFORM
494 * and AGGREGATED_SYSTEM values per PMC. Take these two index
495 * values into account in ltr_index calculation. Also, to start
496 * ltr index from zero for next pmc, subtract it by 1.
497 */
498 ltr_index = ltr_index - (map->ltr_ignore_max + 2) - 1;
499 }
500
501 if (pmc_idx >= ARRAY_SIZE(pmcdev->pmcs) || ltr_index < 0)
502 return -EINVAL;
503
504 pr_debug("ltr_ignore for pmc%d: ltr_index:%d\n", pmc_idx, ltr_index);
505
506 guard(mutex)(&pmcdev->lock);
507
508 reg = pmc_core_reg_read(pmc, map->ltr_ignore_offset);
509 if (ignore)
510 reg |= BIT(ltr_index);
511 else
512 reg &= ~BIT(ltr_index);
513 pmc_core_reg_write(pmc, map->ltr_ignore_offset, reg);
514
515 return 0;
516 }
517
pmc_core_ltr_write(struct pmc_dev * pmcdev,const char __user * userbuf,size_t count,int ignore)518 static ssize_t pmc_core_ltr_write(struct pmc_dev *pmcdev,
519 const char __user *userbuf,
520 size_t count, int ignore)
521 {
522 u32 value;
523 int err;
524
525 err = kstrtou32_from_user(userbuf, count, 10, &value);
526 if (err)
527 return err;
528
529 err = pmc_core_send_ltr_ignore(pmcdev, value, ignore);
530
531 return err ?: count;
532 }
533
pmc_core_ltr_ignore_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)534 static ssize_t pmc_core_ltr_ignore_write(struct file *file,
535 const char __user *userbuf,
536 size_t count, loff_t *ppos)
537 {
538 struct seq_file *s = file->private_data;
539 struct pmc_dev *pmcdev = s->private;
540
541 return pmc_core_ltr_write(pmcdev, userbuf, count, 1);
542 }
543
pmc_core_ltr_ignore_show(struct seq_file * s,void * unused)544 static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused)
545 {
546 return 0;
547 }
548 DEFINE_SHOW_STORE_ATTRIBUTE(pmc_core_ltr_ignore);
549
pmc_core_ltr_restore_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)550 static ssize_t pmc_core_ltr_restore_write(struct file *file,
551 const char __user *userbuf,
552 size_t count, loff_t *ppos)
553 {
554 struct seq_file *s = file->private_data;
555 struct pmc_dev *pmcdev = s->private;
556
557 return pmc_core_ltr_write(pmcdev, userbuf, count, 0);
558 }
559
pmc_core_ltr_restore_show(struct seq_file * s,void * unused)560 static int pmc_core_ltr_restore_show(struct seq_file *s, void *unused)
561 {
562 return 0;
563 }
564 DEFINE_SHOW_STORE_ATTRIBUTE(pmc_core_ltr_restore);
565
pmc_core_slps0_dbg_latch(struct pmc_dev * pmcdev,bool reset)566 static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset)
567 {
568 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
569 const struct pmc_reg_map *map = pmc->map;
570 u32 fd;
571
572 guard(mutex)(&pmcdev->lock);
573
574 if (!reset && !slps0_dbg_latch)
575 return;
576
577 fd = pmc_core_reg_read(pmc, map->slps0_dbg_offset);
578 if (reset)
579 fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS;
580 else
581 fd |= CNP_PMC_LATCH_SLPS0_EVENTS;
582 pmc_core_reg_write(pmc, map->slps0_dbg_offset, fd);
583
584 slps0_dbg_latch = false;
585 }
586
pmc_core_slps0_dbg_show(struct seq_file * s,void * unused)587 static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused)
588 {
589 struct pmc_dev *pmcdev = s->private;
590
591 pmc_core_slps0_dbg_latch(pmcdev, false);
592 pmc_core_slps0_display(pmcdev->pmcs[PMC_IDX_MAIN], NULL, s);
593 pmc_core_slps0_dbg_latch(pmcdev, true);
594
595 return 0;
596 }
597 DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg);
598
convert_ltr_scale(u32 val)599 static u32 convert_ltr_scale(u32 val)
600 {
601 /*
602 * As per PCIE specification supporting document
603 * ECN_LatencyTolnReporting_14Aug08.pdf the Latency
604 * Tolerance Reporting data payload is encoded in a
605 * 3 bit scale and 10 bit value fields. Values are
606 * multiplied by the indicated scale to yield an absolute time
607 * value, expressible in a range from 1 nanosecond to
608 * 2^25*(2^10-1) = 34,326,183,936 nanoseconds.
609 *
610 * scale encoding is as follows:
611 *
612 * ----------------------------------------------
613 * |scale factor | Multiplier (ns) |
614 * ----------------------------------------------
615 * | 0 | 1 |
616 * | 1 | 32 |
617 * | 2 | 1024 |
618 * | 3 | 32768 |
619 * | 4 | 1048576 |
620 * | 5 | 33554432 |
621 * | 6 | Invalid |
622 * | 7 | Invalid |
623 * ----------------------------------------------
624 */
625 if (val > 5) {
626 pr_warn("Invalid LTR scale factor.\n");
627 return 0;
628 }
629
630 return 1U << (5 * val);
631 }
632
pmc_core_ltr_show(struct seq_file * s,void * unused)633 static int pmc_core_ltr_show(struct seq_file *s, void *unused)
634 {
635 struct pmc_dev *pmcdev = s->private;
636 u64 decoded_snoop_ltr, decoded_non_snoop_ltr, val;
637 u32 ltr_raw_data, scale;
638 u16 snoop_ltr, nonsnoop_ltr;
639 unsigned int pmc_idx, index, ltr_index = 0;
640
641 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
642 struct pmc *pmc;
643 const struct pmc_bit_map *map;
644 u32 ltr_ign_reg;
645
646 pmc = pmcdev->pmcs[pmc_idx];
647 if (!pmc)
648 continue;
649
650 scoped_guard(mutex, &pmcdev->lock)
651 ltr_ign_reg = pmc_core_reg_read(pmc, pmc->map->ltr_ignore_offset);
652
653 map = pmc->map->ltr_show_sts;
654 for (index = 0; map[index].name; index++) {
655 bool ltr_ign_data;
656
657 if (index > pmc->map->ltr_ignore_max)
658 ltr_ign_data = false;
659 else
660 ltr_ign_data = ltr_ign_reg & BIT(index);
661
662 decoded_snoop_ltr = decoded_non_snoop_ltr = 0;
663 ltr_raw_data = pmc_core_reg_read(pmc,
664 map[index].bit_mask);
665 snoop_ltr = ltr_raw_data & ~MTPMC_MASK;
666 nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK;
667
668 if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) {
669 scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr);
670 val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr);
671 decoded_non_snoop_ltr = val * convert_ltr_scale(scale);
672 }
673 if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) {
674 scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr);
675 val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr);
676 decoded_snoop_ltr = val * convert_ltr_scale(scale);
677 }
678
679 seq_printf(s, "%d\tPMC%d:%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\tLTR_IGNORE: %d\n",
680 ltr_index, pmc_idx, map[index].name, ltr_raw_data,
681 decoded_non_snoop_ltr,
682 decoded_snoop_ltr, ltr_ign_data);
683 ltr_index++;
684 }
685 }
686 return 0;
687 }
688 DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr);
689
pmc_core_s0ix_blocker_show(struct seq_file * s,void * unused)690 static int pmc_core_s0ix_blocker_show(struct seq_file *s, void *unused)
691 {
692 struct pmc_dev *pmcdev = s->private;
693 unsigned int pmc_idx;
694
695 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
696 const struct pmc_bit_map **maps;
697 unsigned int arr_size, r_idx;
698 u32 offset, counter;
699 struct pmc *pmc;
700
701 pmc = pmcdev->pmcs[pmc_idx];
702 if (!pmc)
703 continue;
704 maps = pmc->map->s0ix_blocker_maps;
705 offset = pmc->map->s0ix_blocker_offset;
706 arr_size = pmc_core_lpm_get_arr_size(maps);
707
708 for (r_idx = 0; r_idx < arr_size; r_idx++) {
709 const struct pmc_bit_map *map;
710
711 for (map = maps[r_idx]; map->name; map++) {
712 if (!map->blk)
713 continue;
714 counter = pmc_core_reg_read(pmc, offset);
715 seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_idx,
716 map->name, counter);
717 offset += map->blk * S0IX_BLK_SIZE;
718 }
719 }
720 }
721 return 0;
722 }
723 DEFINE_SHOW_ATTRIBUTE(pmc_core_s0ix_blocker);
724
pmc_core_ltr_ignore_all(struct pmc_dev * pmcdev)725 static void pmc_core_ltr_ignore_all(struct pmc_dev *pmcdev)
726 {
727 unsigned int pmc_idx;
728
729 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
730 struct pmc *pmc;
731 u32 ltr_ign;
732
733 pmc = pmcdev->pmcs[pmc_idx];
734 if (!pmc)
735 continue;
736
737 guard(mutex)(&pmcdev->lock);
738 pmc->ltr_ign = pmc_core_reg_read(pmc, pmc->map->ltr_ignore_offset);
739
740 /* ltr_ignore_max is the max index value for LTR ignore register */
741 ltr_ign = pmc->ltr_ign | GENMASK(pmc->map->ltr_ignore_max, 0);
742 pmc_core_reg_write(pmc, pmc->map->ltr_ignore_offset, ltr_ign);
743 }
744
745 /*
746 * Ignoring ME during suspend is blocking platforms with ADL PCH to get to
747 * deeper S0ix substate.
748 */
749 pmc_core_send_ltr_ignore(pmcdev, 6, 0);
750 }
751
pmc_core_ltr_restore_all(struct pmc_dev * pmcdev)752 static void pmc_core_ltr_restore_all(struct pmc_dev *pmcdev)
753 {
754 unsigned int pmc_idx;
755
756 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
757 struct pmc *pmc;
758
759 pmc = pmcdev->pmcs[pmc_idx];
760 if (!pmc)
761 continue;
762
763 guard(mutex)(&pmcdev->lock);
764 pmc_core_reg_write(pmc, pmc->map->ltr_ignore_offset, pmc->ltr_ign);
765 }
766 }
767
adjust_lpm_residency(struct pmc * pmc,u32 offset,const int lpm_adj_x2)768 static inline u64 adjust_lpm_residency(struct pmc *pmc, u32 offset,
769 const int lpm_adj_x2)
770 {
771 u64 lpm_res = pmc_core_reg_read(pmc, offset);
772
773 return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res);
774 }
775
pmc_core_substate_res_show(struct seq_file * s,void * unused)776 static int pmc_core_substate_res_show(struct seq_file *s, void *unused)
777 {
778 struct pmc_dev *pmcdev = s->private;
779 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
780 const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
781 u32 offset = pmc->map->lpm_residency_offset;
782 int mode;
783
784 seq_printf(s, "%-10s %-15s\n", "Substate", "Residency");
785
786 pmc_for_each_mode(mode, pmcdev) {
787 seq_printf(s, "%-10s %-15llu\n", pmc_lpm_modes[mode],
788 adjust_lpm_residency(pmc, offset + (4 * mode), lpm_adj_x2));
789 }
790
791 return 0;
792 }
793 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res);
794
pmc_core_substate_sts_regs_show(struct seq_file * s,void * unused)795 static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused)
796 {
797 struct pmc_dev *pmcdev = s->private;
798 unsigned int pmc_idx;
799
800 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
801 struct pmc *pmc = pmcdev->pmcs[pmc_idx];
802 const struct pmc_bit_map **maps;
803 u32 offset;
804
805 if (!pmc)
806 continue;
807 maps = pmc->map->lpm_sts;
808 offset = pmc->map->lpm_status_offset;
809 pmc_core_lpm_display(pmc, NULL, s, offset, pmc_idx, "STATUS", maps);
810 }
811
812 return 0;
813 }
814 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs);
815
pmc_core_substate_l_sts_regs_show(struct seq_file * s,void * unused)816 static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused)
817 {
818 struct pmc_dev *pmcdev = s->private;
819 unsigned int pmc_idx;
820
821 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
822 struct pmc *pmc = pmcdev->pmcs[pmc_idx];
823 const struct pmc_bit_map **maps;
824 u32 offset;
825
826 if (!pmc)
827 continue;
828 maps = pmc->map->lpm_sts;
829 offset = pmc->map->lpm_live_status_offset;
830 pmc_core_lpm_display(pmc, NULL, s, offset, pmc_idx, "LIVE_STATUS", maps);
831 }
832
833 return 0;
834 }
835 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs);
836
pmc_core_substate_req_header_show(struct seq_file * s,int pmc_index,enum header_type type)837 static void pmc_core_substate_req_header_show(struct seq_file *s, int pmc_index,
838 enum header_type type)
839 {
840 struct pmc_dev *pmcdev = s->private;
841 int mode;
842
843 seq_printf(s, "%40s |", "Element");
844 pmc_for_each_mode(mode, pmcdev)
845 seq_printf(s, " %9s |", pmc_lpm_modes[mode]);
846
847 if (type == HEADER_STATUS) {
848 seq_printf(s, " %9s |", "Status");
849 seq_printf(s, " %11s |\n", "Live Status");
850 } else {
851 seq_printf(s, " %9s |\n", "Value");
852 }
853 }
854
pmc_core_substate_blk_req_show(struct seq_file * s,void * unused)855 static int pmc_core_substate_blk_req_show(struct seq_file *s, void *unused)
856 {
857 struct pmc_dev *pmcdev = s->private;
858 unsigned int pmc_idx;
859
860 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
861 const struct pmc_bit_map **maps;
862 unsigned int arr_size, r_idx;
863 u32 offset, counter;
864 u32 *lpm_req_regs;
865 struct pmc *pmc;
866
867 pmc = pmcdev->pmcs[pmc_idx];
868 if (!pmc || !pmc->lpm_req_regs)
869 continue;
870
871 lpm_req_regs = pmc->lpm_req_regs;
872 maps = pmc->map->s0ix_blocker_maps;
873 offset = pmc->map->s0ix_blocker_offset;
874 arr_size = pmc_core_lpm_get_arr_size(maps);
875
876 /* Display the header */
877 pmc_core_substate_req_header_show(s, pmc_idx, HEADER_VALUE);
878
879 for (r_idx = 0; r_idx < arr_size; r_idx++) {
880 const struct pmc_bit_map *map;
881
882 for (map = maps[r_idx]; map->name; map++) {
883 int mode;
884
885 if (!map->blk)
886 continue;
887
888 counter = pmc_core_reg_read(pmc, offset);
889 seq_printf(s, "pmc%u: %34s |", pmc_idx, map->name);
890 pmc_for_each_mode(mode, pmcdev) {
891 bool required = *lpm_req_regs & BIT(mode);
892
893 seq_printf(s, " %9s |", required ? "Required" : " ");
894 }
895 seq_printf(s, " %9u |\n", counter);
896 offset += map->blk * S0IX_BLK_SIZE;
897 lpm_req_regs++;
898 }
899 }
900 }
901 return 0;
902 }
903
pmc_core_substate_blk_req_open(struct inode * inode,struct file * file)904 static int pmc_core_substate_blk_req_open(struct inode *inode, struct file *file)
905 {
906 return single_open(file, pmc_core_substate_blk_req_show, inode->i_private);
907 }
908
909 const struct file_operations pmc_core_substate_blk_req_fops = {
910 .owner = THIS_MODULE,
911 .open = pmc_core_substate_blk_req_open,
912 .read = seq_read,
913 .llseek = seq_lseek,
914 .release = single_release,
915 };
916
pmc_core_substate_req_regs_show(struct seq_file * s,void * unused)917 static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused)
918 {
919 struct pmc_dev *pmcdev = s->private;
920 u32 sts_offset;
921 u32 sts_offset_live;
922 u32 *lpm_req_regs;
923 unsigned int mp, pmc_idx;
924 int num_maps;
925
926 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
927 struct pmc *pmc = pmcdev->pmcs[pmc_idx];
928 const struct pmc_bit_map **maps;
929
930 if (!pmc)
931 continue;
932
933 maps = pmc->map->lpm_sts;
934 num_maps = pmc->map->lpm_num_maps;
935 sts_offset = pmc->map->lpm_status_offset;
936 sts_offset_live = pmc->map->lpm_live_status_offset;
937 lpm_req_regs = pmc->lpm_req_regs;
938
939 /*
940 * When there are multiple PMCs, though the PMC may exist, the
941 * requirement register discovery could have failed so check
942 * before accessing.
943 */
944 if (!lpm_req_regs)
945 continue;
946
947 /* Display the header */
948 pmc_core_substate_req_header_show(s, pmc_idx, HEADER_STATUS);
949
950 /* Loop over maps */
951 for (mp = 0; mp < num_maps; mp++) {
952 u32 req_mask = 0;
953 u32 lpm_status;
954 u32 lpm_status_live;
955 const struct pmc_bit_map *map;
956 int mode, i, len = 32;
957
958 /*
959 * Capture the requirements and create a mask so that we only
960 * show an element if it's required for at least one of the
961 * enabled low power modes
962 */
963 pmc_for_each_mode(mode, pmcdev)
964 req_mask |= lpm_req_regs[mp + (mode * num_maps)];
965
966 /* Get the last latched status for this map */
967 lpm_status = pmc_core_reg_read(pmc, sts_offset + (mp * 4));
968
969 /* Get the runtime status for this map */
970 lpm_status_live = pmc_core_reg_read(pmc, sts_offset_live + (mp * 4));
971
972 /* Loop over elements in this map */
973 map = maps[mp];
974 for (i = 0; map[i].name && i < len; i++) {
975 u32 bit_mask = map[i].bit_mask;
976
977 if (!(bit_mask & req_mask)) {
978 /*
979 * Not required for any enabled states
980 * so don't display
981 */
982 continue;
983 }
984
985 /* Display the element name in the first column */
986 seq_printf(s, "pmc%d: %34s |", pmc_idx, map[i].name);
987
988 /* Loop over the enabled states and display if required */
989 pmc_for_each_mode(mode, pmcdev) {
990 bool required = lpm_req_regs[mp + (mode * num_maps)] &
991 bit_mask;
992 seq_printf(s, " %9s |", required ? "Required" : " ");
993 }
994
995 /* In Status column, show the last captured state of this agent */
996 seq_printf(s, " %9s |", lpm_status & bit_mask ? "Yes" : " ");
997
998 /* In Live status column, show the live state of this agent */
999 seq_printf(s, " %11s |", lpm_status_live & bit_mask ? "Yes" : " ");
1000
1001 seq_puts(s, "\n");
1002 }
1003 }
1004 }
1005 return 0;
1006 }
1007
pmc_core_substate_req_regs_open(struct inode * inode,struct file * file)1008 static int pmc_core_substate_req_regs_open(struct inode *inode, struct file *file)
1009 {
1010 return single_open(file, pmc_core_substate_req_regs_show, inode->i_private);
1011 }
1012
1013 const struct file_operations pmc_core_substate_req_regs_fops = {
1014 .owner = THIS_MODULE,
1015 .open = pmc_core_substate_req_regs_open,
1016 .read = seq_read,
1017 .llseek = seq_lseek,
1018 .release = single_release,
1019 };
1020
pmc_core_get_crystal_freq(void)1021 static unsigned int pmc_core_get_crystal_freq(void)
1022 {
1023 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
1024
1025 if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC)
1026 return 0;
1027
1028 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
1029
1030 /* TSC/Crystal ratio, plus optionally Crystal Hz */
1031 cpuid(CPUID_LEAF_TSC, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
1032
1033 if (ebx_numerator == 0 || eax_denominator == 0)
1034 return 0;
1035
1036 return ecx_hz;
1037 }
1038
pmc_core_die_c6_us_show(struct seq_file * s,void * unused)1039 static int pmc_core_die_c6_us_show(struct seq_file *s, void *unused)
1040 {
1041 struct pmc_dev *pmcdev = s->private;
1042 u64 die_c6_res, count;
1043 int ret;
1044
1045 if (!pmcdev->crystal_freq) {
1046 dev_warn_once(&pmcdev->pdev->dev, "Crystal frequency unavailable\n");
1047 return -ENXIO;
1048 }
1049
1050 ret = pmt_telem_read(pmcdev->punit_ep, pmcdev->die_c6_offset,
1051 &count, 1);
1052 if (ret)
1053 return ret;
1054
1055 die_c6_res = div64_u64(count * HZ_PER_MHZ, pmcdev->crystal_freq);
1056 seq_printf(s, "%llu\n", die_c6_res);
1057
1058 return 0;
1059 }
1060 DEFINE_SHOW_ATTRIBUTE(pmc_core_die_c6_us);
1061
pmc_core_lpm_latch_mode_show(struct seq_file * s,void * unused)1062 static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused)
1063 {
1064 struct pmc_dev *pmcdev = s->private;
1065 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1066 bool c10;
1067 u32 reg;
1068 int mode;
1069
1070 reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
1071 if (reg & LPM_STS_LATCH_MODE) {
1072 seq_puts(s, "c10");
1073 c10 = false;
1074 } else {
1075 seq_puts(s, "[c10]");
1076 c10 = true;
1077 }
1078
1079 pmc_for_each_mode(mode, pmcdev) {
1080 if ((BIT(mode) & reg) && !c10)
1081 seq_printf(s, " [%s]", pmc_lpm_modes[mode]);
1082 else
1083 seq_printf(s, " %s", pmc_lpm_modes[mode]);
1084 }
1085
1086 seq_puts(s, " clear\n");
1087
1088 return 0;
1089 }
1090
pmc_core_lpm_latch_mode_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)1091 static ssize_t pmc_core_lpm_latch_mode_write(struct file *file,
1092 const char __user *userbuf,
1093 size_t count, loff_t *ppos)
1094 {
1095 struct seq_file *s = file->private_data;
1096 struct pmc_dev *pmcdev = s->private;
1097 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1098 bool clear = false, c10 = false;
1099 unsigned char buf[8];
1100 int m, mode;
1101 u32 reg;
1102
1103 if (count > sizeof(buf) - 1)
1104 return -EINVAL;
1105 if (copy_from_user(buf, userbuf, count))
1106 return -EFAULT;
1107 buf[count] = '\0';
1108
1109 /*
1110 * Allowed strings are:
1111 * Any enabled substate, e.g. 'S0i2.0'
1112 * 'c10'
1113 * 'clear'
1114 */
1115 mode = sysfs_match_string(pmc_lpm_modes, buf);
1116
1117 /* Check string matches enabled mode */
1118 pmc_for_each_mode(m, pmcdev)
1119 if (mode == m)
1120 break;
1121
1122 if (mode != m || mode < 0) {
1123 if (sysfs_streq(buf, "clear"))
1124 clear = true;
1125 else if (sysfs_streq(buf, "c10"))
1126 c10 = true;
1127 else
1128 return -EINVAL;
1129 }
1130
1131 if (clear) {
1132 guard(mutex)(&pmcdev->lock);
1133
1134 reg = pmc_core_reg_read(pmc, pmc->map->etr3_offset);
1135 reg |= ETR3_CLEAR_LPM_EVENTS;
1136 pmc_core_reg_write(pmc, pmc->map->etr3_offset, reg);
1137
1138 return count;
1139 }
1140
1141 if (c10) {
1142 guard(mutex)(&pmcdev->lock);
1143
1144 reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
1145 reg &= ~LPM_STS_LATCH_MODE;
1146 pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
1147
1148 return count;
1149 }
1150
1151 /*
1152 * For LPM mode latching we set the latch enable bit and selected mode
1153 * and clear everything else.
1154 */
1155 reg = LPM_STS_LATCH_MODE | BIT(mode);
1156 guard(mutex)(&pmcdev->lock);
1157 pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
1158
1159 return count;
1160 }
1161 DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode);
1162
pmc_core_pkgc_show(struct seq_file * s,void * unused)1163 static int pmc_core_pkgc_show(struct seq_file *s, void *unused)
1164 {
1165 struct pmc *pmc = s->private;
1166 const struct pmc_bit_map *map = pmc->map->msr_sts;
1167 u64 pcstate_count;
1168 unsigned int index;
1169
1170 for (index = 0; map[index].name ; index++) {
1171 if (rdmsrq_safe(map[index].bit_mask, &pcstate_count))
1172 continue;
1173
1174 pcstate_count *= 1000;
1175 do_div(pcstate_count, tsc_khz);
1176 seq_printf(s, "%-8s : %llu\n", map[index].name,
1177 pcstate_count);
1178 }
1179
1180 return 0;
1181 }
1182 DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc);
1183
pmc_core_pri_verify(u32 lpm_pri,u8 * mode_order)1184 static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order)
1185 {
1186 unsigned int i, j;
1187
1188 if (!lpm_pri)
1189 return false;
1190 /*
1191 * Each byte contains the priority level for 2 modes (7:4 and 3:0).
1192 * In a 32 bit register this allows for describing 8 modes. Store the
1193 * levels and look for values out of range.
1194 */
1195 for (i = 0; i < 8; i++) {
1196 int level = lpm_pri & GENMASK(3, 0);
1197
1198 if (level >= LPM_MAX_NUM_MODES)
1199 return false;
1200
1201 mode_order[i] = level;
1202 lpm_pri >>= 4;
1203 }
1204
1205 /* Check that we have unique values */
1206 for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++)
1207 for (j = i + 1; j < LPM_MAX_NUM_MODES; j++)
1208 if (mode_order[i] == mode_order[j])
1209 return false;
1210
1211 return true;
1212 }
1213
pmc_core_get_low_power_modes(struct pmc_dev * pmcdev)1214 void pmc_core_get_low_power_modes(struct pmc_dev *pmcdev)
1215 {
1216 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1217 u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI;
1218 u8 mode_order[LPM_MAX_NUM_MODES];
1219 u32 lpm_pri;
1220 u32 lpm_en;
1221 unsigned int i;
1222 int mode, p;
1223
1224 /* Use LPM Maps to indicate support for substates */
1225 if (!pmc->map->lpm_num_maps)
1226 return;
1227
1228 lpm_en = pmc_core_reg_read(pmc, pmc->map->lpm_en_offset);
1229 /* For MTL, BIT 31 is not an lpm mode but a enable bit.
1230 * Lower byte is enough to cover the number of lpm modes for all
1231 * platforms and hence mask the upper 3 bytes.
1232 */
1233 pmcdev->num_lpm_modes = hweight32(lpm_en & 0xFF);
1234
1235 /* Read 32 bit LPM_PRI register */
1236 lpm_pri = pmc_core_reg_read(pmc, pmc->map->lpm_priority_offset);
1237
1238
1239 /*
1240 * If lpm_pri value passes verification, then override the default
1241 * modes here. Otherwise stick with the default.
1242 */
1243 if (pmc_core_pri_verify(lpm_pri, mode_order))
1244 /* Get list of modes in priority order */
1245 for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++)
1246 pri_order[mode_order[mode]] = mode;
1247 else
1248 dev_dbg(&pmcdev->pdev->dev,
1249 "Assuming a default substate order for this platform\n");
1250
1251 /*
1252 * Loop through all modes from lowest to highest priority,
1253 * and capture all enabled modes in order
1254 */
1255 i = 0;
1256 for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) {
1257 int mode = pri_order[p];
1258
1259 if (!(BIT(mode) & lpm_en))
1260 continue;
1261
1262 pmcdev->lpm_en_modes[i++] = mode;
1263 }
1264 }
1265
get_primary_reg_base(struct pmc * pmc)1266 int get_primary_reg_base(struct pmc *pmc)
1267 {
1268 u64 slp_s0_addr;
1269
1270 if (lpit_read_residency_count_address(&slp_s0_addr)) {
1271 pmc->base_addr = PMC_BASE_ADDR_DEFAULT;
1272
1273 if (page_is_ram(PHYS_PFN(pmc->base_addr)))
1274 return -ENODEV;
1275 } else {
1276 pmc->base_addr = slp_s0_addr - pmc->map->slp_s0_offset;
1277 }
1278
1279 pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1280 if (!pmc->regbase)
1281 return -ENOMEM;
1282 return 0;
1283 }
1284
pmc_core_register_endpoint(struct pci_dev * pcidev,u32 * guids)1285 static struct telem_endpoint *pmc_core_register_endpoint(struct pci_dev *pcidev, u32 *guids)
1286 {
1287 struct telem_endpoint *ep;
1288 unsigned int i;
1289
1290 for (i = 0; guids[i]; i++) {
1291 ep = pmt_telem_find_and_register_endpoint(pcidev, guids[i], 0);
1292 if (!IS_ERR(ep))
1293 return ep;
1294 }
1295 return ERR_PTR(-ENODEV);
1296 }
1297
pmc_core_punit_pmt_init(struct pmc_dev * pmcdev,u32 * guids)1298 void pmc_core_punit_pmt_init(struct pmc_dev *pmcdev, u32 *guids)
1299 {
1300 struct telem_endpoint *ep;
1301 struct pci_dev *pcidev;
1302
1303 pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(10, 0));
1304 if (!pcidev) {
1305 dev_err(&pmcdev->pdev->dev, "PUNIT PMT device not found.");
1306 return;
1307 }
1308
1309 ep = pmc_core_register_endpoint(pcidev, guids);
1310 pci_dev_put(pcidev);
1311 if (IS_ERR(ep)) {
1312 dev_err(&pmcdev->pdev->dev,
1313 "pmc_core: couldn't get DMU telem endpoint %ld",
1314 PTR_ERR(ep));
1315 return;
1316 }
1317
1318 pmcdev->punit_ep = ep;
1319 pmcdev->die_c6_offset = MTL_PMT_DMU_DIE_C6_OFFSET;
1320 }
1321
pmc_core_set_device_d3(unsigned int device)1322 void pmc_core_set_device_d3(unsigned int device)
1323 {
1324 struct pci_dev *pcidev;
1325
1326 pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL);
1327 if (pcidev) {
1328 if (!device_trylock(&pcidev->dev)) {
1329 pci_dev_put(pcidev);
1330 return;
1331 }
1332 if (!pcidev->dev.driver) {
1333 dev_info(&pcidev->dev, "Setting to D3hot\n");
1334 pci_set_power_state(pcidev, PCI_D3hot);
1335 }
1336 device_unlock(&pcidev->dev);
1337 pci_dev_put(pcidev);
1338 }
1339 }
1340
pmc_core_is_pson_residency_enabled(struct pmc_dev * pmcdev)1341 static bool pmc_core_is_pson_residency_enabled(struct pmc_dev *pmcdev)
1342 {
1343 struct platform_device *pdev = pmcdev->pdev;
1344 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1345 u8 val;
1346
1347 if (!adev)
1348 return false;
1349
1350 if (fwnode_property_read_u8(acpi_fwnode_handle(adev),
1351 "intel-cec-pson-switching-enabled-in-s0",
1352 &val))
1353 return false;
1354
1355 return val == 1;
1356 }
1357
pmc_core_dbgfs_unregister(struct pmc_dev * pmcdev)1358 static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev)
1359 {
1360 debugfs_remove_recursive(pmcdev->dbgfs_dir);
1361 }
1362
pmc_core_dbgfs_register(struct pmc_dev * pmcdev,struct pmc_dev_info * pmc_dev_info)1363 static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1364 {
1365 struct pmc *primary_pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1366 struct dentry *dir;
1367
1368 dir = debugfs_create_dir("pmc_core", NULL);
1369 pmcdev->dbgfs_dir = dir;
1370
1371 debugfs_create_file("slp_s0_residency_usec", 0444, dir, primary_pmc,
1372 &pmc_core_dev_state);
1373
1374 if (primary_pmc->map->pfear_sts)
1375 debugfs_create_file("pch_ip_power_gating_status", 0444, dir,
1376 pmcdev, &pmc_core_ppfear_fops);
1377
1378 debugfs_create_file("ltr_ignore", 0644, dir, pmcdev,
1379 &pmc_core_ltr_ignore_fops);
1380
1381 debugfs_create_file("ltr_restore", 0200, dir, pmcdev, &pmc_core_ltr_restore_fops);
1382
1383 debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops);
1384
1385 if (primary_pmc->map->s0ix_blocker_maps)
1386 debugfs_create_file("s0ix_blocker", 0444, dir, pmcdev, &pmc_core_s0ix_blocker_fops);
1387
1388 debugfs_create_file("package_cstate_show", 0444, dir, primary_pmc,
1389 &pmc_core_pkgc_fops);
1390
1391 if (primary_pmc->map->pll_sts)
1392 debugfs_create_file("pll_status", 0444, dir, pmcdev,
1393 &pmc_core_pll_fops);
1394
1395 if (primary_pmc->map->mphy_sts)
1396 debugfs_create_file("mphy_core_lanes_power_gating_status",
1397 0444, dir, pmcdev,
1398 &pmc_core_mphy_pg_fops);
1399
1400 if (primary_pmc->map->slps0_dbg_maps) {
1401 debugfs_create_file("slp_s0_debug_status", 0444,
1402 dir, pmcdev,
1403 &pmc_core_slps0_dbg_fops);
1404
1405 debugfs_create_bool("slp_s0_dbg_latch", 0644,
1406 dir, &slps0_dbg_latch);
1407 }
1408
1409 if (primary_pmc->map->lpm_en_offset) {
1410 debugfs_create_file("substate_residencies", 0444,
1411 pmcdev->dbgfs_dir, pmcdev,
1412 &pmc_core_substate_res_fops);
1413 }
1414
1415 if (primary_pmc->map->lpm_status_offset) {
1416 debugfs_create_file("substate_status_registers", 0444,
1417 pmcdev->dbgfs_dir, pmcdev,
1418 &pmc_core_substate_sts_regs_fops);
1419 debugfs_create_file("substate_live_status_registers", 0444,
1420 pmcdev->dbgfs_dir, pmcdev,
1421 &pmc_core_substate_l_sts_regs_fops);
1422 debugfs_create_file("lpm_latch_mode", 0644,
1423 pmcdev->dbgfs_dir, pmcdev,
1424 &pmc_core_lpm_latch_mode_fops);
1425 }
1426
1427 if (primary_pmc->lpm_req_regs) {
1428 debugfs_create_file("substate_requirements", 0444,
1429 pmcdev->dbgfs_dir, pmcdev,
1430 pmc_dev_info->sub_req_show);
1431 }
1432
1433 if (primary_pmc->map->pson_residency_offset && pmc_core_is_pson_residency_enabled(pmcdev)) {
1434 debugfs_create_file("pson_residency_usec", 0444,
1435 pmcdev->dbgfs_dir, primary_pmc, &pmc_core_pson_residency);
1436 }
1437
1438 if (pmcdev->punit_ep) {
1439 debugfs_create_file("die_c6_us_show", 0444,
1440 pmcdev->dbgfs_dir, pmcdev,
1441 &pmc_core_die_c6_us_fops);
1442 }
1443 }
1444
1445 /*
1446 * This function retrieves low power mode requirement data from PMC Low
1447 * Power Mode (LPM) table.
1448 *
1449 * In telemetry space, the LPM table contains a 4 byte header followed
1450 * by 8 consecutive mode blocks (one for each LPM mode). Each block
1451 * has a 4 byte header followed by a set of registers that describe the
1452 * IP state requirements for the given mode. The IP mapping is platform
1453 * specific but the same for each block, making for easy analysis.
1454 * Platforms only use a subset of the space to track the requirements
1455 * for their IPs. Callers provide the requirement registers they use as
1456 * a list of indices. Each requirement register is associated with an
1457 * IP map that's maintained by the caller.
1458 *
1459 * Header
1460 * +----+----------------------------+----------------------------+
1461 * | 0 | REVISION | ENABLED MODES |
1462 * +----+--------------+-------------+-------------+--------------+
1463 *
1464 * Low Power Mode 0 Block
1465 * +----+--------------+-------------+-------------+--------------+
1466 * | 1 | SUB ID | SIZE | MAJOR | MINOR |
1467 * +----+--------------+-------------+-------------+--------------+
1468 * | 2 | LPM0 Requirements 0 |
1469 * +----+---------------------------------------------------------+
1470 * | | ... |
1471 * +----+---------------------------------------------------------+
1472 * | 29 | LPM0 Requirements 27 |
1473 * +----+---------------------------------------------------------+
1474 *
1475 * ...
1476 *
1477 * Low Power Mode 7 Block
1478 * +----+--------------+-------------+-------------+--------------+
1479 * | | SUB ID | SIZE | MAJOR | MINOR |
1480 * +----+--------------+-------------+-------------+--------------+
1481 * | 60 | LPM7 Requirements 0 |
1482 * +----+---------------------------------------------------------+
1483 * | | ... |
1484 * +----+---------------------------------------------------------+
1485 * | 87 | LPM7 Requirements 27 |
1486 * +----+---------------------------------------------------------+
1487 *
1488 */
pmc_core_pmt_get_lpm_req(struct pmc_dev * pmcdev,struct pmc * pmc,struct telem_endpoint * ep)1489 int pmc_core_pmt_get_lpm_req(struct pmc_dev *pmcdev, struct pmc *pmc, struct telem_endpoint *ep)
1490 {
1491 const u8 *lpm_indices;
1492 int num_maps, mode_offset = 0;
1493 int ret, mode;
1494 int lpm_size;
1495
1496 lpm_indices = pmc->map->lpm_reg_index;
1497 num_maps = pmc->map->lpm_num_maps;
1498 lpm_size = LPM_MAX_NUM_MODES * num_maps;
1499
1500 pmc->lpm_req_regs = devm_kzalloc(&pmcdev->pdev->dev,
1501 lpm_size * sizeof(u32),
1502 GFP_KERNEL);
1503 if (!pmc->lpm_req_regs)
1504 return -ENOMEM;
1505
1506 mode_offset = LPM_HEADER_OFFSET + LPM_MODE_OFFSET;
1507 pmc_for_each_mode(mode, pmcdev) {
1508 u32 *req_offset = pmc->lpm_req_regs + (mode * num_maps);
1509 int m;
1510
1511 for (m = 0; m < num_maps; m++) {
1512 u8 sample_id = lpm_indices[m] + mode_offset;
1513
1514 ret = pmt_telem_read32(ep, sample_id, req_offset, 1);
1515 if (ret) {
1516 dev_err(&pmcdev->pdev->dev,
1517 "couldn't read Low Power Mode requirements: %d\n", ret);
1518 return ret;
1519 }
1520 ++req_offset;
1521 }
1522 mode_offset += LPM_REG_COUNT + LPM_MODE_OFFSET;
1523 }
1524 return ret;
1525 }
1526
pmc_core_pmt_get_blk_sub_req(struct pmc_dev * pmcdev,struct pmc * pmc,struct telem_endpoint * ep)1527 int pmc_core_pmt_get_blk_sub_req(struct pmc_dev *pmcdev, struct pmc *pmc,
1528 struct telem_endpoint *ep)
1529 {
1530 u32 num_blocker, sample_offset;
1531 unsigned int index;
1532 u32 *req_offset;
1533 int ret;
1534
1535 num_blocker = pmc->map->num_s0ix_blocker;
1536 sample_offset = pmc->map->blocker_req_offset;
1537
1538 pmc->lpm_req_regs = devm_kcalloc(&pmcdev->pdev->dev, num_blocker,
1539 sizeof(u32), GFP_KERNEL);
1540 if (!pmc->lpm_req_regs)
1541 return -ENOMEM;
1542
1543 req_offset = pmc->lpm_req_regs;
1544 for (index = 0; index < num_blocker; index++, req_offset++) {
1545 ret = pmt_telem_read32(ep, index + sample_offset, req_offset, 1);
1546 if (ret) {
1547 dev_err(&pmcdev->pdev->dev,
1548 "couldn't read Low Power Mode requirements: %d\n", ret);
1549 return ret;
1550 }
1551 }
1552 return 0;
1553 }
1554
pmc_core_get_telem_info(struct pmc_dev * pmcdev,struct pmc_dev_info * pmc_dev_info)1555 static int pmc_core_get_telem_info(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1556 {
1557 struct pci_dev *pcidev __free(pci_dev_put) = NULL;
1558 struct telem_endpoint *ep;
1559 unsigned int pmc_idx;
1560 int ret;
1561
1562 pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(20, pmc_dev_info->pci_func));
1563 if (!pcidev)
1564 return -ENODEV;
1565
1566 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
1567 struct pmc *pmc;
1568
1569 pmc = pmcdev->pmcs[pmc_idx];
1570 if (!pmc)
1571 continue;
1572
1573 if (!pmc->map->lpm_req_guid)
1574 return -ENXIO;
1575
1576 ep = pmt_telem_find_and_register_endpoint(pcidev, pmc->map->lpm_req_guid, 0);
1577 if (IS_ERR(ep)) {
1578 dev_dbg(&pmcdev->pdev->dev, "couldn't get telem endpoint %pe", ep);
1579 return -EPROBE_DEFER;
1580 }
1581
1582 ret = pmc_dev_info->sub_req(pmcdev, pmc, ep);
1583 pmt_telem_unregister_endpoint(ep);
1584 if (ret)
1585 return ret;
1586 }
1587
1588 return 0;
1589 }
1590
pmc_core_find_regmap(struct pmc_info * list,u16 devid)1591 static const struct pmc_reg_map *pmc_core_find_regmap(struct pmc_info *list, u16 devid)
1592 {
1593 for (; list->map; ++list)
1594 if (devid == list->devid)
1595 return list->map;
1596
1597 return NULL;
1598 }
1599
pmc_core_pmc_add(struct pmc_dev * pmcdev,unsigned int pmc_idx)1600 static int pmc_core_pmc_add(struct pmc_dev *pmcdev, unsigned int pmc_idx)
1601
1602 {
1603 struct pmc_ssram_telemetry pmc_ssram_telemetry;
1604 const struct pmc_reg_map *map;
1605 struct pmc *pmc;
1606 int ret;
1607
1608 ret = pmc_ssram_telemetry_get_pmc_info(pmc_idx, &pmc_ssram_telemetry);
1609 if (ret)
1610 return ret;
1611
1612 map = pmc_core_find_regmap(pmcdev->regmap_list, pmc_ssram_telemetry.devid);
1613 if (!map)
1614 return -ENODEV;
1615
1616 pmc = pmcdev->pmcs[pmc_idx];
1617 /* Memory for primary PMC has been allocated */
1618 if (!pmc) {
1619 pmc = devm_kzalloc(&pmcdev->pdev->dev, sizeof(*pmc), GFP_KERNEL);
1620 if (!pmc)
1621 return -ENOMEM;
1622 }
1623
1624 pmc->map = map;
1625 pmc->base_addr = pmc_ssram_telemetry.base_addr;
1626 pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1627
1628 if (!pmc->regbase) {
1629 devm_kfree(&pmcdev->pdev->dev, pmc);
1630 return -ENOMEM;
1631 }
1632
1633 pmcdev->pmcs[pmc_idx] = pmc;
1634
1635 return 0;
1636 }
1637
pmc_core_ssram_get_reg_base(struct pmc_dev * pmcdev)1638 static int pmc_core_ssram_get_reg_base(struct pmc_dev *pmcdev)
1639 {
1640 int ret;
1641
1642 ret = pmc_core_pmc_add(pmcdev, PMC_IDX_MAIN);
1643 if (ret)
1644 return ret;
1645
1646 pmc_core_pmc_add(pmcdev, PMC_IDX_IOE);
1647 pmc_core_pmc_add(pmcdev, PMC_IDX_PCH);
1648
1649 return 0;
1650 }
1651
1652 /*
1653 * When supported, ssram init is used to achieve all available PMCs.
1654 * If ssram init fails, this function uses legacy method to at least get the
1655 * primary PMC.
1656 */
generic_core_init(struct pmc_dev * pmcdev,struct pmc_dev_info * pmc_dev_info)1657 int generic_core_init(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1658 {
1659 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1660 bool ssram;
1661 int ret;
1662
1663 pmcdev->suspend = pmc_dev_info->suspend;
1664 pmcdev->resume = pmc_dev_info->resume;
1665
1666 ssram = pmc_dev_info->regmap_list != NULL;
1667 if (ssram) {
1668 pmcdev->regmap_list = pmc_dev_info->regmap_list;
1669 ret = pmc_core_ssram_get_reg_base(pmcdev);
1670 /*
1671 * EAGAIN error code indicates Intel PMC SSRAM Telemetry driver
1672 * has not finished probe and PMC info is not available yet. Try
1673 * again later.
1674 */
1675 if (ret == -EAGAIN)
1676 return -EPROBE_DEFER;
1677
1678 if (ret) {
1679 dev_warn(&pmcdev->pdev->dev,
1680 "Failed to get PMC info from SSRAM, %d, using legacy init\n", ret);
1681 ssram = false;
1682 }
1683 }
1684
1685 if (!ssram) {
1686 pmc->map = pmc_dev_info->map;
1687 ret = get_primary_reg_base(pmc);
1688 if (ret)
1689 return ret;
1690 }
1691
1692 pmc_core_get_low_power_modes(pmcdev);
1693 if (pmc_dev_info->dmu_guids)
1694 pmc_core_punit_pmt_init(pmcdev, pmc_dev_info->dmu_guids);
1695
1696 if (ssram) {
1697 ret = pmc_core_get_telem_info(pmcdev, pmc_dev_info);
1698 if (ret)
1699 goto unmap_regbase;
1700 }
1701
1702 return 0;
1703
1704 unmap_regbase:
1705 for (unsigned int pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
1706 struct pmc *pmc = pmcdev->pmcs[pmc_idx];
1707
1708 if (pmc && pmc->regbase)
1709 iounmap(pmc->regbase);
1710 }
1711
1712 if (pmcdev->punit_ep)
1713 pmt_telem_unregister_endpoint(pmcdev->punit_ep);
1714
1715 return ret;
1716 }
1717
1718 static const struct x86_cpu_id intel_pmc_core_ids[] = {
1719 X86_MATCH_VFM(INTEL_SKYLAKE_L, &spt_pmc_dev),
1720 X86_MATCH_VFM(INTEL_SKYLAKE, &spt_pmc_dev),
1721 X86_MATCH_VFM(INTEL_KABYLAKE_L, &spt_pmc_dev),
1722 X86_MATCH_VFM(INTEL_KABYLAKE, &spt_pmc_dev),
1723 X86_MATCH_VFM(INTEL_CANNONLAKE_L, &cnp_pmc_dev),
1724 X86_MATCH_VFM(INTEL_ICELAKE_L, &icl_pmc_dev),
1725 X86_MATCH_VFM(INTEL_ICELAKE_NNPI, &icl_pmc_dev),
1726 X86_MATCH_VFM(INTEL_COMETLAKE, &cnp_pmc_dev),
1727 X86_MATCH_VFM(INTEL_COMETLAKE_L, &cnp_pmc_dev),
1728 X86_MATCH_VFM(INTEL_TIGERLAKE_L, &tgl_l_pmc_dev),
1729 X86_MATCH_VFM(INTEL_TIGERLAKE, &tgl_pmc_dev),
1730 X86_MATCH_VFM(INTEL_ATOM_TREMONT, &tgl_l_pmc_dev),
1731 X86_MATCH_VFM(INTEL_ATOM_TREMONT_L, &icl_pmc_dev),
1732 X86_MATCH_VFM(INTEL_ROCKETLAKE, &tgl_pmc_dev),
1733 X86_MATCH_VFM(INTEL_ALDERLAKE_L, &tgl_l_pmc_dev),
1734 X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, &tgl_l_pmc_dev),
1735 X86_MATCH_VFM(INTEL_ALDERLAKE, &adl_pmc_dev),
1736 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, &tgl_l_pmc_dev),
1737 X86_MATCH_VFM(INTEL_RAPTORLAKE, &adl_pmc_dev),
1738 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, &adl_pmc_dev),
1739 X86_MATCH_VFM(INTEL_BARTLETTLAKE, &adl_pmc_dev),
1740 X86_MATCH_VFM(INTEL_METEORLAKE_L, &mtl_pmc_dev),
1741 X86_MATCH_VFM(INTEL_ARROWLAKE, &arl_pmc_dev),
1742 X86_MATCH_VFM(INTEL_ARROWLAKE_H, &arl_h_pmc_dev),
1743 X86_MATCH_VFM(INTEL_ARROWLAKE_U, &arl_h_pmc_dev),
1744 X86_MATCH_VFM(INTEL_LUNARLAKE_M, &lnl_pmc_dev),
1745 X86_MATCH_VFM(INTEL_PANTHERLAKE_L, &ptl_pmc_dev),
1746 X86_MATCH_VFM(INTEL_WILDCATLAKE_L, &wcl_pmc_dev),
1747 {}
1748 };
1749
1750 MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids);
1751
1752 /*
1753 * This quirk can be used on those platforms where
1754 * the platform BIOS enforces 24Mhz crystal to shutdown
1755 * before PMC can assert SLP_S0#.
1756 */
1757 static bool xtal_ignore;
quirk_xtal_ignore(const struct dmi_system_id * id)1758 static int quirk_xtal_ignore(const struct dmi_system_id *id)
1759 {
1760 xtal_ignore = true;
1761 return 0;
1762 }
1763
pmc_core_xtal_ignore(struct pmc * pmc)1764 static void pmc_core_xtal_ignore(struct pmc *pmc)
1765 {
1766 u32 value;
1767
1768 value = pmc_core_reg_read(pmc, pmc->map->pm_vric1_offset);
1769 /* 24MHz Crystal Shutdown Qualification Disable */
1770 value |= SPT_PMC_VRIC1_XTALSDQDIS;
1771 /* Low Voltage Mode Enable */
1772 value &= ~SPT_PMC_VRIC1_SLPS0LVEN;
1773 pmc_core_reg_write(pmc, pmc->map->pm_vric1_offset, value);
1774 }
1775
1776 static const struct dmi_system_id pmc_core_dmi_table[] = {
1777 {
1778 .callback = quirk_xtal_ignore,
1779 .ident = "HP Elite x2 1013 G3",
1780 .matches = {
1781 DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1782 DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"),
1783 },
1784 },
1785 {}
1786 };
1787
pmc_core_do_dmi_quirks(struct pmc * pmc)1788 static void pmc_core_do_dmi_quirks(struct pmc *pmc)
1789 {
1790 dmi_check_system(pmc_core_dmi_table);
1791
1792 if (xtal_ignore)
1793 pmc_core_xtal_ignore(pmc);
1794 }
1795
pmc_core_clean_structure(struct platform_device * pdev)1796 static void pmc_core_clean_structure(struct platform_device *pdev)
1797 {
1798 struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1799 unsigned int pmc_idx;
1800
1801 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
1802 struct pmc *pmc = pmcdev->pmcs[pmc_idx];
1803
1804 if (pmc && pmc->regbase)
1805 iounmap(pmc->regbase);
1806 }
1807
1808 if (pmcdev->punit_ep)
1809 pmt_telem_unregister_endpoint(pmcdev->punit_ep);
1810
1811 platform_set_drvdata(pdev, NULL);
1812 }
1813
pmc_core_probe(struct platform_device * pdev)1814 static int pmc_core_probe(struct platform_device *pdev)
1815 {
1816 static bool device_initialized;
1817 struct pmc_dev *pmcdev;
1818 const struct x86_cpu_id *cpu_id;
1819 struct pmc_dev_info *pmc_dev_info;
1820 struct pmc *primary_pmc;
1821 int ret;
1822
1823 if (device_initialized)
1824 return -ENODEV;
1825
1826 pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL);
1827 if (!pmcdev)
1828 return -ENOMEM;
1829
1830 pmcdev->crystal_freq = pmc_core_get_crystal_freq();
1831
1832 platform_set_drvdata(pdev, pmcdev);
1833 pmcdev->pdev = pdev;
1834
1835 cpu_id = x86_match_cpu(intel_pmc_core_ids);
1836 if (!cpu_id)
1837 return -ENODEV;
1838
1839 pmc_dev_info = (struct pmc_dev_info *)cpu_id->driver_data;
1840
1841 /* Primary PMC */
1842 primary_pmc = devm_kzalloc(&pdev->dev, sizeof(*primary_pmc), GFP_KERNEL);
1843 if (!primary_pmc)
1844 return -ENOMEM;
1845 pmcdev->pmcs[PMC_IDX_MAIN] = primary_pmc;
1846
1847 /* The last element in msr_map is empty */
1848 pmcdev->num_of_pkgc = ARRAY_SIZE(msr_map) - 1;
1849 pmcdev->pkgc_res_cnt = devm_kcalloc(&pdev->dev,
1850 pmcdev->num_of_pkgc,
1851 sizeof(*pmcdev->pkgc_res_cnt),
1852 GFP_KERNEL);
1853 if (!pmcdev->pkgc_res_cnt)
1854 return -ENOMEM;
1855
1856 ret = devm_mutex_init(&pdev->dev, &pmcdev->lock);
1857 if (ret)
1858 return ret;
1859
1860 if (pmc_dev_info->init)
1861 ret = pmc_dev_info->init(pmcdev, pmc_dev_info);
1862 else
1863 ret = generic_core_init(pmcdev, pmc_dev_info);
1864
1865 if (ret) {
1866 platform_set_drvdata(pdev, NULL);
1867 return ret;
1868 }
1869
1870 pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(primary_pmc);
1871 pmc_core_do_dmi_quirks(primary_pmc);
1872
1873 pmc_core_dbgfs_register(pmcdev, pmc_dev_info);
1874 pm_report_max_hw_sleep(FIELD_MAX(SLP_S0_RES_COUNTER_MASK) *
1875 pmc_core_adjust_slp_s0_step(primary_pmc, 1));
1876
1877 device_initialized = true;
1878 dev_info(&pdev->dev, " initialized\n");
1879
1880 return 0;
1881 }
1882
pmc_core_remove(struct platform_device * pdev)1883 static void pmc_core_remove(struct platform_device *pdev)
1884 {
1885 struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1886 pmc_core_dbgfs_unregister(pmcdev);
1887 pmc_core_clean_structure(pdev);
1888 }
1889
1890 static bool warn_on_s0ix_failures;
1891 module_param(warn_on_s0ix_failures, bool, 0644);
1892 MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures");
1893
1894 static bool ltr_ignore_all_suspend = true;
1895 module_param(ltr_ignore_all_suspend, bool, 0644);
1896 MODULE_PARM_DESC(ltr_ignore_all_suspend, "Ignore all LTRs during suspend");
1897
pmc_core_suspend(struct device * dev)1898 static __maybe_unused int pmc_core_suspend(struct device *dev)
1899 {
1900 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1901 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1902 unsigned int i;
1903
1904 if (pmcdev->suspend)
1905 pmcdev->suspend(pmcdev);
1906
1907 if (ltr_ignore_all_suspend)
1908 pmc_core_ltr_ignore_all(pmcdev);
1909
1910 /* Check if the syspend will actually use S0ix */
1911 if (pm_suspend_via_firmware())
1912 return 0;
1913
1914 /* Save PKGC residency for checking later */
1915 for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1916 if (rdmsrq_safe(msr_map[i].bit_mask, &pmcdev->pkgc_res_cnt[i]))
1917 return -EIO;
1918 }
1919
1920 /* Save S0ix residency for checking later */
1921 if (pmc_core_dev_state_get(pmc, &pmcdev->s0ix_counter))
1922 return -EIO;
1923
1924 return 0;
1925 }
1926
pmc_core_is_deepest_pkgc_failed(struct pmc_dev * pmcdev)1927 static inline bool pmc_core_is_deepest_pkgc_failed(struct pmc_dev *pmcdev)
1928 {
1929 u32 deepest_pkgc_msr = msr_map[pmcdev->num_of_pkgc - 1].bit_mask;
1930 u64 deepest_pkgc_residency;
1931
1932 if (rdmsrq_safe(deepest_pkgc_msr, &deepest_pkgc_residency))
1933 return false;
1934
1935 if (deepest_pkgc_residency == pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1])
1936 return true;
1937
1938 return false;
1939 }
1940
pmc_core_is_s0ix_failed(struct pmc_dev * pmcdev)1941 static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev)
1942 {
1943 u64 s0ix_counter;
1944
1945 if (pmc_core_dev_state_get(pmcdev->pmcs[PMC_IDX_MAIN], &s0ix_counter))
1946 return false;
1947
1948 pm_report_hw_sleep_time((u32)(s0ix_counter - pmcdev->s0ix_counter));
1949
1950 if (s0ix_counter == pmcdev->s0ix_counter)
1951 return true;
1952
1953 return false;
1954 }
1955
pmc_core_resume_common(struct pmc_dev * pmcdev)1956 int pmc_core_resume_common(struct pmc_dev *pmcdev)
1957 {
1958 struct device *dev = &pmcdev->pdev->dev;
1959 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1960 const struct pmc_bit_map **maps = pmc->map->lpm_sts;
1961 int offset = pmc->map->lpm_status_offset;
1962 unsigned int pmc_idx, i;
1963
1964 /* Check if the syspend used S0ix */
1965 if (pm_suspend_via_firmware())
1966 return 0;
1967
1968 if (!pmc_core_is_s0ix_failed(pmcdev))
1969 return 0;
1970
1971 if (!warn_on_s0ix_failures)
1972 return 0;
1973
1974 if (pmc_core_is_deepest_pkgc_failed(pmcdev)) {
1975 /* S0ix failed because of deepest PKGC entry failure */
1976 dev_info(dev, "CPU did not enter %s!!! (%s cnt=0x%llx)\n",
1977 msr_map[pmcdev->num_of_pkgc - 1].name,
1978 msr_map[pmcdev->num_of_pkgc - 1].name,
1979 pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1]);
1980
1981 for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1982 u64 pc_cnt;
1983
1984 if (!rdmsrq_safe(msr_map[i].bit_mask, &pc_cnt)) {
1985 dev_info(dev, "Prev %s cnt = 0x%llx, Current %s cnt = 0x%llx\n",
1986 msr_map[i].name, pmcdev->pkgc_res_cnt[i],
1987 msr_map[i].name, pc_cnt);
1988 }
1989 }
1990 return 0;
1991 }
1992
1993 /* The real interesting case - S0ix failed - lets ask PMC why. */
1994 dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n",
1995 pmcdev->s0ix_counter);
1996
1997 if (pmc->map->slps0_dbg_maps)
1998 pmc_core_slps0_display(pmc, dev, NULL);
1999
2000 for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); ++pmc_idx) {
2001 struct pmc *pmc = pmcdev->pmcs[pmc_idx];
2002
2003 if (!pmc)
2004 continue;
2005 if (pmc->map->lpm_sts)
2006 pmc_core_lpm_display(pmc, dev, NULL, offset, pmc_idx, "STATUS", maps);
2007 }
2008
2009 return 0;
2010 }
2011
pmc_core_resume(struct device * dev)2012 static __maybe_unused int pmc_core_resume(struct device *dev)
2013 {
2014 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
2015
2016 if (ltr_ignore_all_suspend)
2017 pmc_core_ltr_restore_all(pmcdev);
2018
2019 if (pmcdev->resume)
2020 return pmcdev->resume(pmcdev);
2021
2022 return pmc_core_resume_common(pmcdev);
2023 }
2024
2025 static const struct dev_pm_ops pmc_core_pm_ops = {
2026 SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume)
2027 };
2028
2029 static const struct acpi_device_id pmc_core_acpi_ids[] = {
2030 {"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/
2031 { }
2032 };
2033 MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids);
2034
2035 static struct platform_driver pmc_core_driver = {
2036 .driver = {
2037 .name = "intel_pmc_core",
2038 .acpi_match_table = ACPI_PTR(pmc_core_acpi_ids),
2039 .pm = &pmc_core_pm_ops,
2040 .dev_groups = pmc_dev_groups,
2041 },
2042 .probe = pmc_core_probe,
2043 .remove = pmc_core_remove,
2044 };
2045
2046 module_platform_driver(pmc_core_driver);
2047
2048 MODULE_IMPORT_NS("INTEL_PMT_TELEMETRY");
2049 MODULE_LICENSE("GPL v2");
2050 MODULE_DESCRIPTION("Intel PMC Core Driver");
2051