xref: /linux/drivers/platform/x86/intel/pmc/core.c (revision c1ead4b4dfe0f643cfc66571ca7d2fa332eddd35)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Intel Core SoC Power Management Controller Driver
4  *
5  * Copyright (c) 2016, Intel Corporation.
6  * All Rights Reserved.
7  *
8  * Authors: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
9  *          Vishwanath Somayaji <vishwanath.somayaji@intel.com>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 enum header_type {
15 	HEADER_STATUS,
16 	HEADER_VALUE,
17 };
18 
19 #include <linux/bitfield.h>
20 #include <linux/debugfs.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/suspend.h>
28 #include <linux/units.h>
29 
30 #include <asm/cpuid/api.h>
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/msr.h>
34 #include <asm/tsc.h>
35 
36 #include "core.h"
37 #include "ssram_telemetry.h"
38 #include "../pmt/telemetry.h"
39 
40 /* Maximum number of modes supported by platfoms that has low power mode capability */
41 const char *pmc_lpm_modes[] = {
42 	"S0i2.0",
43 	"S0i2.1",
44 	"S0i2.2",
45 	"S0i3.0",
46 	"S0i3.1",
47 	"S0i3.2",
48 	"S0i3.3",
49 	"S0i3.4",
50 	NULL
51 };
52 
53 /* PKGC MSRs are common across Intel Core SoCs */
54 const struct pmc_bit_map msr_map[] = {
55 	{"Package C2",                  MSR_PKG_C2_RESIDENCY},
56 	{"Package C3",                  MSR_PKG_C3_RESIDENCY},
57 	{"Package C6",                  MSR_PKG_C6_RESIDENCY},
58 	{"Package C7",                  MSR_PKG_C7_RESIDENCY},
59 	{"Package C8",                  MSR_PKG_C8_RESIDENCY},
60 	{"Package C9",                  MSR_PKG_C9_RESIDENCY},
61 	{"Package C10",                 MSR_PKG_C10_RESIDENCY},
62 	{}
63 };
64 
pmc_core_reg_read(struct pmc * pmc,int reg_offset)65 static inline u32 pmc_core_reg_read(struct pmc *pmc, int reg_offset)
66 {
67 	return readl(pmc->regbase + reg_offset);
68 }
69 
pmc_core_reg_write(struct pmc * pmc,int reg_offset,u32 val)70 static inline void pmc_core_reg_write(struct pmc *pmc, int reg_offset,
71 				      u32 val)
72 {
73 	writel(val, pmc->regbase + reg_offset);
74 }
75 
pmc_core_adjust_slp_s0_step(struct pmc * pmc,u32 value)76 static inline u64 pmc_core_adjust_slp_s0_step(struct pmc *pmc, u32 value)
77 {
78 	/*
79 	 * ADL PCH does not have the SLP_S0 counter and LPM Residency counters are
80 	 * used as a workaround which uses 30.5 usec tick. All other client
81 	 * programs have the legacy SLP_S0 residency counter that is using the 122
82 	 * usec tick.
83 	 */
84 	const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
85 
86 	if (pmc->map == &adl_reg_map)
87 		return (u64)value * GET_X2_COUNTER((u64)lpm_adj_x2);
88 	else
89 		return (u64)value * pmc->map->slp_s0_res_counter_step;
90 }
91 
set_etr3(struct pmc_dev * pmcdev)92 static int set_etr3(struct pmc_dev *pmcdev)
93 {
94 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
95 	const struct pmc_reg_map *map = pmc->map;
96 	u32 reg;
97 
98 	if (!map->etr3_offset)
99 		return -EOPNOTSUPP;
100 
101 	guard(mutex)(&pmcdev->lock);
102 
103 	/* check if CF9 is locked */
104 	reg = pmc_core_reg_read(pmc, map->etr3_offset);
105 	if (reg & ETR3_CF9LOCK)
106 		return -EACCES;
107 
108 	/* write CF9 global reset bit */
109 	reg |= ETR3_CF9GR;
110 	pmc_core_reg_write(pmc, map->etr3_offset, reg);
111 
112 	reg = pmc_core_reg_read(pmc, map->etr3_offset);
113 	if (!(reg & ETR3_CF9GR))
114 		return -EIO;
115 
116 	return 0;
117 }
etr3_is_visible(struct kobject * kobj,struct attribute * attr,int idx)118 static umode_t etr3_is_visible(struct kobject *kobj,
119 				struct attribute *attr,
120 				int idx)
121 {
122 	struct device *dev = kobj_to_dev(kobj);
123 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
124 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
125 	const struct pmc_reg_map *map = pmc->map;
126 	u32 reg;
127 
128 	scoped_guard(mutex, &pmcdev->lock)
129 		reg = pmc_core_reg_read(pmc, map->etr3_offset);
130 
131 	return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode;
132 }
133 
etr3_show(struct device * dev,struct device_attribute * attr,char * buf)134 static ssize_t etr3_show(struct device *dev,
135 				 struct device_attribute *attr, char *buf)
136 {
137 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
138 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
139 	const struct pmc_reg_map *map = pmc->map;
140 	u32 reg;
141 
142 	if (!map->etr3_offset)
143 		return -EOPNOTSUPP;
144 
145 	scoped_guard(mutex, &pmcdev->lock) {
146 		reg = pmc_core_reg_read(pmc, map->etr3_offset);
147 		reg &= ETR3_CF9GR | ETR3_CF9LOCK;
148 	}
149 
150 	return sysfs_emit(buf, "0x%08x", reg);
151 }
152 
etr3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)153 static ssize_t etr3_store(struct device *dev,
154 				  struct device_attribute *attr,
155 				  const char *buf, size_t len)
156 {
157 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
158 	int err;
159 	u32 reg;
160 
161 	err = kstrtouint(buf, 16, &reg);
162 	if (err)
163 		return err;
164 
165 	/* allow only CF9 writes */
166 	if (reg != ETR3_CF9GR)
167 		return -EINVAL;
168 
169 	err = set_etr3(pmcdev);
170 	if (err)
171 		return err;
172 
173 	return len;
174 }
175 static DEVICE_ATTR_RW(etr3);
176 
177 static struct attribute *pmc_attrs[] = {
178 	&dev_attr_etr3.attr,
179 	NULL
180 };
181 
182 static const struct attribute_group pmc_attr_group = {
183 	.attrs = pmc_attrs,
184 	.is_visible = etr3_is_visible,
185 };
186 
187 static const struct attribute_group *pmc_dev_groups[] = {
188 	&pmc_attr_group,
189 	NULL
190 };
191 
pmc_core_dev_state_get(void * data,u64 * val)192 static int pmc_core_dev_state_get(void *data, u64 *val)
193 {
194 	struct pmc *pmc = data;
195 	const struct pmc_reg_map *map = pmc->map;
196 	u32 value;
197 
198 	value = pmc_core_reg_read(pmc, map->slp_s0_offset);
199 	*val = pmc_core_adjust_slp_s0_step(pmc, value);
200 
201 	return 0;
202 }
203 
204 DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n");
205 
pmc_core_pson_residency_get(void * data,u64 * val)206 static int pmc_core_pson_residency_get(void *data, u64 *val)
207 {
208 	struct pmc *pmc = data;
209 	const struct pmc_reg_map *map = pmc->map;
210 	u32 value;
211 
212 	value = pmc_core_reg_read(pmc, map->pson_residency_offset);
213 	*val = (u64)value * map->pson_residency_counter_step;
214 
215 	return 0;
216 }
217 
218 DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_pson_residency, pmc_core_pson_residency_get, NULL, "%llu\n");
219 
pmc_core_check_read_lock_bit(struct pmc * pmc)220 static int pmc_core_check_read_lock_bit(struct pmc *pmc)
221 {
222 	u32 value;
223 
224 	value = pmc_core_reg_read(pmc, pmc->map->pm_cfg_offset);
225 	return value & BIT(pmc->map->pm_read_disable_bit);
226 }
227 
pmc_core_slps0_display(struct pmc * pmc,struct device * dev,struct seq_file * s)228 static void pmc_core_slps0_display(struct pmc *pmc, struct device *dev,
229 				   struct seq_file *s)
230 {
231 	const struct pmc_bit_map **maps = pmc->map->slps0_dbg_maps;
232 	const struct pmc_bit_map *map;
233 	int offset = pmc->map->slps0_dbg_offset;
234 	u32 data;
235 
236 	while (*maps) {
237 		map = *maps;
238 		data = pmc_core_reg_read(pmc, offset);
239 		offset += 4;
240 		while (map->name) {
241 			if (dev)
242 				dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n",
243 					map->name,
244 					data & map->bit_mask ? "Yes" : "No");
245 			if (s)
246 				seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n",
247 					   map->name,
248 					   data & map->bit_mask ? "Yes" : "No");
249 			++map;
250 		}
251 		++maps;
252 	}
253 }
254 
pmc_core_lpm_get_arr_size(const struct pmc_bit_map ** maps)255 static unsigned int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps)
256 {
257 	unsigned int idx;
258 
259 	for (idx = 0; maps[idx]; idx++)
260 		;/* Nothing */
261 
262 	return idx;
263 }
264 
pmc_core_lpm_display(struct pmc * pmc,struct device * dev,struct seq_file * s,u32 offset,int pmc_index,const char * str,const struct pmc_bit_map ** maps)265 static void pmc_core_lpm_display(struct pmc *pmc, struct device *dev,
266 				 struct seq_file *s, u32 offset, int pmc_index,
267 				 const char *str,
268 				 const struct pmc_bit_map **maps)
269 {
270 	unsigned int index, idx, len = 32, arr_size;
271 	u32 bit_mask, *lpm_regs;
272 
273 	arr_size = pmc_core_lpm_get_arr_size(maps);
274 	lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL);
275 	if (!lpm_regs)
276 		return;
277 
278 	for (index = 0; index < arr_size; index++) {
279 		lpm_regs[index] = pmc_core_reg_read(pmc, offset);
280 		offset += 4;
281 	}
282 
283 	for (idx = 0; idx < arr_size; idx++) {
284 		if (dev)
285 			dev_info(dev, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
286 				lpm_regs[idx]);
287 		if (s)
288 			seq_printf(s, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
289 				   lpm_regs[idx]);
290 		for (index = 0; maps[idx][index].name && index < len; index++) {
291 			bit_mask = maps[idx][index].bit_mask;
292 			if (dev)
293 				dev_info(dev, "PMC%d:%-30s %-30d\n", pmc_index,
294 					maps[idx][index].name,
295 					lpm_regs[idx] & bit_mask ? 1 : 0);
296 			if (s)
297 				seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_index,
298 					   maps[idx][index].name,
299 					   lpm_regs[idx] & bit_mask ? 1 : 0);
300 		}
301 	}
302 
303 	kfree(lpm_regs);
304 }
305 
306 static bool slps0_dbg_latch;
307 
pmc_core_reg_read_byte(struct pmc * pmc,int offset)308 static inline u8 pmc_core_reg_read_byte(struct pmc *pmc, int offset)
309 {
310 	return readb(pmc->regbase + offset);
311 }
312 
pmc_core_display_map(struct seq_file * s,int index,int idx,int ip,int pmc_index,u8 pf_reg,const struct pmc_bit_map ** pf_map)313 static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip,
314 				 int pmc_index, u8 pf_reg, const struct pmc_bit_map **pf_map)
315 {
316 	seq_printf(s, "PMC%d:PCH IP: %-2d - %-32s\tState: %s\n",
317 		   pmc_index, ip, pf_map[idx][index].name,
318 		   pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On");
319 }
320 
pmc_core_ppfear_show(struct seq_file * s,void * unused)321 static int pmc_core_ppfear_show(struct seq_file *s, void *unused)
322 {
323 	struct pmc_dev *pmcdev = s->private;
324 	unsigned int i;
325 
326 	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
327 		struct pmc *pmc = pmcdev->pmcs[i];
328 		const struct pmc_bit_map **maps;
329 		u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES];
330 		unsigned int index, iter, idx, ip = 0;
331 
332 		if (!pmc)
333 			continue;
334 
335 		maps = pmc->map->pfear_sts;
336 		iter = pmc->map->ppfear0_offset;
337 
338 		for (index = 0; index < pmc->map->ppfear_buckets &&
339 		     index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++)
340 			pf_regs[index] = pmc_core_reg_read_byte(pmc, iter);
341 
342 		for (idx = 0; maps[idx]; idx++) {
343 			for (index = 0; maps[idx][index].name &&
344 			     index < pmc->map->ppfear_buckets * 8; ip++, index++)
345 				pmc_core_display_map(s, index, idx, ip, i,
346 						     pf_regs[index / 8], maps);
347 		}
348 	}
349 
350 	return 0;
351 }
352 DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear);
353 
354 /* This function should return link status, 0 means ready */
pmc_core_mtpmc_link_status(struct pmc * pmc)355 static int pmc_core_mtpmc_link_status(struct pmc *pmc)
356 {
357 	u32 value;
358 
359 	value = pmc_core_reg_read(pmc, SPT_PMC_PM_STS_OFFSET);
360 	return value & BIT(SPT_PMC_MSG_FULL_STS_BIT);
361 }
362 
pmc_core_send_msg(struct pmc * pmc,u32 * addr_xram)363 static int pmc_core_send_msg(struct pmc *pmc, u32 *addr_xram)
364 {
365 	u32 dest;
366 	int timeout;
367 
368 	for (timeout = NUM_RETRIES; timeout > 0; timeout--) {
369 		if (pmc_core_mtpmc_link_status(pmc) == 0)
370 			break;
371 		msleep(5);
372 	}
373 
374 	if (timeout <= 0 && pmc_core_mtpmc_link_status(pmc))
375 		return -EBUSY;
376 
377 	dest = (*addr_xram & MTPMC_MASK) | (1U << 1);
378 	pmc_core_reg_write(pmc, SPT_PMC_MTPMC_OFFSET, dest);
379 	return 0;
380 }
381 
pmc_core_mphy_pg_show(struct seq_file * s,void * unused)382 static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused)
383 {
384 	struct pmc_dev *pmcdev = s->private;
385 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
386 	const struct pmc_bit_map *map = pmc->map->mphy_sts;
387 	u32 mphy_core_reg_low, mphy_core_reg_high;
388 	u32 val_low, val_high;
389 	unsigned int index;
390 	int err = 0;
391 
392 	if (pmcdev->pmc_xram_read_bit) {
393 		seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
394 		return 0;
395 	}
396 
397 	mphy_core_reg_low  = (SPT_PMC_MPHY_CORE_STS_0 << 16);
398 	mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16);
399 
400 	guard(mutex)(&pmcdev->lock);
401 
402 	err = pmc_core_send_msg(pmc, &mphy_core_reg_low);
403 	if (err)
404 		return err;
405 
406 	msleep(10);
407 	val_low = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
408 
409 	err = pmc_core_send_msg(pmc, &mphy_core_reg_high);
410 	if (err)
411 		return err;
412 
413 	msleep(10);
414 	val_high = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
415 
416 	for (index = 0; index < 8 && map[index].name; index++) {
417 		seq_printf(s, "%-32s\tState: %s\n",
418 			   map[index].name,
419 			   map[index].bit_mask & val_low ? "Not power gated" :
420 			   "Power gated");
421 	}
422 
423 	for (index = 8; map[index].name; index++) {
424 		seq_printf(s, "%-32s\tState: %s\n",
425 			   map[index].name,
426 			   map[index].bit_mask & val_high ? "Not power gated" :
427 			   "Power gated");
428 	}
429 
430 	return 0;
431 }
432 DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg);
433 
pmc_core_pll_show(struct seq_file * s,void * unused)434 static int pmc_core_pll_show(struct seq_file *s, void *unused)
435 {
436 	struct pmc_dev *pmcdev = s->private;
437 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
438 	const struct pmc_bit_map *map = pmc->map->pll_sts;
439 	u32 mphy_common_reg, val;
440 	unsigned int index;
441 	int err = 0;
442 
443 	if (pmcdev->pmc_xram_read_bit) {
444 		seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
445 		return 0;
446 	}
447 
448 	mphy_common_reg  = (SPT_PMC_MPHY_COM_STS_0 << 16);
449 	guard(mutex)(&pmcdev->lock);
450 
451 	err = pmc_core_send_msg(pmc, &mphy_common_reg);
452 	if (err)
453 		return err;
454 
455 	/* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */
456 	msleep(10);
457 	val = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
458 
459 	for (index = 0; map[index].name ; index++) {
460 		seq_printf(s, "%-32s\tState: %s\n",
461 			   map[index].name,
462 			   map[index].bit_mask & val ? "Active" : "Idle");
463 	}
464 
465 	return 0;
466 }
467 DEFINE_SHOW_ATTRIBUTE(pmc_core_pll);
468 
pmc_core_send_ltr_ignore(struct pmc_dev * pmcdev,u32 value,int ignore)469 int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value, int ignore)
470 {
471 	struct pmc *pmc;
472 	const struct pmc_reg_map *map;
473 	u32 reg;
474 	unsigned int pmc_index;
475 	int ltr_index;
476 
477 	ltr_index = value;
478 	/* For platforms with multiple pmcs, ltr index value given by user
479 	 * is based on the contiguous indexes from ltr_show output.
480 	 * pmc index and ltr index needs to be calculated from it.
481 	 */
482 	for (pmc_index = 0; pmc_index < ARRAY_SIZE(pmcdev->pmcs) && ltr_index >= 0; pmc_index++) {
483 		pmc = pmcdev->pmcs[pmc_index];
484 
485 		if (!pmc)
486 			continue;
487 
488 		map = pmc->map;
489 		if (ltr_index <= map->ltr_ignore_max)
490 			break;
491 
492 		/* Along with IP names, ltr_show map includes CURRENT_PLATFORM
493 		 * and AGGREGATED_SYSTEM values per PMC. Take these two index
494 		 * values into account in ltr_index calculation. Also, to start
495 		 * ltr index from zero for next pmc, subtract it by 1.
496 		 */
497 		ltr_index = ltr_index - (map->ltr_ignore_max + 2) - 1;
498 	}
499 
500 	if (pmc_index >= ARRAY_SIZE(pmcdev->pmcs) || ltr_index < 0)
501 		return -EINVAL;
502 
503 	pr_debug("ltr_ignore for pmc%d: ltr_index:%d\n", pmc_index, ltr_index);
504 
505 	guard(mutex)(&pmcdev->lock);
506 
507 	reg = pmc_core_reg_read(pmc, map->ltr_ignore_offset);
508 	if (ignore)
509 		reg |= BIT(ltr_index);
510 	else
511 		reg &= ~BIT(ltr_index);
512 	pmc_core_reg_write(pmc, map->ltr_ignore_offset, reg);
513 
514 	return 0;
515 }
516 
pmc_core_ltr_write(struct pmc_dev * pmcdev,const char __user * userbuf,size_t count,int ignore)517 static ssize_t pmc_core_ltr_write(struct pmc_dev *pmcdev,
518 				  const char __user *userbuf,
519 				  size_t count, int ignore)
520 {
521 	u32 value;
522 	int err;
523 
524 	err = kstrtou32_from_user(userbuf, count, 10, &value);
525 	if (err)
526 		return err;
527 
528 	err = pmc_core_send_ltr_ignore(pmcdev, value, ignore);
529 
530 	return err ?: count;
531 }
532 
pmc_core_ltr_ignore_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)533 static ssize_t pmc_core_ltr_ignore_write(struct file *file,
534 					 const char __user *userbuf,
535 					 size_t count, loff_t *ppos)
536 {
537 	struct seq_file *s = file->private_data;
538 	struct pmc_dev *pmcdev = s->private;
539 
540 	return pmc_core_ltr_write(pmcdev, userbuf, count, 1);
541 }
542 
pmc_core_ltr_ignore_show(struct seq_file * s,void * unused)543 static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused)
544 {
545 	return 0;
546 }
547 DEFINE_SHOW_STORE_ATTRIBUTE(pmc_core_ltr_ignore);
548 
pmc_core_ltr_restore_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)549 static ssize_t pmc_core_ltr_restore_write(struct file *file,
550 					  const char __user *userbuf,
551 					  size_t count, loff_t *ppos)
552 {
553 	struct seq_file *s = file->private_data;
554 	struct pmc_dev *pmcdev = s->private;
555 
556 	return pmc_core_ltr_write(pmcdev, userbuf, count, 0);
557 }
558 
pmc_core_ltr_restore_show(struct seq_file * s,void * unused)559 static int pmc_core_ltr_restore_show(struct seq_file *s, void *unused)
560 {
561 	return 0;
562 }
563 DEFINE_SHOW_STORE_ATTRIBUTE(pmc_core_ltr_restore);
564 
pmc_core_slps0_dbg_latch(struct pmc_dev * pmcdev,bool reset)565 static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset)
566 {
567 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
568 	const struct pmc_reg_map *map = pmc->map;
569 	u32 fd;
570 
571 	guard(mutex)(&pmcdev->lock);
572 
573 	if (!reset && !slps0_dbg_latch)
574 		return;
575 
576 	fd = pmc_core_reg_read(pmc, map->slps0_dbg_offset);
577 	if (reset)
578 		fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS;
579 	else
580 		fd |= CNP_PMC_LATCH_SLPS0_EVENTS;
581 	pmc_core_reg_write(pmc, map->slps0_dbg_offset, fd);
582 
583 	slps0_dbg_latch = false;
584 }
585 
pmc_core_slps0_dbg_show(struct seq_file * s,void * unused)586 static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused)
587 {
588 	struct pmc_dev *pmcdev = s->private;
589 
590 	pmc_core_slps0_dbg_latch(pmcdev, false);
591 	pmc_core_slps0_display(pmcdev->pmcs[PMC_IDX_MAIN], NULL, s);
592 	pmc_core_slps0_dbg_latch(pmcdev, true);
593 
594 	return 0;
595 }
596 DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg);
597 
convert_ltr_scale(u32 val)598 static u32 convert_ltr_scale(u32 val)
599 {
600 	/*
601 	 * As per PCIE specification supporting document
602 	 * ECN_LatencyTolnReporting_14Aug08.pdf the Latency
603 	 * Tolerance Reporting data payload is encoded in a
604 	 * 3 bit scale and 10 bit value fields. Values are
605 	 * multiplied by the indicated scale to yield an absolute time
606 	 * value, expressible in a range from 1 nanosecond to
607 	 * 2^25*(2^10-1) = 34,326,183,936 nanoseconds.
608 	 *
609 	 * scale encoding is as follows:
610 	 *
611 	 * ----------------------------------------------
612 	 * |scale factor	|	Multiplier (ns)	|
613 	 * ----------------------------------------------
614 	 * |	0		|	1		|
615 	 * |	1		|	32		|
616 	 * |	2		|	1024		|
617 	 * |	3		|	32768		|
618 	 * |	4		|	1048576		|
619 	 * |	5		|	33554432	|
620 	 * |	6		|	Invalid		|
621 	 * |	7		|	Invalid		|
622 	 * ----------------------------------------------
623 	 */
624 	if (val > 5) {
625 		pr_warn("Invalid LTR scale factor.\n");
626 		return 0;
627 	}
628 
629 	return 1U << (5 * val);
630 }
631 
pmc_core_ltr_show(struct seq_file * s,void * unused)632 static int pmc_core_ltr_show(struct seq_file *s, void *unused)
633 {
634 	struct pmc_dev *pmcdev = s->private;
635 	u64 decoded_snoop_ltr, decoded_non_snoop_ltr, val;
636 	u32 ltr_raw_data, scale;
637 	u16 snoop_ltr, nonsnoop_ltr;
638 	unsigned int i, index, ltr_index = 0;
639 
640 	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
641 		struct pmc *pmc;
642 		const struct pmc_bit_map *map;
643 		u32 ltr_ign_reg;
644 
645 		pmc = pmcdev->pmcs[i];
646 		if (!pmc)
647 			continue;
648 
649 		scoped_guard(mutex, &pmcdev->lock)
650 			ltr_ign_reg = pmc_core_reg_read(pmc, pmc->map->ltr_ignore_offset);
651 
652 		map = pmc->map->ltr_show_sts;
653 		for (index = 0; map[index].name; index++) {
654 			bool ltr_ign_data;
655 
656 			if (index > pmc->map->ltr_ignore_max)
657 				ltr_ign_data = false;
658 			else
659 				ltr_ign_data = ltr_ign_reg & BIT(index);
660 
661 			decoded_snoop_ltr = decoded_non_snoop_ltr = 0;
662 			ltr_raw_data = pmc_core_reg_read(pmc,
663 							 map[index].bit_mask);
664 			snoop_ltr = ltr_raw_data & ~MTPMC_MASK;
665 			nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK;
666 
667 			if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) {
668 				scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr);
669 				val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr);
670 				decoded_non_snoop_ltr = val * convert_ltr_scale(scale);
671 			}
672 			if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) {
673 				scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr);
674 				val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr);
675 				decoded_snoop_ltr = val * convert_ltr_scale(scale);
676 			}
677 
678 			seq_printf(s, "%d\tPMC%d:%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\tLTR_IGNORE: %d\n",
679 				   ltr_index, i, map[index].name, ltr_raw_data,
680 				   decoded_non_snoop_ltr,
681 				   decoded_snoop_ltr, ltr_ign_data);
682 			ltr_index++;
683 		}
684 	}
685 	return 0;
686 }
687 DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr);
688 
pmc_core_s0ix_blocker_show(struct seq_file * s,void * unused)689 static int pmc_core_s0ix_blocker_show(struct seq_file *s, void *unused)
690 {
691 	struct pmc_dev *pmcdev = s->private;
692 	unsigned int pmcidx;
693 
694 	for (pmcidx = 0; pmcidx < ARRAY_SIZE(pmcdev->pmcs); pmcidx++) {
695 		const struct pmc_bit_map **maps;
696 		unsigned int arr_size, r_idx;
697 		u32 offset, counter;
698 		struct pmc *pmc;
699 
700 		pmc = pmcdev->pmcs[pmcidx];
701 		if (!pmc)
702 			continue;
703 		maps = pmc->map->s0ix_blocker_maps;
704 		offset = pmc->map->s0ix_blocker_offset;
705 		arr_size = pmc_core_lpm_get_arr_size(maps);
706 
707 		for (r_idx = 0; r_idx < arr_size; r_idx++) {
708 			const struct pmc_bit_map *map;
709 
710 			for (map = maps[r_idx]; map->name; map++) {
711 				if (!map->blk)
712 					continue;
713 				counter = pmc_core_reg_read(pmc, offset);
714 				seq_printf(s, "PMC%d:%-30s %-30d\n", pmcidx,
715 					   map->name, counter);
716 				offset += map->blk * S0IX_BLK_SIZE;
717 			}
718 		}
719 	}
720 	return 0;
721 }
722 DEFINE_SHOW_ATTRIBUTE(pmc_core_s0ix_blocker);
723 
pmc_core_ltr_ignore_all(struct pmc_dev * pmcdev)724 static void pmc_core_ltr_ignore_all(struct pmc_dev *pmcdev)
725 {
726 	unsigned int i;
727 
728 	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); i++) {
729 		struct pmc *pmc;
730 		u32 ltr_ign;
731 
732 		pmc = pmcdev->pmcs[i];
733 		if (!pmc)
734 			continue;
735 
736 		guard(mutex)(&pmcdev->lock);
737 		pmc->ltr_ign = pmc_core_reg_read(pmc, pmc->map->ltr_ignore_offset);
738 
739 		/* ltr_ignore_max is the max index value for LTR ignore register */
740 		ltr_ign = pmc->ltr_ign | GENMASK(pmc->map->ltr_ignore_max, 0);
741 		pmc_core_reg_write(pmc, pmc->map->ltr_ignore_offset, ltr_ign);
742 	}
743 
744 	/*
745 	 * Ignoring ME during suspend is blocking platforms with ADL PCH to get to
746 	 * deeper S0ix substate.
747 	 */
748 	pmc_core_send_ltr_ignore(pmcdev, 6, 0);
749 }
750 
pmc_core_ltr_restore_all(struct pmc_dev * pmcdev)751 static void pmc_core_ltr_restore_all(struct pmc_dev *pmcdev)
752 {
753 	unsigned int i;
754 
755 	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); i++) {
756 		struct pmc *pmc;
757 
758 		pmc = pmcdev->pmcs[i];
759 		if (!pmc)
760 			continue;
761 
762 		guard(mutex)(&pmcdev->lock);
763 		pmc_core_reg_write(pmc, pmc->map->ltr_ignore_offset, pmc->ltr_ign);
764 	}
765 }
766 
adjust_lpm_residency(struct pmc * pmc,u32 offset,const int lpm_adj_x2)767 static inline u64 adjust_lpm_residency(struct pmc *pmc, u32 offset,
768 				       const int lpm_adj_x2)
769 {
770 	u64 lpm_res = pmc_core_reg_read(pmc, offset);
771 
772 	return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res);
773 }
774 
pmc_core_substate_res_show(struct seq_file * s,void * unused)775 static int pmc_core_substate_res_show(struct seq_file *s, void *unused)
776 {
777 	struct pmc_dev *pmcdev = s->private;
778 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
779 	const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
780 	u32 offset = pmc->map->lpm_residency_offset;
781 	int mode;
782 
783 	seq_printf(s, "%-10s %-15s\n", "Substate", "Residency");
784 
785 	pmc_for_each_mode(mode, pmcdev) {
786 		seq_printf(s, "%-10s %-15llu\n", pmc_lpm_modes[mode],
787 			   adjust_lpm_residency(pmc, offset + (4 * mode), lpm_adj_x2));
788 	}
789 
790 	return 0;
791 }
792 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res);
793 
pmc_core_substate_sts_regs_show(struct seq_file * s,void * unused)794 static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused)
795 {
796 	struct pmc_dev *pmcdev = s->private;
797 	unsigned int i;
798 
799 	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
800 		struct pmc *pmc = pmcdev->pmcs[i];
801 		const struct pmc_bit_map **maps;
802 		u32 offset;
803 
804 		if (!pmc)
805 			continue;
806 		maps = pmc->map->lpm_sts;
807 		offset = pmc->map->lpm_status_offset;
808 		pmc_core_lpm_display(pmc, NULL, s, offset, i, "STATUS", maps);
809 	}
810 
811 	return 0;
812 }
813 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs);
814 
pmc_core_substate_l_sts_regs_show(struct seq_file * s,void * unused)815 static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused)
816 {
817 	struct pmc_dev *pmcdev = s->private;
818 	unsigned int i;
819 
820 	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
821 		struct pmc *pmc = pmcdev->pmcs[i];
822 		const struct pmc_bit_map **maps;
823 		u32 offset;
824 
825 		if (!pmc)
826 			continue;
827 		maps = pmc->map->lpm_sts;
828 		offset = pmc->map->lpm_live_status_offset;
829 		pmc_core_lpm_display(pmc, NULL, s, offset, i, "LIVE_STATUS", maps);
830 	}
831 
832 	return 0;
833 }
834 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs);
835 
pmc_core_substate_req_header_show(struct seq_file * s,int pmc_index,enum header_type type)836 static void pmc_core_substate_req_header_show(struct seq_file *s, int pmc_index,
837 					      enum header_type type)
838 {
839 	struct pmc_dev *pmcdev = s->private;
840 	int mode;
841 
842 	seq_printf(s, "%40s |", "Element");
843 	pmc_for_each_mode(mode, pmcdev)
844 		seq_printf(s, " %9s |", pmc_lpm_modes[mode]);
845 
846 	if (type == HEADER_STATUS) {
847 		seq_printf(s, " %9s |", "Status");
848 		seq_printf(s, " %11s |\n", "Live Status");
849 	} else {
850 		seq_printf(s, " %9s |\n", "Value");
851 	}
852 }
853 
pmc_core_substate_blk_req_show(struct seq_file * s,void * unused)854 static int pmc_core_substate_blk_req_show(struct seq_file *s, void *unused)
855 {
856 	struct pmc_dev *pmcdev = s->private;
857 	unsigned int pmc_idx;
858 
859 	for (pmc_idx = 0; pmc_idx < ARRAY_SIZE(pmcdev->pmcs); pmc_idx++) {
860 		const struct pmc_bit_map **maps;
861 		unsigned int arr_size, r_idx;
862 		u32 offset, counter;
863 		u32 *lpm_req_regs;
864 		struct pmc *pmc;
865 
866 		pmc = pmcdev->pmcs[pmc_idx];
867 		if (!pmc || !pmc->lpm_req_regs)
868 			continue;
869 
870 		lpm_req_regs = pmc->lpm_req_regs;
871 		maps = pmc->map->s0ix_blocker_maps;
872 		offset = pmc->map->s0ix_blocker_offset;
873 		arr_size = pmc_core_lpm_get_arr_size(maps);
874 
875 		/* Display the header */
876 		pmc_core_substate_req_header_show(s, pmc_idx, HEADER_VALUE);
877 
878 		for (r_idx = 0; r_idx < arr_size; r_idx++) {
879 			const struct pmc_bit_map *map;
880 
881 			for (map = maps[r_idx]; map->name; map++) {
882 				int mode;
883 
884 				if (!map->blk)
885 					continue;
886 
887 				counter = pmc_core_reg_read(pmc, offset);
888 				seq_printf(s, "pmc%u: %34s |", pmc_idx, map->name);
889 				pmc_for_each_mode(mode, pmcdev) {
890 					bool required = *lpm_req_regs & BIT(mode);
891 
892 					seq_printf(s, " %9s |", required ? "Required" : " ");
893 				}
894 				seq_printf(s, " %9u |\n", counter);
895 				offset += map->blk * S0IX_BLK_SIZE;
896 				lpm_req_regs++;
897 			}
898 		}
899 	}
900 	return 0;
901 }
902 
pmc_core_substate_blk_req_open(struct inode * inode,struct file * file)903 static int pmc_core_substate_blk_req_open(struct inode *inode, struct file *file)
904 {
905 	return single_open(file, pmc_core_substate_blk_req_show, inode->i_private);
906 }
907 
908 const struct file_operations pmc_core_substate_blk_req_fops = {
909 	.owner		= THIS_MODULE,
910 	.open		= pmc_core_substate_blk_req_open,
911 	.read		= seq_read,
912 	.llseek		= seq_lseek,
913 	.release	= single_release,
914 };
915 
pmc_core_substate_req_regs_show(struct seq_file * s,void * unused)916 static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused)
917 {
918 	struct pmc_dev *pmcdev = s->private;
919 	u32 sts_offset;
920 	u32 sts_offset_live;
921 	u32 *lpm_req_regs;
922 	unsigned int mp, pmc_index;
923 	int num_maps;
924 
925 	for (pmc_index = 0; pmc_index < ARRAY_SIZE(pmcdev->pmcs); ++pmc_index) {
926 		struct pmc *pmc = pmcdev->pmcs[pmc_index];
927 		const struct pmc_bit_map **maps;
928 
929 		if (!pmc)
930 			continue;
931 
932 		maps = pmc->map->lpm_sts;
933 		num_maps = pmc->map->lpm_num_maps;
934 		sts_offset = pmc->map->lpm_status_offset;
935 		sts_offset_live = pmc->map->lpm_live_status_offset;
936 		lpm_req_regs = pmc->lpm_req_regs;
937 
938 		/*
939 		 * When there are multiple PMCs, though the PMC may exist, the
940 		 * requirement register discovery could have failed so check
941 		 * before accessing.
942 		 */
943 		if (!lpm_req_regs)
944 			continue;
945 
946 		/* Display the header */
947 		pmc_core_substate_req_header_show(s, pmc_index, HEADER_STATUS);
948 
949 		/* Loop over maps */
950 		for (mp = 0; mp < num_maps; mp++) {
951 			u32 req_mask = 0;
952 			u32 lpm_status;
953 			u32 lpm_status_live;
954 			const struct pmc_bit_map *map;
955 			int mode, i, len = 32;
956 
957 			/*
958 			 * Capture the requirements and create a mask so that we only
959 			 * show an element if it's required for at least one of the
960 			 * enabled low power modes
961 			 */
962 			pmc_for_each_mode(mode, pmcdev)
963 				req_mask |= lpm_req_regs[mp + (mode * num_maps)];
964 
965 			/* Get the last latched status for this map */
966 			lpm_status = pmc_core_reg_read(pmc, sts_offset + (mp * 4));
967 
968 			/* Get the runtime status for this map */
969 			lpm_status_live = pmc_core_reg_read(pmc, sts_offset_live + (mp * 4));
970 
971 			/*  Loop over elements in this map */
972 			map = maps[mp];
973 			for (i = 0; map[i].name && i < len; i++) {
974 				u32 bit_mask = map[i].bit_mask;
975 
976 				if (!(bit_mask & req_mask)) {
977 					/*
978 					 * Not required for any enabled states
979 					 * so don't display
980 					 */
981 					continue;
982 				}
983 
984 				/* Display the element name in the first column */
985 				seq_printf(s, "pmc%d: %34s |", pmc_index, map[i].name);
986 
987 				/* Loop over the enabled states and display if required */
988 				pmc_for_each_mode(mode, pmcdev) {
989 					bool required = lpm_req_regs[mp + (mode * num_maps)] &
990 							bit_mask;
991 					seq_printf(s, " %9s |", required ? "Required" : " ");
992 				}
993 
994 				/* In Status column, show the last captured state of this agent */
995 				seq_printf(s, " %9s |", lpm_status & bit_mask ? "Yes" : " ");
996 
997 				/* In Live status column, show the live state of this agent */
998 				seq_printf(s, " %11s |", lpm_status_live & bit_mask ? "Yes" : " ");
999 
1000 				seq_puts(s, "\n");
1001 			}
1002 		}
1003 	}
1004 	return 0;
1005 }
1006 
pmc_core_substate_req_regs_open(struct inode * inode,struct file * file)1007 static int pmc_core_substate_req_regs_open(struct inode *inode, struct file *file)
1008 {
1009 	return single_open(file, pmc_core_substate_req_regs_show, inode->i_private);
1010 }
1011 
1012 const struct file_operations pmc_core_substate_req_regs_fops = {
1013 	.owner		= THIS_MODULE,
1014 	.open		= pmc_core_substate_req_regs_open,
1015 	.read		= seq_read,
1016 	.llseek		= seq_lseek,
1017 	.release	= single_release,
1018 };
1019 
pmc_core_get_crystal_freq(void)1020 static unsigned int pmc_core_get_crystal_freq(void)
1021 {
1022 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
1023 
1024 	if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC)
1025 		return 0;
1026 
1027 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
1028 
1029 	/* TSC/Crystal ratio, plus optionally Crystal Hz */
1030 	cpuid(CPUID_LEAF_TSC, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
1031 
1032 	if (ebx_numerator == 0 || eax_denominator == 0)
1033 		return 0;
1034 
1035 	return ecx_hz;
1036 }
1037 
pmc_core_die_c6_us_show(struct seq_file * s,void * unused)1038 static int pmc_core_die_c6_us_show(struct seq_file *s, void *unused)
1039 {
1040 	struct pmc_dev *pmcdev = s->private;
1041 	u64 die_c6_res, count;
1042 	int ret;
1043 
1044 	if (!pmcdev->crystal_freq) {
1045 		dev_warn_once(&pmcdev->pdev->dev, "Crystal frequency unavailable\n");
1046 		return -ENXIO;
1047 	}
1048 
1049 	ret = pmt_telem_read(pmcdev->punit_ep, pmcdev->die_c6_offset,
1050 			     &count, 1);
1051 	if (ret)
1052 		return ret;
1053 
1054 	die_c6_res = div64_u64(count * HZ_PER_MHZ, pmcdev->crystal_freq);
1055 	seq_printf(s, "%llu\n", die_c6_res);
1056 
1057 	return 0;
1058 }
1059 DEFINE_SHOW_ATTRIBUTE(pmc_core_die_c6_us);
1060 
pmc_core_lpm_latch_mode_show(struct seq_file * s,void * unused)1061 static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused)
1062 {
1063 	struct pmc_dev *pmcdev = s->private;
1064 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1065 	bool c10;
1066 	u32 reg;
1067 	int mode;
1068 
1069 	reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
1070 	if (reg & LPM_STS_LATCH_MODE) {
1071 		seq_puts(s, "c10");
1072 		c10 = false;
1073 	} else {
1074 		seq_puts(s, "[c10]");
1075 		c10 = true;
1076 	}
1077 
1078 	pmc_for_each_mode(mode, pmcdev) {
1079 		if ((BIT(mode) & reg) && !c10)
1080 			seq_printf(s, " [%s]", pmc_lpm_modes[mode]);
1081 		else
1082 			seq_printf(s, " %s", pmc_lpm_modes[mode]);
1083 	}
1084 
1085 	seq_puts(s, " clear\n");
1086 
1087 	return 0;
1088 }
1089 
pmc_core_lpm_latch_mode_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)1090 static ssize_t pmc_core_lpm_latch_mode_write(struct file *file,
1091 					     const char __user *userbuf,
1092 					     size_t count, loff_t *ppos)
1093 {
1094 	struct seq_file *s = file->private_data;
1095 	struct pmc_dev *pmcdev = s->private;
1096 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1097 	bool clear = false, c10 = false;
1098 	unsigned char buf[8];
1099 	int m, mode;
1100 	u32 reg;
1101 
1102 	if (count > sizeof(buf) - 1)
1103 		return -EINVAL;
1104 	if (copy_from_user(buf, userbuf, count))
1105 		return -EFAULT;
1106 	buf[count] = '\0';
1107 
1108 	/*
1109 	 * Allowed strings are:
1110 	 *	Any enabled substate, e.g. 'S0i2.0'
1111 	 *	'c10'
1112 	 *	'clear'
1113 	 */
1114 	mode = sysfs_match_string(pmc_lpm_modes, buf);
1115 
1116 	/* Check string matches enabled mode */
1117 	pmc_for_each_mode(m, pmcdev)
1118 		if (mode == m)
1119 			break;
1120 
1121 	if (mode != m || mode < 0) {
1122 		if (sysfs_streq(buf, "clear"))
1123 			clear = true;
1124 		else if (sysfs_streq(buf, "c10"))
1125 			c10 = true;
1126 		else
1127 			return -EINVAL;
1128 	}
1129 
1130 	if (clear) {
1131 		guard(mutex)(&pmcdev->lock);
1132 
1133 		reg = pmc_core_reg_read(pmc, pmc->map->etr3_offset);
1134 		reg |= ETR3_CLEAR_LPM_EVENTS;
1135 		pmc_core_reg_write(pmc, pmc->map->etr3_offset, reg);
1136 
1137 		return count;
1138 	}
1139 
1140 	if (c10) {
1141 		guard(mutex)(&pmcdev->lock);
1142 
1143 		reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
1144 		reg &= ~LPM_STS_LATCH_MODE;
1145 		pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
1146 
1147 		return count;
1148 	}
1149 
1150 	/*
1151 	 * For LPM mode latching we set the latch enable bit and selected mode
1152 	 * and clear everything else.
1153 	 */
1154 	reg = LPM_STS_LATCH_MODE | BIT(mode);
1155 	guard(mutex)(&pmcdev->lock);
1156 	pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
1157 
1158 	return count;
1159 }
1160 DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode);
1161 
pmc_core_pkgc_show(struct seq_file * s,void * unused)1162 static int pmc_core_pkgc_show(struct seq_file *s, void *unused)
1163 {
1164 	struct pmc *pmc = s->private;
1165 	const struct pmc_bit_map *map = pmc->map->msr_sts;
1166 	u64 pcstate_count;
1167 	unsigned int index;
1168 
1169 	for (index = 0; map[index].name ; index++) {
1170 		if (rdmsrq_safe(map[index].bit_mask, &pcstate_count))
1171 			continue;
1172 
1173 		pcstate_count *= 1000;
1174 		do_div(pcstate_count, tsc_khz);
1175 		seq_printf(s, "%-8s : %llu\n", map[index].name,
1176 			   pcstate_count);
1177 	}
1178 
1179 	return 0;
1180 }
1181 DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc);
1182 
pmc_core_pri_verify(u32 lpm_pri,u8 * mode_order)1183 static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order)
1184 {
1185 	unsigned int i, j;
1186 
1187 	if (!lpm_pri)
1188 		return false;
1189 	/*
1190 	 * Each byte contains the priority level for 2 modes (7:4 and 3:0).
1191 	 * In a 32 bit register this allows for describing 8 modes. Store the
1192 	 * levels and look for values out of range.
1193 	 */
1194 	for (i = 0; i < 8; i++) {
1195 		int level = lpm_pri & GENMASK(3, 0);
1196 
1197 		if (level >= LPM_MAX_NUM_MODES)
1198 			return false;
1199 
1200 		mode_order[i] = level;
1201 		lpm_pri >>= 4;
1202 	}
1203 
1204 	/* Check that we have unique values */
1205 	for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++)
1206 		for (j = i + 1; j < LPM_MAX_NUM_MODES; j++)
1207 			if (mode_order[i] == mode_order[j])
1208 				return false;
1209 
1210 	return true;
1211 }
1212 
pmc_core_get_low_power_modes(struct pmc_dev * pmcdev)1213 void pmc_core_get_low_power_modes(struct pmc_dev *pmcdev)
1214 {
1215 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1216 	u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI;
1217 	u8 mode_order[LPM_MAX_NUM_MODES];
1218 	u32 lpm_pri;
1219 	u32 lpm_en;
1220 	unsigned int i;
1221 	int mode, p;
1222 
1223 	/* Use LPM Maps to indicate support for substates */
1224 	if (!pmc->map->lpm_num_maps)
1225 		return;
1226 
1227 	lpm_en = pmc_core_reg_read(pmc, pmc->map->lpm_en_offset);
1228 	/* For MTL, BIT 31 is not an lpm mode but a enable bit.
1229 	 * Lower byte is enough to cover the number of lpm modes for all
1230 	 * platforms and hence mask the upper 3 bytes.
1231 	 */
1232 	pmcdev->num_lpm_modes = hweight32(lpm_en & 0xFF);
1233 
1234 	/* Read 32 bit LPM_PRI register */
1235 	lpm_pri = pmc_core_reg_read(pmc, pmc->map->lpm_priority_offset);
1236 
1237 
1238 	/*
1239 	 * If lpm_pri value passes verification, then override the default
1240 	 * modes here. Otherwise stick with the default.
1241 	 */
1242 	if (pmc_core_pri_verify(lpm_pri, mode_order))
1243 		/* Get list of modes in priority order */
1244 		for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++)
1245 			pri_order[mode_order[mode]] = mode;
1246 	else
1247 		dev_dbg(&pmcdev->pdev->dev,
1248 			 "Assuming a default substate order for this platform\n");
1249 
1250 	/*
1251 	 * Loop through all modes from lowest to highest priority,
1252 	 * and capture all enabled modes in order
1253 	 */
1254 	i = 0;
1255 	for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) {
1256 		int mode = pri_order[p];
1257 
1258 		if (!(BIT(mode) & lpm_en))
1259 			continue;
1260 
1261 		pmcdev->lpm_en_modes[i++] = mode;
1262 	}
1263 }
1264 
get_primary_reg_base(struct pmc * pmc)1265 int get_primary_reg_base(struct pmc *pmc)
1266 {
1267 	u64 slp_s0_addr;
1268 
1269 	if (lpit_read_residency_count_address(&slp_s0_addr)) {
1270 		pmc->base_addr = PMC_BASE_ADDR_DEFAULT;
1271 
1272 		if (page_is_ram(PHYS_PFN(pmc->base_addr)))
1273 			return -ENODEV;
1274 	} else {
1275 		pmc->base_addr = slp_s0_addr - pmc->map->slp_s0_offset;
1276 	}
1277 
1278 	pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1279 	if (!pmc->regbase)
1280 		return -ENOMEM;
1281 	return 0;
1282 }
1283 
pmc_core_punit_pmt_init(struct pmc_dev * pmcdev,u32 guid)1284 void pmc_core_punit_pmt_init(struct pmc_dev *pmcdev, u32 guid)
1285 {
1286 	struct telem_endpoint *ep;
1287 	struct pci_dev *pcidev;
1288 
1289 	pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(10, 0));
1290 	if (!pcidev) {
1291 		dev_err(&pmcdev->pdev->dev, "PUNIT PMT device not found.");
1292 		return;
1293 	}
1294 
1295 	ep = pmt_telem_find_and_register_endpoint(pcidev, guid, 0);
1296 	pci_dev_put(pcidev);
1297 	if (IS_ERR(ep)) {
1298 		dev_err(&pmcdev->pdev->dev,
1299 			"pmc_core: couldn't get DMU telem endpoint %ld",
1300 			PTR_ERR(ep));
1301 		return;
1302 	}
1303 
1304 	pmcdev->punit_ep = ep;
1305 
1306 	pmcdev->has_die_c6 = true;
1307 	pmcdev->die_c6_offset = MTL_PMT_DMU_DIE_C6_OFFSET;
1308 }
1309 
pmc_core_set_device_d3(unsigned int device)1310 void pmc_core_set_device_d3(unsigned int device)
1311 {
1312 	struct pci_dev *pcidev;
1313 
1314 	pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL);
1315 	if (pcidev) {
1316 		if (!device_trylock(&pcidev->dev)) {
1317 			pci_dev_put(pcidev);
1318 			return;
1319 		}
1320 		if (!pcidev->dev.driver) {
1321 			dev_info(&pcidev->dev, "Setting to D3hot\n");
1322 			pci_set_power_state(pcidev, PCI_D3hot);
1323 		}
1324 		device_unlock(&pcidev->dev);
1325 		pci_dev_put(pcidev);
1326 	}
1327 }
1328 
pmc_core_is_pson_residency_enabled(struct pmc_dev * pmcdev)1329 static bool pmc_core_is_pson_residency_enabled(struct pmc_dev *pmcdev)
1330 {
1331 	struct platform_device *pdev = pmcdev->pdev;
1332 	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1333 	u8 val;
1334 
1335 	if (!adev)
1336 		return false;
1337 
1338 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev),
1339 				    "intel-cec-pson-switching-enabled-in-s0",
1340 				    &val))
1341 		return false;
1342 
1343 	return val == 1;
1344 }
1345 
pmc_core_dbgfs_unregister(struct pmc_dev * pmcdev)1346 static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev)
1347 {
1348 	debugfs_remove_recursive(pmcdev->dbgfs_dir);
1349 }
1350 
pmc_core_dbgfs_register(struct pmc_dev * pmcdev,struct pmc_dev_info * pmc_dev_info)1351 static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1352 {
1353 	struct pmc *primary_pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1354 	struct dentry *dir;
1355 
1356 	dir = debugfs_create_dir("pmc_core", NULL);
1357 	pmcdev->dbgfs_dir = dir;
1358 
1359 	debugfs_create_file("slp_s0_residency_usec", 0444, dir, primary_pmc,
1360 			    &pmc_core_dev_state);
1361 
1362 	if (primary_pmc->map->pfear_sts)
1363 		debugfs_create_file("pch_ip_power_gating_status", 0444, dir,
1364 				    pmcdev, &pmc_core_ppfear_fops);
1365 
1366 	debugfs_create_file("ltr_ignore", 0644, dir, pmcdev,
1367 			    &pmc_core_ltr_ignore_fops);
1368 
1369 	debugfs_create_file("ltr_restore", 0200, dir, pmcdev, &pmc_core_ltr_restore_fops);
1370 
1371 	debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops);
1372 
1373 	if (primary_pmc->map->s0ix_blocker_maps)
1374 		debugfs_create_file("s0ix_blocker", 0444, dir, pmcdev, &pmc_core_s0ix_blocker_fops);
1375 
1376 	debugfs_create_file("package_cstate_show", 0444, dir, primary_pmc,
1377 			    &pmc_core_pkgc_fops);
1378 
1379 	if (primary_pmc->map->pll_sts)
1380 		debugfs_create_file("pll_status", 0444, dir, pmcdev,
1381 				    &pmc_core_pll_fops);
1382 
1383 	if (primary_pmc->map->mphy_sts)
1384 		debugfs_create_file("mphy_core_lanes_power_gating_status",
1385 				    0444, dir, pmcdev,
1386 				    &pmc_core_mphy_pg_fops);
1387 
1388 	if (primary_pmc->map->slps0_dbg_maps) {
1389 		debugfs_create_file("slp_s0_debug_status", 0444,
1390 				    dir, pmcdev,
1391 				    &pmc_core_slps0_dbg_fops);
1392 
1393 		debugfs_create_bool("slp_s0_dbg_latch", 0644,
1394 				    dir, &slps0_dbg_latch);
1395 	}
1396 
1397 	if (primary_pmc->map->lpm_en_offset) {
1398 		debugfs_create_file("substate_residencies", 0444,
1399 				    pmcdev->dbgfs_dir, pmcdev,
1400 				    &pmc_core_substate_res_fops);
1401 	}
1402 
1403 	if (primary_pmc->map->lpm_status_offset) {
1404 		debugfs_create_file("substate_status_registers", 0444,
1405 				    pmcdev->dbgfs_dir, pmcdev,
1406 				    &pmc_core_substate_sts_regs_fops);
1407 		debugfs_create_file("substate_live_status_registers", 0444,
1408 				    pmcdev->dbgfs_dir, pmcdev,
1409 				    &pmc_core_substate_l_sts_regs_fops);
1410 		debugfs_create_file("lpm_latch_mode", 0644,
1411 				    pmcdev->dbgfs_dir, pmcdev,
1412 				    &pmc_core_lpm_latch_mode_fops);
1413 	}
1414 
1415 	if (primary_pmc->lpm_req_regs) {
1416 		debugfs_create_file("substate_requirements", 0444,
1417 				    pmcdev->dbgfs_dir, pmcdev,
1418 				    pmc_dev_info->sub_req_show);
1419 	}
1420 
1421 	if (primary_pmc->map->pson_residency_offset && pmc_core_is_pson_residency_enabled(pmcdev)) {
1422 		debugfs_create_file("pson_residency_usec", 0444,
1423 				    pmcdev->dbgfs_dir, primary_pmc, &pmc_core_pson_residency);
1424 	}
1425 
1426 	if (pmcdev->has_die_c6) {
1427 		debugfs_create_file("die_c6_us_show", 0444,
1428 				    pmcdev->dbgfs_dir, pmcdev,
1429 				    &pmc_core_die_c6_us_fops);
1430 	}
1431 }
1432 
pmc_core_find_guid(struct pmc_info * list,const struct pmc_reg_map * map)1433 static u32 pmc_core_find_guid(struct pmc_info *list, const struct pmc_reg_map *map)
1434 {
1435 	for (; list->map; ++list)
1436 		if (list->map == map)
1437 			return list->guid;
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * This function retrieves low power mode requirement data from PMC Low
1444  * Power Mode (LPM) table.
1445  *
1446  * In telemetry space, the LPM table contains a 4 byte header followed
1447  * by 8 consecutive mode blocks (one for each LPM mode). Each block
1448  * has a 4 byte header followed by a set of registers that describe the
1449  * IP state requirements for the given mode. The IP mapping is platform
1450  * specific but the same for each block, making for easy analysis.
1451  * Platforms only use a subset of the space to track the requirements
1452  * for their IPs. Callers provide the requirement registers they use as
1453  * a list of indices. Each requirement register is associated with an
1454  * IP map that's maintained by the caller.
1455  *
1456  * Header
1457  * +----+----------------------------+----------------------------+
1458  * |  0 |      REVISION              |      ENABLED MODES         |
1459  * +----+--------------+-------------+-------------+--------------+
1460  *
1461  * Low Power Mode 0 Block
1462  * +----+--------------+-------------+-------------+--------------+
1463  * |  1 |     SUB ID   |     SIZE    |   MAJOR     |   MINOR      |
1464  * +----+--------------+-------------+-------------+--------------+
1465  * |  2 |           LPM0 Requirements 0                           |
1466  * +----+---------------------------------------------------------+
1467  * |    |                  ...                                    |
1468  * +----+---------------------------------------------------------+
1469  * | 29 |           LPM0 Requirements 27                          |
1470  * +----+---------------------------------------------------------+
1471  *
1472  * ...
1473  *
1474  * Low Power Mode 7 Block
1475  * +----+--------------+-------------+-------------+--------------+
1476  * |    |     SUB ID   |     SIZE    |   MAJOR     |   MINOR      |
1477  * +----+--------------+-------------+-------------+--------------+
1478  * | 60 |           LPM7 Requirements 0                           |
1479  * +----+---------------------------------------------------------+
1480  * |    |                  ...                                    |
1481  * +----+---------------------------------------------------------+
1482  * | 87 |           LPM7 Requirements 27                          |
1483  * +----+---------------------------------------------------------+
1484  *
1485  */
pmc_core_pmt_get_lpm_req(struct pmc_dev * pmcdev,struct pmc * pmc,struct telem_endpoint * ep)1486 int pmc_core_pmt_get_lpm_req(struct pmc_dev *pmcdev, struct pmc *pmc, struct telem_endpoint *ep)
1487 {
1488 	const u8 *lpm_indices;
1489 	int num_maps, mode_offset = 0;
1490 	int ret, mode;
1491 	int lpm_size;
1492 
1493 	lpm_indices = pmc->map->lpm_reg_index;
1494 	num_maps = pmc->map->lpm_num_maps;
1495 	lpm_size = LPM_MAX_NUM_MODES * num_maps;
1496 
1497 	pmc->lpm_req_regs = devm_kzalloc(&pmcdev->pdev->dev,
1498 					 lpm_size * sizeof(u32),
1499 					 GFP_KERNEL);
1500 	if (!pmc->lpm_req_regs)
1501 		return -ENOMEM;
1502 
1503 	mode_offset = LPM_HEADER_OFFSET + LPM_MODE_OFFSET;
1504 	pmc_for_each_mode(mode, pmcdev) {
1505 		u32 *req_offset = pmc->lpm_req_regs + (mode * num_maps);
1506 		int m;
1507 
1508 		for (m = 0; m < num_maps; m++) {
1509 			u8 sample_id = lpm_indices[m] + mode_offset;
1510 
1511 			ret = pmt_telem_read32(ep, sample_id, req_offset, 1);
1512 			if (ret) {
1513 				dev_err(&pmcdev->pdev->dev,
1514 					"couldn't read Low Power Mode requirements: %d\n", ret);
1515 				return ret;
1516 			}
1517 			++req_offset;
1518 		}
1519 		mode_offset += LPM_REG_COUNT + LPM_MODE_OFFSET;
1520 	}
1521 	return ret;
1522 }
1523 
pmc_core_pmt_get_blk_sub_req(struct pmc_dev * pmcdev,struct pmc * pmc,struct telem_endpoint * ep)1524 int pmc_core_pmt_get_blk_sub_req(struct pmc_dev *pmcdev, struct pmc *pmc,
1525 				 struct telem_endpoint *ep)
1526 {
1527 	u32 num_blocker, sample_offset;
1528 	unsigned int index;
1529 	u32 *req_offset;
1530 	int ret;
1531 
1532 	num_blocker = pmc->map->num_s0ix_blocker;
1533 	sample_offset = pmc->map->blocker_req_offset;
1534 
1535 	pmc->lpm_req_regs = devm_kcalloc(&pmcdev->pdev->dev, num_blocker,
1536 					 sizeof(u32), GFP_KERNEL);
1537 	if (!pmc->lpm_req_regs)
1538 		return -ENOMEM;
1539 
1540 	req_offset = pmc->lpm_req_regs;
1541 	for (index = 0; index < num_blocker; index++, req_offset++) {
1542 		ret = pmt_telem_read32(ep, index + sample_offset, req_offset, 1);
1543 		if (ret) {
1544 			dev_err(&pmcdev->pdev->dev,
1545 				"couldn't read Low Power Mode requirements: %d\n", ret);
1546 			return ret;
1547 		}
1548 	}
1549 	return 0;
1550 }
1551 
pmc_core_get_telem_info(struct pmc_dev * pmcdev,struct pmc_dev_info * pmc_dev_info)1552 static int pmc_core_get_telem_info(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1553 {
1554 	struct pci_dev *pcidev __free(pci_dev_put) = NULL;
1555 	struct telem_endpoint *ep;
1556 	unsigned int i;
1557 	u32 guid;
1558 	int ret;
1559 
1560 	pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(20, pmc_dev_info->pci_func));
1561 	if (!pcidev)
1562 		return -ENODEV;
1563 
1564 	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1565 		struct pmc *pmc;
1566 
1567 		pmc = pmcdev->pmcs[i];
1568 		if (!pmc)
1569 			continue;
1570 
1571 		guid = pmc_core_find_guid(pmcdev->regmap_list, pmc->map);
1572 		if (!guid)
1573 			return -ENXIO;
1574 
1575 		ep = pmt_telem_find_and_register_endpoint(pcidev, guid, 0);
1576 		if (IS_ERR(ep)) {
1577 			dev_dbg(&pmcdev->pdev->dev, "couldn't get telem endpoint %pe", ep);
1578 			return -EPROBE_DEFER;
1579 		}
1580 
1581 		ret = pmc_dev_info->sub_req(pmcdev, pmc, ep);
1582 		pmt_telem_unregister_endpoint(ep);
1583 		if (ret)
1584 			return ret;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
pmc_core_find_regmap(struct pmc_info * list,u16 devid)1590 static const struct pmc_reg_map *pmc_core_find_regmap(struct pmc_info *list, u16 devid)
1591 {
1592 	for (; list->map; ++list)
1593 		if (devid == list->devid)
1594 			return list->map;
1595 
1596 	return NULL;
1597 }
1598 
pmc_core_pmc_add(struct pmc_dev * pmcdev,unsigned int pmc_index)1599 static int pmc_core_pmc_add(struct pmc_dev *pmcdev, unsigned int pmc_index)
1600 
1601 {
1602 	struct pmc_ssram_telemetry pmc_ssram_telemetry;
1603 	const struct pmc_reg_map *map;
1604 	struct pmc *pmc;
1605 	int ret;
1606 
1607 	ret = pmc_ssram_telemetry_get_pmc_info(pmc_index, &pmc_ssram_telemetry);
1608 	if (ret)
1609 		return ret;
1610 
1611 	map = pmc_core_find_regmap(pmcdev->regmap_list, pmc_ssram_telemetry.devid);
1612 	if (!map)
1613 		return -ENODEV;
1614 
1615 	pmc = pmcdev->pmcs[pmc_index];
1616 	/* Memory for primary PMC has been allocated */
1617 	if (!pmc) {
1618 		pmc = devm_kzalloc(&pmcdev->pdev->dev, sizeof(*pmc), GFP_KERNEL);
1619 		if (!pmc)
1620 			return -ENOMEM;
1621 	}
1622 
1623 	pmc->map = map;
1624 	pmc->base_addr = pmc_ssram_telemetry.base_addr;
1625 	pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1626 
1627 	if (!pmc->regbase) {
1628 		devm_kfree(&pmcdev->pdev->dev, pmc);
1629 		return -ENOMEM;
1630 	}
1631 
1632 	pmcdev->pmcs[pmc_index] = pmc;
1633 
1634 	return 0;
1635 }
1636 
pmc_core_ssram_get_reg_base(struct pmc_dev * pmcdev)1637 static int pmc_core_ssram_get_reg_base(struct pmc_dev *pmcdev)
1638 {
1639 	int ret;
1640 
1641 	ret = pmc_core_pmc_add(pmcdev, PMC_IDX_MAIN);
1642 	if (ret)
1643 		return ret;
1644 
1645 	pmc_core_pmc_add(pmcdev, PMC_IDX_IOE);
1646 	pmc_core_pmc_add(pmcdev, PMC_IDX_PCH);
1647 
1648 	return 0;
1649 }
1650 
1651 /*
1652  * When supported, ssram init is used to achieve all available PMCs.
1653  * If ssram init fails, this function uses legacy method to at least get the
1654  * primary PMC.
1655  */
generic_core_init(struct pmc_dev * pmcdev,struct pmc_dev_info * pmc_dev_info)1656 int generic_core_init(struct pmc_dev *pmcdev, struct pmc_dev_info *pmc_dev_info)
1657 {
1658 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1659 	bool ssram;
1660 	int ret;
1661 
1662 	pmcdev->suspend = pmc_dev_info->suspend;
1663 	pmcdev->resume = pmc_dev_info->resume;
1664 
1665 	ssram = pmc_dev_info->regmap_list != NULL;
1666 	if (ssram) {
1667 		pmcdev->regmap_list = pmc_dev_info->regmap_list;
1668 		ret = pmc_core_ssram_get_reg_base(pmcdev);
1669 		/*
1670 		 * EAGAIN error code indicates Intel PMC SSRAM Telemetry driver
1671 		 * has not finished probe and PMC info is not available yet. Try
1672 		 * again later.
1673 		 */
1674 		if (ret == -EAGAIN)
1675 			return -EPROBE_DEFER;
1676 
1677 		if (ret) {
1678 			dev_warn(&pmcdev->pdev->dev,
1679 				 "Failed to get PMC info from SSRAM, %d, using legacy init\n", ret);
1680 			ssram = false;
1681 		}
1682 	}
1683 
1684 	if (!ssram) {
1685 		pmc->map = pmc_dev_info->map;
1686 		ret = get_primary_reg_base(pmc);
1687 		if (ret)
1688 			return ret;
1689 	}
1690 
1691 	pmc_core_get_low_power_modes(pmcdev);
1692 	if (pmc_dev_info->dmu_guid)
1693 		pmc_core_punit_pmt_init(pmcdev, pmc_dev_info->dmu_guid);
1694 
1695 	if (ssram) {
1696 		ret = pmc_core_get_telem_info(pmcdev, pmc_dev_info);
1697 		if (ret)
1698 			goto unmap_regbase;
1699 	}
1700 
1701 	return 0;
1702 
1703 unmap_regbase:
1704 	for (unsigned int i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1705 		struct pmc *pmc = pmcdev->pmcs[i];
1706 
1707 		if (pmc && pmc->regbase)
1708 			iounmap(pmc->regbase);
1709 	}
1710 
1711 	if (pmcdev->punit_ep)
1712 		pmt_telem_unregister_endpoint(pmcdev->punit_ep);
1713 
1714 	return ret;
1715 }
1716 
1717 static const struct x86_cpu_id intel_pmc_core_ids[] = {
1718 	X86_MATCH_VFM(INTEL_SKYLAKE_L,		&spt_pmc_dev),
1719 	X86_MATCH_VFM(INTEL_SKYLAKE,		&spt_pmc_dev),
1720 	X86_MATCH_VFM(INTEL_KABYLAKE_L,		&spt_pmc_dev),
1721 	X86_MATCH_VFM(INTEL_KABYLAKE,		&spt_pmc_dev),
1722 	X86_MATCH_VFM(INTEL_CANNONLAKE_L,	&cnp_pmc_dev),
1723 	X86_MATCH_VFM(INTEL_ICELAKE_L,		&icl_pmc_dev),
1724 	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	&icl_pmc_dev),
1725 	X86_MATCH_VFM(INTEL_COMETLAKE,		&cnp_pmc_dev),
1726 	X86_MATCH_VFM(INTEL_COMETLAKE_L,	&cnp_pmc_dev),
1727 	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	&tgl_l_pmc_dev),
1728 	X86_MATCH_VFM(INTEL_TIGERLAKE,		&tgl_pmc_dev),
1729 	X86_MATCH_VFM(INTEL_ATOM_TREMONT,	&tgl_l_pmc_dev),
1730 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_L,	&icl_pmc_dev),
1731 	X86_MATCH_VFM(INTEL_ROCKETLAKE,		&tgl_pmc_dev),
1732 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,	&tgl_l_pmc_dev),
1733 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT,	&tgl_l_pmc_dev),
1734 	X86_MATCH_VFM(INTEL_ALDERLAKE,		&adl_pmc_dev),
1735 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,	&tgl_l_pmc_dev),
1736 	X86_MATCH_VFM(INTEL_RAPTORLAKE,		&adl_pmc_dev),
1737 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,	&adl_pmc_dev),
1738 	X86_MATCH_VFM(INTEL_BARTLETTLAKE,       &adl_pmc_dev),
1739 	X86_MATCH_VFM(INTEL_METEORLAKE_L,	&mtl_pmc_dev),
1740 	X86_MATCH_VFM(INTEL_ARROWLAKE,		&arl_pmc_dev),
1741 	X86_MATCH_VFM(INTEL_ARROWLAKE_H,	&arl_h_pmc_dev),
1742 	X86_MATCH_VFM(INTEL_ARROWLAKE_U,	&arl_h_pmc_dev),
1743 	X86_MATCH_VFM(INTEL_LUNARLAKE_M,	&lnl_pmc_dev),
1744 	X86_MATCH_VFM(INTEL_PANTHERLAKE_L,	&ptl_pmc_dev),
1745 	X86_MATCH_VFM(INTEL_WILDCATLAKE_L,	&wcl_pmc_dev),
1746 	{}
1747 };
1748 
1749 MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids);
1750 
1751 /*
1752  * This quirk can be used on those platforms where
1753  * the platform BIOS enforces 24Mhz crystal to shutdown
1754  * before PMC can assert SLP_S0#.
1755  */
1756 static bool xtal_ignore;
quirk_xtal_ignore(const struct dmi_system_id * id)1757 static int quirk_xtal_ignore(const struct dmi_system_id *id)
1758 {
1759 	xtal_ignore = true;
1760 	return 0;
1761 }
1762 
pmc_core_xtal_ignore(struct pmc * pmc)1763 static void pmc_core_xtal_ignore(struct pmc *pmc)
1764 {
1765 	u32 value;
1766 
1767 	value = pmc_core_reg_read(pmc, pmc->map->pm_vric1_offset);
1768 	/* 24MHz Crystal Shutdown Qualification Disable */
1769 	value |= SPT_PMC_VRIC1_XTALSDQDIS;
1770 	/* Low Voltage Mode Enable */
1771 	value &= ~SPT_PMC_VRIC1_SLPS0LVEN;
1772 	pmc_core_reg_write(pmc, pmc->map->pm_vric1_offset, value);
1773 }
1774 
1775 static const struct dmi_system_id pmc_core_dmi_table[]  = {
1776 	{
1777 	.callback = quirk_xtal_ignore,
1778 	.ident = "HP Elite x2 1013 G3",
1779 	.matches = {
1780 		DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1781 		DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"),
1782 		},
1783 	},
1784 	{}
1785 };
1786 
pmc_core_do_dmi_quirks(struct pmc * pmc)1787 static void pmc_core_do_dmi_quirks(struct pmc *pmc)
1788 {
1789 	dmi_check_system(pmc_core_dmi_table);
1790 
1791 	if (xtal_ignore)
1792 		pmc_core_xtal_ignore(pmc);
1793 }
1794 
pmc_core_clean_structure(struct platform_device * pdev)1795 static void pmc_core_clean_structure(struct platform_device *pdev)
1796 {
1797 	struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1798 	unsigned int i;
1799 
1800 	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1801 		struct pmc *pmc = pmcdev->pmcs[i];
1802 
1803 		if (pmc && pmc->regbase)
1804 			iounmap(pmc->regbase);
1805 	}
1806 
1807 	if (pmcdev->punit_ep)
1808 		pmt_telem_unregister_endpoint(pmcdev->punit_ep);
1809 
1810 	platform_set_drvdata(pdev, NULL);
1811 }
1812 
pmc_core_probe(struct platform_device * pdev)1813 static int pmc_core_probe(struct platform_device *pdev)
1814 {
1815 	static bool device_initialized;
1816 	struct pmc_dev *pmcdev;
1817 	const struct x86_cpu_id *cpu_id;
1818 	struct pmc_dev_info *pmc_dev_info;
1819 	struct pmc *primary_pmc;
1820 	int ret;
1821 
1822 	if (device_initialized)
1823 		return -ENODEV;
1824 
1825 	pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL);
1826 	if (!pmcdev)
1827 		return -ENOMEM;
1828 
1829 	pmcdev->crystal_freq = pmc_core_get_crystal_freq();
1830 
1831 	platform_set_drvdata(pdev, pmcdev);
1832 	pmcdev->pdev = pdev;
1833 
1834 	cpu_id = x86_match_cpu(intel_pmc_core_ids);
1835 	if (!cpu_id)
1836 		return -ENODEV;
1837 
1838 	pmc_dev_info = (struct pmc_dev_info *)cpu_id->driver_data;
1839 
1840 	/* Primary PMC */
1841 	primary_pmc = devm_kzalloc(&pdev->dev, sizeof(*primary_pmc), GFP_KERNEL);
1842 	if (!primary_pmc)
1843 		return -ENOMEM;
1844 	pmcdev->pmcs[PMC_IDX_MAIN] = primary_pmc;
1845 
1846 	/* The last element in msr_map is empty */
1847 	pmcdev->num_of_pkgc = ARRAY_SIZE(msr_map) - 1;
1848 	pmcdev->pkgc_res_cnt = devm_kcalloc(&pdev->dev,
1849 					    pmcdev->num_of_pkgc,
1850 					    sizeof(*pmcdev->pkgc_res_cnt),
1851 					    GFP_KERNEL);
1852 	if (!pmcdev->pkgc_res_cnt)
1853 		return -ENOMEM;
1854 
1855 	ret = devm_mutex_init(&pdev->dev, &pmcdev->lock);
1856 	if (ret)
1857 		return ret;
1858 
1859 	if (pmc_dev_info->init)
1860 		ret = pmc_dev_info->init(pmcdev, pmc_dev_info);
1861 	else
1862 		ret = generic_core_init(pmcdev, pmc_dev_info);
1863 
1864 	if (ret) {
1865 		platform_set_drvdata(pdev, NULL);
1866 		return ret;
1867 	}
1868 
1869 	pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(primary_pmc);
1870 	pmc_core_do_dmi_quirks(primary_pmc);
1871 
1872 	pmc_core_dbgfs_register(pmcdev, pmc_dev_info);
1873 	pm_report_max_hw_sleep(FIELD_MAX(SLP_S0_RES_COUNTER_MASK) *
1874 			       pmc_core_adjust_slp_s0_step(primary_pmc, 1));
1875 
1876 	device_initialized = true;
1877 	dev_info(&pdev->dev, " initialized\n");
1878 
1879 	return 0;
1880 }
1881 
pmc_core_remove(struct platform_device * pdev)1882 static void pmc_core_remove(struct platform_device *pdev)
1883 {
1884 	struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1885 	pmc_core_dbgfs_unregister(pmcdev);
1886 	pmc_core_clean_structure(pdev);
1887 }
1888 
1889 static bool warn_on_s0ix_failures;
1890 module_param(warn_on_s0ix_failures, bool, 0644);
1891 MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures");
1892 
1893 static bool ltr_ignore_all_suspend = true;
1894 module_param(ltr_ignore_all_suspend, bool, 0644);
1895 MODULE_PARM_DESC(ltr_ignore_all_suspend, "Ignore all LTRs during suspend");
1896 
pmc_core_suspend(struct device * dev)1897 static __maybe_unused int pmc_core_suspend(struct device *dev)
1898 {
1899 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1900 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1901 	unsigned int i;
1902 
1903 	if (pmcdev->suspend)
1904 		pmcdev->suspend(pmcdev);
1905 
1906 	if (ltr_ignore_all_suspend)
1907 		pmc_core_ltr_ignore_all(pmcdev);
1908 
1909 	/* Check if the syspend will actually use S0ix */
1910 	if (pm_suspend_via_firmware())
1911 		return 0;
1912 
1913 	/* Save PKGC residency for checking later */
1914 	for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1915 		if (rdmsrq_safe(msr_map[i].bit_mask, &pmcdev->pkgc_res_cnt[i]))
1916 			return -EIO;
1917 	}
1918 
1919 	/* Save S0ix residency for checking later */
1920 	if (pmc_core_dev_state_get(pmc, &pmcdev->s0ix_counter))
1921 		return -EIO;
1922 
1923 	return 0;
1924 }
1925 
pmc_core_is_deepest_pkgc_failed(struct pmc_dev * pmcdev)1926 static inline bool pmc_core_is_deepest_pkgc_failed(struct pmc_dev *pmcdev)
1927 {
1928 	u32 deepest_pkgc_msr = msr_map[pmcdev->num_of_pkgc - 1].bit_mask;
1929 	u64 deepest_pkgc_residency;
1930 
1931 	if (rdmsrq_safe(deepest_pkgc_msr, &deepest_pkgc_residency))
1932 		return false;
1933 
1934 	if (deepest_pkgc_residency == pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1])
1935 		return true;
1936 
1937 	return false;
1938 }
1939 
pmc_core_is_s0ix_failed(struct pmc_dev * pmcdev)1940 static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev)
1941 {
1942 	u64 s0ix_counter;
1943 
1944 	if (pmc_core_dev_state_get(pmcdev->pmcs[PMC_IDX_MAIN], &s0ix_counter))
1945 		return false;
1946 
1947 	pm_report_hw_sleep_time((u32)(s0ix_counter - pmcdev->s0ix_counter));
1948 
1949 	if (s0ix_counter == pmcdev->s0ix_counter)
1950 		return true;
1951 
1952 	return false;
1953 }
1954 
pmc_core_resume_common(struct pmc_dev * pmcdev)1955 int pmc_core_resume_common(struct pmc_dev *pmcdev)
1956 {
1957 	struct device *dev = &pmcdev->pdev->dev;
1958 	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1959 	const struct pmc_bit_map **maps = pmc->map->lpm_sts;
1960 	int offset = pmc->map->lpm_status_offset;
1961 	unsigned int i;
1962 
1963 	/* Check if the syspend used S0ix */
1964 	if (pm_suspend_via_firmware())
1965 		return 0;
1966 
1967 	if (!pmc_core_is_s0ix_failed(pmcdev))
1968 		return 0;
1969 
1970 	if (!warn_on_s0ix_failures)
1971 		return 0;
1972 
1973 	if (pmc_core_is_deepest_pkgc_failed(pmcdev)) {
1974 		/* S0ix failed because of deepest PKGC entry failure */
1975 		dev_info(dev, "CPU did not enter %s!!! (%s cnt=0x%llx)\n",
1976 			 msr_map[pmcdev->num_of_pkgc - 1].name,
1977 			 msr_map[pmcdev->num_of_pkgc - 1].name,
1978 			 pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1]);
1979 
1980 		for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1981 			u64 pc_cnt;
1982 
1983 			if (!rdmsrq_safe(msr_map[i].bit_mask, &pc_cnt)) {
1984 				dev_info(dev, "Prev %s cnt = 0x%llx, Current %s cnt = 0x%llx\n",
1985 					 msr_map[i].name, pmcdev->pkgc_res_cnt[i],
1986 					 msr_map[i].name, pc_cnt);
1987 			}
1988 		}
1989 		return 0;
1990 	}
1991 
1992 	/* The real interesting case - S0ix failed - lets ask PMC why. */
1993 	dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n",
1994 		 pmcdev->s0ix_counter);
1995 
1996 	if (pmc->map->slps0_dbg_maps)
1997 		pmc_core_slps0_display(pmc, dev, NULL);
1998 
1999 	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
2000 		struct pmc *pmc = pmcdev->pmcs[i];
2001 
2002 		if (!pmc)
2003 			continue;
2004 		if (pmc->map->lpm_sts)
2005 			pmc_core_lpm_display(pmc, dev, NULL, offset, i, "STATUS", maps);
2006 	}
2007 
2008 	return 0;
2009 }
2010 
pmc_core_resume(struct device * dev)2011 static __maybe_unused int pmc_core_resume(struct device *dev)
2012 {
2013 	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
2014 
2015 	if (ltr_ignore_all_suspend)
2016 		pmc_core_ltr_restore_all(pmcdev);
2017 
2018 	if (pmcdev->resume)
2019 		return pmcdev->resume(pmcdev);
2020 
2021 	return pmc_core_resume_common(pmcdev);
2022 }
2023 
2024 static const struct dev_pm_ops pmc_core_pm_ops = {
2025 	SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume)
2026 };
2027 
2028 static const struct acpi_device_id pmc_core_acpi_ids[] = {
2029 	{"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/
2030 	{ }
2031 };
2032 MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids);
2033 
2034 static struct platform_driver pmc_core_driver = {
2035 	.driver = {
2036 		.name = "intel_pmc_core",
2037 		.acpi_match_table = ACPI_PTR(pmc_core_acpi_ids),
2038 		.pm = &pmc_core_pm_ops,
2039 		.dev_groups = pmc_dev_groups,
2040 	},
2041 	.probe = pmc_core_probe,
2042 	.remove = pmc_core_remove,
2043 };
2044 
2045 module_platform_driver(pmc_core_driver);
2046 
2047 MODULE_IMPORT_NS("INTEL_PMT_TELEMETRY");
2048 MODULE_LICENSE("GPL v2");
2049 MODULE_DESCRIPTION("Intel PMC Core Driver");
2050